net: ipa: fix modem LAN RX endpoint id
[linux-2.6-microblaze.git] / fs / pipe.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  *  linux/fs/pipe.c
4  *
5  *  Copyright (C) 1991, 1992, 1999  Linus Torvalds
6  */
7
8 #include <linux/mm.h>
9 #include <linux/file.h>
10 #include <linux/poll.h>
11 #include <linux/slab.h>
12 #include <linux/module.h>
13 #include <linux/init.h>
14 #include <linux/fs.h>
15 #include <linux/log2.h>
16 #include <linux/mount.h>
17 #include <linux/pseudo_fs.h>
18 #include <linux/magic.h>
19 #include <linux/pipe_fs_i.h>
20 #include <linux/uio.h>
21 #include <linux/highmem.h>
22 #include <linux/pagemap.h>
23 #include <linux/audit.h>
24 #include <linux/syscalls.h>
25 #include <linux/fcntl.h>
26 #include <linux/memcontrol.h>
27
28 #include <linux/uaccess.h>
29 #include <asm/ioctls.h>
30
31 #include "internal.h"
32
33 /*
34  * The max size that a non-root user is allowed to grow the pipe. Can
35  * be set by root in /proc/sys/fs/pipe-max-size
36  */
37 unsigned int pipe_max_size = 1048576;
38
39 /* Maximum allocatable pages per user. Hard limit is unset by default, soft
40  * matches default values.
41  */
42 unsigned long pipe_user_pages_hard;
43 unsigned long pipe_user_pages_soft = PIPE_DEF_BUFFERS * INR_OPEN_CUR;
44
45 /*
46  * We use head and tail indices that aren't masked off, except at the point of
47  * dereference, but rather they're allowed to wrap naturally.  This means there
48  * isn't a dead spot in the buffer, but the ring has to be a power of two and
49  * <= 2^31.
50  * -- David Howells 2019-09-23.
51  *
52  * Reads with count = 0 should always return 0.
53  * -- Julian Bradfield 1999-06-07.
54  *
55  * FIFOs and Pipes now generate SIGIO for both readers and writers.
56  * -- Jeremy Elson <jelson@circlemud.org> 2001-08-16
57  *
58  * pipe_read & write cleanup
59  * -- Manfred Spraul <manfred@colorfullife.com> 2002-05-09
60  */
61
62 static void pipe_lock_nested(struct pipe_inode_info *pipe, int subclass)
63 {
64         if (pipe->files)
65                 mutex_lock_nested(&pipe->mutex, subclass);
66 }
67
68 void pipe_lock(struct pipe_inode_info *pipe)
69 {
70         /*
71          * pipe_lock() nests non-pipe inode locks (for writing to a file)
72          */
73         pipe_lock_nested(pipe, I_MUTEX_PARENT);
74 }
75 EXPORT_SYMBOL(pipe_lock);
76
77 void pipe_unlock(struct pipe_inode_info *pipe)
78 {
79         if (pipe->files)
80                 mutex_unlock(&pipe->mutex);
81 }
82 EXPORT_SYMBOL(pipe_unlock);
83
84 static inline void __pipe_lock(struct pipe_inode_info *pipe)
85 {
86         mutex_lock_nested(&pipe->mutex, I_MUTEX_PARENT);
87 }
88
89 static inline void __pipe_unlock(struct pipe_inode_info *pipe)
90 {
91         mutex_unlock(&pipe->mutex);
92 }
93
94 void pipe_double_lock(struct pipe_inode_info *pipe1,
95                       struct pipe_inode_info *pipe2)
96 {
97         BUG_ON(pipe1 == pipe2);
98
99         if (pipe1 < pipe2) {
100                 pipe_lock_nested(pipe1, I_MUTEX_PARENT);
101                 pipe_lock_nested(pipe2, I_MUTEX_CHILD);
102         } else {
103                 pipe_lock_nested(pipe2, I_MUTEX_PARENT);
104                 pipe_lock_nested(pipe1, I_MUTEX_CHILD);
105         }
106 }
107
108 /* Drop the inode semaphore and wait for a pipe event, atomically */
109 void pipe_wait(struct pipe_inode_info *pipe)
110 {
111         DEFINE_WAIT(rdwait);
112         DEFINE_WAIT(wrwait);
113
114         /*
115          * Pipes are system-local resources, so sleeping on them
116          * is considered a noninteractive wait:
117          */
118         prepare_to_wait(&pipe->rd_wait, &rdwait, TASK_INTERRUPTIBLE);
119         prepare_to_wait(&pipe->wr_wait, &wrwait, TASK_INTERRUPTIBLE);
120         pipe_unlock(pipe);
121         schedule();
122         finish_wait(&pipe->rd_wait, &rdwait);
123         finish_wait(&pipe->wr_wait, &wrwait);
124         pipe_lock(pipe);
125 }
126
127 static void anon_pipe_buf_release(struct pipe_inode_info *pipe,
128                                   struct pipe_buffer *buf)
129 {
130         struct page *page = buf->page;
131
132         /*
133          * If nobody else uses this page, and we don't already have a
134          * temporary page, let's keep track of it as a one-deep
135          * allocation cache. (Otherwise just release our reference to it)
136          */
137         if (page_count(page) == 1 && !pipe->tmp_page)
138                 pipe->tmp_page = page;
139         else
140                 put_page(page);
141 }
142
143 static bool anon_pipe_buf_try_steal(struct pipe_inode_info *pipe,
144                 struct pipe_buffer *buf)
145 {
146         struct page *page = buf->page;
147
148         if (page_count(page) != 1)
149                 return false;
150         memcg_kmem_uncharge_page(page, 0);
151         __SetPageLocked(page);
152         return true;
153 }
154
155 /**
156  * generic_pipe_buf_try_steal - attempt to take ownership of a &pipe_buffer
157  * @pipe:       the pipe that the buffer belongs to
158  * @buf:        the buffer to attempt to steal
159  *
160  * Description:
161  *      This function attempts to steal the &struct page attached to
162  *      @buf. If successful, this function returns 0 and returns with
163  *      the page locked. The caller may then reuse the page for whatever
164  *      he wishes; the typical use is insertion into a different file
165  *      page cache.
