tools headers UAPI: Sync drm/i915_drm.h with the kernel sources
[linux-2.6-microblaze.git] / fs / reiserfs / stree.c
1 /*
2  *  Copyright 2000 by Hans Reiser, licensing governed by reiserfs/README
3  */
4
5 /*
6  *  Written by Anatoly P. Pinchuk pap@namesys.botik.ru
7  *  Programm System Institute
8  *  Pereslavl-Zalessky Russia
9  */
10
11 #include <linux/time.h>
12 #include <linux/string.h>
13 #include <linux/pagemap.h>
14 #include <linux/bio.h>
15 #include "reiserfs.h"
16 #include <linux/buffer_head.h>
17 #include <linux/quotaops.h>
18
19 /* Does the buffer contain a disk block which is in the tree. */
20 inline int B_IS_IN_TREE(const struct buffer_head *bh)
21 {
22
23         RFALSE(B_LEVEL(bh) > MAX_HEIGHT,
24                "PAP-1010: block (%b) has too big level (%z)", bh, bh);
25
26         return (B_LEVEL(bh) != FREE_LEVEL);
27 }
28
29 /* to get item head in le form */
30 inline void copy_item_head(struct item_head *to,
31                            const struct item_head *from)
32 {
33         memcpy(to, from, IH_SIZE);
34 }
35
36 /*
37  * k1 is pointer to on-disk structure which is stored in little-endian
38  * form. k2 is pointer to cpu variable. For key of items of the same
39  * object this returns 0.
40  * Returns: -1 if key1 < key2
41  * 0 if key1 == key2
42  * 1 if key1 > key2
43  */
44 inline int comp_short_keys(const struct reiserfs_key *le_key,
45                            const struct cpu_key *cpu_key)
46 {
47         __u32 n;
48         n = le32_to_cpu(le_key->k_dir_id);
49         if (n < cpu_key->on_disk_key.k_dir_id)
50                 return -1;
51         if (n > cpu_key->on_disk_key.k_dir_id)
52                 return 1;
53         n = le32_to_cpu(le_key->k_objectid);
54         if (n < cpu_key->on_disk_key.k_objectid)
55                 return -1;
56         if (n > cpu_key->on_disk_key.k_objectid)
57                 return 1;
58         return 0;
59 }
60
61 /*
62  * k1 is pointer to on-disk structure which is stored in little-endian
63  * form. k2 is pointer to cpu variable.
64  * Compare keys using all 4 key fields.
65  * Returns: -1 if key1 < key2 0
66  * if key1 = key2 1 if key1 > key2
67  */
68 static inline int comp_keys(const struct reiserfs_key *le_key,
69                             const struct cpu_key *cpu_key)
70 {
71         int retval;
72
73         retval = comp_short_keys(le_key, cpu_key);
74         if (retval)
75                 return retval;
76         if (le_key_k_offset(le_key_version(le_key), le_key) <
77             cpu_key_k_offset(cpu_key))
78                 return -1;
79         if (le_key_k_offset(le_key_version(le_key), le_key) >
80             cpu_key_k_offset(cpu_key))
81                 return 1;
82
83         if (cpu_key->key_length == 3)
84                 return 0;
85
86         /* this part is needed only when tail conversion is in progress */
87         if (le_key_k_type(le_key_version(le_key), le_key) <
88             cpu_key_k_type(cpu_key))
89                 return -1;
90
91         if (le_key_k_type(le_key_version(le_key), le_key) >
92             cpu_key_k_type(cpu_key))
93                 return 1;
94
95         return 0;
96 }
97
98 inline int comp_short_le_keys(const struct reiserfs_key *key1,
99                               const struct reiserfs_key *key2)
100 {
101         __u32 *k1_u32, *k2_u32;
102         int key_length = REISERFS_SHORT_KEY_LEN;
103
104         k1_u32 = (__u32 *) key1;
105         k2_u32 = (__u32 *) key2;
106         for (; key_length--; ++k1_u32, ++k2_u32) {
107                 if (le32_to_cpu(*k1_u32) < le32_to_cpu(*k2_u32))
108                         return -1;
109                 if (le32_to_cpu(*k1_u32) > le32_to_cpu(*k2_u32))
110                         return 1;
111         }
112         return 0;
113 }
114
115 inline void le_key2cpu_key(struct cpu_key *to, const struct reiserfs_key *from)
116 {
117         int version;
118         to->on_disk_key.k_dir_id = le32_to_cpu(from->k_dir_id);
119         to->on_disk_key.k_objectid = le32_to_cpu(from->k_objectid);
120
121         /* find out version of the key */
122         version = le_key_version(from);
123         to->version = version;
124         to->on_disk_key.k_offset = le_key_k_offset(version, from);
125         to->on_disk_key.k_type = le_key_k_type(version, from);
126 }
127
128 /*
129  * this does not say which one is bigger, it only returns 1 if keys
130  * are not equal, 0 otherwise
131  */
132 inline int comp_le_keys(const struct reiserfs_key *k1,
133                         const struct reiserfs_key *k2)
134 {
135         return memcmp(k1, k2, sizeof(struct reiserfs_key));
136 }
137
138 /**************************************************************************
139  *  Binary search toolkit function                                        *
140  *  Search for an item in the array by the item key                       *
141  *  Returns:    1 if found,  0 if not found;                              *
142  *        *pos = number of the searched element if found, else the        *
143  *        number of the first element that is larger than key.            *
144  **************************************************************************/
145 /*
146  * For those not familiar with binary search: lbound is the leftmost item
147  * that it could be, rbound the rightmost item that it could be.  We examine
148  * the item halfway between lbound and rbound, and that tells us either
149  * that we can increase lbound, or decrease rbound, or that we have found it,
150  * or if lbound <= rbound that there are no possible items, and we have not
151  * found it. With each examination we cut the number of possible items it
152  * could be by one more than half rounded down, or we find it.
153  */
154 static inline int bin_search(const void *key,   /* Key to search for. */
155                              const void *base,  /* First item in the array. */
156                              int num,   /* Number of items in the array. */
157                              /*
158                               * Item size in the array.  searched. Lest the
159                               * reader be confused, note that this is crafted
160                               * as a general function, and when it is applied
161                               * specifically to the array of item headers in a
162                               * node, width is actually the item header size
163                               * not the item size.
164                               */
165                              int width,
166                              int *pos /* Number of the searched for element. */
167     )
168 {
169         int rbound, lbound, j;
170
171         for (j = ((rbound = num - 1) + (lbound = 0)) / 2;
172              lbound <= rbound; j = (rbound + lbound) / 2)
173                 switch (comp_keys
174                         ((struct reiserfs_key *)((char *)base + j * width),
175                          (struct cpu_key *)key)) {
176                 case -1:
177                         lbound = j + 1;
178                         continue;
179                 case 1:
180                         rbound = j - 1;
181                         continue;
182                 case 0:
183                         *pos = j;
184                         return ITEM_FOUND;      /* Key found in the array.  */
185                 }
186
187         /*
188          * bin_search did not find given key, it returns position of key,
189          * that is minimal and greater than the given one.
190          */
191         *pos = lbound;
192         return ITEM_NOT_FOUND;
193 }
194
195
196 /* Minimal possible key. It is never in the tree. */
197 const struct reiserfs_key MIN_KEY = { 0, 0, {{0, 0},} };
198
199 /* Maximal possible key. It is never in the tree. */
200 static const struct reiserfs_key MAX_KEY = {
201         cpu_to_le32(0xffffffff),
202         cpu_to_le32(0xffffffff),
203         {{cpu_to_le32(0xffffffff),
204           cpu_to_le32(0xffffffff)},}
205 };
206
207 /*
208  * Get delimiting key of the buffer by looking for it in the buffers in the
209  * path, starting from the bottom of the path, and going upwards.  We must
210  * check the path's validity at each step.  If the key is not in the path,
211  * there is no delimiting key in the tree (buffer is first or last buffer
212  * in tree), and in this case we return a special key, either MIN_KEY or
213  * MAX_KEY.
214  */
215 static inline const struct reiserfs_key *get_lkey(const struct treepath *chk_path,
216                                                   const struct super_block *sb)
217 {
218         int position, path_offset = chk_path->path_length;
219         struct buffer_head *parent;
220
221         RFALSE(path_offset < FIRST_PATH_ELEMENT_OFFSET,
222                "PAP-5010: invalid offset in the path");
223
224         /* While not higher in path than first element. */
225         while (path_offset-- > FIRST_PATH_ELEMENT_OFFSET) {
226
227                 RFALSE(!buffer_uptodate
228                        (PATH_OFFSET_PBUFFER(chk_path, path_offset)),
229                        "PAP-5020: parent is not uptodate");
230
231                 /* Parent at the path is not in the tree now. */
232                 if (!B_IS_IN_TREE
233                     (parent =
234                      PATH_OFFSET_PBUFFER(chk_path, path_offset)))
235                         return &MAX_KEY;
236                 /* Check whether position in the parent is correct. */
237                 if ((position =
238                      PATH_OFFSET_POSITION(chk_path,
239                                           path_offset)) >
240                     B_NR_ITEMS(parent))
241                         return &MAX_KEY;
242                 /* Check whether parent at the path really points to the child. */
243                 if (B_N_CHILD_NUM(parent, position) !=
244                     PATH_OFFSET_PBUFFER(chk_path,
245                                         path_offset + 1)->b_blocknr)
246                         return &MAX_KEY;
247                 /*
248                  * Return delimiting key if position in the parent
249                  * is not equal to zero.
250                  */
251                 if (position)
252                         return internal_key(parent, position - 1);
253         }
254         /* Return MIN_KEY if we are in the root of the buffer tree. */
255         if (PATH_OFFSET_PBUFFER(chk_path, FIRST_PATH_ELEMENT_OFFSET)->
256             b_blocknr == SB_ROOT_BLOCK(sb))
257                 return &MIN_KEY;
258         return &MAX_KEY;
259 }
260
261 /* Get delimiting key of the buffer at the path and its right neighbor. */
262 inline const struct reiserfs_key *get_rkey(const struct treepath *chk_path,
263                                            const struct super_block *sb)
264 {
265         int position, path_offset = chk_path->path_length;
266         struct buffer_head *parent;
267
268         RFALSE(path_offset < FIRST_PATH_ELEMENT_OFFSET,
269                "PAP-5030: invalid offset in the path");
270
271         while (path_offset-- > FIRST_PATH_ELEMENT_OFFSET) {
272
273                 RFALSE(!buffer_uptodate
274                        (PATH_OFFSET_PBUFFER(chk_path, path_offset)),
275                        "PAP-5040: parent is not uptodate");
276
277                 /* Parent at the path is not in the tree now. */
278                 if (!B_IS_IN_TREE
279                     (parent =
280                      PATH_OFFSET_PBUFFER(chk_path, path_offset)))
281                         return &MIN_KEY;
282                 /* Check whether position in the parent is correct. */
283                 if ((position =
284                      PATH_OFFSET_POSITION(chk_path,
285                                           path_offset)) >
286                     B_NR_ITEMS(parent))
287                         return &MIN_KEY;
288                 /*
289                  * Check whether parent at the path really points
290                  * to the child.
