35172a91148e5eec19e88661287f433d67b8b513
[linux-2.6-microblaze.git] / fs / proc / task_mmu.c
1 // SPDX-License-Identifier: GPL-2.0
2 #include <linux/pagewalk.h>
3 #include <linux/vmacache.h>
4 #include <linux/hugetlb.h>
5 #include <linux/huge_mm.h>
6 #include <linux/mount.h>
7 #include <linux/seq_file.h>
8 #include <linux/highmem.h>
9 #include <linux/ptrace.h>
10 #include <linux/slab.h>
11 #include <linux/pagemap.h>
12 #include <linux/mempolicy.h>
13 #include <linux/rmap.h>
14 #include <linux/swap.h>
15 #include <linux/sched/mm.h>
16 #include <linux/swapops.h>
17 #include <linux/mmu_notifier.h>
18 #include <linux/page_idle.h>
19 #include <linux/shmem_fs.h>
20 #include <linux/uaccess.h>
21 #include <linux/pkeys.h>
22
23 #include <asm/elf.h>
24 #include <asm/tlb.h>
25 #include <asm/tlbflush.h>
26 #include "internal.h"
27
28 #define SEQ_PUT_DEC(str, val) \
29                 seq_put_decimal_ull_width(m, str, (val) << (PAGE_SHIFT-10), 8)
30 void task_mem(struct seq_file *m, struct mm_struct *mm)
31 {
32         unsigned long text, lib, swap, anon, file, shmem;
33         unsigned long hiwater_vm, total_vm, hiwater_rss, total_rss;
34
35         anon = get_mm_counter(mm, MM_ANONPAGES);
36         file = get_mm_counter(mm, MM_FILEPAGES);
37         shmem = get_mm_counter(mm, MM_SHMEMPAGES);
38
39         /*
40          * Note: to minimize their overhead, mm maintains hiwater_vm and
41          * hiwater_rss only when about to *lower* total_vm or rss.  Any
42          * collector of these hiwater stats must therefore get total_vm
43          * and rss too, which will usually be the higher.  Barriers? not
44          * worth the effort, such snapshots can always be inconsistent.
45          */
46         hiwater_vm = total_vm = mm->total_vm;
47         if (hiwater_vm < mm->hiwater_vm)
48                 hiwater_vm = mm->hiwater_vm;
49         hiwater_rss = total_rss = anon + file + shmem;
50         if (hiwater_rss < mm->hiwater_rss)
51                 hiwater_rss = mm->hiwater_rss;
52
53         /* split executable areas between text and lib */
54         text = PAGE_ALIGN(mm->end_code) - (mm->start_code & PAGE_MASK);
55         text = min(text, mm->exec_vm << PAGE_SHIFT);
56         lib = (mm->exec_vm << PAGE_SHIFT) - text;
57
58         swap = get_mm_counter(mm, MM_SWAPENTS);
59         SEQ_PUT_DEC("VmPeak:\t", hiwater_vm);
60         SEQ_PUT_DEC(" kB\nVmSize:\t", total_vm);
61         SEQ_PUT_DEC(" kB\nVmLck:\t", mm->locked_vm);
62         SEQ_PUT_DEC(" kB\nVmPin:\t", atomic64_read(&mm->pinned_vm));
63         SEQ_PUT_DEC(" kB\nVmHWM:\t", hiwater_rss);
64         SEQ_PUT_DEC(" kB\nVmRSS:\t", total_rss);
65         SEQ_PUT_DEC(" kB\nRssAnon:\t", anon);
66         SEQ_PUT_DEC(" kB\nRssFile:\t", file);
67         SEQ_PUT_DEC(" kB\nRssShmem:\t", shmem);
68         SEQ_PUT_DEC(" kB\nVmData:\t", mm->data_vm);
69         SEQ_PUT_DEC(" kB\nVmStk:\t", mm->stack_vm);
70         seq_put_decimal_ull_width(m,
71                     " kB\nVmExe:\t", text >> 10, 8);
72         seq_put_decimal_ull_width(m,
73                     " kB\nVmLib:\t", lib >> 10, 8);
74         seq_put_decimal_ull_width(m,
75                     " kB\nVmPTE:\t", mm_pgtables_bytes(mm) >> 10, 8);
76         SEQ_PUT_DEC(" kB\nVmSwap:\t", swap);
77         seq_puts(m, " kB\n");
78         hugetlb_report_usage(m, mm);
79 }
80 #undef SEQ_PUT_DEC
81
82 unsigned long task_vsize(struct mm_struct *mm)
83 {
84         return PAGE_SIZE * mm->total_vm;
85 }
86
87 unsigned long task_statm(struct mm_struct *mm,
88                          unsigned long *shared, unsigned long *text,
89                          unsigned long *data, unsigned long *resident)
90 {
91         *shared = get_mm_counter(mm, MM_FILEPAGES) +
92                         get_mm_counter(mm, MM_SHMEMPAGES);
93         *text = (PAGE_ALIGN(mm->end_code) - (mm->start_code & PAGE_MASK))
94                                                                 >> PAGE_SHIFT;
95         *data = mm->data_vm + mm->stack_vm;
96         *resident = *shared + get_mm_counter(mm, MM_ANONPAGES);
97         return mm->total_vm;
98 }
99
100 #ifdef CONFIG_NUMA
101 /*
102  * Save get_task_policy() for show_numa_map().
103  */
104 static void hold_task_mempolicy(struct proc_maps_private *priv)
105 {
106         struct task_struct *task = priv->task;
107
108         task_lock(task);
109         priv->task_mempolicy = get_task_policy(task);
110         mpol_get(priv->task_mempolicy);
111         task_unlock(task);
112 }
113 static void release_task_mempolicy(struct proc_maps_private *priv)
114 {
115         mpol_put(priv->task_mempolicy);
116 }
117 #else
118 static void hold_task_mempolicy(struct proc_maps_private *priv)
119 {
120 }
121 static void release_task_mempolicy(struct proc_maps_private *priv)
122 {
123 }
124 #endif
125
126 static void *m_start(struct seq_file *m, loff_t *ppos)
127 {
128         struct proc_maps_private *priv = m->private;
129         unsigned long last_addr = *ppos;
130         struct mm_struct *mm;
131         struct vm_area_struct *vma;
132
133         /* See m_next(). Zero at the start or after lseek. */
134         if (last_addr == -1UL)
135                 return NULL;
136
137         priv->task = get_proc_task(priv->inode);
138         if (!priv->task)
139                 return ERR_PTR(-ESRCH);
140
141         mm = priv->mm;
142         if (!mm || !mmget_not_zero(mm)) {
143                 put_task_struct(priv->task);
144                 priv->task = NULL;
145                 return NULL;
146         }
147
148         if (mmap_read_lock_killable(mm)) {
149                 mmput(mm);
150                 put_task_struct(priv->task);
151                 priv->task = NULL;
152                 return ERR_PTR(-EINTR);
153         }
154
155         hold_task_mempolicy(priv);
156         priv->tail_vma = get_gate_vma(mm);
157
158         vma = find_vma(mm, last_addr);
159         if (vma)
160                 return vma;
161
162         return priv->tail_vma;
163 }
164
165 static void *m_next(struct seq_file *m, void *v, loff_t *ppos)
166 {
167         struct proc_maps_private *priv = m->private;
168         struct vm_area_struct *next, *vma = v;
169
170         if (vma == priv->tail_vma)
171                 next = NULL;
172         else if (vma->vm_next)
173                 next = vma->vm_next;
174         else
175                 next = priv->tail_vma;
176
177         *ppos = next ? next->vm_start : -1UL;
178
179         return next;
180 }
181
182 static void m_stop(struct seq_file *m, void *v)
183 {
184         struct proc_maps_private *priv = m->private;
185         struct mm_struct *mm = priv->mm;
186
187         if (!priv->task)
188                 return;
189
190         release_task_mempolicy(priv);
191         mmap_read_unlock(mm);
192         mmput(mm);
193         put_task_struct(priv->task);
194         priv->task = NULL;
195 }
196
197 static int proc_maps_open(struct inode *inode, struct file *file,
198                         const struct seq_operations *ops, int psize)
199 {
200         struct proc_maps_private *priv = __seq_open_private(file, ops, psize);
201
202         if (!priv)
203                 return -ENOMEM;
204
205         priv->inode = inode;
206         priv->mm = proc_mem_open(inode, PTRACE_MODE_READ);
207         if (IS_ERR(priv->mm)) {
208                 int err = PTR_ERR(priv->mm);
209
210                 seq_release_private(inode, file);
211                 return err;
212         }
213
214         return 0;
215 }
216
217 static int proc_map_release(struct inode *inode, struct file *file)
218 {
219         struct seq_file *seq = file->private_data;
220         struct proc_maps_private *priv = seq->private;
221
222         if (priv->mm)
223                 mmdrop(priv->mm);
224
225         return seq_release_private(inode, file);
226 }
227
228 static int do_maps_open(struct inode *inode, struct file *file,
229                         const struct seq_operations *ops)
230 {
231         return proc_maps_open(inode, file, ops,
232                                 sizeof(struct proc_maps_private));
233 }
234
235 /*
236  * Indicate if the VMA is a stack for the given task; for
237  * /proc/PID/maps that is the stack of the main task.
