Linux 6.9-rc1
[linux-2.6-microblaze.git] / fs / splice.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * "splice": joining two ropes together by interweaving their strands.
4  *
5  * This is the "extended pipe" functionality, where a pipe is used as
6  * an arbitrary in-memory buffer. Think of a pipe as a small kernel
7  * buffer that you can use to transfer data from one end to the other.
8  *
9  * The traditional unix read/write is extended with a "splice()" operation
10  * that transfers data buffers to or from a pipe buffer.
11  *
12  * Named by Larry McVoy, original implementation from Linus, extended by
13  * Jens to support splicing to files, network, direct splicing, etc and
14  * fixing lots of bugs.
15  *
16  * Copyright (C) 2005-2006 Jens Axboe <axboe@kernel.dk>
17  * Copyright (C) 2005-2006 Linus Torvalds <torvalds@osdl.org>
18  * Copyright (C) 2006 Ingo Molnar <mingo@elte.hu>
19  *
20  */
21 #include <linux/bvec.h>
22 #include <linux/fs.h>
23 #include <linux/file.h>
24 #include <linux/pagemap.h>
25 #include <linux/splice.h>
26 #include <linux/memcontrol.h>
27 #include <linux/mm_inline.h>
28 #include <linux/swap.h>
29 #include <linux/writeback.h>
30 #include <linux/export.h>
31 #include <linux/syscalls.h>
32 #include <linux/uio.h>
33 #include <linux/fsnotify.h>
34 #include <linux/security.h>
35 #include <linux/gfp.h>
36 #include <linux/net.h>
37 #include <linux/socket.h>
38 #include <linux/sched/signal.h>
39
40 #include "internal.h"
41
42 /*
43  * Splice doesn't support FMODE_NOWAIT. Since pipes may set this flag to
44  * indicate they support non-blocking reads or writes, we must clear it
45  * here if set to avoid blocking other users of this pipe if splice is
46  * being done on it.
47  */
48 static noinline void noinline pipe_clear_nowait(struct file *file)
49 {
50         fmode_t fmode = READ_ONCE(file->f_mode);
51
52         do {
53                 if (!(fmode & FMODE_NOWAIT))
54                         break;
55         } while (!try_cmpxchg(&file->f_mode, &fmode, fmode & ~FMODE_NOWAIT));
56 }
57
58 /*
59  * Attempt to steal a page from a pipe buffer. This should perhaps go into
60  * a vm helper function, it's already simplified quite a bit by the
61  * addition of remove_mapping(). If success is returned, the caller may
62  * attempt to reuse this page for another destination.
63  */
64 static bool page_cache_pipe_buf_try_steal(struct pipe_inode_info *pipe,
65                 struct pipe_buffer *buf)
66 {
67         struct folio *folio = page_folio(buf->page);
68         struct address_space *mapping;
69
70         folio_lock(folio);
71
72         mapping = folio_mapping(folio);
73         if (mapping) {
74                 WARN_ON(!folio_test_uptodate(folio));
75
76                 /*
77                  * At least for ext2 with nobh option, we need to wait on
78                  * writeback completing on this folio, since we'll remove it
79                  * from the pagecache.  Otherwise truncate wont wait on the
80                  * folio, allowing the disk blocks to be reused by someone else
81                  * before we actually wrote our data to them. fs corruption
82                  * ensues.
83                  */
84                 folio_wait_writeback(folio);
85
86                 if (!filemap_release_folio(folio, GFP_KERNEL))
87                         goto out_unlock;
88
89                 /*
90                  * If we succeeded in removing the mapping, set LRU flag
91                  * and return good.
92                  */
93                 if (remove_mapping(mapping, folio)) {
94                         buf->flags |= PIPE_BUF_FLAG_LRU;
95                         return true;
96                 }
97         }
98
99         /*
100          * Raced with truncate or failed to remove folio from current
101          * address space, unlock and return failure.
102          */
103 out_unlock:
104         folio_unlock(folio);
105         return false;
106 }
107
108 static void page_cache_pipe_buf_release(struct pipe_inode_info *pipe,
109                                         struct pipe_buffer *buf)
110 {
111         put_page(buf->page);
112         buf->flags &= ~PIPE_BUF_FLAG_LRU;
113 }
114
115 /*
116  * Check whether the contents of buf is OK to access. Since the content
117  * is a page cache page, IO may be in flight.
118  */
119 static int page_cache_pipe_buf_confirm(struct pipe_inode_info *pipe,
120                                        struct pipe_buffer *buf)
121 {
122         struct folio *folio = page_folio(buf->page);
123         int err;
124
125         if (!folio_test_uptodate(folio)) {
126                 folio_lock(folio);
127
128                 /*
129                  * Folio got truncated/unhashed. This will cause a 0-byte
130                  * splice, if this is the first page.
131                  */
132                 if (!folio->mapping) {
133                         err = -ENODATA;
134                         goto error;
135                 }
136
137                 /*
138                  * Uh oh, read-error from disk.
139                  */
140                 if (!folio_test_uptodate(folio)) {
141                         err = -EIO;
142                         goto error;
143                 }
144
145                 /* Folio is ok after all, we are done */
146                 folio_unlock(folio);
147         }
148
149         return 0;
150 error:
151         folio_unlock(folio);
152         return err;
153 }
154
155 const struct pipe_buf_operations page_cache_pipe_buf_ops = {
156         .confirm        = page_cache_pipe_buf_confirm,
157         .release        = page_cache_pipe_buf_release,
158         .try_steal      = page_cache_pipe_buf_try_steal,
159         .get            = generic_pipe_buf_get,
160 };
161
162 static bool user_page_pipe_buf_try_steal(struct pipe_inode_info *pipe,
163                 struct pipe_buffer *buf)
164 {
165         if (!(buf->flags & PIPE_BUF_FLAG_GIFT))
166                 return false;
167
168         buf->flags |= PIPE_BUF_FLAG_LRU;
169         return generic_pipe_buf_try_steal(pipe, buf);
170 }
171
172 static const struct pipe_buf_operations user_page_pipe_buf_ops = {
173         .release        = page_cache_pipe_buf_release,
174         .try_steal      = user_page_pipe_buf_try_steal,
175         .get            = generic_pipe_buf_get,
176 };
177
178 static void wakeup_pipe_readers(struct pipe_inode_info *pipe)
179 {
180         smp_mb();
181         if (waitqueue_active(&pipe->rd_wait))
182                 wake_up_interruptible(&pipe->rd_wait);
183         kill_fasync(&pipe->fasync_readers, SIGIO, POLL_IN);
184 }
185
186 /**
187  * splice_to_pipe - fill passed data into a pipe
188  * @pipe:       pipe to fill
189  * @spd:        data to fill
190  *
191  * Description:
192  *    @spd contains a map of pages and len/offset tuples, along with
193  *    the struct pipe_buf_operations associated with these pages. This
194  *    function will link that data to the pipe.
195  *
196  */
197 ssize_t splice_to_pipe(struct pipe_inode_info *pipe,
198                        struct splice_pipe_desc *spd)
199 {
200         unsigned int spd_pages = spd->nr_pages;
201         unsigned int tail = pipe->tail;
202         unsigned int head = pipe->head;
203         unsigned int mask = pipe->ring_size - 1;
204         ssize_t ret = 0;
205         int page_nr = 0;
206
207         if (!spd_pages)
208                 return 0;
209
210         if (unlikely(!pipe->readers)) {
211                 send_sig(SIGPIPE, current, 0);
212                 ret = -EPIPE;
213                 goto out;
214         }
215
216         while (!pipe_full(head, tail, pipe->max_usage)) {
217                 struct pipe_buffer *buf = &pipe->bufs[head & mask];
218
219                 buf->page = spd->pages[page_nr];
220                 buf->offset = spd->partial[page_nr].offset;
221                 buf->len = spd->partial[page_nr].len;
222                 buf->private = spd->partial[page_nr].private;
223                 buf->ops = spd->ops;
224                 buf->flags = 0;
225
226                 head++;
227                 pipe->head = head;
228                 page_nr++;
229                 ret += buf->len;
230
231                 if (!--spd->nr_pages)
232                         break;
233         }
234
235         if (!ret)
236                 ret = -EAGAIN;
237
238 out:
239         while (page_nr < spd_pages)
240                 spd->spd_release(spd, page_nr++);
241
242         return ret;
243 }
244 EXPORT_SYMBOL_GPL(splice_to_pipe);
245
246 ssize_t add_to_pipe(struct pipe_inode_info *pipe, struct pipe_buffer *buf)
247 {
248         unsigned int head = pipe->head;
249         unsigned int tail = pipe->tail;
250         unsigned int mask = pipe->ring_size - 1;
251         int ret;
252
253         if (unlikely(!pipe->readers)) {
254                 send_sig(SIGPIPE, current, 0);
255                 ret = -EPIPE;
256         } else if (pipe_full(head, tail, pipe->max_usage)) {
257                 ret = -EAGAIN;
258         } else {
259                 pipe->bufs[head & mask] = *buf;
260                 pipe->head = head + 1;
261                 return buf->len;
262         }
263         pipe_buf_release(pipe, buf);
264         return ret;
265 }
266 EXPORT_SYMBOL(add_to_pipe);
267
268 /*
269  * Check if we need to grow the arrays holding pages and partial page
270  * descriptions.
