Merge tag 'sched-urgent-2020-12-27' of git://git.kernel.org/pub/scm/linux/kernel...
[linux-2.6-microblaze.git] / fs / ocfs2 / journal.c
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /* -*- mode: c; c-basic-offset: 8; -*-
3  * vim: noexpandtab sw=8 ts=8 sts=0:
4  *
5  * journal.c
6  *
7  * Defines functions of journalling api
8  *
9  * Copyright (C) 2003, 2004 Oracle.  All rights reserved.
10  */
11
12 #include <linux/fs.h>
13 #include <linux/types.h>
14 #include <linux/slab.h>
15 #include <linux/highmem.h>
16 #include <linux/kthread.h>
17 #include <linux/time.h>
18 #include <linux/random.h>
19 #include <linux/delay.h>
20
21 #include <cluster/masklog.h>
22
23 #include "ocfs2.h"
24
25 #include "alloc.h"
26 #include "blockcheck.h"
27 #include "dir.h"
28 #include "dlmglue.h"
29 #include "extent_map.h"
30 #include "heartbeat.h"
31 #include "inode.h"
32 #include "journal.h"
33 #include "localalloc.h"
34 #include "slot_map.h"
35 #include "super.h"
36 #include "sysfile.h"
37 #include "uptodate.h"
38 #include "quota.h"
39 #include "file.h"
40 #include "namei.h"
41
42 #include "buffer_head_io.h"
43 #include "ocfs2_trace.h"
44
45 DEFINE_SPINLOCK(trans_inc_lock);
46
47 #define ORPHAN_SCAN_SCHEDULE_TIMEOUT 300000
48
49 static int ocfs2_force_read_journal(struct inode *inode);
50 static int ocfs2_recover_node(struct ocfs2_super *osb,
51                               int node_num, int slot_num);
52 static int __ocfs2_recovery_thread(void *arg);
53 static int ocfs2_commit_cache(struct ocfs2_super *osb);
54 static int __ocfs2_wait_on_mount(struct ocfs2_super *osb, int quota);
55 static int ocfs2_journal_toggle_dirty(struct ocfs2_super *osb,
56                                       int dirty, int replayed);
57 static int ocfs2_trylock_journal(struct ocfs2_super *osb,
58                                  int slot_num);
59 static int ocfs2_recover_orphans(struct ocfs2_super *osb,
60                                  int slot,
61                                  enum ocfs2_orphan_reco_type orphan_reco_type);
62 static int ocfs2_commit_thread(void *arg);
63 static void ocfs2_queue_recovery_completion(struct ocfs2_journal *journal,
64                                             int slot_num,
65                                             struct ocfs2_dinode *la_dinode,
66                                             struct ocfs2_dinode *tl_dinode,
67                                             struct ocfs2_quota_recovery *qrec,
68                                             enum ocfs2_orphan_reco_type orphan_reco_type);
69
70 static inline int ocfs2_wait_on_mount(struct ocfs2_super *osb)
71 {
72         return __ocfs2_wait_on_mount(osb, 0);
73 }
74
75 static inline int ocfs2_wait_on_quotas(struct ocfs2_super *osb)
76 {
77         return __ocfs2_wait_on_mount(osb, 1);
78 }
79
80 /*
81  * This replay_map is to track online/offline slots, so we could recover
82  * offline slots during recovery and mount
83  */
84
85 enum ocfs2_replay_state {
86         REPLAY_UNNEEDED = 0,    /* Replay is not needed, so ignore this map */
87         REPLAY_NEEDED,          /* Replay slots marked in rm_replay_slots */
88         REPLAY_DONE             /* Replay was already queued */
89 };
90
91 struct ocfs2_replay_map {
92         unsigned int rm_slots;
93         enum ocfs2_replay_state rm_state;
94         unsigned char rm_replay_slots[];
95 };
96
97 static void ocfs2_replay_map_set_state(struct ocfs2_super *osb, int state)
98 {
99         if (!osb->replay_map)
100                 return;
101
102         /* If we've already queued the replay, we don't have any more to do */
103         if (osb->replay_map->rm_state == REPLAY_DONE)
104                 return;
105
106         osb->replay_map->rm_state = state;
107 }
108
109 int ocfs2_compute_replay_slots(struct ocfs2_super *osb)
110 {
111         struct ocfs2_replay_map *replay_map;
112         int i, node_num;
113
114         /* If replay map is already set, we don't do it again */
115         if (osb->replay_map)
116                 return 0;
117
118         replay_map = kzalloc(sizeof(struct ocfs2_replay_map) +
119                              (osb->max_slots * sizeof(char)), GFP_KERNEL);
120
121         if (!replay_map) {
122                 mlog_errno(-ENOMEM);
123                 return -ENOMEM;
124         }
125
126         spin_lock(&osb->osb_lock);
127
128         replay_map->rm_slots = osb->max_slots;
129         replay_map->rm_state = REPLAY_UNNEEDED;
130
131         /* set rm_replay_slots for offline slot(s) */
132         for (i = 0; i < replay_map->rm_slots; i++) {
133                 if (ocfs2_slot_to_node_num_locked(osb, i, &node_num) == -ENOENT)
134                         replay_map->rm_replay_slots[i] = 1;
135         }
136
137         osb->replay_map = replay_map;
138         spin_unlock(&osb->osb_lock);
139         return 0;
140 }
141
142 static void ocfs2_queue_replay_slots(struct ocfs2_super *osb,
143                 enum ocfs2_orphan_reco_type orphan_reco_type)
144 {
145         struct ocfs2_replay_map *replay_map = osb->replay_map;
146         int i;
147
148         if (!replay_map)
149                 return;
150
151         if (replay_map->rm_state != REPLAY_NEEDED)
152                 return;
153
154         for (i = 0; i < replay_map->rm_slots; i++)
155                 if (replay_map->rm_replay_slots[i])
156                         ocfs2_queue_recovery_completion(osb->journal, i, NULL,
157                                                         NULL, NULL,
158                                                         orphan_reco_type);
159         replay_map->rm_state = REPLAY_DONE;
160 }
161
162 static void ocfs2_free_replay_slots(struct ocfs2_super *osb)
163 {
164         struct ocfs2_replay_map *replay_map = osb->replay_map;
165
166         if (!osb->replay_map)
167                 return;
168
169         kfree(replay_map);
170         osb->replay_map = NULL;
171 }
172
173 int ocfs2_recovery_init(struct ocfs2_super *osb)
174 {
175         struct ocfs2_recovery_map *rm;
176
177         mutex_init(&osb->recovery_lock);
178         osb->disable_recovery = 0;
179         osb->recovery_thread_task = NULL;
180         init_waitqueue_head(&osb->recovery_event);
181
182         rm = kzalloc(sizeof(struct ocfs2_recovery_map) +
183                      osb->max_slots * sizeof(unsigned int),
184                      GFP_KERNEL);
185         if (!rm) {
186                 mlog_errno(-ENOMEM);
187                 return -ENOMEM;
188         }
189
190         rm->rm_entries = (unsigned int *)((char *)rm +
191                                           sizeof(struct ocfs2_recovery_map));
192         osb->recovery_map = rm;
193
194         return 0;
195 }
196