291                  */
292                 if (B_N_CHILD_NUM(parent, position) !=
293                     PATH_OFFSET_PBUFFER(chk_path,
294                                         path_offset + 1)->b_blocknr)
295                         return &MIN_KEY;
296
297                 /*
298                  * Return delimiting key if position in the parent
299                  * is not the last one.
300                  */
301                 if (position != B_NR_ITEMS(parent))
302                         return internal_key(parent, position);
303         }
304
305         /* Return MAX_KEY if we are in the root of the buffer tree. */
306         if (PATH_OFFSET_PBUFFER(chk_path, FIRST_PATH_ELEMENT_OFFSET)->
307             b_blocknr == SB_ROOT_BLOCK(sb))
308                 return &MAX_KEY;
309         return &MIN_KEY;
310 }
311
312 /*
313  * Check whether a key is contained in the tree rooted from a buffer at a path.
314  * This works by looking at the left and right delimiting keys for the buffer
315  * in the last path_element in the path.  These delimiting keys are stored
316  * at least one level above that buffer in the tree. If the buffer is the
317  * first or last node in the tree order then one of the delimiting keys may
318  * be absent, and in this case get_lkey and get_rkey return a special key
319  * which is MIN_KEY or MAX_KEY.
320  */
321 static inline int key_in_buffer(
322                                 /* Path which should be checked. */
323                                 struct treepath *chk_path,
324                                 /* Key which should be checked. */
325                                 const struct cpu_key *key,
326                                 struct super_block *sb
327     )
328 {
329
330         RFALSE(!key || chk_path->path_length < FIRST_PATH_ELEMENT_OFFSET
331                || chk_path->path_length > MAX_HEIGHT,
332                "PAP-5050: pointer to the key(%p) is NULL or invalid path length(%d)",
333                key, chk_path->path_length);
334         RFALSE(!PATH_PLAST_BUFFER(chk_path)->b_bdev,
335                "PAP-5060: device must not be NODEV");
336
337         if (comp_keys(get_lkey(chk_path, sb), key) == 1)
338                 /* left delimiting key is bigger, that the key we look for */
339                 return 0;
340         /*  if ( comp_keys(key, get_rkey(chk_path, sb)) != -1 ) */
341         if (comp_keys(get_rkey(chk_path, sb), key) != 1)
342                 /* key must be less than right delimitiing key */
343                 return 0;
344         return 1;
345 }
346
347 int reiserfs_check_path(struct treepath *p)
348 {
349         RFALSE(p->path_length != ILLEGAL_PATH_ELEMENT_OFFSET,
350                "path not properly relsed");
351         return 0;
352 }
353
354 /*
355  * Drop the reference to each buffer in a path and restore
356  * dirty bits clean when preparing the buffer for the log.
357  * This version should only be called from fix_nodes()
358  */
359 void pathrelse_and_restore(struct super_block *sb,
360                            struct treepath *search_path)
361 {
362         int path_offset = search_path->path_length;
363
364         RFALSE(path_offset < ILLEGAL_PATH_ELEMENT_OFFSET,
365                "clm-4000: invalid path offset");
366
367         while (path_offset > ILLEGAL_PATH_ELEMENT_OFFSET) {
368                 struct buffer_head *bh;
369                 bh = PATH_OFFSET_PBUFFER(search_path, path_offset--);
370                 reiserfs_restore_prepared_buffer(sb, bh);
371                 brelse(bh);
372         }
373         search_path->path_length = ILLEGAL_PATH_ELEMENT_OFFSET;
374 }
375
376 /* Drop the reference to each buffer in a path */
377 void pathrelse(struct treepath *search_path)
378 {
379         int path_offset = search_path->path_length;
380
381         RFALSE(path_offset < ILLEGAL_PATH_ELEMENT_OFFSET,
382                "PAP-5090: invalid path offset");
383
384         while (path_offset > ILLEGAL_PATH_ELEMENT_OFFSET)
385                 brelse(PATH_OFFSET_PBUFFER(search_path, path_offset--));
386
387         search_path->path_length = ILLEGAL_PATH_ELEMENT_OFFSET;
388 }
389
390 static int is_leaf(char *buf, int blocksize, struct buffer_head *bh)
391 {
392         struct block_head *blkh;
393         struct item_head *ih;
394         int used_space;
395         int prev_location;
396         int i;
397         int nr;
398
399         blkh = (struct block_head *)buf;
400         if (blkh_level(blkh) != DISK_LEAF_NODE_LEVEL) {
401                 reiserfs_warning(NULL, "reiserfs-5080",
402                                  "this should be caught earlier");
403                 return 0;
404         }
405
406         nr = blkh_nr_item(blkh);
407         if (nr < 1 || nr > ((blocksize - BLKH_SIZE) / (IH_SIZE + MIN_ITEM_LEN))) {
408                 /* item number is too big or too small */
409                 reiserfs_warning(NULL, "reiserfs-5081",
410                                  "nr_item seems wrong: %z", bh);
411                 return 0;
412         }
413         ih = (struct item_head *)(buf + BLKH_SIZE) + nr - 1;
414         used_space = BLKH_SIZE + IH_SIZE * nr + (blocksize - ih_location(ih));
415
416         /* free space does not match to calculated amount of use space */
417         if (used_space != blocksize - blkh_free_space(blkh)) {
418                 reiserfs_warning(NULL, "reiserfs-5082",
419                                  "free space seems wrong: %z", bh);
420                 return 0;
421         }
422         /*
423          * FIXME: it is_leaf will hit performance too much - we may have
424          * return 1 here
425          */
426
427         /* check tables of item heads */
428         ih = (struct item_head *)(buf + BLKH_SIZE);
429         prev_location = blocksize;
430         for (i = 0; i < nr; i++, ih++) {
431                 if (le_ih_k_type(ih) == TYPE_ANY) {
432                         reiserfs_warning(NULL, "reiserfs-5083",
433                                          "wrong item type for item %h",
434                                          ih);
435                         return 0;
436                 }
437                 if (ih_location(ih) >= blocksize
438                     || ih_location(ih) < IH_SIZE * nr) {
439                         reiserfs_warning(NULL, "reiserfs-5084",
440                                          "item location seems wrong: %h",
441                                          ih);
442                         return 0;
443                 }
444                 if (ih_item_len(ih) < 1
445                     || ih_item_len(ih) > MAX_ITEM_LEN(blocksize)) {
446                         reiserfs_warning(NULL, "reiserfs-5085",
447                                          "item length seems wrong: %h",
448                                          ih);
449                         return 0;
450                 }
451                 if (prev_location - ih_location(ih) != ih_item_len(ih)) {
452                         reiserfs_warning(NULL, "reiserfs-5086",
453                                          "item location seems wrong "
454                                          "(second one): %h", ih);
455                         return 0;
456                 }
457                 if (is_direntry_le_ih(ih) && (ih_item_len(ih) < (ih_entry_count(ih) * IH_SIZE))) {
458                         reiserfs_warning(NULL, "reiserfs-5093",
459                                          "item entry count seems wrong %h",
460                                          ih);
461                         return 0;
462                 }
463                 prev_location = ih_location(ih);
464         }
465
466         /* one may imagine many more checks */
467         return 1;
468 }
469
470 /* returns 1 if buf looks like an internal node, 0 otherwise */
471 static int is_internal(char *buf, int blocksize, struct buffer_head *bh)
472 {
473         struct block_head *blkh;
474         int nr;
475         int used_space;
476
477         blkh = (struct block_head *)buf;
478         nr = blkh_level(blkh);
479         if (nr <= DISK_LEAF_NODE_LEVEL || nr > MAX_HEIGHT) {
480                 /* this level is not possible for internal nodes */
481                 reiserfs_warning(NULL, "reiserfs-5087",
482                                  "this should be caught earlier");
483                 return 0;
484         }
485
486         nr = blkh_nr_item(blkh);
487         /* for internal which is not root we might check min number of keys */
488         if (nr > (blocksize - BLKH_SIZE - DC_SIZE) / (KEY_SIZE + DC_SIZE)) {
489                 reiserfs_warning(NULL, "reiserfs-5088",
490                                  "number of key seems wrong: %z", bh);
491                 return 0;
492         }
493
494         used_space = BLKH_SIZE + KEY_SIZE * nr + DC_SIZE * (nr + 1);
495         if (used_space != blocksize - blkh_free_space(blkh)) {
496                 reiserfs_warning(NULL, "reiserfs-5089",
497                                  "free space seems wrong: %z", bh);
498                 return 0;
499         }
500
501         /* one may imagine many more checks */
502         return 1;
503 }
504
505 /*
506  * make sure that bh contains formatted node of reiserfs tree of
507  * 'level'-th level
508  */
509 static int is_tree_node(struct buffer_head *bh, int level)
510 {
511         if (B_LEVEL(bh) != level) {
512                 reiserfs_warning(NULL, "reiserfs-5090", "node level %d does "
513                                  "not match to the expected one %d",
514                                  B_LEVEL(bh), level);
515                 return 0;
516         }
517         if (level == DISK_LEAF_NODE_LEVEL)
518                 return is_leaf(bh->b_data, bh->b_size, bh);
519
520         return is_internal(bh->b_data, bh->b_size, bh);
521 }
522
523 #define SEARCH_BY_KEY_READA 16
524
525 /*
526  * The function is NOT SCHEDULE-SAFE!
527  * It might unlock the write lock if we needed to wait for a block
528  * to be read. Note that in this case it won't recover the lock to avoid
529  * high contention resulting from too much lock requests, especially
530  * the caller (search_by_key) will perform other schedule-unsafe
531  * operations just after calling this function.
532  *
533  * @return depth of lock to be restored after read completes
534  */
535 static int search_by_key_reada(struct super_block *s,
536                                 struct buffer_head **bh,
537                                 b_blocknr_t *b, int num)
538 {
539         int i, j;
540         int depth = -1;
541
542         for (i = 0; i < num; i++) {
543                 bh[i] = sb_getblk(s, b[i]);
544         }
545         /*
546          * We are going to read some blocks on which we
547          * have a reference. It's safe, though we might be
548          * reading blocks concurrently changed if we release
549          * the lock. But it's still fine because we check later
550          * if the tree changed
551          */
552         for (j = 0; j < i; j++) {
553                 /*
554                  * note, this needs attention if we are getting rid of the BKL
555                  * you have to make sure the prepared bit isn't set on this
556                  * buffer
557                  */
558                 if (!buffer_uptodate(bh[j])) {
559                         if (depth == -1)
560                                 depth = reiserfs_write_unlock_nested(s);
561                         ll_rw_block(REQ_OP_READ, REQ_RAHEAD, 1, bh + j);
562                 }
563                 brelse(bh[j]);
564         }
565         return depth;
566 }
567
568 /*
569  * This function fills up the path from the root to the leaf as it
570  * descends the tree looking for the key.  It uses reiserfs_bread to
571  * try to find buffers in the cache given their block number.  If it
572  * does not find them in the cache it reads them from disk.  For each
573  * node search_by_key finds using reiserfs_bread it then uses
574  * bin_search to look through that node.  bin_search will find the
575  * position of the block_number of the next node if it is looking
576  * through an internal node.  If it is looking through a leaf node
577  * bin_search will find the position of the item which has key either
578  * equal to given key, or which is the maximal key less than the given
579  * key.  search_by_key returns a path that must be checked for the
580  * correctness of the top of the path but need not be checked for the
581  * correctness of the bottom of the path
582  */
583 /*
584  * search_by_key - search for key (and item) in stree
585  * @sb: superblock
586  * @key: pointer to key to search for
587  * @search_path: Allocated and initialized struct treepath; Returned filled
588  *               on success.
