tools headers UAPI: Sync openat2.h with the kernel sources
[linux-2.6-microblaze.git] / fs / squashfs / cache.c
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * Squashfs - a compressed read only filesystem for Linux
4  *
5  * Copyright (c) 2002, 2003, 2004, 2005, 2006, 2007, 2008
6  * Phillip Lougher <phillip@squashfs.org.uk>
7  *
8  * cache.c
9  */
10
11 /*
12  * Blocks in Squashfs are compressed.  To avoid repeatedly decompressing
13  * recently accessed data Squashfs uses two small metadata and fragment caches.
14  *
15  * This file implements a generic cache implementation used for both caches,
16  * plus functions layered ontop of the generic cache implementation to
17  * access the metadata and fragment caches.
18  *
19  * To avoid out of memory and fragmentation issues with vmalloc the cache
20  * uses sequences of kmalloced PAGE_SIZE buffers.
21  *
22  * It should be noted that the cache is not used for file datablocks, these
23  * are decompressed and cached in the page-cache in the normal way.  The
24  * cache is only used to temporarily cache fragment and metadata blocks
25  * which have been read as as a result of a metadata (i.e. inode or
26  * directory) or fragment access.  Because metadata and fragments are packed
27  * together into blocks (to gain greater compression) the read of a particular
28  * piece of metadata or fragment will retrieve other metadata/fragments which
29  * have been packed with it, these because of locality-of-reference may be read
30  * in the near future. Temporarily caching them ensures they are available for
31  * near future access without requiring an additional read and decompress.
32  */
33
34 #include <linux/fs.h>
35 #include <linux/vfs.h>
36 #include <linux/slab.h>
37 #include <linux/vmalloc.h>
38 #include <linux/sched.h>
39 #include <linux/spinlock.h>
40 #include <linux/wait.h>
41 #include <linux/pagemap.h>
42
43 #include "squashfs_fs.h"
44 #include "squashfs_fs_sb.h"
45 #include "squashfs.h"
46 #include "page_actor.h"
47
48 /*
49  * Look-up block in cache, and increment usage count.  If not in cache, read
50  * and decompress it from disk.
51  */
52 struct squashfs_cache_entry *squashfs_cache_get(struct super_block *sb,
53         struct squashfs_cache *cache, u64 block, int length)
54 {
55         int i, n;
56         struct squashfs_cache_entry *entry;
57
58         spin_lock(&cache->lock);
59
60         while (1) {
61                 for (i = cache->curr_blk, n = 0; n < cache->entries; n++) {
62                         if (cache->entry[i].block == block) {
63                                 cache->curr_blk = i;
64                                 break;
65                         }
66                         i = (i + 1) % cache->entries;
67                 }
68
69                 if (n == cache->entries) {
70                         /*
71                          * Block not in cache, if all cache entries are used
72                          * go to sleep waiting for one to become available.
73                          */
74                         if (cache->unused == 0) {
75                                 cache->num_waiters++;
76                                 spin_unlock(&cache->lock);
77                                 wait_event(cache->wait_queue, cache->unused);
78                                 spin_lock(&cache->lock);
79                                 cache->num_waiters--;
80                                 continue;
81                         }
82
83                         /*
84                          * At least one unused cache entry.  A simple
85                          * round-robin strategy is used to choose the entry to
86                          * be evicted from the cache.
87                          */
88                         i = cache->next_blk;
89                         for (n = 0; n < cache->entries; n++) {
90                                 if (cache->entry[i].refcount == 0)
91                                         break;
92                                 i = (i + 1) % cache->entries;
93                         }
94
95                         cache->next_blk = (i + 1) % cache->entries;
96                         entry = &cache->entry[i];
97
98                         /*
99                          * Initialise chosen cache entry, and fill it in from
100                          * disk.
101                          */
102                         cache->unused--;
103                         entry->block = block;
104                         entry->refcount = 1;
105                         entry->pending = 1;
106                         entry->num_waiters = 0;
107                         entry->error = 0;
108                         spin_unlock(&cache->lock);
109
110                         entry->length = squashfs_read_data(sb, block, length,
111                                 &entry->next_index, entry->actor);
112
113                         spin_lock(&cache->lock);
114
115                         if (entry->length < 0)
116                                 entry->error = entry->length;
117
118                         entry->pending = 0;
119
120                         /*
121                          * While filling this entry one or more other processes
122                          * have looked it up in the cache, and have slept
123                          * waiting for it to become available.
124                          */
125                         if (entry->num_waiters) {
126                                 spin_unlock(&cache->lock);
127                                 wake_up_all(&entry->wait_queue);
128                         } else
129                                 spin_unlock(&cache->lock);
130
131                         goto out;
132                 }
133
134                 /*
135                  * Block already in cache.  Increment refcount so it doesn't
136                  * get reused until we're finished with it, if it was
137                  * previously unused there's one less cache entry available
138                  * for reuse.