197 /* we can't grab the goofy sem lock from inside wait_event, so we use
198  * memory barriers to make sure that we'll see the null task before
199  * being woken up */
200 static int ocfs2_recovery_thread_running(struct ocfs2_super *osb)
201 {
202         mb();
203         return osb->recovery_thread_task != NULL;
204 }
205
206 void ocfs2_recovery_exit(struct ocfs2_super *osb)
207 {
208         struct ocfs2_recovery_map *rm;
209
210         /* disable any new recovery threads and wait for any currently
211          * running ones to exit. Do this before setting the vol_state. */
212         mutex_lock(&osb->recovery_lock);
213         osb->disable_recovery = 1;
214         mutex_unlock(&osb->recovery_lock);
215         wait_event(osb->recovery_event, !ocfs2_recovery_thread_running(osb));
216
217         /* At this point, we know that no more recovery threads can be
218          * launched, so wait for any recovery completion work to
219          * complete. */
220         if (osb->ocfs2_wq)
221                 flush_workqueue(osb->ocfs2_wq);
222
223         /*
224          * Now that recovery is shut down, and the osb is about to be
225          * freed,  the osb_lock is not taken here.
226          */
227         rm = osb->recovery_map;
228         /* XXX: Should we bug if there are dirty entries? */
229
230         kfree(rm);
231 }
232
233 static int __ocfs2_recovery_map_test(struct ocfs2_super *osb,
234                                      unsigned int node_num)
235 {
236         int i;
237         struct ocfs2_recovery_map *rm = osb->recovery_map;
238
239         assert_spin_locked(&osb->osb_lock);
240
241         for (i = 0; i < rm->rm_used; i++) {
242                 if (rm->rm_entries[i] == node_num)
243                         return 1;
244         }
245
246         return 0;
247 }
248
249 /* Behaves like test-and-set.  Returns the previous value */
250 static int ocfs2_recovery_map_set(struct ocfs2_super *osb,
251                                   unsigned int node_num)
252 {
253         struct ocfs2_recovery_map *rm = osb->recovery_map;
254
255         spin_lock(&osb->osb_lock);
256         if (__ocfs2_recovery_map_test(osb, node_num)) {
257                 spin_unlock(&osb->osb_lock);
258                 return 1;
259         }
260
261         /* XXX: Can this be exploited? Not from o2dlm... */
262         BUG_ON(rm->rm_used >= osb->max_slots);
263
264         rm->rm_entries[rm->rm_used] = node_num;
265         rm->rm_used++;
266         spin_unlock(&osb->osb_lock);
267
268         return 0;
269 }
270
271 static void ocfs2_recovery_map_clear(struct ocfs2_super *osb,
272                                      unsigned int node_num)
273 {
274         int i;
275         struct ocfs2_recovery_map *rm = osb->recovery_map;
276
277         spin_lock(&osb->osb_lock);
278
279         for (i = 0; i < rm->rm_used; i++) {
280                 if (rm->rm_entries[i] == node_num)
281                         break;
282         }
283
284         if (i < rm->rm_used) {
285                 /* XXX: be careful with the pointer math */
286                 memmove(&(rm->rm_entries[i]), &(rm->rm_entries[i + 1]),
287                         (rm->rm_used - i - 1) * sizeof(unsigned int));
288                 rm->rm_used--;
289         }
290
291         spin_unlock(&osb->osb_lock);
292 }
293
294 static int ocfs2_commit_cache(struct ocfs2_super *osb)
295 {
296         int status = 0;
297         unsigned int flushed;
298         struct ocfs2_journal *journal = NULL;
299
300         journal = osb->journal;
301
302         /* Flush all pending commits and checkpoint the journal. */
303         down_write(&journal->j_trans_barrier);
304
305         flushed = atomic_read(&journal->j_num_trans);
306         trace_ocfs2_commit_cache_begin(flushed);
307         if (flushed == 0) {
308                 up_write(&journal->j_trans_barrier);
309                 goto finally;
310         }
311
312         jbd2_journal_lock_updates(journal->j_journal);
313         status = jbd2_journal_flush(journal->j_journal);
314         jbd2_journal_unlock_updates(journal->j_journal);
315         if (status < 0) {
316                 up_write(&journal->j_trans_barrier);
317                 mlog_errno(status);
318                 goto finally;
319         }
320
321         ocfs2_inc_trans_id(journal);
322
323         flushed = atomic_read(&journal->j_num_trans);
324         atomic_set(&journal->j_num_trans, 0);
325         up_write(&journal->j_trans_barrier);
326
327         trace_ocfs2_commit_cache_end(journal->j_trans_id, flushed);
328
329         ocfs2_wake_downconvert_thread(osb);
330         wake_up(&journal->j_checkpointed);
331 finally:
332         return status;
333 }
334
335 handle_t *ocfs2_start_trans(struct ocfs2_super *osb, int max_buffs)
336 {
337         journal_t *journal = osb->journal->j_journal;
338         handle_t *handle;
339
340         BUG_ON(!osb || !osb->journal->j_journal);
341
342         if (ocfs2_is_hard_readonly(osb))
343                 return ERR_PTR(-EROFS);
344
345         BUG_ON(osb->journal->j_state == OCFS2_JOURNAL_FREE);
346         BUG_ON(max_buffs <= 0);
347
348         /* Nested transaction? Just return the handle... */
349         if (journal_current_handle())
350                 return jbd2_journal_start(journal, max_buffs);
351
352         sb_start_intwrite(osb->sb);
353
354         down_read(&osb->journal->j_trans_barrier);
355
356         handle = jbd2_journal_start(journal, max_buffs);
357         if (IS_ERR(handle)) {
358                 up_read(&osb->journal->j_trans_barrier);
359                 sb_end_intwrite(osb->sb);
360
361                 mlog_errno(PTR_ERR(handle));
362
363                 if (is_journal_aborted(journal)) {
364                         ocfs2_abort(osb->sb, "Detected aborted journal\n");
365                         handle = ERR_PTR(-EROFS);
366                 }
367         } else {
368                 if (!ocfs2_mount_local(osb))
369                         atomic_inc(&(osb->journal->j_num_trans));
370         }
371
372         return handle;
373 }
374
375 int ocfs2_commit_trans(struct ocfs2_super *osb,
376                        handle_t *handle)
377 {
378         int ret, nested;
379         struct ocfs2_journal *journal = osb->journal;
380
381         BUG_ON(!handle);
382
383         nested = handle->h_ref > 1;
384         ret = jbd2_journal_stop(handle);
385         if (ret < 0)
386                 mlog_errno(ret);
387
388         if (!nested) {
389                 up_read(&journal->j_trans_barrier);
390                 sb_end_intwrite(osb->sb);
391         }
392
393         return ret;
394 }
395
396 /*
397  * 'nblocks' is what you want to add to the current transaction.
