mm: remove VM_DENYWRITE
[linux-2.6-microblaze.git] / fs / proc / task_mmu.c
1 // SPDX-License-Identifier: GPL-2.0
2 #include <linux/pagewalk.h>
3 #include <linux/vmacache.h>
4 #include <linux/hugetlb.h>
5 #include <linux/huge_mm.h>
6 #include <linux/mount.h>
7 #include <linux/seq_file.h>
8 #include <linux/highmem.h>
9 #include <linux/ptrace.h>
10 #include <linux/slab.h>
11 #include <linux/pagemap.h>
12 #include <linux/mempolicy.h>
13 #include <linux/rmap.h>
14 #include <linux/swap.h>
15 #include <linux/sched/mm.h>
16 #include <linux/swapops.h>
17 #include <linux/mmu_notifier.h>
18 #include <linux/page_idle.h>
19 #include <linux/shmem_fs.h>
20 #include <linux/uaccess.h>
21 #include <linux/pkeys.h>
22
23 #include <asm/elf.h>
24 #include <asm/tlb.h>
25 #include <asm/tlbflush.h>
26 #include "internal.h"
27
28 #define SEQ_PUT_DEC(str, val) \
29                 seq_put_decimal_ull_width(m, str, (val) << (PAGE_SHIFT-10), 8)
30 void task_mem(struct seq_file *m, struct mm_struct *mm)
31 {
32         unsigned long text, lib, swap, anon, file, shmem;
33         unsigned long hiwater_vm, total_vm, hiwater_rss, total_rss;
34
35         anon = get_mm_counter(mm, MM_ANONPAGES);
36         file = get_mm_counter(mm, MM_FILEPAGES);
37         shmem = get_mm_counter(mm, MM_SHMEMPAGES);
38
39         /*
40          * Note: to minimize their overhead, mm maintains hiwater_vm and
41          * hiwater_rss only when about to *lower* total_vm or rss.  Any
42          * collector of these hiwater stats must therefore get total_vm
43          * and rss too, which will usually be the higher.  Barriers? not
44          * worth the effort, such snapshots can always be inconsistent.
45          */
46         hiwater_vm = total_vm = mm->total_vm;
47         if (hiwater_vm < mm->hiwater_vm)
48                 hiwater_vm = mm->hiwater_vm;
49         hiwater_rss = total_rss = anon + file + shmem;
50         if (hiwater_rss < mm->hiwater_rss)
51                 hiwater_rss = mm->hiwater_rss;
52
53         /* split executable areas between text and lib */
54         text = PAGE_ALIGN(mm->end_code) - (mm->start_code & PAGE_MASK);
55         text = min(text, mm->exec_vm << PAGE_SHIFT);
56         lib = (mm->exec_vm << PAGE_SHIFT) - text;
57
58         swap = get_mm_counter(mm, MM_SWAPENTS);
59         SEQ_PUT_DEC("VmPeak:\t", hiwater_vm);
60         SEQ_PUT_DEC(" kB\nVmSize:\t", total_vm);
61         SEQ_PUT_DEC(" kB\nVmLck:\t", mm->locked_vm);
62         SEQ_PUT_DEC(" kB\nVmPin:\t", atomic64_read(&mm->pinned_vm));
63         SEQ_PUT_DEC(" kB\nVmHWM:\t", hiwater_rss);
64         SEQ_PUT_DEC(" kB\nVmRSS:\t", total_rss);
65         SEQ_PUT_DEC(" kB\nRssAnon:\t", anon);
66         SEQ_PUT_DEC(" kB\nRssFile:\t", file);
67         SEQ_PUT_DEC(" kB\nRssShmem:\t", shmem);
68         SEQ_PUT_DEC(" kB\nVmData:\t", mm->data_vm);
69         SEQ_PUT_DEC(" kB\nVmStk:\t", mm->stack_vm);
70         seq_put_decimal_ull_width(m,
71                     " kB\nVmExe:\t", text >> 10, 8);
72         seq_put_decimal_ull_width(m,
73                     " kB\nVmLib:\t", lib >> 10, 8);
74         seq_put_decimal_ull_width(m,
75                     " kB\nVmPTE:\t", mm_pgtables_bytes(mm) >> 10, 8);
76         SEQ_PUT_DEC(" kB\nVmSwap:\t", swap);
77         seq_puts(m, " kB\n");
78         hugetlb_report_usage(m, mm);
79 }
80 #undef SEQ_PUT_DEC
81
82 unsigned long task_vsize(struct mm_struct *mm)
83 {
84         return PAGE_SIZE * mm->total_vm;
85 }
86
87 unsigned long task_statm(struct mm_struct *mm,
88                          unsigned long *shared, unsigned long *text,
89                          unsigned long *data, unsigned long *resident)
90 {
91         *shared = get_mm_counter(mm, MM_FILEPAGES) +
92                         get_mm_counter(mm, MM_SHMEMPAGES);
93         *text = (PAGE_ALIGN(mm->end_code) - (mm->start_code & PAGE_MASK))
94                                                                 >> PAGE_SHIFT;
95         *data = mm->data_vm + mm->stack_vm;
96         *resident = *shared + get_mm_counter(mm, MM_ANONPAGES);
97         return mm->total_vm;
98 }
99
100 #ifdef CONFIG_NUMA
101 /*
102  * Save get_task_policy() for show_numa_map().
103  */
104 static void hold_task_mempolicy(struct proc_maps_private *priv)
105 {
106         struct task_struct *task = priv->task;
107
108         task_lock(task);
109         priv->task_mempolicy = get_task_policy(task);
110         mpol_get(priv->task_mempolicy);
111         task_unlock(task);
112 }
113 static void release_task_mempolicy(struct proc_maps_private *priv)
114 {
115         mpol_put(priv->task_mempolicy);
116 }
117 #else
118 static void hold_task_mempolicy(struct proc_maps_private *priv)
119 {
120 }
121 static void release_task_mempolicy(struct proc_maps_private *priv)
122 {
123 }
124 #endif
125
126 static void *m_start(struct seq_file *m, loff_t *ppos)
127 {
128         struct proc_maps_private *priv = m->private;
129         unsigned long last_addr = *ppos;
130         struct mm_struct *mm;
131         struct vm_area_struct *vma;
132
133         /* See m_next(). Zero at the start or after lseek. */
134         if (last_addr == -1UL)
135                 return NULL;
136
137         priv->task = get_proc_task(priv->inode);
138         if (!priv->task)
139                 return ERR_PTR(-ESRCH);
140
141         mm = priv->mm;
142         if (!mm || !mmget_not_zero(mm)) {
143                 put_task_struct(priv->task);
144                 priv->task = NULL;
145                 return NULL;
146         }
147
148         if (mmap_read_lock_killable(mm)) {
149                 mmput(mm);
150                 put_task_struct(priv->task);
151                 priv->task = NULL;
152                 return ERR_PTR(-EINTR);
153         }
154
155         hold_task_mempolicy(priv);
156         priv->tail_vma = get_gate_vma(mm);
157
158         vma = find_vma(mm, last_addr);
159         if (vma)
160                 return vma;
161
162         return priv->tail_vma;
163 }
164
165 static void *m_next(struct seq_file *m, void *v, loff_t *ppos)
166 {
167         struct proc_maps_private *priv = m->private;
168         struct vm_area_struct *next, *vma = v;
169
170         if (vma == priv->tail_vma)
171                 next = NULL;
172         else if (vma->vm_next)
173                 next = vma->vm_next;
174         else
175                 next = priv->tail_vma;
176
177         *ppos = next ? next->vm_start : -1UL;
178
179         return next;
180 }
181
182 static void m_stop(struct seq_file *m, void *v)
183 {
184         struct proc_maps_private *priv = m->private;
185         struct mm_struct *mm = priv->mm;
186
187         if (!priv->task)
188                 return;
189
190         release_task_mempolicy(priv);
191         mmap_read_unlock(mm);
192         mmput(mm);
193         put_task_struct(priv->task);
194         priv->task = NULL;
195 }
196
197 static int proc_maps_open(struct inode *inode, struct file *file,
198                         const struct seq_operations *ops, int psize)
199 {
200         struct proc_maps_private *priv = __seq_open_private(file, ops, psize);
201
202         if (!priv)
203                 return -ENOMEM;
204
205         priv->inode = inode;
206         priv->mm = proc_mem_open(inode, PTRACE_MODE_READ);
207         if (IS_ERR(priv->mm)) {
208                 int err = PTR_ERR(priv->mm);
209
210                 seq_release_private(inode, file);
211                 return err;
212         }
213
214         return 0;
215 }
216
217 static int proc_map_release(struct inode *inode, struct file *file)
218 {
219         struct seq_file *seq = file->private_data;
220         struct proc_maps_private *priv = seq->private;
221
222         if (priv->mm)
223                 mmdrop(priv->mm);
224
225         return seq_release_private(inode, file);
226 }
227
228 static int do_maps_open(struct inode *inode, struct file *file,
229                         const struct seq_operations *ops)
230 {
231         return proc_maps_open(inode, file, ops,
232                                 sizeof(struct proc_maps_private));
233 }
234
235 /*
236  * Indicate if the VMA is a stack for the given task; for
237  * /proc/PID/maps that is the stack of the main task.
238  */
239 static int is_stack(struct vm_area_struct *vma)
240 {
241         /*
242          * We make no effort to guess what a given thread considers to be
243          * its "stack".  It's not even well-defined for programs written
244          * languages like Go.