139                  */
140                 entry = &cache->entry[i];
141                 if (entry->refcount == 0)
142                         cache->unused--;
143                 entry->refcount++;
144
145                 /*
146                  * If the entry is currently being filled in by another process
147                  * go to sleep waiting for it to become available.
148                  */
149                 if (entry->pending) {
150                         entry->num_waiters++;
151                         spin_unlock(&cache->lock);
152                         wait_event(entry->wait_queue, !entry->pending);
153                 } else
154                         spin_unlock(&cache->lock);
155
156                 goto out;
157         }
158
159 out:
160         TRACE("Got %s %d, start block %lld, refcount %d, error %d\n",
161                 cache->name, i, entry->block, entry->refcount, entry->error);
162
163         if (entry->error)
164                 ERROR("Unable to read %s cache entry [%llx]\n", cache->name,
165                                                         block);
166         return entry;
167 }
168
169
170 /*
171  * Release cache entry, once usage count is zero it can be reused.
172  */
173 void squashfs_cache_put(struct squashfs_cache_entry *entry)
174 {
175         struct squashfs_cache *cache = entry->cache;
176
177         spin_lock(&cache->lock);
178         entry->refcount--;
179         if (entry->refcount == 0) {
180                 cache->unused++;
181                 /*
182                  * If there's any processes waiting for a block to become
183                  * available, wake one up.
184                  */
185                 if (cache->num_waiters) {
186                         spin_unlock(&cache->lock);
187                         wake_up(&cache->wait_queue);
188                         return;
189                 }
190         }
191         spin_unlock(&cache->lock);
192 }
193
194 /*
195  * Delete cache reclaiming all kmalloced buffers.
196  */
197 void squashfs_cache_delete(struct squashfs_cache *cache)
198 {
199         int i, j;
200
201         if (cache == NULL)
202                 return;
203
204         for (i = 0; i < cache->entries; i++) {
205                 if (cache->entry[i].data) {
206                         for (j = 0; j < cache->pages; j++)
207                                 kfree(cache->entry[i].data[j]);
208                         kfree(cache->entry[i].data);
209                 }
210                 kfree(cache->entry[i].actor);
211         }
212
213         kfree(cache->entry);
214         kfree(cache);
215 }
216
217
218 /*
219  * Initialise cache allocating the specified number of entries, each of
220  * size block_size.  To avoid vmalloc fragmentation issues each entry
221  * is allocated as a sequence of kmalloced PAGE_SIZE buffers.
222  */
223 struct squashfs_cache *squashfs_cache_init(char *name, int entries,
224         int block_size)
225 {
226         int i, j;
227         struct squashfs_cache *cache = kzalloc(sizeof(*cache), GFP_KERNEL);
228
229         if (cache == NULL) {
230                 ERROR("Failed to allocate %s cache\n", name);
231                 return NULL;
232         }
233
234         cache->entry = kcalloc(entries, sizeof(*(cache->entry)), GFP_KERNEL);
235         if (cache->entry == NULL) {
236                 ERROR("Failed to allocate %s cache\n", name);
237                 goto cleanup;
238         }
239
240         cache->curr_blk = 0;
241         cache->next_blk = 0;
242         cache->unused = entries;
243         cache->entries = entries;
244         cache->block_size = block_size;
245         cache->pages = block_size >> PAGE_SHIFT;
246         cache->pages = cache->pages ? cache->pages : 1;
247         cache->name = name;
248         cache->num_waiters = 0;
249         spin_lock_init(&cache->lock);
250         init_waitqueue_head(&cache->wait_queue);
251
252         for (i = 0; i < entries; i++) {
253                 struct squashfs_cache_entry *entry = &cache->entry[i];
254
255                 init_waitqueue_head(&cache->entry[i].wait_queue);
256                 entry->cache = cache;
257                 entry->block = SQUASHFS_INVALID_BLK;
258                 entry->data = kcalloc(cache->pages, sizeof(void *), GFP_KERNEL);
259                 if (entry->data == NULL) {
260                         ERROR("Failed to allocate %s cache entry\n", name);
261                         goto cleanup;
262                 }
263
264                 for (j = 0; j < cache->pages; j++) {
265                         entry->data[j] = kmalloc(PAGE_SIZE, GFP_KERNEL);
266                         if (entry->data[j] == NULL) {
267                                 ERROR("Failed to allocate %s buffer\n", name);
268                                 goto cleanup;
269                         }
270                 }
271
272                 entry->actor = squashfs_page_actor_init(entry->data,
273                                                 cache->pages, 0);
274                 if (entry->actor == NULL) {
275                         ERROR("Failed to allocate %s cache entry\n", name);
276                         goto cleanup;
277                 }
278         }
279
280         return cache;
281
282 cleanup:
283         squashfs_cache_delete(cache);
284         return NULL;
285 }
286
287
288 /*
289  * Copy up to length bytes from cache entry to buffer starting at offset bytes
290  * into the cache entry.  If there's not length bytes then copy the number of
291  * bytes available.  In all cases return the number of bytes copied.