398  *
399  * This might call jbd2_journal_restart() which will commit dirty buffers
400  * and then restart the transaction. Before calling
401  * ocfs2_extend_trans(), any changed blocks should have been
402  * dirtied. After calling it, all blocks which need to be changed must
403  * go through another set of journal_access/journal_dirty calls.
404  *
405  * WARNING: This will not release any semaphores or disk locks taken
406  * during the transaction, so make sure they were taken *before*
407  * start_trans or we'll have ordering deadlocks.
408  *
409  * WARNING2: Note that we do *not* drop j_trans_barrier here. This is
410  * good because transaction ids haven't yet been recorded on the
411  * cluster locks associated with this handle.
412  */
413 int ocfs2_extend_trans(handle_t *handle, int nblocks)
414 {
415         int status, old_nblocks;
416
417         BUG_ON(!handle);
418         BUG_ON(nblocks < 0);
419
420         if (!nblocks)
421                 return 0;
422
423         old_nblocks = jbd2_handle_buffer_credits(handle);
424
425         trace_ocfs2_extend_trans(old_nblocks, nblocks);
426
427 #ifdef CONFIG_OCFS2_DEBUG_FS
428         status = 1;
429 #else
430         status = jbd2_journal_extend(handle, nblocks, 0);
431         if (status < 0) {
432                 mlog_errno(status);
433                 goto bail;
434         }
435 #endif
436
437         if (status > 0) {
438                 trace_ocfs2_extend_trans_restart(old_nblocks + nblocks);
439                 status = jbd2_journal_restart(handle,
440                                               old_nblocks + nblocks);
441                 if (status < 0) {
442                         mlog_errno(status);
443                         goto bail;
444                 }
445         }
446
447         status = 0;
448 bail:
449         return status;
450 }
451
452 /*
453  * If we have fewer than thresh credits, extend by OCFS2_MAX_TRANS_DATA.
454  * If that fails, restart the transaction & regain write access for the
455  * buffer head which is used for metadata modifications.
456  * Taken from Ext4: extend_or_restart_transaction()
457  */
458 int ocfs2_allocate_extend_trans(handle_t *handle, int thresh)
459 {
460         int status, old_nblks;
461
462         BUG_ON(!handle);
463
464         old_nblks = jbd2_handle_buffer_credits(handle);
465         trace_ocfs2_allocate_extend_trans(old_nblks, thresh);
466
467         if (old_nblks < thresh)
468                 return 0;
469
470         status = jbd2_journal_extend(handle, OCFS2_MAX_TRANS_DATA, 0);
471         if (status < 0) {
472                 mlog_errno(status);
473                 goto bail;
474         }
475
476         if (status > 0) {
477                 status = jbd2_journal_restart(handle, OCFS2_MAX_TRANS_DATA);
478                 if (status < 0)
479                         mlog_errno(status);
480         }
481
482 bail:
483         return status;
484 }
485
486
487 struct ocfs2_triggers {
488         struct jbd2_buffer_trigger_type ot_triggers;
489         int                             ot_offset;
490 };
491
492 static inline struct ocfs2_triggers *to_ocfs2_trigger(struct jbd2_buffer_trigger_type *triggers)
493 {
494         return container_of(triggers, struct ocfs2_triggers, ot_triggers);
495 }
496
497 static void ocfs2_frozen_trigger(struct jbd2_buffer_trigger_type *triggers,
498                                  struct buffer_head *bh,
499                                  void *data, size_t size)
500 {
501         struct ocfs2_triggers *ot = to_ocfs2_trigger(triggers);
502
503         /*
504          * We aren't guaranteed to have the superblock here, so we
505          * must unconditionally compute the ecc data.
506          * __ocfs2_journal_access() will only set the triggers if
507          * metaecc is enabled.
508          */
509         ocfs2_block_check_compute(data, size, data + ot->ot_offset);
510 }
511
512 /*
513  * Quota blocks have their own trigger because the struct ocfs2_block_check
514  * offset depends on the blocksize.
515  */
516 static void ocfs2_dq_frozen_trigger(struct jbd2_buffer_trigger_type *triggers,
517                                  struct buffer_head *bh,
518                                  void *data, size_t size)
519 {
520         struct ocfs2_disk_dqtrailer *dqt =
521                 ocfs2_block_dqtrailer(size, data);
522
523         /*
524          * We aren't guaranteed to have the superblock here, so we
525          * must unconditionally compute the ecc data.
526          * __ocfs2_journal_access() will only set the triggers if
527          * metaecc is enabled.
528          */
529         ocfs2_block_check_compute(data, size, &dqt->dq_check);
530 }
531
532 /*
533  * Directory blocks also have their own trigger because the
534  * struct ocfs2_block_check offset depends on the blocksize.
535  */
536 static void ocfs2_db_frozen_trigger(struct jbd2_buffer_trigger_type *triggers,
537                                  struct buffer_head *bh,
538                                  void *data, size_t size)
539 {
540         struct ocfs2_dir_block_trailer *trailer =
541                 ocfs2_dir_trailer_from_size(size, data);
542
543         /*
544          * We aren't guaranteed to have the superblock here, so we
545          * must unconditionally compute the ecc data.
546          * __ocfs2_journal_access() will only set the triggers if
547          * metaecc is enabled.