589  * @stop_level: How far down the tree to search, Use DISK_LEAF_NODE_LEVEL to
590  *              stop at leaf level.
591  *
592  * The function is NOT SCHEDULE-SAFE!
593  */
594 int search_by_key(struct super_block *sb, const struct cpu_key *key,
595                   struct treepath *search_path, int stop_level)
596 {
597         b_blocknr_t block_number;
598         int expected_level;
599         struct buffer_head *bh;
600         struct path_element *last_element;
601         int node_level, retval;
602         int fs_gen;
603         struct buffer_head *reada_bh[SEARCH_BY_KEY_READA];
604         b_blocknr_t reada_blocks[SEARCH_BY_KEY_READA];
605         int reada_count = 0;
606
607 #ifdef CONFIG_REISERFS_CHECK
608         int repeat_counter = 0;
609 #endif
610
611         PROC_INFO_INC(sb, search_by_key);
612
613         /*
614          * As we add each node to a path we increase its count.  This means
615          * that we must be careful to release all nodes in a path before we
616          * either discard the path struct or re-use the path struct, as we
617          * do here.
618          */
619
620         pathrelse(search_path);
621
622         /*
623          * With each iteration of this loop we search through the items in the
624          * current node, and calculate the next current node(next path element)
625          * for the next iteration of this loop..
626          */
627         block_number = SB_ROOT_BLOCK(sb);
628         expected_level = -1;
629         while (1) {
630
631 #ifdef CONFIG_REISERFS_CHECK
632                 if (!(++repeat_counter % 50000))
633                         reiserfs_warning(sb, "PAP-5100",
634                                          "%s: there were %d iterations of "
635                                          "while loop looking for key %K",
636                                          current->comm, repeat_counter,
637                                          key);
638 #endif
639
640                 /* prep path to have another element added to it. */
641                 last_element =
642                     PATH_OFFSET_PELEMENT(search_path,
643                                          ++search_path->path_length);
644                 fs_gen = get_generation(sb);
645
646                 /*
647                  * Read the next tree node, and set the last element
648                  * in the path to have a pointer to it.
649                  */
650                 if ((bh = last_element->pe_buffer =
651                      sb_getblk(sb, block_number))) {
652
653                         /*
654                          * We'll need to drop the lock if we encounter any
655                          * buffers that need to be read. If all of them are
656                          * already up to date, we don't need to drop the lock.
657                          */
658                         int depth = -1;
659
660                         if (!buffer_uptodate(bh) && reada_count > 1)
661                                 depth = search_by_key_reada(sb, reada_bh,
662                                                     reada_blocks, reada_count);
663
664                         if (!buffer_uptodate(bh) && depth == -1)
665                                 depth = reiserfs_write_unlock_nested(sb);
666
667                         ll_rw_block(REQ_OP_READ, 0, 1, &bh);
668                         wait_on_buffer(bh);
669
670                         if (depth != -1)
671                                 reiserfs_write_lock_nested(sb, depth);
672                         if (!buffer_uptodate(bh))
673                                 goto io_error;
674                 } else {
675 io_error:
676                         search_path->path_length--;
677                         pathrelse(search_path);
678                         return IO_ERROR;
679                 }
680                 reada_count = 0;
681                 if (expected_level == -1)
682                         expected_level = SB_TREE_HEIGHT(sb);
683                 expected_level--;
684
685                 /*
686                  * It is possible that schedule occurred. We must check
687                  * whether the key to search is still in the tree rooted
688                  * from the current buffer. If not then repeat search
689                  * from the root.
690                  */
691                 if (fs_changed(fs_gen, sb) &&
692                     (!B_IS_IN_TREE(bh) ||
693                      B_LEVEL(bh) != expected_level ||
694                      !key_in_buffer(search_path, key, sb))) {
695                         PROC_INFO_INC(sb, search_by_key_fs_changed);
696                         PROC_INFO_INC(sb, search_by_key_restarted);
697                         PROC_INFO_INC(sb,
698                                       sbk_restarted[expected_level - 1]);
699                         pathrelse(search_path);
700
701                         /*
702                          * Get the root block number so that we can
703                          * repeat the search starting from the root.
704                          */
705                         block_number = SB_ROOT_BLOCK(sb);
706                         expected_level = -1;
707
708                         /* repeat search from the root */
709                         continue;
710                 }
711
712                 /*
713                  * only check that the key is in the buffer if key is not
714                  * equal to the MAX_KEY. Latter case is only possible in
715                  * "finish_unfinished()" processing during mount.
716                  */
717                 RFALSE(comp_keys(&MAX_KEY, key) &&
718                        !key_in_buffer(search_path, key, sb),
719                        "PAP-5130: key is not in the buffer");
720 #ifdef CONFIG_REISERFS_CHECK
721                 if (REISERFS_SB(sb)->cur_tb) {
722                         print_cur_tb("5140");
723                         reiserfs_panic(sb, "PAP-5140",
724                                        "schedule occurred in do_balance!");
725                 }
726 #endif
727
728                 /*
729                  * make sure, that the node contents look like a node of
730                  * certain level
731                  */
732                 if (!is_tree_node(bh, expected_level)) {
733                         reiserfs_error(sb, "vs-5150",
734                                        "invalid format found in block %ld. "
735                                        "Fsck?", bh->b_blocknr);
736                         pathrelse(search_path);
737                         return IO_ERROR;
738                 }
739
740                 /* ok, we have acquired next formatted node in the tree */
741                 node_level = B_LEVEL(bh);
742
743                 PROC_INFO_BH_STAT(sb, bh, node_level - 1);
744
745                 RFALSE(node_level < stop_level,
746                        "vs-5152: tree level (%d) is less than stop level (%d)",
747                        node_level, stop_level);
748
749                 retval = bin_search(key, item_head(bh, 0),
750                                       B_NR_ITEMS(bh),
751                                       (node_level ==
752                                        DISK_LEAF_NODE_LEVEL) ? IH_SIZE :
753                                       KEY_SIZE,
754                                       &last_element->pe_position);
755                 if (node_level == stop_level) {
756                         return retval;
757                 }
758
759                 /* we are not in the stop level */
760                 /*
761                  * item has been found, so we choose the pointer which
762                  * is to the right of the found one
763                  */
764                 if (retval == ITEM_FOUND)
765                         last_element->pe_position++;
766
767                 /*
768                  * if item was not found we choose the position which is to
769                  * the left of the found item. This requires no code,
770                  * bin_search did it already.
771                  */
772
773                 /*
774                  * So we have chosen a position in the current node which is
775                  * an internal node.  Now we calculate child block number by
776                  * position in the node.
777                  */
778                 block_number =
779                     B_N_CHILD_NUM(bh, last_element->pe_position);
780
781                 /*
782                  * if we are going to read leaf nodes, try for read
783                  * ahead as well
784                  */
785                 if ((search_path->reada & PATH_READA) &&
786                     node_level == DISK_LEAF_NODE_LEVEL + 1) {
787                         int pos = last_element->pe_position;
788                         int limit = B_NR_ITEMS(bh);
789                         struct reiserfs_key *le_key;
790
791                         if (search_path->reada & PATH_READA_BACK)
792                                 limit = 0;
793                         while (reada_count < SEARCH_BY_KEY_READA) {
794                                 if (pos == limit)
795                                         break;
796                                 reada_blocks[reada_count++] =
797                                     B_N_CHILD_NUM(bh, pos);
798                                 if (search_path->reada & PATH_READA_BACK)
799                                         pos--;
800                                 else
801                                         pos++;
802
803                                 /*
804                                  * check to make sure we're in the same object
805                                  */
806                                 le_key = internal_key(bh, pos);
807                                 if (le32_to_cpu(le_key->k_objectid) !=
808                                     key->on_disk_key.k_objectid) {
809                                         break;
810                                 }
811                         }
812                 }
813         }
814 }
815
816 /*
817  * Form the path to an item and position in this item which contains
818  * file byte defined by key. If there is no such item
819  * corresponding to the key, we point the path to the item with
820  * maximal key less than key, and *pos_in_item is set to one
821  * past the last entry/byte in the item.  If searching for entry in a
822  * directory item, and it is not found, *pos_in_item is set to one
823  * entry more than the entry with maximal key which is less than the
824  * sought key.
825  *
826  * Note that if there is no entry in this same node which is one more,
827  * then we point to an imaginary entry.  for direct items, the
828  * position is in units of bytes, for indirect items the position is
829  * in units of blocknr entries, for directory items the position is in
830  * units of directory entries.
831  */
832 /* The function is NOT SCHEDULE-SAFE! */
833 int search_for_position_by_key(struct super_block *sb,
834                                /* Key to search (cpu variable) */
835                                const struct cpu_key *p_cpu_key,
836                                /* Filled up by this function. */
837                                struct treepath *search_path)
838 {
839         struct item_head *p_le_ih;      /* pointer to on-disk structure */
840         int blk_size;
841         loff_t item_offset, offset;
842         struct reiserfs_dir_entry de;
843         int retval;
844
845         /* If searching for directory entry. */
846         if (is_direntry_cpu_key(p_cpu_key))
847                 return search_by_entry_key(sb, p_cpu_key, search_path,
848                                            &de);
849
850         /* If not searching for directory entry. */
851
852         /* If item is found. */
853         retval = search_item(sb, p_cpu_key, search_path);
854         if (retval == IO_ERROR)
855                 return retval;
856         if (retval == ITEM_FOUND) {
857
858                 RFALSE(!ih_item_len
859                        (item_head
860                         (PATH_PLAST_BUFFER(search_path),
861                          PATH_LAST_POSITION(search_path))),
862                        "PAP-5165: item length equals zero");
863
864                 pos_in_item(search_path) = 0;
865                 return POSITION_FOUND;
866         }
867
868         RFALSE(!PATH_LAST_POSITION(search_path),
869                "PAP-5170: position equals zero");
870
871         /* Item is not found. Set path to the previous item. */
872         p_le_ih =
873             item_head(PATH_PLAST_BUFFER(search_path),
874                            --PATH_LAST_POSITION(search_path));
875         blk_size = sb->s_blocksize;
876
877         if (comp_short_keys(&p_le_ih->ih_key, p_cpu_key))
878                 return FILE_NOT_FOUND;
879
880         /* FIXME: quite ugly this far */
881
882         item_offset = le_ih_k_offset(p_le_ih);
883         offset = cpu_key_k_offset(p_cpu_key);
884
885         /* Needed byte is contained in the item pointed to by the path. */
886         if (item_offset <= offset &&
887             item_offset + op_bytes_number(p_le_ih, blk_size) > offset) {
888                 pos_in_item(search_path) = offset - item_offset;
889                 if (is_indirect_le_ih(p_le_ih)) {
890                         pos_in_item(search_path) /= blk_size;
891                 }
892                 return POSITION_FOUND;
893         }
894
895         /*
896          * Needed byte is not contained in the item pointed to by the
897          * path. Set pos_in_item out of the item.
