perf test: Fix basic bpf filtering test
[linux-2.6-microblaze.git] / fs / pipe.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  *  linux/fs/pipe.c
4  *
5  *  Copyright (C) 1991, 1992, 1999  Linus Torvalds
6  */
7
8 #include <linux/mm.h>
9 #include <linux/file.h>
10 #include <linux/poll.h>
11 #include <linux/slab.h>
12 #include <linux/module.h>
13 #include <linux/init.h>
14 #include <linux/fs.h>
15 #include <linux/log2.h>
16 #include <linux/mount.h>
17 #include <linux/pseudo_fs.h>
18 #include <linux/magic.h>
19 #include <linux/pipe_fs_i.h>
20 #include <linux/uio.h>
21 #include <linux/highmem.h>
22 #include <linux/pagemap.h>
23 #include <linux/audit.h>
24 #include <linux/syscalls.h>
25 #include <linux/fcntl.h>
26 #include <linux/memcontrol.h>
27 #include <linux/watch_queue.h>
28
29 #include <linux/uaccess.h>
30 #include <asm/ioctls.h>
31
32 #include "internal.h"
33
34 /*
35  * The max size that a non-root user is allowed to grow the pipe. Can
36  * be set by root in /proc/sys/fs/pipe-max-size
37  */
38 unsigned int pipe_max_size = 1048576;
39
40 /* Maximum allocatable pages per user. Hard limit is unset by default, soft
41  * matches default values.
42  */
43 unsigned long pipe_user_pages_hard;
44 unsigned long pipe_user_pages_soft = PIPE_DEF_BUFFERS * INR_OPEN_CUR;
45
46 /*
47  * We use head and tail indices that aren't masked off, except at the point of
48  * dereference, but rather they're allowed to wrap naturally.  This means there
49  * isn't a dead spot in the buffer, but the ring has to be a power of two and
50  * <= 2^31.
51  * -- David Howells 2019-09-23.
52  *
53  * Reads with count = 0 should always return 0.
54  * -- Julian Bradfield 1999-06-07.
55  *
56  * FIFOs and Pipes now generate SIGIO for both readers and writers.
57  * -- Jeremy Elson <jelson@circlemud.org> 2001-08-16
58  *
59  * pipe_read & write cleanup
60  * -- Manfred Spraul <manfred@colorfullife.com> 2002-05-09
61  */
62
63 static void pipe_lock_nested(struct pipe_inode_info *pipe, int subclass)
64 {
65         if (pipe->files)
66                 mutex_lock_nested(&pipe->mutex, subclass);
67 }
68
69 void pipe_lock(struct pipe_inode_info *pipe)
70 {
71         /*
72          * pipe_lock() nests non-pipe inode locks (for writing to a file)
73          */
74         pipe_lock_nested(pipe, I_MUTEX_PARENT);
75 }
76 EXPORT_SYMBOL(pipe_lock);
77
78 void pipe_unlock(struct pipe_inode_info *pipe)
79 {
80         if (pipe->files)
81                 mutex_unlock(&pipe->mutex);
82 }
83 EXPORT_SYMBOL(pipe_unlock);
84
85 static inline void __pipe_lock(struct pipe_inode_info *pipe)
86 {
87         mutex_lock_nested(&pipe->mutex, I_MUTEX_PARENT);
88 }
89
90 static inline void __pipe_unlock(struct pipe_inode_info *pipe)
91 {
92         mutex_unlock(&pipe->mutex);
93 }
94
95 void pipe_double_lock(struct pipe_inode_info *pipe1,
96                       struct pipe_inode_info *pipe2)
97 {
98         BUG_ON(pipe1 == pipe2);
99
100         if (pipe1 < pipe2) {
101                 pipe_lock_nested(pipe1, I_MUTEX_PARENT);
102                 pipe_lock_nested(pipe2, I_MUTEX_CHILD);
103         } else {
104                 pipe_lock_nested(pipe2, I_MUTEX_PARENT);
105                 pipe_lock_nested(pipe1, I_MUTEX_CHILD);
106         }
107 }
108
109 /* Drop the inode semaphore and wait for a pipe event, atomically */
110 void pipe_wait(struct pipe_inode_info *pipe)
111 {
112         DEFINE_WAIT(rdwait);
113         DEFINE_WAIT(wrwait);
114
115         /*
116          * Pipes are system-local resources, so sleeping on them
117          * is considered a noninteractive wait:
118          */
119         prepare_to_wait(&pipe->rd_wait, &rdwait, TASK_INTERRUPTIBLE);
120         prepare_to_wait(&pipe->wr_wait, &wrwait, TASK_INTERRUPTIBLE);
121         pipe_unlock(pipe);
122         schedule();
123         finish_wait(&pipe->rd_wait, &rdwait);
124         finish_wait(&pipe->wr_wait, &wrwait);
125         pipe_lock(pipe);
126 }
127
128 static void anon_pipe_buf_release(struct pipe_inode_info *pipe,
129                                   struct pipe_buffer *buf)
130 {
131         struct page *page = buf->page;
132
133         /*
134          * If nobody else uses this page, and we don't already have a
135          * temporary page, let's keep track of it as a one-deep
136          * allocation cache. (Otherwise just release our reference to it)
137          */
138         if (page_count(page) == 1 && !pipe->tmp_page)
139                 pipe->tmp_page = page;
140         else
141                 put_page(page);
142 }
143
144 static bool anon_pipe_buf_try_steal(struct pipe_inode_info *pipe,
145                 struct pipe_buffer *buf)
146 {
147         struct page *page = buf->page;
148
149         if (page_count(page) != 1)
150                 return false;
151         memcg_kmem_uncharge_page(page, 0);
152         __SetPageLocked(page);
153         return true;
154 }
155
156 /**
157  * generic_pipe_buf_try_steal - attempt to take ownership of a &pipe_buffer
158  * @pipe:       the pipe that the buffer belongs to
159  * @buf:        the buffer to attempt to steal
160  *
161  * Description:
162  *      This function attempts to steal the &struct page attached to
163  *      @buf. If successful, this function returns 0 and returns with
164  *      the page locked. The caller may then reuse the page for whatever
165  *      he wishes; the typical use is insertion into a different file
166  *      page cache.
