tools headers UAPI: Sync openat2.h with the kernel sources
[linux-2.6-microblaze.git] / fs / reiserfs / ibalance.c
1 /*
2  * Copyright 2000 by Hans Reiser, licensing governed by reiserfs/README
3  */
4
5 #include <linux/uaccess.h>
6 #include <linux/string.h>
7 #include <linux/time.h>
8 #include "reiserfs.h"
9 #include <linux/buffer_head.h>
10
11 /* this is one and only function that is used outside (do_balance.c) */
12 int balance_internal(struct tree_balance *,
13                      int, int, struct item_head *, struct buffer_head **);
14
15 /*
16  * modes of internal_shift_left, internal_shift_right and
17  * internal_insert_childs
18  */
19 #define INTERNAL_SHIFT_FROM_S_TO_L 0
20 #define INTERNAL_SHIFT_FROM_R_TO_S 1
21 #define INTERNAL_SHIFT_FROM_L_TO_S 2
22 #define INTERNAL_SHIFT_FROM_S_TO_R 3
23 #define INTERNAL_INSERT_TO_S 4
24 #define INTERNAL_INSERT_TO_L 5
25 #define INTERNAL_INSERT_TO_R 6
26
27 static void internal_define_dest_src_infos(int shift_mode,
28                                            struct tree_balance *tb,
29                                            int h,
30                                            struct buffer_info *dest_bi,
31                                            struct buffer_info *src_bi,
32                                            int *d_key, struct buffer_head **cf)
33 {
34         memset(dest_bi, 0, sizeof(struct buffer_info));
35         memset(src_bi, 0, sizeof(struct buffer_info));
36         /* define dest, src, dest parent, dest position */
37         switch (shift_mode) {
38
39         /* used in internal_shift_left */
40         case INTERNAL_SHIFT_FROM_S_TO_L:
41                 src_bi->tb = tb;
42                 src_bi->bi_bh = PATH_H_PBUFFER(tb->tb_path, h);
43                 src_bi->bi_parent = PATH_H_PPARENT(tb->tb_path, h);
44                 src_bi->bi_position = PATH_H_POSITION(tb->tb_path, h + 1);
45                 dest_bi->tb = tb;
46                 dest_bi->bi_bh = tb->L[h];
47                 dest_bi->bi_parent = tb->FL[h];
48                 dest_bi->bi_position = get_left_neighbor_position(tb, h);
49                 *d_key = tb->lkey[h];
50                 *cf = tb->CFL[h];
51                 break;
52         case INTERNAL_SHIFT_FROM_L_TO_S:
53                 src_bi->tb = tb;
54                 src_bi->bi_bh = tb->L[h];
55                 src_bi->bi_parent = tb->FL[h];
56                 src_bi->bi_position = get_left_neighbor_position(tb, h);
57                 dest_bi->tb = tb;
58                 dest_bi->bi_bh = PATH_H_PBUFFER(tb->tb_path, h);
59                 dest_bi->bi_parent = PATH_H_PPARENT(tb->tb_path, h);
60                 /* dest position is analog of dest->b_item_order */
61                 dest_bi->bi_position = PATH_H_POSITION(tb->tb_path, h + 1);
62                 *d_key = tb->lkey[h];
63                 *cf = tb->CFL[h];
64                 break;
65
66         /* used in internal_shift_left */
67         case INTERNAL_SHIFT_FROM_R_TO_S:
68                 src_bi->tb = tb;
69                 src_bi->bi_bh = tb->R[h];
70                 src_bi->bi_parent = tb->FR[h];
71                 src_bi->bi_position = get_right_neighbor_position(tb, h);
72                 dest_bi->tb = tb;
73                 dest_bi->bi_bh = PATH_H_PBUFFER(tb->tb_path, h);
74                 dest_bi->bi_parent = PATH_H_PPARENT(tb->tb_path, h);
75                 dest_bi->bi_position = PATH_H_POSITION(tb->tb_path, h + 1);
76                 *d_key = tb->rkey[h];
77                 *cf = tb->CFR[h];
78                 break;
79
80         case INTERNAL_SHIFT_FROM_S_TO_R:
81                 src_bi->tb = tb;
82                 src_bi->bi_bh = PATH_H_PBUFFER(tb->tb_path, h);
83                 src_bi->bi_parent = PATH_H_PPARENT(tb->tb_path, h);
84                 src_bi->bi_position = PATH_H_POSITION(tb->tb_path, h + 1);
85                 dest_bi->tb = tb;
86                 dest_bi->bi_bh = tb->R[h];
87                 dest_bi->bi_parent = tb->FR[h];
88                 dest_bi->bi_position = get_right_neighbor_position(tb, h);
89                 *d_key = tb->rkey[h];
90                 *cf = tb->CFR[h];
91                 break;
92
93         case INTERNAL_INSERT_TO_L:
94                 dest_bi->tb = tb;
95                 dest_bi->bi_bh = tb->L[h];
96                 dest_bi->bi_parent = tb->FL[h];
97                 dest_bi->bi_position = get_left_neighbor_position(tb, h);
98                 break;
99
100         case INTERNAL_INSERT_TO_S:
101                 dest_bi->tb = tb;
102                 dest_bi->bi_bh = PATH_H_PBUFFER(tb->tb_path, h);
103                 dest_bi->bi_parent = PATH_H_PPARENT(tb->tb_path, h);
104                 dest_bi->bi_position = PATH_H_POSITION(tb->tb_path, h + 1);
105                 break;
106
107         case INTERNAL_INSERT_TO_R:
108                 dest_bi->tb = tb;
109                 dest_bi->bi_bh = tb->R[h];
110                 dest_bi->bi_parent = tb->FR[h];
111                 dest_bi->bi_position = get_right_neighbor_position(tb, h);
112                 break;
113
114         default:
115                 reiserfs_panic(tb->tb_sb, "ibalance-1",
116                                "shift type is unknown (%d)",
117                                shift_mode);
118         }
119 }
120
121 /*
122  * Insert count node pointers into buffer cur before position to + 1.
123  * Insert count items into buffer cur before position to.
124  * Items and node pointers are specified by inserted and bh respectively.