166  */
167 bool generic_pipe_buf_try_steal(struct pipe_inode_info *pipe,
168                 struct pipe_buffer *buf)
169 {
170         struct page *page = buf->page;
171
172         /*
173          * A reference of one is golden, that means that the owner of this
174          * page is the only one holding a reference to it. lock the page
175          * and return OK.
176          */
177         if (page_count(page) == 1) {
178                 lock_page(page);
179                 return true;
180         }
181         return false;
182 }
183 EXPORT_SYMBOL(generic_pipe_buf_try_steal);
184
185 /**
186  * generic_pipe_buf_get - get a reference to a &struct pipe_buffer
187  * @pipe:       the pipe that the buffer belongs to
188  * @buf:        the buffer to get a reference to
189  *
190  * Description:
191  *      This function grabs an extra reference to @buf. It's used in
192  *      in the tee() system call, when we duplicate the buffers in one
193  *      pipe into another.
194  */
195 bool generic_pipe_buf_get(struct pipe_inode_info *pipe, struct pipe_buffer *buf)
196 {
197         return try_get_page(buf->page);
198 }
199 EXPORT_SYMBOL(generic_pipe_buf_get);
200
201 /**
202  * generic_pipe_buf_release - put a reference to a &struct pipe_buffer
203  * @pipe:       the pipe that the buffer belongs to
204  * @buf:        the buffer to put a reference to
205  *
206  * Description:
207  *      This function releases a reference to @buf.
208  */
209 void generic_pipe_buf_release(struct pipe_inode_info *pipe,
210                               struct pipe_buffer *buf)
211 {
212         put_page(buf->page);
213 }
214 EXPORT_SYMBOL(generic_pipe_buf_release);
215
216 static const struct pipe_buf_operations anon_pipe_buf_ops = {
217         .release        = anon_pipe_buf_release,
218         .try_steal      = anon_pipe_buf_try_steal,
219         .get            = generic_pipe_buf_get,
220 };
221
222 /* Done while waiting without holding the pipe lock - thus the READ_ONCE() */
223 static inline bool pipe_readable(const struct pipe_inode_info *pipe)
224 {
225         unsigned int head = READ_ONCE(pipe->head);
226         unsigned int tail = READ_ONCE(pipe->tail);
227         unsigned int writers = READ_ONCE(pipe->writers);
228
229         return !pipe_empty(head, tail) || !writers;
230 }
231
232 static ssize_t
233 pipe_read(struct kiocb *iocb, struct iov_iter *to)
234 {
235         size_t total_len = iov_iter_count(to);
236         struct file *filp = iocb->ki_filp;
237         struct pipe_inode_info *pipe = filp->private_data;
238         bool was_full, wake_next_reader = false;
239         ssize_t ret;
240
241         /* Null read succeeds. */
242         if (unlikely(total_len == 0))
243                 return 0;
244
245         ret = 0;
246         __pipe_lock(pipe);
247
248         /*
249          * We only wake up writers if the pipe was full when we started
250          * reading in order to avoid unnecessary wakeups.
251          *
252          * But when we do wake up writers, we do so using a sync wakeup
253          * (WF_SYNC), because we want them to get going and generate more
254          * data for us.
255          */
256         was_full = pipe_full(pipe->head, pipe->tail, pipe->max_usage);
257         for (;;) {
258                 unsigned int head = pipe->head;
259                 unsigned int tail = pipe->tail;
260                 unsigned int mask = pipe->ring_size - 1;
261
262                 if (!pipe_empty(head, tail)) {
263                         struct pipe_buffer *buf = &pipe->bufs[tail & mask];
264                         size_t chars = buf->len;
265                         size_t written;
266                         int error;
267
268                         if (chars > total_len)
269                                 chars = total_len;
270
271                         error = pipe_buf_confirm(pipe, buf);
272                         if (error) {
273                                 if (!ret)
274                                         ret = error;
275                                 break;
276                         }
277
278                         written = copy_page_to_iter(buf->page, buf->offset, chars, to);
279                         if (unlikely(written < chars)) {
280                                 if (!ret)
281                                         ret = -EFAULT;
282                                 break;
283                         }
284                         ret += chars;
285                         buf->offset += chars;
286                         buf->len -= chars;
287
288                         /* Was it a packet buffer? Clean up and exit */
289                         if (buf->flags & PIPE_BUF_FLAG_PACKET) {
290                                 total_len = chars;
291                                 buf->len = 0;
292                         }
293
294                         if (!buf->len) {
295                                 pipe_buf_release(pipe, buf);
296                                 spin_lock_irq(&pipe->rd_wait.lock);
297                                 tail++;
298                                 pipe->tail = tail;
299                                 spin_unlock_irq(&pipe->rd_wait.lock);
300                         }
301                         total_len -= chars;
302                         if (!total_len)
303                                 break;  /* common path: read succeeded */
304                         if (!pipe_empty(head, tail))    /* More to do? */
305                                 continue;
306                 }
307
308                 if (!pipe->writers)
309                         break;
310                 if (ret)
311                         break;
312                 if (filp->f_flags & O_NONBLOCK) {
313                         ret = -EAGAIN;
314                         break;
315                 }
316                 __pipe_unlock(pipe);
317
318                 /*
319                  * We only get here if we didn't actually read anything.
320                  *
321                  * However, we could have seen (and removed) a zero-sized
322                  * pipe buffer, and might have made space in the buffers
323                  * that way.