238  */
239 static int is_stack(struct vm_area_struct *vma)
240 {
241         /*
242          * We make no effort to guess what a given thread considers to be
243          * its "stack".  It's not even well-defined for programs written
244          * languages like Go.
245          */
246         return vma->vm_start <= vma->vm_mm->start_stack &&
247                 vma->vm_end >= vma->vm_mm->start_stack;
248 }
249
250 static void show_vma_header_prefix(struct seq_file *m,
251                                    unsigned long start, unsigned long end,
252                                    vm_flags_t flags, unsigned long long pgoff,
253                                    dev_t dev, unsigned long ino)
254 {
255         seq_setwidth(m, 25 + sizeof(void *) * 6 - 1);
256         seq_put_hex_ll(m, NULL, start, 8);
257         seq_put_hex_ll(m, "-", end, 8);
258         seq_putc(m, ' ');
259         seq_putc(m, flags & VM_READ ? 'r' : '-');
260         seq_putc(m, flags & VM_WRITE ? 'w' : '-');
261         seq_putc(m, flags & VM_EXEC ? 'x' : '-');
262         seq_putc(m, flags & VM_MAYSHARE ? 's' : 'p');
263         seq_put_hex_ll(m, " ", pgoff, 8);
264         seq_put_hex_ll(m, " ", MAJOR(dev), 2);
265         seq_put_hex_ll(m, ":", MINOR(dev), 2);
266         seq_put_decimal_ull(m, " ", ino);
267         seq_putc(m, ' ');
268 }
269
270 static void
271 show_map_vma(struct seq_file *m, struct vm_area_struct *vma)
272 {
273         struct mm_struct *mm = vma->vm_mm;
274         struct file *file = vma->vm_file;
275         vm_flags_t flags = vma->vm_flags;
276         unsigned long ino = 0;
277         unsigned long long pgoff = 0;
278         unsigned long start, end;
279         dev_t dev = 0;
280         const char *name = NULL;
281
282         if (file) {
283                 struct inode *inode = file_inode(vma->vm_file);
284                 dev = inode->i_sb->s_dev;
285                 ino = inode->i_ino;
286                 pgoff = ((loff_t)vma->vm_pgoff) << PAGE_SHIFT;
287         }
288
289         start = vma->vm_start;
290         end = vma->vm_end;
291         show_vma_header_prefix(m, start, end, flags, pgoff, dev, ino);
292
293         /*
294          * Print the dentry name for named mappings, and a
295          * special [heap] marker for the heap:
296          */
297         if (file) {
298                 seq_pad(m, ' ');
299                 seq_file_path(m, file, "\n");
300                 goto done;
301         }
302
303         if (vma->vm_ops && vma->vm_ops->name) {
304                 name = vma->vm_ops->name(vma);
305                 if (name)
306                         goto done;
307         }
308
309         name = arch_vma_name(vma);
310         if (!name) {
311                 if (!mm) {
312                         name = "[vdso]";
313                         goto done;
314                 }
315
316                 if (vma->vm_start <= mm->brk &&
317                     vma->vm_end >= mm->start_brk) {
318                         name = "[heap]";
319                         goto done;
320                 }
321
322                 if (is_stack(vma))
323                         name = "[stack]";
324         }
325
326 done:
327         if (name) {
328                 seq_pad(m, ' ');
329                 seq_puts(m, name);
330         }
331         seq_putc(m, '\n');
332 }
333
334 static int show_map(struct seq_file *m, void *v)
335 {
336         show_map_vma(m, v);
337         return 0;
338 }
339
340 static const struct seq_operations proc_pid_maps_op = {
341         .start  = m_start,
342         .next   = m_next,
343         .stop   = m_stop,
344         .show   = show_map
345 };
346
347 static int pid_maps_open(struct inode *inode, struct file *file)
348 {
349         return do_maps_open(inode, file, &proc_pid_maps_op);
350 }
351
352 const struct file_operations proc_pid_maps_operations = {
353         .open           = pid_maps_open,
354         .read           = seq_read,
355         .llseek         = seq_lseek,
356         .release        = proc_map_release,
357 };
358
359 /*
360  * Proportional Set Size(PSS): my share of RSS.
361  *
362  * PSS of a process is the count of pages it has in memory, where each
363  * page is divided by the number of processes sharing it.  So if a
364  * process has 1000 pages all to itself, and 1000 shared with one other
365  * process, its PSS will be 1500.
366  *
367  * To keep (accumulated) division errors low, we adopt a 64bit
368  * fixed-point pss counter to minimize division errors. So (pss >>
369  * PSS_SHIFT) would be the real byte count.
370  *
371  * A shift of 12 before division means (assuming 4K page size):
372  *      - 1M 3-user-pages add up to 8KB errors;
373  *      - supports mapcount up to 2^24, or 16M;
374  *      - supports PSS up to 2^52 bytes, or 4PB.
375  */
376 #define PSS_SHIFT 12
377
378 #ifdef CONFIG_PROC_PAGE_MONITOR
379 struct mem_size_stats {
380         unsigned long resident;
381         unsigned long shared_clean;
382         unsigned long shared_dirty;
383         unsigned long private_clean;
384         unsigned long private_dirty;
385         unsigned long referenced;
386         unsigned long anonymous;
387         unsigned long lazyfree;
388         unsigned long anonymous_thp;
389         unsigned long shmem_thp;
390         unsigned long file_thp;
391         unsigned long swap;
392         unsigned long shared_hugetlb;
393         unsigned long private_hugetlb;
394         u64 pss;
395         u64 pss_anon;
396         u64 pss_file;
397         u64 pss_shmem;
398         u64 pss_locked;
399         u64 swap_pss;
400         bool check_shmem_swap;
401 };
402
403 static void smaps_page_accumulate(struct mem_size_stats *mss,
404                 struct page *page, unsigned long size, unsigned long pss,
405                 bool dirty, bool locked, bool private)
406 {
407         mss->pss += pss;
408
409         if (PageAnon(page))
410                 mss->pss_anon += pss;
411         else if (PageSwapBacked(page))
412                 mss->pss_shmem += pss;
413         else
414                 mss->pss_file += pss;
415
416         if (locked)
417                 mss->pss_locked += pss;
418
419         if (dirty || PageDirty(page)) {
420                 if (private)
421                         mss->private_dirty += size;
422                 else
423                         mss->shared_dirty += size;
424         } else {
425                 if (private)
426                         mss->private_clean += size;
427                 else
428                         mss->shared_clean += size;
429         }
430 }
431
432 static void smaps_account(struct mem_size_stats *mss, struct page *page,
433                 bool compound, bool young, bool dirty, bool locked)
434 {
435         int i, nr = compound ? compound_nr(page) : 1;
436         unsigned long size = nr * PAGE_SIZE;
437
438         /*
439          * First accumulate quantities that depend only on |size| and the type
440          * of the compound page.
441          */
442         if (PageAnon(page)) {
443                 mss->anonymous += size;
444                 if (!PageSwapBacked(page) && !dirty && !PageDirty(page))
445                         mss->lazyfree += size;
446         }
447
448         mss->resident += size;
449         /* Accumulate the size in pages that have been accessed. */
450         if (young || page_is_young(page) || PageReferenced(page))
451                 mss->referenced += size;
452
453         /*
454          * Then accumulate quantities that may depend on sharing, or that may
455          * differ page-by-page.
456          *
457          * page_count(page) == 1 guarantees the page is mapped exactly once.
458          * If any subpage of the compound page mapped with PTE it would elevate
459          * page_count().