271  */
272 int splice_grow_spd(const struct pipe_inode_info *pipe, struct splice_pipe_desc *spd)
273 {
274         unsigned int max_usage = READ_ONCE(pipe->max_usage);
275
276         spd->nr_pages_max = max_usage;
277         if (max_usage <= PIPE_DEF_BUFFERS)
278                 return 0;
279
280         spd->pages = kmalloc_array(max_usage, sizeof(struct page *), GFP_KERNEL);
281         spd->partial = kmalloc_array(max_usage, sizeof(struct partial_page),
282                                      GFP_KERNEL);
283
284         if (spd->pages && spd->partial)
285                 return 0;
286
287         kfree(spd->pages);
288         kfree(spd->partial);
289         return -ENOMEM;
290 }
291
292 void splice_shrink_spd(struct splice_pipe_desc *spd)
293 {
294         if (spd->nr_pages_max <= PIPE_DEF_BUFFERS)
295                 return;
296
297         kfree(spd->pages);
298         kfree(spd->partial);
299 }
300
301 /**
302  * copy_splice_read -  Copy data from a file and splice the copy into a pipe
303  * @in: The file to read from
304  * @ppos: Pointer to the file position to read from
305  * @pipe: The pipe to splice into
306  * @len: The amount to splice
307  * @flags: The SPLICE_F_* flags
308  *
309  * This function allocates a bunch of pages sufficient to hold the requested
310  * amount of data (but limited by the remaining pipe capacity), passes it to
311  * the file's ->read_iter() to read into and then splices the used pages into
312  * the pipe.
313  *
314  * Return: On success, the number of bytes read will be returned and *@ppos
315  * will be updated if appropriate; 0 will be returned if there is no more data
316  * to be read; -EAGAIN will be returned if the pipe had no space, and some
317  * other negative error code will be returned on error.  A short read may occur
318  * if the pipe has insufficient space, we reach the end of the data or we hit a
319  * hole.
320  */
321 ssize_t copy_splice_read(struct file *in, loff_t *ppos,
322                          struct pipe_inode_info *pipe,
323                          size_t len, unsigned int flags)
324 {
325         struct iov_iter to;
326         struct bio_vec *bv;
327         struct kiocb kiocb;
328         struct page **pages;
329         ssize_t ret;
330         size_t used, npages, chunk, remain, keep = 0;
331         int i;
332
333         /* Work out how much data we can actually add into the pipe */
334         used = pipe_occupancy(pipe->head, pipe->tail);
335         npages = max_t(ssize_t, pipe->max_usage - used, 0);
336         len = min_t(size_t, len, npages * PAGE_SIZE);
337         npages = DIV_ROUND_UP(len, PAGE_SIZE);
338
339         bv = kzalloc(array_size(npages, sizeof(bv[0])) +
340                      array_size(npages, sizeof(struct page *)), GFP_KERNEL);
341         if (!bv)
342                 return -ENOMEM;
343
344         pages = (struct page **)(bv + npages);
345         npages = alloc_pages_bulk_array(GFP_USER, npages, pages);
346         if (!npages) {
347                 kfree(bv);
348                 return -ENOMEM;
349         }
350
351         remain = len = min_t(size_t, len, npages * PAGE_SIZE);
352
353         for (i = 0; i < npages; i++) {
354                 chunk = min_t(size_t, PAGE_SIZE, remain);
355                 bv[i].bv_page = pages[i];
356                 bv[i].bv_offset = 0;
357                 bv[i].bv_len = chunk;
358                 remain -= chunk;
359         }
360
361         /* Do the I/O */
362         iov_iter_bvec(&to, ITER_DEST, bv, npages, len);
363         init_sync_kiocb(&kiocb, in);
364         kiocb.ki_pos = *ppos;
365         ret = call_read_iter(in, &kiocb, &to);
366
367         if (ret > 0) {
368                 keep = DIV_ROUND_UP(ret, PAGE_SIZE);
369                 *ppos = kiocb.ki_pos;
370         }
371
372         /*
373          * Callers of ->splice_read() expect -EAGAIN on "can't put anything in
374          * there", rather than -EFAULT.
375          */
376         if (ret == -EFAULT)
377                 ret = -EAGAIN;
378
379         /* Free any pages that didn't get touched at all. */
380         if (keep < npages)
381                 release_pages(pages + keep, npages - keep);
382
383         /* Push the remaining pages into the pipe. */
384         remain = ret;
385         for (i = 0; i < keep; i++) {
386                 struct pipe_buffer *buf = pipe_head_buf(pipe);
387
388                 chunk = min_t(size_t, remain, PAGE_SIZE);
389                 *buf = (struct pipe_buffer) {
390                         .ops    = &default_pipe_buf_ops,
391                         .page   = bv[i].bv_page,
392                         .offset = 0,
393                         .len    = chunk,
394                 };
395                 pipe->head++;
396                 remain -= chunk;
397         }
398
399         kfree(bv);
400         return ret;
401 }
402 EXPORT_SYMBOL(copy_splice_read);
403
404 const struct pipe_buf_operations default_pipe_buf_ops = {
405         .release        = generic_pipe_buf_release,
406         .try_steal      = generic_pipe_buf_try_steal,
407         .get            = generic_pipe_buf_get,
408 };
409
410 /* Pipe buffer operations for a socket and similar. */
411 const struct pipe_buf_operations nosteal_pipe_buf_ops = {
412         .release        = generic_pipe_buf_release,
413         .get            = generic_pipe_buf_get,
414 };
415 EXPORT_SYMBOL(nosteal_pipe_buf_ops);
416
417 static void wakeup_pipe_writers(struct pipe_inode_info *pipe)
418 {
419         smp_mb();
420         if (waitqueue_active(&pipe->wr_wait))
421                 wake_up_interruptible(&pipe->wr_wait);
422         kill_fasync(&pipe->fasync_writers, SIGIO, POLL_OUT);
423 }
424
425 /**
426  * splice_from_pipe_feed - feed available data from a pipe to a file
427  * @pipe:       pipe to splice from
428  * @sd:         information to @actor
429  * @actor:      handler that splices the data
430  *
431  * Description:
432  *    This function loops over the pipe and calls @actor to do the
433  *    actual moving of a single struct pipe_buffer to the desired
434  *    destination.  It returns when there's no more buffers left in
435  *    the pipe or if the requested number of bytes (@sd->total_len)
436  *    have been copied.  It returns a positive number (one) if the
437  *    pipe needs to be filled with more data, zero if the required
438  *    number of bytes have been copied and -errno on error.
439  *
440  *    This, together with splice_from_pipe_{begin,end,next}, may be
441  *    used to implement the functionality of __splice_from_pipe() when
442  *    locking is required around copying the pipe buffers to the
443  *    destination.
444  */
445 static int splice_from_pipe_feed(struct pipe_inode_info *pipe, struct splice_desc *sd,
446                           splice_actor *actor)
447 {
448         unsigned int head = pipe->head;
449         unsigned int tail = pipe->tail;
450         unsigned int mask = pipe->ring_size - 1;
451         int ret;
452
453         while (!pipe_empty(head, tail)) {
454                 struct pipe_buffer *buf = &pipe->bufs[tail & mask];
455
456                 sd->len = buf->len;
457                 if (sd->len > sd->total_len)
458                         sd->len = sd->total_len;
459
460                 ret = pipe_buf_confirm(pipe, buf);
461                 if (unlikely(ret)) {
462                         if (ret == -ENODATA)
463                                 ret = 0;
464                         return ret;
465                 }
466
467                 ret = actor(pipe, buf, sd);
468                 if (ret <= 0)
469                         return ret;
470
471                 buf->offset += ret;
472                 buf->len -= ret;
473
474                 sd->num_spliced += ret;
475                 sd->len -= ret;
476                 sd->pos += ret;
477                 sd->total_len -= ret;
478
479                 if (!buf->len) {
480                         pipe_buf_release(pipe, buf);
481                         tail++;
482                         pipe->tail = tail;
483                         if (pipe->files)
484                                 sd->need_wakeup = true;
485                 }
486
487                 if (!sd->total_len)
488                         return 0;
489         }
490
491         return 1;
492 }
493
494 /* We know we have a pipe buffer, but maybe it's empty? */
495 static inline bool eat_empty_buffer(struct pipe_inode_info *pipe)
496 {
497         unsigned int tail = pipe->tail;
498         unsigned int mask = pipe->ring_size - 1;
499         struct pipe_buffer *buf = &pipe->bufs[tail & mask];
500
501         if (unlikely(!buf->len)) {
502                 pipe_buf_release(pipe, buf);
503                 pipe->tail = tail+1;
504                 return true;
505         }
506
507         return false;
508 }
509
510 /**
511  * splice_from_pipe_next - wait for some data to splice from
512  * @pipe:       pipe to splice from
513  * @sd:         information about the splice operation
514  *
515  * Description:
516  *    This function will wait for some data and return a positive
517  *    value (one) if pipe buffers are available.  It will return zero
518  *    or -errno if no more data needs to be spliced.
