Merge branches 'clk-range', 'clk-uniphier', 'clk-apple' and 'clk-qcom' into clk-next
[linux-2.6-microblaze.git] / fs / proc / task_mmu.c
1 // SPDX-License-Identifier: GPL-2.0
2 #include <linux/pagewalk.h>
3 #include <linux/vmacache.h>
4 #include <linux/mm_inline.h>
5 #include <linux/hugetlb.h>
6 #include <linux/huge_mm.h>
7 #include <linux/mount.h>
8 #include <linux/seq_file.h>
9 #include <linux/highmem.h>
10 #include <linux/ptrace.h>
11 #include <linux/slab.h>
12 #include <linux/pagemap.h>
13 #include <linux/mempolicy.h>
14 #include <linux/rmap.h>
15 #include <linux/swap.h>
16 #include <linux/sched/mm.h>
17 #include <linux/swapops.h>
18 #include <linux/mmu_notifier.h>
19 #include <linux/page_idle.h>
20 #include <linux/shmem_fs.h>
21 #include <linux/uaccess.h>
22 #include <linux/pkeys.h>
23
24 #include <asm/elf.h>
25 #include <asm/tlb.h>
26 #include <asm/tlbflush.h>
27 #include "internal.h"
28
29 #define SEQ_PUT_DEC(str, val) \
30                 seq_put_decimal_ull_width(m, str, (val) << (PAGE_SHIFT-10), 8)
31 void task_mem(struct seq_file *m, struct mm_struct *mm)
32 {
33         unsigned long text, lib, swap, anon, file, shmem;
34         unsigned long hiwater_vm, total_vm, hiwater_rss, total_rss;
35
36         anon = get_mm_counter(mm, MM_ANONPAGES);
37         file = get_mm_counter(mm, MM_FILEPAGES);
38         shmem = get_mm_counter(mm, MM_SHMEMPAGES);
39
40         /*
41          * Note: to minimize their overhead, mm maintains hiwater_vm and
42          * hiwater_rss only when about to *lower* total_vm or rss.  Any
43          * collector of these hiwater stats must therefore get total_vm
44          * and rss too, which will usually be the higher.  Barriers? not
45          * worth the effort, such snapshots can always be inconsistent.
46          */
47         hiwater_vm = total_vm = mm->total_vm;
48         if (hiwater_vm < mm->hiwater_vm)
49                 hiwater_vm = mm->hiwater_vm;
50         hiwater_rss = total_rss = anon + file + shmem;
51         if (hiwater_rss < mm->hiwater_rss)
52                 hiwater_rss = mm->hiwater_rss;
53
54         /* split executable areas between text and lib */
55         text = PAGE_ALIGN(mm->end_code) - (mm->start_code & PAGE_MASK);
56         text = min(text, mm->exec_vm << PAGE_SHIFT);
57         lib = (mm->exec_vm << PAGE_SHIFT) - text;
58
59         swap = get_mm_counter(mm, MM_SWAPENTS);
60         SEQ_PUT_DEC("VmPeak:\t", hiwater_vm);
61         SEQ_PUT_DEC(" kB\nVmSize:\t", total_vm);
62         SEQ_PUT_DEC(" kB\nVmLck:\t", mm->locked_vm);
63         SEQ_PUT_DEC(" kB\nVmPin:\t", atomic64_read(&mm->pinned_vm));
64         SEQ_PUT_DEC(" kB\nVmHWM:\t", hiwater_rss);
65         SEQ_PUT_DEC(" kB\nVmRSS:\t", total_rss);
66         SEQ_PUT_DEC(" kB\nRssAnon:\t", anon);
67         SEQ_PUT_DEC(" kB\nRssFile:\t", file);
68         SEQ_PUT_DEC(" kB\nRssShmem:\t", shmem);
69         SEQ_PUT_DEC(" kB\nVmData:\t", mm->data_vm);
70         SEQ_PUT_DEC(" kB\nVmStk:\t", mm->stack_vm);
71         seq_put_decimal_ull_width(m,
72                     " kB\nVmExe:\t", text >> 10, 8);
73         seq_put_decimal_ull_width(m,
74                     " kB\nVmLib:\t", lib >> 10, 8);
75         seq_put_decimal_ull_width(m,
76                     " kB\nVmPTE:\t", mm_pgtables_bytes(mm) >> 10, 8);
77         SEQ_PUT_DEC(" kB\nVmSwap:\t", swap);
78         seq_puts(m, " kB\n");
79         hugetlb_report_usage(m, mm);
80 }
81 #undef SEQ_PUT_DEC
82
83 unsigned long task_vsize(struct mm_struct *mm)
84 {
85         return PAGE_SIZE * mm->total_vm;
86 }
87
88 unsigned long task_statm(struct mm_struct *mm,
89                          unsigned long *shared, unsigned long *text,
90                          unsigned long *data, unsigned long *resident)
91 {
92         *shared = get_mm_counter(mm, MM_FILEPAGES) +
93                         get_mm_counter(mm, MM_SHMEMPAGES);
94         *text = (PAGE_ALIGN(mm->end_code) - (mm->start_code & PAGE_MASK))
95                                                                 >> PAGE_SHIFT;
96         *data = mm->data_vm + mm->stack_vm;
97         *resident = *shared + get_mm_counter(mm, MM_ANONPAGES);
98         return mm->total_vm;
99 }
100
101 #ifdef CONFIG_NUMA
102 /*
103  * Save get_task_policy() for show_numa_map().
104  */
105 static void hold_task_mempolicy(struct proc_maps_private *priv)
106 {
107         struct task_struct *task = priv->task;
108
109         task_lock(task);
110         priv->task_mempolicy = get_task_policy(task);
111         mpol_get(priv->task_mempolicy);
112         task_unlock(task);
113 }
114 static void release_task_mempolicy(struct proc_maps_private *priv)
115 {
116         mpol_put(priv->task_mempolicy);
117 }
118 #else
119 static void hold_task_mempolicy(struct proc_maps_private *priv)
120 {
121 }
122 static void release_task_mempolicy(struct proc_maps_private *priv)
123 {
124 }
125 #endif
126
127 static void *m_start(struct seq_file *m, loff_t *ppos)
128 {
129         struct proc_maps_private *priv = m->private;
130         unsigned long last_addr = *ppos;
131         struct mm_struct *mm;
132         struct vm_area_struct *vma;
133
134         /* See m_next(). Zero at the start or after lseek. */
135         if (last_addr == -1UL)
136                 return NULL;
137
138         priv->task = get_proc_task(priv->inode);
139         if (!priv->task)
140                 return ERR_PTR(-ESRCH);
141
142         mm = priv->mm;
143         if (!mm || !mmget_not_zero(mm)) {
144                 put_task_struct(priv->task);
145                 priv->task = NULL;
146                 return NULL;
147         }
148
149         if (mmap_read_lock_killable(mm)) {
150                 mmput(mm);
151                 put_task_struct(priv->task);
152                 priv->task = NULL;
153                 return ERR_PTR(-EINTR);
154         }
155
156         hold_task_mempolicy(priv);
157         priv->tail_vma = get_gate_vma(mm);
158
159         vma = find_vma(mm, last_addr);
160         if (vma)
161                 return vma;
162
163         return priv->tail_vma;
164 }
165
166 static void *m_next(struct seq_file *m, void *v, loff_t *ppos)
167 {
168         struct proc_maps_private *priv = m->private;
169         struct vm_area_struct *next, *vma = v;
170
171         if (vma == priv->tail_vma)
172                 next = NULL;
173         else if (vma->vm_next)
174                 next = vma->vm_next;
175         else
176                 next = priv->tail_vma;
177
178         *ppos = next ? next->vm_start : -1UL;
179
180         return next;
181 }
182
183 static void m_stop(struct seq_file *m, void *v)
184 {
185         struct proc_maps_private *priv = m->private;
186         struct mm_struct *mm = priv->mm;
187
188         if (!priv->task)
189                 return;
190
191         release_task_mempolicy(priv);
192         mmap_read_unlock(mm);
193         mmput(mm);
194         put_task_struct(priv->task);
195         priv->task = NULL;
196 }
197
198 static int proc_maps_open(struct inode *inode, struct file *file,
199                         const struct seq_operations *ops, int psize)
200 {
201         struct proc_maps_private *priv = __seq_open_private(file, ops, psize);
202
203         if (!priv)
204                 return -ENOMEM;
205
206         priv->inode = inode;
207         priv->mm = proc_mem_open(inode, PTRACE_MODE_READ);
208         if (IS_ERR(priv->mm)) {
209                 int err = PTR_ERR(priv->mm);
210
211                 seq_release_private(inode, file);
212                 return err;
213         }
214
215         return 0;
216 }
217
218 static int proc_map_release(struct inode *inode, struct file *file)
219 {
220         struct seq_file *seq = file->private_data;
221         struct proc_maps_private *priv = seq->private;
222
223         if (priv->mm)
224                 mmdrop(priv->mm);
225
226         return seq_release_private(inode, file);
227 }
228
229 static int do_maps_open(struct inode *inode, struct file *file,
230                         const struct seq_operations *ops)
231 {
232         return proc_maps_open(inode, file, ops,
233                                 sizeof(struct proc_maps_private));
234 }
235
236 /*
237  * Indicate if the VMA is a stack for the given task; for
238  * /proc/PID/maps that is the stack of the main task.
239  */
240 static int is_stack(struct vm_area_struct *vma)
241 {
242         /*
243          * We make no effort to guess what a given thread considers to be
244          * its "stack".  It's not even well-defined for programs written
245          * languages like Go.