548          */
549         ocfs2_block_check_compute(data, size, &trailer->db_check);
550 }
551
552 static void ocfs2_abort_trigger(struct jbd2_buffer_trigger_type *triggers,
553                                 struct buffer_head *bh)
554 {
555         mlog(ML_ERROR,
556              "ocfs2_abort_trigger called by JBD2.  bh = 0x%lx, "
557              "bh->b_blocknr = %llu\n",
558              (unsigned long)bh,
559              (unsigned long long)bh->b_blocknr);
560
561         ocfs2_error(bh->b_bdev->bd_super,
562                     "JBD2 has aborted our journal, ocfs2 cannot continue\n");
563 }
564
565 static struct ocfs2_triggers di_triggers = {
566         .ot_triggers = {
567                 .t_frozen = ocfs2_frozen_trigger,
568                 .t_abort = ocfs2_abort_trigger,
569         },
570         .ot_offset      = offsetof(struct ocfs2_dinode, i_check),
571 };
572
573 static struct ocfs2_triggers eb_triggers = {
574         .ot_triggers = {
575                 .t_frozen = ocfs2_frozen_trigger,
576                 .t_abort = ocfs2_abort_trigger,
577         },
578         .ot_offset      = offsetof(struct ocfs2_extent_block, h_check),
579 };
580
581 static struct ocfs2_triggers rb_triggers = {
582         .ot_triggers = {
583                 .t_frozen = ocfs2_frozen_trigger,
584                 .t_abort = ocfs2_abort_trigger,
585         },
586         .ot_offset      = offsetof(struct ocfs2_refcount_block, rf_check),
587 };
588
589 static struct ocfs2_triggers gd_triggers = {
590         .ot_triggers = {
591                 .t_frozen = ocfs2_frozen_trigger,
592                 .t_abort = ocfs2_abort_trigger,
593         },
594         .ot_offset      = offsetof(struct ocfs2_group_desc, bg_check),
595 };
596
597 static struct ocfs2_triggers db_triggers = {
598         .ot_triggers = {
599                 .t_frozen = ocfs2_db_frozen_trigger,
600                 .t_abort = ocfs2_abort_trigger,
601         },
602 };
603
604 static struct ocfs2_triggers xb_triggers = {
605         .ot_triggers = {
606                 .t_frozen = ocfs2_frozen_trigger,
607                 .t_abort = ocfs2_abort_trigger,
608         },
609         .ot_offset      = offsetof(struct ocfs2_xattr_block, xb_check),
610 };
611
612 static struct ocfs2_triggers dq_triggers = {
613         .ot_triggers = {
614                 .t_frozen = ocfs2_dq_frozen_trigger,
615                 .t_abort = ocfs2_abort_trigger,
616         },
617 };
618
619 static struct ocfs2_triggers dr_triggers = {
620         .ot_triggers = {
621                 .t_frozen = ocfs2_frozen_trigger,
622                 .t_abort = ocfs2_abort_trigger,
623         },
624         .ot_offset      = offsetof(struct ocfs2_dx_root_block, dr_check),
625 };
626
627 static struct ocfs2_triggers dl_triggers = {
628         .ot_triggers = {
629                 .t_frozen = ocfs2_frozen_trigger,
630                 .t_abort = ocfs2_abort_trigger,
631         },
632         .ot_offset      = offsetof(struct ocfs2_dx_leaf, dl_check),
633 };
634
635 static int __ocfs2_journal_access(handle_t *handle,
636                                   struct ocfs2_caching_info *ci,
637                                   struct buffer_head *bh,
638                                   struct ocfs2_triggers *triggers,
639                                   int type)
640 {
641         int status;
642         struct ocfs2_super *osb =
643                 OCFS2_SB(ocfs2_metadata_cache_get_super(ci));
644
645         BUG_ON(!ci || !ci->ci_ops);
646         BUG_ON(!handle);
647         BUG_ON(!bh);
648
649         trace_ocfs2_journal_access(
650                 (unsigned long long)ocfs2_metadata_cache_owner(ci),
651                 (unsigned long long)bh->b_blocknr, type, bh->b_size);
652
653         /* we can safely remove this assertion after testing. */
654         if (!buffer_uptodate(bh)) {
655                 mlog(ML_ERROR, "giving me a buffer that's not uptodate!\n");
656                 mlog(ML_ERROR, "b_blocknr=%llu, b_state=0x%lx\n",
657                      (unsigned long long)bh->b_blocknr, bh->b_state);
658
659                 lock_buffer(bh);
660                 /*
661                  * A previous transaction with a couple of buffer heads fail
662                  * to checkpoint, so all the bhs are marked as BH_Write_EIO.
663                  * For current transaction, the bh is just among those error
664                  * bhs which previous transaction handle. We can't just clear
665                  * its BH_Write_EIO and reuse directly, since other bhs are
666                  * not written to disk yet and that will cause metadata
667                  * inconsistency. So we should set fs read-only to avoid
668                  * further damage.