898          */
899         if (is_indirect_le_ih(p_le_ih))
900                 pos_in_item(search_path) =
901                     ih_item_len(p_le_ih) / UNFM_P_SIZE;
902         else
903                 pos_in_item(search_path) = ih_item_len(p_le_ih);
904
905         return POSITION_NOT_FOUND;
906 }
907
908 /* Compare given item and item pointed to by the path. */
909 int comp_items(const struct item_head *stored_ih, const struct treepath *path)
910 {
911         struct buffer_head *bh = PATH_PLAST_BUFFER(path);
912         struct item_head *ih;
913
914         /* Last buffer at the path is not in the tree. */
915         if (!B_IS_IN_TREE(bh))
916                 return 1;
917
918         /* Last path position is invalid. */
919         if (PATH_LAST_POSITION(path) >= B_NR_ITEMS(bh))
920                 return 1;
921
922         /* we need only to know, whether it is the same item */
923         ih = tp_item_head(path);
924         return memcmp(stored_ih, ih, IH_SIZE);
925 }
926
927 /* prepare for delete or cut of direct item */
928 static inline int prepare_for_direct_item(struct treepath *path,
929                                           struct item_head *le_ih,
930                                           struct inode *inode,
931                                           loff_t new_file_length, int *cut_size)
932 {
933         loff_t round_len;
934
935         if (new_file_length == max_reiserfs_offset(inode)) {
936                 /* item has to be deleted */
937                 *cut_size = -(IH_SIZE + ih_item_len(le_ih));
938                 return M_DELETE;
939         }
940         /* new file gets truncated */
941         if (get_inode_item_key_version(inode) == KEY_FORMAT_3_6) {
942                 round_len = ROUND_UP(new_file_length);
943                 /* this was new_file_length < le_ih ... */
944                 if (round_len < le_ih_k_offset(le_ih)) {
945                         *cut_size = -(IH_SIZE + ih_item_len(le_ih));
946                         return M_DELETE;        /* Delete this item. */
947                 }
948                 /* Calculate first position and size for cutting from item. */
949                 pos_in_item(path) = round_len - (le_ih_k_offset(le_ih) - 1);
950                 *cut_size = -(ih_item_len(le_ih) - pos_in_item(path));
951
952                 return M_CUT;   /* Cut from this item. */
953         }
954
955         /* old file: items may have any length */
956
957         if (new_file_length < le_ih_k_offset(le_ih)) {
958                 *cut_size = -(IH_SIZE + ih_item_len(le_ih));
959                 return M_DELETE;        /* Delete this item. */
960         }
961
962         /* Calculate first position and size for cutting from item. */
963         *cut_size = -(ih_item_len(le_ih) -
964                       (pos_in_item(path) =
965                        new_file_length + 1 - le_ih_k_offset(le_ih)));
966         return M_CUT;           /* Cut from this item. */
967 }
968
969 static inline int prepare_for_direntry_item(struct treepath *path,
970                                             struct item_head *le_ih,
971                                             struct inode *inode,
972                                             loff_t new_file_length,
973                                             int *cut_size)
974 {
975         if (le_ih_k_offset(le_ih) == DOT_OFFSET &&
976             new_file_length == max_reiserfs_offset(inode)) {
977                 RFALSE(ih_entry_count(le_ih) != 2,
978                        "PAP-5220: incorrect empty directory item (%h)", le_ih);
979                 *cut_size = -(IH_SIZE + ih_item_len(le_ih));
980                 /* Delete the directory item containing "." and ".." entry. */
981                 return M_DELETE;
982         }
983
984         if (ih_entry_count(le_ih) == 1) {
985                 /*
986                  * Delete the directory item such as there is one record only
987                  * in this item
988                  */
989                 *cut_size = -(IH_SIZE + ih_item_len(le_ih));
990                 return M_DELETE;
991         }
992
993         /* Cut one record from the directory item. */
994         *cut_size =
995             -(DEH_SIZE +
996               entry_length(get_last_bh(path), le_ih, pos_in_item(path)));
997         return M_CUT;
998 }
999
1000 #define JOURNAL_FOR_FREE_BLOCK_AND_UPDATE_SD (2 * JOURNAL_PER_BALANCE_CNT + 1)
1001
1002 /*
1003  * If the path points to a directory or direct item, calculate mode
1004  * and the size cut, for balance.
1005  * If the path points to an indirect item, remove some number of its
1006  * unformatted nodes.
1007  * In case of file truncate calculate whether this item must be
1008  * deleted/truncated or last unformatted node of this item will be
1009  * converted to a direct item.
1010  * This function returns a determination of what balance mode the
1011  * calling function should employ.
1012  */
1013 static char prepare_for_delete_or_cut(struct reiserfs_transaction_handle *th,
1014                                       struct inode *inode,
1015                                       struct treepath *path,
1016                                       const struct cpu_key *item_key,
1017                                       /*
1018                                        * Number of unformatted nodes
1019                                        * which were removed from end
1020                                        * of the file.
1021                                        */
1022                                       int *removed,
1023                                       int *cut_size,
1024                                       /* MAX_KEY_OFFSET in case of delete. */
1025                                       unsigned long long new_file_length
1026     )
1027 {
1028         struct super_block *sb = inode->i_sb;
1029         struct item_head *p_le_ih = tp_item_head(path);
1030         struct buffer_head *bh = PATH_PLAST_BUFFER(path);
1031
1032         BUG_ON(!th->t_trans_id);
1033
1034         /* Stat_data item. */
1035         if (is_statdata_le_ih(p_le_ih)) {
1036
1037                 RFALSE(new_file_length != max_reiserfs_offset(inode),
1038                        "PAP-5210: mode must be M_DELETE");
1039
1040                 *cut_size = -(IH_SIZE + ih_item_len(p_le_ih));
1041                 return M_DELETE;
1042         }
1043
1044         /* Directory item. */
1045         if (is_direntry_le_ih(p_le_ih))
1046                 return prepare_for_direntry_item(path, p_le_ih, inode,
1047                                                  new_file_length,
1048                                                  cut_size);
1049
1050         /* Direct item. */
1051         if (is_direct_le_ih(p_le_ih))
1052                 return prepare_for_direct_item(path, p_le_ih, inode,
1053                                                new_file_length, cut_size);
1054
1055         /* Case of an indirect item. */
1056         {
1057             int blk_size = sb->s_blocksize;
1058             struct item_head s_ih;
1059             int need_re_search;
1060             int delete = 0;
1061             int result = M_CUT;
1062             int pos = 0;
1063
1064             if ( new_file_length == max_reiserfs_offset (inode) ) {
1065                 /*
1066                  * prepare_for_delete_or_cut() is called by
1067                  * reiserfs_delete_item()
1068                  */
1069                 new_file_length = 0;
1070                 delete = 1;
1071             }
1072
1073             do {
1074                 need_re_search = 0;
1075                 *cut_size = 0;
1076                 bh = PATH_PLAST_BUFFER(path);
1077                 copy_item_head(&s_ih, tp_item_head(path));
1078                 pos = I_UNFM_NUM(&s_ih);
1079
1080                 while (le_ih_k_offset (&s_ih) + (pos - 1) * blk_size > new_file_length) {
1081                     __le32 *unfm;
1082                     __u32 block;
1083
1084                     /*
1085                      * Each unformatted block deletion may involve
1086                      * one additional bitmap block into the transaction,
1087                      * thereby the initial journal space reservation
1088                      * might not be enough.
1089                      */
1090                     if (!delete && (*cut_size) != 0 &&
1091                         reiserfs_transaction_free_space(th) < JOURNAL_FOR_FREE_BLOCK_AND_UPDATE_SD)
1092                         break;
1093
1094                     unfm = (__le32 *)ih_item_body(bh, &s_ih) + pos - 1;
1095                     block = get_block_num(unfm, 0);
1096
1097                     if (block != 0) {
1098                         reiserfs_prepare_for_journal(sb, bh, 1);
1099                         put_block_num(unfm, 0, 0);
1100                         journal_mark_dirty(th, bh);
1101                         reiserfs_free_block(th, inode, block, 1);
1102                     }
1103
1104                     reiserfs_cond_resched(sb);
1105
1106                     if (item_moved (&s_ih, path))  {
1107                         need_re_search = 1;
1108                         break;
1109                     }
1110
1111                     pos --;
1112                     (*removed)++;
1113                     (*cut_size) -= UNFM_P_SIZE;
1114
1115                     if (pos == 0) {
1116                         (*cut_size) -= IH_SIZE;
1117                         result = M_DELETE;
1118                         break;
1119                     }
1120                 }
1121                 /*
1122                  * a trick.  If the buffer has been logged, this will
1123                  * do nothing.  If we've broken the loop without logging
1124                  * it, it will restore the buffer
1125                  */
1126                 reiserfs_restore_prepared_buffer(sb, bh);
1127             } while (need_re_search &&
1128                      search_for_position_by_key(sb, item_key, path) == POSITION_FOUND);
1129             pos_in_item(path) = pos * UNFM_P_SIZE;
1130
1131             if (*cut_size == 0) {
1132                 /*
1133                  * Nothing was cut. maybe convert last unformatted node to the
1134                  * direct item?
1135                  */
1136                 result = M_CONVERT;
1137             }
1138             return result;
1139         }
1140 }
1141
1142 /* Calculate number of bytes which will be deleted or cut during balance */
1143 static int calc_deleted_bytes_number(struct tree_balance *tb, char mode)
1144 {
1145         int del_size;
1146         struct item_head *p_le_ih = tp_item_head(tb->tb_path);
1147
1148         if (is_statdata_le_ih(p_le_ih))
1149                 return 0;
1150
1151         del_size =
1152             (mode ==
1153              M_DELETE) ? ih_item_len(p_le_ih) : -tb->insert_size[0];
1154         if (is_direntry_le_ih(p_le_ih)) {
1155                 /*
1156                  * return EMPTY_DIR_SIZE; We delete emty directories only.
1157                  * we can't use EMPTY_DIR_SIZE, as old format dirs have a
1158                  * different empty size.  ick. FIXME, is this right?