167  */
168 bool generic_pipe_buf_try_steal(struct pipe_inode_info *pipe,
169                 struct pipe_buffer *buf)
170 {
171         struct page *page = buf->page;
172
173         /*
174          * A reference of one is golden, that means that the owner of this
175          * page is the only one holding a reference to it. lock the page
176          * and return OK.
177          */
178         if (page_count(page) == 1) {
179                 lock_page(page);
180                 return true;
181         }
182         return false;
183 }
184 EXPORT_SYMBOL(generic_pipe_buf_try_steal);
185
186 /**
187  * generic_pipe_buf_get - get a reference to a &struct pipe_buffer
188  * @pipe:       the pipe that the buffer belongs to
189  * @buf:        the buffer to get a reference to
190  *
191  * Description:
192  *      This function grabs an extra reference to @buf. It's used in
193  *      in the tee() system call, when we duplicate the buffers in one
194  *      pipe into another.
195  */
196 bool generic_pipe_buf_get(struct pipe_inode_info *pipe, struct pipe_buffer *buf)
197 {
198         return try_get_page(buf->page);
199 }
200 EXPORT_SYMBOL(generic_pipe_buf_get);
201
202 /**
203  * generic_pipe_buf_release - put a reference to a &struct pipe_buffer
204  * @pipe:       the pipe that the buffer belongs to
205  * @buf:        the buffer to put a reference to
206  *
207  * Description:
208  *      This function releases a reference to @buf.
209  */
210 void generic_pipe_buf_release(struct pipe_inode_info *pipe,
211                               struct pipe_buffer *buf)
212 {
213         put_page(buf->page);
214 }
215 EXPORT_SYMBOL(generic_pipe_buf_release);
216
217 static const struct pipe_buf_operations anon_pipe_buf_ops = {
218         .release        = anon_pipe_buf_release,
219         .try_steal      = anon_pipe_buf_try_steal,
220         .get            = generic_pipe_buf_get,
221 };
222
223 /* Done while waiting without holding the pipe lock - thus the READ_ONCE() */
224 static inline bool pipe_readable(const struct pipe_inode_info *pipe)
225 {
226         unsigned int head = READ_ONCE(pipe->head);
227         unsigned int tail = READ_ONCE(pipe->tail);
228         unsigned int writers = READ_ONCE(pipe->writers);
229
230         return !pipe_empty(head, tail) || !writers;
231 }
232
233 static ssize_t
234 pipe_read(struct kiocb *iocb, struct iov_iter *to)
235 {
236         size_t total_len = iov_iter_count(to);
237         struct file *filp = iocb->ki_filp;
238         struct pipe_inode_info *pipe = filp->private_data;
239         bool was_full, wake_next_reader = false;
240         ssize_t ret;
241
242         /* Null read succeeds. */
243         if (unlikely(total_len == 0))
244                 return 0;
245
246         ret = 0;
247         __pipe_lock(pipe);
248
249         /*
250          * We only wake up writers if the pipe was full when we started
251          * reading in order to avoid unnecessary wakeups.
252          *
253          * But when we do wake up writers, we do so using a sync wakeup
254          * (WF_SYNC), because we want them to get going and generate more
255          * data for us.
256          */
257         was_full = pipe_full(pipe->head, pipe->tail, pipe->max_usage);
258         for (;;) {
259                 unsigned int head = pipe->head;
260                 unsigned int tail = pipe->tail;
261                 unsigned int mask = pipe->ring_size - 1;
262
263 #ifdef CONFIG_WATCH_QUEUE
264                 if (pipe->note_loss) {
265                         struct watch_notification n;
266
267                         if (total_len < 8) {
268                                 if (ret == 0)
269                                         ret = -ENOBUFS;
270                                 break;
271                         }
272
273                         n.type = WATCH_TYPE_META;
274                         n.subtype = WATCH_META_LOSS_NOTIFICATION;
275                         n.info = watch_sizeof(n);
276                         if (copy_to_iter(&n, sizeof(n), to) != sizeof(n)) {
277                                 if (ret == 0)
278                                         ret = -EFAULT;
279                                 break;
280                         }
281                         ret += sizeof(n);
282                         total_len -= sizeof(n);
283                         pipe->note_loss = false;
284                 }
285 #endif
286
287                 if (!pipe_empty(head, tail)) {
288                         struct pipe_buffer *buf = &pipe->bufs[tail & mask];
289                         size_t chars = buf->len;
290                         size_t written;
291                         int error;
292
293                         if (chars > total_len) {
294                                 if (buf->flags & PIPE_BUF_FLAG_WHOLE) {
295                                         if (ret == 0)
296                                                 ret = -ENOBUFS;
297                                         break;
298                                 }
299                                 chars = total_len;
300                         }
301
302                         error = pipe_buf_confirm(pipe, buf);
303                         if (error) {
304                                 if (!ret)
305                                         ret = error;
306                                 break;
307                         }
308
309                         written = copy_page_to_iter(buf->page, buf->offset, chars, to);
310                         if (unlikely(written < chars)) {
311                                 if (!ret)
312                                         ret = -EFAULT;
313                                 break;
314                         }
315                         ret += chars;
316                         buf->offset += chars;
317                         buf->len -= chars;
318
319                         /* Was it a packet buffer? Clean up and exit */
320                         if (buf->flags & PIPE_BUF_FLAG_PACKET) {
321                                 total_len = chars;
322                                 buf->len = 0;
323                         }
324
325                         if (!buf->len) {
326                                 pipe_buf_release(pipe, buf);
327                                 spin_lock_irq(&pipe->rd_wait.lock);
328 #ifdef CONFIG_WATCH_QUEUE
329                                 if (buf->flags & PIPE_BUF_FLAG_LOSS)
330                                         pipe->note_loss = true;
331 #endif
332                                 tail++;
333                                 pipe->tail = tail;
334                                 spin_unlock_irq(&pipe->rd_wait.lock);
335                         }
336                         total_len -= chars;
337                         if (!total_len)
338                                 break;  /* common path: read succeeded */
339                         if (!pipe_empty(head, tail))    /* More to do? */
340                                 continue;
341                 }
342
343                 if (!pipe->writers)
344                         break;
345                 if (ret)
346                         break;
347                 if (filp->f_flags & O_NONBLOCK) {
348                         ret = -EAGAIN;
349                         break;
350                 }
351                 __pipe_unlock(pipe);
352
353                 /*
354                  * We only get here if we didn't actually read anything.