669                  */
670                 if (buffer_write_io_error(bh) && !buffer_uptodate(bh)) {
671                         unlock_buffer(bh);
672                         return ocfs2_error(osb->sb, "A previous attempt to "
673                                         "write this buffer head failed\n");
674                 }
675                 unlock_buffer(bh);
676         }
677
678         /* Set the current transaction information on the ci so
679          * that the locking code knows whether it can drop it's locks
680          * on this ci or not. We're protected from the commit
681          * thread updating the current transaction id until
682          * ocfs2_commit_trans() because ocfs2_start_trans() took
683          * j_trans_barrier for us. */
684         ocfs2_set_ci_lock_trans(osb->journal, ci);
685
686         ocfs2_metadata_cache_io_lock(ci);
687         switch (type) {
688         case OCFS2_JOURNAL_ACCESS_CREATE:
689         case OCFS2_JOURNAL_ACCESS_WRITE:
690                 status = jbd2_journal_get_write_access(handle, bh);
691                 break;
692
693         case OCFS2_JOURNAL_ACCESS_UNDO:
694                 status = jbd2_journal_get_undo_access(handle, bh);
695                 break;
696
697         default:
698                 status = -EINVAL;
699                 mlog(ML_ERROR, "Unknown access type!\n");
700         }
701         if (!status && ocfs2_meta_ecc(osb) && triggers)
702                 jbd2_journal_set_triggers(bh, &triggers->ot_triggers);
703         ocfs2_metadata_cache_io_unlock(ci);
704
705         if (status < 0)
706                 mlog(ML_ERROR, "Error %d getting %d access to buffer!\n",
707                      status, type);
708
709         return status;
710 }
711
712 int ocfs2_journal_access_di(handle_t *handle, struct ocfs2_caching_info *ci,
713                             struct buffer_head *bh, int type)
714 {
715         return __ocfs2_journal_access(handle, ci, bh, &di_triggers, type);
716 }
717
718 int ocfs2_journal_access_eb(handle_t *handle, struct ocfs2_caching_info *ci,
719                             struct buffer_head *bh, int type)
720 {
721         return __ocfs2_journal_access(handle, ci, bh, &eb_triggers, type);
722 }
723
724 int ocfs2_journal_access_rb(handle_t *handle, struct ocfs2_caching_info *ci,
725                             struct buffer_head *bh, int type)
726 {
727         return __ocfs2_journal_access(handle, ci, bh, &rb_triggers,
728                                       type);
729 }
730
731 int ocfs2_journal_access_gd(handle_t *handle, struct ocfs2_caching_info *ci,
732                             struct buffer_head *bh, int type)
733 {
734         return __ocfs2_journal_access(handle, ci, bh, &gd_triggers, type);
735 }
736
737 int ocfs2_journal_access_db(handle_t *handle, struct ocfs2_caching_info *ci,
738                             struct buffer_head *bh, int type)
739 {
740         return __ocfs2_journal_access(handle, ci, bh, &db_triggers, type);
741 }
742
743 int ocfs2_journal_access_xb(handle_t *handle, struct ocfs2_caching_info *ci,
744                             struct buffer_head *bh, int type)
745 {
746         return __ocfs2_journal_access(handle, ci, bh, &xb_triggers, type);
747 }
748
749 int ocfs2_journal_access_dq(handle_t *handle, struct ocfs2_caching_info *ci,
750                             struct buffer_head *bh, int type)
751 {
752         return __ocfs2_journal_access(handle, ci, bh, &dq_triggers, type);
753 }
754
755 int ocfs2_journal_access_dr(handle_t *handle, struct ocfs2_caching_info *ci,
756                             struct buffer_head *bh, int type)
757 {
758         return __ocfs2_journal_access(handle, ci, bh, &dr_triggers, type);
759 }
760
761 int ocfs2_journal_access_dl(handle_t *handle, struct ocfs2_caching_info *ci,
762                             struct buffer_head *bh, int type)
763 {
764         return __ocfs2_journal_access(handle, ci, bh, &dl_triggers, type);
765 }
766
767 int ocfs2_journal_access(handle_t *handle, struct ocfs2_caching_info *ci,
768                          struct buffer_head *bh, int type)
769 {
770         return __ocfs2_journal_access(handle, ci, bh, NULL, type);
771 }
772
773 void ocfs2_journal_dirty(handle_t *handle, struct buffer_head *bh)
774 {
775         int status;
776
777         trace_ocfs2_journal_dirty((unsigned long long)bh->b_blocknr);
778
779         status = jbd2_journal_dirty_metadata(handle, bh);
780         if (status) {
781                 mlog_errno(status);
782                 if (!is_handle_aborted(handle)) {
783                         journal_t *journal = handle->h_transaction->t_journal;
784                         struct super_block *sb = bh->b_bdev->bd_super;
785
786                         mlog(ML_ERROR, "jbd2_journal_dirty_metadata failed. "
787                                         "Aborting transaction and journal.\n");
788                         handle->h_err = status;
789                         jbd2_journal_abort_handle(handle);
790                         jbd2_journal_abort(journal, status);
791                         ocfs2_abort(sb, "Journal already aborted.\n");
792                 }
793         }
794 }
795
796 #define OCFS2_DEFAULT_COMMIT_INTERVAL   (HZ * JBD2_DEFAULT_MAX_COMMIT_AGE)
797
798 void ocfs2_set_journal_params(struct ocfs2_super *osb)
799 {
800         journal_t *journal = osb->journal->j_journal;
801         unsigned long commit_interval = OCFS2_DEFAULT_COMMIT_INTERVAL;
802
803         if (osb->osb_commit_interval)
804                 commit_interval = osb->osb_commit_interval;
805
806         write_lock(&journal->j_state_lock);
807         journal->j_commit_interval = commit_interval;
808         if (osb->s_mount_opt & OCFS2_MOUNT_BARRIER)
809                 journal->j_flags |= JBD2_BARRIER;
810         else
811                 journal->j_flags &= ~JBD2_BARRIER;
812         write_unlock(&journal->j_state_lock);
813 }
814
815 int ocfs2_journal_init(struct ocfs2_journal *journal, int *dirty)
816 {
817         int status = -1;
818         struct inode *inode = NULL; /* the journal inode */
819         journal_t *j_journal = NULL;
820         struct ocfs2_dinode *di = NULL;
821         struct buffer_head *bh = NULL;
822         struct ocfs2_super *osb;
823         int inode_lock = 0;
824
825         BUG_ON(!journal);
826
827         osb = journal->j_osb;
828
829         /* already have the inode for our journal */
830         inode = ocfs2_get_system_file_inode(osb, JOURNAL_SYSTEM_INODE,
831                                             osb->slot_num);
832         if (inode == NULL) {
833                 status = -EACCES;
834                 mlog_errno(status);
835                 goto done;
836         }
837         if (is_bad_inode(inode)) {
838                 mlog(ML_ERROR, "access error (bad inode)\n");
839                 iput(inode);
840                 inode = NULL;
841                 status = -EACCES;
842                 goto done;