1159                  */
1160                 return del_size;
1161         }
1162
1163         if (is_indirect_le_ih(p_le_ih))
1164                 del_size = (del_size / UNFM_P_SIZE) *
1165                                 (PATH_PLAST_BUFFER(tb->tb_path)->b_size);
1166         return del_size;
1167 }
1168
1169 static void init_tb_struct(struct reiserfs_transaction_handle *th,
1170                            struct tree_balance *tb,
1171                            struct super_block *sb,
1172                            struct treepath *path, int size)
1173 {
1174
1175         BUG_ON(!th->t_trans_id);
1176
1177         memset(tb, '\0', sizeof(struct tree_balance));
1178         tb->transaction_handle = th;
1179         tb->tb_sb = sb;
1180         tb->tb_path = path;
1181         PATH_OFFSET_PBUFFER(path, ILLEGAL_PATH_ELEMENT_OFFSET) = NULL;
1182         PATH_OFFSET_POSITION(path, ILLEGAL_PATH_ELEMENT_OFFSET) = 0;
1183         tb->insert_size[0] = size;
1184 }
1185
1186 void padd_item(char *item, int total_length, int length)
1187 {
1188         int i;
1189
1190         for (i = total_length; i > length;)
1191                 item[--i] = 0;
1192 }
1193
1194 #ifdef REISERQUOTA_DEBUG
1195 char key2type(struct reiserfs_key *ih)
1196 {
1197         if (is_direntry_le_key(2, ih))
1198                 return 'd';
1199         if (is_direct_le_key(2, ih))
1200                 return 'D';
1201         if (is_indirect_le_key(2, ih))
1202                 return 'i';
1203         if (is_statdata_le_key(2, ih))
1204                 return 's';
1205         return 'u';
1206 }
1207
1208 char head2type(struct item_head *ih)
1209 {
1210         if (is_direntry_le_ih(ih))
1211                 return 'd';
1212         if (is_direct_le_ih(ih))
1213                 return 'D';
1214         if (is_indirect_le_ih(ih))
1215                 return 'i';
1216         if (is_statdata_le_ih(ih))
1217                 return 's';
1218         return 'u';
1219 }
1220 #endif
1221
1222 /*
1223  * Delete object item.
1224  * th       - active transaction handle
1225  * path     - path to the deleted item
1226  * item_key - key to search for the deleted item
1227  * indode   - used for updating i_blocks and quotas
1228  * un_bh    - NULL or unformatted node pointer
1229  */
1230 int reiserfs_delete_item(struct reiserfs_transaction_handle *th,
1231                          struct treepath *path, const struct cpu_key *item_key,
1232                          struct inode *inode, struct buffer_head *un_bh)
1233 {
1234         struct super_block *sb = inode->i_sb;
1235         struct tree_balance s_del_balance;
1236         struct item_head s_ih;
1237         struct item_head *q_ih;
1238         int quota_cut_bytes;
1239         int ret_value, del_size, removed;
1240         int depth;
1241
1242 #ifdef CONFIG_REISERFS_CHECK
1243         char mode;
1244         int iter = 0;
1245 #endif
1246
1247         BUG_ON(!th->t_trans_id);
1248
1249         init_tb_struct(th, &s_del_balance, sb, path,
1250                        0 /*size is unknown */ );
1251
1252         while (1) {
1253                 removed = 0;
1254
1255 #ifdef CONFIG_REISERFS_CHECK
1256                 iter++;
1257                 mode =
1258 #endif
1259                     prepare_for_delete_or_cut(th, inode, path,
1260                                               item_key, &removed,
1261                                               &del_size,
1262                                               max_reiserfs_offset(inode));
1263
1264                 RFALSE(mode != M_DELETE, "PAP-5320: mode must be M_DELETE");
1265
1266                 copy_item_head(&s_ih, tp_item_head(path));
1267                 s_del_balance.insert_size[0] = del_size;
1268
1269                 ret_value = fix_nodes(M_DELETE, &s_del_balance, NULL, NULL);
1270                 if (ret_value != REPEAT_SEARCH)
1271                         break;
1272
1273                 PROC_INFO_INC(sb, delete_item_restarted);
1274
1275                 /* file system changed, repeat search */
1276                 ret_value =
1277                     search_for_position_by_key(sb, item_key, path);
1278                 if (ret_value == IO_ERROR)
1279                         break;
1280                 if (ret_value == FILE_NOT_FOUND) {
1281                         reiserfs_warning(sb, "vs-5340",
1282                                          "no items of the file %K found",
1283                                          item_key);
1284                         break;
1285                 }
1286         }                       /* while (1) */
1287
1288         if (ret_value != CARRY_ON) {
1289                 unfix_nodes(&s_del_balance);
1290                 return 0;
1291         }
1292
1293         /* reiserfs_delete_item returns item length when success */
1294         ret_value = calc_deleted_bytes_number(&s_del_balance, M_DELETE);
1295         q_ih = tp_item_head(path);
1296         quota_cut_bytes = ih_item_len(q_ih);
1297
1298         /*
1299          * hack so the quota code doesn't have to guess if the file has a
1300          * tail.  On tail insert, we allocate quota for 1 unformatted node.
1301          * We test the offset because the tail might have been
1302          * split into multiple items, and we only want to decrement for
1303          * the unfm node once
1304          */
1305         if (!S_ISLNK(inode->i_mode) && is_direct_le_ih(q_ih)) {
1306                 if ((le_ih_k_offset(q_ih) & (sb->s_blocksize - 1)) == 1) {
1307                         quota_cut_bytes = sb->s_blocksize + UNFM_P_SIZE;
1308                 } else {
1309                         quota_cut_bytes = 0;
1310                 }
1311         }
1312
1313         if (un_bh) {
1314                 int off;
1315                 char *data;
1316
1317                 /*
1318                  * We are in direct2indirect conversion, so move tail contents
1319                  * to the unformatted node
1320                  */
1321                 /*
1322                  * note, we do the copy before preparing the buffer because we
1323                  * don't care about the contents of the unformatted node yet.
1324                  * the only thing we really care about is the direct item's
1325                  * data is in the unformatted node.
1326                  *
1327                  * Otherwise, we would have to call
1328                  * reiserfs_prepare_for_journal on the unformatted node,
1329                  * which might schedule, meaning we'd have to loop all the
1330                  * way back up to the start of the while loop.
1331                  *
1332                  * The unformatted node must be dirtied later on.  We can't be
1333                  * sure here if the entire tail has been deleted yet.
1334                  *
1335                  * un_bh is from the page cache (all unformatted nodes are
1336                  * from the page cache) and might be a highmem page.  So, we
1337                  * can't use un_bh->b_data.
1338                  * -clm
1339                  */
1340
1341                 data = kmap_atomic(un_bh->b_page);
1342                 off = ((le_ih_k_offset(&s_ih) - 1) & (PAGE_SIZE - 1));
1343                 memcpy(data + off,
1344                        ih_item_body(PATH_PLAST_BUFFER(path), &s_ih),
1345                        ret_value);
1346                 kunmap_atomic(data);
1347         }
1348
1349         /* Perform balancing after all resources have been collected at once. */
1350         do_balance(&s_del_balance, NULL, NULL, M_DELETE);
1351
1352 #ifdef REISERQUOTA_DEBUG
1353         reiserfs_debug(sb, REISERFS_DEBUG_CODE,
1354                        "reiserquota delete_item(): freeing %u, id=%u type=%c",
1355                        quota_cut_bytes, inode->i_uid, head2type(&s_ih));
1356 #endif
1357         depth = reiserfs_write_unlock_nested(inode->i_sb);
1358         dquot_free_space_nodirty(inode, quota_cut_bytes);
1359         reiserfs_write_lock_nested(inode->i_sb, depth);
1360
1361         /* Return deleted body length */
1362         return ret_value;
1363 }
1364
1365 /*
1366  * Summary Of Mechanisms For Handling Collisions Between Processes:
1367  *
1368  *  deletion of the body of the object is performed by iput(), with the
1369  *  result that if multiple processes are operating on a file, the
1370  *  deletion of the body of the file is deferred until the last process
1371  *  that has an open inode performs its iput().
1372  *
1373  *  writes and truncates are protected from collisions by use of
1374  *  semaphores.
1375  *
1376  *  creates, linking, and mknod are protected from collisions with other
1377  *  processes by making the reiserfs_add_entry() the last step in the
1378  *  creation, and then rolling back all changes if there was a collision.
1379  *  - Hans
1380 */
1381
1382 /* this deletes item which never gets split */
1383 void reiserfs_delete_solid_item(struct reiserfs_transaction_handle *th,
1384                                 struct inode *inode, struct reiserfs_key *key)
1385 {
1386         struct super_block *sb = th->t_super;
1387         struct tree_balance tb;
1388         INITIALIZE_PATH(path);
1389         int item_len = 0;
1390         int tb_init = 0;
1391         struct cpu_key cpu_key;
1392         int retval;
1393         int quota_cut_bytes = 0;
1394
1395         BUG_ON(!th->t_trans_id);
1396
1397         le_key2cpu_key(&cpu_key, key);
1398
1399         while (1) {
1400                 retval = search_item(th->t_super, &cpu_key, &path);
1401                 if (retval == IO_ERROR) {
1402                         reiserfs_error(th->t_super, "vs-5350",
1403                                        "i/o failure occurred trying "
1404                                        "to delete %K", &cpu_key);
1405                         break;
1406                 }
1407                 if (retval != ITEM_FOUND) {
1408                         pathrelse(&path);
1409                         /*
1410                          * No need for a warning, if there is just no free
1411                          * space to insert '..' item into the
1412                          * newly-created subdir
1413                          */
1414                         if (!