355                  *
356                  * However, we could have seen (and removed) a zero-sized
357                  * pipe buffer, and might have made space in the buffers
358                  * that way.
359                  *
360                  * You can't make zero-sized pipe buffers by doing an empty
361                  * write (not even in packet mode), but they can happen if
362                  * the writer gets an EFAULT when trying to fill a buffer
363                  * that already got allocated and inserted in the buffer
364                  * array.
365                  *
366                  * So we still need to wake up any pending writers in the
367                  * _very_ unlikely case that the pipe was full, but we got
368                  * no data.
369                  */
370                 if (unlikely(was_full)) {
371                         wake_up_interruptible_sync_poll(&pipe->wr_wait, EPOLLOUT | EPOLLWRNORM);
372                         kill_fasync(&pipe->fasync_writers, SIGIO, POLL_OUT);
373                 }
374
375                 /*
376                  * But because we didn't read anything, at this point we can
377                  * just return directly with -ERESTARTSYS if we're interrupted,
378                  * since we've done any required wakeups and there's no need
379                  * to mark anything accessed. And we've dropped the lock.
380                  */
381                 if (wait_event_interruptible_exclusive(pipe->rd_wait, pipe_readable(pipe)) < 0)
382                         return -ERESTARTSYS;
383
384                 __pipe_lock(pipe);
385                 was_full = pipe_full(pipe->head, pipe->tail, pipe->max_usage);
386                 wake_next_reader = true;
387         }
388         if (pipe_empty(pipe->head, pipe->tail))
389                 wake_next_reader = false;
390         __pipe_unlock(pipe);
391
392         if (was_full) {
393                 wake_up_interruptible_sync_poll(&pipe->wr_wait, EPOLLOUT | EPOLLWRNORM);
394                 kill_fasync(&pipe->fasync_writers, SIGIO, POLL_OUT);
395         }
396         if (wake_next_reader)
397                 wake_up_interruptible_sync_poll(&pipe->rd_wait, EPOLLIN | EPOLLRDNORM);
398         if (ret > 0)
399                 file_accessed(filp);
400         return ret;
401 }
402
403 static inline int is_packetized(struct file *file)
404 {
405         return (file->f_flags & O_DIRECT) != 0;
406 }
407
408 /* Done while waiting without holding the pipe lock - thus the READ_ONCE() */
409 static inline bool pipe_writable(const struct pipe_inode_info *pipe)
410 {
411         unsigned int head = READ_ONCE(pipe->head);
412         unsigned int tail = READ_ONCE(pipe->tail);
413         unsigned int max_usage = READ_ONCE(pipe->max_usage);
414
415         return !pipe_full(head, tail, max_usage) ||
416                 !READ_ONCE(pipe->readers);
417 }
418
419 static ssize_t
420 pipe_write(struct kiocb *iocb, struct iov_iter *from)
421 {
422         struct file *filp = iocb->ki_filp;
423         struct pipe_inode_info *pipe = filp->private_data;
424         unsigned int head;
425         ssize_t ret = 0;
426         size_t total_len = iov_iter_count(from);
427         ssize_t chars;
428         bool was_empty = false;
429         bool wake_next_writer = false;
430
431         /* Null write succeeds. */
432         if (unlikely(total_len == 0))
433                 return 0;
434
435         __pipe_lock(pipe);
436
437         if (!pipe->readers) {
438                 send_sig(SIGPIPE, current, 0);
439                 ret = -EPIPE;
440                 goto out;
441         }
442
443 #ifdef CONFIG_WATCH_QUEUE
444         if (pipe->watch_queue) {
445                 ret = -EXDEV;
446                 goto out;
447         }
448 #endif
449
450         /*
451          * Only wake up if the pipe started out empty, since
452          * otherwise there should be no readers waiting.
453          *
454          * If it wasn't empty we try to merge new data into
455          * the last buffer.
456          *
457          * That naturally merges small writes, but it also
458          * page-aligs the rest of the writes for large writes
459          * spanning multiple pages.
460          */
461         head = pipe->head;
462         was_empty = pipe_empty(head, pipe->tail);
463         chars = total_len & (PAGE_SIZE-1);
464         if (chars && !was_empty) {
465                 unsigned int mask = pipe->ring_size - 1;
466                 struct pipe_buffer *buf = &pipe->bufs[(head - 1) & mask];
467                 int offset = buf->offset + buf->len;
468
469                 if ((buf->flags & PIPE_BUF_FLAG_CAN_MERGE) &&
470                     offset + chars <= PAGE_SIZE) {
471                         ret = pipe_buf_confirm(pipe, buf);
472                         if (ret)
473                                 goto out;
474
475                         ret = copy_page_from_iter(buf->page, offset, chars, from);
476                         if (unlikely(ret < chars)) {
477                                 ret = -EFAULT;
478                                 goto out;
479                         }
480
481                         buf->len += ret;
482                         if (!iov_iter_count(from))
483                                 goto out;
484                 }
485         }
486
487         for (;;) {
488                 if (!pipe->readers) {
489                         send_sig(SIGPIPE, current, 0);
490                         if (!ret)
491                                 ret = -EPIPE;
492                         break;
493                 }
494
495                 head = pipe->head;
496                 if (!pipe_full(head, pipe->tail, pipe->max_usage)) {
497                         unsigned int mask = pipe->ring_size - 1;
498                         struct pipe_buffer *buf = &pipe->bufs[head & mask];
499                         struct page *page = pipe->tmp_page;
500                         int copied;
501
502                         if (!page) {
503                                 page = alloc_page(GFP_HIGHUSER | __GFP_ACCOUNT);
504                                 if (unlikely(!page)) {
505                                         ret = ret ? : -ENOMEM;
506                                         break;
507                                 }
508                                 pipe->tmp_page = page;
509                         }
510
511                         /* Allocate a slot in the ring in advance and attach an
512                          * empty buffer.  If we fault or otherwise fail to use
513                          * it, either the reader will consume it or it'll still
514                          * be there for the next write.