519  */
520 static int splice_from_pipe_next(struct pipe_inode_info *pipe, struct splice_desc *sd)
521 {
522         /*
523          * Check for signal early to make process killable when there are
524          * always buffers available
525          */
526         if (signal_pending(current))
527                 return -ERESTARTSYS;
528
529 repeat:
530         while (pipe_empty(pipe->head, pipe->tail)) {
531                 if (!pipe->writers)
532                         return 0;
533
534                 if (sd->num_spliced)
535                         return 0;
536
537                 if (sd->flags & SPLICE_F_NONBLOCK)
538                         return -EAGAIN;
539
540                 if (signal_pending(current))
541                         return -ERESTARTSYS;
542
543                 if (sd->need_wakeup) {
544                         wakeup_pipe_writers(pipe);
545                         sd->need_wakeup = false;
546                 }
547
548                 pipe_wait_readable(pipe);
549         }
550
551         if (eat_empty_buffer(pipe))
552                 goto repeat;
553
554         return 1;
555 }
556
557 /**
558  * splice_from_pipe_begin - start splicing from pipe
559  * @sd:         information about the splice operation
560  *
561  * Description:
562  *    This function should be called before a loop containing
563  *    splice_from_pipe_next() and splice_from_pipe_feed() to
564  *    initialize the necessary fields of @sd.
565  */
566 static void splice_from_pipe_begin(struct splice_desc *sd)
567 {
568         sd->num_spliced = 0;
569         sd->need_wakeup = false;
570 }
571
572 /**
573  * splice_from_pipe_end - finish splicing from pipe
574  * @pipe:       pipe to splice from
575  * @sd:         information about the splice operation
576  *
577  * Description:
578  *    This function will wake up pipe writers if necessary.  It should
579  *    be called after a loop containing splice_from_pipe_next() and
580  *    splice_from_pipe_feed().
581  */
582 static void splice_from_pipe_end(struct pipe_inode_info *pipe, struct splice_desc *sd)
583 {
584         if (sd->need_wakeup)
585                 wakeup_pipe_writers(pipe);
586 }
587
588 /**
589  * __splice_from_pipe - splice data from a pipe to given actor
590  * @pipe:       pipe to splice from
591  * @sd:         information to @actor
592  * @actor:      handler that splices the data
593  *
594  * Description:
595  *    This function does little more than loop over the pipe and call
596  *    @actor to do the actual moving of a single struct pipe_buffer to
597  *    the desired destination. See pipe_to_file, pipe_to_sendmsg, or
598  *    pipe_to_user.
599  *
600  */
601 ssize_t __splice_from_pipe(struct pipe_inode_info *pipe, struct splice_desc *sd,
602                            splice_actor *actor)
603 {
604         int ret;
605
606         splice_from_pipe_begin(sd);
607         do {
608                 cond_resched();
609                 ret = splice_from_pipe_next(pipe, sd);
610                 if (ret > 0)
611                         ret = splice_from_pipe_feed(pipe, sd, actor);
612         } while (ret > 0);
613         splice_from_pipe_end(pipe, sd);
614
615         return sd->num_spliced ? sd->num_spliced : ret;
616 }
617 EXPORT_SYMBOL(__splice_from_pipe);
618
619 /**
620  * splice_from_pipe - splice data from a pipe to a file
621  * @pipe:       pipe to splice from
622  * @out:        file to splice to
623  * @ppos:       position in @out
624  * @len:        how many bytes to splice
625  * @flags:      splice modifier flags
626  * @actor:      handler that splices the data
627  *
628  * Description:
629  *    See __splice_from_pipe. This function locks the pipe inode,
630  *    otherwise it's identical to __splice_from_pipe().
631  *
632  */
633 ssize_t splice_from_pipe(struct pipe_inode_info *pipe, struct file *out,
634                          loff_t *ppos, size_t len, unsigned int flags,
635                          splice_actor *actor)
636 {
637         ssize_t ret;
638         struct splice_desc sd = {
639                 .total_len = len,
640                 .flags = flags,
641                 .pos = *ppos,
642                 .u.file = out,
643         };
644
645         pipe_lock(pipe);
646         ret = __splice_from_pipe(pipe, &sd, actor);
647         pipe_unlock(pipe);
648
649         return ret;
650 }
651
652 /**
653  * iter_file_splice_write - splice data from a pipe to a file
654  * @pipe:       pipe info
655  * @out:        file to write to
656  * @ppos:       position in @out
657  * @len:        number of bytes to splice
658  * @flags:      splice modifier flags
659  *
660  * Description:
661  *    Will either move or copy pages (determined by @flags options) from
662  *    the given pipe inode to the given file.
663  *    This one is ->write_iter-based.
664  *
665  */
666 ssize_t
667 iter_file_splice_write(struct pipe_inode_info *pipe, struct file *out,
668                           loff_t *ppos, size_t len, unsigned int flags)
669 {
670         struct splice_desc sd = {
671                 .total_len = len,
672                 .flags = flags,
673                 .pos = *ppos,
674                 .u.file = out,
675         };
676         int nbufs = pipe->max_usage;
677         struct bio_vec *array;
678         ssize_t ret;
679
680         if (!out->f_op->write_iter)
681                 return -EINVAL;
682
683         array = kcalloc(nbufs, sizeof(struct bio_vec), GFP_KERNEL);
684         if (unlikely(!array))
685                 return -ENOMEM;
686
687         pipe_lock(pipe);
688
689         splice_from_pipe_begin(&sd);
690         while (sd.total_len) {
691                 struct kiocb kiocb;
692                 struct iov_iter from;
693                 unsigned int head, tail, mask;
694                 size_t left;
695                 int n;
696
697                 ret = splice_from_pipe_next(pipe, &sd);
698                 if (ret <= 0)
699                         break;
700
701                 if (unlikely(nbufs < pipe->max_usage)) {
702                         kfree(array);
703                         nbufs = pipe->max_usage;
704                         array = kcalloc(nbufs, sizeof(struct bio_vec),
705                                         GFP_KERNEL);
706                         if (!array) {
707                                 ret = -ENOMEM;
708                                 break;
709                         }
710                 }
711
712                 head = pipe->head;
713                 tail = pipe->tail;
714                 mask = pipe->ring_size - 1;
715
716                 /* build the vector */
717                 left = sd.total_len;
718                 for (n = 0; !pipe_empty(head, tail) && left && n < nbufs; tail++) {
719                         struct pipe_buffer *buf = &pipe->bufs[tail & mask];
720                         size_t this_len = buf->len;
721
722                         /* zero-length bvecs are not supported, skip them */
723                         if (!this_len)
724                                 continue;
725                         this_len = min(this_len, left);
726
727                         ret = pipe_buf_confirm(pipe, buf);
728                         if (unlikely(ret)) {
729                                 if (ret == -ENODATA)
730                                         ret = 0;
731                                 goto done;
732                         }
733
734                         bvec_set_page(&array[n], buf->page, this_len,
735                                       buf->offset);
736                         left -= this_len;
737                         n++;
738                 }
739
740                 iov_iter_bvec(&from, ITER_SOURCE, array, n, sd.total_len - left);
741                 init_sync_kiocb(&kiocb, out);
742                 kiocb.ki_pos = sd.pos;
743                 ret = call_write_iter(out, &kiocb, &from);
744                 sd.pos = kiocb.ki_pos;
745                 if (ret <= 0)
746                         break;
747
748                 sd.num_spliced += ret;
749                 sd.total_len -= ret;
750                 *ppos = sd.pos;
751
752                 /* dismiss the fully eaten buffers, adjust the partial one */
753                 tail = pipe->tail;
754                 while (ret) {
755                         struct pipe_buffer *buf = &pipe->bufs[tail & mask];
756                         if (ret >= buf->len) {
757                                 ret -= buf->len;
758                                 buf->len = 0;
759                                 pipe_buf_release(pipe, buf);
760                                 tail++;
761                                 pipe->tail = tail;
762                                 if (pipe->files)
763                                         sd.need_wakeup = true;
764                         } else {
765                                 buf->offset += ret;
766                                 buf->len -= ret;
767                                 ret = 0;
768                         }
769                 }
770         }
771 done:
772         kfree(array);
773         splice_from_pipe_end(pipe, &sd);
774
775         pipe_unlock(pipe);
776
777         if (sd.num_spliced)
778                 ret = sd.num_spliced;
779
780         return ret;
781 }
782
783 EXPORT_SYMBOL(iter_file_splice_write);
784
785 #ifdef CONFIG_NET
786 /**
787  * splice_to_socket - splice data from a pipe to a socket
788  * @pipe:       pipe to splice from
789  * @out:        socket to write to
790  * @ppos:       position in @out
791  * @len:        number of bytes to splice
792  * @flags:      splice modifier flags
793  *
794  * Description:
795  *    Will send @len bytes from the pipe to a network socket. No data copying
796  *    is involved.