245          */
246         return vma->vm_start <= vma->vm_mm->start_stack &&
247                 vma->vm_end >= vma->vm_mm->start_stack;
248 }
249
250 static void show_vma_header_prefix(struct seq_file *m,
251                                    unsigned long start, unsigned long end,
252                                    vm_flags_t flags, unsigned long long pgoff,
253                                    dev_t dev, unsigned long ino)
254 {
255         seq_setwidth(m, 25 + sizeof(void *) * 6 - 1);
256         seq_put_hex_ll(m, NULL, start, 8);
257         seq_put_hex_ll(m, "-", end, 8);
258         seq_putc(m, ' ');
259         seq_putc(m, flags & VM_READ ? 'r' : '-');
260         seq_putc(m, flags & VM_WRITE ? 'w' : '-');
261         seq_putc(m, flags & VM_EXEC ? 'x' : '-');
262         seq_putc(m, flags & VM_MAYSHARE ? 's' : 'p');
263         seq_put_hex_ll(m, " ", pgoff, 8);
264         seq_put_hex_ll(m, " ", MAJOR(dev), 2);
265         seq_put_hex_ll(m, ":", MINOR(dev), 2);
266         seq_put_decimal_ull(m, " ", ino);
267         seq_putc(m, ' ');
268 }
269
270 static void
271 show_map_vma(struct seq_file *m, struct vm_area_struct *vma)
272 {
273         struct mm_struct *mm = vma->vm_mm;
274         struct file *file = vma->vm_file;
275         vm_flags_t flags = vma->vm_flags;
276         unsigned long ino = 0;
277         unsigned long long pgoff = 0;
278         unsigned long start, end;
279         dev_t dev = 0;
280         const char *name = NULL;
281
282         if (file) {
283                 struct inode *inode = file_inode(vma->vm_file);
284                 dev = inode->i_sb->s_dev;
285                 ino = inode->i_ino;
286                 pgoff = ((loff_t)vma->vm_pgoff) << PAGE_SHIFT;
287         }
288
289         start = vma->vm_start;
290         end = vma->vm_end;
291         show_vma_header_prefix(m, start, end, flags, pgoff, dev, ino);
292
293         /*
294          * Print the dentry name for named mappings, and a
295          * special [heap] marker for the heap:
296          */
297         if (file) {
298                 seq_pad(m, ' ');
299                 seq_file_path(m, file, "\n");
300                 goto done;
301         }
302
303         if (vma->vm_ops && vma->vm_ops->name) {
304                 name = vma->vm_ops->name(vma);
305                 if (name)
306                         goto done;
307         }
308
309         name = arch_vma_name(vma);
310         if (!name) {
311                 if (!mm) {
312                         name = "[vdso]";
313                         goto done;
314                 }
315
316                 if (vma->vm_start <= mm->brk &&
317                     vma->vm_end >= mm->start_brk) {
318                         name = "[heap]";
319                         goto done;
320                 }
321
322                 if (is_stack(vma))
323                         name = "[stack]";
324         }
325
326 done:
327         if (name) {
328                 seq_pad(m, ' ');
329                 seq_puts(m, name);
330         }
331         seq_putc(m, '\n');
332 }
333
334 static int show_map(struct seq_file *m, void *v)
335 {
336         show_map_vma(m, v);
337         return 0;
338 }
339
340 static const struct seq_operations proc_pid_maps_op = {
341         .start  = m_start,
342         .next   = m_next,
343         .stop   = m_stop,
344         .show   = show_map
345 };
346
347 static int pid_maps_open(struct inode *inode, struct file *file)
348 {
349         return do_maps_open(inode, file, &proc_pid_maps_op);
350 }
351
352 const struct file_operations proc_pid_maps_operations = {
353         .open           = pid_maps_open,
354         .read           = seq_read,
355         .llseek         = seq_lseek,
356         .release        = proc_map_release,
357 };
358
359 /*
360  * Proportional Set Size(PSS): my share of RSS.
361  *
362  * PSS of a process is the count of pages it has in memory, where each
363  * page is divided by the number of processes sharing it.  So if a
364  * process has 1000 pages all to itself, and 1000 shared with one other
365  * process, its PSS will be 1500.
366  *
367  * To keep (accumulated) division errors low, we adopt a 64bit
368  * fixed-point pss counter to minimize division errors. So (pss >>
369  * PSS_SHIFT) would be the real byte count.
370  *
371  * A shift of 12 before division means (assuming 4K page size):
372  *      - 1M 3-user-pages add up to 8KB errors;
373  *      - supports mapcount up to 2^24, or 16M;
374  *      - supports PSS up to 2^52 bytes, or 4PB.
375  */
376 #define PSS_SHIFT 12
377
378 #ifdef CONFIG_PROC_PAGE_MONITOR
379 struct mem_size_stats {
380         unsigned long resident;
381         unsigned long shared_clean;
382         unsigned long shared_dirty;
383         unsigned long private_clean;
384         unsigned long private_dirty;
385         unsigned long referenced;
386         unsigned long anonymous;
387         unsigned long lazyfree;
388         unsigned long anonymous_thp;
389         unsigned long shmem_thp;
390         unsigned long file_thp;
391         unsigned long swap;
392         unsigned long shared_hugetlb;
393         unsigned long private_hugetlb;
394         u64 pss;
395         u64 pss_anon;
396         u64 pss_file;
397         u64 pss_shmem;
398         u64 pss_locked;
399         u64 swap_pss;
400         bool check_shmem_swap;
401 };
402
403 static void smaps_page_accumulate(struct mem_size_stats *mss,
404                 struct page *page, unsigned long size, unsigned long pss,
405                 bool dirty, bool locked, bool private)
406 {
407         mss->pss += pss;
408
409         if (PageAnon(page))
410                 mss->pss_anon += pss;
411         else if (PageSwapBacked(page))
412                 mss->pss_shmem += pss;
413         else
414                 mss->pss_file += pss;
415
416         if (locked)
417                 mss->pss_locked += pss;
418
419         if (dirty || PageDirty(page)) {
420                 if (private)
421                         mss->private_dirty += size;
422                 else
423                         mss->shared_dirty += size;
424         } else {
425                 if (private)
426                         mss->private_clean += size;
427                 else
428                         mss->shared_clean += size;
429         }
430 }
431
432 static void smaps_account(struct mem_size_stats *mss, struct page *page,
433                 bool compound, bool young, bool dirty, bool locked)
434 {
435         int i, nr = compound ? compound_nr(page) : 1;
436         unsigned long size = nr * PAGE_SIZE;
437
438         /*
439          * First accumulate quantities that depend only on |size| and the type
440          * of the compound page.
441          */
442         if (PageAnon(page)) {
443                 mss->anonymous += size;
444                 if (!PageSwapBacked(page) && !dirty && !PageDirty(page))
445                         mss->lazyfree += size;
446         }
447
448         mss->resident += size;
449         /* Accumulate the size in pages that have been accessed. */
450         if (young || page_is_young(page) || PageReferenced(page))
451                 mss->referenced += size;
452
453         /*
454          * Then accumulate quantities that may depend on sharing, or that may
455          * differ page-by-page.
456          *
457          * page_count(page) == 1 guarantees the page is mapped exactly once.
458          * If any subpage of the compound page mapped with PTE it would elevate
459          * page_count().