324                  *
325                  * You can't make zero-sized pipe buffers by doing an empty
326                  * write (not even in packet mode), but they can happen if
327                  * the writer gets an EFAULT when trying to fill a buffer
328                  * that already got allocated and inserted in the buffer
329                  * array.
330                  *
331                  * So we still need to wake up any pending writers in the
332                  * _very_ unlikely case that the pipe was full, but we got
333                  * no data.
334                  */
335                 if (unlikely(was_full)) {
336                         wake_up_interruptible_sync_poll(&pipe->wr_wait, EPOLLOUT | EPOLLWRNORM);
337                         kill_fasync(&pipe->fasync_writers, SIGIO, POLL_OUT);
338                 }
339
340                 /*
341                  * But because we didn't read anything, at this point we can
342                  * just return directly with -ERESTARTSYS if we're interrupted,
343                  * since we've done any required wakeups and there's no need
344                  * to mark anything accessed. And we've dropped the lock.
345                  */
346                 if (wait_event_interruptible_exclusive(pipe->rd_wait, pipe_readable(pipe)) < 0)
347                         return -ERESTARTSYS;
348
349                 __pipe_lock(pipe);
350                 was_full = pipe_full(pipe->head, pipe->tail, pipe->max_usage);
351                 wake_next_reader = true;
352         }
353         if (pipe_empty(pipe->head, pipe->tail))
354                 wake_next_reader = false;
355         __pipe_unlock(pipe);
356
357         if (was_full) {
358                 wake_up_interruptible_sync_poll(&pipe->wr_wait, EPOLLOUT | EPOLLWRNORM);
359                 kill_fasync(&pipe->fasync_writers, SIGIO, POLL_OUT);
360         }
361         if (wake_next_reader)
362                 wake_up_interruptible_sync_poll(&pipe->rd_wait, EPOLLIN | EPOLLRDNORM);
363         if (ret > 0)
364                 file_accessed(filp);
365         return ret;
366 }
367
368 static inline int is_packetized(struct file *file)
369 {
370         return (file->f_flags & O_DIRECT) != 0;
371 }
372
373 /* Done while waiting without holding the pipe lock - thus the READ_ONCE() */
374 static inline bool pipe_writable(const struct pipe_inode_info *pipe)
375 {
376         unsigned int head = READ_ONCE(pipe->head);
377         unsigned int tail = READ_ONCE(pipe->tail);
378         unsigned int max_usage = READ_ONCE(pipe->max_usage);
379
380         return !pipe_full(head, tail, max_usage) ||
381                 !READ_ONCE(pipe->readers);
382 }
383
384 static ssize_t
385 pipe_write(struct kiocb *iocb, struct iov_iter *from)
386 {
387         struct file *filp = iocb->ki_filp;
388         struct pipe_inode_info *pipe = filp->private_data;
389         unsigned int head;
390         ssize_t ret = 0;
391         size_t total_len = iov_iter_count(from);
392         ssize_t chars;
393         bool was_empty = false;
394         bool wake_next_writer = false;
395
396         /* Null write succeeds. */
397         if (unlikely(total_len == 0))
398                 return 0;
399
400         __pipe_lock(pipe);
401
402         if (!pipe->readers) {
403                 send_sig(SIGPIPE, current, 0);
404                 ret = -EPIPE;
405                 goto out;
406         }
407
408         /*
409          * Only wake up if the pipe started out empty, since
410          * otherwise there should be no readers waiting.
411          *
412          * If it wasn't empty we try to merge new data into
413          * the last buffer.
414          *
415          * That naturally merges small writes, but it also
416          * page-aligs the rest of the writes for large writes
417          * spanning multiple pages.
418          */
419         head = pipe->head;
420         was_empty = pipe_empty(head, pipe->tail);
421         chars = total_len & (PAGE_SIZE-1);
422         if (chars && !was_empty) {
423                 unsigned int mask = pipe->ring_size - 1;
424                 struct pipe_buffer *buf = &pipe->bufs[(head - 1) & mask];
425                 int offset = buf->offset + buf->len;
426
427                 if ((buf->flags & PIPE_BUF_FLAG_CAN_MERGE) &&
428                     offset + chars <= PAGE_SIZE) {
429                         ret = pipe_buf_confirm(pipe, buf);
430                         if (ret)
431                                 goto out;
432
433                         ret = copy_page_from_iter(buf->page, offset, chars, from);
434                         if (unlikely(ret < chars)) {
435                                 ret = -EFAULT;
436                                 goto out;
437                         }
438
439                         buf->len += ret;
440                         if (!iov_iter_count(from))
441                                 goto out;
442                 }
443         }
444
445         for (;;) {
446                 if (!pipe->readers) {
447                         send_sig(SIGPIPE, current, 0);
448                         if (!ret)
449                                 ret = -EPIPE;
450                         break;
451                 }
452
453                 head = pipe->head;
454                 if (!pipe_full(head, pipe->tail, pipe->max_usage)) {
455                         unsigned int mask = pipe->ring_size - 1;
456                         struct pipe_buffer *buf = &pipe->bufs[head & mask];
457                         struct page *page = pipe->tmp_page;
458                         int copied;
459
460                         if (!page) {
461                                 page = alloc_page(GFP_HIGHUSER | __GFP_ACCOUNT);
462                                 if (unlikely(!page)) {
463                                         ret = ret ? : -ENOMEM;
464                                         break;
465                                 }
466                                 pipe->tmp_page = page;
467                         }
468
469                         /* Allocate a slot in the ring in advance and attach an
470                          * empty buffer.  If we fault or otherwise fail to use
471                          * it, either the reader will consume it or it'll still
472                          * be there for the next write.