125  */
126 static void internal_insert_childs(struct buffer_info *cur_bi,
127                                    int to, int count,
128                                    struct item_head *inserted,
129                                    struct buffer_head **bh)
130 {
131         struct buffer_head *cur = cur_bi->bi_bh;
132         struct block_head *blkh;
133         int nr;
134         struct reiserfs_key *ih;
135         struct disk_child new_dc[2];
136         struct disk_child *dc;
137         int i;
138
139         if (count <= 0)
140                 return;
141
142         blkh = B_BLK_HEAD(cur);
143         nr = blkh_nr_item(blkh);
144
145         RFALSE(count > 2, "too many children (%d) are to be inserted", count);
146         RFALSE(B_FREE_SPACE(cur) < count * (KEY_SIZE + DC_SIZE),
147                "no enough free space (%d), needed %d bytes",
148                B_FREE_SPACE(cur), count * (KEY_SIZE + DC_SIZE));
149
150         /* prepare space for count disk_child */
151         dc = B_N_CHILD(cur, to + 1);
152
153         memmove(dc + count, dc, (nr + 1 - (to + 1)) * DC_SIZE);
154
155         /* copy to_be_insert disk children */
156         for (i = 0; i < count; i++) {
157                 put_dc_size(&new_dc[i],
158                             MAX_CHILD_SIZE(bh[i]) - B_FREE_SPACE(bh[i]));
159                 put_dc_block_number(&new_dc[i], bh[i]->b_blocknr);
160         }
161         memcpy(dc, new_dc, DC_SIZE * count);
162
163         /* prepare space for count items  */
164         ih = internal_key(cur, ((to == -1) ? 0 : to));
165
166         memmove(ih + count, ih,
167                 (nr - to) * KEY_SIZE + (nr + 1 + count) * DC_SIZE);
168
169         /* copy item headers (keys) */
170         memcpy(ih, inserted, KEY_SIZE);
171         if (count > 1)
172                 memcpy(ih + 1, inserted + 1, KEY_SIZE);
173
174         /* sizes, item number */
175         set_blkh_nr_item(blkh, blkh_nr_item(blkh) + count);
176         set_blkh_free_space(blkh,
177                             blkh_free_space(blkh) - count * (DC_SIZE +
178                                                              KEY_SIZE));
179
180         do_balance_mark_internal_dirty(cur_bi->tb, cur, 0);
181
182         /*&&&&&&&&&&&&&&&&&&&&&&&& */
183         check_internal(cur);
184         /*&&&&&&&&&&&&&&&&&&&&&&&& */
185
186         if (cur_bi->bi_parent) {
187                 struct disk_child *t_dc =
188                     B_N_CHILD(cur_bi->bi_parent, cur_bi->bi_position);
189                 put_dc_size(t_dc,
190                             dc_size(t_dc) + (count * (DC_SIZE + KEY_SIZE)));
191                 do_balance_mark_internal_dirty(cur_bi->tb, cur_bi->bi_parent,
192                                                0);
193
194                 /*&&&&&&&&&&&&&&&&&&&&&&&& */
195                 check_internal(cur_bi->bi_parent);
196                 /*&&&&&&&&&&&&&&&&&&&&&&&& */
197         }
198
199 }
200
201 /*
202  * Delete del_num items and node pointers from buffer cur starting from
203  * the first_i'th item and first_p'th pointers respectively.
204  */
205 static void internal_delete_pointers_items(struct buffer_info *cur_bi,
206                                            int first_p,
207                                            int first_i, int del_num)
208 {
209         struct buffer_head *cur = cur_bi->bi_bh;
210         int nr;
211         struct block_head *blkh;
212         struct reiserfs_key *key;
213         struct disk_child *dc;
214
215         RFALSE(cur == NULL, "buffer is 0");
216         RFALSE(del_num < 0,
217                "negative number of items (%d) can not be deleted", del_num);
218         RFALSE(first_p < 0 || first_p + del_num > B_NR_ITEMS(cur) + 1
219                || first_i < 0,
220                "first pointer order (%d) < 0 or "
221                "no so many pointers (%d), only (%d) or "
222                "first key order %d < 0", first_p, first_p + del_num,
223                B_NR_ITEMS(cur) + 1, first_i);
224         if (del_num == 0)
225                 return;
226
227         blkh = B_BLK_HEAD(cur);
228         nr = blkh_nr_item(blkh);
229
230         if (first_p == 0 && del_num == nr + 1) {
231                 RFALSE(first_i != 0,
232                        "1st deleted key must have order 0, not %d", first_i);
233                 make_empty_node(cur_bi);
234                 return;
235         }
236
237         RFALSE(first_i + del_num > B_NR_ITEMS(cur),
238                "first_i = %d del_num = %d "
239                "no so many keys (%d) in the node (%b)(%z)",
240                first_i, del_num, first_i + del_num, cur, cur);
241
242         /* deleting */
243         dc = B_N_CHILD(cur, first_p);
244
245         memmove(dc, dc + del_num, (nr + 1 - first_p - del_num) * DC_SIZE);
246         key = internal_key(cur, first_i);
247         memmove(key, key + del_num,
248                 (nr - first_i - del_num) * KEY_SIZE + (nr + 1 -
249                                                        del_num) * DC_SIZE);
250
251         /* sizes, item number */
252         set_blkh_nr_item(blkh, blkh_nr_item(blkh) - del_num);
253         set_blkh_free_space(blkh,
254                             blkh_free_space(blkh) +
255                             (del_num * (KEY_SIZE + DC_SIZE)));
256
257         do_balance_mark_internal_dirty(cur_bi->tb, cur, 0);
258         /*&&&&&&&&&&&&&&&&&&&&&&& */
259         check_internal(cur);
260         /*&&&&&&&&&&&&&&&&&&&&&&& */
261
262         if (cur_bi->bi_parent) {
263                 struct disk_child *t_dc;
264                 t_dc = B_N_CHILD(cur_bi->bi_parent, cur_bi->bi_position);
265                 put_dc_size(t_dc,
266                             dc_size(t_dc) - (del_num * (KEY_SIZE + DC_SIZE)));
267
268                 do_balance_mark_internal_dirty(cur_bi->tb, cur_bi->bi_parent,
269                                                0);
270                 /*&&&&&&&&&&&&&&&&&&&&&&&& */
271                 check_internal(cur_bi->bi_parent);
272                 /*&&&&&&&&&&&&&&&&&&&&&&&& */
273         }
274 }
275
276 /* delete n node pointers and items starting from given position */
277 static void internal_delete_childs(struct buffer_info *cur_bi, int from, int n)
278 {
279         int i_from;
280
281         i_from = (from == 0) ? from : from - 1;
282
283         /*
284          * delete n pointers starting from `from' position in CUR;
285          * delete n keys starting from 'i_from' position in CUR;
286          */
287         internal_delete_pointers_items(cur_bi, from, i_from, n);
288 }
289
290 /*
291  * copy cpy_num node pointers and cpy_num - 1 items from buffer src to buffer
292  * dest
293  * last_first == FIRST_TO_LAST means that we copy first items
294  *                             from src to tail of dest
295  * last_first == LAST_TO_FIRST means that we copy last items
296  *                             from src to head of dest
297  */
298 static void internal_copy_pointers_items(struct buffer_info *dest_bi,
299                                          struct buffer_head *src,
300                                          int last_first, int cpy_num)
301 {
302         /*
303          * ATTENTION! Number of node pointers in DEST is equal to number
304          * of items in DEST  as delimiting key have already inserted to
305          * buffer dest.