460          */
461         if (page_count(page) == 1) {
462                 smaps_page_accumulate(mss, page, size, size << PSS_SHIFT, dirty,
463                         locked, true);
464                 return;
465         }
466         for (i = 0; i < nr; i++, page++) {
467                 int mapcount = page_mapcount(page);
468                 unsigned long pss = PAGE_SIZE << PSS_SHIFT;
469                 if (mapcount >= 2)
470                         pss /= mapcount;
471                 smaps_page_accumulate(mss, page, PAGE_SIZE, pss, dirty, locked,
472                                       mapcount < 2);
473         }
474 }
475
476 #ifdef CONFIG_SHMEM
477 static int smaps_pte_hole(unsigned long addr, unsigned long end,
478                           __always_unused int depth, struct mm_walk *walk)
479 {
480         struct mem_size_stats *mss = walk->private;
481
482         mss->swap += shmem_partial_swap_usage(
483                         walk->vma->vm_file->f_mapping, addr, end);
484
485         return 0;
486 }
487 #else
488 #define smaps_pte_hole          NULL
489 #endif /* CONFIG_SHMEM */
490
491 static void smaps_pte_entry(pte_t *pte, unsigned long addr,
492                 struct mm_walk *walk)
493 {
494         struct mem_size_stats *mss = walk->private;
495         struct vm_area_struct *vma = walk->vma;
496         bool locked = !!(vma->vm_flags & VM_LOCKED);
497         struct page *page = NULL;
498
499         if (pte_present(*pte)) {
500                 page = vm_normal_page(vma, addr, *pte);
501         } else if (is_swap_pte(*pte)) {
502                 swp_entry_t swpent = pte_to_swp_entry(*pte);
503
504                 if (!non_swap_entry(swpent)) {
505                         int mapcount;
506
507                         mss->swap += PAGE_SIZE;
508                         mapcount = swp_swapcount(swpent);
509                         if (mapcount >= 2) {
510                                 u64 pss_delta = (u64)PAGE_SIZE << PSS_SHIFT;
511
512                                 do_div(pss_delta, mapcount);
513                                 mss->swap_pss += pss_delta;
514                         } else {
515                                 mss->swap_pss += (u64)PAGE_SIZE << PSS_SHIFT;
516                         }
517                 } else if (is_migration_entry(swpent))
518                         page = migration_entry_to_page(swpent);
519                 else if (is_device_private_entry(swpent))
520                         page = device_private_entry_to_page(swpent);
521         } else if (unlikely(IS_ENABLED(CONFIG_SHMEM) && mss->check_shmem_swap
522                                                         && pte_none(*pte))) {
523                 page = find_get_entry(vma->vm_file->f_mapping,
524                                                 linear_page_index(vma, addr));
525                 if (!page)
526                         return;
527
528                 if (xa_is_value(page))
529                         mss->swap += PAGE_SIZE;
530                 else
531                         put_page(page);
532
533                 return;
534         }
535
536         if (!page)
537                 return;
538
539         smaps_account(mss, page, false, pte_young(*pte), pte_dirty(*pte), locked);
540 }
541
542 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
543 static void smaps_pmd_entry(pmd_t *pmd, unsigned long addr,
544                 struct mm_walk *walk)
545 {
546         struct mem_size_stats *mss = walk->private;
547         struct vm_area_struct *vma = walk->vma;
548         bool locked = !!(vma->vm_flags & VM_LOCKED);
549         struct page *page = NULL;
550
551         if (pmd_present(*pmd)) {
552                 /* FOLL_DUMP will return -EFAULT on huge zero page */
553                 page = follow_trans_huge_pmd(vma, addr, pmd, FOLL_DUMP);
554         } else if (unlikely(thp_migration_supported() && is_swap_pmd(*pmd))) {
555                 swp_entry_t entry = pmd_to_swp_entry(*pmd);
556
557                 if (is_migration_entry(entry))
558                         page = migration_entry_to_page(entry);
559         }
560         if (IS_ERR_OR_NULL(page))
561                 return;
562         if (PageAnon(page))
563                 mss->anonymous_thp += HPAGE_PMD_SIZE;
564         else if (PageSwapBacked(page))
565                 mss->shmem_thp += HPAGE_PMD_SIZE;
566         else if (is_zone_device_page(page))
567                 /* pass */;
568         else
569                 mss->file_thp += HPAGE_PMD_SIZE;
570         smaps_account(mss, page, true, pmd_young(*pmd), pmd_dirty(*pmd), locked);
571 }
572 #else
573 static void smaps_pmd_entry(pmd_t *pmd, unsigned long addr,
574                 struct mm_walk *walk)
575 {
576 }
577 #endif
578
579 static int smaps_pte_range(pmd_t *pmd, unsigned long addr, unsigned long end,
580                            struct mm_walk *walk)
581 {
582         struct vm_area_struct *vma = walk->vma;
583         pte_t *pte;
584         spinlock_t *ptl;
585
586         ptl = pmd_trans_huge_lock(pmd, vma);
587         if (ptl) {
588                 smaps_pmd_entry(pmd, addr, walk);
589                 spin_unlock(ptl);
590                 goto out;
591         }
592
593         if (pmd_trans_unstable(pmd))
594                 goto out;
595         /*
596          * The mmap_lock held all the way back in m_start() is what
597          * keeps khugepaged out of here and from collapsing things
598          * in here.
599          */
600         pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
601         for (; addr != end; pte++, addr += PAGE_SIZE)
602                 smaps_pte_entry(pte, addr, walk);
603         pte_unmap_unlock(pte - 1, ptl);
604 out:
605         cond_resched();
606         return 0;
607 }
608
609 static void show_smap_vma_flags(struct seq_file *m, struct vm_area_struct *vma)
610 {
611         /*
612          * Don't forget to update Documentation/ on changes.
613          */
614         static const char mnemonics[BITS_PER_LONG][2] = {
615                 /*
616                  * In case if we meet a flag we don't know about.
617                  */
618                 [0 ... (BITS_PER_LONG-1)] = "??",
619
620                 [ilog2(VM_READ)]        = "rd",
621                 [ilog2(VM_WRITE)]       = "wr",
622                 [ilog2(VM_EXEC)]        = "ex",
623                 [ilog2(VM_SHARED)]      = "sh",
624                 [ilog2(VM_MAYREAD)]     = "mr",
625                 [ilog2(VM_MAYWRITE)]    = "mw",
626                 [ilog2(VM_MAYEXEC)]     = "me",
627                 [ilog2(VM_MAYSHARE)]    = "ms",
628                 [ilog2(VM_GROWSDOWN)]   = "gd",
629                 [ilog2(VM_PFNMAP)]      = "pf",
630                 [ilog2(VM_DENYWRITE)]   = "dw",
631                 [ilog2(VM_LOCKED)]      = "lo",
632                 [ilog2(VM_IO)]          = "io",
633                 [ilog2(VM_SEQ_READ)]    = "sr",
634                 [ilog2(VM_RAND_READ)]   = "rr",
635                 [ilog2(VM_DONTCOPY)]    = "dc",
636                 [ilog2(VM_DONTEXPAND)]  = "de",
637                 [ilog2(VM_ACCOUNT)]     = "ac",
638                 [ilog2(VM_NORESERVE)]   = "nr",
639                 [ilog2(VM_HUGETLB)]     = "ht",
640                 [ilog2(VM_SYNC)]        = "sf",
641                 [ilog2(VM_ARCH_1)]      = "ar",
642                 [ilog2(VM_WIPEONFORK)]  = "wf",
643                 [ilog2(VM_DONTDUMP)]    = "dd",
644 #ifdef CONFIG_ARM64_BTI
645                 [ilog2(VM_ARM64_BTI)]   = "bt",
646 #endif
647 #ifdef CONFIG_MEM_SOFT_DIRTY
648                 [ilog2(VM_SOFTDIRTY)]   = "sd",
649 #endif
650                 [ilog2(VM_MIXEDMAP)]    = "mm",
651                 [ilog2(VM_HUGEPAGE)]    = "hg",
652                 [ilog2(VM_NOHUGEPAGE)]  = "nh",
653                 [ilog2(VM_MERGEABLE)]   = "mg",
654                 [ilog2(VM_UFFD_MISSING)]= "um",
655                 [ilog2(VM_UFFD_WP)]     = "uw",
656 #ifdef CONFIG_ARM64_MTE
657                 [ilog2(VM_MTE)]         = "mt",
658                 [ilog2(VM_MTE_ALLOWED)] = "",
659 #endif
660 #ifdef CONFIG_ARCH_HAS_PKEYS
661                 /* These come out via ProtectionKey: */
662                 [ilog2(VM_PKEY_BIT0)]   = "",
663                 [ilog2(VM_PKEY_BIT1)]   = "",
664                 [ilog2(VM_PKEY_BIT2)]   = "",
665                 [ilog2(VM_PKEY_BIT3)]   = "",
666 #if VM_PKEY_BIT4
667                 [ilog2(VM_PKEY_BIT4)]   = "",
668 #endif
669 #endif /* CONFIG_ARCH_HAS_PKEYS */
670         };
671         size_t i;
672
673         seq_puts(m, "VmFlags: ");
674         for (i = 0; i < BITS_PER_LONG; i++) {
675                 if (!mnemonics[i][0])
676                         continue;
677                 if (vma->vm_flags & (1UL << i)) {
678                         seq_putc(m, mnemonics[i][0]);
679                         seq_putc(m, mnemonics[i][1]);
680                         seq_putc(m, ' ');
681                 }
682         }
683         seq_putc(m, '\n');
684 }
685
686 #ifdef CONFIG_HUGETLB_PAGE
687 static int smaps_hugetlb_range(pte_t *pte, unsigned long hmask,
688                                  unsigned long addr, unsigned long end,
689                                  struct mm_walk *walk)
690 {
691         struct mem_size_stats *mss = walk->private;
692         struct vm_area_struct *vma = walk->vma;
693         struct page *page = NULL;
694
695         if (pte_present(*pte)) {
696                 page = vm_normal_page(vma, addr, *pte);
697         } else if (is_swap_pte(*pte)) {
698                 swp_entry_t swpent = pte_to_swp_entry(*pte);
699
700                 if (is_migration_entry(swpent))
701                         page = migration_entry_to_page(swpent);
702                 else if (is_device_private_entry(swpent))
703                         page = device_private_entry_to_page(swpent);
704         }
705         if (page) {
706                 int mapcount = page_mapcount(page);
707
708                 if (mapcount >= 2)
709                         mss->shared_hugetlb += huge_page_size(hstate_vma(vma));
710                 else
711                         mss->private_hugetlb += huge_page_size(hstate_vma(vma));
712         }
713         return 0;
714 }
715 #else
716 #define smaps_hugetlb_range     NULL
717 #endif /* HUGETLB_PAGE */
718
719 static const struct mm_walk_ops smaps_walk_ops = {
720         .pmd_entry              = smaps_pte_range,
721         .hugetlb_entry          = smaps_hugetlb_range,
722 };
723
724 static const struct mm_walk_ops smaps_shmem_walk_ops = {
725         .pmd_entry              = smaps_pte_range,
726         .hugetlb_entry          = smaps_hugetlb_range,
727         .pte_hole               = smaps_pte_hole,
728 };
729
730 static void smap_gather_stats(struct vm_area_struct *vma,
731                              struct mem_size_stats *mss)
732 {
733 #ifdef CONFIG_SHMEM
734         /* In case of smaps_rollup, reset the value from previous vma */
735         mss->check_shmem_swap = false;
736         if (vma->vm_file && shmem_mapping(vma->vm_file->f_mapping)) {
737                 /*
738                  * For shared or readonly shmem mappings we know that all
739                  * swapped out pages belong to the shmem object, and we can
740                  * obtain the swap value much more efficiently. For private
741                  * writable mappings, we might have COW pages that are
742                  * not affected by the parent swapped out pages of the shmem
743                  * object, so we have to distinguish them during the page walk.