460          */
461         if (page_count(page) == 1) {
462                 smaps_page_accumulate(mss, page, size, size << PSS_SHIFT, dirty,
463                         locked, true);
464                 return;
465         }
466         for (i = 0; i < nr; i++, page++) {
467                 int mapcount = page_mapcount(page);
468                 unsigned long pss = PAGE_SIZE << PSS_SHIFT;
469                 if (mapcount >= 2)
470                         pss /= mapcount;
471                 smaps_page_accumulate(mss, page, PAGE_SIZE, pss, dirty, locked,
472                                       mapcount < 2);
473         }
474 }
475
476 #ifdef CONFIG_SHMEM
477 static int smaps_pte_hole(unsigned long addr, unsigned long end,
478                           __always_unused int depth, struct mm_walk *walk)
479 {
480         struct mem_size_stats *mss = walk->private;
481
482         mss->swap += shmem_partial_swap_usage(
483                         walk->vma->vm_file->f_mapping, addr, end);
484
485         return 0;
486 }
487 #else
488 #define smaps_pte_hole          NULL
489 #endif /* CONFIG_SHMEM */
490
491 static void smaps_pte_entry(pte_t *pte, unsigned long addr,
492                 struct mm_walk *walk)
493 {
494         struct mem_size_stats *mss = walk->private;
495         struct vm_area_struct *vma = walk->vma;
496         bool locked = !!(vma->vm_flags & VM_LOCKED);
497         struct page *page = NULL;
498
499         if (pte_present(*pte)) {
500                 page = vm_normal_page(vma, addr, *pte);
501         } else if (is_swap_pte(*pte)) {
502                 swp_entry_t swpent = pte_to_swp_entry(*pte);
503
504                 if (!non_swap_entry(swpent)) {
505                         int mapcount;
506
507                         mss->swap += PAGE_SIZE;
508                         mapcount = swp_swapcount(swpent);
509                         if (mapcount >= 2) {
510                                 u64 pss_delta = (u64)PAGE_SIZE << PSS_SHIFT;
511
512                                 do_div(pss_delta, mapcount);
513                                 mss->swap_pss += pss_delta;
514                         } else {
515                                 mss->swap_pss += (u64)PAGE_SIZE << PSS_SHIFT;
516                         }
517                 } else if (is_pfn_swap_entry(swpent))
518                         page = pfn_swap_entry_to_page(swpent);
519         } else if (unlikely(IS_ENABLED(CONFIG_SHMEM) && mss->check_shmem_swap
520                                                         && pte_none(*pte))) {
521                 page = xa_load(&vma->vm_file->f_mapping->i_pages,
522                                                 linear_page_index(vma, addr));
523                 if (xa_is_value(page))
524                         mss->swap += PAGE_SIZE;
525                 return;
526         }
527
528         if (!page)
529                 return;
530
531         smaps_account(mss, page, false, pte_young(*pte), pte_dirty(*pte), locked);
532 }
533
534 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
535 static void smaps_pmd_entry(pmd_t *pmd, unsigned long addr,
536                 struct mm_walk *walk)
537 {
538         struct mem_size_stats *mss = walk->private;
539         struct vm_area_struct *vma = walk->vma;
540         bool locked = !!(vma->vm_flags & VM_LOCKED);
541         struct page *page = NULL;
542
543         if (pmd_present(*pmd)) {
544                 /* FOLL_DUMP will return -EFAULT on huge zero page */
545                 page = follow_trans_huge_pmd(vma, addr, pmd, FOLL_DUMP);
546         } else if (unlikely(thp_migration_supported() && is_swap_pmd(*pmd))) {
547                 swp_entry_t entry = pmd_to_swp_entry(*pmd);
548
549                 if (is_migration_entry(entry))
550                         page = pfn_swap_entry_to_page(entry);
551         }
552         if (IS_ERR_OR_NULL(page))
553                 return;
554         if (PageAnon(page))
555                 mss->anonymous_thp += HPAGE_PMD_SIZE;
556         else if (PageSwapBacked(page))
557                 mss->shmem_thp += HPAGE_PMD_SIZE;
558         else if (is_zone_device_page(page))
559                 /* pass */;
560         else
561                 mss->file_thp += HPAGE_PMD_SIZE;
562         smaps_account(mss, page, true, pmd_young(*pmd), pmd_dirty(*pmd), locked);
563 }
564 #else
565 static void smaps_pmd_entry(pmd_t *pmd, unsigned long addr,
566                 struct mm_walk *walk)
567 {
568 }
569 #endif
570
571 static int smaps_pte_range(pmd_t *pmd, unsigned long addr, unsigned long end,
572                            struct mm_walk *walk)
573 {
574         struct vm_area_struct *vma = walk->vma;
575         pte_t *pte;
576         spinlock_t *ptl;
577
578         ptl = pmd_trans_huge_lock(pmd, vma);
579         if (ptl) {
580                 smaps_pmd_entry(pmd, addr, walk);
581                 spin_unlock(ptl);
582                 goto out;
583         }
584
585         if (pmd_trans_unstable(pmd))
586                 goto out;
587         /*
588          * The mmap_lock held all the way back in m_start() is what
589          * keeps khugepaged out of here and from collapsing things
590          * in here.
591          */
592         pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
593         for (; addr != end; pte++, addr += PAGE_SIZE)
594                 smaps_pte_entry(pte, addr, walk);
595         pte_unmap_unlock(pte - 1, ptl);
596 out:
597         cond_resched();
598         return 0;
599 }
600
601 static void show_smap_vma_flags(struct seq_file *m, struct vm_area_struct *vma)
602 {
603         /*
604          * Don't forget to update Documentation/ on changes.
605          */
606         static const char mnemonics[BITS_PER_LONG][2] = {
607                 /*
608                  * In case if we meet a flag we don't know about.
609                  */
610                 [0 ... (BITS_PER_LONG-1)] = "??",
611
612                 [ilog2(VM_READ)]        = "rd",
613                 [ilog2(VM_WRITE)]       = "wr",
614                 [ilog2(VM_EXEC)]        = "ex",
615                 [ilog2(VM_SHARED)]      = "sh",
616                 [ilog2(VM_MAYREAD)]     = "mr",
617                 [ilog2(VM_MAYWRITE)]    = "mw",
618                 [ilog2(VM_MAYEXEC)]     = "me",
619                 [ilog2(VM_MAYSHARE)]    = "ms",
620                 [ilog2(VM_GROWSDOWN)]   = "gd",
621                 [ilog2(VM_PFNMAP)]      = "pf",
622                 [ilog2(VM_LOCKED)]      = "lo",
623                 [ilog2(VM_IO)]          = "io",
624                 [ilog2(VM_SEQ_READ)]    = "sr",
625                 [ilog2(VM_RAND_READ)]   = "rr",
626                 [ilog2(VM_DONTCOPY)]    = "dc",
627                 [ilog2(VM_DONTEXPAND)]  = "de",
628                 [ilog2(VM_ACCOUNT)]     = "ac",
629                 [ilog2(VM_NORESERVE)]   = "nr",
630                 [ilog2(VM_HUGETLB)]     = "ht",
631                 [ilog2(VM_SYNC)]        = "sf",
632                 [ilog2(VM_ARCH_1)]      = "ar",
633                 [ilog2(VM_WIPEONFORK)]  = "wf",
634                 [ilog2(VM_DONTDUMP)]    = "dd",
635 #ifdef CONFIG_ARM64_BTI
636                 [ilog2(VM_ARM64_BTI)]   = "bt",
637 #endif
638 #ifdef CONFIG_MEM_SOFT_DIRTY
639                 [ilog2(VM_SOFTDIRTY)]   = "sd",
640 #endif
641                 [ilog2(VM_MIXEDMAP)]    = "mm",
642                 [ilog2(VM_HUGEPAGE)]    = "hg",
643                 [ilog2(VM_NOHUGEPAGE)]  = "nh",
644                 [ilog2(VM_MERGEABLE)]   = "mg",
645                 [ilog2(VM_UFFD_MISSING)]= "um",
646                 [ilog2(VM_UFFD_WP)]     = "uw",
647 #ifdef CONFIG_ARM64_MTE
648                 [ilog2(VM_MTE)]         = "mt",
649                 [ilog2(VM_MTE_ALLOWED)] = "",
650 #endif
651 #ifdef CONFIG_ARCH_HAS_PKEYS
652                 /* These come out via ProtectionKey: */
653                 [ilog2(VM_PKEY_BIT0)]   = "",
654                 [ilog2(VM_PKEY_BIT1)]   = "",
655                 [ilog2(VM_PKEY_BIT2)]   = "",
656                 [ilog2(VM_PKEY_BIT3)]   = "",
657 #if VM_PKEY_BIT4
658                 [ilog2(VM_PKEY_BIT4)]   = "",
659 #endif
660 #endif /* CONFIG_ARCH_HAS_PKEYS */
661 #ifdef CONFIG_HAVE_ARCH_USERFAULTFD_MINOR
662                 [ilog2(VM_UFFD_MINOR)]  = "ui",
663 #endif /* CONFIG_HAVE_ARCH_USERFAULTFD_MINOR */
664         };
665         size_t i;
666
667         seq_puts(m, "VmFlags: ");
668         for (i = 0; i < BITS_PER_LONG; i++) {
669                 if (!mnemonics[i][0])
670                         continue;
671                 if (vma->vm_flags & (1UL << i)) {
672                         seq_putc(m, mnemonics[i][0]);
673                         seq_putc(m, mnemonics[i][1]);
674                         seq_putc(m, ' ');
675                 }
676         }
677         seq_putc(m, '\n');
678 }
679
680 #ifdef CONFIG_HUGETLB_PAGE
681 static int smaps_hugetlb_range(pte_t *pte, unsigned long hmask,
682                                  unsigned long addr, unsigned long end,
683                                  struct mm_walk *walk)
684 {
685         struct mem_size_stats *mss = walk->private;
686         struct vm_area_struct *vma = walk->vma;
687         struct page *page = NULL;
688
689         if (pte_present(*pte)) {
690                 page = vm_normal_page(vma, addr, *pte);
691         } else if (is_swap_pte(*pte)) {
692                 swp_entry_t swpent = pte_to_swp_entry(*pte);
693
694                 if (is_pfn_swap_entry(swpent))
695                         page = pfn_swap_entry_to_page(swpent);
696         }
697         if (page) {
698                 int mapcount = page_mapcount(page);
699
700                 if (mapcount >= 2)
701                         mss->shared_hugetlb += huge_page_size(hstate_vma(vma));
702                 else
703                         mss->private_hugetlb += huge_page_size(hstate_vma(vma));
704         }
705         return 0;
706 }
707 #else
708 #define smaps_hugetlb_range     NULL
709 #endif /* HUGETLB_PAGE */
710
711 static const struct mm_walk_ops smaps_walk_ops = {
712         .pmd_entry              = smaps_pte_range,
713         .hugetlb_entry          = smaps_hugetlb_range,
714 };
715
716 static const struct mm_walk_ops smaps_shmem_walk_ops = {
717         .pmd_entry              = smaps_pte_range,
718         .hugetlb_entry          = smaps_hugetlb_range,
719         .pte_hole               = smaps_pte_hole,
720 };
721
722 /*
723  * Gather mem stats from @vma with the indicated beginning
724  * address @start, and keep them in @mss.
725  *
726  * Use vm_start of @vma as the beginning address if @start is 0.