473                          */
474                         spin_lock_irq(&pipe->rd_wait.lock);
475
476                         head = pipe->head;
477                         if (pipe_full(head, pipe->tail, pipe->max_usage)) {
478                                 spin_unlock_irq(&pipe->rd_wait.lock);
479                                 continue;
480                         }
481
482                         pipe->head = head + 1;
483                         spin_unlock_irq(&pipe->rd_wait.lock);
484
485                         /* Insert it into the buffer array */
486                         buf = &pipe->bufs[head & mask];
487                         buf->page = page;
488                         buf->ops = &anon_pipe_buf_ops;
489                         buf->offset = 0;
490                         buf->len = 0;
491                         if (is_packetized(filp))
492                                 buf->flags = PIPE_BUF_FLAG_PACKET;
493                         else
494                                 buf->flags = PIPE_BUF_FLAG_CAN_MERGE;
495                         pipe->tmp_page = NULL;
496
497                         copied = copy_page_from_iter(page, 0, PAGE_SIZE, from);
498                         if (unlikely(copied < PAGE_SIZE && iov_iter_count(from))) {
499                                 if (!ret)
500                                         ret = -EFAULT;
501                                 break;
502                         }
503                         ret += copied;
504                         buf->offset = 0;
505                         buf->len = copied;
506
507                         if (!iov_iter_count(from))
508                                 break;
509                 }
510
511                 if (!pipe_full(head, pipe->tail, pipe->max_usage))
512                         continue;
513
514                 /* Wait for buffer space to become available. */
515                 if (filp->f_flags & O_NONBLOCK) {
516                         if (!ret)
517                                 ret = -EAGAIN;
518                         break;
519                 }
520                 if (signal_pending(current)) {
521                         if (!ret)
522                                 ret = -ERESTARTSYS;
523                         break;
524                 }
525
526                 /*
527                  * We're going to release the pipe lock and wait for more
528                  * space. We wake up any readers if necessary, and then
529                  * after waiting we need to re-check whether the pipe
530                  * become empty while we dropped the lock.
531                  */
532                 __pipe_unlock(pipe);
533                 if (was_empty) {
534                         wake_up_interruptible_sync_poll(&pipe->rd_wait, EPOLLIN | EPOLLRDNORM);
535                         kill_fasync(&pipe->fasync_readers, SIGIO, POLL_IN);
536                 }
537                 wait_event_interruptible_exclusive(pipe->wr_wait, pipe_writable(pipe));
538                 __pipe_lock(pipe);
539                 was_empty = pipe_empty(pipe->head, pipe->tail);
540                 wake_next_writer = true;
541         }
542 out:
543         if (pipe_full(pipe->head, pipe->tail, pipe->max_usage))
544                 wake_next_writer = false;
545         __pipe_unlock(pipe);
546
547         /*
548          * If we do do a wakeup event, we do a 'sync' wakeup, because we
549          * want the reader to start processing things asap, rather than
550          * leave the data pending.
551          *
552          * This is particularly important for small writes, because of
553          * how (for example) the GNU make jobserver uses small writes to
554          * wake up pending jobs
555          */
556         if (was_empty) {
557                 wake_up_interruptible_sync_poll(&pipe->rd_wait, EPOLLIN | EPOLLRDNORM);
558                 kill_fasync(&pipe->fasync_readers, SIGIO, POLL_IN);
559         }
560         if (wake_next_writer)
561                 wake_up_interruptible_sync_poll(&pipe->wr_wait, EPOLLOUT | EPOLLWRNORM);
562         if (ret > 0 && sb_start_write_trylock(file_inode(filp)->i_sb)) {
563                 int err = file_update_time(filp);
564                 if (err)
565                         ret = err;
566                 sb_end_write(file_inode(filp)->i_sb);
567         }
568         return ret;
569 }
570
571 static long pipe_ioctl(struct file *filp, unsigned int cmd, unsigned long arg)
572 {
573         struct pipe_inode_info *pipe = filp->private_data;
574         int count, head, tail, mask;
575
576         switch (cmd) {
577                 case FIONREAD:
578                         __pipe_lock(pipe);
579                         count = 0;
580                         head = pipe->head;
581                         tail = pipe->tail;
582                         mask = pipe->ring_size - 1;
583
584                         while (tail != head) {
585                                 count += pipe->bufs[tail & mask].len;
586                                 tail++;
587                         }
588                         __pipe_unlock(pipe);
589
590                         return put_user(count, (int __user *)arg);
591                 default:
592                         return -ENOIOCTLCMD;
593         }
594 }
595
596 /* No kernel lock held - fine */
597 static __poll_t
598 pipe_poll(struct file *filp, poll_table *wait)
599 {
600         __poll_t mask;
601         struct pipe_inode_info *pipe = filp->private_data;
602         unsigned int head, tail;
603
604         /*
605          * Reading pipe state only -- no need for acquiring the semaphore.
606          *
607          * But because this is racy, the code has to add the
608          * entry to the poll table _first_ ..
609          */
610         if (filp->f_mode & FMODE_READ)
611                 poll_wait(filp, &pipe->rd_wait, wait);
612         if (filp->f_mode & FMODE_WRITE)
613                 poll_wait(filp, &pipe->wr_wait, wait);
614
615         /*
616          * .. and only then can you do the racy tests. That way,
617          * if something changes and you got it wrong, the poll
618          * table entry will wake you up and fix it.
619          */
620         head = READ_ONCE(pipe->head);
621         tail = READ_ONCE(pipe->tail);
622
623         mask = 0;
624         if (filp->f_mode & FMODE_READ) {
625                 if (!pipe_empty(head, tail))
626                         mask |= EPOLLIN | EPOLLRDNORM;
627                 if (!pipe->writers && filp->f_version != pipe->w_counter)
628                         mask |= EPOLLHUP;
629         }
630
631         if (filp->f_mode & FMODE_WRITE) {
632                 if (!pipe_full(head, tail, pipe->max_usage))
633                         mask |= EPOLLOUT | EPOLLWRNORM;
634                 /*
635                  * Most Unices do not set EPOLLERR for FIFOs but on Linux they
636                  * behave exactly like pipes for poll().