515                          */
516                         spin_lock_irq(&pipe->rd_wait.lock);
517
518                         head = pipe->head;
519                         if (pipe_full(head, pipe->tail, pipe->max_usage)) {
520                                 spin_unlock_irq(&pipe->rd_wait.lock);
521                                 continue;
522                         }
523
524                         pipe->head = head + 1;
525                         spin_unlock_irq(&pipe->rd_wait.lock);
526
527                         /* Insert it into the buffer array */
528                         buf = &pipe->bufs[head & mask];
529                         buf->page = page;
530                         buf->ops = &anon_pipe_buf_ops;
531                         buf->offset = 0;
532                         buf->len = 0;
533                         if (is_packetized(filp))
534                                 buf->flags = PIPE_BUF_FLAG_PACKET;
535                         else
536                                 buf->flags = PIPE_BUF_FLAG_CAN_MERGE;
537                         pipe->tmp_page = NULL;
538
539                         copied = copy_page_from_iter(page, 0, PAGE_SIZE, from);
540                         if (unlikely(copied < PAGE_SIZE && iov_iter_count(from))) {
541                                 if (!ret)
542                                         ret = -EFAULT;
543                                 break;
544                         }
545                         ret += copied;
546                         buf->offset = 0;
547                         buf->len = copied;
548
549                         if (!iov_iter_count(from))
550                                 break;
551                 }
552
553                 if (!pipe_full(head, pipe->tail, pipe->max_usage))
554                         continue;
555
556                 /* Wait for buffer space to become available. */
557                 if (filp->f_flags & O_NONBLOCK) {
558                         if (!ret)
559                                 ret = -EAGAIN;
560                         break;
561                 }
562                 if (signal_pending(current)) {
563                         if (!ret)
564                                 ret = -ERESTARTSYS;
565                         break;
566                 }
567
568                 /*
569                  * We're going to release the pipe lock and wait for more
570                  * space. We wake up any readers if necessary, and then
571                  * after waiting we need to re-check whether the pipe
572                  * become empty while we dropped the lock.
573                  */
574                 __pipe_unlock(pipe);
575                 if (was_empty) {
576                         wake_up_interruptible_sync_poll(&pipe->rd_wait, EPOLLIN | EPOLLRDNORM);
577                         kill_fasync(&pipe->fasync_readers, SIGIO, POLL_IN);
578                 }
579                 wait_event_interruptible_exclusive(pipe->wr_wait, pipe_writable(pipe));
580                 __pipe_lock(pipe);
581                 was_empty = pipe_empty(pipe->head, pipe->tail);
582                 wake_next_writer = true;
583         }
584 out:
585         if (pipe_full(pipe->head, pipe->tail, pipe->max_usage))
586                 wake_next_writer = false;
587         __pipe_unlock(pipe);
588
589         /*
590          * If we do do a wakeup event, we do a 'sync' wakeup, because we
591          * want the reader to start processing things asap, rather than
592          * leave the data pending.
593          *
594          * This is particularly important for small writes, because of
595          * how (for example) the GNU make jobserver uses small writes to
596          * wake up pending jobs
597          */
598         if (was_empty) {
599                 wake_up_interruptible_sync_poll(&pipe->rd_wait, EPOLLIN | EPOLLRDNORM);
600                 kill_fasync(&pipe->fasync_readers, SIGIO, POLL_IN);
601         }
602         if (wake_next_writer)
603                 wake_up_interruptible_sync_poll(&pipe->wr_wait, EPOLLOUT | EPOLLWRNORM);
604         if (ret > 0 && sb_start_write_trylock(file_inode(filp)->i_sb)) {
605                 int err = file_update_time(filp);
606                 if (err)
607                         ret = err;
608                 sb_end_write(file_inode(filp)->i_sb);
609         }
610         return ret;
611 }
612
613 static long pipe_ioctl(struct file *filp, unsigned int cmd, unsigned long arg)
614 {
615         struct pipe_inode_info *pipe = filp->private_data;
616         int count, head, tail, mask;
617
618         switch (cmd) {
619         case FIONREAD:
620                 __pipe_lock(pipe);
621                 count = 0;
622                 head = pipe->head;
623                 tail = pipe->tail;
624                 mask = pipe->ring_size - 1;
625
626                 while (tail != head) {
627                         count += pipe->bufs[tail & mask].len;
628                         tail++;
629                 }
630                 __pipe_unlock(pipe);
631
632                 return put_user(count, (int __user *)arg);
633
634 #ifdef CONFIG_WATCH_QUEUE
635         case IOC_WATCH_QUEUE_SET_SIZE: {
636                 int ret;
637                 __pipe_lock(pipe);
638                 ret = watch_queue_set_size(pipe, arg);
639                 __pipe_unlock(pipe);
640                 return ret;
641         }
642
643         case IOC_WATCH_QUEUE_SET_FILTER:
644                 return watch_queue_set_filter(
645                         pipe, (struct watch_notification_filter __user *)arg);
646 #endif
647
648         default:
649                 return -ENOIOCTLCMD;
650         }
651 }
652
653 /* No kernel lock held - fine */
654 static __poll_t
655 pipe_poll(struct file *filp, poll_table *wait)
656 {
657         __poll_t mask;
658         struct pipe_inode_info *pipe = filp->private_data;
659         unsigned int head, tail;
660
661         /*
662          * Reading pipe state only -- no need for acquiring the semaphore.
663          *
664          * But because this is racy, the code has to add the
665          * entry to the poll table _first_ ..
666          */
667         if (filp->f_mode & FMODE_READ)
668                 poll_wait(filp, &pipe->rd_wait, wait);
669         if (filp->f_mode & FMODE_WRITE)
670                 poll_wait(filp, &pipe->wr_wait, wait);
671
672         /*
673          * .. and only then can you do the racy tests. That way,
674          * if something changes and you got it wrong, the poll
675          * table entry will wake you up and fix it.
676          */
677         head = READ_ONCE(pipe->head);
678         tail = READ_ONCE(pipe->tail);
679
680         mask = 0;
681         if (filp->f_mode & FMODE_READ) {
682                 if (!pipe_empty(head, tail))
683                         mask |= EPOLLIN | EPOLLRDNORM;
684                 if (!pipe->writers && filp->f_version != pipe->w_counter)
685                         mask |= EPOLLHUP;
686         }
687
688         if (filp->f_mode & FMODE_WRITE) {
689                 if (!pipe_full(head, tail, pipe->max_usage))
690                         mask |= EPOLLOUT | EPOLLWRNORM;
691                 /*
692                  * Most Unices do not set EPOLLERR for FIFOs but on Linux they
693                  * behave exactly like pipes for poll().