306          */
307         struct buffer_head *dest = dest_bi->bi_bh;
308         int nr_dest, nr_src;
309         int dest_order, src_order;
310         struct block_head *blkh;
311         struct reiserfs_key *key;
312         struct disk_child *dc;
313
314         nr_src = B_NR_ITEMS(src);
315
316         RFALSE(dest == NULL || src == NULL,
317                "src (%p) or dest (%p) buffer is 0", src, dest);
318         RFALSE(last_first != FIRST_TO_LAST && last_first != LAST_TO_FIRST,
319                "invalid last_first parameter (%d)", last_first);
320         RFALSE(nr_src < cpy_num - 1,
321                "no so many items (%d) in src (%d)", cpy_num, nr_src);
322         RFALSE(cpy_num < 0, "cpy_num less than 0 (%d)", cpy_num);
323         RFALSE(cpy_num - 1 + B_NR_ITEMS(dest) > (int)MAX_NR_KEY(dest),
324                "cpy_num (%d) + item number in dest (%d) can not be > MAX_NR_KEY(%d)",
325                cpy_num, B_NR_ITEMS(dest), MAX_NR_KEY(dest));
326
327         if (cpy_num == 0)
328                 return;
329
330         /* coping */
331         blkh = B_BLK_HEAD(dest);
332         nr_dest = blkh_nr_item(blkh);
333
334         /*dest_order = (last_first == LAST_TO_FIRST) ? 0 : nr_dest; */
335         /*src_order = (last_first == LAST_TO_FIRST) ? (nr_src - cpy_num + 1) : 0; */
336         (last_first == LAST_TO_FIRST) ? (dest_order = 0, src_order =
337                                          nr_src - cpy_num + 1) : (dest_order =
338                                                                   nr_dest,
339                                                                   src_order =
340                                                                   0);
341
342         /* prepare space for cpy_num pointers */
343         dc = B_N_CHILD(dest, dest_order);
344
345         memmove(dc + cpy_num, dc, (nr_dest - dest_order) * DC_SIZE);
346
347         /* insert pointers */
348         memcpy(dc, B_N_CHILD(src, src_order), DC_SIZE * cpy_num);
349
350         /* prepare space for cpy_num - 1 item headers */
351         key = internal_key(dest, dest_order);
352         memmove(key + cpy_num - 1, key,
353                 KEY_SIZE * (nr_dest - dest_order) + DC_SIZE * (nr_dest +
354                                                                cpy_num));
355
356         /* insert headers */
357         memcpy(key, internal_key(src, src_order), KEY_SIZE * (cpy_num - 1));
358
359         /* sizes, item number */
360         set_blkh_nr_item(blkh, blkh_nr_item(blkh) + (cpy_num - 1));
361         set_blkh_free_space(blkh,
362                             blkh_free_space(blkh) - (KEY_SIZE * (cpy_num - 1) +
363                                                      DC_SIZE * cpy_num));
364
365         do_balance_mark_internal_dirty(dest_bi->tb, dest, 0);
366
367         /*&&&&&&&&&&&&&&&&&&&&&&&& */
368         check_internal(dest);
369         /*&&&&&&&&&&&&&&&&&&&&&&&& */
370
371         if (dest_bi->bi_parent) {
372                 struct disk_child *t_dc;
373                 t_dc = B_N_CHILD(dest_bi->bi_parent, dest_bi->bi_position);
374                 put_dc_size(t_dc,
375                             dc_size(t_dc) + (KEY_SIZE * (cpy_num - 1) +
376                                              DC_SIZE * cpy_num));
377
378                 do_balance_mark_internal_dirty(dest_bi->tb, dest_bi->bi_parent,
379                                                0);
380                 /*&&&&&&&&&&&&&&&&&&&&&&&& */
381                 check_internal(dest_bi->bi_parent);
382                 /*&&&&&&&&&&&&&&&&&&&&&&&& */
383         }
384
385 }
386
387 /*
388  * Copy cpy_num node pointers and cpy_num - 1 items from buffer src to
389  * buffer dest.
390  * Delete cpy_num - del_par items and node pointers from buffer src.
391  * last_first == FIRST_TO_LAST means, that we copy/delete first items from src.
392  * last_first == LAST_TO_FIRST means, that we copy/delete last items from src.