637                  */
638                 if (!pipe->readers)
639                         mask |= EPOLLERR;
640         }
641
642         return mask;
643 }
644
645 static void put_pipe_info(struct inode *inode, struct pipe_inode_info *pipe)
646 {
647         int kill = 0;
648
649         spin_lock(&inode->i_lock);
650         if (!--pipe->files) {
651                 inode->i_pipe = NULL;
652                 kill = 1;
653         }
654         spin_unlock(&inode->i_lock);
655
656         if (kill)
657                 free_pipe_info(pipe);
658 }
659
660 static int
661 pipe_release(struct inode *inode, struct file *file)
662 {
663         struct pipe_inode_info *pipe = file->private_data;
664
665         __pipe_lock(pipe);
666         if (file->f_mode & FMODE_READ)
667                 pipe->readers--;
668         if (file->f_mode & FMODE_WRITE)
669                 pipe->writers--;
670
671         /* Was that the last reader or writer, but not the other side? */
672         if (!pipe->readers != !pipe->writers) {
673                 wake_up_interruptible_all(&pipe->rd_wait);
674                 wake_up_interruptible_all(&pipe->wr_wait);
675                 kill_fasync(&pipe->fasync_readers, SIGIO, POLL_IN);
676                 kill_fasync(&pipe->fasync_writers, SIGIO, POLL_OUT);
677         }
678         __pipe_unlock(pipe);
679
680         put_pipe_info(inode, pipe);
681         return 0;
682 }
683
684 static int
685 pipe_fasync(int fd, struct file *filp, int on)
686 {
687         struct pipe_inode_info *pipe = filp->private_data;
688         int retval = 0;
689
690         __pipe_lock(pipe);
691         if (filp->f_mode & FMODE_READ)
692                 retval = fasync_helper(fd, filp, on, &pipe->fasync_readers);
693         if ((filp->f_mode & FMODE_WRITE) && retval >= 0) {
694                 retval = fasync_helper(fd, filp, on, &pipe->fasync_writers);
695                 if (retval < 0 && (filp->f_mode & FMODE_READ))
696                         /* this can happen only if on == T */
697                         fasync_helper(-1, filp, 0, &pipe->fasync_readers);
698         }
699         __pipe_unlock(pipe);
700         return retval;
701 }
702
703 static unsigned long account_pipe_buffers(struct user_struct *user,
704                                  unsigned long old, unsigned long new)
705 {
706         return atomic_long_add_return(new - old, &user->pipe_bufs);
707 }
708
709 static bool too_many_pipe_buffers_soft(unsigned long user_bufs)
710 {
711         unsigned long soft_limit = READ_ONCE(pipe_user_pages_soft);
712
713         return soft_limit && user_bufs > soft_limit;
714 }
715
716 static bool too_many_pipe_buffers_hard(unsigned long user_bufs)
717 {
718         unsigned long hard_limit = READ_ONCE(pipe_user_pages_hard);
719
720         return hard_limit && user_bufs > hard_limit;
721 }
722
723 static bool is_unprivileged_user(void)
724 {
725         return !capable(CAP_SYS_RESOURCE) && !capable(CAP_SYS_ADMIN);
726 }
727
728 struct pipe_inode_info *alloc_pipe_info(void)
729 {
730         struct pipe_inode_info *pipe;
731         unsigned long pipe_bufs = PIPE_DEF_BUFFERS;
732         struct user_struct *user = get_current_user();
733         unsigned long user_bufs;
734         unsigned int max_size = READ_ONCE(pipe_max_size);
735
736         pipe = kzalloc(sizeof(struct pipe_inode_info), GFP_KERNEL_ACCOUNT);
737         if (pipe == NULL)
738                 goto out_free_uid;
739
740         if (pipe_bufs * PAGE_SIZE > max_size && !capable(CAP_SYS_RESOURCE))
741                 pipe_bufs = max_size >> PAGE_SHIFT;
742
743         user_bufs = account_pipe_buffers(user, 0, pipe_bufs);
744
745         if (too_many_pipe_buffers_soft(user_bufs) && is_unprivileged_user()) {
746                 user_bufs = account_pipe_buffers(user, pipe_bufs, 1);
747                 pipe_bufs = 1;
748         }
749
750         if (too_many_pipe_buffers_hard(user_bufs) && is_unprivileged_user())
751                 goto out_revert_acct;
752
753         pipe->bufs = kcalloc(pipe_bufs, sizeof(struct pipe_buffer),
754                              GFP_KERNEL_ACCOUNT);
755
756         if (pipe->bufs) {
757                 init_waitqueue_head(&pipe->rd_wait);
758                 init_waitqueue_head(&pipe->wr_wait);
759                 pipe->r_counter = pipe->w_counter = 1;
760                 pipe->max_usage = pipe_bufs;
761                 pipe->ring_size = pipe_bufs;
762                 pipe->user = user;
763                 mutex_init(&pipe->mutex);
764                 return pipe;
765         }
766
767 out_revert_acct:
768         (void) account_pipe_buffers(user, pipe_bufs, 0);
769         kfree(pipe);
770 out_free_uid:
771         free_uid(user);
772         return NULL;
773 }
774
775 void free_pipe_info(struct pipe_inode_info *pipe)
776 {
777         int i;
778
779         (void) account_pipe_buffers(pipe->user, pipe->ring_size, 0);
780         free_uid(pipe->user);
781         for (i = 0; i < pipe->ring_size; i++) {
782                 struct pipe_buffer *buf = pipe->bufs + i;
783                 if (buf->ops)
784                         pipe_buf_release(pipe, buf);
785         }
786         if (pipe->tmp_page)
787                 __free_page(pipe->tmp_page);
788         kfree(pipe->bufs);
789         kfree(pipe);
790 }
791
792 static struct vfsmount *pipe_mnt __read_mostly;
793
794 /*
795  * pipefs_dname() is called from d_path().