694                  */
695                 if (!pipe->readers)
696                         mask |= EPOLLERR;
697         }
698
699         return mask;
700 }
701
702 static void put_pipe_info(struct inode *inode, struct pipe_inode_info *pipe)
703 {
704         int kill = 0;
705
706         spin_lock(&inode->i_lock);
707         if (!--pipe->files) {
708                 inode->i_pipe = NULL;
709                 kill = 1;
710         }
711         spin_unlock(&inode->i_lock);
712
713         if (kill)
714                 free_pipe_info(pipe);
715 }
716
717 static int
718 pipe_release(struct inode *inode, struct file *file)
719 {
720         struct pipe_inode_info *pipe = file->private_data;
721
722         __pipe_lock(pipe);
723         if (file->f_mode & FMODE_READ)
724                 pipe->readers--;
725         if (file->f_mode & FMODE_WRITE)
726                 pipe->writers--;
727
728         /* Was that the last reader or writer, but not the other side? */
729         if (!pipe->readers != !pipe->writers) {
730                 wake_up_interruptible_all(&pipe->rd_wait);
731                 wake_up_interruptible_all(&pipe->wr_wait);
732                 kill_fasync(&pipe->fasync_readers, SIGIO, POLL_IN);
733                 kill_fasync(&pipe->fasync_writers, SIGIO, POLL_OUT);
734         }
735         __pipe_unlock(pipe);
736
737         put_pipe_info(inode, pipe);
738         return 0;
739 }
740
741 static int
742 pipe_fasync(int fd, struct file *filp, int on)
743 {
744         struct pipe_inode_info *pipe = filp->private_data;
745         int retval = 0;
746
747         __pipe_lock(pipe);
748         if (filp->f_mode & FMODE_READ)
749                 retval = fasync_helper(fd, filp, on, &pipe->fasync_readers);
750         if ((filp->f_mode & FMODE_WRITE) && retval >= 0) {
751                 retval = fasync_helper(fd, filp, on, &pipe->fasync_writers);
752                 if (retval < 0 && (filp->f_mode & FMODE_READ))
753                         /* this can happen only if on == T */
754                         fasync_helper(-1, filp, 0, &pipe->fasync_readers);
755         }
756         __pipe_unlock(pipe);
757         return retval;
758 }
759
760 unsigned long account_pipe_buffers(struct user_struct *user,
761                                    unsigned long old, unsigned long new)
762 {
763         return atomic_long_add_return(new - old, &user->pipe_bufs);
764 }
765
766 bool too_many_pipe_buffers_soft(unsigned long user_bufs)
767 {
768         unsigned long soft_limit = READ_ONCE(pipe_user_pages_soft);
769
770         return soft_limit && user_bufs > soft_limit;
771 }
772
773 bool too_many_pipe_buffers_hard(unsigned long user_bufs)
774 {
775         unsigned long hard_limit = READ_ONCE(pipe_user_pages_hard);
776
777         return hard_limit && user_bufs > hard_limit;
778 }
779
780 bool pipe_is_unprivileged_user(void)
781 {
782         return !capable(CAP_SYS_RESOURCE) && !capable(CAP_SYS_ADMIN);
783 }
784
785 struct pipe_inode_info *alloc_pipe_info(void)
786 {
787         struct pipe_inode_info *pipe;
788         unsigned long pipe_bufs = PIPE_DEF_BUFFERS;
789         struct user_struct *user = get_current_user();
790         unsigned long user_bufs;
791         unsigned int max_size = READ_ONCE(pipe_max_size);
792
793         pipe = kzalloc(sizeof(struct pipe_inode_info), GFP_KERNEL_ACCOUNT);
794         if (pipe == NULL)
795                 goto out_free_uid;
796
797         if (pipe_bufs * PAGE_SIZE > max_size && !capable(CAP_SYS_RESOURCE))
798                 pipe_bufs = max_size >> PAGE_SHIFT;
799
800         user_bufs = account_pipe_buffers(user, 0, pipe_bufs);
801
802         if (too_many_pipe_buffers_soft(user_bufs) && pipe_is_unprivileged_user()) {
803                 user_bufs = account_pipe_buffers(user, pipe_bufs, 1);
804                 pipe_bufs = 1;
805         }
806
807         if (too_many_pipe_buffers_hard(user_bufs) && pipe_is_unprivileged_user())
808                 goto out_revert_acct;
809
810         pipe->bufs = kcalloc(pipe_bufs, sizeof(struct pipe_buffer),
811                              GFP_KERNEL_ACCOUNT);
812
813         if (pipe->bufs) {
814                 init_waitqueue_head(&pipe->rd_wait);
815                 init_waitqueue_head(&pipe->wr_wait);
816                 pipe->r_counter = pipe->w_counter = 1;
817                 pipe->max_usage = pipe_bufs;
818                 pipe->ring_size = pipe_bufs;
819                 pipe->nr_accounted = pipe_bufs;
820                 pipe->user = user;
821                 mutex_init(&pipe->mutex);
822                 return pipe;
823         }
824
825 out_revert_acct:
826         (void) account_pipe_buffers(user, pipe_bufs, 0);
827         kfree(pipe);
828 out_free_uid:
829         free_uid(user);
830         return NULL;
831 }
832
833 void free_pipe_info(struct pipe_inode_info *pipe)
834 {
835         int i;
836
837 #ifdef CONFIG_WATCH_QUEUE
838         if (pipe->watch_queue) {
839                 watch_queue_clear(pipe->watch_queue);
840                 put_watch_queue(pipe->watch_queue);
841         }
842 #endif
843
844         (void) account_pipe_buffers(pipe->user, pipe->nr_accounted, 0);
845         free_uid(pipe->user);
846         for (i = 0; i < pipe->ring_size; i++) {
847                 struct pipe_buffer *buf = pipe->bufs + i;
848                 if (buf->ops)
849                         pipe_buf_release(pipe, buf);
850         }
851         if (pipe->tmp_page)
852                 __free_page(pipe->tmp_page);
853         kfree(pipe->bufs);
854         kfree(pipe);
855 }
856
857 static struct vfsmount *pipe_mnt __read_mostly;
858
859 /*
860  * pipefs_dname() is called from d_path().