744                  * Unless we know that the shmem object (or the part mapped by
745                  * our VMA) has no swapped out pages at all.
746                  */
747                 unsigned long shmem_swapped = shmem_swap_usage(vma);
748
749                 if (!shmem_swapped || (vma->vm_flags & VM_SHARED) ||
750                                         !(vma->vm_flags & VM_WRITE)) {
751                         mss->swap += shmem_swapped;
752                 } else {
753                         mss->check_shmem_swap = true;
754                         walk_page_vma(vma, &smaps_shmem_walk_ops, mss);
755                         return;
756                 }
757         }
758 #endif
759         /* mmap_lock is held in m_start */
760         walk_page_vma(vma, &smaps_walk_ops, mss);
761 }
762
763 #define SEQ_PUT_DEC(str, val) \
764                 seq_put_decimal_ull_width(m, str, (val) >> 10, 8)
765
766 /* Show the contents common for smaps and smaps_rollup */
767 static void __show_smap(struct seq_file *m, const struct mem_size_stats *mss,
768         bool rollup_mode)
769 {
770         SEQ_PUT_DEC("Rss:            ", mss->resident);
771         SEQ_PUT_DEC(" kB\nPss:            ", mss->pss >> PSS_SHIFT);
772         if (rollup_mode) {
773                 /*
774                  * These are meaningful only for smaps_rollup, otherwise two of
775                  * them are zero, and the other one is the same as Pss.
776                  */
777                 SEQ_PUT_DEC(" kB\nPss_Anon:       ",
778                         mss->pss_anon >> PSS_SHIFT);
779                 SEQ_PUT_DEC(" kB\nPss_File:       ",
780                         mss->pss_file >> PSS_SHIFT);
781                 SEQ_PUT_DEC(" kB\nPss_Shmem:      ",
782                         mss->pss_shmem >> PSS_SHIFT);
783         }
784         SEQ_PUT_DEC(" kB\nShared_Clean:   ", mss->shared_clean);
785         SEQ_PUT_DEC(" kB\nShared_Dirty:   ", mss->shared_dirty);
786         SEQ_PUT_DEC(" kB\nPrivate_Clean:  ", mss->private_clean);
787         SEQ_PUT_DEC(" kB\nPrivate_Dirty:  ", mss->private_dirty);
788         SEQ_PUT_DEC(" kB\nReferenced:     ", mss->referenced);
789         SEQ_PUT_DEC(" kB\nAnonymous:      ", mss->anonymous);
790         SEQ_PUT_DEC(" kB\nLazyFree:       ", mss->lazyfree);
791         SEQ_PUT_DEC(" kB\nAnonHugePages:  ", mss->anonymous_thp);
792         SEQ_PUT_DEC(" kB\nShmemPmdMapped: ", mss->shmem_thp);
793         SEQ_PUT_DEC(" kB\nFilePmdMapped:  ", mss->file_thp);
794         SEQ_PUT_DEC(" kB\nShared_Hugetlb: ", mss->shared_hugetlb);
795         seq_put_decimal_ull_width(m, " kB\nPrivate_Hugetlb: ",
796                                   mss->private_hugetlb >> 10, 7);
797         SEQ_PUT_DEC(" kB\nSwap:           ", mss->swap);
798         SEQ_PUT_DEC(" kB\nSwapPss:        ",
799                                         mss->swap_pss >> PSS_SHIFT);
800         SEQ_PUT_DEC(" kB\nLocked:         ",
801                                         mss->pss_locked >> PSS_SHIFT);
802         seq_puts(m, " kB\n");
803 }
804
805 static int show_smap(struct seq_file *m, void *v)
806 {
807         struct vm_area_struct *vma = v;
808         struct mem_size_stats mss;
809
810         memset(&mss, 0, sizeof(mss));
811
812         smap_gather_stats(vma, &mss);
813
814         show_map_vma(m, vma);
815
816         SEQ_PUT_DEC("Size:           ", vma->vm_end - vma->vm_start);
817         SEQ_PUT_DEC(" kB\nKernelPageSize: ", vma_kernel_pagesize(vma));
818         SEQ_PUT_DEC(" kB\nMMUPageSize:    ", vma_mmu_pagesize(vma));
819         seq_puts(m, " kB\n");
820
821         __show_smap(m, &mss, false);
822
823         seq_printf(m, "THPeligible:    %d\n",
824                    transparent_hugepage_enabled(vma));
825
826         if (arch_pkeys_enabled())
827                 seq_printf(m, "ProtectionKey:  %8u\n", vma_pkey(vma));
828         show_smap_vma_flags(m, vma);
829
830         return 0;
831 }
832
833 static int show_smaps_rollup(struct seq_file *m, void *v)
834 {
835         struct proc_maps_private *priv = m->private;
836         struct mem_size_stats mss;
837         struct mm_struct *mm;
838         struct vm_area_struct *vma;
839         unsigned long last_vma_end = 0;
840         int ret = 0;
841
842         priv->task = get_proc_task(priv->inode);
843         if (!priv->task)
844                 return -ESRCH;
845
846         mm = priv->mm;
847         if (!mm || !mmget_not_zero(mm)) {
848                 ret = -ESRCH;
849                 goto out_put_task;
850         }
851
852         memset(&mss, 0, sizeof(mss));
853
854         ret = mmap_read_lock_killable(mm);
855         if (ret)
856                 goto out_put_mm;
857
858         hold_task_mempolicy(priv);
859
860         for (vma = priv->mm->mmap; vma; vma = vma->vm_next) {
861                 smap_gather_stats(vma, &mss);
862                 last_vma_end = vma->vm_end;
863         }
864
865         show_vma_header_prefix(m, priv->mm->mmap->vm_start,
866                                last_vma_end, 0, 0, 0, 0);
867         seq_pad(m, ' ');
868         seq_puts(m, "[rollup]\n");
869
870         __show_smap(m, &mss, true);
871
872         release_task_mempolicy(priv);
873         mmap_read_unlock(mm);
874
875 out_put_mm:
876         mmput(mm);
877 out_put_task:
878         put_task_struct(priv->task);
879         priv->task = NULL;
880
881         return ret;
882 }
883 #undef SEQ_PUT_DEC
884
885 static const struct seq_operations proc_pid_smaps_op = {
886         .start  = m_start,
887         .next   = m_next,
888         .stop   = m_stop,
889         .show   = show_smap
890 };
891
892 static int pid_smaps_open(struct inode *inode, struct file *file)
893 {
894         return do_maps_open(inode, file, &proc_pid_smaps_op);
895 }
896
897 static int smaps_rollup_open(struct inode *inode, struct file *file)
898 {
899         int ret;
900         struct proc_maps_private *priv;
901
902         priv = kzalloc(sizeof(*priv), GFP_KERNEL_ACCOUNT);
903         if (!priv)
904                 return -ENOMEM;
905
906         ret = single_open(file, show_smaps_rollup, priv);
907         if (ret)
908                 goto out_free;
909
910         priv->inode = inode;
911         priv->mm = proc_mem_open(inode, PTRACE_MODE_READ);
912         if (IS_ERR(priv->mm)) {
913                 ret = PTR_ERR(priv->mm);
914
915                 single_release(inode, file);
916                 goto out_free;
917         }
918
919         return 0;
920
921 out_free:
922         kfree(priv);
923         return ret;
924 }
925
926 static int smaps_rollup_release(struct inode *inode, struct file *file)
927 {
928         struct seq_file *seq = file->private_data;
929         struct proc_maps_private *priv = seq->private;
930
931         if (priv->mm)
932                 mmdrop(priv->mm);
933
934         kfree(priv);
935         return single_release(inode, file);
936 }
937
938 const struct file_operations proc_pid_smaps_operations = {
939         .open           = pid_smaps_open,
940         .read           = seq_read,
941         .llseek         = seq_lseek,
942         .release        = proc_map_release,
943 };
944
945 const struct file_operations proc_pid_smaps_rollup_operations = {
946         .open           = smaps_rollup_open,
947         .read           = seq_read,
948         .llseek         = seq_lseek,
949         .release        = smaps_rollup_release,
950 };
951
952 enum clear_refs_types {
953         CLEAR_REFS_ALL = 1,
954         CLEAR_REFS_ANON,
955         CLEAR_REFS_MAPPED,
956         CLEAR_REFS_SOFT_DIRTY,
957         CLEAR_REFS_MM_HIWATER_RSS,
958         CLEAR_REFS_LAST,
959 };
960
961 struct clear_refs_private {
962         enum clear_refs_types type;
963 };
964
965 #ifdef CONFIG_MEM_SOFT_DIRTY
966 static inline void clear_soft_dirty(struct vm_area_struct *vma,
967                 unsigned long addr, pte_t *pte)
968 {
969         /*
970          * The soft-dirty tracker uses #PF-s to catch writes
971          * to pages, so write-protect the pte as well. See the
972          * Documentation/admin-guide/mm/soft-dirty.rst for full description
973          * of how soft-dirty works.