796  */
797 static char *pipefs_dname(struct dentry *dentry, char *buffer, int buflen)
798 {
799         return dynamic_dname(dentry, buffer, buflen, "pipe:[%lu]",
800                                 d_inode(dentry)->i_ino);
801 }
802
803 static const struct dentry_operations pipefs_dentry_operations = {
804         .d_dname        = pipefs_dname,
805 };
806
807 static struct inode * get_pipe_inode(void)
808 {
809         struct inode *inode = new_inode_pseudo(pipe_mnt->mnt_sb);
810         struct pipe_inode_info *pipe;
811
812         if (!inode)
813                 goto fail_inode;
814
815         inode->i_ino = get_next_ino();
816
817         pipe = alloc_pipe_info();
818         if (!pipe)
819                 goto fail_iput;
820
821         inode->i_pipe = pipe;
822         pipe->files = 2;
823         pipe->readers = pipe->writers = 1;
824         inode->i_fop = &pipefifo_fops;
825
826         /*
827          * Mark the inode dirty from the very beginning,
828          * that way it will never be moved to the dirty
829          * list because "mark_inode_dirty()" will think
830          * that it already _is_ on the dirty list.
831          */
832         inode->i_state = I_DIRTY;
833         inode->i_mode = S_IFIFO | S_IRUSR | S_IWUSR;
834         inode->i_uid = current_fsuid();
835         inode->i_gid = current_fsgid();
836         inode->i_atime = inode->i_mtime = inode->i_ctime = current_time(inode);
837
838         return inode;
839
840 fail_iput:
841         iput(inode);
842
843 fail_inode:
844         return NULL;
845 }
846
847 int create_pipe_files(struct file **res, int flags)
848 {
849         struct inode *inode = get_pipe_inode();
850         struct file *f;
851
852         if (!inode)
853                 return -ENFILE;
854
855         f = alloc_file_pseudo(inode, pipe_mnt, "",
856                                 O_WRONLY | (flags & (O_NONBLOCK | O_DIRECT)),
857                                 &pipefifo_fops);
858         if (IS_ERR(f)) {
859                 free_pipe_info(inode->i_pipe);
860                 iput(inode);
861                 return PTR_ERR(f);
862         }
863
864         f->private_data = inode->i_pipe;
865
866         res[0] = alloc_file_clone(f, O_RDONLY | (flags & O_NONBLOCK),
867                                   &pipefifo_fops);
868         if (IS_ERR(res[0])) {
869                 put_pipe_info(inode, inode->i_pipe);
870                 fput(f);
871                 return PTR_ERR(res[0]);
872         }
873         res[0]->private_data = inode->i_pipe;
874         res[1] = f;
875         stream_open(inode, res[0]);
876         stream_open(inode, res[1]);
877         return 0;
878 }
879
880 static int __do_pipe_flags(int *fd, struct file **files, int flags)
881 {
882         int error;
883         int fdw, fdr;
884
885         if (flags & ~(O_CLOEXEC | O_NONBLOCK | O_DIRECT))
886                 return -EINVAL;
887
888         error = create_pipe_files(files, flags);
889         if (error)
890                 return error;
891
892         error = get_unused_fd_flags(flags);
893         if (error < 0)
894                 goto err_read_pipe;
895         fdr = error;
896
897         error = get_unused_fd_flags(flags);
898         if (error < 0)
899                 goto err_fdr;
900         fdw = error;
901
902         audit_fd_pair(fdr, fdw);
903         fd[0] = fdr;
904         fd[1] = fdw;
905         return 0;
906
907  err_fdr:
908         put_unused_fd(fdr);
909  err_read_pipe:
910         fput(files[0]);
911         fput(files[1]);
912         return error;
913 }
914
915 int do_pipe_flags(int *fd, int flags)
916 {
917         struct file *files[2];
918         int error = __do_pipe_flags(fd, files, flags);
919         if (!error) {
920                 fd_install(fd[0], files[0]);
921                 fd_install(fd[1], files[1]);
922         }
923         return error;
924 }
925
926 /*
927  * sys_pipe() is the normal C calling standard for creating
928  * a pipe. It's not the way Unix traditionally does this, though.
929  */
930 static int do_pipe2(int __user *fildes, int flags)
931 {
932         struct file *files[2];
933         int fd[2];
934         int error;
935
936         error = __do_pipe_flags(fd, files, flags);
937         if (!error) {
938                 if (unlikely(copy_to_user(fildes, fd, sizeof(fd)))) {
939                         fput(files[0]);
940                         fput(files[1]);
941                         put_unused_fd(fd[0]);
942                         put_unused_fd(fd[1]);
943                         error = -EFAULT;
944                 } else {
945                         fd_install(fd[0], files[0]);
946                         fd_install(fd[1], files[1]);
947                 }
948         }
949         return error;
950 }
951
952 SYSCALL_DEFINE2(pipe2, int __user *, fildes, int, flags)
953 {
954         return do_pipe2(fildes, flags);
955 }
956
957 SYSCALL_DEFINE1(pipe, int __user *, fildes)
958 {
959         return do_pipe2(fildes, 0);
960 }
961
962 static int wait_for_partner(struct pipe_inode_info *pipe, unsigned int *cnt)
963 {
964         int cur = *cnt;
965
966         while (cur == *cnt) {
967                 pipe_wait(pipe);
968                 if (signal_pending(current))
969                         break;
970         }
971         return cur == *cnt ? -ERESTARTSYS : 0;
972 }
973
974 static void wake_up_partner(struct pipe_inode_info *pipe)
975 {
976         wake_up_interruptible_all(&pipe->rd_wait);
977         wake_up_interruptible_all(&pipe->wr_wait);
978 }
979
980 static int fifo_open(struct inode *inode, struct file *filp)
981 {
982         struct pipe_inode_info *pipe;
983         bool is_pipe = inode->i_sb->s_magic == PIPEFS_MAGIC;
984         int ret;
985
986         filp->f_version = 0;
987
988         spin_lock(&inode->i_lock);
989         if (inode->i_pipe) {
990                 pipe = inode->i_pipe;
991                 pipe->files++;
992                 spin_unlock(&inode->i_lock);
993         } else {
994                 spin_unlock(&inode->i_lock);
995                 pipe = alloc_pipe_info();
996                 if (!pipe)
997                         return -ENOMEM;
998                 pipe->files = 1;
999                 spin_lock(&inode->i_lock);
1000                 if (unlikely(inode->i_pipe)) {
1001                         inode->i_pipe->files++;
1002                         spin_unlock(&inode->i_lock);
1003                         free_pipe_info(pipe);
1004                         pipe = inode->i_pipe;
1005                 } else {
1006                         inode->i_pipe = pipe;
1007                         spin_unlock(&inode->i_lock);
1008                 }
1009         }
1010         filp->private_data = pipe;
1011         /* OK, we have a pipe and it's pinned down */
1012
1013         __pipe_lock(pipe);
1014
1015         /* We can only do regular read/write on fifos */
1016         stream_open(inode, filp);
1017
1018         switch (filp->f_mode & (FMODE_READ | FMODE_WRITE)) {
1019         case FMODE_READ:
1020         /*
1021          *  O_RDONLY
1022          *  POSIX.1 says that O_NONBLOCK means return with the FIFO
1023          *  opened, even when there is no process writing the FIFO.