861  */
862 static char *pipefs_dname(struct dentry *dentry, char *buffer, int buflen)
863 {
864         return dynamic_dname(dentry, buffer, buflen, "pipe:[%lu]",
865                                 d_inode(dentry)->i_ino);
866 }
867
868 static const struct dentry_operations pipefs_dentry_operations = {
869         .d_dname        = pipefs_dname,
870 };
871
872 static struct inode * get_pipe_inode(void)
873 {
874         struct inode *inode = new_inode_pseudo(pipe_mnt->mnt_sb);
875         struct pipe_inode_info *pipe;
876
877         if (!inode)
878                 goto fail_inode;
879
880         inode->i_ino = get_next_ino();
881
882         pipe = alloc_pipe_info();
883         if (!pipe)
884                 goto fail_iput;
885
886         inode->i_pipe = pipe;
887         pipe->files = 2;
888         pipe->readers = pipe->writers = 1;
889         inode->i_fop = &pipefifo_fops;
890
891         /*
892          * Mark the inode dirty from the very beginning,
893          * that way it will never be moved to the dirty
894          * list because "mark_inode_dirty()" will think
895          * that it already _is_ on the dirty list.
896          */
897         inode->i_state = I_DIRTY;
898         inode->i_mode = S_IFIFO | S_IRUSR | S_IWUSR;
899         inode->i_uid = current_fsuid();
900         inode->i_gid = current_fsgid();
901         inode->i_atime = inode->i_mtime = inode->i_ctime = current_time(inode);
902
903         return inode;
904
905 fail_iput:
906         iput(inode);
907
908 fail_inode:
909         return NULL;
910 }
911
912 int create_pipe_files(struct file **res, int flags)
913 {
914         struct inode *inode = get_pipe_inode();
915         struct file *f;
916
917         if (!inode)
918                 return -ENFILE;
919
920         if (flags & O_NOTIFICATION_PIPE) {
921 #ifdef CONFIG_WATCH_QUEUE
922                 if (watch_queue_init(inode->i_pipe) < 0) {
923                         iput(inode);
924                         return -ENOMEM;
925                 }
926 #else
927                 return -ENOPKG;
928 #endif
929         }
930
931         f = alloc_file_pseudo(inode, pipe_mnt, "",
932                                 O_WRONLY | (flags & (O_NONBLOCK | O_DIRECT)),
933                                 &pipefifo_fops);
934         if (IS_ERR(f)) {
935                 free_pipe_info(inode->i_pipe);
936                 iput(inode);
937                 return PTR_ERR(f);
938         }
939
940         f->private_data = inode->i_pipe;
941
942         res[0] = alloc_file_clone(f, O_RDONLY | (flags & O_NONBLOCK),
943                                   &pipefifo_fops);
944         if (IS_ERR(res[0])) {
945                 put_pipe_info(inode, inode->i_pipe);
946                 fput(f);
947                 return PTR_ERR(res[0]);
948         }
949         res[0]->private_data = inode->i_pipe;
950         res[1] = f;
951         stream_open(inode, res[0]);
952         stream_open(inode, res[1]);
953         return 0;
954 }
955
956 static int __do_pipe_flags(int *fd, struct file **files, int flags)
957 {
958         int error;
959         int fdw, fdr;
960
961         if (flags & ~(O_CLOEXEC | O_NONBLOCK | O_DIRECT | O_NOTIFICATION_PIPE))
962                 return -EINVAL;
963
964         error = create_pipe_files(files, flags);
965         if (error)
966                 return error;
967
968         error = get_unused_fd_flags(flags);
969         if (error < 0)
970                 goto err_read_pipe;
971         fdr = error;
972
973         error = get_unused_fd_flags(flags);
974         if (error < 0)
975                 goto err_fdr;
976         fdw = error;
977
978         audit_fd_pair(fdr, fdw);
979         fd[0] = fdr;
980         fd[1] = fdw;
981         return 0;
982
983  err_fdr:
984         put_unused_fd(fdr);
985  err_read_pipe:
986         fput(files[0]);
987         fput(files[1]);
988         return error;
989 }
990
991 int do_pipe_flags(int *fd, int flags)
992 {
993         struct file *files[2];
994         int error = __do_pipe_flags(fd, files, flags);
995         if (!error) {
996                 fd_install(fd[0], files[0]);
997                 fd_install(fd[1], files[1]);
998         }
999         return error;
1000 }
1001
1002 /*
1003  * sys_pipe() is the normal C calling standard for creating
1004  * a pipe. It's not the way Unix traditionally does this, though.
1005  */
1006 static int do_pipe2(int __user *fildes, int flags)
1007 {
1008         struct file *files[2];
1009         int fd[2];
1010         int error;
1011
1012         error = __do_pipe_flags(fd, files, flags);
1013         if (!error) {
1014                 if (unlikely(copy_to_user(fildes, fd, sizeof(fd)))) {
1015                         fput(files[0]);
1016                         fput(files[1]);
1017                         put_unused_fd(fd[0]);
1018                         put_unused_fd(fd[1]);
1019                         error = -EFAULT;
1020                 } else {
1021                         fd_install(fd[0], files[0]);
1022                         fd_install(fd[1], files[1]);
1023                 }
1024         }
1025         return error;
1026 }
1027
1028 SYSCALL_DEFINE2(pipe2, int __user *, fildes, int, flags)
1029 {
1030         return do_pipe2(fildes, flags);
1031 }
1032
1033 SYSCALL_DEFINE1(pipe, int __user *, fildes)
1034 {
1035         return do_pipe2(fildes, 0);
1036 }
1037
1038 static int wait_for_partner(struct pipe_inode_info *pipe, unsigned int *cnt)
1039 {
1040         int cur = *cnt;
1041
1042         while (cur == *cnt) {
1043                 pipe_wait(pipe);
1044                 if (signal_pending(current))
1045                         break;
1046         }
1047         return cur == *cnt ? -ERESTARTSYS : 0;
1048 }
1049
1050 static void wake_up_partner(struct pipe_inode_info *pipe)
1051 {
1052         wake_up_interruptible_all(&pipe->rd_wait);
1053         wake_up_interruptible_all(&pipe->wr_wait);
1054 }
1055
1056 static int fifo_open(struct inode *inode, struct file *filp)
1057 {
1058         struct pipe_inode_info *pipe;
1059         bool is_pipe = inode->i_sb->s_magic == PIPEFS_MAGIC;
1060         int ret;
1061
1062         filp->f_version = 0;
1063
1064         spin_lock(&inode->i_lock);
1065         if (inode->i_pipe) {
1066                 pipe = inode->i_pipe;
1067                 pipe->files++;
1068                 spin_unlock(&inode->i_lock);
1069         } else {
1070                 spin_unlock(&inode->i_lock);
1071                 pipe = alloc_pipe_info();
1072                 if (!pipe)
1073                         return -ENOMEM;
1074                 pipe->files = 1;
1075                 spin_lock(&inode->i_lock);
1076                 if (unlikely(inode->i_pipe)) {
1077                         inode->i_pipe->files++;
1078                         spin_unlock(&inode->i_lock);
1079                         free_pipe_info(pipe);
1080                         pipe = inode->i_pipe;
1081                 } else {
1082                         inode->i_pipe = pipe;
1083                         spin_unlock(&inode->i_lock);
1084                 }
1085         }
1086         filp->private_data = pipe;
1087         /* OK, we have a pipe and it's pinned down */
1088
1089         __pipe_lock(pipe);
1090
1091         /* We can only do regular read/write on fifos */
1092         stream_open(inode, filp);
1093
1094         switch (filp->f_mode & (FMODE_READ | FMODE_WRITE)) {
1095         case FMODE_READ:
1096         /*
1097          *  O_RDONLY
1098          *  POSIX.1 says that O_NONBLOCK means return with the FIFO
1099          *  opened, even when there is no process writing the FIFO.