1415                             ((unsigned long long)
1416                              GET_HASH_VALUE(le_key_k_offset
1417                                             (le_key_version(key), key)) == 0
1418                              && (unsigned long long)
1419                              GET_GENERATION_NUMBER(le_key_k_offset
1420                                                    (le_key_version(key),
1421                                                     key)) == 1))
1422                                 reiserfs_warning(th->t_super, "vs-5355",
1423                                                  "%k not found", key);
1424                         break;
1425                 }
1426                 if (!tb_init) {
1427                         tb_init = 1;
1428                         item_len = ih_item_len(tp_item_head(&path));
1429                         init_tb_struct(th, &tb, th->t_super, &path,
1430                                        -(IH_SIZE + item_len));
1431                 }
1432                 quota_cut_bytes = ih_item_len(tp_item_head(&path));
1433
1434                 retval = fix_nodes(M_DELETE, &tb, NULL, NULL);
1435                 if (retval == REPEAT_SEARCH) {
1436                         PROC_INFO_INC(th->t_super, delete_solid_item_restarted);
1437                         continue;
1438                 }
1439
1440                 if (retval == CARRY_ON) {
1441                         do_balance(&tb, NULL, NULL, M_DELETE);
1442                         /*
1443                          * Should we count quota for item? (we don't
1444                          * count quotas for save-links)
1445                          */
1446                         if (inode) {
1447                                 int depth;
1448 #ifdef REISERQUOTA_DEBUG
1449                                 reiserfs_debug(th->t_super, REISERFS_DEBUG_CODE,
1450                                                "reiserquota delete_solid_item(): freeing %u id=%u type=%c",
1451                                                quota_cut_bytes, inode->i_uid,
1452                                                key2type(key));
1453 #endif
1454                                 depth = reiserfs_write_unlock_nested(sb);
1455                                 dquot_free_space_nodirty(inode,
1456                                                          quota_cut_bytes);
1457                                 reiserfs_write_lock_nested(sb, depth);
1458                         }
1459                         break;
1460                 }
1461
1462                 /* IO_ERROR, NO_DISK_SPACE, etc */
1463                 reiserfs_warning(th->t_super, "vs-5360",
1464                                  "could not delete %K due to fix_nodes failure",
1465                                  &cpu_key);
1466                 unfix_nodes(&tb);
1467                 break;
1468         }
1469
1470         reiserfs_check_path(&path);
1471 }
1472
1473 int reiserfs_delete_object(struct reiserfs_transaction_handle *th,
1474                            struct inode *inode)
1475 {
1476         int err;
1477         inode->i_size = 0;
1478         BUG_ON(!th->t_trans_id);
1479
1480         /* for directory this deletes item containing "." and ".." */
1481         err =
1482             reiserfs_do_truncate(th, inode, NULL, 0 /*no timestamp updates */ );
1483         if (err)
1484                 return err;
1485
1486 #if defined( USE_INODE_GENERATION_COUNTER )
1487         if (!old_format_only(th->t_super)) {
1488                 __le32 *inode_generation;
1489
1490                 inode_generation =
1491                     &REISERFS_SB(th->t_super)->s_rs->s_inode_generation;
1492                 le32_add_cpu(inode_generation, 1);
1493         }
1494 /* USE_INODE_GENERATION_COUNTER */
1495 #endif
1496         reiserfs_delete_solid_item(th, inode, INODE_PKEY(inode));
1497
1498         return err;
1499 }
1500
1501 static void unmap_buffers(struct page *page, loff_t pos)
1502 {
1503         struct buffer_head *bh;
1504         struct buffer_head *head;
1505         struct buffer_head *next;
1506         unsigned long tail_index;
1507         unsigned long cur_index;
1508
1509         if (page) {
1510                 if (page_has_buffers(page)) {
1511                         tail_index = pos & (PAGE_SIZE - 1);
1512                         cur_index = 0;
1513                         head = page_buffers(page);
1514                         bh = head;
1515                         do {
1516                                 next = bh->b_this_page;
1517
1518                                 /*
1519                                  * we want to unmap the buffers that contain
1520                                  * the tail, and all the buffers after it
1521                                  * (since the tail must be at the end of the
1522                                  * file).  We don't want to unmap file data
1523                                  * before the tail, since it might be dirty
1524                                  * and waiting to reach disk
1525                                  */
1526                                 cur_index += bh->b_size;
1527                                 if (cur_index > tail_index) {
1528                                         reiserfs_unmap_buffer(bh);
1529                                 }
1530                                 bh = next;
1531                         } while (bh != head);
1532                 }
1533         }
1534 }
1535
1536 static int maybe_indirect_to_direct(struct reiserfs_transaction_handle *th,
1537                                     struct inode *inode,
1538                                     struct page *page,
1539                                     struct treepath *path,
1540                                     const struct cpu_key *item_key,
1541                                     loff_t new_file_size, char *mode)
1542 {
1543         struct super_block *sb = inode->i_sb;
1544         int block_size = sb->s_blocksize;
1545         int cut_bytes;
1546         BUG_ON(!th->t_trans_id);
1547         BUG_ON(new_file_size != inode->i_size);
1548
1549         /*
1550          * the page being sent in could be NULL if there was an i/o error
1551          * reading in the last block.  The user will hit problems trying to
1552          * read the file, but for now we just skip the indirect2direct
1553          */
1554         if (atomic_read(&inode->i_count) > 1 ||
1555             !tail_has_to_be_packed(inode) ||
1556             !page || (REISERFS_I(inode)->i_flags & i_nopack_mask)) {
1557                 /* leave tail in an unformatted node */
1558                 *mode = M_SKIP_BALANCING;
1559                 cut_bytes =
1560                     block_size - (new_file_size & (block_size - 1));
1561                 pathrelse(path);
1562                 return cut_bytes;
1563         }
1564
1565         /* Perform the conversion to a direct_item. */
1566         return indirect2direct(th, inode, page, path, item_key,
1567                                new_file_size, mode);
1568 }
1569
1570 /*
1571  * we did indirect_to_direct conversion. And we have inserted direct
1572  * item successesfully, but there were no disk space to cut unfm
1573  * pointer being converted. Therefore we have to delete inserted
1574  * direct item(s)
1575  */
1576 static void indirect_to_direct_roll_back(struct reiserfs_transaction_handle *th,
1577                                          struct inode *inode, struct treepath *path)
1578 {
1579         struct cpu_key tail_key;
1580         int tail_len;
1581         int removed;
1582         BUG_ON(!th->t_trans_id);
1583
1584         make_cpu_key(&tail_key, inode, inode->i_size + 1, TYPE_DIRECT, 4);
1585         tail_key.key_length = 4;
1586
1587         tail_len =
1588             (cpu_key_k_offset(&tail_key) & (inode->i_sb->s_blocksize - 1)) - 1;
1589         while (tail_len) {
1590                 /* look for the last byte of the tail */
1591                 if (search_for_position_by_key(inode->i_sb, &tail_key, path) ==
1592                     POSITION_NOT_FOUND)
1593                         reiserfs_panic(inode->i_sb, "vs-5615",
1594                                        "found invalid item");
1595                 RFALSE(path->pos_in_item !=
1596                        ih_item_len(tp_item_head(path)) - 1,
1597                        "vs-5616: appended bytes found");
1598                 PATH_LAST_POSITION(path)--;
1599
1600                 removed =
1601                     reiserfs_delete_item(th, path, &tail_key, inode,
1602                                          NULL /*unbh not needed */ );
1603                 RFALSE(removed <= 0
1604                        || removed > tail_len,
1605                        "vs-5617: there was tail %d bytes, removed item length %d bytes",
1606                        tail_len, removed);
1607                 tail_len -= removed;
1608                 set_cpu_key_k_offset(&tail_key,
1609                                      cpu_key_k_offset(&tail_key) - removed);
1610         }
1611         reiserfs_warning(inode->i_sb, "reiserfs-5091", "indirect_to_direct "
1612                          "conversion has been rolled back due to "
1613                          "lack of disk space");
1614         mark_inode_dirty(inode);
1615 }
1616
1617 /* (Truncate or cut entry) or delete object item. Returns < 0 on failure */
1618 int reiserfs_cut_from_item(struct reiserfs_transaction_handle *th,
1619                            struct treepath *path,
1620                            struct cpu_key *item_key,
1621                            struct inode *inode,
1622                            struct page *page, loff_t new_file_size)
1623 {
1624         struct super_block *sb = inode->i_sb;
1625         /*
1626          * Every function which is going to call do_balance must first
1627          * create a tree_balance structure.  Then it must fill up this
1628          * structure by using the init_tb_struct and fix_nodes functions.
1629          * After that we can make tree balancing.
1630          */
1631         struct tree_balance s_cut_balance;
1632         struct item_head *p_le_ih;
1633         int cut_size = 0;       /* Amount to be cut. */
1634         int ret_value = CARRY_ON;
1635         int removed = 0;        /* Number of the removed unformatted nodes. */
1636         int is_inode_locked = 0;
1637         char mode;              /* Mode of the balance. */
1638         int retval2 = -1;
1639         int quota_cut_bytes;
1640         loff_t tail_pos = 0;
1641         int depth;
1642
1643         BUG_ON(!th->t_trans_id);
1644
1645         init_tb_struct(th, &s_cut_balance, inode->i_sb, path,
1646                        cut_size);
1647
1648         /*
1649          * Repeat this loop until we either cut the item without needing
1650          * to balance, or we fix_nodes without schedule occurring
1651          */
1652         while (1) {
1653                 /*
1654                  * Determine the balance mode, position of the first byte to
1655                  * be cut, and size to be cut.  In case of the indirect item
1656                  * free unformatted nodes which are pointed to by the cut
1657                  * pointers.
1658                  */
1659
1660                 mode =
1661                     prepare_for_delete_or_cut(th, inode, path,
1662                                               item_key, &removed,
1663                                               &cut_size, new_file_size);
1664                 if (mode == M_CONVERT) {
1665                         /*
1666                          * convert last unformatted node to direct item or
1667                          * leave tail in the unformatted node
1668                          */
1669                         RFALSE(ret_value != CARRY_ON,
1670                                "PAP-5570: can not convert twice");
1671
1672                         ret_value =
1673                             maybe_indirect_to_direct(th, inode, page,
1674                                                      path, item_key,
1675                                                      new_file_size, &mode);
1676                         if (mode == M_SKIP_BALANCING)
1677                                 /* tail has been left in the unformatted node */
1678                                 return ret_value;
1679
1680                         is_inode_locked = 1;
1681
1682                         /*
1683                          * removing of last unformatted node will
1684                          * change value we have to return to truncate.
1685                          * Save it
1686                          */
1687                         retval2 = ret_value;
1688
1689                         /*
1690                          * So, we have performed the first part of the
1691                          * conversion:
1692                          * inserting the new direct item.  Now we are
1693                          * removing the last unformatted node pointer.
1694                          * Set key to search for it.
1695                          */
1696                         set_cpu_key_k_type(item_key, TYPE_INDIRECT);
1697                         item_key->key_length = 4;
1698                         new_file_size -=
1699                             (new_file_size & (sb->s_blocksize - 1));
1700                         tail_pos = new_file_size;
1701                         set_cpu_key_k_offset(item_key, new_file_size + 1);
1702                         if (search_for_position_by_key
1703                             (sb, item_key,
1704                              path) == POSITION_NOT_FOUND) {
1705                                 print_block(PATH_PLAST_BUFFER(path), 3,
1706                                             PATH_LAST_POSITION(path) - 1,
1707                                             PATH_LAST_POSITION(path) + 1);
1708                                 reiserfs_panic(sb, "PAP-5580", "item to "
1709                                                "convert does not exist (%K)",
1710                                                item_key);
1711                         }
1712                         continue;
1713                 }
1714                 if (cut_size == 0) {
1715                         pathrelse(path);
1716                         return 0;
1717                 }
1718
1719                 s_cut_balance.insert_size[0] = cut_size;
1720
1721                 ret_value = fix_nodes(mode, &s_cut_balance, NULL, NULL);
1722                 if (ret_value != REPEAT_SEARCH)
1723                         break;
1724
1725                 PROC_INFO_INC(sb, cut_from_item_restarted);
1726
1727                 ret_value =
1728                     search_for_position_by_key(sb, item_key, path);
1729                 if (ret_value == POSITION_FOUND)
1730                         continue;
1731
1732                 reiserfs_warning(sb, "PAP-5610", "item %K not found",
1733                                  item_key);
1734                 unfix_nodes(&s_cut_balance);
1735                 return (ret_value == IO_ERROR) ? -EIO : -ENOENT;
1736         }                       /* while */
1737
1738         /* check fix_nodes results (IO_ERROR or NO_DISK_SPACE) */
1739         if (ret_value != CARRY_ON) {
1740                 if (is_inode_locked) {
1741                         /*
1742                          * FIXME: this seems to be not needed: we are always
1743                          * able to cut item
1744                          */
1745                         indirect_to_direct_roll_back(th, inode, path);
1746                 }
1747                 if (ret_value == NO_DISK_SPACE)
1748                         reiserfs_warning(sb, "reiserfs-5092",
1749                                          "NO_DISK_SPACE");
1750                 unfix_nodes(&s_cut_balance);
1751                 return -EIO;
1752         }
1753
1754         /* go ahead and perform balancing */
1755
1756         RFALSE(mode == M_PASTE || mode == M_INSERT, "invalid mode");
1757
1758         /* Calculate number of bytes that need to be cut from the item. */
1759         quota_cut_bytes =
1760             (mode ==
1761              M_DELETE) ? ih_item_len(tp_item_head(path)) : -s_cut_balance.
1762             insert_size[0];
1763         if (retval2 == -1)
1764                 ret_value = calc_deleted_bytes_number(&s_cut_balance, mode);
1765         else
1766                 ret_value = retval2;
1767
1768         /*
1769          * For direct items, we only change the quota when deleting the last
1770          * item.