246          */
247         return vma->vm_start <= vma->vm_mm->start_stack &&
248                 vma->vm_end >= vma->vm_mm->start_stack;
249 }
250
251 static void show_vma_header_prefix(struct seq_file *m,
252                                    unsigned long start, unsigned long end,
253                                    vm_flags_t flags, unsigned long long pgoff,
254                                    dev_t dev, unsigned long ino)
255 {
256         seq_setwidth(m, 25 + sizeof(void *) * 6 - 1);
257         seq_put_hex_ll(m, NULL, start, 8);
258         seq_put_hex_ll(m, "-", end, 8);
259         seq_putc(m, ' ');
260         seq_putc(m, flags & VM_READ ? 'r' : '-');
261         seq_putc(m, flags & VM_WRITE ? 'w' : '-');
262         seq_putc(m, flags & VM_EXEC ? 'x' : '-');
263         seq_putc(m, flags & VM_MAYSHARE ? 's' : 'p');
264         seq_put_hex_ll(m, " ", pgoff, 8);
265         seq_put_hex_ll(m, " ", MAJOR(dev), 2);
266         seq_put_hex_ll(m, ":", MINOR(dev), 2);
267         seq_put_decimal_ull(m, " ", ino);
268         seq_putc(m, ' ');
269 }
270
271 static void
272 show_map_vma(struct seq_file *m, struct vm_area_struct *vma)
273 {
274         struct mm_struct *mm = vma->vm_mm;
275         struct file *file = vma->vm_file;
276         vm_flags_t flags = vma->vm_flags;
277         unsigned long ino = 0;
278         unsigned long long pgoff = 0;
279         unsigned long start, end;
280         dev_t dev = 0;
281         const char *name = NULL;
282
283         if (file) {
284                 struct inode *inode = file_inode(vma->vm_file);
285                 dev = inode->i_sb->s_dev;
286                 ino = inode->i_ino;
287                 pgoff = ((loff_t)vma->vm_pgoff) << PAGE_SHIFT;
288         }
289
290         start = vma->vm_start;
291         end = vma->vm_end;
292         show_vma_header_prefix(m, start, end, flags, pgoff, dev, ino);
293
294         /*
295          * Print the dentry name for named mappings, and a
296          * special [heap] marker for the heap:
297          */
298         if (file) {
299                 seq_pad(m, ' ');
300                 seq_file_path(m, file, "\n");
301                 goto done;
302         }
303
304         if (vma->vm_ops && vma->vm_ops->name) {
305                 name = vma->vm_ops->name(vma);
306                 if (name)
307                         goto done;
308         }
309
310         name = arch_vma_name(vma);
311         if (!name) {
312                 const char *anon_name;
313
314                 if (!mm) {
315                         name = "[vdso]";
316                         goto done;
317                 }
318
319                 if (vma->vm_start <= mm->brk &&
320                     vma->vm_end >= mm->start_brk) {
321                         name = "[heap]";
322                         goto done;
323                 }
324
325                 if (is_stack(vma)) {
326                         name = "[stack]";
327                         goto done;
328                 }
329
330                 anon_name = vma_anon_name(vma);
331                 if (anon_name) {
332                         seq_pad(m, ' ');
333                         seq_printf(m, "[anon:%s]", anon_name);
334                 }
335         }
336
337 done:
338         if (name) {
339                 seq_pad(m, ' ');
340                 seq_puts(m, name);
341         }
342         seq_putc(m, '\n');
343 }
344
345 static int show_map(struct seq_file *m, void *v)
346 {
347         show_map_vma(m, v);
348         return 0;
349 }
350
351 static const struct seq_operations proc_pid_maps_op = {
352         .start  = m_start,
353         .next   = m_next,
354         .stop   = m_stop,
355         .show   = show_map
356 };
357
358 static int pid_maps_open(struct inode *inode, struct file *file)
359 {
360         return do_maps_open(inode, file, &proc_pid_maps_op);
361 }
362
363 const struct file_operations proc_pid_maps_operations = {
364         .open           = pid_maps_open,
365         .read           = seq_read,
366         .llseek         = seq_lseek,
367         .release        = proc_map_release,
368 };
369
370 /*
371  * Proportional Set Size(PSS): my share of RSS.
372  *
373  * PSS of a process is the count of pages it has in memory, where each
374  * page is divided by the number of processes sharing it.  So if a
375  * process has 1000 pages all to itself, and 1000 shared with one other
376  * process, its PSS will be 1500.
377  *
378  * To keep (accumulated) division errors low, we adopt a 64bit
379  * fixed-point pss counter to minimize division errors. So (pss >>
380  * PSS_SHIFT) would be the real byte count.
381  *
382  * A shift of 12 before division means (assuming 4K page size):
383  *      - 1M 3-user-pages add up to 8KB errors;
384  *      - supports mapcount up to 2^24, or 16M;
385  *      - supports PSS up to 2^52 bytes, or 4PB.
386  */
387 #define PSS_SHIFT 12
388
389 #ifdef CONFIG_PROC_PAGE_MONITOR
390 struct mem_size_stats {
391         unsigned long resident;
392         unsigned long shared_clean;
393         unsigned long shared_dirty;
394         unsigned long private_clean;
395         unsigned long private_dirty;
396         unsigned long referenced;
397         unsigned long anonymous;
398         unsigned long lazyfree;
399         unsigned long anonymous_thp;
400         unsigned long shmem_thp;
401         unsigned long file_thp;
402         unsigned long swap;
403         unsigned long shared_hugetlb;
404         unsigned long private_hugetlb;
405         u64 pss;
406         u64 pss_anon;
407         u64 pss_file;
408         u64 pss_shmem;
409         u64 pss_locked;
410         u64 swap_pss;
411 };
412
413 static void smaps_page_accumulate(struct mem_size_stats *mss,
414                 struct page *page, unsigned long size, unsigned long pss,
415                 bool dirty, bool locked, bool private)
416 {
417         mss->pss += pss;
418
419         if (PageAnon(page))
420                 mss->pss_anon += pss;
421         else if (PageSwapBacked(page))
422                 mss->pss_shmem += pss;
423         else
424                 mss->pss_file += pss;
425
426         if (locked)
427                 mss->pss_locked += pss;
428
429         if (dirty || PageDirty(page)) {
430                 if (private)
431                         mss->private_dirty += size;
432                 else
433                         mss->shared_dirty += size;
434         } else {
435                 if (private)
436                         mss->private_clean += size;
437                 else
438                         mss->shared_clean += size;
439         }
440 }
441
442 static void smaps_account(struct mem_size_stats *mss, struct page *page,
443                 bool compound, bool young, bool dirty, bool locked,
444                 bool migration)
445 {
446         int i, nr = compound ? compound_nr(page) : 1;
447         unsigned long size = nr * PAGE_SIZE;
448
449         /*
450          * First accumulate quantities that depend only on |size| and the type
451          * of the compound page.
452          */
453         if (PageAnon(page)) {
454                 mss->anonymous += size;
455                 if (!PageSwapBacked(page) && !dirty && !PageDirty(page))
456                         mss->lazyfree += size;
457         }
458
459         mss->resident += size;
460         /* Accumulate the size in pages that have been accessed. */
461         if (young || page_is_young(page) || PageReferenced(page))
462                 mss->referenced += size;
463
464         /*
465          * Then accumulate quantities that may depend on sharing, or that may
466          * differ page-by-page.
467          *
468          * page_count(page) == 1 guarantees the page is mapped exactly once.
469          * If any subpage of the compound page mapped with PTE it would elevate
470          * page_count().
471          *
472          * The page_mapcount() is called to get a snapshot of the mapcount.
473          * Without holding the page lock this snapshot can be slightly wrong as
474          * we cannot always read the mapcount atomically.  It is not safe to
475          * call page_mapcount() even with PTL held if the page is not mapped,
476          * especially for migration entries.  Treat regular migration entries
477          * as mapcount == 1.