727  */
728 static void smap_gather_stats(struct vm_area_struct *vma,
729                 struct mem_size_stats *mss, unsigned long start)
730 {
731         const struct mm_walk_ops *ops = &smaps_walk_ops;
732
733         /* Invalid start */
734         if (start >= vma->vm_end)
735                 return;
736
737 #ifdef CONFIG_SHMEM
738         /* In case of smaps_rollup, reset the value from previous vma */
739         mss->check_shmem_swap = false;
740         if (vma->vm_file && shmem_mapping(vma->vm_file->f_mapping)) {
741                 /*
742                  * For shared or readonly shmem mappings we know that all
743                  * swapped out pages belong to the shmem object, and we can
744                  * obtain the swap value much more efficiently. For private
745                  * writable mappings, we might have COW pages that are
746                  * not affected by the parent swapped out pages of the shmem
747                  * object, so we have to distinguish them during the page walk.
748                  * Unless we know that the shmem object (or the part mapped by
749                  * our VMA) has no swapped out pages at all.
750                  */
751                 unsigned long shmem_swapped = shmem_swap_usage(vma);
752
753                 if (!start && (!shmem_swapped || (vma->vm_flags & VM_SHARED) ||
754                                         !(vma->vm_flags & VM_WRITE))) {
755                         mss->swap += shmem_swapped;
756                 } else {
757                         mss->check_shmem_swap = true;
758                         ops = &smaps_shmem_walk_ops;
759                 }
760         }
761 #endif
762         /* mmap_lock is held in m_start */
763         if (!start)
764                 walk_page_vma(vma, ops, mss);
765         else
766                 walk_page_range(vma->vm_mm, start, vma->vm_end, ops, mss);
767 }
768
769 #define SEQ_PUT_DEC(str, val) \
770                 seq_put_decimal_ull_width(m, str, (val) >> 10, 8)
771
772 /* Show the contents common for smaps and smaps_rollup */
773 static void __show_smap(struct seq_file *m, const struct mem_size_stats *mss,
774         bool rollup_mode)
775 {
776         SEQ_PUT_DEC("Rss:            ", mss->resident);
777         SEQ_PUT_DEC(" kB\nPss:            ", mss->pss >> PSS_SHIFT);
778         if (rollup_mode) {
779                 /*
780                  * These are meaningful only for smaps_rollup, otherwise two of
781                  * them are zero, and the other one is the same as Pss.
782                  */
783                 SEQ_PUT_DEC(" kB\nPss_Anon:       ",
784                         mss->pss_anon >> PSS_SHIFT);
785                 SEQ_PUT_DEC(" kB\nPss_File:       ",
786                         mss->pss_file >> PSS_SHIFT);
787                 SEQ_PUT_DEC(" kB\nPss_Shmem:      ",
788                         mss->pss_shmem >> PSS_SHIFT);
789         }
790         SEQ_PUT_DEC(" kB\nShared_Clean:   ", mss->shared_clean);
791         SEQ_PUT_DEC(" kB\nShared_Dirty:   ", mss->shared_dirty);
792         SEQ_PUT_DEC(" kB\nPrivate_Clean:  ", mss->private_clean);
793         SEQ_PUT_DEC(" kB\nPrivate_Dirty:  ", mss->private_dirty);
794         SEQ_PUT_DEC(" kB\nReferenced:     ", mss->referenced);
795         SEQ_PUT_DEC(" kB\nAnonymous:      ", mss->anonymous);
796         SEQ_PUT_DEC(" kB\nLazyFree:       ", mss->lazyfree);
797         SEQ_PUT_DEC(" kB\nAnonHugePages:  ", mss->anonymous_thp);
798         SEQ_PUT_DEC(" kB\nShmemPmdMapped: ", mss->shmem_thp);
799         SEQ_PUT_DEC(" kB\nFilePmdMapped:  ", mss->file_thp);
800         SEQ_PUT_DEC(" kB\nShared_Hugetlb: ", mss->shared_hugetlb);
801         seq_put_decimal_ull_width(m, " kB\nPrivate_Hugetlb: ",
802                                   mss->private_hugetlb >> 10, 7);
803         SEQ_PUT_DEC(" kB\nSwap:           ", mss->swap);
804         SEQ_PUT_DEC(" kB\nSwapPss:        ",
805                                         mss->swap_pss >> PSS_SHIFT);
806         SEQ_PUT_DEC(" kB\nLocked:         ",
807                                         mss->pss_locked >> PSS_SHIFT);
808         seq_puts(m, " kB\n");
809 }
810
811 static int show_smap(struct seq_file *m, void *v)
812 {
813         struct vm_area_struct *vma = v;
814         struct mem_size_stats mss;
815
816         memset(&mss, 0, sizeof(mss));
817
818         smap_gather_stats(vma, &mss, 0);
819
820         show_map_vma(m, vma);
821
822         SEQ_PUT_DEC("Size:           ", vma->vm_end - vma->vm_start);
823         SEQ_PUT_DEC(" kB\nKernelPageSize: ", vma_kernel_pagesize(vma));
824         SEQ_PUT_DEC(" kB\nMMUPageSize:    ", vma_mmu_pagesize(vma));
825         seq_puts(m, " kB\n");
826
827         __show_smap(m, &mss, false);
828
829         seq_printf(m, "THPeligible:    %d\n",
830                    transparent_hugepage_active(vma));
831
832         if (arch_pkeys_enabled())
833                 seq_printf(m, "ProtectionKey:  %8u\n", vma_pkey(vma));
834         show_smap_vma_flags(m, vma);
835
836         return 0;
837 }
838
839 static int show_smaps_rollup(struct seq_file *m, void *v)
840 {
841         struct proc_maps_private *priv = m->private;
842         struct mem_size_stats mss;
843         struct mm_struct *mm;
844         struct vm_area_struct *vma;
845         unsigned long last_vma_end = 0;
846         int ret = 0;
847
848         priv->task = get_proc_task(priv->inode);
849         if (!priv->task)
850                 return -ESRCH;
851
852         mm = priv->mm;
853         if (!mm || !mmget_not_zero(mm)) {
854                 ret = -ESRCH;
855                 goto out_put_task;
856         }
857
858         memset(&mss, 0, sizeof(mss));
859
860         ret = mmap_read_lock_killable(mm);
861         if (ret)
862                 goto out_put_mm;
863
864         hold_task_mempolicy(priv);
865
866         for (vma = priv->mm->mmap; vma;) {
867                 smap_gather_stats(vma, &mss, 0);
868                 last_vma_end = vma->vm_end;
869
870                 /*
871                  * Release mmap_lock temporarily if someone wants to
872                  * access it for write request.
873                  */
874                 if (mmap_lock_is_contended(mm)) {
875                         mmap_read_unlock(mm);
876                         ret = mmap_read_lock_killable(mm);
877                         if (ret) {
878                                 release_task_mempolicy(priv);
879                                 goto out_put_mm;
880                         }
881
882                         /*
883                          * After dropping the lock, there are four cases to
884                          * consider. See the following example for explanation.
885                          *
886                          *   +------+------+-----------+
887                          *   | VMA1 | VMA2 | VMA3      |
888                          *   +------+------+-----------+
889                          *   |      |      |           |
890                          *  4k     8k     16k         400k
891                          *
892                          * Suppose we drop the lock after reading VMA2 due to
893                          * contention, then we get:
894                          *
895                          *      last_vma_end = 16k
896                          *
897                          * 1) VMA2 is freed, but VMA3 exists:
898                          *
899                          *    find_vma(mm, 16k - 1) will return VMA3.
900                          *    In this case, just continue from VMA3.
901                          *
902                          * 2) VMA2 still exists:
903                          *
904                          *    find_vma(mm, 16k - 1) will return VMA2.
905                          *    Iterate the loop like the original one.
906                          *
907                          * 3) No more VMAs can be found:
908                          *
909                          *    find_vma(mm, 16k - 1) will return NULL.
910                          *    No more things to do, just break.
911                          *
912                          * 4) (last_vma_end - 1) is the middle of a vma (VMA'):
913                          *
914                          *    find_vma(mm, 16k - 1) will return VMA' whose range
915                          *    contains last_vma_end.
916                          *    Iterate VMA' from last_vma_end.