974          */
975         pte_t ptent = *pte;
976
977         if (pte_present(ptent)) {
978                 pte_t old_pte;
979
980                 old_pte = ptep_modify_prot_start(vma, addr, pte);
981                 ptent = pte_wrprotect(old_pte);
982                 ptent = pte_clear_soft_dirty(ptent);
983                 ptep_modify_prot_commit(vma, addr, pte, old_pte, ptent);
984         } else if (is_swap_pte(ptent)) {
985                 ptent = pte_swp_clear_soft_dirty(ptent);
986                 set_pte_at(vma->vm_mm, addr, pte, ptent);
987         }
988 }
989 #else
990 static inline void clear_soft_dirty(struct vm_area_struct *vma,
991                 unsigned long addr, pte_t *pte)
992 {
993 }
994 #endif
995
996 #if defined(CONFIG_MEM_SOFT_DIRTY) && defined(CONFIG_TRANSPARENT_HUGEPAGE)
997 static inline void clear_soft_dirty_pmd(struct vm_area_struct *vma,
998                 unsigned long addr, pmd_t *pmdp)
999 {
1000         pmd_t old, pmd = *pmdp;
1001
1002         if (pmd_present(pmd)) {
1003                 /* See comment in change_huge_pmd() */
1004                 old = pmdp_invalidate(vma, addr, pmdp);
1005                 if (pmd_dirty(old))
1006                         pmd = pmd_mkdirty(pmd);
1007                 if (pmd_young(old))
1008                         pmd = pmd_mkyoung(pmd);
1009
1010                 pmd = pmd_wrprotect(pmd);
1011                 pmd = pmd_clear_soft_dirty(pmd);
1012
1013                 set_pmd_at(vma->vm_mm, addr, pmdp, pmd);
1014         } else if (is_migration_entry(pmd_to_swp_entry(pmd))) {
1015                 pmd = pmd_swp_clear_soft_dirty(pmd);
1016                 set_pmd_at(vma->vm_mm, addr, pmdp, pmd);
1017         }
1018 }
1019 #else
1020 static inline void clear_soft_dirty_pmd(struct vm_area_struct *vma,
1021                 unsigned long addr, pmd_t *pmdp)
1022 {
1023 }
1024 #endif
1025
1026 static int clear_refs_pte_range(pmd_t *pmd, unsigned long addr,
1027                                 unsigned long end, struct mm_walk *walk)
1028 {
1029         struct clear_refs_private *cp = walk->private;
1030         struct vm_area_struct *vma = walk->vma;
1031         pte_t *pte, ptent;
1032         spinlock_t *ptl;
1033         struct page *page;
1034
1035         ptl = pmd_trans_huge_lock(pmd, vma);
1036         if (ptl) {
1037                 if (cp->type == CLEAR_REFS_SOFT_DIRTY) {
1038                         clear_soft_dirty_pmd(vma, addr, pmd);
1039                         goto out;
1040                 }
1041
1042                 if (!pmd_present(*pmd))
1043                         goto out;
1044
1045                 page = pmd_page(*pmd);
1046
1047                 /* Clear accessed and referenced bits. */
1048                 pmdp_test_and_clear_young(vma, addr, pmd);
1049                 test_and_clear_page_young(page);
1050                 ClearPageReferenced(page);
1051 out:
1052                 spin_unlock(ptl);
1053                 return 0;
1054         }
1055
1056         if (pmd_trans_unstable(pmd))
1057                 return 0;
1058
1059         pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
1060         for (; addr != end; pte++, addr += PAGE_SIZE) {
1061                 ptent = *pte;
1062
1063                 if (cp->type == CLEAR_REFS_SOFT_DIRTY) {
1064                         clear_soft_dirty(vma, addr, pte);
1065                         continue;
1066                 }
1067
1068                 if (!pte_present(ptent))
1069                         continue;
1070
1071                 page = vm_normal_page(vma, addr, ptent);
1072                 if (!page)
1073                         continue;
1074
1075                 /* Clear accessed and referenced bits. */
1076                 ptep_test_and_clear_young(vma, addr, pte);
1077                 test_and_clear_page_young(page);
1078                 ClearPageReferenced(page);
1079         }
1080         pte_unmap_unlock(pte - 1, ptl);
1081         cond_resched();
1082         return 0;
1083 }
1084
1085 static int clear_refs_test_walk(unsigned long start, unsigned long end,
1086                                 struct mm_walk *walk)
1087 {
1088         struct clear_refs_private *cp = walk->private;
1089         struct vm_area_struct *vma = walk->vma;
1090
1091         if (vma->vm_flags & VM_PFNMAP)
1092                 return 1;
1093
1094         /*
1095          * Writing 1 to /proc/pid/clear_refs affects all pages.
1096          * Writing 2 to /proc/pid/clear_refs only affects anonymous pages.
1097          * Writing 3 to /proc/pid/clear_refs only affects file mapped pages.
1098          * Writing 4 to /proc/pid/clear_refs affects all pages.
1099          */
1100         if (cp->type == CLEAR_REFS_ANON && vma->vm_file)
1101                 return 1;
1102         if (cp->type == CLEAR_REFS_MAPPED && !vma->vm_file)
1103                 return 1;
1104         return 0;
1105 }
1106
1107 static const struct mm_walk_ops clear_refs_walk_ops = {
1108         .pmd_entry              = clear_refs_pte_range,
1109         .test_walk              = clear_refs_test_walk,
1110 };
1111
1112 static ssize_t clear_refs_write(struct file *file, const char __user *buf,
1113                                 size_t count, loff_t *ppos)
1114 {
1115         struct task_struct *task;
1116         char buffer[PROC_NUMBUF];
1117         struct mm_struct *mm;
1118         struct vm_area_struct *vma;
1119         enum clear_refs_types type;
1120         struct mmu_gather tlb;
1121         int itype;
1122         int rv;
1123
1124         memset(buffer, 0, sizeof(buffer));
1125         if (count > sizeof(buffer) - 1)
1126                 count = sizeof(buffer) - 1;
1127         if (copy_from_user(buffer, buf, count))
1128                 return -EFAULT;
1129         rv = kstrtoint(strstrip(buffer), 10, &itype);
1130         if (rv < 0)
1131                 return rv;
1132         type = (enum clear_refs_types)itype;
1133         if (type < CLEAR_REFS_ALL || type >= CLEAR_REFS_LAST)
1134                 return -EINVAL;
1135
1136         task = get_proc_task(file_inode(file));
1137         if (!task)
1138                 return -ESRCH;
1139         mm = get_task_mm(task);
1140         if (mm) {
1141                 struct mmu_notifier_range range;
1142                 struct clear_refs_private cp = {
1143                         .type = type,
1144                 };
1145
1146                 if (type == CLEAR_REFS_MM_HIWATER_RSS) {
1147                         if (mmap_write_lock_killable(mm)) {
1148                                 count = -EINTR;
1149                                 goto out_mm;
1150                         }
1151
1152                         /*
1153                          * Writing 5 to /proc/pid/clear_refs resets the peak
1154                          * resident set size to this mm's current rss value.