478          */
479         if ((page_count(page) == 1) || migration) {
480                 smaps_page_accumulate(mss, page, size, size << PSS_SHIFT, dirty,
481                         locked, true);
482                 return;
483         }
484         for (i = 0; i < nr; i++, page++) {
485                 int mapcount = page_mapcount(page);
486                 unsigned long pss = PAGE_SIZE << PSS_SHIFT;
487                 if (mapcount >= 2)
488                         pss /= mapcount;
489                 smaps_page_accumulate(mss, page, PAGE_SIZE, pss, dirty, locked,
490                                       mapcount < 2);
491         }
492 }
493
494 #ifdef CONFIG_SHMEM
495 static int smaps_pte_hole(unsigned long addr, unsigned long end,
496                           __always_unused int depth, struct mm_walk *walk)
497 {
498         struct mem_size_stats *mss = walk->private;
499         struct vm_area_struct *vma = walk->vma;
500
501         mss->swap += shmem_partial_swap_usage(walk->vma->vm_file->f_mapping,
502                                               linear_page_index(vma, addr),
503                                               linear_page_index(vma, end));
504
505         return 0;
506 }
507 #else
508 #define smaps_pte_hole          NULL
509 #endif /* CONFIG_SHMEM */
510
511 static void smaps_pte_hole_lookup(unsigned long addr, struct mm_walk *walk)
512 {
513 #ifdef CONFIG_SHMEM
514         if (walk->ops->pte_hole) {
515                 /* depth is not used */
516                 smaps_pte_hole(addr, addr + PAGE_SIZE, 0, walk);
517         }
518 #endif
519 }
520
521 static void smaps_pte_entry(pte_t *pte, unsigned long addr,
522                 struct mm_walk *walk)
523 {
524         struct mem_size_stats *mss = walk->private;
525         struct vm_area_struct *vma = walk->vma;
526         bool locked = !!(vma->vm_flags & VM_LOCKED);
527         struct page *page = NULL;
528         bool migration = false;
529
530         if (pte_present(*pte)) {
531                 page = vm_normal_page(vma, addr, *pte);
532         } else if (is_swap_pte(*pte)) {
533                 swp_entry_t swpent = pte_to_swp_entry(*pte);
534
535                 if (!non_swap_entry(swpent)) {
536                         int mapcount;
537
538                         mss->swap += PAGE_SIZE;
539                         mapcount = swp_swapcount(swpent);
540                         if (mapcount >= 2) {
541                                 u64 pss_delta = (u64)PAGE_SIZE << PSS_SHIFT;
542
543                                 do_div(pss_delta, mapcount);
544                                 mss->swap_pss += pss_delta;
545                         } else {
546                                 mss->swap_pss += (u64)PAGE_SIZE << PSS_SHIFT;
547                         }
548                 } else if (is_pfn_swap_entry(swpent)) {
549                         if (is_migration_entry(swpent))
550                                 migration = true;
551                         page = pfn_swap_entry_to_page(swpent);
552                 }
553         } else {
554                 smaps_pte_hole_lookup(addr, walk);
555                 return;
556         }
557
558         if (!page)
559                 return;
560
561         smaps_account(mss, page, false, pte_young(*pte), pte_dirty(*pte),
562                       locked, migration);
563 }
564
565 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
566 static void smaps_pmd_entry(pmd_t *pmd, unsigned long addr,
567                 struct mm_walk *walk)
568 {
569         struct mem_size_stats *mss = walk->private;
570         struct vm_area_struct *vma = walk->vma;
571         bool locked = !!(vma->vm_flags & VM_LOCKED);
572         struct page *page = NULL;
573         bool migration = false;
574
575         if (pmd_present(*pmd)) {
576                 /* FOLL_DUMP will return -EFAULT on huge zero page */
577                 page = follow_trans_huge_pmd(vma, addr, pmd, FOLL_DUMP);
578         } else if (unlikely(thp_migration_supported() && is_swap_pmd(*pmd))) {
579                 swp_entry_t entry = pmd_to_swp_entry(*pmd);
580
581                 if (is_migration_entry(entry)) {
582                         migration = true;
583                         page = pfn_swap_entry_to_page(entry);
584                 }
585         }
586         if (IS_ERR_OR_NULL(page))
587                 return;
588         if (PageAnon(page))
589                 mss->anonymous_thp += HPAGE_PMD_SIZE;
590         else if (PageSwapBacked(page))
591                 mss->shmem_thp += HPAGE_PMD_SIZE;
592         else if (is_zone_device_page(page))
593                 /* pass */;
594         else
595                 mss->file_thp += HPAGE_PMD_SIZE;
596
597         smaps_account(mss, page, true, pmd_young(*pmd), pmd_dirty(*pmd),
598                       locked, migration);
599 }
600 #else
601 static void smaps_pmd_entry(pmd_t *pmd, unsigned long addr,
602                 struct mm_walk *walk)
603 {
604 }
605 #endif
606
607 static int smaps_pte_range(pmd_t *pmd, unsigned long addr, unsigned long end,
608                            struct mm_walk *walk)
609 {
610         struct vm_area_struct *vma = walk->vma;
611         pte_t *pte;
612         spinlock_t *ptl;
613
614         ptl = pmd_trans_huge_lock(pmd, vma);
615         if (ptl) {
616                 smaps_pmd_entry(pmd, addr, walk);
617                 spin_unlock(ptl);
618                 goto out;
619         }
620
621         if (pmd_trans_unstable(pmd))
622                 goto out;
623         /*
624          * The mmap_lock held all the way back in m_start() is what
625          * keeps khugepaged out of here and from collapsing things
626          * in here.
627          */
628         pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
629         for (; addr != end; pte++, addr += PAGE_SIZE)
630                 smaps_pte_entry(pte, addr, walk);
631         pte_unmap_unlock(pte - 1, ptl);
632 out:
633         cond_resched();
634         return 0;
635 }
636
637 static void show_smap_vma_flags(struct seq_file *m, struct vm_area_struct *vma)
638 {
639         /*
640          * Don't forget to update Documentation/ on changes.
641          */
642         static const char mnemonics[BITS_PER_LONG][2] = {
643                 /*
644                  * In case if we meet a flag we don't know about.
645                  */
646                 [0 ... (BITS_PER_LONG-1)] = "??",
647
648                 [ilog2(VM_READ)]        = "rd",
649                 [ilog2(VM_WRITE)]       = "wr",
650                 [ilog2(VM_EXEC)]        = "ex",
651                 [ilog2(VM_SHARED)]      = "sh",
652                 [ilog2(VM_MAYREAD)]     = "mr",
653                 [ilog2(VM_MAYWRITE)]    = "mw",
654                 [ilog2(VM_MAYEXEC)]     = "me",
655                 [ilog2(VM_MAYSHARE)]    = "ms",
656                 [ilog2(VM_GROWSDOWN)]   = "gd",
657                 [ilog2(VM_PFNMAP)]      = "pf",
658                 [ilog2(VM_LOCKED)]      = "lo",
659                 [ilog2(VM_IO)]          = "io",
660                 [ilog2(VM_SEQ_READ)]    = "sr",
661                 [ilog2(VM_RAND_READ)]   = "rr",
662                 [ilog2(VM_DONTCOPY)]    = "dc",
663                 [ilog2(VM_DONTEXPAND)]  = "de",
664                 [ilog2(VM_ACCOUNT)]     = "ac",
665                 [ilog2(VM_NORESERVE)]   = "nr",
666                 [ilog2(VM_HUGETLB)]     = "ht",
667                 [ilog2(VM_SYNC)]        = "sf",
668                 [ilog2(VM_ARCH_1)]      = "ar",
669                 [ilog2(VM_WIPEONFORK)]  = "wf",
670                 [ilog2(VM_DONTDUMP)]    = "dd",
671 #ifdef CONFIG_ARM64_BTI
672                 [ilog2(VM_ARM64_BTI)]   = "bt",
673 #endif
674 #ifdef CONFIG_MEM_SOFT_DIRTY
675                 [ilog2(VM_SOFTDIRTY)]   = "sd",
676 #endif
677                 [ilog2(VM_MIXEDMAP)]    = "mm",
678                 [ilog2(VM_HUGEPAGE)]    = "hg",
679                 [ilog2(VM_NOHUGEPAGE)]  = "nh",
680                 [ilog2(VM_MERGEABLE)]   = "mg",
681                 [ilog2(VM_UFFD_MISSING)]= "um",
682                 [ilog2(VM_UFFD_WP)]     = "uw",
683 #ifdef CONFIG_ARM64_MTE
684                 [ilog2(VM_MTE)]         = "mt",
685                 [ilog2(VM_MTE_ALLOWED)] = "",
686 #endif
687 #ifdef CONFIG_ARCH_HAS_PKEYS
688                 /* These come out via ProtectionKey: */
689                 [ilog2(VM_PKEY_BIT0)]   = "",
690                 [ilog2(VM_PKEY_BIT1)]   = "",
691                 [ilog2(VM_PKEY_BIT2)]   = "",
692                 [ilog2(VM_PKEY_BIT3)]   = "",
693 #if VM_PKEY_BIT4
694                 [ilog2(VM_PKEY_BIT4)]   = "",
695 #endif
696 #endif /* CONFIG_ARCH_HAS_PKEYS */
697 #ifdef CONFIG_HAVE_ARCH_USERFAULTFD_MINOR
698                 [ilog2(VM_UFFD_MINOR)]  = "ui",
699 #endif /* CONFIG_HAVE_ARCH_USERFAULTFD_MINOR */
700         };
701         size_t i;
702
703         seq_puts(m, "VmFlags: ");
704         for (i = 0; i < BITS_PER_LONG; i++) {
705                 if (!mnemonics[i][0])
706                         continue;
707                 if (vma->vm_flags & (1UL << i)) {
708                         seq_putc(m, mnemonics[i][0]);
709                         seq_putc(m, mnemonics[i][1]);
710                         seq_putc(m, ' ');
711                 }
712         }
713         seq_putc(m, '\n');
714 }
715
716 #ifdef CONFIG_HUGETLB_PAGE
717 static int smaps_hugetlb_range(pte_t *pte, unsigned long hmask,
718                                  unsigned long addr, unsigned long end,
719                                  struct mm_walk *walk)
720 {
721         struct mem_size_stats *mss = walk->private;
722         struct vm_area_struct *vma = walk->vma;
723         struct page *page = NULL;
724
725         if (pte_present(*pte)) {
726                 page = vm_normal_page(vma, addr, *pte);
727         } else if (is_swap_pte(*pte)) {
728                 swp_entry_t swpent = pte_to_swp_entry(*pte);
729
730                 if (is_pfn_swap_entry(swpent))
731                         page = pfn_swap_entry_to_page(swpent);
732         }
733         if (page) {
734                 int mapcount = page_mapcount(page);
735
736                 if (mapcount >= 2)
737                         mss->shared_hugetlb += huge_page_size(hstate_vma(vma));
738                 else
739                         mss->private_hugetlb += huge_page_size(hstate_vma(vma));
740         }
741         return 0;
742 }
743 #else
744 #define smaps_hugetlb_range     NULL
745 #endif /* HUGETLB_PAGE */
746
747 static const struct mm_walk_ops smaps_walk_ops = {
748         .pmd_entry              = smaps_pte_range,
749         .hugetlb_entry          = smaps_hugetlb_range,
750 };
751
752 static const struct mm_walk_ops smaps_shmem_walk_ops = {
753         .pmd_entry              = smaps_pte_range,
754         .hugetlb_entry          = smaps_hugetlb_range,
755         .pte_hole               = smaps_pte_hole,
756 };
757
758 /*
759  * Gather mem stats from @vma with the indicated beginning
760  * address @start, and keep them in @mss.