1771          */
1772         p_le_ih = tp_item_head(s_cut_balance.tb_path);
1773         if (!S_ISLNK(inode->i_mode) && is_direct_le_ih(p_le_ih)) {
1774                 if (mode == M_DELETE &&
1775                     (le_ih_k_offset(p_le_ih) & (sb->s_blocksize - 1)) ==
1776                     1) {
1777                         /* FIXME: this is to keep 3.5 happy */
1778                         REISERFS_I(inode)->i_first_direct_byte = U32_MAX;
1779                         quota_cut_bytes = sb->s_blocksize + UNFM_P_SIZE;
1780                 } else {
1781                         quota_cut_bytes = 0;
1782                 }
1783         }
1784 #ifdef CONFIG_REISERFS_CHECK
1785         if (is_inode_locked) {
1786                 struct item_head *le_ih =
1787                     tp_item_head(s_cut_balance.tb_path);
1788                 /*
1789                  * we are going to complete indirect2direct conversion. Make
1790                  * sure, that we exactly remove last unformatted node pointer
1791                  * of the item
1792                  */
1793                 if (!is_indirect_le_ih(le_ih))
1794                         reiserfs_panic(sb, "vs-5652",
1795                                        "item must be indirect %h", le_ih);
1796
1797                 if (mode == M_DELETE && ih_item_len(le_ih) != UNFM_P_SIZE)
1798                         reiserfs_panic(sb, "vs-5653", "completing "
1799                                        "indirect2direct conversion indirect "
1800                                        "item %h being deleted must be of "
1801                                        "4 byte long", le_ih);
1802
1803                 if (mode == M_CUT
1804                     && s_cut_balance.insert_size[0] != -UNFM_P_SIZE) {
1805                         reiserfs_panic(sb, "vs-5654", "can not complete "
1806                                        "indirect2direct conversion of %h "
1807                                        "(CUT, insert_size==%d)",
1808                                        le_ih, s_cut_balance.insert_size[0]);
1809                 }
1810                 /*
1811                  * it would be useful to make sure, that right neighboring
1812                  * item is direct item of this file
1813                  */
1814         }
1815 #endif
1816
1817         do_balance(&s_cut_balance, NULL, NULL, mode);
1818         if (is_inode_locked) {
1819                 /*
1820                  * we've done an indirect->direct conversion.  when the
1821                  * data block was freed, it was removed from the list of
1822                  * blocks that must be flushed before the transaction
1823                  * commits, make sure to unmap and invalidate it
1824                  */
1825                 unmap_buffers(page, tail_pos);
1826                 REISERFS_I(inode)->i_flags &= ~i_pack_on_close_mask;
1827         }
1828 #ifdef REISERQUOTA_DEBUG
1829         reiserfs_debug(inode->i_sb, REISERFS_DEBUG_CODE,
1830                        "reiserquota cut_from_item(): freeing %u id=%u type=%c",
1831                        quota_cut_bytes, inode->i_uid, '?');
1832 #endif
1833         depth = reiserfs_write_unlock_nested(sb);
1834         dquot_free_space_nodirty(inode, quota_cut_bytes);
1835         reiserfs_write_lock_nested(sb, depth);
1836         return ret_value;
1837 }
1838
1839 static void truncate_directory(struct reiserfs_transaction_handle *th,
1840                                struct inode *inode)
1841 {
1842         BUG_ON(!th->t_trans_id);
1843         if (inode->i_nlink)
1844                 reiserfs_error(inode->i_sb, "vs-5655", "link count != 0");
1845
1846         set_le_key_k_offset(KEY_FORMAT_3_5, INODE_PKEY(inode), DOT_OFFSET);
1847         set_le_key_k_type(KEY_FORMAT_3_5, INODE_PKEY(inode), TYPE_DIRENTRY);
1848         reiserfs_delete_solid_item(th, inode, INODE_PKEY(inode));
1849         reiserfs_update_sd(th, inode);
1850         set_le_key_k_offset(KEY_FORMAT_3_5, INODE_PKEY(inode), SD_OFFSET);
1851         set_le_key_k_type(KEY_FORMAT_3_5, INODE_PKEY(inode), TYPE_STAT_DATA);
1852 }
1853
1854 /*
1855  * Truncate file to the new size. Note, this must be called with a
1856  * transaction already started
1857  */
1858 int reiserfs_do_truncate(struct reiserfs_transaction_handle *th,
1859                          struct inode *inode,   /* ->i_size contains new size */
1860                          struct page *page,     /* up to date for last block */
1861                          /*
1862                           * when it is called by file_release to convert
1863                           * the tail - no timestamps should be updated
1864                           */
1865                          int update_timestamps
1866     )
1867 {
1868         INITIALIZE_PATH(s_search_path); /* Path to the current object item. */
1869         struct item_head *p_le_ih;      /* Pointer to an item header. */
1870
1871         /* Key to search for a previous file item. */
1872         struct cpu_key s_item_key;
1873         loff_t file_size,       /* Old file size. */
1874          new_file_size; /* New file size. */
1875         int deleted;            /* Number of deleted or truncated bytes. */
1876         int retval;
1877         int err = 0;
1878
1879         BUG_ON(!th->t_trans_id);
1880         if (!
1881             (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode)
1882              || S_ISLNK(inode->i_mode)))
1883                 return 0;
1884
1885         /* deletion of directory - no need to update timestamps */
1886         if (S_ISDIR(inode->i_mode)) {
1887                 truncate_directory(th, inode);
1888                 return 0;
1889         }
1890
1891         /* Get new file size. */
1892         new_file_size = inode->i_size;
1893
1894         /* FIXME: note, that key type is unimportant here */
1895         make_cpu_key(&s_item_key, inode, max_reiserfs_offset(inode),
1896                      TYPE_DIRECT, 3);
1897
1898         retval =
1899             search_for_position_by_key(inode->i_sb, &s_item_key,
1900                                        &s_search_path);
1901         if (retval == IO_ERROR) {
1902                 reiserfs_error(inode->i_sb, "vs-5657",
1903                                "i/o failure occurred trying to truncate %K",
1904                                &s_item_key);
1905                 err = -EIO;
1906                 goto out;
1907         }
1908         if (retval == POSITION_FOUND || retval == FILE_NOT_FOUND) {
1909                 reiserfs_error(inode->i_sb, "PAP-5660",
1910                                "wrong result %d of search for %K", retval,
1911                                &s_item_key);
1912
1913                 err = -EIO;
1914                 goto out;
1915         }
1916
1917         s_search_path.pos_in_item--;
1918
1919         /* Get real file size (total length of all file items) */
1920         p_le_ih = tp_item_head(&s_search_path);
1921         if (is_statdata_le_ih(p_le_ih))
1922                 file_size = 0;
1923         else {
1924                 loff_t offset = le_ih_k_offset(p_le_ih);
1925                 int bytes =
1926                     op_bytes_number(p_le_ih, inode->i_sb->s_blocksize);
1927
1928                 /*
1929                  * this may mismatch with real file size: if last direct item
1930                  * had no padding zeros and last unformatted node had no free
1931                  * space, this file would have this file size
1932                  */
1933                 file_size = offset + bytes - 1;
1934         }
1935         /*
1936          * are we doing a full truncate or delete, if so
1937          * kick in the reada code
1938          */
1939         if (new_file_size == 0)
1940                 s_search_path.reada = PATH_READA | PATH_READA_BACK;
1941
1942         if (file_size == 0 || file_size < new_file_size) {
1943                 goto update_and_out;
1944         }
1945
1946         /* Update key to search for the last file item. */
1947         set_cpu_key_k_offset(&s_item_key, file_size);
1948
1949         do {
1950                 /* Cut or delete file item. */
1951                 deleted =
1952                     reiserfs_cut_from_item(th, &s_search_path, &s_item_key,
1953                                            inode, page, new_file_size);
1954                 if (deleted < 0) {
1955                         reiserfs_warning(inode->i_sb, "vs-5665",
1956                                          "reiserfs_cut_from_item failed");
1957                         reiserfs_check_path(&s_search_path);
1958                         return 0;
1959                 }
1960
1961                 RFALSE(deleted > file_size,
1962                        "PAP-5670: reiserfs_cut_from_item: too many bytes deleted: deleted %d, file_size %lu, item_key %K",
1963                        deleted, file_size, &s_item_key);
1964
1965                 /* Change key to search the last file item. */
1966                 file_size -= deleted;
1967
1968                 set_cpu_key_k_offset(&s_item_key, file_size);
1969
1970                 /*
1971                  * While there are bytes to truncate and previous
1972                  * file item is presented in the tree.