1155                          */
1156                         reset_mm_hiwater_rss(mm);
1157                         mmap_write_unlock(mm);
1158                         goto out_mm;
1159                 }
1160
1161                 if (mmap_read_lock_killable(mm)) {
1162                         count = -EINTR;
1163                         goto out_mm;
1164                 }
1165                 tlb_gather_mmu(&tlb, mm, 0, -1);
1166                 if (type == CLEAR_REFS_SOFT_DIRTY) {
1167                         for (vma = mm->mmap; vma; vma = vma->vm_next) {
1168                                 if (!(vma->vm_flags & VM_SOFTDIRTY))
1169                                         continue;
1170                                 mmap_read_unlock(mm);
1171                                 if (mmap_write_lock_killable(mm)) {
1172                                         count = -EINTR;
1173                                         goto out_mm;
1174                                 }
1175                                 /*
1176                                  * Avoid to modify vma->vm_flags
1177                                  * without locked ops while the
1178                                  * coredump reads the vm_flags.
1179                                  */
1180                                 if (!mmget_still_valid(mm)) {
1181                                         /*
1182                                          * Silently return "count"
1183                                          * like if get_task_mm()
1184                                          * failed. FIXME: should this
1185                                          * function have returned
1186                                          * -ESRCH if get_task_mm()
1187                                          * failed like if
1188                                          * get_proc_task() fails?
1189                                          */
1190                                         mmap_write_unlock(mm);
1191                                         goto out_mm;
1192                                 }
1193                                 for (vma = mm->mmap; vma; vma = vma->vm_next) {
1194                                         vma->vm_flags &= ~VM_SOFTDIRTY;
1195                                         vma_set_page_prot(vma);
1196                                 }
1197                                 mmap_write_downgrade(mm);
1198                                 break;
1199                         }
1200
1201                         mmu_notifier_range_init(&range, MMU_NOTIFY_SOFT_DIRTY,
1202                                                 0, NULL, mm, 0, -1UL);
1203                         mmu_notifier_invalidate_range_start(&range);
1204                 }
1205                 walk_page_range(mm, 0, mm->highest_vm_end, &clear_refs_walk_ops,
1206                                 &cp);
1207                 if (type == CLEAR_REFS_SOFT_DIRTY)
1208                         mmu_notifier_invalidate_range_end(&range);
1209                 tlb_finish_mmu(&tlb, 0, -1);
1210                 mmap_read_unlock(mm);
1211 out_mm:
1212                 mmput(mm);
1213         }
1214         put_task_struct(task);
1215
1216         return count;
1217 }
1218
1219 const struct file_operations proc_clear_refs_operations = {
1220         .write          = clear_refs_write,
1221         .llseek         = noop_llseek,
1222 };
1223
1224 typedef struct {
1225         u64 pme;
1226 } pagemap_entry_t;
1227
1228 struct pagemapread {
1229         int pos, len;           /* units: PM_ENTRY_BYTES, not bytes */
1230         pagemap_entry_t *buffer;
1231         bool show_pfn;
1232 };
1233
1234 #define PAGEMAP_WALK_SIZE       (PMD_SIZE)
1235 #define PAGEMAP_WALK_MASK       (PMD_MASK)
1236
1237 #define PM_ENTRY_BYTES          sizeof(pagemap_entry_t)
1238 #define PM_PFRAME_BITS          55
1239 #define PM_PFRAME_MASK          GENMASK_ULL(PM_PFRAME_BITS - 1, 0)
1240 #define PM_SOFT_DIRTY           BIT_ULL(55)
1241 #define PM_MMAP_EXCLUSIVE       BIT_ULL(56)
1242 #define PM_FILE                 BIT_ULL(61)
1243 #define PM_SWAP                 BIT_ULL(62)
1244 #define PM_PRESENT              BIT_ULL(63)
1245
1246 #define PM_END_OF_BUFFER    1
1247
1248 static inline pagemap_entry_t make_pme(u64 frame, u64 flags)
1249 {
1250         return (pagemap_entry_t) { .pme = (frame & PM_PFRAME_MASK) | flags };
1251 }
1252
1253 static int add_to_pagemap(unsigned long addr, pagemap_entry_t *pme,
1254                           struct pagemapread *pm)
1255 {
1256         pm->buffer[pm->pos++] = *pme;
1257         if (pm->pos >= pm->len)
1258                 return PM_END_OF_BUFFER;
1259         return 0;
1260 }
1261
1262 static int pagemap_pte_hole(unsigned long start, unsigned long end,
1263                             __always_unused int depth, struct mm_walk *walk)
1264 {
1265         struct pagemapread *pm = walk->private;
1266         unsigned long addr = start;
1267         int err = 0;
1268
1269         while (addr < end) {
1270                 struct vm_area_struct *vma = find_vma(walk->mm, addr);
1271                 pagemap_entry_t pme = make_pme(0, 0);
1272                 /* End of address space hole, which we mark as non-present. */
1273                 unsigned long hole_end;
1274
1275                 if (vma)
1276                         hole_end = min(end, vma->vm_start);
1277                 else
1278                         hole_end = end;
1279
1280                 for (; addr < hole_end; addr += PAGE_SIZE) {
1281                         err = add_to_pagemap(addr, &pme, pm);
1282                         if (err)
1283                                 goto out;
1284                 }
1285
1286                 if (!vma)
1287                         break;
1288
1289                 /* Addresses in the VMA. */
1290                 if (vma->vm_flags & VM_SOFTDIRTY)
1291                         pme = make_pme(0, PM_SOFT_DIRTY);
1292                 for (; addr < min(end, vma->vm_end); addr += PAGE_SIZE) {
1293                         err = add_to_pagemap(addr, &pme, pm);
1294                         if (err)
1295                                 goto out;
1296                 }
1297         }
1298 out:
1299         return err;
1300 }
1301
1302 static pagemap_entry_t pte_to_pagemap_entry(struct pagemapread *pm,
1303                 struct vm_area_struct *vma, unsigned long addr, pte_t pte)
1304 {
1305         u64 frame = 0, flags = 0;
1306         struct page *page = NULL;
1307
1308         if (pte_present(pte)) {
1309                 if (pm->show_pfn)
1310                         frame = pte_pfn(pte);
1311                 flags |= PM_PRESENT;
1312                 page = vm_normal_page(vma, addr, pte);
1313                 if (pte_soft_dirty(pte))
1314                         flags |= PM_SOFT_DIRTY;
1315         } else if (is_swap_pte(pte)) {
1316                 swp_entry_t entry;
1317                 if (pte_swp_soft_dirty(pte))
1318                         flags |= PM_SOFT_DIRTY;
1319                 entry = pte_to_swp_entry(pte);
1320                 if (pm->show_pfn)
1321                         frame = swp_type(entry) |
1322                                 (swp_offset(entry) << MAX_SWAPFILES_SHIFT);
1323                 flags |= PM_SWAP;
1324                 if (is_migration_entry(entry))
1325                         page = migration_entry_to_page(entry);
1326
1327                 if (is_device_private_entry(entry))
1328                         page = device_private_entry_to_page(entry);
1329         }
1330
1331         if (page && !PageAnon(page))
1332                 flags |= PM_FILE;
1333         if (page && page_mapcount(page) == 1)
1334                 flags |= PM_MMAP_EXCLUSIVE;
1335         if (vma->vm_flags & VM_SOFTDIRTY)
1336                 flags |= PM_SOFT_DIRTY;
1337
1338         return make_pme(frame, flags);
1339 }
1340
1341 static int pagemap_pmd_range(pmd_t *pmdp, unsigned long addr, unsigned long end,
1342                              struct mm_walk *walk)
1343 {
1344         struct vm_area_struct *vma = walk->vma;
1345         struct pagemapread *pm = walk->private;
1346         spinlock_t *ptl;
1347         pte_t *pte, *orig_pte;
1348         int err = 0;
1349
1350 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1351         ptl = pmd_trans_huge_lock(pmdp, vma);
1352         if (ptl) {
1353                 u64 flags = 0, frame = 0;
1354                 pmd_t pmd = *pmdp;
1355                 struct page *page = NULL;
1356
1357                 if (vma->vm_flags & VM_SOFTDIRTY)
1358                         flags |= PM_SOFT_DIRTY;
1359
1360                 if (pmd_present(pmd)) {
1361                         page = pmd_page(pmd);
1362
1363                         flags |= PM_PRESENT;
1364                         if (pmd_soft_dirty(pmd))
1365                                 flags |= PM_SOFT_DIRTY;
1366                         if (pm->show_pfn)
1367                                 frame = pmd_pfn(pmd) +
1368                                         ((addr & ~PMD_MASK) >> PAGE_SHIFT);
1369                 }
1370 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
1371                 else if (is_swap_pmd(pmd)) {
1372                         swp_entry_t entry = pmd_to_swp_entry(pmd);
1373                         unsigned long offset;
1374
1375                         if (pm->show_pfn) {
1376                                 offset = swp_offset(entry) +
1377                                         ((addr & ~PMD_MASK) >> PAGE_SHIFT);
1378                                 frame = swp_type(entry) |
1379                                         (offset << MAX_SWAPFILES_SHIFT);
1380                         }
1381                         flags |= PM_SWAP;
1382                         if (pmd_swp_soft_dirty(pmd))
1383                                 flags |= PM_SOFT_DIRTY;
1384                         VM_BUG_ON(!is_pmd_migration_entry(pmd));
1385                         page = migration_entry_to_page(entry);
1386                 }
1387 #endif
1388
1389                 if (page && page_mapcount(page) == 1)
1390                         flags |= PM_MMAP_EXCLUSIVE;
1391
1392                 for (; addr != end; addr += PAGE_SIZE) {
1393                         pagemap_entry_t pme = make_pme(frame, flags);
1394
1395                         err = add_to_pagemap(addr, &pme, pm);
1396                         if (err)
1397                                 break;
1398                         if (pm->show_pfn) {
1399                                 if (flags & PM_PRESENT)
1400                                         frame++;
1401                                 else if (flags & PM_SWAP)
1402                                         frame += (1 << MAX_SWAPFILES_SHIFT);
1403                         }
1404                 }
1405                 spin_unlock(ptl);
1406                 return err;
1407         }
1408
1409         if (pmd_trans_unstable(pmdp))
1410                 return 0;
1411 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
1412
1413         /*
1414          * We can assume that @vma always points to a valid one and @end never
1415          * goes beyond vma->vm_end.