761  *
762  * Use vm_start of @vma as the beginning address if @start is 0.
763  */
764 static void smap_gather_stats(struct vm_area_struct *vma,
765                 struct mem_size_stats *mss, unsigned long start)
766 {
767         const struct mm_walk_ops *ops = &smaps_walk_ops;
768
769         /* Invalid start */
770         if (start >= vma->vm_end)
771                 return;
772
773 #ifdef CONFIG_SHMEM
774         if (vma->vm_file && shmem_mapping(vma->vm_file->f_mapping)) {
775                 /*
776                  * For shared or readonly shmem mappings we know that all
777                  * swapped out pages belong to the shmem object, and we can
778                  * obtain the swap value much more efficiently. For private
779                  * writable mappings, we might have COW pages that are
780                  * not affected by the parent swapped out pages of the shmem
781                  * object, so we have to distinguish them during the page walk.
782                  * Unless we know that the shmem object (or the part mapped by
783                  * our VMA) has no swapped out pages at all.
784                  */
785                 unsigned long shmem_swapped = shmem_swap_usage(vma);
786
787                 if (!start && (!shmem_swapped || (vma->vm_flags & VM_SHARED) ||
788                                         !(vma->vm_flags & VM_WRITE))) {
789                         mss->swap += shmem_swapped;
790                 } else {
791                         ops = &smaps_shmem_walk_ops;
792                 }
793         }
794 #endif
795         /* mmap_lock is held in m_start */
796         if (!start)
797                 walk_page_vma(vma, ops, mss);
798         else
799                 walk_page_range(vma->vm_mm, start, vma->vm_end, ops, mss);
800 }
801
802 #define SEQ_PUT_DEC(str, val) \
803                 seq_put_decimal_ull_width(m, str, (val) >> 10, 8)
804
805 /* Show the contents common for smaps and smaps_rollup */
806 static void __show_smap(struct seq_file *m, const struct mem_size_stats *mss,
807         bool rollup_mode)
808 {
809         SEQ_PUT_DEC("Rss:            ", mss->resident);
810         SEQ_PUT_DEC(" kB\nPss:            ", mss->pss >> PSS_SHIFT);
811         if (rollup_mode) {
812                 /*
813                  * These are meaningful only for smaps_rollup, otherwise two of
814                  * them are zero, and the other one is the same as Pss.
815                  */
816                 SEQ_PUT_DEC(" kB\nPss_Anon:       ",
817                         mss->pss_anon >> PSS_SHIFT);
818                 SEQ_PUT_DEC(" kB\nPss_File:       ",
819                         mss->pss_file >> PSS_SHIFT);
820                 SEQ_PUT_DEC(" kB\nPss_Shmem:      ",
821                         mss->pss_shmem >> PSS_SHIFT);
822         }
823         SEQ_PUT_DEC(" kB\nShared_Clean:   ", mss->shared_clean);
824         SEQ_PUT_DEC(" kB\nShared_Dirty:   ", mss->shared_dirty);
825         SEQ_PUT_DEC(" kB\nPrivate_Clean:  ", mss->private_clean);
826         SEQ_PUT_DEC(" kB\nPrivate_Dirty:  ", mss->private_dirty);
827         SEQ_PUT_DEC(" kB\nReferenced:     ", mss->referenced);
828         SEQ_PUT_DEC(" kB\nAnonymous:      ", mss->anonymous);
829         SEQ_PUT_DEC(" kB\nLazyFree:       ", mss->lazyfree);
830         SEQ_PUT_DEC(" kB\nAnonHugePages:  ", mss->anonymous_thp);
831         SEQ_PUT_DEC(" kB\nShmemPmdMapped: ", mss->shmem_thp);
832         SEQ_PUT_DEC(" kB\nFilePmdMapped:  ", mss->file_thp);
833         SEQ_PUT_DEC(" kB\nShared_Hugetlb: ", mss->shared_hugetlb);
834         seq_put_decimal_ull_width(m, " kB\nPrivate_Hugetlb: ",
835                                   mss->private_hugetlb >> 10, 7);
836         SEQ_PUT_DEC(" kB\nSwap:           ", mss->swap);
837         SEQ_PUT_DEC(" kB\nSwapPss:        ",
838                                         mss->swap_pss >> PSS_SHIFT);
839         SEQ_PUT_DEC(" kB\nLocked:         ",
840                                         mss->pss_locked >> PSS_SHIFT);
841         seq_puts(m, " kB\n");
842 }
843
844 static int show_smap(struct seq_file *m, void *v)
845 {
846         struct vm_area_struct *vma = v;
847         struct mem_size_stats mss;
848
849         memset(&mss, 0, sizeof(mss));
850
851         smap_gather_stats(vma, &mss, 0);
852
853         show_map_vma(m, vma);
854
855         SEQ_PUT_DEC("Size:           ", vma->vm_end - vma->vm_start);
856         SEQ_PUT_DEC(" kB\nKernelPageSize: ", vma_kernel_pagesize(vma));
857         SEQ_PUT_DEC(" kB\nMMUPageSize:    ", vma_mmu_pagesize(vma));
858         seq_puts(m, " kB\n");
859
860         __show_smap(m, &mss, false);
861
862         seq_printf(m, "THPeligible:    %d\n",
863                    transparent_hugepage_active(vma));
864
865         if (arch_pkeys_enabled())
866                 seq_printf(m, "ProtectionKey:  %8u\n", vma_pkey(vma));
867         show_smap_vma_flags(m, vma);
868
869         return 0;
870 }
871
872 static int show_smaps_rollup(struct seq_file *m, void *v)
873 {
874         struct proc_maps_private *priv = m->private;
875         struct mem_size_stats mss;
876         struct mm_struct *mm;
877         struct vm_area_struct *vma;
878         unsigned long last_vma_end = 0;
879         int ret = 0;
880
881         priv->task = get_proc_task(priv->inode);
882         if (!priv->task)
883                 return -ESRCH;
884
885         mm = priv->mm;
886         if (!mm || !mmget_not_zero(mm)) {
887                 ret = -ESRCH;
888                 goto out_put_task;
889         }
890
891         memset(&mss, 0, sizeof(mss));
892
893         ret = mmap_read_lock_killable(mm);
894         if (ret)
895                 goto out_put_mm;
896
897         hold_task_mempolicy(priv);
898
899         for (vma = priv->mm->mmap; vma;) {
900                 smap_gather_stats(vma, &mss, 0);
901                 last_vma_end = vma->vm_end;
902
903                 /*
904                  * Release mmap_lock temporarily if someone wants to
905                  * access it for write request.
906                  */
907                 if (mmap_lock_is_contended(mm)) {
908                         mmap_read_unlock(mm);
909                         ret = mmap_read_lock_killable(mm);
910                         if (ret) {
911                                 release_task_mempolicy(priv);
912                                 goto out_put_mm;
913                         }
914
915                         /*
916                          * After dropping the lock, there are four cases to
917                          * consider. See the following example for explanation.
918                          *
919                          *   +------+------+-----------+
920                          *   | VMA1 | VMA2 | VMA3      |
921                          *   +------+------+-----------+
922                          *   |      |      |           |
923                          *  4k     8k     16k         400k
924                          *
925                          * Suppose we drop the lock after reading VMA2 due to
926                          * contention, then we get:
927                          *
928                          *      last_vma_end = 16k
929                          *
930                          * 1) VMA2 is freed, but VMA3 exists:
931                          *
932                          *    find_vma(mm, 16k - 1) will return VMA3.
933                          *    In this case, just continue from VMA3.
934                          *
935                          * 2) VMA2 still exists:
936                          *
937                          *    find_vma(mm, 16k - 1) will return VMA2.
938                          *    Iterate the loop like the original one.
939                          *
940                          * 3) No more VMAs can be found:
941                          *
942                          *    find_vma(mm, 16k - 1) will return NULL.
943                          *    No more things to do, just break.
944                          *
945                          * 4) (last_vma_end - 1) is the middle of a vma (VMA'):
946                          *
947                          *    find_vma(mm, 16k - 1) will return VMA' whose range
948                          *    contains last_vma_end.
949                          *    Iterate VMA' from last_vma_end.