393  */
394 static void internal_move_pointers_items(struct buffer_info *dest_bi,
395                                          struct buffer_info *src_bi,
396                                          int last_first, int cpy_num,
397                                          int del_par)
398 {
399         int first_pointer;
400         int first_item;
401
402         internal_copy_pointers_items(dest_bi, src_bi->bi_bh, last_first,
403                                      cpy_num);
404
405         if (last_first == FIRST_TO_LAST) {      /* shift_left occurs */
406                 first_pointer = 0;
407                 first_item = 0;
408                 /*
409                  * delete cpy_num - del_par pointers and keys starting for
410                  * pointers with first_pointer, for key - with first_item
411                  */
412                 internal_delete_pointers_items(src_bi, first_pointer,
413                                                first_item, cpy_num - del_par);
414         } else {                /* shift_right occurs */
415                 int i, j;
416
417                 i = (cpy_num - del_par ==
418                      (j =
419                       B_NR_ITEMS(src_bi->bi_bh)) + 1) ? 0 : j - cpy_num +
420                     del_par;
421
422                 internal_delete_pointers_items(src_bi,
423                                                j + 1 - cpy_num + del_par, i,
424                                                cpy_num - del_par);
425         }
426 }
427
428 /* Insert n_src'th key of buffer src before n_dest'th key of buffer dest. */
429 static void internal_insert_key(struct buffer_info *dest_bi,
430                                 /* insert key before key with n_dest number */
431                                 int dest_position_before,
432                                 struct buffer_head *src, int src_position)
433 {
434         struct buffer_head *dest = dest_bi->bi_bh;
435         int nr;
436         struct block_head *blkh;
437         struct reiserfs_key *key;
438
439         RFALSE(dest == NULL || src == NULL,
440                "source(%p) or dest(%p) buffer is 0", src, dest);
441         RFALSE(dest_position_before < 0 || src_position < 0,
442                "source(%d) or dest(%d) key number less than 0",
443                src_position, dest_position_before);
444         RFALSE(dest_position_before > B_NR_ITEMS(dest) ||
445                src_position >= B_NR_ITEMS(src),
446                "invalid position in dest (%d (key number %d)) or in src (%d (key number %d))",
447                dest_position_before, B_NR_ITEMS(dest),
448                src_position, B_NR_ITEMS(src));
449         RFALSE(B_FREE_SPACE(dest) < KEY_SIZE,
450                "no enough free space (%d) in dest buffer", B_FREE_SPACE(dest));
451
452         blkh = B_BLK_HEAD(dest);
453         nr = blkh_nr_item(blkh);
454
455         /* prepare space for inserting key */
456         key = internal_key(dest, dest_position_before);
457         memmove(key + 1, key,
458                 (nr - dest_position_before) * KEY_SIZE + (nr + 1) * DC_SIZE);
459
460         /* insert key */
461         memcpy(key, internal_key(src, src_position), KEY_SIZE);
462
463         /* Change dirt, free space, item number fields. */
464
465         set_blkh_nr_item(blkh, blkh_nr_item(blkh) + 1);
466         set_blkh_free_space(blkh, blkh_free_space(blkh) - KEY_SIZE);
467
468         do_balance_mark_internal_dirty(dest_bi->tb, dest, 0);
469
470         if (dest_bi->bi_parent) {
471                 struct disk_child *t_dc;
472                 t_dc = B_N_CHILD(dest_bi->bi_parent, dest_bi->bi_position);
473                 put_dc_size(t_dc, dc_size(t_dc) + KEY_SIZE);
474
475                 do_balance_mark_internal_dirty(dest_bi->tb, dest_bi->bi_parent,
476                                                0);
477         }
478 }
479
480 /*
481  * Insert d_key'th (delimiting) key from buffer cfl to tail of dest.
482  * Copy pointer_amount node pointers and pointer_amount - 1 items from
483  * buffer src to buffer dest.
484  * Replace  d_key'th key in buffer cfl.
485  * Delete pointer_amount items and node pointers from buffer src.
486  */
487 /* this can be invoked both to shift from S to L and from R to S */
488 static void internal_shift_left(
489                                 /*
490                                  * INTERNAL_FROM_S_TO_L | INTERNAL_FROM_R_TO_S
491                                  */
492                                 int mode,
493                                 struct tree_balance *tb,
494                                 int h, int pointer_amount)
495 {
496         struct buffer_info dest_bi, src_bi;
497         struct buffer_head *cf;
498         int d_key_position;
499
500         internal_define_dest_src_infos(mode, tb, h, &dest_bi, &src_bi,
501                                        &d_key_position, &cf);
502
503         /*printk("pointer_amount = %d\n",pointer_amount); */
504
505         if (pointer_amount) {
506                 /*
507                  * insert delimiting key from common father of dest and
508                  * src to node dest into position B_NR_ITEM(dest)
509                  */
510                 internal_insert_key(&dest_bi, B_NR_ITEMS(dest_bi.bi_bh), cf,
511                                     d_key_position);
512
513                 if (B_NR_ITEMS(src_bi.bi_bh) == pointer_amount - 1) {
514                         if (src_bi.bi_position /*src->b_item_order */  == 0)
515                                 replace_key(tb, cf, d_key_position,
516                                             src_bi.
517                                             bi_parent /*src->b_parent */ , 0);
518                 } else
519                         replace_key(tb, cf, d_key_position, src_bi.bi_bh,
520                                     pointer_amount - 1);
521         }
522         /* last parameter is del_parameter */
523         internal_move_pointers_items(&dest_bi, &src_bi, FIRST_TO_LAST,
524                                      pointer_amount, 0);
525
526 }
527
528 /*
529  * Insert delimiting key to L[h].
530  * Copy n node pointers and n - 1 items from buffer S[h] to L[h].
531  * Delete n - 1 items and node pointers from buffer S[h].
532  */
533 /* it always shifts from S[h] to L[h] */
534 static void internal_shift1_left(struct tree_balance *tb,
535                                  int h, int pointer_amount)
536 {
537         struct buffer_info dest_bi, src_bi;
538         struct buffer_head *cf;
539         int d_key_position;
540
541         internal_define_dest_src_infos(INTERNAL_SHIFT_FROM_S_TO_L, tb, h,
542                                        &dest_bi, &src_bi, &d_key_position, &cf);
543
544         /* insert lkey[h]-th key  from CFL[h] to left neighbor L[h] */
545         if (pointer_amount > 0)
546                 internal_insert_key(&dest_bi, B_NR_ITEMS(dest_bi.bi_bh), cf,
547                                     d_key_position);
548
549         /* last parameter is del_parameter */
550         internal_move_pointers_items(&dest_bi, &src_bi, FIRST_TO_LAST,
551                                      pointer_amount, 1);
552 }
553
554 /*
555  * Insert d_key'th (delimiting) key from buffer cfr to head of dest.
556  * Copy n node pointers and n - 1 items from buffer src to buffer dest.
557  * Replace  d_key'th key in buffer cfr.
558  * Delete n items and node pointers from buffer src.
559  */
560 static void internal_shift_right(
561                                  /*
562                                   * INTERNAL_FROM_S_TO_R | INTERNAL_FROM_L_TO_S
563                                   */
564                                  int mode,
565                                  struct tree_balance *tb,
566                                  int h, int pointer_amount)
567 {
568         struct buffer_info dest_bi, src_bi;
569         struct buffer_head *cf;
570         int d_key_position;
571         int nr;
572
573         internal_define_dest_src_infos(mode, tb, h, &dest_bi, &src_bi,
574                                        &d_key_position, &cf);
575
576         nr = B_NR_ITEMS(src_bi.bi_bh);
577
578         if (pointer_amount > 0) {
579                 /*
580                  * insert delimiting key from common father of dest
581                  * and src to dest node into position 0
582                  */
583                 internal_insert_key(&dest_bi, 0, cf, d_key_position);
584                 if (nr == pointer_amount - 1) {
585                         RFALSE(src_bi.bi_bh != PATH_H_PBUFFER(tb->tb_path, h) /*tb->S[h] */ ||
586                                dest_bi.bi_bh != tb->R[h],
587                                "src (%p) must be == tb->S[h](%p) when it disappears",
588                                src_bi.bi_bh, PATH_H_PBUFFER(tb->tb_path, h));
589                         /* when S[h] disappers replace left delemiting key as well */
590                         if (tb->CFL[h])
591                                 replace_key(tb, cf, d_key_position, tb->CFL[h],
592                                             tb->lkey[h]);
593                 } else
594                         replace_key(tb, cf, d_key_position, src_bi.bi_bh,
595                                     nr - pointer_amount);
596         }
597
598         /* last parameter is del_parameter */
599         internal_move_pointers_items(&dest_bi, &src_bi, LAST_TO_FIRST,
600                                      pointer_amount, 0);
601 }
602
603 /*
604  * Insert delimiting key to R[h].