1416          */
1417         orig_pte = pte = pte_offset_map_lock(walk->mm, pmdp, addr, &ptl);
1418         for (; addr < end; pte++, addr += PAGE_SIZE) {
1419                 pagemap_entry_t pme;
1420
1421                 pme = pte_to_pagemap_entry(pm, vma, addr, *pte);
1422                 err = add_to_pagemap(addr, &pme, pm);
1423                 if (err)
1424                         break;
1425         }
1426         pte_unmap_unlock(orig_pte, ptl);
1427
1428         cond_resched();
1429
1430         return err;
1431 }
1432
1433 #ifdef CONFIG_HUGETLB_PAGE
1434 /* This function walks within one hugetlb entry in the single call */
1435 static int pagemap_hugetlb_range(pte_t *ptep, unsigned long hmask,
1436                                  unsigned long addr, unsigned long end,
1437                                  struct mm_walk *walk)
1438 {
1439         struct pagemapread *pm = walk->private;
1440         struct vm_area_struct *vma = walk->vma;
1441         u64 flags = 0, frame = 0;
1442         int err = 0;
1443         pte_t pte;
1444
1445         if (vma->vm_flags & VM_SOFTDIRTY)
1446                 flags |= PM_SOFT_DIRTY;
1447
1448         pte = huge_ptep_get(ptep);
1449         if (pte_present(pte)) {
1450                 struct page *page = pte_page(pte);
1451
1452                 if (!PageAnon(page))
1453                         flags |= PM_FILE;
1454
1455                 if (page_mapcount(page) == 1)
1456                         flags |= PM_MMAP_EXCLUSIVE;
1457
1458                 flags |= PM_PRESENT;
1459                 if (pm->show_pfn)
1460                         frame = pte_pfn(pte) +
1461                                 ((addr & ~hmask) >> PAGE_SHIFT);
1462         }
1463
1464         for (; addr != end; addr += PAGE_SIZE) {
1465                 pagemap_entry_t pme = make_pme(frame, flags);
1466
1467                 err = add_to_pagemap(addr, &pme, pm);
1468                 if (err)
1469                         return err;
1470                 if (pm->show_pfn && (flags & PM_PRESENT))
1471                         frame++;
1472         }
1473
1474         cond_resched();
1475
1476         return err;
1477 }
1478 #else
1479 #define pagemap_hugetlb_range   NULL
1480 #endif /* HUGETLB_PAGE */
1481
1482 static const struct mm_walk_ops pagemap_ops = {
1483         .pmd_entry      = pagemap_pmd_range,
1484         .pte_hole       = pagemap_pte_hole,
1485         .hugetlb_entry  = pagemap_hugetlb_range,
1486 };
1487
1488 /*
1489  * /proc/pid/pagemap - an array mapping virtual pages to pfns
1490  *
1491  * For each page in the address space, this file contains one 64-bit entry
1492  * consisting of the following:
1493  *
1494  * Bits 0-54  page frame number (PFN) if present
1495  * Bits 0-4   swap type if swapped
1496  * Bits 5-54  swap offset if swapped
1497  * Bit  55    pte is soft-dirty (see Documentation/admin-guide/mm/soft-dirty.rst)
1498  * Bit  56    page exclusively mapped
1499  * Bits 57-60 zero
1500  * Bit  61    page is file-page or shared-anon
1501  * Bit  62    page swapped
1502  * Bit  63    page present
1503  *
1504  * If the page is not present but in swap, then the PFN contains an
1505  * encoding of the swap file number and the page's offset into the
1506  * swap. Unmapped pages return a null PFN. This allows determining
1507  * precisely which pages are mapped (or in swap) and comparing mapped
1508  * pages between processes.
1509  *
1510  * Efficient users of this interface will use /proc/pid/maps to
1511  * determine which areas of memory are actually mapped and llseek to
1512  * skip over unmapped regions.
1513  */
1514 static ssize_t pagemap_read(struct file *file, char __user *buf,
1515                             size_t count, loff_t *ppos)
1516 {
1517         struct mm_struct *mm = file->private_data;
1518         struct pagemapread pm;
1519         unsigned long src;
1520         unsigned long svpfn;
1521         unsigned long start_vaddr;
1522         unsigned long end_vaddr;
1523         int ret = 0, copied = 0;
1524
1525         if (!mm || !mmget_not_zero(mm))
1526                 goto out;
1527
1528         ret = -EINVAL;
1529         /* file position must be aligned */
1530         if ((*ppos % PM_ENTRY_BYTES) || (count % PM_ENTRY_BYTES))
1531                 goto out_mm;
1532
1533         ret = 0;
1534         if (!count)
1535                 goto out_mm;
1536
1537         /* do not disclose physical addresses: attack vector */
1538         pm.show_pfn = file_ns_capable(file, &init_user_ns, CAP_SYS_ADMIN);
1539
1540         pm.len = (PAGEMAP_WALK_SIZE >> PAGE_SHIFT);
1541         pm.buffer = kmalloc_array(pm.len, PM_ENTRY_BYTES, GFP_KERNEL);
1542         ret = -ENOMEM;
1543         if (!pm.buffer)
1544                 goto out_mm;
1545
1546         src = *ppos;
1547         svpfn = src / PM_ENTRY_BYTES;
1548         start_vaddr = svpfn << PAGE_SHIFT;
1549         end_vaddr = mm->task_size;
1550
1551         /* watch out for wraparound */
1552         if (svpfn > mm->task_size >> PAGE_SHIFT)
1553                 start_vaddr = end_vaddr;
1554
1555         /*
1556          * The odds are that this will stop walking way
1557          * before end_vaddr, because the length of the
1558          * user buffer is tracked in "pm", and the walk
1559          * will stop when we hit the end of the buffer.