1100          */
1101                 pipe->r_counter++;
1102                 if (pipe->readers++ == 0)
1103                         wake_up_partner(pipe);
1104
1105                 if (!is_pipe && !pipe->writers) {
1106                         if ((filp->f_flags & O_NONBLOCK)) {
1107                                 /* suppress EPOLLHUP until we have
1108                                  * seen a writer */
1109                                 filp->f_version = pipe->w_counter;
1110                         } else {
1111                                 if (wait_for_partner(pipe, &pipe->w_counter))
1112                                         goto err_rd;
1113                         }
1114                 }
1115                 break;
1116
1117         case FMODE_WRITE:
1118         /*
1119          *  O_WRONLY
1120          *  POSIX.1 says that O_NONBLOCK means return -1 with
1121          *  errno=ENXIO when there is no process reading the FIFO.
1122          */
1123                 ret = -ENXIO;
1124                 if (!is_pipe && (filp->f_flags & O_NONBLOCK) && !pipe->readers)
1125                         goto err;
1126
1127                 pipe->w_counter++;
1128                 if (!pipe->writers++)
1129                         wake_up_partner(pipe);
1130
1131                 if (!is_pipe && !pipe->readers) {
1132                         if (wait_for_partner(pipe, &pipe->r_counter))
1133                                 goto err_wr;
1134                 }
1135                 break;
1136
1137         case FMODE_READ | FMODE_WRITE:
1138         /*
1139          *  O_RDWR
1140          *  POSIX.1 leaves this case "undefined" when O_NONBLOCK is set.
1141          *  This implementation will NEVER block on a O_RDWR open, since
1142          *  the process can at least talk to itself.
1143          */
1144
1145                 pipe->readers++;
1146                 pipe->writers++;
1147                 pipe->r_counter++;
1148                 pipe->w_counter++;
1149                 if (pipe->readers == 1 || pipe->writers == 1)
1150                         wake_up_partner(pipe);
1151                 break;
1152
1153         default:
1154                 ret = -EINVAL;
1155                 goto err;
1156         }
1157
1158         /* Ok! */
1159         __pipe_unlock(pipe);
1160         return 0;
1161
1162 err_rd:
1163         if (!--pipe->readers)
1164                 wake_up_interruptible(&pipe->wr_wait);
1165         ret = -ERESTARTSYS;
1166         goto err;
1167
1168 err_wr:
1169         if (!--pipe->writers)
1170                 wake_up_interruptible_all(&pipe->rd_wait);
1171         ret = -ERESTARTSYS;
1172         goto err;
1173
1174 err:
1175         __pipe_unlock(pipe);
1176
1177         put_pipe_info(inode, pipe);
1178         return ret;
1179 }
1180
1181 const struct file_operations pipefifo_fops = {
1182         .open           = fifo_open,
1183         .llseek         = no_llseek,
1184         .read_iter      = pipe_read,
1185         .write_iter     = pipe_write,
1186         .poll           = pipe_poll,
1187         .unlocked_ioctl = pipe_ioctl,
1188         .release        = pipe_release,
1189         .fasync         = pipe_fasync,
1190 };
1191
1192 /*
1193  * Currently we rely on the pipe array holding a power-of-2 number
1194  * of pages. Returns 0 on error.
1195  */
1196 unsigned int round_pipe_size(unsigned long size)
1197 {
1198         if (size > (1U << 31))
1199                 return 0;
1200
1201         /* Minimum pipe size, as required by POSIX */
1202         if (size < PAGE_SIZE)
1203                 return PAGE_SIZE;
1204
1205         return roundup_pow_of_two(size);
1206 }
1207
1208 /*
1209  * Resize the pipe ring to a number of slots.
1210  */
1211 int pipe_resize_ring(struct pipe_inode_info *pipe, unsigned int nr_slots)
1212 {
1213         struct pipe_buffer *bufs;
1214         unsigned int head, tail, mask, n;
1215
1216         /*
1217          * We can shrink the pipe, if arg is greater than the ring occupancy.
1218          * Since we don't expect a lot of shrink+grow operations, just free and
1219          * allocate again like we would do for growing.  If the pipe currently
1220          * contains more buffers than arg, then return busy.
1221          */
1222         mask = pipe->ring_size - 1;
1223         head = pipe->head;
1224         tail = pipe->tail;
1225         n = pipe_occupancy(pipe->head, pipe->tail);
1226         if (nr_slots < n)
1227                 return -EBUSY;
1228
1229         bufs = kcalloc(nr_slots, sizeof(*bufs),
1230                        GFP_KERNEL_ACCOUNT | __GFP_NOWARN);
1231         if (unlikely(!bufs))
1232                 return -ENOMEM;
1233
1234         /*
1235          * The pipe array wraps around, so just start the new one at zero
1236          * and adjust the indices.