950                          */
951                         vma = find_vma(mm, last_vma_end - 1);
952                         /* Case 3 above */
953                         if (!vma)
954                                 break;
955
956                         /* Case 1 above */
957                         if (vma->vm_start >= last_vma_end)
958                                 continue;
959
960                         /* Case 4 above */
961                         if (vma->vm_end > last_vma_end)
962                                 smap_gather_stats(vma, &mss, last_vma_end);
963                 }
964                 /* Case 2 above */
965                 vma = vma->vm_next;
966         }
967
968         show_vma_header_prefix(m, priv->mm->mmap->vm_start,
969                                last_vma_end, 0, 0, 0, 0);
970         seq_pad(m, ' ');
971         seq_puts(m, "[rollup]\n");
972
973         __show_smap(m, &mss, true);
974
975         release_task_mempolicy(priv);
976         mmap_read_unlock(mm);
977
978 out_put_mm:
979         mmput(mm);
980 out_put_task:
981         put_task_struct(priv->task);
982         priv->task = NULL;
983
984         return ret;
985 }
986 #undef SEQ_PUT_DEC
987
988 static const struct seq_operations proc_pid_smaps_op = {
989         .start  = m_start,
990         .next   = m_next,
991         .stop   = m_stop,
992         .show   = show_smap
993 };
994
995 static int pid_smaps_open(struct inode *inode, struct file *file)
996 {
997         return do_maps_open(inode, file, &proc_pid_smaps_op);
998 }
999
1000 static int smaps_rollup_open(struct inode *inode, struct file *file)
1001 {
1002         int ret;
1003         struct proc_maps_private *priv;
1004
1005         priv = kzalloc(sizeof(*priv), GFP_KERNEL_ACCOUNT);
1006         if (!priv)
1007                 return -ENOMEM;
1008
1009         ret = single_open(file, show_smaps_rollup, priv);
1010         if (ret)
1011                 goto out_free;
1012
1013         priv->inode = inode;
1014         priv->mm = proc_mem_open(inode, PTRACE_MODE_READ);
1015         if (IS_ERR(priv->mm)) {
1016                 ret = PTR_ERR(priv->mm);
1017
1018                 single_release(inode, file);
1019                 goto out_free;
1020         }
1021
1022         return 0;
1023
1024 out_free:
1025         kfree(priv);
1026         return ret;
1027 }
1028
1029 static int smaps_rollup_release(struct inode *inode, struct file *file)
1030 {
1031         struct seq_file *seq = file->private_data;
1032         struct proc_maps_private *priv = seq->private;
1033
1034         if (priv->mm)
1035                 mmdrop(priv->mm);
1036
1037         kfree(priv);
1038         return single_release(inode, file);
1039 }
1040
1041 const struct file_operations proc_pid_smaps_operations = {
1042         .open           = pid_smaps_open,
1043         .read           = seq_read,
1044         .llseek         = seq_lseek,
1045         .release        = proc_map_release,
1046 };
1047
1048 const struct file_operations proc_pid_smaps_rollup_operations = {
1049         .open           = smaps_rollup_open,
1050         .read           = seq_read,
1051         .llseek         = seq_lseek,
1052         .release        = smaps_rollup_release,
1053 };
1054
1055 enum clear_refs_types {
1056         CLEAR_REFS_ALL = 1,
1057         CLEAR_REFS_ANON,
1058         CLEAR_REFS_MAPPED,
1059         CLEAR_REFS_SOFT_DIRTY,
1060         CLEAR_REFS_MM_HIWATER_RSS,
1061         CLEAR_REFS_LAST,
1062 };
1063
1064 struct clear_refs_private {
1065         enum clear_refs_types type;
1066 };
1067
1068 #ifdef CONFIG_MEM_SOFT_DIRTY
1069
1070 static inline bool pte_is_pinned(struct vm_area_struct *vma, unsigned long addr, pte_t pte)
1071 {
1072         struct page *page;
1073
1074         if (!pte_write(pte))
1075                 return false;
1076         if (!is_cow_mapping(vma->vm_flags))
1077                 return false;
1078         if (likely(!test_bit(MMF_HAS_PINNED, &vma->vm_mm->flags)))
1079                 return false;
1080         page = vm_normal_page(vma, addr, pte);
1081         if (!page)
1082                 return false;
1083         return page_maybe_dma_pinned(page);
1084 }
1085
1086 static inline void clear_soft_dirty(struct vm_area_struct *vma,
1087                 unsigned long addr, pte_t *pte)
1088 {
1089         /*
1090          * The soft-dirty tracker uses #PF-s to catch writes
1091          * to pages, so write-protect the pte as well. See the
1092          * Documentation/admin-guide/mm/soft-dirty.rst for full description
1093          * of how soft-dirty works.
1094          */
1095         pte_t ptent = *pte;
1096
1097         if (pte_present(ptent)) {
1098                 pte_t old_pte;
1099
1100                 if (pte_is_pinned(vma, addr, ptent))
1101                         return;
1102                 old_pte = ptep_modify_prot_start(vma, addr, pte);
1103                 ptent = pte_wrprotect(old_pte);
1104                 ptent = pte_clear_soft_dirty(ptent);
1105                 ptep_modify_prot_commit(vma, addr, pte, old_pte, ptent);
1106         } else if (is_swap_pte(ptent)) {
1107                 ptent = pte_swp_clear_soft_dirty(ptent);
1108                 set_pte_at(vma->vm_mm, addr, pte, ptent);
1109         }
1110 }
1111 #else
1112 static inline void clear_soft_dirty(struct vm_area_struct *vma,
1113                 unsigned long addr, pte_t *pte)
1114 {
1115 }
1116 #endif
1117
1118 #if defined(CONFIG_MEM_SOFT_DIRTY) && defined(CONFIG_TRANSPARENT_HUGEPAGE)
1119 static inline void clear_soft_dirty_pmd(struct vm_area_struct *vma,
1120                 unsigned long addr, pmd_t *pmdp)
1121 {
1122         pmd_t old, pmd = *pmdp;
1123
1124         if (pmd_present(pmd)) {
1125                 /* See comment in change_huge_pmd() */
1126                 old = pmdp_invalidate(vma, addr, pmdp);
1127                 if (pmd_dirty(old))
1128                         pmd = pmd_mkdirty(pmd);
1129                 if (pmd_young(old))
1130                         pmd = pmd_mkyoung(pmd);
1131
1132                 pmd = pmd_wrprotect(pmd);
1133                 pmd = pmd_clear_soft_dirty(pmd);
1134
1135                 set_pmd_at(vma->vm_mm, addr, pmdp, pmd);
1136         } else if (is_migration_entry(pmd_to_swp_entry(pmd))) {
1137                 pmd = pmd_swp_clear_soft_dirty(pmd);
1138                 set_pmd_at(vma->vm_mm, addr, pmdp, pmd);
1139         }
1140 }
1141 #else
1142 static inline void clear_soft_dirty_pmd(struct vm_area_struct *vma,
1143                 unsigned long addr, pmd_t *pmdp)
1144 {
1145 }
1146 #endif
1147
1148 static int clear_refs_pte_range(pmd_t *pmd, unsigned long addr,
1149                                 unsigned long end, struct mm_walk *walk)
1150 {
1151         struct clear_refs_private *cp = walk->private;
1152         struct vm_area_struct *vma = walk->vma;
1153         pte_t *pte, ptent;
1154         spinlock_t *ptl;
1155         struct page *page;
1156
1157         ptl = pmd_trans_huge_lock(pmd, vma);
1158         if (ptl) {
1159                 if (cp->type == CLEAR_REFS_SOFT_DIRTY) {
1160                         clear_soft_dirty_pmd(vma, addr, pmd);
1161                         goto out;
1162                 }
1163
1164                 if (!pmd_present(*pmd))
1165                         goto out;
1166
1167                 page = pmd_page(*pmd);
1168
1169                 /* Clear accessed and referenced bits. */
1170                 pmdp_test_and_clear_young(vma, addr, pmd);
1171                 test_and_clear_page_young(page);
1172                 ClearPageReferenced(page);
1173 out:
1174                 spin_unlock(ptl);
1175                 return 0;
1176         }
1177
1178         if (pmd_trans_unstable(pmd))
1179                 return 0;
1180
1181         pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
1182         for (; addr != end; pte++, addr += PAGE_SIZE) {
1183                 ptent = *pte;
1184
1185                 if (cp->type == CLEAR_REFS_SOFT_DIRTY) {
1186                         clear_soft_dirty(vma, addr, pte);
1187                         continue;
1188                 }
1189
1190                 if (!pte_present(ptent))
1191                         continue;
1192
1193                 page = vm_normal_page(vma, addr, ptent);
1194                 if (!page)
1195                         continue;
1196
1197                 /* Clear accessed and referenced bits. */
1198                 ptep_test_and_clear_young(vma, addr, pte);
1199                 test_and_clear_page_young(page);
1200                 ClearPageReferenced(page);
1201         }
1202         pte_unmap_unlock(pte - 1, ptl);
1203         cond_resched();
1204         return 0;
1205 }
1206
1207 static int clear_refs_test_walk(unsigned long start, unsigned long end,
1208                                 struct mm_walk *walk)
1209 {
1210         struct clear_refs_private *cp = walk->private;
1211         struct vm_area_struct *vma = walk->vma;
1212
1213         if (vma->vm_flags & VM_PFNMAP)
1214                 return 1;
1215
1216         /*
1217          * Writing 1 to /proc/pid/clear_refs affects all pages.
1218          * Writing 2 to /proc/pid/clear_refs only affects anonymous pages.
1219          * Writing 3 to /proc/pid/clear_refs only affects file mapped pages.
1220          * Writing 4 to /proc/pid/clear_refs affects all pages.