917                          */
918                         vma = find_vma(mm, last_vma_end - 1);
919                         /* Case 3 above */
920                         if (!vma)
921                                 break;
922
923                         /* Case 1 above */
924                         if (vma->vm_start >= last_vma_end)
925                                 continue;
926
927                         /* Case 4 above */
928                         if (vma->vm_end > last_vma_end)
929                                 smap_gather_stats(vma, &mss, last_vma_end);
930                 }
931                 /* Case 2 above */
932                 vma = vma->vm_next;
933         }
934
935         show_vma_header_prefix(m, priv->mm->mmap->vm_start,
936                                last_vma_end, 0, 0, 0, 0);
937         seq_pad(m, ' ');
938         seq_puts(m, "[rollup]\n");
939
940         __show_smap(m, &mss, true);
941
942         release_task_mempolicy(priv);
943         mmap_read_unlock(mm);
944
945 out_put_mm:
946         mmput(mm);
947 out_put_task:
948         put_task_struct(priv->task);
949         priv->task = NULL;
950
951         return ret;
952 }
953 #undef SEQ_PUT_DEC
954
955 static const struct seq_operations proc_pid_smaps_op = {
956         .start  = m_start,
957         .next   = m_next,
958         .stop   = m_stop,
959         .show   = show_smap
960 };
961
962 static int pid_smaps_open(struct inode *inode, struct file *file)
963 {
964         return do_maps_open(inode, file, &proc_pid_smaps_op);
965 }
966
967 static int smaps_rollup_open(struct inode *inode, struct file *file)
968 {
969         int ret;
970         struct proc_maps_private *priv;
971
972         priv = kzalloc(sizeof(*priv), GFP_KERNEL_ACCOUNT);
973         if (!priv)
974                 return -ENOMEM;
975
976         ret = single_open(file, show_smaps_rollup, priv);
977         if (ret)
978                 goto out_free;
979
980         priv->inode = inode;
981         priv->mm = proc_mem_open(inode, PTRACE_MODE_READ);
982         if (IS_ERR(priv->mm)) {
983                 ret = PTR_ERR(priv->mm);
984
985                 single_release(inode, file);
986                 goto out_free;
987         }
988
989         return 0;
990
991 out_free:
992         kfree(priv);
993         return ret;
994 }
995
996 static int smaps_rollup_release(struct inode *inode, struct file *file)
997 {
998         struct seq_file *seq = file->private_data;
999         struct proc_maps_private *priv = seq->private;
1000
1001         if (priv->mm)
1002                 mmdrop(priv->mm);
1003
1004         kfree(priv);
1005         return single_release(inode, file);
1006 }
1007
1008 const struct file_operations proc_pid_smaps_operations = {
1009         .open           = pid_smaps_open,
1010         .read           = seq_read,
1011         .llseek         = seq_lseek,
1012         .release        = proc_map_release,
1013 };
1014
1015 const struct file_operations proc_pid_smaps_rollup_operations = {
1016         .open           = smaps_rollup_open,
1017         .read           = seq_read,
1018         .llseek         = seq_lseek,
1019         .release        = smaps_rollup_release,
1020 };
1021
1022 enum clear_refs_types {
1023         CLEAR_REFS_ALL = 1,
1024         CLEAR_REFS_ANON,
1025         CLEAR_REFS_MAPPED,
1026         CLEAR_REFS_SOFT_DIRTY,
1027         CLEAR_REFS_MM_HIWATER_RSS,
1028         CLEAR_REFS_LAST,
1029 };
1030
1031 struct clear_refs_private {
1032         enum clear_refs_types type;
1033 };
1034
1035 #ifdef CONFIG_MEM_SOFT_DIRTY
1036
1037 static inline bool pte_is_pinned(struct vm_area_struct *vma, unsigned long addr, pte_t pte)
1038 {
1039         struct page *page;
1040
1041         if (!pte_write(pte))
1042                 return false;
1043         if (!is_cow_mapping(vma->vm_flags))
1044                 return false;
1045         if (likely(!test_bit(MMF_HAS_PINNED, &vma->vm_mm->flags)))
1046                 return false;
1047         page = vm_normal_page(vma, addr, pte);
1048         if (!page)
1049                 return false;
1050         return page_maybe_dma_pinned(page);
1051 }
1052
1053 static inline void clear_soft_dirty(struct vm_area_struct *vma,
1054                 unsigned long addr, pte_t *pte)
1055 {
1056         /*
1057          * The soft-dirty tracker uses #PF-s to catch writes
1058          * to pages, so write-protect the pte as well. See the
1059          * Documentation/admin-guide/mm/soft-dirty.rst for full description
1060          * of how soft-dirty works.
1061          */
1062         pte_t ptent = *pte;
1063
1064         if (pte_present(ptent)) {
1065                 pte_t old_pte;
1066
1067                 if (pte_is_pinned(vma, addr, ptent))
1068                         return;
1069                 old_pte = ptep_modify_prot_start(vma, addr, pte);
1070                 ptent = pte_wrprotect(old_pte);
1071                 ptent = pte_clear_soft_dirty(ptent);
1072                 ptep_modify_prot_commit(vma, addr, pte, old_pte, ptent);
1073         } else if (is_swap_pte(ptent)) {
1074                 ptent = pte_swp_clear_soft_dirty(ptent);
1075                 set_pte_at(vma->vm_mm, addr, pte, ptent);
1076         }
1077 }
1078 #else
1079 static inline void clear_soft_dirty(struct vm_area_struct *vma,
1080                 unsigned long addr, pte_t *pte)
1081 {
1082 }
1083 #endif
1084
1085 #if defined(CONFIG_MEM_SOFT_DIRTY) && defined(CONFIG_TRANSPARENT_HUGEPAGE)
1086 static inline void clear_soft_dirty_pmd(struct vm_area_struct *vma,
1087                 unsigned long addr, pmd_t *pmdp)
1088 {
1089         pmd_t old, pmd = *pmdp;
1090
1091         if (pmd_present(pmd)) {
1092                 /* See comment in change_huge_pmd() */
1093                 old = pmdp_invalidate(vma, addr, pmdp);
1094                 if (pmd_dirty(old))
1095                         pmd = pmd_mkdirty(pmd);
1096                 if (pmd_young(old))
1097                         pmd = pmd_mkyoung(pmd);
1098
1099                 pmd = pmd_wrprotect(pmd);
1100                 pmd = pmd_clear_soft_dirty(pmd);
1101
1102                 set_pmd_at(vma->vm_mm, addr, pmdp, pmd);
1103         } else if (is_migration_entry(pmd_to_swp_entry(pmd))) {
1104                 pmd = pmd_swp_clear_soft_dirty(pmd);
1105                 set_pmd_at(vma->vm_mm, addr, pmdp, pmd);
1106         }
1107 }
1108 #else
1109 static inline void clear_soft_dirty_pmd(struct vm_area_struct *vma,
1110                 unsigned long addr, pmd_t *pmdp)
1111 {
1112 }
1113 #endif
1114
1115 static int clear_refs_pte_range(pmd_t *pmd, unsigned long addr,
1116                                 unsigned long end, struct mm_walk *walk)
1117 {
1118         struct clear_refs_private *cp = walk->private;
1119         struct vm_area_struct *vma = walk->vma;
1120         pte_t *pte, ptent;
1121         spinlock_t *ptl;
1122         struct page *page;
1123
1124         ptl = pmd_trans_huge_lock(pmd, vma);
1125         if (ptl) {
1126                 if (cp->type == CLEAR_REFS_SOFT_DIRTY) {
1127                         clear_soft_dirty_pmd(vma, addr, pmd);
1128                         goto out;
1129                 }
1130
1131                 if (!pmd_present(*pmd))
1132                         goto out;
1133
1134                 page = pmd_page(*pmd);
1135
1136                 /* Clear accessed and referenced bits. */
1137                 pmdp_test_and_clear_young(vma, addr, pmd);
1138                 test_and_clear_page_young(page);
1139                 ClearPageReferenced(page);
1140 out:
1141                 spin_unlock(ptl);
1142                 return 0;
1143         }
1144
1145         if (pmd_trans_unstable(pmd))
1146                 return 0;
1147
1148         pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
1149         for (; addr != end; pte++, addr += PAGE_SIZE) {
1150                 ptent = *pte;
1151
1152                 if (cp->type == CLEAR_REFS_SOFT_DIRTY) {
1153                         clear_soft_dirty(vma, addr, pte);
1154                         continue;
1155                 }
1156
1157                 if (!pte_present(ptent))
1158                         continue;
1159
1160                 page = vm_normal_page(vma, addr, ptent);
1161                 if (!page)
1162                         continue;
1163
1164                 /* Clear accessed and referenced bits. */
1165                 ptep_test_and_clear_young(vma, addr, pte);
1166                 test_and_clear_page_young(page);
1167                 ClearPageReferenced(page);
1168         }
1169         pte_unmap_unlock(pte - 1, ptl);
1170         cond_resched();
1171         return 0;
1172 }
1173
1174 static int clear_refs_test_walk(unsigned long start, unsigned long end,
1175                                 struct mm_walk *walk)
1176 {
1177         struct clear_refs_private *cp = walk->private;
1178         struct vm_area_struct *vma = walk->vma;
1179
1180         if (vma->vm_flags & VM_PFNMAP)
1181                 return 1;
1182
1183         /*
1184          * Writing 1 to /proc/pid/clear_refs affects all pages.
1185          * Writing 2 to /proc/pid/clear_refs only affects anonymous pages.
1186          * Writing 3 to /proc/pid/clear_refs only affects file mapped pages.
1187          * Writing 4 to /proc/pid/clear_refs affects all pages.