843         }
844
845         SET_INODE_JOURNAL(inode);
846         OCFS2_I(inode)->ip_open_count++;
847
848         /* Skip recovery waits here - journal inode metadata never
849          * changes in a live cluster so it can be considered an
850          * exception to the rule. */
851         status = ocfs2_inode_lock_full(inode, &bh, 1, OCFS2_META_LOCK_RECOVERY);
852         if (status < 0) {
853                 if (status != -ERESTARTSYS)
854                         mlog(ML_ERROR, "Could not get lock on journal!\n");
855                 goto done;
856         }
857
858         inode_lock = 1;
859         di = (struct ocfs2_dinode *)bh->b_data;
860
861         if (i_size_read(inode) <  OCFS2_MIN_JOURNAL_SIZE) {
862                 mlog(ML_ERROR, "Journal file size (%lld) is too small!\n",
863                      i_size_read(inode));
864                 status = -EINVAL;
865                 goto done;
866         }
867
868         trace_ocfs2_journal_init(i_size_read(inode),
869                                  (unsigned long long)inode->i_blocks,
870                                  OCFS2_I(inode)->ip_clusters);
871
872         /* call the kernels journal init function now */
873         j_journal = jbd2_journal_init_inode(inode);
874         if (j_journal == NULL) {
875                 mlog(ML_ERROR, "Linux journal layer error\n");
876                 status = -EINVAL;
877                 goto done;
878         }
879
880         trace_ocfs2_journal_init_maxlen(j_journal->j_total_len);
881
882         *dirty = (le32_to_cpu(di->id1.journal1.ij_flags) &
883                   OCFS2_JOURNAL_DIRTY_FL);
884
885         journal->j_journal = j_journal;
886         journal->j_journal->j_submit_inode_data_buffers =
887                 jbd2_journal_submit_inode_data_buffers;
888         journal->j_journal->j_finish_inode_data_buffers =
889                 jbd2_journal_finish_inode_data_buffers;
890         journal->j_inode = inode;
891         journal->j_bh = bh;
892
893         ocfs2_set_journal_params(osb);
894
895         journal->j_state = OCFS2_JOURNAL_LOADED;
896
897         status = 0;
898 done:
899         if (status < 0) {
900                 if (inode_lock)
901                         ocfs2_inode_unlock(inode, 1);
902                 brelse(bh);
903                 if (inode) {
904                         OCFS2_I(inode)->ip_open_count--;
905                         iput(inode);
906                 }
907         }
908
909         return status;
910 }
911
912 static void ocfs2_bump_recovery_generation(struct ocfs2_dinode *di)
913 {
914         le32_add_cpu(&(di->id1.journal1.ij_recovery_generation), 1);
915 }
916
917 static u32 ocfs2_get_recovery_generation(struct ocfs2_dinode *di)
918 {
919         return le32_to_cpu(di->id1.journal1.ij_recovery_generation);
920 }
921
922 static int ocfs2_journal_toggle_dirty(struct ocfs2_super *osb,
923                                       int dirty, int replayed)
924 {
925         int status;
926         unsigned int flags;
927         struct ocfs2_journal *journal = osb->journal;
928         struct buffer_head *bh = journal->j_bh;
929         struct ocfs2_dinode *fe;
930
931         fe = (struct ocfs2_dinode *)bh->b_data;
932
933         /* The journal bh on the osb always comes from ocfs2_journal_init()
934          * and was validated there inside ocfs2_inode_lock_full().  It's a
935          * code bug if we mess it up. */
936         BUG_ON(!OCFS2_IS_VALID_DINODE(fe));
937
938         flags = le32_to_cpu(fe->id1.journal1.ij_flags);
939         if (dirty)
940                 flags |= OCFS2_JOURNAL_DIRTY_FL;
941         else
942                 flags &= ~OCFS2_JOURNAL_DIRTY_FL;
943         fe->id1.journal1.ij_flags = cpu_to_le32(flags);
944
945         if (replayed)
946                 ocfs2_bump_recovery_generation(fe);
947
948         ocfs2_compute_meta_ecc(osb->sb, bh->b_data, &fe->i_check);
949         status = ocfs2_write_block(osb, bh, INODE_CACHE(journal->j_inode));
950         if (status < 0)
951                 mlog_errno(status);
952
953         return status;
954 }
955
956 /*
957  * If the journal has been kmalloc'd it needs to be freed after this
958  * call.
959  */
960 void ocfs2_journal_shutdown(struct ocfs2_super *osb)
961 {
962         struct ocfs2_journal *journal = NULL;
963         int status = 0;
964         struct inode *inode = NULL;
965         int num_running_trans = 0;
966
967         BUG_ON(!osb);
968
969         journal = osb->journal;
970         if (!journal)
971                 goto done;
972
973         inode = journal->j_inode;
974
975         if (journal->j_state != OCFS2_JOURNAL_LOADED)
976                 goto done;
977
978         /* need to inc inode use count - jbd2_journal_destroy will iput. */
979         if (!igrab(inode))
980                 BUG();
981
982         num_running_trans = atomic_read(&(osb->journal->j_num_trans));
983         trace_ocfs2_journal_shutdown(num_running_trans);
984
985         /* Do a commit_cache here. It will flush our journal, *and*
986          * release any locks that are still held.
987          * set the SHUTDOWN flag and release the trans lock.
988          * the commit thread will take the trans lock for us below. */
989         journal->j_state = OCFS2_JOURNAL_IN_SHUTDOWN;
990
991         /* The OCFS2_JOURNAL_IN_SHUTDOWN will signal to commit_cache to not
992          * drop the trans_lock (which we want to hold until we
993          * completely destroy the journal. */
994         if (osb->commit_task) {
995                 /* Wait for the commit thread */
996                 trace_ocfs2_journal_shutdown_wait(osb->commit_task);
997                 kthread_stop(osb->commit_task);
998                 osb->commit_task = NULL;
999         }
1000
1001         BUG_ON(atomic_read(&(osb->journal->j_num_trans)) != 0);
1002
1003         if (ocfs2_mount_local(osb)) {
1004                 jbd2_journal_lock_updates(journal->j_journal);
1005                 status = jbd2_journal_flush(journal->j_journal);
1006                 jbd2_journal_unlock_updates(journal->j_journal);
1007                 if (status < 0)
1008                         mlog_errno(status);
1009         }
1010
1011         /* Shutdown the kernel journal system */
1012         if (!jbd2_journal_destroy(journal->j_journal) && !status) {
1013                 /*
1014                  * Do not toggle if flush was unsuccessful otherwise
1015                  * will leave dirty metadata in a "clean" journal
1016                  */
1017                 status = ocfs2_journal_toggle_dirty(osb, 0, 0);
1018                 if (status < 0)
1019                         mlog_errno(status);
1020         }
1021         journal->j_journal = NULL;
1022
1023         OCFS2_I(inode)->ip_open_count--;
1024
1025         /* unlock our journal */
1026         ocfs2_inode_unlock(inode, 1);
1027
1028         brelse(journal->j_bh);
1029         journal->j_bh = NULL;
1030