797  *
798  */
799 ssize_t splice_to_socket(struct pipe_inode_info *pipe, struct file *out,
800                          loff_t *ppos, size_t len, unsigned int flags)
801 {
802         struct socket *sock = sock_from_file(out);
803         struct bio_vec bvec[16];
804         struct msghdr msg = {};
805         ssize_t ret = 0;
806         size_t spliced = 0;
807         bool need_wakeup = false;
808
809         pipe_lock(pipe);
810
811         while (len > 0) {
812                 unsigned int head, tail, mask, bc = 0;
813                 size_t remain = len;
814
815                 /*
816                  * Check for signal early to make process killable when there
817                  * are always buffers available
818                  */
819                 ret = -ERESTARTSYS;
820                 if (signal_pending(current))
821                         break;
822
823                 while (pipe_empty(pipe->head, pipe->tail)) {
824                         ret = 0;
825                         if (!pipe->writers)
826                                 goto out;
827
828                         if (spliced)
829                                 goto out;
830
831                         ret = -EAGAIN;
832                         if (flags & SPLICE_F_NONBLOCK)
833                                 goto out;
834
835                         ret = -ERESTARTSYS;
836                         if (signal_pending(current))
837                                 goto out;
838
839                         if (need_wakeup) {
840                                 wakeup_pipe_writers(pipe);
841                                 need_wakeup = false;
842                         }
843
844                         pipe_wait_readable(pipe);
845                 }
846
847                 head = pipe->head;
848                 tail = pipe->tail;
849                 mask = pipe->ring_size - 1;
850
851                 while (!pipe_empty(head, tail)) {
852                         struct pipe_buffer *buf = &pipe->bufs[tail & mask];
853                         size_t seg;
854
855                         if (!buf->len) {
856                                 tail++;
857                                 continue;
858                         }
859
860                         seg = min_t(size_t, remain, buf->len);
861
862                         ret = pipe_buf_confirm(pipe, buf);
863                         if (unlikely(ret)) {
864                                 if (ret == -ENODATA)
865                                         ret = 0;
866                                 break;
867                         }
868
869                         bvec_set_page(&bvec[bc++], buf->page, seg, buf->offset);
870                         remain -= seg;
871                         if (remain == 0 || bc >= ARRAY_SIZE(bvec))
872                                 break;
873                         tail++;
874                 }
875
876                 if (!bc)
877                         break;
878
879                 msg.msg_flags = MSG_SPLICE_PAGES;
880                 if (flags & SPLICE_F_MORE)
881                         msg.msg_flags |= MSG_MORE;
882                 if (remain && pipe_occupancy(pipe->head, tail) > 0)
883                         msg.msg_flags |= MSG_MORE;
884                 if (out->f_flags & O_NONBLOCK)
885                         msg.msg_flags |= MSG_DONTWAIT;
886
887                 iov_iter_bvec(&msg.msg_iter, ITER_SOURCE, bvec, bc,
888                               len - remain);
889                 ret = sock_sendmsg(sock, &msg);
890                 if (ret <= 0)
891                         break;
892
893                 spliced += ret;
894                 len -= ret;
895                 tail = pipe->tail;
896                 while (ret > 0) {
897                         struct pipe_buffer *buf = &pipe->bufs[tail & mask];
898                         size_t seg = min_t(size_t, ret, buf->len);
899
900                         buf->offset += seg;
901                         buf->len -= seg;
902                         ret -= seg;
903
904                         if (!buf->len) {
905                                 pipe_buf_release(pipe, buf);
906                                 tail++;
907                         }
908                 }
909
910                 if (tail != pipe->tail) {
911                         pipe->tail = tail;
912                         if (pipe->files)
913                                 need_wakeup = true;
914                 }
915         }
916
917 out:
918         pipe_unlock(pipe);
919         if (need_wakeup)
920                 wakeup_pipe_writers(pipe);
921         return spliced ?: ret;
922 }
923 #endif
924
925 static int warn_unsupported(struct file *file, const char *op)
926 {
927         pr_debug_ratelimited(
928                 "splice %s not supported for file %pD4 (pid: %d comm: %.20s)\n",
929                 op, file, current->pid, current->comm);
930         return -EINVAL;
931 }
932
933 /*
934  * Attempt to initiate a splice from pipe to file.
935  */
936 static ssize_t do_splice_from(struct pipe_inode_info *pipe, struct file *out,
937                               loff_t *ppos, size_t len, unsigned int flags)
938 {
939         if (unlikely(!out->f_op->splice_write))
940                 return warn_unsupported(out, "write");
941         return out->f_op->splice_write(pipe, out, ppos, len, flags);
942 }
943
944 /*
945  * Indicate to the caller that there was a premature EOF when reading from the
946  * source and the caller didn't indicate they would be sending more data after
947  * this.
948  */
949 static void do_splice_eof(struct splice_desc *sd)
950 {
951         if (sd->splice_eof)
952                 sd->splice_eof(sd);
953 }
954
955 /*
956  * Callers already called rw_verify_area() on the entire range.
957  * No need to call it for sub ranges.
958  */
959 static ssize_t do_splice_read(struct file *in, loff_t *ppos,
960                               struct pipe_inode_info *pipe, size_t len,
961                               unsigned int flags)
962 {
963         unsigned int p_space;
964
965         if (unlikely(!(in->f_mode & FMODE_READ)))
966                 return -EBADF;
967         if (!len)
968                 return 0;
969
970         /* Don't try to read more the pipe has space for. */
971         p_space = pipe->max_usage - pipe_occupancy(pipe->head, pipe->tail);
972         len = min_t(size_t, len, p_space << PAGE_SHIFT);
973
974         if (unlikely(len > MAX_RW_COUNT))
975                 len = MAX_RW_COUNT;
976
977         if (unlikely(!in->f_op->splice_read))
978                 return warn_unsupported(in, "read");
979         /*
980          * O_DIRECT and DAX don't deal with the pagecache, so we allocate a
981          * buffer, copy into it and splice that into the pipe.
982          */
983         if ((in->f_flags & O_DIRECT) || IS_DAX(in->f_mapping->host))
984                 return copy_splice_read(in, ppos, pipe, len, flags);
985         return in->f_op->splice_read(in, ppos, pipe, len, flags);
986 }
987
988 /**
989  * vfs_splice_read - Read data from a file and splice it into a pipe
990  * @in:         File to splice from
991  * @ppos:       Input file offset
992  * @pipe:       Pipe to splice to
993  * @len:        Number of bytes to splice
994  * @flags:      Splice modifier flags (SPLICE_F_*)
995  *
996  * Splice the requested amount of data from the input file to the pipe.  This
997  * is synchronous as the caller must hold the pipe lock across the entire
998  * operation.
999  *
1000  * If successful, it returns the amount of data spliced, 0 if it hit the EOF or
1001  * a hole and a negative error code otherwise.
1002  */
1003 ssize_t vfs_splice_read(struct file *in, loff_t *ppos,
1004                         struct pipe_inode_info *pipe, size_t len,
1005                         unsigned int flags)
1006 {
1007         ssize_t ret;
1008
1009         ret = rw_verify_area(READ, in, ppos, len);
1010         if (unlikely(ret < 0))
1011                 return ret;
1012
1013         return do_splice_read(in, ppos, pipe, len, flags);
1014 }
1015 EXPORT_SYMBOL_GPL(vfs_splice_read);
1016
1017 /**
1018  * splice_direct_to_actor - splices data directly between two non-pipes
1019  * @in:         file to splice from
1020  * @sd:         actor information on where to splice to
1021  * @actor:      handles the data splicing
1022  *
1023  * Description:
1024  *    This is a special case helper to splice directly between two
1025  *    points, without requiring an explicit pipe. Internally an allocated
1026  *    pipe is cached in the process, and reused during the lifetime of
1027  *    that process.