1188          */
1189         if (cp->type == CLEAR_REFS_ANON && vma->vm_file)
1190                 return 1;
1191         if (cp->type == CLEAR_REFS_MAPPED && !vma->vm_file)
1192                 return 1;
1193         return 0;
1194 }
1195
1196 static const struct mm_walk_ops clear_refs_walk_ops = {
1197         .pmd_entry              = clear_refs_pte_range,
1198         .test_walk              = clear_refs_test_walk,
1199 };
1200
1201 static ssize_t clear_refs_write(struct file *file, const char __user *buf,
1202                                 size_t count, loff_t *ppos)
1203 {
1204         struct task_struct *task;
1205         char buffer[PROC_NUMBUF];
1206         struct mm_struct *mm;
1207         struct vm_area_struct *vma;
1208         enum clear_refs_types type;
1209         int itype;
1210         int rv;
1211
1212         memset(buffer, 0, sizeof(buffer));
1213         if (count > sizeof(buffer) - 1)
1214                 count = sizeof(buffer) - 1;
1215         if (copy_from_user(buffer, buf, count))
1216                 return -EFAULT;
1217         rv = kstrtoint(strstrip(buffer), 10, &itype);
1218         if (rv < 0)
1219                 return rv;
1220         type = (enum clear_refs_types)itype;
1221         if (type < CLEAR_REFS_ALL || type >= CLEAR_REFS_LAST)
1222                 return -EINVAL;
1223
1224         task = get_proc_task(file_inode(file));
1225         if (!task)
1226                 return -ESRCH;
1227         mm = get_task_mm(task);
1228         if (mm) {
1229                 struct mmu_notifier_range range;
1230                 struct clear_refs_private cp = {
1231                         .type = type,
1232                 };
1233
1234                 if (mmap_write_lock_killable(mm)) {
1235                         count = -EINTR;
1236                         goto out_mm;
1237                 }
1238                 if (type == CLEAR_REFS_MM_HIWATER_RSS) {
1239                         /*
1240                          * Writing 5 to /proc/pid/clear_refs resets the peak
1241                          * resident set size to this mm's current rss value.
1242                          */
1243                         reset_mm_hiwater_rss(mm);
1244                         goto out_unlock;
1245                 }
1246
1247                 if (type == CLEAR_REFS_SOFT_DIRTY) {
1248                         for (vma = mm->mmap; vma; vma = vma->vm_next) {
1249                                 if (!(vma->vm_flags & VM_SOFTDIRTY))
1250                                         continue;
1251                                 vma->vm_flags &= ~VM_SOFTDIRTY;
1252                                 vma_set_page_prot(vma);
1253                         }
1254
1255                         inc_tlb_flush_pending(mm);
1256                         mmu_notifier_range_init(&range, MMU_NOTIFY_SOFT_DIRTY,
1257                                                 0, NULL, mm, 0, -1UL);
1258                         mmu_notifier_invalidate_range_start(&range);
1259                 }
1260                 walk_page_range(mm, 0, mm->highest_vm_end, &clear_refs_walk_ops,
1261                                 &cp);
1262                 if (type == CLEAR_REFS_SOFT_DIRTY) {
1263                         mmu_notifier_invalidate_range_end(&range);
1264                         flush_tlb_mm(mm);
1265                         dec_tlb_flush_pending(mm);
1266                 }
1267 out_unlock:
1268                 mmap_write_unlock(mm);
1269 out_mm:
1270                 mmput(mm);
1271         }
1272         put_task_struct(task);
1273
1274         return count;
1275 }
1276
1277 const struct file_operations proc_clear_refs_operations = {
1278         .write          = clear_refs_write,
1279         .llseek         = noop_llseek,
1280 };
1281
1282 typedef struct {
1283         u64 pme;
1284 } pagemap_entry_t;
1285
1286 struct pagemapread {
1287         int pos, len;           /* units: PM_ENTRY_BYTES, not bytes */
1288         pagemap_entry_t *buffer;
1289         bool show_pfn;
1290 };
1291
1292 #define PAGEMAP_WALK_SIZE       (PMD_SIZE)
1293 #define PAGEMAP_WALK_MASK       (PMD_MASK)
1294
1295 #define PM_ENTRY_BYTES          sizeof(pagemap_entry_t)
1296 #define PM_PFRAME_BITS          55
1297 #define PM_PFRAME_MASK          GENMASK_ULL(PM_PFRAME_BITS - 1, 0)
1298 #define PM_SOFT_DIRTY           BIT_ULL(55)
1299 #define PM_MMAP_EXCLUSIVE       BIT_ULL(56)
1300 #define PM_UFFD_WP              BIT_ULL(57)
1301 #define PM_FILE                 BIT_ULL(61)
1302 #define PM_SWAP                 BIT_ULL(62)
1303 #define PM_PRESENT              BIT_ULL(63)
1304
1305 #define PM_END_OF_BUFFER    1
1306
1307 static inline pagemap_entry_t make_pme(u64 frame, u64 flags)
1308 {
1309         return (pagemap_entry_t) { .pme = (frame & PM_PFRAME_MASK) | flags };
1310 }
1311
1312 static int add_to_pagemap(unsigned long addr, pagemap_entry_t *pme,
1313                           struct pagemapread *pm)
1314 {
1315         pm->buffer[pm->pos++] = *pme;
1316         if (pm->pos >= pm->len)
1317                 return PM_END_OF_BUFFER;
1318         return 0;
1319 }
1320
1321 static int pagemap_pte_hole(unsigned long start, unsigned long end,
1322                             __always_unused int depth, struct mm_walk *walk)
1323 {
1324         struct pagemapread *pm = walk->private;
1325         unsigned long addr = start;
1326         int err = 0;
1327
1328         while (addr < end) {
1329                 struct vm_area_struct *vma = find_vma(walk->mm, addr);
1330                 pagemap_entry_t pme = make_pme(0, 0);
1331                 /* End of address space hole, which we mark as non-present. */
1332                 unsigned long hole_end;
1333
1334                 if (vma)
1335                         hole_end = min(end, vma->vm_start);
1336                 else
1337                         hole_end = end;
1338
1339                 for (; addr < hole_end; addr += PAGE_SIZE) {
1340                         err = add_to_pagemap(addr, &pme, pm);
1341                         if (err)
1342                                 goto out;
1343                 }
1344
1345                 if (!vma)
1346                         break;
1347
1348                 /* Addresses in the VMA. */
1349                 if (vma->vm_flags & VM_SOFTDIRTY)
1350                         pme = make_pme(0, PM_SOFT_DIRTY);
1351                 for (; addr < min(end, vma->vm_end); addr += PAGE_SIZE) {
1352                         err = add_to_pagemap(addr, &pme, pm);
1353                         if (err)
1354                                 goto out;
1355                 }
1356         }
1357 out:
1358         return err;
1359 }
1360
1361 static pagemap_entry_t pte_to_pagemap_entry(struct pagemapread *pm,
1362                 struct vm_area_struct *vma, unsigned long addr, pte_t pte)
1363 {
1364         u64 frame = 0, flags = 0;
1365         struct page *page = NULL;
1366
1367         if (pte_present(pte)) {
1368                 if (pm->show_pfn)
1369                         frame = pte_pfn(pte);
1370                 flags |= PM_PRESENT;
1371                 page = vm_normal_page(vma, addr, pte);
1372                 if (pte_soft_dirty(pte))
1373                         flags |= PM_SOFT_DIRTY;
1374                 if (pte_uffd_wp(pte))
1375                         flags |= PM_UFFD_WP;
1376         } else if (is_swap_pte(pte)) {
1377                 swp_entry_t entry;
1378                 if (pte_swp_soft_dirty(pte))
1379                         flags |= PM_SOFT_DIRTY;
1380                 if (pte_swp_uffd_wp(pte))
1381                         flags |= PM_UFFD_WP;
1382                 entry = pte_to_swp_entry(pte);
1383                 if (pm->show_pfn)
1384                         frame = swp_type(entry) |
1385                                 (swp_offset(entry) << MAX_SWAPFILES_SHIFT);
1386                 flags |= PM_SWAP;
1387                 if (is_pfn_swap_entry(entry))
1388                         page = pfn_swap_entry_to_page(entry);
1389         }
1390
1391         if (page && !PageAnon(page))
1392                 flags |= PM_FILE;
1393         if (page && page_mapcount(page) == 1)
1394                 flags |= PM_MMAP_EXCLUSIVE;
1395         if (vma->vm_flags & VM_SOFTDIRTY)
1396                 flags |= PM_SOFT_DIRTY;
1397
1398         return make_pme(frame, flags);
1399 }
1400
1401 static int pagemap_pmd_range(pmd_t *pmdp, unsigned long addr, unsigned long end,
1402                              struct mm_walk *walk)
1403 {
1404         struct vm_area_struct *vma = walk->vma;
1405         struct pagemapread *pm = walk->private;
1406         spinlock_t *ptl;
1407         pte_t *pte, *orig_pte;
1408         int err = 0;
1409
1410 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1411         ptl = pmd_trans_huge_lock(pmdp, vma);
1412         if (ptl) {
1413                 u64 flags = 0, frame = 0;
1414                 pmd_t pmd = *pmdp;
1415                 struct page *page = NULL;
1416
1417                 if (vma->vm_flags & VM_SOFTDIRTY)
1418                         flags |= PM_SOFT_DIRTY;
1419
1420                 if (pmd_present(pmd)) {
1421                         page = pmd_page(pmd);
1422
1423                         flags |= PM_PRESENT;
1424                         if (pmd_soft_dirty(pmd))
1425                                 flags |= PM_SOFT_DIRTY;
1426                         if (pmd_uffd_wp(pmd))
1427                                 flags |= PM_UFFD_WP;
1428                         if (pm->show_pfn)
1429                                 frame = pmd_pfn(pmd) +
1430                                         ((addr & ~PMD_MASK) >> PAGE_SHIFT);
1431                 }
1432 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
1433                 else if (is_swap_pmd(pmd)) {
1434                         swp_entry_t entry = pmd_to_swp_entry(pmd);
1435                         unsigned long offset;
1436
1437                         if (pm->show_pfn) {
1438                                 offset = swp_offset(entry) +
1439                                         ((addr & ~PMD_MASK) >> PAGE_SHIFT);
1440                                 frame = swp_type(entry) |
1441                                         (offset << MAX_SWAPFILES_SHIFT);
1442                         }
1443                         flags |= PM_SWAP;
1444                         if (pmd_swp_soft_dirty(pmd))
1445                                 flags |= PM_SOFT_DIRTY;
1446                         if (pmd_swp_uffd_wp(pmd))
1447                                 flags |= PM_UFFD_WP;
1448                         VM_BUG_ON(!is_pmd_migration_entry(pmd));
1449                         page = pfn_swap_entry_to_page(entry);
1450                 }
1451 #endif
1452
1453                 if (page && page_mapcount(page) == 1)
1454                         flags |= PM_MMAP_EXCLUSIVE;
1455
1456                 for (; addr != end; addr += PAGE_SIZE) {
1457                         pagemap_entry_t pme = make_pme(frame, flags);
1458
1459                         err = add_to_pagemap(addr, &pme, pm);
1460                         if (err)
1461                                 break;
1462                         if (pm->show_pfn) {
1463                                 if (flags & PM_PRESENT)
1464                                         frame++;
1465                                 else if (flags & PM_SWAP)
1466                                         frame += (1 << MAX_SWAPFILES_SHIFT);
1467                         }
1468                 }
1469                 spin_unlock(ptl);
1470                 return err;
1471         }
1472
1473         if (pmd_trans_unstable(pmdp))
1474                 return 0;
1475 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
1476
1477         /*
1478          * We can assume that @vma always points to a valid one and @end never
1479          * goes beyond vma->vm_end.