1560          */
1561         ret = 0;
1562         while (count && (start_vaddr < end_vaddr)) {
1563                 int len;
1564                 unsigned long end;
1565
1566                 pm.pos = 0;
1567                 end = (start_vaddr + PAGEMAP_WALK_SIZE) & PAGEMAP_WALK_MASK;
1568                 /* overflow ? */
1569                 if (end < start_vaddr || end > end_vaddr)
1570                         end = end_vaddr;
1571                 ret = mmap_read_lock_killable(mm);
1572                 if (ret)
1573                         goto out_free;
1574                 ret = walk_page_range(mm, start_vaddr, end, &pagemap_ops, &pm);
1575                 mmap_read_unlock(mm);
1576                 start_vaddr = end;
1577
1578                 len = min(count, PM_ENTRY_BYTES * pm.pos);
1579                 if (copy_to_user(buf, pm.buffer, len)) {
1580                         ret = -EFAULT;
1581                         goto out_free;
1582                 }
1583                 copied += len;
1584                 buf += len;
1585                 count -= len;
1586         }
1587         *ppos += copied;
1588         if (!ret || ret == PM_END_OF_BUFFER)
1589                 ret = copied;
1590
1591 out_free:
1592         kfree(pm.buffer);
1593 out_mm:
1594         mmput(mm);
1595 out:
1596         return ret;
1597 }
1598
1599 static int pagemap_open(struct inode *inode, struct file *file)
1600 {
1601         struct mm_struct *mm;
1602
1603         mm = proc_mem_open(inode, PTRACE_MODE_READ);
1604         if (IS_ERR(mm))
1605                 return PTR_ERR(mm);
1606         file->private_data = mm;
1607         return 0;
1608 }
1609
1610 static int pagemap_release(struct inode *inode, struct file *file)
1611 {
1612         struct mm_struct *mm = file->private_data;
1613
1614         if (mm)
1615                 mmdrop(mm);
1616         return 0;
1617 }
1618
1619 const struct file_operations proc_pagemap_operations = {
1620         .llseek         = mem_lseek, /* borrow this */
1621         .read           = pagemap_read,
1622         .open           = pagemap_open,
1623         .release        = pagemap_release,
1624 };
1625 #endif /* CONFIG_PROC_PAGE_MONITOR */
1626
1627 #ifdef CONFIG_NUMA
1628
1629 struct numa_maps {
1630         unsigned long pages;
1631         unsigned long anon;
1632         unsigned long active;
1633         unsigned long writeback;
1634         unsigned long mapcount_max;
1635         unsigned long dirty;
1636         unsigned long swapcache;
1637         unsigned long node[MAX_NUMNODES];
1638 };
1639
1640 struct numa_maps_private {
1641         struct proc_maps_private proc_maps;
1642         struct numa_maps md;
1643 };
1644
1645 static void gather_stats(struct page *page, struct numa_maps *md, int pte_dirty,
1646                         unsigned long nr_pages)
1647 {
1648         int count = page_mapcount(page);
1649
1650         md->pages += nr_pages;
1651         if (pte_dirty || PageDirty(page))
1652                 md->dirty += nr_pages;
1653
1654         if (PageSwapCache(page))
1655                 md->swapcache += nr_pages;
1656
1657         if (PageActive(page) || PageUnevictable(page))
1658                 md->active += nr_pages;
1659
1660         if (PageWriteback(page))
1661                 md->writeback += nr_pages;
1662
1663         if (PageAnon(page))
1664                 md->anon += nr_pages;
1665
1666         if (count > md->mapcount_max)
1667                 md->mapcount_max = count;
1668
1669         md->node[page_to_nid(page)] += nr_pages;
1670 }
1671
1672 static struct page *can_gather_numa_stats(pte_t pte, struct vm_area_struct *vma,
1673                 unsigned long addr)
1674 {
1675         struct page *page;
1676         int nid;
1677
1678         if (!pte_present(pte))
1679                 return NULL;
1680
1681         page = vm_normal_page(vma, addr, pte);
1682         if (!page)
1683                 return NULL;
1684
1685         if (PageReserved(page))
1686                 return NULL;
1687
1688         nid = page_to_nid(page);
1689         if (!node_isset(nid, node_states[N_MEMORY]))
1690                 return NULL;
1691
1692         return page;
1693 }
1694
1695 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1696 static struct page *can_gather_numa_stats_pmd(pmd_t pmd,
1697                                               struct vm_area_struct *vma,
1698                                               unsigned long addr)
1699 {
1700         struct page *page;
1701         int nid;
1702
1703         if (!pmd_present(pmd))
1704                 return NULL;
1705
1706         page = vm_normal_page_pmd(vma, addr, pmd);
1707         if (!page)
1708                 return NULL;
1709
1710         if (PageReserved(page))
1711                 return NULL;
1712
1713         nid = page_to_nid(page);
1714         if (!node_isset(nid, node_states[N_MEMORY]))
1715                 return NULL;
1716
1717         return page;
1718 }
1719 #endif
1720
1721 static int gather_pte_stats(pmd_t *pmd, unsigned long addr,
1722                 unsigned long end, struct mm_walk *walk)
1723 {
1724         struct numa_maps *md = walk->private;
1725         struct vm_area_struct *vma = walk->vma;
1726         spinlock_t *ptl;
1727         pte_t *orig_pte;
1728         pte_t *pte;
1729
1730 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1731         ptl = pmd_trans_huge_lock(pmd, vma);
1732         if (ptl) {
1733                 struct page *page;
1734
1735                 page = can_gather_numa_stats_pmd(*pmd, vma, addr);
1736                 if (page)
1737                         gather_stats(page, md, pmd_dirty(*pmd),
1738                                      HPAGE_PMD_SIZE/PAGE_SIZE);
1739                 spin_unlock(ptl);
1740                 return 0;
1741         }
1742
1743         if (pmd_trans_unstable(pmd))
1744                 return 0;
1745 #endif
1746         orig_pte = pte = pte_offset_map_lock(walk->mm, pmd, addr, &ptl);
1747         do {
1748                 struct page *page = can_gather_numa_stats(*pte, vma, addr);
1749                 if (!page)
1750                         continue;
1751                 gather_stats(page, md, pte_dirty(*pte), 1);
1752
1753         } while (pte++, addr += PAGE_SIZE, addr != end);
1754         pte_unmap_unlock(orig_pte, ptl);
1755         cond_resched();
1756         return 0;
1757 }
1758 #ifdef CONFIG_HUGETLB_PAGE
1759 static int gather_hugetlb_stats(pte_t *pte, unsigned long hmask,
1760                 unsigned long addr, unsigned long end, struct mm_walk *walk)
1761 {
1762         pte_t huge_pte = huge_ptep_get(pte);
1763         struct numa_maps *md;
1764         struct page *page;
1765
1766         if (!pte_present(huge_pte))
1767                 return 0;
1768
1769         page = pte_page(huge_pte);
1770         if (!page)
1771                 return 0;
1772
1773         md = walk->private;
1774         gather_stats(page, md, pte_dirty(huge_pte), 1);
1775         return 0;
1776 }
1777
1778 #else
1779 static int gather_hugetlb_stats(pte_t *pte, unsigned long hmask,
1780                 unsigned long addr, unsigned long end, struct mm_walk *walk)
1781 {
1782         return 0;
1783 }
1784 #endif
1785
1786 static const struct mm_walk_ops show_numa_ops = {
1787         .hugetlb_entry = gather_hugetlb_stats,
1788         .pmd_entry = gather_pte_stats,
1789 };
1790
1791 /*
1792  * Display pages allocated per node and memory policy via /proc.
1793  */
1794 static int show_numa_map(struct seq_file *m, void *v)
1795 {
1796         struct numa_maps_private *numa_priv = m->private;
1797         struct proc_maps_private *proc_priv = &numa_priv->proc_maps;
1798         struct vm_area_struct *vma = v;
1799         struct numa_maps *md = &numa_priv->md;
1800         struct file *file = vma->vm_file;
1801         struct mm_struct *mm = vma->vm_mm;
1802         struct mempolicy *pol;
1803         char buffer[64];
1804         int nid;
1805
1806         if (!mm)
1807                 return 0;
1808
1809         /* Ensure we start with an empty set of numa_maps statistics. */
1810         memset(md, 0, sizeof(*md));
1811
1812         pol = __get_vma_policy(vma, vma->vm_start);
1813         if (pol) {
1814                 mpol_to_str(buffer, sizeof(buffer), pol);
1815                 mpol_cond_put(pol);
1816         } else {
1817                 mpol_to_str(buffer, sizeof(buffer), proc_priv->task_mempolicy);
1818         }
1819
1820         seq_printf(m, "%08lx %s", vma->vm_start, buffer);
1821
1822         if (file) {
1823                 seq_puts(m, " file=");
1824                 seq_file_path(m, file, "\n\t= ");
1825         } else if (vma->vm_start <= mm->brk && vma->vm_end >= mm->start_brk) {
1826                 seq_puts(m, " heap");
1827         } else if (is_stack(vma)) {
1828                 seq_puts(m, " stack");
1829         }
1830
1831         if (is_vm_hugetlb_page(vma))
1832                 seq_puts(m, " huge");
1833
1834         /* mmap_lock is held by m_start */
1835         walk_page_vma(vma, &show_numa_ops, md);
1836
1837         if (!md->pages)
1838                 goto out;
1839
1840         if (md->anon)
1841                 seq_printf(m, " anon=%lu", md->anon);
1842
1843         if (md->dirty)
1844                 seq_printf(m, " dirty=%lu", md->dirty);
1845
1846         if (md->pages != md->anon && md->pages != md->dirty)
1847                 seq_printf(m, " mapped=%lu", md->pages);
1848
1849         if (md->mapcount_max > 1)
1850                 seq_printf(m, " mapmax=%lu", md->mapcount_max);
1851
1852         if (md->swapcache)
1853                 seq_printf(m, " swapcache=%lu", md->swapcache);
1854
1855         if (md->active < md->pages && !is_vm_hugetlb_page(vma))
1856                 seq_printf(m, " active=%lu", md->active);
1857
1858         if (md->writeback)
1859                 seq_printf(m, " writeback=%lu", md->writeback);
1860
1861         for_each_node_state(nid, N_MEMORY)
1862                 if (md->node[nid])
1863                         seq_printf(m, " N%d=%lu", nid, md->node[nid]);
1864
1865         seq_printf(m, " kernelpagesize_kB=%lu", vma_kernel_pagesize(vma) >> 10);
1866 out:
1867         seq_putc(m, '\n');
1868         return 0;
1869 }
1870
1871 static const struct seq_operations proc_pid_numa_maps_op = {
1872         .start  = m_start,
1873         .next   = m_next,
1874         .stop   = m_stop,
1875         .show   = show_numa_map,
1876 };
1877
1878 static int pid_numa_maps_open(struct inode *inode, struct file *file)
1879 {
1880         return proc_maps_open(inode, file, &proc_pid_numa_maps_op,
1881                                 sizeof(struct numa_maps_private));
1882 }
1883
1884 const struct file_operations proc_pid_numa_maps_operations = {
1885         .open           = pid_numa_maps_open,
1886         .read           = seq_read,
1887         .llseek         = seq_lseek,
1888         .release        = proc_map_release,
1889 };
1890
1891 #endif /* CONFIG_NUMA */