605  * Copy n node pointers and n - 1 items from buffer S[h] to R[h].
606  * Delete n - 1 items and node pointers from buffer S[h].
607  */
608 /* it always shift from S[h] to R[h] */
609 static void internal_shift1_right(struct tree_balance *tb,
610                                   int h, int pointer_amount)
611 {
612         struct buffer_info dest_bi, src_bi;
613         struct buffer_head *cf;
614         int d_key_position;
615
616         internal_define_dest_src_infos(INTERNAL_SHIFT_FROM_S_TO_R, tb, h,
617                                        &dest_bi, &src_bi, &d_key_position, &cf);
618
619         /* insert rkey from CFR[h] to right neighbor R[h] */
620         if (pointer_amount > 0)
621                 internal_insert_key(&dest_bi, 0, cf, d_key_position);
622
623         /* last parameter is del_parameter */
624         internal_move_pointers_items(&dest_bi, &src_bi, LAST_TO_FIRST,
625                                      pointer_amount, 1);
626 }
627
628 /*
629  * Delete insert_num node pointers together with their left items
630  * and balance current node.
631  */
632 static void balance_internal_when_delete(struct tree_balance *tb,
633                                          int h, int child_pos)
634 {
635         int insert_num;
636         int n;
637         struct buffer_head *tbSh = PATH_H_PBUFFER(tb->tb_path, h);
638         struct buffer_info bi;
639
640         insert_num = tb->insert_size[h] / ((int)(DC_SIZE + KEY_SIZE));
641
642         /* delete child-node-pointer(s) together with their left item(s) */
643         bi.tb = tb;
644         bi.bi_bh = tbSh;
645         bi.bi_parent = PATH_H_PPARENT(tb->tb_path, h);
646         bi.bi_position = PATH_H_POSITION(tb->tb_path, h + 1);
647
648         internal_delete_childs(&bi, child_pos, -insert_num);
649
650         RFALSE(tb->blknum[h] > 1,
651                "tb->blknum[%d]=%d when insert_size < 0", h, tb->blknum[h]);
652
653         n = B_NR_ITEMS(tbSh);
654
655         if (tb->lnum[h] == 0 && tb->rnum[h] == 0) {
656                 if (tb->blknum[h] == 0) {
657                         /* node S[h] (root of the tree) is empty now */
658                         struct buffer_head *new_root;
659
660                         RFALSE(n
661                                || B_FREE_SPACE(tbSh) !=
662                                MAX_CHILD_SIZE(tbSh) - DC_SIZE,
663                                "buffer must have only 0 keys (%d)", n);
664                         RFALSE(bi.bi_parent, "root has parent (%p)",
665                                bi.bi_parent);
666
667                         /* choose a new root */
668                         if (!tb->L[h - 1] || !B_NR_ITEMS(tb->L[h - 1]))
669                                 new_root = tb->R[h - 1];
670                         else
671                                 new_root = tb->L[h - 1];
672                         /*
673                          * switch super block's tree root block
674                          * number to the new value */
675                         PUT_SB_ROOT_BLOCK(tb->tb_sb, new_root->b_blocknr);
676                         /*REISERFS_SB(tb->tb_sb)->s_rs->s_tree_height --; */
677                         PUT_SB_TREE_HEIGHT(tb->tb_sb,
678                                            SB_TREE_HEIGHT(tb->tb_sb) - 1);
679
680                         do_balance_mark_sb_dirty(tb,
681                                                  REISERFS_SB(tb->tb_sb)->s_sbh,
682                                                  1);
683                         /*&&&&&&&&&&&&&&&&&&&&&& */
684                         /* use check_internal if new root is an internal node */
685                         if (h > 1)
686                                 check_internal(new_root);
687                         /*&&&&&&&&&&&&&&&&&&&&&& */
688
689                         /* do what is needed for buffer thrown from tree */
690                         reiserfs_invalidate_buffer(tb, tbSh);
691                         return;
692                 }
693                 return;
694         }
695
696         /* join S[h] with L[h] */
697         if (tb->L[h] && tb->lnum[h] == -B_NR_ITEMS(tb->L[h]) - 1) {
698
699                 RFALSE(tb->rnum[h] != 0,
700                        "invalid tb->rnum[%d]==%d when joining S[h] with L[h]",
701                        h, tb->rnum[h]);
702
703                 internal_shift_left(INTERNAL_SHIFT_FROM_S_TO_L, tb, h, n + 1);
704                 reiserfs_invalidate_buffer(tb, tbSh);
705
706                 return;
707         }
708
709         /* join S[h] with R[h] */
710         if (tb->R[h] && tb->rnum[h] == -B_NR_ITEMS(tb->R[h]) - 1) {
711                 RFALSE(tb->lnum[h] != 0,
712                        "invalid tb->lnum[%d]==%d when joining S[h] with R[h]",
713                        h, tb->lnum[h]);
714
715                 internal_shift_right(INTERNAL_SHIFT_FROM_S_TO_R, tb, h, n + 1);
716
717                 reiserfs_invalidate_buffer(tb, tbSh);
718                 return;
719         }
720
721         /* borrow from left neighbor L[h] */
722         if (tb->lnum[h] < 0) {
723                 RFALSE(tb->rnum[h] != 0,
724                        "wrong tb->rnum[%d]==%d when borrow from L[h]", h,
725                        tb->rnum[h]);
726                 internal_shift_right(INTERNAL_SHIFT_FROM_L_TO_S, tb, h,
727                                      -tb->lnum[h]);
728                 return;
729         }
730