1024          */
1025                 pipe->r_counter++;
1026                 if (pipe->readers++ == 0)
1027                         wake_up_partner(pipe);
1028
1029                 if (!is_pipe && !pipe->writers) {
1030                         if ((filp->f_flags & O_NONBLOCK)) {
1031                                 /* suppress EPOLLHUP until we have
1032                                  * seen a writer */
1033                                 filp->f_version = pipe->w_counter;
1034                         } else {
1035                                 if (wait_for_partner(pipe, &pipe->w_counter))
1036                                         goto err_rd;
1037                         }
1038                 }
1039                 break;
1040
1041         case FMODE_WRITE:
1042         /*
1043          *  O_WRONLY
1044          *  POSIX.1 says that O_NONBLOCK means return -1 with
1045          *  errno=ENXIO when there is no process reading the FIFO.
1046          */
1047                 ret = -ENXIO;
1048                 if (!is_pipe && (filp->f_flags & O_NONBLOCK) && !pipe->readers)
1049                         goto err;
1050
1051                 pipe->w_counter++;
1052                 if (!pipe->writers++)
1053                         wake_up_partner(pipe);
1054
1055                 if (!is_pipe && !pipe->readers) {
1056                         if (wait_for_partner(pipe, &pipe->r_counter))
1057                                 goto err_wr;
1058                 }
1059                 break;
1060
1061         case FMODE_READ | FMODE_WRITE:
1062         /*
1063          *  O_RDWR
1064          *  POSIX.1 leaves this case "undefined" when O_NONBLOCK is set.
1065          *  This implementation will NEVER block on a O_RDWR open, since
1066          *  the process can at least talk to itself.
1067          */
1068
1069                 pipe->readers++;
1070                 pipe->writers++;
1071                 pipe->r_counter++;
1072                 pipe->w_counter++;
1073                 if (pipe->readers == 1 || pipe->writers == 1)
1074                         wake_up_partner(pipe);
1075                 break;
1076
1077         default:
1078                 ret = -EINVAL;
1079                 goto err;
1080         }
1081
1082         /* Ok! */
1083         __pipe_unlock(pipe);
1084         return 0;
1085
1086 err_rd:
1087         if (!--pipe->readers)
1088                 wake_up_interruptible(&pipe->wr_wait);
1089         ret = -ERESTARTSYS;
1090         goto err;
1091
1092 err_wr:
1093         if (!--pipe->writers)
1094                 wake_up_interruptible_all(&pipe->rd_wait);
1095         ret = -ERESTARTSYS;
1096         goto err;
1097
1098 err:
1099         __pipe_unlock(pipe);
1100
1101         put_pipe_info(inode, pipe);
1102         return ret;
1103 }
1104
1105 const struct file_operations pipefifo_fops = {
1106         .open           = fifo_open,
1107         .llseek         = no_llseek,
1108         .read_iter      = pipe_read,
1109         .write_iter     = pipe_write,
1110         .poll           = pipe_poll,
1111         .unlocked_ioctl = pipe_ioctl,
1112         .release        = pipe_release,
1113         .fasync         = pipe_fasync,
1114 };
1115
1116 /*
1117  * Currently we rely on the pipe array holding a power-of-2 number
1118  * of pages. Returns 0 on error.
1119  */
1120 unsigned int round_pipe_size(unsigned long size)
1121 {
1122         if (size > (1U << 31))
1123                 return 0;
1124
1125         /* Minimum pipe size, as required by POSIX */
1126         if (size < PAGE_SIZE)
1127                 return PAGE_SIZE;
1128
1129         return roundup_pow_of_two(size);
1130 }
1131
1132 /*
1133  * Allocate a new array of pipe buffers and copy the info over. Returns the
1134  * pipe size if successful, or return -ERROR on error.
1135  */
1136 static long pipe_set_size(struct pipe_inode_info *pipe, unsigned long arg)
1137 {
1138         struct pipe_buffer *bufs;
1139         unsigned int size, nr_slots, head, tail, mask, n;
1140         unsigned long user_bufs;
1141         long ret = 0;
1142
1143         size = round_pipe_size(arg);
1144         nr_slots = size >> PAGE_SHIFT;
1145
1146         if (!nr_slots)
1147                 return -EINVAL;
1148
1149         /*
1150          * If trying to increase the pipe capacity, check that an
1151          * unprivileged user is not trying to exceed various limits
1152          * (soft limit check here, hard limit check just below).