1028  *
1029  */
1030 ssize_t splice_direct_to_actor(struct file *in, struct splice_desc *sd,
1031                                splice_direct_actor *actor)
1032 {
1033         struct pipe_inode_info *pipe;
1034         ssize_t ret, bytes;
1035         size_t len;
1036         int i, flags, more;
1037
1038         /*
1039          * We require the input to be seekable, as we don't want to randomly
1040          * drop data for eg socket -> socket splicing. Use the piped splicing
1041          * for that!
1042          */
1043         if (unlikely(!(in->f_mode & FMODE_LSEEK)))
1044                 return -EINVAL;
1045
1046         /*
1047          * neither in nor out is a pipe, setup an internal pipe attached to
1048          * 'out' and transfer the wanted data from 'in' to 'out' through that
1049          */
1050         pipe = current->splice_pipe;
1051         if (unlikely(!pipe)) {
1052                 pipe = alloc_pipe_info();
1053                 if (!pipe)
1054                         return -ENOMEM;
1055
1056                 /*
1057                  * We don't have an immediate reader, but we'll read the stuff
1058                  * out of the pipe right after the splice_to_pipe(). So set
1059                  * PIPE_READERS appropriately.
1060                  */
1061                 pipe->readers = 1;
1062
1063                 current->splice_pipe = pipe;
1064         }
1065
1066         /*
1067          * Do the splice.
1068          */
1069         bytes = 0;
1070         len = sd->total_len;
1071
1072         /* Don't block on output, we have to drain the direct pipe. */
1073         flags = sd->flags;
1074         sd->flags &= ~SPLICE_F_NONBLOCK;
1075
1076         /*
1077          * We signal MORE until we've read sufficient data to fulfill the
1078          * request and we keep signalling it if the caller set it.
1079          */
1080         more = sd->flags & SPLICE_F_MORE;
1081         sd->flags |= SPLICE_F_MORE;
1082
1083         WARN_ON_ONCE(!pipe_empty(pipe->head, pipe->tail));
1084
1085         while (len) {
1086                 size_t read_len;
1087                 loff_t pos = sd->pos, prev_pos = pos;
1088
1089                 ret = do_splice_read(in, &pos, pipe, len, flags);
1090                 if (unlikely(ret <= 0))
1091                         goto read_failure;
1092
1093                 read_len = ret;
1094                 sd->total_len = read_len;
1095
1096                 /*
1097                  * If we now have sufficient data to fulfill the request then
1098                  * we clear SPLICE_F_MORE if it was not set initially.
1099                  */
1100                 if (read_len >= len && !more)
1101                         sd->flags &= ~SPLICE_F_MORE;
1102
1103                 /*
1104                  * NOTE: nonblocking mode only applies to the input. We
1105                  * must not do the output in nonblocking mode as then we
1106                  * could get stuck data in the internal pipe:
1107                  */
1108                 ret = actor(pipe, sd);
1109                 if (unlikely(ret <= 0)) {
1110                         sd->pos = prev_pos;
1111                         goto out_release;
1112                 }
1113
1114                 bytes += ret;
1115                 len -= ret;
1116                 sd->pos = pos;
1117
1118                 if (ret < read_len) {
1119                         sd->pos = prev_pos + ret;
1120                         goto out_release;
1121                 }
1122         }
1123
1124 done:
1125         pipe->tail = pipe->head = 0;
1126         file_accessed(in);
1127         return bytes;
1128
1129 read_failure:
1130         /*
1131          * If the user did *not* set SPLICE_F_MORE *and* we didn't hit that
1132          * "use all of len" case that cleared SPLICE_F_MORE, *and* we did a
1133          * "->splice_in()" that returned EOF (ie zero) *and* we have sent at
1134          * least 1 byte *then* we will also do the ->splice_eof() call.
1135          */
1136         if (ret == 0 && !more && len > 0 && bytes)
1137                 do_splice_eof(sd);
1138 out_release:
1139         /*
1140          * If we did an incomplete transfer we must release
1141          * the pipe buffers in question:
1142          */
1143         for (i = 0; i < pipe->ring_size; i++) {
1144                 struct pipe_buffer *buf = &pipe->bufs[i];
1145
1146                 if (buf->ops)
1147                         pipe_buf_release(pipe, buf);
1148         }
1149
1150         if (!bytes)
1151                 bytes = ret;
1152
1153         goto done;
1154 }
1155 EXPORT_SYMBOL(splice_direct_to_actor);
1156
1157 static int direct_splice_actor(struct pipe_inode_info *pipe,
1158                                struct splice_desc *sd)
1159 {
1160         struct file *file = sd->u.file;
1161         long ret;
1162
1163         file_start_write(file);
1164         ret = do_splice_from(pipe, file, sd->opos, sd->total_len, sd->flags);
1165         file_end_write(file);
1166         return ret;
1167 }
1168
1169 static int splice_file_range_actor(struct pipe_inode_info *pipe,
1170                                         struct splice_desc *sd)
1171 {
1172         struct file *file = sd->u.file;
1173
1174         return do_splice_from(pipe, file, sd->opos, sd->total_len, sd->flags);
1175 }
1176
1177 static void direct_file_splice_eof(struct splice_desc *sd)
1178 {
1179         struct file *file = sd->u.file;
1180
1181         if (file->f_op->splice_eof)
1182                 file->f_op->splice_eof(file);
1183 }
1184
1185 static ssize_t do_splice_direct_actor(struct file *in, loff_t *ppos,
1186                                       struct file *out, loff_t *opos,
1187                                       size_t len, unsigned int flags,
1188                                       splice_direct_actor *actor)
1189 {
1190         struct splice_desc sd = {
1191                 .len            = len,
1192                 .total_len      = len,
1193                 .flags          = flags,
1194                 .pos            = *ppos,
1195                 .u.file         = out,
1196                 .splice_eof     = direct_file_splice_eof,
1197                 .opos           = opos,
1198         };
1199         ssize_t ret;
1200
1201         if (unlikely(!(out->f_mode & FMODE_WRITE)))
1202                 return -EBADF;
1203
1204         if (unlikely(out->f_flags & O_APPEND))
1205                 return -EINVAL;
1206
1207         ret = splice_direct_to_actor(in, &sd, actor);
1208         if (ret > 0)
1209                 *ppos = sd.pos;
1210
1211         return ret;
1212 }
1213 /**
1214  * do_splice_direct - splices data directly between two files
1215  * @in:         file to splice from
1216  * @ppos:       input file offset
1217  * @out:        file to splice to
1218  * @opos:       output file offset
1219  * @len:        number of bytes to splice
1220  * @flags:      splice modifier flags
1221  *
1222  * Description:
1223  *    For use by do_sendfile(). splice can easily emulate sendfile, but
1224  *    doing it in the application would incur an extra system call
1225  *    (splice in + splice out, as compared to just sendfile()). So this helper
1226  *    can splice directly through a process-private pipe.
1227  *
1228  * Callers already called rw_verify_area() on the entire range.
1229  */
1230 ssize_t do_splice_direct(struct file *in, loff_t *ppos, struct file *out,
1231                          loff_t *opos, size_t len, unsigned int flags)
1232 {
1233         return do_splice_direct_actor(in, ppos, out, opos, len, flags,
1234                                       direct_splice_actor);
1235 }
1236 EXPORT_SYMBOL(do_splice_direct);
1237
1238 /**
1239  * splice_file_range - splices data between two files for copy_file_range()
1240  * @in:         file to splice from
1241  * @ppos:       input file offset
1242  * @out:        file to splice to
1243  * @opos:       output file offset
1244  * @len:        number of bytes to splice
1245  *
1246  * Description:
1247  *    For use by ->copy_file_range() methods.
1248  *    Like do_splice_direct(), but vfs_copy_file_range() already holds
1249  *    start_file_write() on @out file.
1250  *
1251  * Callers already called rw_verify_area() on the entire range.