731         /* borrow from right neighbor R[h] */
732         if (tb->rnum[h] < 0) {
733                 RFALSE(tb->lnum[h] != 0,
734                        "invalid tb->lnum[%d]==%d when borrow from R[h]",
735                        h, tb->lnum[h]);
736                 internal_shift_left(INTERNAL_SHIFT_FROM_R_TO_S, tb, h, -tb->rnum[h]);   /*tb->S[h], tb->CFR[h], tb->rkey[h], tb->R[h], -tb->rnum[h]); */
737                 return;
738         }
739
740         /* split S[h] into two parts and put them into neighbors */
741         if (tb->lnum[h] > 0) {
742                 RFALSE(tb->rnum[h] == 0 || tb->lnum[h] + tb->rnum[h] != n + 1,
743                        "invalid tb->lnum[%d]==%d or tb->rnum[%d]==%d when S[h](item number == %d) is split between them",
744                        h, tb->lnum[h], h, tb->rnum[h], n);
745
746                 internal_shift_left(INTERNAL_SHIFT_FROM_S_TO_L, tb, h, tb->lnum[h]);    /*tb->L[h], tb->CFL[h], tb->lkey[h], tb->S[h], tb->lnum[h]); */
747                 internal_shift_right(INTERNAL_SHIFT_FROM_S_TO_R, tb, h,
748                                      tb->rnum[h]);
749
750                 reiserfs_invalidate_buffer(tb, tbSh);
751
752                 return;
753         }
754         reiserfs_panic(tb->tb_sb, "ibalance-2",
755                        "unexpected tb->lnum[%d]==%d or tb->rnum[%d]==%d",
756                        h, tb->lnum[h], h, tb->rnum[h]);
757 }
758
759 /* Replace delimiting key of buffers L[h] and S[h] by the given key.*/
760 static void replace_lkey(struct tree_balance *tb, int h, struct item_head *key)
761 {
762         RFALSE(tb->L[h] == NULL || tb->CFL[h] == NULL,
763                "L[h](%p) and CFL[h](%p) must exist in replace_lkey",
764                tb->L[h], tb->CFL[h]);
765
766         if (B_NR_ITEMS(PATH_H_PBUFFER(tb->tb_path, h)) == 0)
767                 return;
768
769         memcpy(internal_key(tb->CFL[h], tb->lkey[h]), key, KEY_SIZE);
770
771         do_balance_mark_internal_dirty(tb, tb->CFL[h], 0);
772 }
773
774 /* Replace delimiting key of buffers S[h] and R[h] by the given key.*/
775 static void replace_rkey(struct tree_balance *tb, int h, struct item_head *key)
776 {
777         RFALSE(tb->R[h] == NULL || tb->CFR[h] == NULL,
778                "R[h](%p) and CFR[h](%p) must exist in replace_rkey",
779                tb->R[h], tb->CFR[h]);
780         RFALSE(B_NR_ITEMS(tb->R[h]) == 0,
781                "R[h] can not be empty if it exists (item number=%d)",
782                B_NR_ITEMS(tb->R[h]));
783
784         memcpy(internal_key(tb->CFR[h], tb->rkey[h]), key, KEY_SIZE);
785
786         do_balance_mark_internal_dirty(tb, tb->CFR[h], 0);
787 }
788
789
790 /*
791  * if inserting/pasting {
792  *   child_pos is the position of the node-pointer in S[h] that
793  *   pointed to S[h-1] before balancing of the h-1 level;
794  *   this means that new pointers and items must be inserted AFTER
795  *   child_pos
796  * } else {
797  *   it is the position of the leftmost pointer that must be deleted
798  *   (together with its corresponding key to the left of the pointer)
799  *   as a result of the previous level's balancing.
800  * }
801  */
802
803 int balance_internal(struct tree_balance *tb,
804                      int h,     /* level of the tree */
805                      int child_pos,
806                      /* key for insertion on higher level    */
807                      struct item_head *insert_key,
808                      /* node for insertion on higher level */
809                      struct buffer_head **insert_ptr)
810 {
811         struct buffer_head *tbSh = PATH_H_PBUFFER(tb->tb_path, h);
812         struct buffer_info bi;
813
814         /*
815          * we return this: it is 0 if there is no S[h],
816          * else it is tb->S[h]->b_item_order
817          */
818         int order;
819         int insert_num, n, k;
820         struct buffer_head *S_new;
821         struct item_head new_insert_key;
822         struct buffer_head *new_insert_ptr = NULL;
823         struct item_head *new_insert_key_addr = insert_key;
824
825         RFALSE(h < 1, "h (%d) can not be < 1 on internal level", h);
826
827         PROC_INFO_INC(tb->tb_sb, balance_at[h]);
828
829         order =
830             (tbSh) ? PATH_H_POSITION(tb->tb_path,
831                                      h + 1) /*tb->S[h]->b_item_order */ : 0;
832
833         /*
834          * Using insert_size[h] calculate the number insert_num of items
835          * that must be inserted to or deleted from S[h].
836          */
837         insert_num = tb->insert_size[h] / ((int)(KEY_SIZE + DC_SIZE));
838
839         /* Check whether insert_num is proper * */
840         RFALSE(insert_num < -2 || insert_num > 2,
841                "incorrect number of items inserted to the internal node (%d)",
842                insert_num);
843         RFALSE(h > 1 && (insert_num > 1 || insert_num < -1),
844                "incorrect number of items (%d) inserted to the internal node on a level (h=%d) higher than last internal level",
845                insert_num, h);
846
847         /* Make balance in case insert_num < 0 */
848         if (insert_num < 0) {
849                 balance_internal_when_delete(tb, h, child_pos);
850                 return order;
851         }
852
853         k = 0;
854         if (tb->lnum[h] > 0) {
855                 /*
856                  * shift lnum[h] items from S[h] to the left neighbor L[h].