1221          */
1222         if (cp->type == CLEAR_REFS_ANON && vma->vm_file)
1223                 return 1;
1224         if (cp->type == CLEAR_REFS_MAPPED && !vma->vm_file)
1225                 return 1;
1226         return 0;
1227 }
1228
1229 static const struct mm_walk_ops clear_refs_walk_ops = {
1230         .pmd_entry              = clear_refs_pte_range,
1231         .test_walk              = clear_refs_test_walk,
1232 };
1233
1234 static ssize_t clear_refs_write(struct file *file, const char __user *buf,
1235                                 size_t count, loff_t *ppos)
1236 {
1237         struct task_struct *task;
1238         char buffer[PROC_NUMBUF];
1239         struct mm_struct *mm;
1240         struct vm_area_struct *vma;
1241         enum clear_refs_types type;
1242         int itype;
1243         int rv;
1244
1245         memset(buffer, 0, sizeof(buffer));
1246         if (count > sizeof(buffer) - 1)
1247                 count = sizeof(buffer) - 1;
1248         if (copy_from_user(buffer, buf, count))
1249                 return -EFAULT;
1250         rv = kstrtoint(strstrip(buffer), 10, &itype);
1251         if (rv < 0)
1252                 return rv;
1253         type = (enum clear_refs_types)itype;
1254         if (type < CLEAR_REFS_ALL || type >= CLEAR_REFS_LAST)
1255                 return -EINVAL;
1256
1257         task = get_proc_task(file_inode(file));
1258         if (!task)
1259                 return -ESRCH;
1260         mm = get_task_mm(task);
1261         if (mm) {
1262                 struct mmu_notifier_range range;
1263                 struct clear_refs_private cp = {
1264                         .type = type,
1265                 };
1266
1267                 if (mmap_write_lock_killable(mm)) {
1268                         count = -EINTR;
1269                         goto out_mm;
1270                 }
1271                 if (type == CLEAR_REFS_MM_HIWATER_RSS) {
1272                         /*
1273                          * Writing 5 to /proc/pid/clear_refs resets the peak
1274                          * resident set size to this mm's current rss value.
1275                          */
1276                         reset_mm_hiwater_rss(mm);
1277                         goto out_unlock;
1278                 }
1279
1280                 if (type == CLEAR_REFS_SOFT_DIRTY) {
1281                         for (vma = mm->mmap; vma; vma = vma->vm_next) {
1282                                 if (!(vma->vm_flags & VM_SOFTDIRTY))
1283                                         continue;
1284                                 vma->vm_flags &= ~VM_SOFTDIRTY;
1285                                 vma_set_page_prot(vma);
1286                         }
1287
1288                         inc_tlb_flush_pending(mm);
1289                         mmu_notifier_range_init(&range, MMU_NOTIFY_SOFT_DIRTY,
1290                                                 0, NULL, mm, 0, -1UL);
1291                         mmu_notifier_invalidate_range_start(&range);
1292                 }
1293                 walk_page_range(mm, 0, mm->highest_vm_end, &clear_refs_walk_ops,
1294                                 &cp);
1295                 if (type == CLEAR_REFS_SOFT_DIRTY) {
1296                         mmu_notifier_invalidate_range_end(&range);
1297                         flush_tlb_mm(mm);
1298                         dec_tlb_flush_pending(mm);
1299                 }
1300 out_unlock:
1301                 mmap_write_unlock(mm);
1302 out_mm:
1303                 mmput(mm);
1304         }
1305         put_task_struct(task);
1306
1307         return count;
1308 }
1309
1310 const struct file_operations proc_clear_refs_operations = {
1311         .write          = clear_refs_write,
1312         .llseek         = noop_llseek,
1313 };
1314
1315 typedef struct {
1316         u64 pme;
1317 } pagemap_entry_t;
1318
1319 struct pagemapread {
1320         int pos, len;           /* units: PM_ENTRY_BYTES, not bytes */
1321         pagemap_entry_t *buffer;
1322         bool show_pfn;
1323 };
1324
1325 #define PAGEMAP_WALK_SIZE       (PMD_SIZE)
1326 #define PAGEMAP_WALK_MASK       (PMD_MASK)
1327
1328 #define PM_ENTRY_BYTES          sizeof(pagemap_entry_t)
1329 #define PM_PFRAME_BITS          55
1330 #define PM_PFRAME_MASK          GENMASK_ULL(PM_PFRAME_BITS - 1, 0)
1331 #define PM_SOFT_DIRTY           BIT_ULL(55)
1332 #define PM_MMAP_EXCLUSIVE       BIT_ULL(56)
1333 #define PM_UFFD_WP              BIT_ULL(57)
1334 #define PM_FILE                 BIT_ULL(61)
1335 #define PM_SWAP                 BIT_ULL(62)
1336 #define PM_PRESENT              BIT_ULL(63)
1337
1338 #define PM_END_OF_BUFFER    1
1339
1340 static inline pagemap_entry_t make_pme(u64 frame, u64 flags)
1341 {
1342         return (pagemap_entry_t) { .pme = (frame & PM_PFRAME_MASK) | flags };
1343 }
1344
1345 static int add_to_pagemap(unsigned long addr, pagemap_entry_t *pme,
1346                           struct pagemapread *pm)
1347 {
1348         pm->buffer[pm->pos++] = *pme;
1349         if (pm->pos >= pm->len)
1350                 return PM_END_OF_BUFFER;
1351         return 0;
1352 }
1353
1354 static int pagemap_pte_hole(unsigned long start, unsigned long end,
1355                             __always_unused int depth, struct mm_walk *walk)
1356 {
1357         struct pagemapread *pm = walk->private;
1358         unsigned long addr = start;
1359         int err = 0;
1360
1361         while (addr < end) {
1362                 struct vm_area_struct *vma = find_vma(walk->mm, addr);
1363                 pagemap_entry_t pme = make_pme(0, 0);
1364                 /* End of address space hole, which we mark as non-present. */
1365                 unsigned long hole_end;
1366
1367                 if (vma)
1368                         hole_end = min(end, vma->vm_start);
1369                 else
1370                         hole_end = end;
1371
1372                 for (; addr < hole_end; addr += PAGE_SIZE) {
1373                         err = add_to_pagemap(addr, &pme, pm);
1374                         if (err)
1375                                 goto out;
1376                 }
1377
1378                 if (!vma)
1379                         break;
1380
1381                 /* Addresses in the VMA. */
1382                 if (vma->vm_flags & VM_SOFTDIRTY)
1383                         pme = make_pme(0, PM_SOFT_DIRTY);
1384                 for (; addr < min(end, vma->vm_end); addr += PAGE_SIZE) {
1385                         err = add_to_pagemap(addr, &pme, pm);
1386                         if (err)
1387                                 goto out;
1388                 }
1389         }
1390 out:
1391         return err;
1392 }
1393
1394 static pagemap_entry_t pte_to_pagemap_entry(struct pagemapread *pm,
1395                 struct vm_area_struct *vma, unsigned long addr, pte_t pte)
1396 {
1397         u64 frame = 0, flags = 0;
1398         struct page *page = NULL;
1399         bool migration = false;
1400
1401         if (pte_present(pte)) {
1402                 if (pm->show_pfn)
1403                         frame = pte_pfn(pte);
1404                 flags |= PM_PRESENT;
1405                 page = vm_normal_page(vma, addr, pte);
1406                 if (pte_soft_dirty(pte))
1407                         flags |= PM_SOFT_DIRTY;
1408                 if (pte_uffd_wp(pte))
1409                         flags |= PM_UFFD_WP;
1410         } else if (is_swap_pte(pte)) {
1411                 swp_entry_t entry;
1412                 if (pte_swp_soft_dirty(pte))
1413                         flags |= PM_SOFT_DIRTY;
1414                 if (pte_swp_uffd_wp(pte))
1415                         flags |= PM_UFFD_WP;
1416                 entry = pte_to_swp_entry(pte);
1417                 if (pm->show_pfn)
1418                         frame = swp_type(entry) |
1419                                 (swp_offset(entry) << MAX_SWAPFILES_SHIFT);
1420                 flags |= PM_SWAP;
1421                 migration = is_migration_entry(entry);
1422                 if (is_pfn_swap_entry(entry))
1423                         page = pfn_swap_entry_to_page(entry);
1424         }
1425
1426         if (page && !PageAnon(page))
1427                 flags |= PM_FILE;
1428         if (page && !migration && page_mapcount(page) == 1)
1429                 flags |= PM_MMAP_EXCLUSIVE;
1430         if (vma->vm_flags & VM_SOFTDIRTY)
1431                 flags |= PM_SOFT_DIRTY;
1432
1433         return make_pme(frame, flags);
1434 }
1435
1436 static int pagemap_pmd_range(pmd_t *pmdp, unsigned long addr, unsigned long end,
1437                              struct mm_walk *walk)
1438 {
1439         struct vm_area_struct *vma = walk->vma;
1440         struct pagemapread *pm = walk->private;
1441         spinlock_t *ptl;
1442         pte_t *pte, *orig_pte;
1443         int err = 0;
1444 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1445         bool migration = false;
1446
1447         ptl = pmd_trans_huge_lock(pmdp, vma);
1448         if (ptl) {
1449                 u64 flags = 0, frame = 0;
1450                 pmd_t pmd = *pmdp;
1451                 struct page *page = NULL;
1452
1453                 if (vma->vm_flags & VM_SOFTDIRTY)
1454                         flags |= PM_SOFT_DIRTY;
1455
1456                 if (pmd_present(pmd)) {
1457                         page = pmd_page(pmd);
1458
1459                         flags |= PM_PRESENT;
1460                         if (pmd_soft_dirty(pmd))
1461                                 flags |= PM_SOFT_DIRTY;
1462                         if (pmd_uffd_wp(pmd))
1463                                 flags |= PM_UFFD_WP;
1464                         if (pm->show_pfn)
1465                                 frame = pmd_pfn(pmd) +
1466                                         ((addr & ~PMD_MASK) >> PAGE_SHIFT);
1467                 }
1468 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
1469                 else if (is_swap_pmd(pmd)) {
1470                         swp_entry_t entry = pmd_to_swp_entry(pmd);
1471                         unsigned long offset;
1472
1473                         if (pm->show_pfn) {
1474                                 offset = swp_offset(entry) +
1475                                         ((addr & ~PMD_MASK) >> PAGE_SHIFT);
1476                                 frame = swp_type(entry) |
1477                                         (offset << MAX_SWAPFILES_SHIFT);
1478                         }
1479                         flags |= PM_SWAP;
1480                         if (pmd_swp_soft_dirty(pmd))
1481                                 flags |= PM_SOFT_DIRTY;
1482                         if (pmd_swp_uffd_wp(pmd))
1483                                 flags |= PM_UFFD_WP;
1484                         VM_BUG_ON(!is_pmd_migration_entry(pmd));
1485                         migration = is_migration_entry(entry);
1486                         page = pfn_swap_entry_to_page(entry);
1487                 }
1488 #endif
1489
1490                 if (page && !migration && page_mapcount(page) == 1)
1491                         flags |= PM_MMAP_EXCLUSIVE;
1492
1493                 for (; addr != end; addr += PAGE_SIZE) {
1494                         pagemap_entry_t pme = make_pme(frame, flags);
1495
1496                         err = add_to_pagemap(addr, &pme, pm);
1497                         if (err)
1498                                 break;
1499                         if (pm->show_pfn) {
1500                                 if (flags & PM_PRESENT)
1501                                         frame++;
1502                                 else if (flags & PM_SWAP)
1503                                         frame += (1 << MAX_SWAPFILES_SHIFT);
1504                         }
1505                 }
1506                 spin_unlock(ptl);
1507                 return err;
1508         }
1509
1510         if (pmd_trans_unstable(pmdp))
1511                 return 0;
1512 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
1513
1514         /*
1515          * We can assume that @vma always points to a valid one and @end never
1516          * goes beyond vma->vm_end.