292  */
293 int squashfs_copy_data(void *buffer, struct squashfs_cache_entry *entry,
294                 int offset, int length)
295 {
296         int remaining = length;
297
298         if (length == 0)
299                 return 0;
300         else if (buffer == NULL)
301                 return min(length, entry->length - offset);
302
303         while (offset < entry->length) {
304                 void *buff = entry->data[offset / PAGE_SIZE]
305                                 + (offset % PAGE_SIZE);
306                 int bytes = min_t(int, entry->length - offset,
307                                 PAGE_SIZE - (offset % PAGE_SIZE));
308
309                 if (bytes >= remaining) {
310                         memcpy(buffer, buff, remaining);
311                         remaining = 0;
312                         break;
313                 }
314
315                 memcpy(buffer, buff, bytes);
316                 buffer += bytes;
317                 remaining -= bytes;
318                 offset += bytes;
319         }
320
321         return length - remaining;
322 }
323
324
325 /*
326  * Read length bytes from metadata position <block, offset> (block is the
327  * start of the compressed block on disk, and offset is the offset into
328  * the block once decompressed).  Data is packed into consecutive blocks,
329  * and length bytes may require reading more than one block.
330  */
331 int squashfs_read_metadata(struct super_block *sb, void *buffer,
332                 u64 *block, int *offset, int length)
333 {
334         struct squashfs_sb_info *msblk = sb->s_fs_info;
335         int bytes, res = length;
336         struct squashfs_cache_entry *entry;
337
338         TRACE("Entered squashfs_read_metadata [%llx:%x]\n", *block, *offset);
339
340         if (unlikely(length < 0))
341                 return -EIO;
342
343         while (length) {
344                 entry = squashfs_cache_get(sb, msblk->block_cache, *block, 0);
345                 if (entry->error) {
346                         res = entry->error;
347                         goto error;
348                 } else if (*offset >= entry->length) {
349                         res = -EIO;
350                         goto error;
351                 }
352
353                 bytes = squashfs_copy_data(buffer, entry, *offset, length);
354                 if (buffer)
355                         buffer += bytes;
356                 length -= bytes;
357                 *offset += bytes;
358
359                 if (*offset == entry->length) {
360                         *block = entry->next_index;
361                         *offset = 0;
362                 }
363
364                 squashfs_cache_put(entry);
365         }
366
367         return res;
368
369 error:
370         squashfs_cache_put(entry);
371         return res;
372 }
373
374
375 /*
376  * Look-up in the fragmment cache the fragment located at <start_block> in the
377  * filesystem.  If necessary read and decompress it from disk.
378  */
379 struct squashfs_cache_entry *squashfs_get_fragment(struct super_block *sb,
380                                 u64 start_block, int length)
381 {
382         struct squashfs_sb_info *msblk = sb->s_fs_info;
383
384         return squashfs_cache_get(sb, msblk->fragment_cache, start_block,
385                 length);
386 }
387
388
389 /*
390  * Read and decompress the datablock located at <start_block> in the
391  * filesystem.  The cache is used here to avoid duplicating locking and
392  * read/decompress code.
393  */
394 struct squashfs_cache_entry *squashfs_get_datablock(struct super_block *sb,
395                                 u64 start_block, int length)
396 {
397         struct squashfs_sb_info *msblk = sb->s_fs_info;
398
399         return squashfs_cache_get(sb, msblk->read_page, start_block, length);
400 }
401
402
403 /*
404  * Read a filesystem table (uncompressed sequence of bytes) from disk
405  */
406 void *squashfs_read_table(struct super_block *sb, u64 block, int length)
407 {
408         int pages = (length + PAGE_SIZE - 1) >> PAGE_SHIFT;
409         int i, res;
410         void *table, *buffer, **data;
411         struct squashfs_page_actor *actor;
412
413         table = buffer = kmalloc(length, GFP_KERNEL);
414         if (table == NULL)
415                 return ERR_PTR(-ENOMEM);
416
417         data = kcalloc(pages, sizeof(void *), GFP_KERNEL);
418         if (data == NULL) {
419                 res = -ENOMEM;
420                 goto failed;
421         }
422
423         actor = squashfs_page_actor_init(data, pages, length);
424         if (actor == NULL) {
425                 res = -ENOMEM;
426                 goto failed2;
427         }
428
429         for (i = 0; i < pages; i++, buffer += PAGE_SIZE)
430                 data[i] = buffer;
431
432         res = squashfs_read_data(sb, block, length |
433                 SQUASHFS_COMPRESSED_BIT_BLOCK, NULL, actor);
434
435         kfree(data);
436         kfree(actor);
437
438         if (res < 0)
439                 goto failed;
440
441         return table;
442
443 failed2:
444         kfree(data);
445 failed:
446         kfree(table);
447         return ERR_PTR(res);
448 }