857                  * check how many of new items fall into L[h] or CFL[h] after
858                  * shifting
859                  */
860                 n = B_NR_ITEMS(tb->L[h]);       /* number of items in L[h] */
861                 if (tb->lnum[h] <= child_pos) {
862                         /* new items don't fall into L[h] or CFL[h] */
863                         internal_shift_left(INTERNAL_SHIFT_FROM_S_TO_L, tb, h,
864                                             tb->lnum[h]);
865                         child_pos -= tb->lnum[h];
866                 } else if (tb->lnum[h] > child_pos + insert_num) {
867                         /* all new items fall into L[h] */
868                         internal_shift_left(INTERNAL_SHIFT_FROM_S_TO_L, tb, h,
869                                             tb->lnum[h] - insert_num);
870                         /* insert insert_num keys and node-pointers into L[h] */
871                         bi.tb = tb;
872                         bi.bi_bh = tb->L[h];
873                         bi.bi_parent = tb->FL[h];
874                         bi.bi_position = get_left_neighbor_position(tb, h);
875                         internal_insert_childs(&bi,
876                                                /*tb->L[h], tb->S[h-1]->b_next */
877                                                n + child_pos + 1,
878                                                insert_num, insert_key,
879                                                insert_ptr);
880
881                         insert_num = 0;
882                 } else {
883                         struct disk_child *dc;
884
885                         /*
886                          * some items fall into L[h] or CFL[h],
887                          * but some don't fall
888                          */
889                         internal_shift1_left(tb, h, child_pos + 1);
890                         /* calculate number of new items that fall into L[h] */
891                         k = tb->lnum[h] - child_pos - 1;
892                         bi.tb = tb;
893                         bi.bi_bh = tb->L[h];
894                         bi.bi_parent = tb->FL[h];
895                         bi.bi_position = get_left_neighbor_position(tb, h);
896                         internal_insert_childs(&bi,
897                                                /*tb->L[h], tb->S[h-1]->b_next, */
898                                                n + child_pos + 1, k,
899                                                insert_key, insert_ptr);
900
901                         replace_lkey(tb, h, insert_key + k);
902
903                         /*
904                          * replace the first node-ptr in S[h] by
905                          * node-ptr to insert_ptr[k]
906                          */
907                         dc = B_N_CHILD(tbSh, 0);
908                         put_dc_size(dc,
909                                     MAX_CHILD_SIZE(insert_ptr[k]) -
910                                     B_FREE_SPACE(insert_ptr[k]));
911                         put_dc_block_number(dc, insert_ptr[k]->b_blocknr);
912
913                         do_balance_mark_internal_dirty(tb, tbSh, 0);
914
915                         k++;
916                         insert_key += k;
917                         insert_ptr += k;
918                         insert_num -= k;
919                         child_pos = 0;
920                 }
921         }
922         /* tb->lnum[h] > 0 */
923         if (tb->rnum[h] > 0) {
924                 /*shift rnum[h] items from S[h] to the right neighbor R[h] */
925                 /*
926                  * check how many of new items fall into R or CFR
927                  * after shifting
928                  */
929                 n = B_NR_ITEMS(tbSh);   /* number of items in S[h] */
930                 if (n - tb->rnum[h] >= child_pos)
931                         /* new items fall into S[h] */
932                         internal_shift_right(INTERNAL_SHIFT_FROM_S_TO_R, tb, h,
933                                              tb->rnum[h]);
934                 else if (n + insert_num - tb->rnum[h] < child_pos) {
935                         /* all new items fall into R[h] */
936                         internal_shift_right(INTERNAL_SHIFT_FROM_S_TO_R, tb, h,
937                                              tb->rnum[h] - insert_num);
938
939                         /* insert insert_num keys and node-pointers into R[h] */
940                         bi.tb = tb;
941                         bi.bi_bh = tb->R[h];
942                         bi.bi_parent = tb->FR[h];
943                         bi.bi_position = get_right_neighbor_position(tb, h);
944                         internal_insert_childs(&bi,
945                                                /*tb->R[h],tb->S[h-1]->b_next */
946                                                child_pos - n - insert_num +
947                                                tb->rnum[h] - 1,
948                                                insert_num, insert_key,
949                                                insert_ptr);
950                         insert_num = 0;
951                 } else {
952                         struct disk_child *dc;
953
954                         /* one of the items falls into CFR[h] */
955                         internal_shift1_right(tb, h, n - child_pos + 1);
956                         /* calculate number of new items that fall into R[h] */
957                         k = tb->rnum[h] - n + child_pos - 1;
958                         bi.tb = tb;
959                         bi.bi_bh = tb->R[h];
960                         bi.bi_parent = tb->FR[h];
961                         bi.bi_position = get_right_neighbor_position(tb, h);
962                         internal_insert_childs(&bi,
963                                                /*tb->R[h], tb->R[h]->b_child, */
964                                                0, k, insert_key + 1,
965                                                insert_ptr + 1);
966
967                         replace_rkey(tb, h, insert_key + insert_num - k - 1);
968
969                         /*
970                          * replace the first node-ptr in R[h] by
971                          * node-ptr insert_ptr[insert_num-k-1]
972                          */
973                         dc = B_N_CHILD(tb->R[h], 0);
974                         put_dc_size(dc,
975                                     MAX_CHILD_SIZE(insert_ptr
976                                                    [insert_num - k - 1]) -
977                                     B_FREE_SPACE(insert_ptr
978                                                  [insert_num - k - 1]));
979                         put_dc_block_number(dc,
980                                             insert_ptr[insert_num - k -
981                                                        1]->b_blocknr);
982
983                         do_balance_mark_internal_dirty(tb, tb->R[h], 0);
984
985                         insert_num -= (k + 1);
986                 }
987         }
988
989         /** Fill new node that appears instead of S[h] **/
990         RFALSE(tb->blknum[h] > 2, "blknum can not be > 2 for internal level");
991         RFALSE(tb->blknum[h] < 0, "blknum can not be < 0");
992
993         if (!tb->blknum[h]) {   /* node S[h] is empty now */
994                 RFALSE(!tbSh, "S[h] is equal NULL");
995
996                 /* do what is needed for buffer thrown from tree */
997                 reiserfs_invalidate_buffer(tb, tbSh);
998                 return order;
999         }
1000
1001         if (!tbSh) {
1002                 /* create new root */
1003                 struct disk_child *dc;
1004                 struct buffer_head *tbSh_1 = PATH_H_PBUFFER(tb->tb_path, h - 1);
1005                 struct block_head *blkh;
1006