1031         journal->j_state = OCFS2_JOURNAL_FREE;
1032
1033 //      up_write(&journal->j_trans_barrier);
1034 done:
1035         iput(inode);
1036 }
1037
1038 static void ocfs2_clear_journal_error(struct super_block *sb,
1039                                       journal_t *journal,
1040                                       int slot)
1041 {
1042         int olderr;
1043
1044         olderr = jbd2_journal_errno(journal);
1045         if (olderr) {
1046                 mlog(ML_ERROR, "File system error %d recorded in "
1047                      "journal %u.\n", olderr, slot);
1048                 mlog(ML_ERROR, "File system on device %s needs checking.\n",
1049                      sb->s_id);
1050
1051                 jbd2_journal_ack_err(journal);
1052                 jbd2_journal_clear_err(journal);
1053         }
1054 }
1055
1056 int ocfs2_journal_load(struct ocfs2_journal *journal, int local, int replayed)
1057 {
1058         int status = 0;
1059         struct ocfs2_super *osb;
1060
1061         BUG_ON(!journal);
1062
1063         osb = journal->j_osb;
1064
1065         status = jbd2_journal_load(journal->j_journal);
1066         if (status < 0) {
1067                 mlog(ML_ERROR, "Failed to load journal!\n");
1068                 goto done;
1069         }
1070
1071         ocfs2_clear_journal_error(osb->sb, journal->j_journal, osb->slot_num);
1072
1073         if (replayed) {
1074                 jbd2_journal_lock_updates(journal->j_journal);
1075                 status = jbd2_journal_flush(journal->j_journal);
1076                 jbd2_journal_unlock_updates(journal->j_journal);
1077                 if (status < 0)
1078                         mlog_errno(status);
1079         }
1080
1081         status = ocfs2_journal_toggle_dirty(osb, 1, replayed);
1082         if (status < 0) {
1083                 mlog_errno(status);
1084                 goto done;
1085         }
1086
1087         /* Launch the commit thread */
1088         if (!local) {
1089                 osb->commit_task = kthread_run(ocfs2_commit_thread, osb,
1090                                 "ocfs2cmt-%s", osb->uuid_str);
1091                 if (IS_ERR(osb->commit_task)) {
1092                         status = PTR_ERR(osb->commit_task);
1093                         osb->commit_task = NULL;
1094                         mlog(ML_ERROR, "unable to launch ocfs2commit thread, "
1095                              "error=%d", status);
1096                         goto done;
1097                 }
1098         } else
1099                 osb->commit_task = NULL;
1100
1101 done:
1102         return status;
1103 }
1104
1105
1106 /* 'full' flag tells us whether we clear out all blocks or if we just
1107  * mark the journal clean */
1108 int ocfs2_journal_wipe(struct ocfs2_journal *journal, int full)
1109 {
1110         int status;
1111
1112         BUG_ON(!journal);
1113
1114         status = jbd2_journal_wipe(journal->j_journal, full);
1115         if (status < 0) {
1116                 mlog_errno(status);
1117                 goto bail;
1118         }
1119
1120         status = ocfs2_journal_toggle_dirty(journal->j_osb, 0, 0);
1121         if (status < 0)
1122                 mlog_errno(status);
1123
1124 bail:
1125         return status;
1126 }
1127
1128 static int ocfs2_recovery_completed(struct ocfs2_super *osb)
1129 {
1130         int empty;
1131         struct ocfs2_recovery_map *rm = osb->recovery_map;
1132
1133         spin_lock(&osb->osb_lock);
1134         empty = (rm->rm_used == 0);
1135         spin_unlock(&osb->osb_lock);
1136
1137         return empty;
1138 }
1139
1140 void ocfs2_wait_for_recovery(struct ocfs2_super *osb)
1141 {
1142         wait_event(osb->recovery_event, ocfs2_recovery_completed(osb));
1143 }
1144
1145 /*
1146  * JBD Might read a cached version of another nodes journal file. We
1147  * don't want this as this file changes often and we get no
1148  * notification on those changes. The only way to be sure that we've
1149  * got the most up to date version of those blocks then is to force
1150  * read them off disk. Just searching through the buffer cache won't
1151  * work as there may be pages backing this file which are still marked
1152  * up to date. We know things can't change on this file underneath us
1153  * as we have the lock by now :)
1154  */
1155 static int ocfs2_force_read_journal(struct inode *inode)
1156 {
1157         int status = 0;
1158         int i;
1159         u64 v_blkno, p_blkno, p_blocks, num_blocks;
1160         struct buffer_head *bh = NULL;
1161         struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
1162
1163         num_blocks = ocfs2_blocks_for_bytes(inode->i_sb, i_size_read(inode));
1164         v_blkno = 0;
1165         while (v_blkno < num_blocks) {
1166                 status = ocfs2_extent_map_get_blocks(inode, v_blkno,
1167                                                      &p_blkno, &p_blocks, NULL);
1168                 if (status < 0) {
1169                         mlog_errno(status);
1170                         goto bail;
1171                 }
1172
1173                 for (i = 0; i < p_blocks; i++, p_blkno++) {
1174                         bh = __find_get_block(osb->sb->s_bdev, p_blkno,
1175                                         osb->sb->s_blocksize);
1176                         /* block not cached. */
1177                         if (!bh)
1178                                 continue;
1179
1180                         brelse(bh);
1181                         bh = NULL;
1182                         /* We are reading journal data which should not
1183                          * be put in the uptodate cache.
1184                          */
1185                         status = ocfs2_read_blocks_sync(osb, p_blkno, 1, &bh);
1186                         if (status < 0) {
1187                                 mlog_errno(status);
1188                                 goto bail;
1189                         }
1190
1191                         brelse(bh);
1192                         bh = NULL;
1193                 }
1194
1195                 v_blkno += p_blocks;
1196         }
1197
1198 bail:
1199         return status;
1200 }
1201
1202 struct ocfs2_la_recovery_item {
1203         struct list_head        lri_list;
1204         int                     lri_slot;
1205         struct ocfs2_dinode     *lri_la_dinode;
1206         struct ocfs2_dinode     *lri_tl_dinode;
1207         struct ocfs2_quota_recovery *lri_qrec;
1208         enum ocfs2_orphan_reco_type  lri_orphan_reco_type;
1209 };
1210
1211 /* Does the second half of the recovery process. By this point, the
1212  * node is marked clean and can actually be considered recovered,
1213  * hence it's no longer in the recovery map, but there's still some
1214  * cleanup we can do which shouldn't happen within the recovery thread
1215  * as locking in that context becomes very difficult if we are to take
1216  * recovering nodes into account.