1252  */
1253 ssize_t splice_file_range(struct file *in, loff_t *ppos, struct file *out,
1254                           loff_t *opos, size_t len)
1255 {
1256         lockdep_assert(file_write_started(out));
1257
1258         return do_splice_direct_actor(in, ppos, out, opos,
1259                                       min_t(size_t, len, MAX_RW_COUNT),
1260                                       0, splice_file_range_actor);
1261 }
1262 EXPORT_SYMBOL(splice_file_range);
1263
1264 static int wait_for_space(struct pipe_inode_info *pipe, unsigned flags)
1265 {
1266         for (;;) {
1267                 if (unlikely(!pipe->readers)) {
1268                         send_sig(SIGPIPE, current, 0);
1269                         return -EPIPE;
1270                 }
1271                 if (!pipe_full(pipe->head, pipe->tail, pipe->max_usage))
1272                         return 0;
1273                 if (flags & SPLICE_F_NONBLOCK)
1274                         return -EAGAIN;
1275                 if (signal_pending(current))
1276                         return -ERESTARTSYS;
1277                 pipe_wait_writable(pipe);
1278         }
1279 }
1280
1281 static int splice_pipe_to_pipe(struct pipe_inode_info *ipipe,
1282                                struct pipe_inode_info *opipe,
1283                                size_t len, unsigned int flags);
1284
1285 ssize_t splice_file_to_pipe(struct file *in,
1286                             struct pipe_inode_info *opipe,
1287                             loff_t *offset,
1288                             size_t len, unsigned int flags)
1289 {
1290         ssize_t ret;
1291
1292         pipe_lock(opipe);
1293         ret = wait_for_space(opipe, flags);
1294         if (!ret)
1295                 ret = do_splice_read(in, offset, opipe, len, flags);
1296         pipe_unlock(opipe);
1297         if (ret > 0)
1298                 wakeup_pipe_readers(opipe);
1299         return ret;
1300 }
1301
1302 /*
1303  * Determine where to splice to/from.
1304  */
1305 ssize_t do_splice(struct file *in, loff_t *off_in, struct file *out,
1306                   loff_t *off_out, size_t len, unsigned int flags)
1307 {
1308         struct pipe_inode_info *ipipe;
1309         struct pipe_inode_info *opipe;
1310         loff_t offset;
1311         ssize_t ret;
1312
1313         if (unlikely(!(in->f_mode & FMODE_READ) ||
1314                      !(out->f_mode & FMODE_WRITE)))
1315                 return -EBADF;
1316
1317         ipipe = get_pipe_info(in, true);
1318         opipe = get_pipe_info(out, true);
1319
1320         if (ipipe && opipe) {
1321                 if (off_in || off_out)
1322                         return -ESPIPE;
1323
1324                 /* Splicing to self would be fun, but... */
1325                 if (ipipe == opipe)
1326                         return -EINVAL;
1327
1328                 if ((in->f_flags | out->f_flags) & O_NONBLOCK)
1329                         flags |= SPLICE_F_NONBLOCK;
1330
1331                 ret = splice_pipe_to_pipe(ipipe, opipe, len, flags);
1332         } else if (ipipe) {
1333                 if (off_in)
1334                         return -ESPIPE;
1335                 if (off_out) {
1336                         if (!(out->f_mode & FMODE_PWRITE))
1337                                 return -EINVAL;
1338                         offset = *off_out;
1339                 } else {
1340                         offset = out->f_pos;
1341                 }
1342
1343                 if (unlikely(out->f_flags & O_APPEND))
1344                         return -EINVAL;
1345
1346                 ret = rw_verify_area(WRITE, out, &offset, len);
1347                 if (unlikely(ret < 0))
1348                         return ret;
1349
1350                 if (in->f_flags & O_NONBLOCK)
1351                         flags |= SPLICE_F_NONBLOCK;
1352
1353                 file_start_write(out);
1354                 ret = do_splice_from(ipipe, out, &offset, len, flags);
1355                 file_end_write(out);
1356
1357                 if (!off_out)
1358                         out->f_pos = offset;
1359                 else
1360                         *off_out = offset;
1361         } else if (opipe) {
1362                 if (off_out)
1363                         return -ESPIPE;
1364                 if (off_in) {
1365                         if (!(in->f_mode & FMODE_PREAD))
1366                                 return -EINVAL;
1367                         offset = *off_in;
1368                 } else {
1369                         offset = in->f_pos;
1370                 }
1371
1372                 ret = rw_verify_area(READ, in, &offset, len);
1373                 if (unlikely(ret < 0))
1374                         return ret;
1375
1376                 if (out->f_flags & O_NONBLOCK)
1377                         flags |= SPLICE_F_NONBLOCK;
1378
1379                 ret = splice_file_to_pipe(in, opipe, &offset, len, flags);
1380
1381                 if (!off_in)
1382                         in->f_pos = offset;
1383                 else
1384                         *off_in = offset;
1385         } else {
1386                 ret = -EINVAL;
1387         }
1388
1389         if (ret > 0) {
1390                 /*
1391                  * Generate modify out before access in:
1392                  * do_splice_from() may've already sent modify out,
1393                  * and this ensures the events get merged.
1394                  */
1395                 fsnotify_modify(out);
1396                 fsnotify_access(in);
1397         }
1398
1399         return ret;
1400 }
1401
1402 static ssize_t __do_splice(struct file *in, loff_t __user *off_in,
1403                            struct file *out, loff_t __user *off_out,
1404                            size_t len, unsigned int flags)
1405 {
1406         struct pipe_inode_info *ipipe;
1407         struct pipe_inode_info *opipe;
1408         loff_t offset, *__off_in = NULL, *__off_out = NULL;
1409         ssize_t ret;
1410
1411         ipipe = get_pipe_info(in, true);
1412         opipe = get_pipe_info(out, true);
1413
1414         if (ipipe) {
1415                 if (off_in)
1416                         return -ESPIPE;
1417                 pipe_clear_nowait(in);
1418         }
1419         if (opipe) {
1420                 if (off_out)
1421                         return -ESPIPE;
1422                 pipe_clear_nowait(out);
1423         }
1424
1425         if (off_out) {
1426                 if (copy_from_user(&offset, off_out, sizeof(loff_t)))
1427                         return -EFAULT;
1428                 __off_out = &offset;
1429         }
1430         if (off_in) {
1431                 if (copy_from_user(&offset, off_in, sizeof(loff_t)))
1432                         return -EFAULT;
1433                 __off_in = &offset;
1434         }
1435
1436         ret = do_splice(in, __off_in, out, __off_out, len, flags);
1437         if (ret < 0)
1438                 return ret;
1439
1440         if (__off_out && copy_to_user(off_out, __off_out, sizeof(loff_t)))
1441                 return -EFAULT;
1442         if (__off_in && copy_to_user(off_in, __off_in, sizeof(loff_t)))
1443                 return -EFAULT;
1444
1445         return ret;
1446 }
1447
1448 static ssize_t iter_to_pipe(struct iov_iter *from,
1449                             struct pipe_inode_info *pipe,
1450                             unsigned int flags)
1451 {
1452         struct pipe_buffer buf = {
1453                 .ops = &user_page_pipe_buf_ops,
1454                 .flags = flags
1455         };
1456         size_t total = 0;
1457         ssize_t ret = 0;
1458
1459         while (iov_iter_count(from)) {
1460                 struct page *pages[16];
1461                 ssize_t left;
1462                 size_t start;
1463                 int i, n;
1464
1465                 left = iov_iter_get_pages2(from, pages, ~0UL, 16, &start);
1466                 if (left <= 0) {
1467                         ret = left;
1468                         break;
1469                 }
1470
1471                 n = DIV_ROUND_UP(left + start, PAGE_SIZE);
1472                 for (i = 0; i < n; i++) {
1473                         int size = min_t(int, left, PAGE_SIZE - start);
1474
1475                         buf.page = pages[i];
1476                         buf.offset = start;
1477                         buf.len = size;
1478                         ret = add_to_pipe(pipe, &buf);
1479                         if (unlikely(ret < 0)) {
1480                                 iov_iter_revert(from, left);
1481                                 // this one got dropped by add_to_pipe()
1482                                 while (++i < n)
1483                                         put_page(pages[i]);
1484                                 goto out;
1485                         }
1486                         total += ret;
1487                         left -= size;
1488                         start = 0;
1489                 }
1490         }
1491 out:
1492         return total ? total : ret;
1493 }
1494
1495 static int pipe_to_user(struct pipe_inode_info *pipe, struct pipe_buffer *buf,
1496                         struct splice_desc *sd)
1497 {
1498         int n = copy_page_to_iter(buf->page, buf->offset, sd->len, sd->u.data);
1499         return n == sd->len ? n : -EFAULT;
1500 }
1501
1502 /*
1503  * For lack of a better implementation, implement vmsplice() to userspace
1504  * as a simple copy of the pipes pages to the user iov.