1517          */
1518         orig_pte = pte = pte_offset_map_lock(walk->mm, pmdp, addr, &ptl);
1519         for (; addr < end; pte++, addr += PAGE_SIZE) {
1520                 pagemap_entry_t pme;
1521
1522                 pme = pte_to_pagemap_entry(pm, vma, addr, *pte);
1523                 err = add_to_pagemap(addr, &pme, pm);
1524                 if (err)
1525                         break;
1526         }
1527         pte_unmap_unlock(orig_pte, ptl);
1528
1529         cond_resched();
1530
1531         return err;
1532 }
1533
1534 #ifdef CONFIG_HUGETLB_PAGE
1535 /* This function walks within one hugetlb entry in the single call */
1536 static int pagemap_hugetlb_range(pte_t *ptep, unsigned long hmask,
1537                                  unsigned long addr, unsigned long end,
1538                                  struct mm_walk *walk)
1539 {
1540         struct pagemapread *pm = walk->private;
1541         struct vm_area_struct *vma = walk->vma;
1542         u64 flags = 0, frame = 0;
1543         int err = 0;
1544         pte_t pte;
1545
1546         if (vma->vm_flags & VM_SOFTDIRTY)
1547                 flags |= PM_SOFT_DIRTY;
1548
1549         pte = huge_ptep_get(ptep);
1550         if (pte_present(pte)) {
1551                 struct page *page = pte_page(pte);
1552
1553                 if (!PageAnon(page))
1554                         flags |= PM_FILE;
1555
1556                 if (page_mapcount(page) == 1)
1557                         flags |= PM_MMAP_EXCLUSIVE;
1558
1559                 flags |= PM_PRESENT;
1560                 if (pm->show_pfn)
1561                         frame = pte_pfn(pte) +
1562                                 ((addr & ~hmask) >> PAGE_SHIFT);
1563         }
1564
1565         for (; addr != end; addr += PAGE_SIZE) {
1566                 pagemap_entry_t pme = make_pme(frame, flags);
1567
1568                 err = add_to_pagemap(addr, &pme, pm);
1569                 if (err)
1570                         return err;
1571                 if (pm->show_pfn && (flags & PM_PRESENT))
1572                         frame++;
1573         }
1574
1575         cond_resched();
1576
1577         return err;
1578 }
1579 #else
1580 #define pagemap_hugetlb_range   NULL
1581 #endif /* HUGETLB_PAGE */
1582
1583 static const struct mm_walk_ops pagemap_ops = {
1584         .pmd_entry      = pagemap_pmd_range,
1585         .pte_hole       = pagemap_pte_hole,
1586         .hugetlb_entry  = pagemap_hugetlb_range,
1587 };
1588
1589 /*
1590  * /proc/pid/pagemap - an array mapping virtual pages to pfns
1591  *
1592  * For each page in the address space, this file contains one 64-bit entry
1593  * consisting of the following:
1594  *
1595  * Bits 0-54  page frame number (PFN) if present
1596  * Bits 0-4   swap type if swapped
1597  * Bits 5-54  swap offset if swapped
1598  * Bit  55    pte is soft-dirty (see Documentation/admin-guide/mm/soft-dirty.rst)
1599  * Bit  56    page exclusively mapped
1600  * Bits 57-60 zero
1601  * Bit  61    page is file-page or shared-anon
1602  * Bit  62    page swapped
1603  * Bit  63    page present
1604  *
1605  * If the page is not present but in swap, then the PFN contains an
1606  * encoding of the swap file number and the page's offset into the
1607  * swap. Unmapped pages return a null PFN. This allows determining
1608  * precisely which pages are mapped (or in swap) and comparing mapped
1609  * pages between processes.
1610  *
1611  * Efficient users of this interface will use /proc/pid/maps to
1612  * determine which areas of memory are actually mapped and llseek to
1613  * skip over unmapped regions.
1614  */
1615 static ssize_t pagemap_read(struct file *file, char __user *buf,
1616                             size_t count, loff_t *ppos)
1617 {
1618         struct mm_struct *mm = file->private_data;
1619         struct pagemapread pm;
1620         unsigned long src;
1621         unsigned long svpfn;
1622         unsigned long start_vaddr;
1623         unsigned long end_vaddr;
1624         int ret = 0, copied = 0;
1625
1626         if (!mm || !mmget_not_zero(mm))
1627                 goto out;
1628
1629         ret = -EINVAL;
1630         /* file position must be aligned */
1631         if ((*ppos % PM_ENTRY_BYTES) || (count % PM_ENTRY_BYTES))
1632                 goto out_mm;
1633
1634         ret = 0;
1635         if (!count)
1636                 goto out_mm;
1637
1638         /* do not disclose physical addresses: attack vector */
1639         pm.show_pfn = file_ns_capable(file, &init_user_ns, CAP_SYS_ADMIN);
1640
1641         pm.len = (PAGEMAP_WALK_SIZE >> PAGE_SHIFT);
1642         pm.buffer = kmalloc_array(pm.len, PM_ENTRY_BYTES, GFP_KERNEL);
1643         ret = -ENOMEM;
1644         if (!pm.buffer)
1645                 goto out_mm;
1646
1647         src = *ppos;
1648         svpfn = src / PM_ENTRY_BYTES;
1649         end_vaddr = mm->task_size;
1650
1651         /* watch out for wraparound */
1652         start_vaddr = end_vaddr;
1653         if (svpfn <= (ULONG_MAX >> PAGE_SHIFT))
1654                 start_vaddr = untagged_addr(svpfn << PAGE_SHIFT);
1655
1656         /* Ensure the address is inside the task */
1657         if (start_vaddr > mm->task_size)
1658                 start_vaddr = end_vaddr;
1659
1660         /*
1661          * The odds are that this will stop walking way
1662          * before end_vaddr, because the length of the
1663          * user buffer is tracked in "pm", and the walk
1664          * will stop when we hit the end of the buffer.