1237          */
1238         if (n > 0) {
1239                 unsigned int h = head & mask;
1240                 unsigned int t = tail & mask;
1241                 if (h > t) {
1242                         memcpy(bufs, pipe->bufs + t,
1243                                n * sizeof(struct pipe_buffer));
1244                 } else {
1245                         unsigned int tsize = pipe->ring_size - t;
1246                         if (h > 0)
1247                                 memcpy(bufs + tsize, pipe->bufs,
1248                                        h * sizeof(struct pipe_buffer));
1249                         memcpy(bufs, pipe->bufs + t,
1250                                tsize * sizeof(struct pipe_buffer));
1251                 }
1252         }
1253
1254         head = n;
1255         tail = 0;
1256
1257         kfree(pipe->bufs);
1258         pipe->bufs = bufs;
1259         pipe->ring_size = nr_slots;
1260         if (pipe->max_usage > nr_slots)
1261                 pipe->max_usage = nr_slots;
1262         pipe->tail = tail;
1263         pipe->head = head;
1264
1265         /* This might have made more room for writers */
1266         wake_up_interruptible(&pipe->wr_wait);
1267         return 0;
1268 }
1269
1270 /*
1271  * Allocate a new array of pipe buffers and copy the info over. Returns the
1272  * pipe size if successful, or return -ERROR on error.
1273  */
1274 static long pipe_set_size(struct pipe_inode_info *pipe, unsigned long arg)
1275 {
1276         unsigned long user_bufs;
1277         unsigned int nr_slots, size;
1278         long ret = 0;
1279
1280 #ifdef CONFIG_WATCH_QUEUE
1281         if (pipe->watch_queue)
1282                 return -EBUSY;
1283 #endif
1284
1285         size = round_pipe_size(arg);
1286         nr_slots = size >> PAGE_SHIFT;
1287
1288         if (!nr_slots)
1289                 return -EINVAL;
1290
1291         /*
1292          * If trying to increase the pipe capacity, check that an
1293          * unprivileged user is not trying to exceed various limits
1294          * (soft limit check here, hard limit check just below).
1295          * Decreasing the pipe capacity is always permitted, even
1296          * if the user is currently over a limit.
1297          */
1298         if (nr_slots > pipe->max_usage &&
1299                         size > pipe_max_size && !capable(CAP_SYS_RESOURCE))
1300                 return -EPERM;
1301
1302         user_bufs = account_pipe_buffers(pipe->user, pipe->nr_accounted, nr_slots);
1303
1304         if (nr_slots > pipe->max_usage &&
1305                         (too_many_pipe_buffers_hard(user_bufs) ||
1306                          too_many_pipe_buffers_soft(user_bufs)) &&
1307                         pipe_is_unprivileged_user()) {
1308                 ret = -EPERM;
1309                 goto out_revert_acct;
1310         }
1311
1312         ret = pipe_resize_ring(pipe, nr_slots);
1313         if (ret < 0)
1314                 goto out_revert_acct;
1315
1316         pipe->max_usage = nr_slots;
1317         pipe->nr_accounted = nr_slots;
1318         return pipe->max_usage * PAGE_SIZE;
1319
1320 out_revert_acct:
1321         (void) account_pipe_buffers(pipe->user, nr_slots, pipe->nr_accounted);
1322         return ret;
1323 }
1324
1325 /*
1326  * After the inode slimming patch, i_pipe/i_bdev/i_cdev share the same
1327  * location, so checking ->i_pipe is not enough to verify that this is a
1328  * pipe.
1329  */
1330 struct pipe_inode_info *get_pipe_info(struct file *file, bool for_splice)
1331 {
1332         struct pipe_inode_info *pipe = file->private_data;
1333
1334         if (file->f_op != &pipefifo_fops || !pipe)
1335                 return NULL;
1336 #ifdef CONFIG_WATCH_QUEUE
1337         if (for_splice && pipe->watch_queue)
1338                 return NULL;
1339 #endif
1340         return pipe;
1341 }
1342
1343 long pipe_fcntl(struct file *file, unsigned int cmd, unsigned long arg)
1344 {
1345         struct pipe_inode_info *pipe;
1346         long ret;
1347
1348         pipe = get_pipe_info(file, false);
1349         if (!pipe)
1350                 return -EBADF;
1351
1352         __pipe_lock(pipe);
1353
1354         switch (cmd) {
1355         case F_SETPIPE_SZ:
1356                 ret = pipe_set_size(pipe, arg);
1357                 break;
1358         case F_GETPIPE_SZ:
1359                 ret = pipe->max_usage * PAGE_SIZE;
1360                 break;
1361         default:
1362                 ret = -EINVAL;
1363                 break;
1364         }
1365
1366         __pipe_unlock(pipe);
1367         return ret;
1368 }
1369
1370 static const struct super_operations pipefs_ops = {
1371         .destroy_inode = free_inode_nonrcu,
1372         .statfs = simple_statfs,
1373 };
1374
1375 /*
1376  * pipefs should _never_ be mounted by userland - too much of security hassle,
1377  * no real gain from having the whole whorehouse mounted. So we don't need
1378  * any operations on the root directory. However, we need a non-trivial
1379  * d_name - pipe: will go nicely and kill the special-casing in procfs.
1380  */
1381
1382 static int pipefs_init_fs_context(struct fs_context *fc)
1383 {
1384         struct pseudo_fs_context *ctx = init_pseudo(fc, PIPEFS_MAGIC);
1385         if (!ctx)
1386                 return -ENOMEM;
1387         ctx->ops = &pipefs_ops;
1388         ctx->dops = &pipefs_dentry_operations;
1389         return 0;
1390 }
1391
1392 static struct file_system_type pipe_fs_type = {
1393         .name           = "pipefs",
1394         .init_fs_context = pipefs_init_fs_context,
1395         .kill_sb        = kill_anon_super,
1396 };
1397
1398 static int __init init_pipe_fs(void)
1399 {
1400         int err = register_filesystem(&pipe_fs_type);
1401
1402         if (!err) {
1403                 pipe_mnt = kern_mount(&pipe_fs_type);
1404                 if (IS_ERR(pipe_mnt)) {
1405                         err = PTR_ERR(pipe_mnt);
1406                         unregister_filesystem(&pipe_fs_type);
1407                 }
1408         }
1409         return err;
1410 }
1411
1412 fs_initcall(init_pipe_fs);