1505  */
1506 static ssize_t vmsplice_to_user(struct file *file, struct iov_iter *iter,
1507                                 unsigned int flags)
1508 {
1509         struct pipe_inode_info *pipe = get_pipe_info(file, true);
1510         struct splice_desc sd = {
1511                 .total_len = iov_iter_count(iter),
1512                 .flags = flags,
1513                 .u.data = iter
1514         };
1515         ssize_t ret = 0;
1516
1517         if (!pipe)
1518                 return -EBADF;
1519
1520         pipe_clear_nowait(file);
1521
1522         if (sd.total_len) {
1523                 pipe_lock(pipe);
1524                 ret = __splice_from_pipe(pipe, &sd, pipe_to_user);
1525                 pipe_unlock(pipe);
1526         }
1527
1528         if (ret > 0)
1529                 fsnotify_access(file);
1530
1531         return ret;
1532 }
1533
1534 /*
1535  * vmsplice splices a user address range into a pipe. It can be thought of
1536  * as splice-from-memory, where the regular splice is splice-from-file (or
1537  * to file). In both cases the output is a pipe, naturally.
1538  */
1539 static ssize_t vmsplice_to_pipe(struct file *file, struct iov_iter *iter,
1540                                 unsigned int flags)
1541 {
1542         struct pipe_inode_info *pipe;
1543         ssize_t ret = 0;
1544         unsigned buf_flag = 0;
1545
1546         if (flags & SPLICE_F_GIFT)
1547                 buf_flag = PIPE_BUF_FLAG_GIFT;
1548
1549         pipe = get_pipe_info(file, true);
1550         if (!pipe)
1551                 return -EBADF;
1552
1553         pipe_clear_nowait(file);
1554
1555         pipe_lock(pipe);
1556         ret = wait_for_space(pipe, flags);
1557         if (!ret)
1558                 ret = iter_to_pipe(iter, pipe, buf_flag);
1559         pipe_unlock(pipe);
1560         if (ret > 0) {
1561                 wakeup_pipe_readers(pipe);
1562                 fsnotify_modify(file);
1563         }
1564         return ret;
1565 }
1566
1567 static int vmsplice_type(struct fd f, int *type)
1568 {
1569         if (!f.file)
1570                 return -EBADF;
1571         if (f.file->f_mode & FMODE_WRITE) {
1572                 *type = ITER_SOURCE;
1573         } else if (f.file->f_mode & FMODE_READ) {
1574                 *type = ITER_DEST;
1575         } else {
1576                 fdput(f);
1577                 return -EBADF;
1578         }
1579         return 0;
1580 }
1581
1582 /*
1583  * Note that vmsplice only really supports true splicing _from_ user memory
1584  * to a pipe, not the other way around. Splicing from user memory is a simple
1585  * operation that can be supported without any funky alignment restrictions
1586  * or nasty vm tricks. We simply map in the user memory and fill them into
1587  * a pipe. The reverse isn't quite as easy, though. There are two possible
1588  * solutions for that:
1589  *
1590  *      - memcpy() the data internally, at which point we might as well just
1591  *        do a regular read() on the buffer anyway.
1592  *      - Lots of nasty vm tricks, that are neither fast nor flexible (it
1593  *        has restriction limitations on both ends of the pipe).
1594  *
1595  * Currently we punt and implement it as a normal copy, see pipe_to_user().
1596  *
1597  */
1598 SYSCALL_DEFINE4(vmsplice, int, fd, const struct iovec __user *, uiov,
1599                 unsigned long, nr_segs, unsigned int, flags)
1600 {
1601         struct iovec iovstack[UIO_FASTIOV];
1602         struct iovec *iov = iovstack;
1603         struct iov_iter iter;
1604         ssize_t error;
1605         struct fd f;
1606         int type;
1607
1608         if (unlikely(flags & ~SPLICE_F_ALL))
1609                 return -EINVAL;
1610
1611         f = fdget(fd);
1612         error = vmsplice_type(f, &type);
1613         if (error)
1614                 return error;
1615
1616         error = import_iovec(type, uiov, nr_segs,
1617                              ARRAY_SIZE(iovstack), &iov, &iter);
1618         if (error < 0)
1619                 goto out_fdput;
1620
1621         if (!iov_iter_count(&iter))
1622                 error = 0;
1623         else if (type == ITER_SOURCE)
1624                 error = vmsplice_to_pipe(f.file, &iter, flags);
1625         else
1626                 error = vmsplice_to_user(f.file, &iter, flags);
1627
1628         kfree(iov);
1629 out_fdput:
1630         fdput(f);
1631         return error;
1632 }
1633
1634 SYSCALL_DEFINE6(splice, int, fd_in, loff_t __user *, off_in,
1635                 int, fd_out, loff_t __user *, off_out,
1636                 size_t, len, unsigned int, flags)
1637 {
1638         struct fd in, out;
1639         ssize_t error;
1640
1641         if (unlikely(!len))
1642                 return 0;
1643
1644         if (unlikely(flags & ~SPLICE_F_ALL))
1645                 return -EINVAL;
1646
1647         error = -EBADF;
1648         in = fdget(fd_in);
1649         if (in.file) {
1650                 out = fdget(fd_out);
1651                 if (out.file) {
1652                         error = __do_splice(in.file, off_in, out.file, off_out,
1653                                             len, flags);
1654                         fdput(out);
1655                 }
1656                 fdput(in);
1657         }
1658         return error;
1659 }
1660
1661 /*
1662  * Make sure there's data to read. Wait for input if we can, otherwise
1663  * return an appropriate error.
1664  */
1665 static int ipipe_prep(struct pipe_inode_info *pipe, unsigned int flags)
1666 {
1667         int ret;
1668
1669         /*
1670          * Check the pipe occupancy without the inode lock first. This function
1671          * is speculative anyways, so missing one is ok.
1672          */
1673         if (!pipe_empty(pipe->head, pipe->tail))
1674                 return 0;
1675
1676         ret = 0;
1677         pipe_lock(pipe);
1678
1679         while (pipe_empty(pipe->head, pipe->tail)) {
1680                 if (signal_pending(current)) {
1681                         ret = -ERESTARTSYS;
1682                         break;
1683                 }
1684                 if (!pipe->writers)
1685                         break;
1686                 if (flags & SPLICE_F_NONBLOCK) {
1687                         ret = -EAGAIN;
1688                         break;
1689                 }
1690                 pipe_wait_readable(pipe);
1691         }
1692
1693         pipe_unlock(pipe);
1694         return ret;
1695 }
1696
1697 /*
1698  * Make sure there's writeable room. Wait for room if we can, otherwise
1699  * return an appropriate error.
1700  */
1701 static int opipe_prep(struct pipe_inode_info *pipe, unsigned int flags)
1702 {
1703         int ret;
1704
1705         /*
1706          * Check pipe occupancy without the inode lock first. This function
1707          * is speculative anyways, so missing one is ok.
1708          */
1709         if (!pipe_full(pipe->head, pipe->tail, pipe->max_usage))
1710                 return 0;
1711
1712         ret = 0;
1713         pipe_lock(pipe);
1714
1715         while (pipe_full(pipe->head, pipe->tail, pipe->max_usage)) {
1716                 if (!pipe->readers) {
1717                         send_sig(SIGPIPE, current, 0);
1718                         ret = -EPIPE;
1719                         break;
1720                 }
1721                 if (flags & SPLICE_F_NONBLOCK) {
1722                         ret = -EAGAIN;
1723                         break;
1724                 }
1725                 if (signal_pending(current)) {
1726                         ret = -ERESTARTSYS;
1727                         break;
1728                 }
1729                 pipe_wait_writable(pipe);
1730         }
1731
1732         pipe_unlock(pipe);
1733         return ret;
1734 }
1735
1736 /*
1737  * Splice contents of ipipe to opipe.
1738  */
1739 static int splice_pipe_to_pipe(struct pipe_inode_info *ipipe,
1740                                struct pipe_inode_info *opipe,
1741                                size_t len, unsigned int flags)
1742 {
1743         struct pipe_buffer *ibuf, *obuf;
1744         unsigned int i_head, o_head;
1745         unsigned int i_tail, o_tail;
1746         unsigned int i_mask, o_mask;
1747         int ret = 0;
1748         bool input_wakeup = false;
1749
1750
1751 retry:
1752         ret = ipipe_prep(ipipe, flags);
1753         if (ret)
1754                 return ret;
1755
1756         ret = opipe_prep(opipe, flags);
1757         if (ret)
1758                 return ret;
1759
1760         /*
1761          * Potential ABBA deadlock, work around it by ordering lock
1762          * grabbing by pipe info address. Otherwise two different processes
1763          * could deadlock (one doing tee from A -> B, the other from B -> A).