1007                 if (tb->blknum[h] != 1)
1008                         reiserfs_panic(NULL, "ibalance-3", "One new node "
1009                                        "required for creating the new root");
1010                 /* S[h] = empty buffer from the list FEB. */
1011                 tbSh = get_FEB(tb);
1012                 blkh = B_BLK_HEAD(tbSh);
1013                 set_blkh_level(blkh, h + 1);
1014
1015                 /* Put the unique node-pointer to S[h] that points to S[h-1]. */
1016
1017                 dc = B_N_CHILD(tbSh, 0);
1018                 put_dc_block_number(dc, tbSh_1->b_blocknr);
1019                 put_dc_size(dc,
1020                             (MAX_CHILD_SIZE(tbSh_1) - B_FREE_SPACE(tbSh_1)));
1021
1022                 tb->insert_size[h] -= DC_SIZE;
1023                 set_blkh_free_space(blkh, blkh_free_space(blkh) - DC_SIZE);
1024
1025                 do_balance_mark_internal_dirty(tb, tbSh, 0);
1026
1027                 /*&&&&&&&&&&&&&&&&&&&&&&&& */
1028                 check_internal(tbSh);
1029                 /*&&&&&&&&&&&&&&&&&&&&&&&& */
1030
1031                 /* put new root into path structure */
1032                 PATH_OFFSET_PBUFFER(tb->tb_path, ILLEGAL_PATH_ELEMENT_OFFSET) =
1033                     tbSh;
1034
1035                 /* Change root in structure super block. */
1036                 PUT_SB_ROOT_BLOCK(tb->tb_sb, tbSh->b_blocknr);
1037                 PUT_SB_TREE_HEIGHT(tb->tb_sb, SB_TREE_HEIGHT(tb->tb_sb) + 1);
1038                 do_balance_mark_sb_dirty(tb, REISERFS_SB(tb->tb_sb)->s_sbh, 1);
1039         }
1040
1041         if (tb->blknum[h] == 2) {
1042                 int snum;
1043                 struct buffer_info dest_bi, src_bi;
1044
1045                 /* S_new = free buffer from list FEB */
1046                 S_new = get_FEB(tb);
1047
1048                 set_blkh_level(B_BLK_HEAD(S_new), h + 1);
1049
1050                 dest_bi.tb = tb;
1051                 dest_bi.bi_bh = S_new;
1052                 dest_bi.bi_parent = NULL;
1053                 dest_bi.bi_position = 0;
1054                 src_bi.tb = tb;
1055                 src_bi.bi_bh = tbSh;
1056                 src_bi.bi_parent = PATH_H_PPARENT(tb->tb_path, h);
1057                 src_bi.bi_position = PATH_H_POSITION(tb->tb_path, h + 1);
1058
1059                 n = B_NR_ITEMS(tbSh);   /* number of items in S[h] */
1060                 snum = (insert_num + n + 1) / 2;
1061                 if (n - snum >= child_pos) {
1062                         /* new items don't fall into S_new */
1063                         /*  store the delimiting key for the next level */
1064                         /* new_insert_key = (n - snum)'th key in S[h] */
1065                         memcpy(&new_insert_key, internal_key(tbSh, n - snum),
1066                                KEY_SIZE);
1067                         /* last parameter is del_par */
1068                         internal_move_pointers_items(&dest_bi, &src_bi,
1069                                                      LAST_TO_FIRST, snum, 0);
1070                 } else if (n + insert_num - snum < child_pos) {
1071                         /* all new items fall into S_new */
1072                         /*  store the delimiting key for the next level */
1073                         /*
1074                          * new_insert_key = (n + insert_item - snum)'th
1075                          * key in S[h]
1076                          */
1077                         memcpy(&new_insert_key,
1078                                internal_key(tbSh, n + insert_num - snum),
1079                                KEY_SIZE);
1080                         /* last parameter is del_par */
1081                         internal_move_pointers_items(&dest_bi, &src_bi,
1082                                                      LAST_TO_FIRST,
1083                                                      snum - insert_num, 0);
1084
1085                         /*
1086                          * insert insert_num keys and node-pointers
1087                          * into S_new
1088                          */
1089                         internal_insert_childs(&dest_bi,
1090                                                /*S_new,tb->S[h-1]->b_next, */
1091                                                child_pos - n - insert_num +
1092                                                snum - 1,
1093                                                insert_num, insert_key,
1094                                                insert_ptr);
1095
1096                         insert_num = 0;
1097                 } else {
1098                         struct disk_child *dc;
1099
1100                         /* some items fall into S_new, but some don't fall */
1101                         /* last parameter is del_par */
1102                         internal_move_pointers_items(&dest_bi, &src_bi,
1103                                                      LAST_TO_FIRST,
1104                                                      n - child_pos + 1, 1);
1105                         /* calculate number of new items that fall into S_new */
1106                         k = snum - n + child_pos - 1;
1107
1108                         internal_insert_childs(&dest_bi, /*S_new, */ 0, k,
1109                                                insert_key + 1, insert_ptr + 1);
1110
1111                         /* new_insert_key = insert_key[insert_num - k - 1] */
1112                         memcpy(&new_insert_key, insert_key + insert_num - k - 1,
1113                                KEY_SIZE);
1114                         /*
1115                          * replace first node-ptr in S_new by node-ptr
1116                          * to insert_ptr[insert_num-k-1]
1117                          */
1118
1119                         dc = B_N_CHILD(S_new, 0);
1120                         put_dc_size(dc,
1121                                     (MAX_CHILD_SIZE
1122                                      (insert_ptr[insert_num - k - 1]) -
1123                                      B_FREE_SPACE(insert_ptr
1124                                                   [insert_num - k - 1])));
1125                         put_dc_block_number(dc,
1126                                             insert_ptr[insert_num - k -
1127                                                        1]->b_blocknr);
1128
1129                         do_balance_mark_internal_dirty(tb, S_new, 0);
1130
1131                         insert_num -= (k + 1);
1132                 }
1133                 /* new_insert_ptr = node_pointer to S_new */
1134                 new_insert_ptr = S_new;
1135
1136                 RFALSE(!buffer_journaled(S_new) || buffer_journal_dirty(S_new)
1137                        || buffer_dirty(S_new), "cm-00001: bad S_new (%b)",
1138                        S_new);
1139
1140                 /* S_new is released in unfix_nodes */
1141         }
1142
1143         n = B_NR_ITEMS(tbSh);   /*number of items in S[h] */
1144
1145         if (0 <= child_pos && child_pos <= n && insert_num > 0) {
1146                 bi.tb = tb;
1147                 bi.bi_bh = tbSh;
1148                 bi.bi_parent = PATH_H_PPARENT(tb->tb_path, h);
1149                 bi.bi_position = PATH_H_POSITION(tb->tb_path, h + 1);
1150                 internal_insert_childs(&bi,     /*tbSh, */
1151                                        /*          ( tb->S[h-1]->b_parent == tb->S[h] ) ? tb->S[h-1]->b_next :  tb->S[h]->b_child->b_next, */
1152                                        child_pos, insert_num, insert_key,
1153                                        insert_ptr);
1154         }
1155
1156         insert_ptr[0] = new_insert_ptr;
1157         if (new_insert_ptr)
1158                 memcpy(new_insert_key_addr, &new_insert_key, KEY_SIZE);
1159
1160         return order;
1161 }