1665          */
1666         ret = 0;
1667         while (count && (start_vaddr < end_vaddr)) {
1668                 int len;
1669                 unsigned long end;
1670
1671                 pm.pos = 0;
1672                 end = (start_vaddr + PAGEMAP_WALK_SIZE) & PAGEMAP_WALK_MASK;
1673                 /* overflow ? */
1674                 if (end < start_vaddr || end > end_vaddr)
1675                         end = end_vaddr;
1676                 ret = mmap_read_lock_killable(mm);
1677                 if (ret)
1678                         goto out_free;
1679                 ret = walk_page_range(mm, start_vaddr, end, &pagemap_ops, &pm);
1680                 mmap_read_unlock(mm);
1681                 start_vaddr = end;
1682
1683                 len = min(count, PM_ENTRY_BYTES * pm.pos);
1684                 if (copy_to_user(buf, pm.buffer, len)) {
1685                         ret = -EFAULT;
1686                         goto out_free;
1687                 }
1688                 copied += len;
1689                 buf += len;
1690                 count -= len;
1691         }
1692         *ppos += copied;
1693         if (!ret || ret == PM_END_OF_BUFFER)
1694                 ret = copied;
1695
1696 out_free:
1697         kfree(pm.buffer);
1698 out_mm:
1699         mmput(mm);
1700 out:
1701         return ret;
1702 }
1703
1704 static int pagemap_open(struct inode *inode, struct file *file)
1705 {
1706         struct mm_struct *mm;
1707
1708         mm = proc_mem_open(inode, PTRACE_MODE_READ);
1709         if (IS_ERR(mm))
1710                 return PTR_ERR(mm);
1711         file->private_data = mm;
1712         return 0;
1713 }
1714
1715 static int pagemap_release(struct inode *inode, struct file *file)
1716 {
1717         struct mm_struct *mm = file->private_data;
1718
1719         if (mm)
1720                 mmdrop(mm);
1721         return 0;
1722 }
1723
1724 const struct file_operations proc_pagemap_operations = {
1725         .llseek         = mem_lseek, /* borrow this */
1726         .read           = pagemap_read,
1727         .open           = pagemap_open,
1728         .release        = pagemap_release,
1729 };
1730 #endif /* CONFIG_PROC_PAGE_MONITOR */
1731
1732 #ifdef CONFIG_NUMA
1733
1734 struct numa_maps {
1735         unsigned long pages;
1736         unsigned long anon;
1737         unsigned long active;
1738         unsigned long writeback;
1739         unsigned long mapcount_max;
1740         unsigned long dirty;
1741         unsigned long swapcache;
1742         unsigned long node[MAX_NUMNODES];
1743 };
1744
1745 struct numa_maps_private {
1746         struct proc_maps_private proc_maps;
1747         struct numa_maps md;
1748 };
1749
1750 static void gather_stats(struct page *page, struct numa_maps *md, int pte_dirty,
1751                         unsigned long nr_pages)
1752 {
1753         int count = page_mapcount(page);
1754
1755         md->pages += nr_pages;
1756         if (pte_dirty || PageDirty(page))
1757                 md->dirty += nr_pages;
1758
1759         if (PageSwapCache(page))
1760                 md->swapcache += nr_pages;
1761
1762         if (PageActive(page) || PageUnevictable(page))
1763                 md->active += nr_pages;
1764
1765         if (PageWriteback(page))
1766                 md->writeback += nr_pages;
1767
1768         if (PageAnon(page))
1769                 md->anon += nr_pages;
1770
1771         if (count > md->mapcount_max)
1772                 md->mapcount_max = count;
1773
1774         md->node[page_to_nid(page)] += nr_pages;
1775 }
1776
1777 static struct page *can_gather_numa_stats(pte_t pte, struct vm_area_struct *vma,
1778                 unsigned long addr)
1779 {
1780         struct page *page;
1781         int nid;
1782
1783         if (!pte_present(pte))
1784                 return NULL;
1785
1786         page = vm_normal_page(vma, addr, pte);
1787         if (!page)
1788                 return NULL;
1789
1790         if (PageReserved(page))
1791                 return NULL;
1792
1793         nid = page_to_nid(page);
1794         if (!node_isset(nid, node_states[N_MEMORY]))
1795                 return NULL;
1796
1797         return page;
1798 }
1799
1800 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1801 static struct page *can_gather_numa_stats_pmd(pmd_t pmd,
1802                                               struct vm_area_struct *vma,
1803                                               unsigned long addr)
1804 {
1805         struct page *page;
1806         int nid;
1807
1808         if (!pmd_present(pmd))
1809                 return NULL;
1810
1811         page = vm_normal_page_pmd(vma, addr, pmd);
1812         if (!page)
1813                 return NULL;
1814
1815         if (PageReserved(page))
1816                 return NULL;
1817
1818         nid = page_to_nid(page);
1819         if (!node_isset(nid, node_states[N_MEMORY]))
1820                 return NULL;
1821
1822         return page;
1823 }
1824 #endif
1825
1826 static int gather_pte_stats(pmd_t *pmd, unsigned long addr,
1827                 unsigned long end, struct mm_walk *walk)
1828 {
1829         struct numa_maps *md = walk->private;
1830         struct vm_area_struct *vma = walk->vma;
1831         spinlock_t *ptl;
1832         pte_t *orig_pte;
1833         pte_t *pte;
1834
1835 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1836         ptl = pmd_trans_huge_lock(pmd, vma);
1837         if (ptl) {
1838                 struct page *page;
1839
1840                 page = can_gather_numa_stats_pmd(*pmd, vma, addr);
1841                 if (page)
1842                         gather_stats(page, md, pmd_dirty(*pmd),
1843                                      HPAGE_PMD_SIZE/PAGE_SIZE);
1844                 spin_unlock(ptl);
1845                 return 0;
1846         }
1847
1848         if (pmd_trans_unstable(pmd))
1849                 return 0;
1850 #endif
1851         orig_pte = pte = pte_offset_map_lock(walk->mm, pmd, addr, &ptl);
1852         do {
1853                 struct page *page = can_gather_numa_stats(*pte, vma, addr);
1854                 if (!page)
1855                         continue;
1856                 gather_stats(page, md, pte_dirty(*pte), 1);
1857
1858         } while (pte++, addr += PAGE_SIZE, addr != end);
1859         pte_unmap_unlock(orig_pte, ptl);
1860         cond_resched();
1861         return 0;
1862 }
1863 #ifdef CONFIG_HUGETLB_PAGE
1864 static int gather_hugetlb_stats(pte_t *pte, unsigned long hmask,
1865                 unsigned long addr, unsigned long end, struct mm_walk *walk)
1866 {
1867         pte_t huge_pte = huge_ptep_get(pte);
1868         struct numa_maps *md;
1869         struct page *page;
1870
1871         if (!pte_present(huge_pte))
1872                 return 0;
1873
1874         page = pte_page(huge_pte);
1875         if (!page)
1876                 return 0;
1877
1878         md = walk->private;
1879         gather_stats(page, md, pte_dirty(huge_pte), 1);
1880         return 0;
1881 }
1882
1883 #else
1884 static int gather_hugetlb_stats(pte_t *pte, unsigned long hmask,
1885                 unsigned long addr, unsigned long end, struct mm_walk *walk)
1886 {
1887         return 0;
1888 }
1889 #endif
1890
1891 static const struct mm_walk_ops show_numa_ops = {
1892         .hugetlb_entry = gather_hugetlb_stats,
1893         .pmd_entry = gather_pte_stats,
1894 };
1895
1896 /*
1897  * Display pages allocated per node and memory policy via /proc.
1898  */
1899 static int show_numa_map(struct seq_file *m, void *v)
1900 {
1901         struct numa_maps_private *numa_priv = m->private;
1902         struct proc_maps_private *proc_priv = &numa_priv->proc_maps;
1903         struct vm_area_struct *vma = v;
1904         struct numa_maps *md = &numa_priv->md;
1905         struct file *file = vma->vm_file;
1906         struct mm_struct *mm = vma->vm_mm;
1907         struct mempolicy *pol;
1908         char buffer[64];
1909         int nid;
1910
1911         if (!mm)
1912                 return 0;
1913
1914         /* Ensure we start with an empty set of numa_maps statistics. */
1915         memset(md, 0, sizeof(*md));
1916
1917         pol = __get_vma_policy(vma, vma->vm_start);
1918         if (pol) {
1919                 mpol_to_str(buffer, sizeof(buffer), pol);
1920                 mpol_cond_put(pol);
1921         } else {
1922                 mpol_to_str(buffer, sizeof(buffer), proc_priv->task_mempolicy);
1923         }
1924
1925         seq_printf(m, "%08lx %s", vma->vm_start, buffer);
1926
1927         if (file) {
1928                 seq_puts(m, " file=");
1929                 seq_file_path(m, file, "\n\t= ");
1930         } else if (vma->vm_start <= mm->brk && vma->vm_end >= mm->start_brk) {
1931                 seq_puts(m, " heap");
1932         } else if (is_stack(vma)) {
1933                 seq_puts(m, " stack");
1934         }
1935
1936         if (is_vm_hugetlb_page(vma))
1937                 seq_puts(m, " huge");
1938
1939         /* mmap_lock is held by m_start */
1940         walk_page_vma(vma, &show_numa_ops, md);
1941
1942         if (!md->pages)
1943                 goto out;
1944
1945         if (md->anon)
1946                 seq_printf(m, " anon=%lu", md->anon);
1947
1948         if (md->dirty)
1949                 seq_printf(m, " dirty=%lu", md->dirty);
1950
1951         if (md->pages != md->anon && md->pages != md->dirty)
1952                 seq_printf(m, " mapped=%lu", md->pages);
1953
1954         if (md->mapcount_max > 1)
1955                 seq_printf(m, " mapmax=%lu", md->mapcount_max);
1956
1957         if (md->swapcache)
1958                 seq_printf(m, " swapcache=%lu", md->swapcache);
1959
1960         if (md->active < md->pages && !is_vm_hugetlb_page(vma))
1961                 seq_printf(m, " active=%lu", md->active);
1962
1963         if (md->writeback)
1964                 seq_printf(m, " writeback=%lu", md->writeback);
1965
1966         for_each_node_state(nid, N_MEMORY)
1967                 if (md->node[nid])
1968                         seq_printf(m, " N%d=%lu", nid, md->node[nid]);
1969
1970         seq_printf(m, " kernelpagesize_kB=%lu", vma_kernel_pagesize(vma) >> 10);
1971 out:
1972         seq_putc(m, '\n');
1973         return 0;
1974 }
1975
1976 static const struct seq_operations proc_pid_numa_maps_op = {
1977         .start  = m_start,
1978         .next   = m_next,
1979         .stop   = m_stop,
1980         .show   = show_numa_map,
1981 };
1982
1983 static int pid_numa_maps_open(struct inode *inode, struct file *file)
1984 {
1985         return proc_maps_open(inode, file, &proc_pid_numa_maps_op,
1986                                 sizeof(struct numa_maps_private));
1987 }
1988
1989 const struct file_operations proc_pid_numa_maps_operations = {
1990         .open           = pid_numa_maps_open,
1991         .read           = seq_read,
1992         .llseek         = seq_lseek,
1993         .release        = proc_map_release,
1994 };
1995
1996 #endif /* CONFIG_NUMA */