1480          */
1481         orig_pte = pte = pte_offset_map_lock(walk->mm, pmdp, addr, &ptl);
1482         for (; addr < end; pte++, addr += PAGE_SIZE) {
1483                 pagemap_entry_t pme;
1484
1485                 pme = pte_to_pagemap_entry(pm, vma, addr, *pte);
1486                 err = add_to_pagemap(addr, &pme, pm);
1487                 if (err)
1488                         break;
1489         }
1490         pte_unmap_unlock(orig_pte, ptl);
1491
1492         cond_resched();
1493
1494         return err;
1495 }
1496
1497 #ifdef CONFIG_HUGETLB_PAGE
1498 /* This function walks within one hugetlb entry in the single call */
1499 static int pagemap_hugetlb_range(pte_t *ptep, unsigned long hmask,
1500                                  unsigned long addr, unsigned long end,
1501                                  struct mm_walk *walk)
1502 {
1503         struct pagemapread *pm = walk->private;
1504         struct vm_area_struct *vma = walk->vma;
1505         u64 flags = 0, frame = 0;
1506         int err = 0;
1507         pte_t pte;
1508
1509         if (vma->vm_flags & VM_SOFTDIRTY)
1510                 flags |= PM_SOFT_DIRTY;
1511
1512         pte = huge_ptep_get(ptep);
1513         if (pte_present(pte)) {
1514                 struct page *page = pte_page(pte);
1515
1516                 if (!PageAnon(page))
1517                         flags |= PM_FILE;
1518
1519                 if (page_mapcount(page) == 1)
1520                         flags |= PM_MMAP_EXCLUSIVE;
1521
1522                 flags |= PM_PRESENT;
1523                 if (pm->show_pfn)
1524                         frame = pte_pfn(pte) +
1525                                 ((addr & ~hmask) >> PAGE_SHIFT);
1526         }
1527
1528         for (; addr != end; addr += PAGE_SIZE) {
1529                 pagemap_entry_t pme = make_pme(frame, flags);
1530
1531                 err = add_to_pagemap(addr, &pme, pm);
1532                 if (err)
1533                         return err;
1534                 if (pm->show_pfn && (flags & PM_PRESENT))
1535                         frame++;
1536         }
1537
1538         cond_resched();
1539
1540         return err;
1541 }
1542 #else
1543 #define pagemap_hugetlb_range   NULL
1544 #endif /* HUGETLB_PAGE */
1545
1546 static const struct mm_walk_ops pagemap_ops = {
1547         .pmd_entry      = pagemap_pmd_range,
1548         .pte_hole       = pagemap_pte_hole,
1549         .hugetlb_entry  = pagemap_hugetlb_range,
1550 };
1551
1552 /*
1553  * /proc/pid/pagemap - an array mapping virtual pages to pfns
1554  *
1555  * For each page in the address space, this file contains one 64-bit entry
1556  * consisting of the following:
1557  *
1558  * Bits 0-54  page frame number (PFN) if present
1559  * Bits 0-4   swap type if swapped
1560  * Bits 5-54  swap offset if swapped
1561  * Bit  55    pte is soft-dirty (see Documentation/admin-guide/mm/soft-dirty.rst)
1562  * Bit  56    page exclusively mapped
1563  * Bits 57-60 zero
1564  * Bit  61    page is file-page or shared-anon
1565  * Bit  62    page swapped
1566  * Bit  63    page present
1567  *
1568  * If the page is not present but in swap, then the PFN contains an
1569  * encoding of the swap file number and the page's offset into the
1570  * swap. Unmapped pages return a null PFN. This allows determining
1571  * precisely which pages are mapped (or in swap) and comparing mapped
1572  * pages between processes.
1573  *
1574  * Efficient users of this interface will use /proc/pid/maps to
1575  * determine which areas of memory are actually mapped and llseek to
1576  * skip over unmapped regions.
1577  */
1578 static ssize_t pagemap_read(struct file *file, char __user *buf,
1579                             size_t count, loff_t *ppos)
1580 {
1581         struct mm_struct *mm = file->private_data;
1582         struct pagemapread pm;
1583         unsigned long src;
1584         unsigned long svpfn;
1585         unsigned long start_vaddr;
1586         unsigned long end_vaddr;
1587         int ret = 0, copied = 0;
1588
1589         if (!mm || !mmget_not_zero(mm))
1590                 goto out;
1591
1592         ret = -EINVAL;
1593         /* file position must be aligned */
1594         if ((*ppos % PM_ENTRY_BYTES) || (count % PM_ENTRY_BYTES))
1595                 goto out_mm;
1596
1597         ret = 0;
1598         if (!count)
1599                 goto out_mm;
1600
1601         /* do not disclose physical addresses: attack vector */
1602         pm.show_pfn = file_ns_capable(file, &init_user_ns, CAP_SYS_ADMIN);
1603
1604         pm.len = (PAGEMAP_WALK_SIZE >> PAGE_SHIFT);
1605         pm.buffer = kmalloc_array(pm.len, PM_ENTRY_BYTES, GFP_KERNEL);
1606         ret = -ENOMEM;
1607         if (!pm.buffer)
1608                 goto out_mm;
1609
1610         src = *ppos;
1611         svpfn = src / PM_ENTRY_BYTES;
1612         end_vaddr = mm->task_size;
1613
1614         /* watch out for wraparound */
1615         start_vaddr = end_vaddr;
1616         if (svpfn <= (ULONG_MAX >> PAGE_SHIFT))
1617                 start_vaddr = untagged_addr(svpfn << PAGE_SHIFT);
1618
1619         /* Ensure the address is inside the task */
1620         if (start_vaddr > mm->task_size)
1621                 start_vaddr = end_vaddr;
1622
1623         /*
1624          * The odds are that this will stop walking way
1625          * before end_vaddr, because the length of the
1626          * user buffer is tracked in "pm", and the walk
1627          * will stop when we hit the end of the buffer.