1973                  */
1974
1975                 /*
1976                  * This loop could take a really long time, and could log
1977                  * many more blocks than a transaction can hold.  So, we do
1978                  * a polite journal end here, and if the transaction needs
1979                  * ending, we make sure the file is consistent before ending
1980                  * the current trans and starting a new one
1981                  */
1982                 if (journal_transaction_should_end(th, 0) ||
1983                     reiserfs_transaction_free_space(th) <= JOURNAL_FOR_FREE_BLOCK_AND_UPDATE_SD) {
1984                         pathrelse(&s_search_path);
1985
1986                         if (update_timestamps) {
1987                                 inode->i_mtime = current_time(inode);
1988                                 inode->i_ctime = current_time(inode);
1989                         }
1990                         reiserfs_update_sd(th, inode);
1991
1992                         err = journal_end(th);
1993                         if (err)
1994                                 goto out;
1995                         err = journal_begin(th, inode->i_sb,
1996                                             JOURNAL_FOR_FREE_BLOCK_AND_UPDATE_SD + JOURNAL_PER_BALANCE_CNT * 4) ;
1997                         if (err)
1998                                 goto out;
1999                         reiserfs_update_inode_transaction(inode);
2000                 }
2001         } while (file_size > ROUND_UP(new_file_size) &&
2002                  search_for_position_by_key(inode->i_sb, &s_item_key,
2003                                             &s_search_path) == POSITION_FOUND);
2004
2005         RFALSE(file_size > ROUND_UP(new_file_size),
2006                "PAP-5680: truncate did not finish: new_file_size %lld, current %lld, oid %d",
2007                new_file_size, file_size, s_item_key.on_disk_key.k_objectid);
2008
2009 update_and_out:
2010         if (update_timestamps) {
2011                 /* this is truncate, not file closing */
2012                 inode->i_mtime = current_time(inode);
2013                 inode->i_ctime = current_time(inode);
2014         }
2015         reiserfs_update_sd(th, inode);
2016
2017 out:
2018         pathrelse(&s_search_path);
2019         return err;
2020 }
2021
2022 #ifdef CONFIG_REISERFS_CHECK
2023 /* this makes sure, that we __append__, not overwrite or add holes */
2024 static void check_research_for_paste(struct treepath *path,
2025                                      const struct cpu_key *key)
2026 {
2027         struct item_head *found_ih = tp_item_head(path);
2028
2029         if (is_direct_le_ih(found_ih)) {
2030                 if (le_ih_k_offset(found_ih) +
2031                     op_bytes_number(found_ih,
2032                                     get_last_bh(path)->b_size) !=
2033                     cpu_key_k_offset(key)
2034                     || op_bytes_number(found_ih,
2035                                        get_last_bh(path)->b_size) !=
2036                     pos_in_item(path))
2037                         reiserfs_panic(NULL, "PAP-5720", "found direct item "
2038                                        "%h or position (%d) does not match "
2039                                        "to key %K", found_ih,
2040                                        pos_in_item(path), key);
2041         }
2042         if (is_indirect_le_ih(found_ih)) {
2043                 if (le_ih_k_offset(found_ih) +
2044                     op_bytes_number(found_ih,
2045                                     get_last_bh(path)->b_size) !=
2046                     cpu_key_k_offset(key)
2047                     || I_UNFM_NUM(found_ih) != pos_in_item(path)
2048                     || get_ih_free_space(found_ih) != 0)
2049                         reiserfs_panic(NULL, "PAP-5730", "found indirect "
2050                                        "item (%h) or position (%d) does not "
2051                                        "match to key (%K)",
2052                                        found_ih, pos_in_item(path), key);
2053         }
2054 }
2055 #endif                          /* config reiserfs check */
2056
2057 /*
2058  * Paste bytes to the existing item.
2059  * Returns bytes number pasted into the item.
2060  */
2061 int reiserfs_paste_into_item(struct reiserfs_transaction_handle *th,
2062                              /* Path to the pasted item. */
2063                              struct treepath *search_path,
2064                              /* Key to search for the needed item. */
2065                              const struct cpu_key *key,
2066                              /* Inode item belongs to */
2067                              struct inode *inode,
2068                              /* Pointer to the bytes to paste. */
2069                              const char *body,
2070                              /* Size of pasted bytes. */
2071                              int pasted_size)
2072 {
2073         struct super_block *sb = inode->i_sb;
2074         struct tree_balance s_paste_balance;
2075         int retval;
2076         int fs_gen;
2077         int depth;
2078
2079         BUG_ON(!th->t_trans_id);
2080
2081         fs_gen = get_generation(inode->i_sb);
2082
2083 #ifdef REISERQUOTA_DEBUG
2084         reiserfs_debug(inode->i_sb, REISERFS_DEBUG_CODE,
2085                        "reiserquota paste_into_item(): allocating %u id=%u type=%c",
2086                        pasted_size, inode->i_uid,
2087                        key2type(&key->on_disk_key));
2088 #endif
2089
2090         depth = reiserfs_write_unlock_nested(sb);
2091         retval = dquot_alloc_space_nodirty(inode, pasted_size);
2092         reiserfs_write_lock_nested(sb, depth);
2093         if (retval) {
2094                 pathrelse(search_path);
2095                 return retval;
2096         }
2097         init_tb_struct(th, &s_paste_balance, th->t_super, search_path,
2098                        pasted_size);
2099 #ifdef DISPLACE_NEW_PACKING_LOCALITIES
2100         s_paste_balance.key = key->on_disk_key;
2101 #endif
2102
2103         /* DQUOT_* can schedule, must check before the fix_nodes */
2104         if (fs_changed(fs_gen, inode->i_sb)) {
2105                 goto search_again;
2106         }
2107
2108         while ((retval =
2109                 fix_nodes(M_PASTE, &s_paste_balance, NULL,
2110                           body)) == REPEAT_SEARCH) {
2111 search_again:
2112                 /* file system changed while we were in the fix_nodes */
2113                 PROC_INFO_INC(th->t_super, paste_into_item_restarted);
2114                 retval =
2115                     search_for_position_by_key(th->t_super, key,
2116                                                search_path);
2117                 if (retval == IO_ERROR) {
2118                         retval = -EIO;
2119                         goto error_out;
2120                 }
2121                 if (retval == POSITION_FOUND) {
2122                         reiserfs_warning(inode->i_sb, "PAP-5710",
2123                                          "entry or pasted byte (%K) exists",
2124                                          key);
2125                         retval = -EEXIST;
2126                         goto error_out;
2127                 }
2128 #ifdef CONFIG_REISERFS_CHECK
2129                 check_research_for_paste(search_path, key);
2130 #endif
2131         }
2132
2133         /*
2134          * Perform balancing after all resources are collected by fix_nodes,
2135          * and accessing them will not risk triggering schedule.
2136          */
2137         if (retval == CARRY_ON) {
2138                 do_balance(&s_paste_balance, NULL /*ih */ , body, M_PASTE);
2139                 return 0;
2140         }
2141         retval = (retval == NO_DISK_SPACE) ? -ENOSPC : -EIO;
2142 error_out:
2143         /* this also releases the path */
2144         unfix_nodes(&s_paste_balance);
2145 #ifdef REISERQUOTA_DEBUG
2146         reiserfs_debug(inode->i_sb, REISERFS_DEBUG_CODE,
2147                        "reiserquota paste_into_item(): freeing %u id=%u type=%c",
2148                        pasted_size, inode->i_uid,
2149                        key2type(&key->on_disk_key));
2150 #endif
2151         depth = reiserfs_write_unlock_nested(sb);
2152         dquot_free_space_nodirty(inode, pasted_size);
2153         reiserfs_write_lock_nested(sb, depth);
2154         return retval;
2155 }
2156
2157 /*
2158  * Insert new item into the buffer at the path.
2159  * th   - active transaction handle
2160  * path - path to the inserted item
2161  * ih   - pointer to the item header to insert
2162  * body - pointer to the bytes to insert
2163  */
2164 int reiserfs_insert_item(struct reiserfs_transaction_handle *th,
2165                          struct treepath *path, const struct cpu_key *key,
2166                          struct item_head *ih, struct inode *inode,
2167                          const char *body)
2168 {
2169         struct tree_balance s_ins_balance;
2170         int retval;
2171         int fs_gen = 0;
2172         int quota_bytes = 0;
2173
2174         BUG_ON(!th->t_trans_id);
2175
2176         if (inode) {            /* Do we count quotas for item? */
2177                 int depth;
2178                 fs_gen = get_generation(inode->i_sb);
2179                 quota_bytes = ih_item_len(ih);
2180
2181                 /*
2182                  * hack so the quota code doesn't have to guess
2183                  * if the file has a tail, links are always tails,
2184                  * so there's no guessing needed
2185                  */
2186                 if (!S_ISLNK(inode->i_mode) && is_direct_le_ih(ih))
2187                         quota_bytes = inode->i_sb->s_blocksize + UNFM_P_SIZE;
2188 #ifdef REISERQUOTA_DEBUG
2189                 reiserfs_debug(inode->i_sb, REISERFS_DEBUG_CODE,
2190                                "reiserquota insert_item(): allocating %u id=%u type=%c",
2191                                quota_bytes, inode->i_uid, head2type(ih));
2192 #endif
2193                 /*
2194                  * We can't dirty inode here. It would be immediately
2195                  * written but appropriate stat item isn't inserted yet...
2196                  */
2197                 depth = reiserfs_write_unlock_nested(inode->i_sb);
2198                 retval = dquot_alloc_space_nodirty(inode, quota_bytes);
2199                 reiserfs_write_lock_nested(inode->i_sb, depth);
2200                 if (retval) {
2201                         pathrelse(path);
2202                         return retval;
2203                 }
2204         }
2205         init_tb_struct(th, &s_ins_balance, th->t_super, path,
2206                        IH_SIZE + ih_item_len(ih));
2207 #ifdef DISPLACE_NEW_PACKING_LOCALITIES
2208         s_ins_balance.key = key->on_disk_key;
2209 #endif
2210         /*
2211          * DQUOT_* can schedule, must check to be sure calling
2212          * fix_nodes is safe
2213          */
2214         if (inode && fs_changed(fs_gen, inode->i_sb)) {
2215                 goto search_again;
2216         }
2217
2218         while ((retval =
2219                 fix_nodes(M_INSERT, &s_ins_balance, ih,
2220                           body)) == REPEAT_SEARCH) {
2221 search_again:
2222                 /* file system changed while we were in the fix_nodes */
2223                 PROC_INFO_INC(th->t_super, insert_item_restarted);
2224                 retval = search_item(th->t_super, key, path);
2225                 if (retval == IO_ERROR) {
2226                         retval = -EIO;
2227                         goto error_out;
2228                 }
2229                 if (retval == ITEM_FOUND) {
2230                         reiserfs_warning(th->t_super, "PAP-5760",
2231                                          "key %K already exists in the tree",
2232                                          key);
2233                         retval = -EEXIST;
2234                         goto error_out;
2235                 }
2236         }
2237
2238         /* make balancing after all resources will be collected at a time */
2239         if (retval == CARRY_ON) {
2240                 do_balance(&s_ins_balance, ih, body, M_INSERT);
2241                 return 0;
2242         }
2243
2244         retval = (retval == NO_DISK_SPACE) ? -ENOSPC : -EIO;
2245 error_out:
2246         /* also releases the path */
2247         unfix_nodes(&s_ins_balance);
2248 #ifdef REISERQUOTA_DEBUG
2249         if (inode)
2250                 reiserfs_debug(th->t_super, REISERFS_DEBUG_CODE,
2251                        "reiserquota insert_item(): freeing %u id=%u type=%c",
2252                        quota_bytes, inode->i_uid, head2type(ih));
2253 #endif
2254         if (inode) {
2255                 int depth = reiserfs_write_unlock_nested(inode->i_sb);
2256                 dquot_free_space_nodirty(inode, quota_bytes);
2257                 reiserfs_write_lock_nested(inode->i_sb, depth);
2258         }
2259         return retval;
2260 }