1764          */
1765         pipe_double_lock(ipipe, opipe);
1766
1767         i_tail = ipipe->tail;
1768         i_mask = ipipe->ring_size - 1;
1769         o_head = opipe->head;
1770         o_mask = opipe->ring_size - 1;
1771
1772         do {
1773                 size_t o_len;
1774
1775                 if (!opipe->readers) {
1776                         send_sig(SIGPIPE, current, 0);
1777                         if (!ret)
1778                                 ret = -EPIPE;
1779                         break;
1780                 }
1781
1782                 i_head = ipipe->head;
1783                 o_tail = opipe->tail;
1784
1785                 if (pipe_empty(i_head, i_tail) && !ipipe->writers)
1786                         break;
1787
1788                 /*
1789                  * Cannot make any progress, because either the input
1790                  * pipe is empty or the output pipe is full.
1791                  */
1792                 if (pipe_empty(i_head, i_tail) ||
1793                     pipe_full(o_head, o_tail, opipe->max_usage)) {
1794                         /* Already processed some buffers, break */
1795                         if (ret)
1796                                 break;
1797
1798                         if (flags & SPLICE_F_NONBLOCK) {
1799                                 ret = -EAGAIN;
1800                                 break;
1801                         }
1802
1803                         /*
1804                          * We raced with another reader/writer and haven't
1805                          * managed to process any buffers.  A zero return
1806                          * value means EOF, so retry instead.
1807                          */
1808                         pipe_unlock(ipipe);
1809                         pipe_unlock(opipe);
1810                         goto retry;
1811                 }
1812
1813                 ibuf = &ipipe->bufs[i_tail & i_mask];
1814                 obuf = &opipe->bufs[o_head & o_mask];
1815
1816                 if (len >= ibuf->len) {
1817                         /*
1818                          * Simply move the whole buffer from ipipe to opipe
1819                          */
1820                         *obuf = *ibuf;
1821                         ibuf->ops = NULL;
1822                         i_tail++;
1823                         ipipe->tail = i_tail;
1824                         input_wakeup = true;
1825                         o_len = obuf->len;
1826                         o_head++;
1827                         opipe->head = o_head;
1828                 } else {
1829                         /*
1830                          * Get a reference to this pipe buffer,
1831                          * so we can copy the contents over.
1832                          */
1833                         if (!pipe_buf_get(ipipe, ibuf)) {
1834                                 if (ret == 0)
1835                                         ret = -EFAULT;
1836                                 break;
1837                         }
1838                         *obuf = *ibuf;
1839
1840                         /*
1841                          * Don't inherit the gift and merge flags, we need to
1842                          * prevent multiple steals of this page.
1843                          */
1844                         obuf->flags &= ~PIPE_BUF_FLAG_GIFT;
1845                         obuf->flags &= ~PIPE_BUF_FLAG_CAN_MERGE;
1846
1847                         obuf->len = len;
1848                         ibuf->offset += len;
1849                         ibuf->len -= len;
1850                         o_len = len;
1851                         o_head++;
1852                         opipe->head = o_head;
1853                 }
1854                 ret += o_len;
1855                 len -= o_len;
1856         } while (len);
1857
1858         pipe_unlock(ipipe);
1859         pipe_unlock(opipe);
1860
1861         /*
1862          * If we put data in the output pipe, wakeup any potential readers.
1863          */
1864         if (ret > 0)
1865                 wakeup_pipe_readers(opipe);
1866
1867         if (input_wakeup)
1868                 wakeup_pipe_writers(ipipe);
1869
1870         return ret;
1871 }
1872
1873 /*
1874  * Link contents of ipipe to opipe.
1875  */
1876 static ssize_t link_pipe(struct pipe_inode_info *ipipe,
1877                          struct pipe_inode_info *opipe,
1878                          size_t len, unsigned int flags)
1879 {
1880         struct pipe_buffer *ibuf, *obuf;
1881         unsigned int i_head, o_head;
1882         unsigned int i_tail, o_tail;
1883         unsigned int i_mask, o_mask;
1884         ssize_t ret = 0;
1885
1886         /*
1887          * Potential ABBA deadlock, work around it by ordering lock
1888          * grabbing by pipe info address. Otherwise two different processes
1889          * could deadlock (one doing tee from A -> B, the other from B -> A).
1890          */
1891         pipe_double_lock(ipipe, opipe);
1892
1893         i_tail = ipipe->tail;
1894         i_mask = ipipe->ring_size - 1;
1895         o_head = opipe->head;
1896         o_mask = opipe->ring_size - 1;
1897
1898         do {
1899                 if (!opipe->readers) {
1900                         send_sig(SIGPIPE, current, 0);
1901                         if (!ret)
1902                                 ret = -EPIPE;
1903                         break;
1904                 }
1905
1906                 i_head = ipipe->head;
1907                 o_tail = opipe->tail;
1908
1909                 /*
1910                  * If we have iterated all input buffers or run out of
1911                  * output room, break.
1912                  */
1913                 if (pipe_empty(i_head, i_tail) ||
1914                     pipe_full(o_head, o_tail, opipe->max_usage))
1915                         break;
1916
1917                 ibuf = &ipipe->bufs[i_tail & i_mask];
1918                 obuf = &opipe->bufs[o_head & o_mask];
1919
1920                 /*
1921                  * Get a reference to this pipe buffer,
1922                  * so we can copy the contents over.
1923                  */
1924                 if (!pipe_buf_get(ipipe, ibuf)) {
1925                         if (ret == 0)
1926                                 ret = -EFAULT;
1927                         break;
1928                 }
1929
1930                 *obuf = *ibuf;
1931
1932                 /*
1933                  * Don't inherit the gift and merge flag, we need to prevent
1934                  * multiple steals of this page.
1935                  */
1936                 obuf->flags &= ~PIPE_BUF_FLAG_GIFT;
1937                 obuf->flags &= ~PIPE_BUF_FLAG_CAN_MERGE;
1938
1939                 if (obuf->len > len)
1940                         obuf->len = len;
1941                 ret += obuf->len;
1942                 len -= obuf->len;
1943
1944                 o_head++;
1945                 opipe->head = o_head;
1946                 i_tail++;
1947         } while (len);
1948
1949         pipe_unlock(ipipe);
1950         pipe_unlock(opipe);
1951
1952         /*
1953          * If we put data in the output pipe, wakeup any potential readers.
1954          */
1955         if (ret > 0)
1956                 wakeup_pipe_readers(opipe);
1957
1958         return ret;
1959 }
1960
1961 /*
1962  * This is a tee(1) implementation that works on pipes. It doesn't copy
1963  * any data, it simply references the 'in' pages on the 'out' pipe.
1964  * The 'flags' used are the SPLICE_F_* variants, currently the only
1965  * applicable one is SPLICE_F_NONBLOCK.
1966  */
1967 ssize_t do_tee(struct file *in, struct file *out, size_t len,
1968                unsigned int flags)
1969 {
1970         struct pipe_inode_info *ipipe = get_pipe_info(in, true);
1971         struct pipe_inode_info *opipe = get_pipe_info(out, true);
1972         ssize_t ret = -EINVAL;
1973
1974         if (unlikely(!(in->f_mode & FMODE_READ) ||
1975                      !(out->f_mode & FMODE_WRITE)))
1976                 return -EBADF;
1977
1978         /*
1979          * Duplicate the contents of ipipe to opipe without actually
1980          * copying the data.
1981          */
1982         if (ipipe && opipe && ipipe != opipe) {
1983                 if ((in->f_flags | out->f_flags) & O_NONBLOCK)
1984                         flags |= SPLICE_F_NONBLOCK;
1985
1986                 /*
1987                  * Keep going, unless we encounter an error. The ipipe/opipe
1988                  * ordering doesn't really matter.
1989                  */
1990                 ret = ipipe_prep(ipipe, flags);
1991                 if (!ret) {
1992                         ret = opipe_prep(opipe, flags);
1993                         if (!ret)
1994                                 ret = link_pipe(ipipe, opipe, len, flags);
1995                 }
1996         }
1997
1998         if (ret > 0) {
1999                 fsnotify_access(in);
2000                 fsnotify_modify(out);
2001         }
2002
2003         return ret;
2004 }
2005
2006 SYSCALL_DEFINE4(tee, int, fdin, int, fdout, size_t, len, unsigned int, flags)
2007 {
2008         struct fd in, out;
2009         ssize_t error;
2010
2011         if (unlikely(flags & ~SPLICE_F_ALL))
2012                 return -EINVAL;
2013
2014         if (unlikely(!len))
2015                 return 0;
2016
2017         error = -EBADF;
2018         in = fdget(fdin);
2019         if (in.file) {
2020                 out = fdget(fdout);
2021                 if (out.file) {
2022                         error = do_tee(in.file, out.file, len, flags);
2023                         fdput(out);
2024                 }
2025                 fdput(in);
2026         }
2027
2028         return error;
2029 }