1153          * Decreasing the pipe capacity is always permitted, even
1154          * if the user is currently over a limit.
1155          */
1156         if (nr_slots > pipe->ring_size &&
1157                         size > pipe_max_size && !capable(CAP_SYS_RESOURCE))
1158                 return -EPERM;
1159
1160         user_bufs = account_pipe_buffers(pipe->user, pipe->ring_size, nr_slots);
1161
1162         if (nr_slots > pipe->ring_size &&
1163                         (too_many_pipe_buffers_hard(user_bufs) ||
1164                          too_many_pipe_buffers_soft(user_bufs)) &&
1165                         is_unprivileged_user()) {
1166                 ret = -EPERM;
1167                 goto out_revert_acct;
1168         }
1169
1170         /*
1171          * We can shrink the pipe, if arg is greater than the ring occupancy.
1172          * Since we don't expect a lot of shrink+grow operations, just free and
1173          * allocate again like we would do for growing.  If the pipe currently
1174          * contains more buffers than arg, then return busy.
1175          */
1176         mask = pipe->ring_size - 1;
1177         head = pipe->head;
1178         tail = pipe->tail;
1179         n = pipe_occupancy(pipe->head, pipe->tail);
1180         if (nr_slots < n) {
1181                 ret = -EBUSY;
1182                 goto out_revert_acct;
1183         }
1184
1185         bufs = kcalloc(nr_slots, sizeof(*bufs),
1186                        GFP_KERNEL_ACCOUNT | __GFP_NOWARN);
1187         if (unlikely(!bufs)) {
1188                 ret = -ENOMEM;
1189                 goto out_revert_acct;
1190         }
1191
1192         /*
1193          * The pipe array wraps around, so just start the new one at zero
1194          * and adjust the indices.
1195          */
1196         if (n > 0) {
1197                 unsigned int h = head & mask;
1198                 unsigned int t = tail & mask;
1199                 if (h > t) {
1200                         memcpy(bufs, pipe->bufs + t,
1201                                n * sizeof(struct pipe_buffer));
1202                 } else {
1203                         unsigned int tsize = pipe->ring_size - t;
1204                         if (h > 0)
1205                                 memcpy(bufs + tsize, pipe->bufs,
1206                                        h * sizeof(struct pipe_buffer));
1207                         memcpy(bufs, pipe->bufs + t,
1208                                tsize * sizeof(struct pipe_buffer));
1209                 }
1210         }
1211
1212         head = n;
1213         tail = 0;
1214
1215         kfree(pipe->bufs);
1216         pipe->bufs = bufs;
1217         pipe->ring_size = nr_slots;
1218         pipe->max_usage = nr_slots;
1219         pipe->tail = tail;
1220         pipe->head = head;
1221
1222         /* This might have made more room for writers */
1223         wake_up_interruptible(&pipe->wr_wait);
1224         return pipe->max_usage * PAGE_SIZE;
1225
1226 out_revert_acct:
1227         (void) account_pipe_buffers(pipe->user, nr_slots, pipe->ring_size);
1228         return ret;
1229 }
1230
1231 /*
1232  * After the inode slimming patch, i_pipe/i_bdev/i_cdev share the same
1233  * location, so checking ->i_pipe is not enough to verify that this is a
1234  * pipe.
1235  */
1236 struct pipe_inode_info *get_pipe_info(struct file *file)
1237 {
1238         return file->f_op == &pipefifo_fops ? file->private_data : NULL;
1239 }
1240
1241 long pipe_fcntl(struct file *file, unsigned int cmd, unsigned long arg)
1242 {
1243         struct pipe_inode_info *pipe;
1244         long ret;
1245
1246         pipe = get_pipe_info(file);
1247         if (!pipe)
1248                 return -EBADF;
1249
1250         __pipe_lock(pipe);
1251
1252         switch (cmd) {
1253         case F_SETPIPE_SZ:
1254                 ret = pipe_set_size(pipe, arg);
1255                 break;
1256         case F_GETPIPE_SZ:
1257                 ret = pipe->max_usage * PAGE_SIZE;
1258                 break;
1259         default:
1260                 ret = -EINVAL;
1261                 break;
1262         }
1263
1264         __pipe_unlock(pipe);
1265         return ret;
1266 }
1267
1268 static const struct super_operations pipefs_ops = {
1269         .destroy_inode = free_inode_nonrcu,
1270         .statfs = simple_statfs,
1271 };
1272
1273 /*
1274  * pipefs should _never_ be mounted by userland - too much of security hassle,
1275  * no real gain from having the whole whorehouse mounted. So we don't need
1276  * any operations on the root directory. However, we need a non-trivial
1277  * d_name - pipe: will go nicely and kill the special-casing in procfs.
1278  */
1279
1280 static int pipefs_init_fs_context(struct fs_context *fc)
1281 {
1282         struct pseudo_fs_context *ctx = init_pseudo(fc, PIPEFS_MAGIC);
1283         if (!ctx)
1284                 return -ENOMEM;
1285         ctx->ops = &pipefs_ops;
1286         ctx->dops = &pipefs_dentry_operations;
1287         return 0;
1288 }
1289
1290 static struct file_system_type pipe_fs_type = {
1291         .name           = "pipefs",
1292         .init_fs_context = pipefs_init_fs_context,
1293         .kill_sb        = kill_anon_super,
1294 };
1295
1296 static int __init init_pipe_fs(void)
1297 {
1298         int err = register_filesystem(&pipe_fs_type);
1299
1300         if (!err) {
1301                 pipe_mnt = kern_mount(&pipe_fs_type);
1302                 if (IS_ERR(pipe_mnt)) {
1303                         err = PTR_ERR(pipe_mnt);
1304                         unregister_filesystem(&pipe_fs_type);
1305                 }
1306         }
1307         return err;
1308 }
1309
1310 fs_initcall(init_pipe_fs);