1628          */
1629         ret = 0;
1630         while (count && (start_vaddr < end_vaddr)) {
1631                 int len;
1632                 unsigned long end;
1633
1634                 pm.pos = 0;
1635                 end = (start_vaddr + PAGEMAP_WALK_SIZE) & PAGEMAP_WALK_MASK;
1636                 /* overflow ? */
1637                 if (end < start_vaddr || end > end_vaddr)
1638                         end = end_vaddr;
1639                 ret = mmap_read_lock_killable(mm);
1640                 if (ret)
1641                         goto out_free;
1642                 ret = walk_page_range(mm, start_vaddr, end, &pagemap_ops, &pm);
1643                 mmap_read_unlock(mm);
1644                 start_vaddr = end;
1645
1646                 len = min(count, PM_ENTRY_BYTES * pm.pos);
1647                 if (copy_to_user(buf, pm.buffer, len)) {
1648                         ret = -EFAULT;
1649                         goto out_free;
1650                 }
1651                 copied += len;
1652                 buf += len;
1653                 count -= len;
1654         }
1655         *ppos += copied;
1656         if (!ret || ret == PM_END_OF_BUFFER)
1657                 ret = copied;
1658
1659 out_free:
1660         kfree(pm.buffer);
1661 out_mm:
1662         mmput(mm);
1663 out:
1664         return ret;
1665 }
1666
1667 static int pagemap_open(struct inode *inode, struct file *file)
1668 {
1669         struct mm_struct *mm;
1670
1671         mm = proc_mem_open(inode, PTRACE_MODE_READ);
1672         if (IS_ERR(mm))
1673                 return PTR_ERR(mm);
1674         file->private_data = mm;
1675         return 0;
1676 }
1677
1678 static int pagemap_release(struct inode *inode, struct file *file)
1679 {
1680         struct mm_struct *mm = file->private_data;
1681
1682         if (mm)
1683                 mmdrop(mm);
1684         return 0;
1685 }
1686
1687 const struct file_operations proc_pagemap_operations = {
1688         .llseek         = mem_lseek, /* borrow this */
1689         .read           = pagemap_read,
1690         .open           = pagemap_open,
1691         .release        = pagemap_release,
1692 };
1693 #endif /* CONFIG_PROC_PAGE_MONITOR */
1694
1695 #ifdef CONFIG_NUMA
1696
1697 struct numa_maps {
1698         unsigned long pages;
1699         unsigned long anon;
1700         unsigned long active;
1701         unsigned long writeback;
1702         unsigned long mapcount_max;
1703         unsigned long dirty;
1704         unsigned long swapcache;
1705         unsigned long node[MAX_NUMNODES];
1706 };
1707
1708 struct numa_maps_private {
1709         struct proc_maps_private proc_maps;
1710         struct numa_maps md;
1711 };
1712
1713 static void gather_stats(struct page *page, struct numa_maps *md, int pte_dirty,
1714                         unsigned long nr_pages)
1715 {
1716         int count = page_mapcount(page);
1717
1718         md->pages += nr_pages;
1719         if (pte_dirty || PageDirty(page))
1720                 md->dirty += nr_pages;
1721
1722         if (PageSwapCache(page))
1723                 md->swapcache += nr_pages;
1724
1725         if (PageActive(page) || PageUnevictable(page))
1726                 md->active += nr_pages;
1727
1728         if (PageWriteback(page))
1729                 md->writeback += nr_pages;
1730
1731         if (PageAnon(page))
1732                 md->anon += nr_pages;
1733
1734         if (count > md->mapcount_max)
1735                 md->mapcount_max = count;
1736
1737         md->node[page_to_nid(page)] += nr_pages;
1738 }
1739
1740 static struct page *can_gather_numa_stats(pte_t pte, struct vm_area_struct *vma,
1741                 unsigned long addr)
1742 {
1743         struct page *page;
1744         int nid;
1745
1746         if (!pte_present(pte))
1747                 return NULL;
1748
1749         page = vm_normal_page(vma, addr, pte);
1750         if (!page)
1751                 return NULL;
1752
1753         if (PageReserved(page))
1754                 return NULL;
1755
1756         nid = page_to_nid(page);
1757         if (!node_isset(nid, node_states[N_MEMORY]))
1758                 return NULL;
1759
1760         return page;
1761 }
1762
1763 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1764 static struct page *can_gather_numa_stats_pmd(pmd_t pmd,
1765                                               struct vm_area_struct *vma,
1766                                               unsigned long addr)
1767 {
1768         struct page *page;
1769         int nid;
1770
1771         if (!pmd_present(pmd))
1772                 return NULL;
1773
1774         page = vm_normal_page_pmd(vma, addr, pmd);
1775         if (!page)
1776                 return NULL;
1777
1778         if (PageReserved(page))
1779                 return NULL;
1780
1781         nid = page_to_nid(page);
1782         if (!node_isset(nid, node_states[N_MEMORY]))
1783                 return NULL;
1784
1785         return page;
1786 }
1787 #endif
1788
1789 static int gather_pte_stats(pmd_t *pmd, unsigned long addr,
1790                 unsigned long end, struct mm_walk *walk)
1791 {
1792         struct numa_maps *md = walk->private;
1793         struct vm_area_struct *vma = walk->vma;
1794         spinlock_t *ptl;
1795         pte_t *orig_pte;
1796         pte_t *pte;
1797
1798 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1799         ptl = pmd_trans_huge_lock(pmd, vma);
1800         if (ptl) {
1801                 struct page *page;
1802
1803                 page = can_gather_numa_stats_pmd(*pmd, vma, addr);
1804                 if (page)
1805                         gather_stats(page, md, pmd_dirty(*pmd),
1806                                      HPAGE_PMD_SIZE/PAGE_SIZE);
1807                 spin_unlock(ptl);
1808                 return 0;
1809         }
1810
1811         if (pmd_trans_unstable(pmd))
1812                 return 0;
1813 #endif
1814         orig_pte = pte = pte_offset_map_lock(walk->mm, pmd, addr, &ptl);
1815         do {
1816                 struct page *page = can_gather_numa_stats(*pte, vma, addr);
1817                 if (!page)
1818                         continue;
1819                 gather_stats(page, md, pte_dirty(*pte), 1);
1820
1821         } while (pte++, addr += PAGE_SIZE, addr != end);
1822         pte_unmap_unlock(orig_pte, ptl);
1823         cond_resched();
1824         return 0;
1825 }
1826 #ifdef CONFIG_HUGETLB_PAGE
1827 static int gather_hugetlb_stats(pte_t *pte, unsigned long hmask,
1828                 unsigned long addr, unsigned long end, struct mm_walk *walk)
1829 {
1830         pte_t huge_pte = huge_ptep_get(pte);
1831         struct numa_maps *md;
1832         struct page *page;
1833
1834         if (!pte_present(huge_pte))
1835                 return 0;
1836
1837         page = pte_page(huge_pte);
1838         if (!page)
1839                 return 0;
1840
1841         md = walk->private;
1842         gather_stats(page, md, pte_dirty(huge_pte), 1);
1843         return 0;
1844 }
1845
1846 #else
1847 static int gather_hugetlb_stats(pte_t *pte, unsigned long hmask,
1848                 unsigned long addr, unsigned long end, struct mm_walk *walk)
1849 {
1850         return 0;
1851 }
1852 #endif
1853
1854 static const struct mm_walk_ops show_numa_ops = {
1855         .hugetlb_entry = gather_hugetlb_stats,
1856         .pmd_entry = gather_pte_stats,
1857 };
1858
1859 /*
1860  * Display pages allocated per node and memory policy via /proc.
1861  */
1862 static int show_numa_map(struct seq_file *m, void *v)
1863 {
1864         struct numa_maps_private *numa_priv = m->private;
1865         struct proc_maps_private *proc_priv = &numa_priv->proc_maps;
1866         struct vm_area_struct *vma = v;
1867         struct numa_maps *md = &numa_priv->md;
1868         struct file *file = vma->vm_file;
1869         struct mm_struct *mm = vma->vm_mm;
1870         struct mempolicy *pol;
1871         char buffer[64];
1872         int nid;
1873
1874         if (!mm)
1875                 return 0;
1876
1877         /* Ensure we start with an empty set of numa_maps statistics. */
1878         memset(md, 0, sizeof(*md));
1879
1880         pol = __get_vma_policy(vma, vma->vm_start);
1881         if (pol) {
1882                 mpol_to_str(buffer, sizeof(buffer), pol);
1883                 mpol_cond_put(pol);
1884         } else {
1885                 mpol_to_str(buffer, sizeof(buffer), proc_priv->task_mempolicy);
1886         }
1887
1888         seq_printf(m, "%08lx %s", vma->vm_start, buffer);
1889
1890         if (file) {
1891                 seq_puts(m, " file=");
1892                 seq_file_path(m, file, "\n\t= ");
1893         } else if (vma->vm_start <= mm->brk && vma->vm_end >= mm->start_brk) {
1894                 seq_puts(m, " heap");
1895         } else if (is_stack(vma)) {
1896                 seq_puts(m, " stack");
1897         }
1898
1899         if (is_vm_hugetlb_page(vma))
1900                 seq_puts(m, " huge");
1901
1902         /* mmap_lock is held by m_start */
1903         walk_page_vma(vma, &show_numa_ops, md);
1904
1905         if (!md->pages)
1906                 goto out;
1907
1908         if (md->anon)
1909                 seq_printf(m, " anon=%lu", md->anon);
1910
1911         if (md->dirty)
1912                 seq_printf(m, " dirty=%lu", md->dirty);
1913
1914         if (md->pages != md->anon && md->pages != md->dirty)
1915                 seq_printf(m, " mapped=%lu", md->pages);
1916
1917         if (md->mapcount_max > 1)
1918                 seq_printf(m, " mapmax=%lu", md->mapcount_max);
1919
1920         if (md->swapcache)
1921                 seq_printf(m, " swapcache=%lu", md->swapcache);
1922
1923         if (md->active < md->pages && !is_vm_hugetlb_page(vma))
1924                 seq_printf(m, " active=%lu", md->active);
1925
1926         if (md->writeback)
1927                 seq_printf(m, " writeback=%lu", md->writeback);
1928
1929         for_each_node_state(nid, N_MEMORY)
1930                 if (md->node[nid])
1931                         seq_printf(m, " N%d=%lu", nid, md->node[nid]);
1932
1933         seq_printf(m, " kernelpagesize_kB=%lu", vma_kernel_pagesize(vma) >> 10);
1934 out:
1935         seq_putc(m, '\n');
1936         return 0;
1937 }
1938
1939 static const struct seq_operations proc_pid_numa_maps_op = {
1940         .start  = m_start,
1941         .next   = m_next,
1942         .stop   = m_stop,
1943         .show   = show_numa_map,
1944 };
1945
1946 static int pid_numa_maps_open(struct inode *inode, struct file *file)
1947 {
1948         return proc_maps_open(inode, file, &proc_pid_numa_maps_op,
1949                                 sizeof(struct numa_maps_private));
1950 }
1951
1952 const struct file_operations proc_pid_numa_maps_operations = {
1953         .open           = pid_numa_maps_open,
1954         .read           = seq_read,
1955         .llseek         = seq_lseek,
1956         .release        = proc_map_release,
1957 };
1958
1959 #endif /* CONFIG_NUMA */