1217  *
1218  * NOTE: This function can and will sleep on recovery of other nodes
1219  * during cluster locking, just like any other ocfs2 process.
1220  */
1221 void ocfs2_complete_recovery(struct work_struct *work)
1222 {
1223         int ret = 0;
1224         struct ocfs2_journal *journal =
1225                 container_of(work, struct ocfs2_journal, j_recovery_work);
1226         struct ocfs2_super *osb = journal->j_osb;
1227         struct ocfs2_dinode *la_dinode, *tl_dinode;
1228         struct ocfs2_la_recovery_item *item, *n;
1229         struct ocfs2_quota_recovery *qrec;
1230         enum ocfs2_orphan_reco_type orphan_reco_type;
1231         LIST_HEAD(tmp_la_list);
1232
1233         trace_ocfs2_complete_recovery(
1234                 (unsigned long long)OCFS2_I(journal->j_inode)->ip_blkno);
1235
1236         spin_lock(&journal->j_lock);
1237         list_splice_init(&journal->j_la_cleanups, &tmp_la_list);
1238         spin_unlock(&journal->j_lock);
1239
1240         list_for_each_entry_safe(item, n, &tmp_la_list, lri_list) {
1241                 list_del_init(&item->lri_list);
1242
1243                 ocfs2_wait_on_quotas(osb);
1244
1245                 la_dinode = item->lri_la_dinode;
1246                 tl_dinode = item->lri_tl_dinode;
1247                 qrec = item->lri_qrec;
1248                 orphan_reco_type = item->lri_orphan_reco_type;
1249
1250                 trace_ocfs2_complete_recovery_slot(item->lri_slot,
1251                         la_dinode ? le64_to_cpu(la_dinode->i_blkno) : 0,
1252                         tl_dinode ? le64_to_cpu(tl_dinode->i_blkno) : 0,
1253                         qrec);
1254
1255                 if (la_dinode) {
1256                         ret = ocfs2_complete_local_alloc_recovery(osb,
1257                                                                   la_dinode);
1258                         if (ret < 0)
1259                                 mlog_errno(ret);
1260
1261                         kfree(la_dinode);
1262                 }
1263
1264                 if (tl_dinode) {
1265                         ret = ocfs2_complete_truncate_log_recovery(osb,
1266                                                                    tl_dinode);
1267                         if (ret < 0)
1268                                 mlog_errno(ret);
1269
1270                         kfree(tl_dinode);
1271                 }
1272
1273                 ret = ocfs2_recover_orphans(osb, item->lri_slot,
1274                                 orphan_reco_type);
1275                 if (ret < 0)
1276                         mlog_errno(ret);
1277
1278                 if (qrec) {
1279                         ret = ocfs2_finish_quota_recovery(osb, qrec,
1280                                                           item->lri_slot);
1281                         if (ret < 0)
1282                                 mlog_errno(ret);
1283                         /* Recovery info is already freed now */
1284                 }
1285
1286                 kfree(item);
1287         }
1288
1289         trace_ocfs2_complete_recovery_end(ret);
1290 }
1291
1292 /* NOTE: This function always eats your references to la_dinode and
1293  * tl_dinode, either manually on error, or by passing them to
1294  * ocfs2_complete_recovery */
1295 static void ocfs2_queue_recovery_completion(struct ocfs2_journal *journal,
1296                                             int slot_num,
1297                                             struct ocfs2_dinode *la_dinode,
1298                                             struct ocfs2_dinode *tl_dinode,
1299                                             struct ocfs2_quota_recovery *qrec,
1300                                             enum ocfs2_orphan_reco_type orphan_reco_type)
1301 {
1302         struct ocfs2_la_recovery_item *item;
1303
1304         item = kmalloc(sizeof(struct ocfs2_la_recovery_item), GFP_NOFS);
1305         if (!item) {
1306                 /* Though we wish to avoid it, we are in fact safe in
1307                  * skipping local alloc cleanup as fsck.ocfs2 is more
1308                  * than capable of reclaiming unused space. */
1309                 kfree(la_dinode);
1310                 kfree(tl_dinode);
1311
1312                 if (qrec)
1313                         ocfs2_free_quota_recovery(qrec);
1314
1315                 mlog_errno(-ENOMEM);
1316                 return;
1317         }
1318
1319         INIT_LIST_HEAD(&item->lri_list);
1320         item->lri_la_dinode = la_dinode;
1321         item->lri_slot = slot_num;
1322         item->lri_tl_dinode = tl_dinode;
1323         item->lri_qrec = qrec;
1324         item->lri_orphan_reco_type = orphan_reco_type;
1325
1326         spin_lock(&journal->j_lock);
1327         list_add_tail(&item->lri_list, &journal->j_la_cleanups);
1328         queue_work(journal->j_osb->ocfs2_wq, &journal->j_recovery_work);
1329         spin_unlock(&journal->j_lock);
1330 }
1331
1332 /* Called by the mount code to queue recovery the last part of
1333  * recovery for it's own and offline slot(s). */
1334 void ocfs2_complete_mount_recovery(struct ocfs2_super *osb)
1335 {
1336         struct ocfs2_journal *journal = osb->journal;
1337
1338         if (ocfs2_is_hard_readonly(osb))
1339                 return;
1340
1341         /* No need to queue up our truncate_log as regular cleanup will catch
1342          * that */
1343         ocfs2_queue_recovery_completion(journal, osb->slot_num,
1344                                         osb->local_alloc_copy, NULL, NULL,
1345                                         ORPHAN_NEED_TRUNCATE);
1346         ocfs2_schedule_truncate_log_flush(osb, 0);
1347
1348         osb->local_alloc_copy = NULL;
1349
1350         /* queue to recover orphan slots for all offline slots */
1351         ocfs2_replay_map_set_state(osb, REPLAY_NEEDED);
1352         ocfs2_queue_replay_slots(osb, ORPHAN_NEED_TRUNCATE);
1353         ocfs2_free_replay_slots(osb);
1354 }
1355
1356 void ocfs2_complete_quota_recovery(struct ocfs2_super *osb)
1357 {
1358         if (osb->quota_rec) {
1359                 ocfs2_queue_recovery_completion(osb->journal,
1360                                                 osb->slot_num,
1361                                                 NULL,
1362                                                 NULL,
1363                                                 osb->quota_rec,
1364                                                 ORPHAN_NEED_TRUNCATE);
1365                 osb->quota_rec = NULL;
1366         }
1367 }
1368
1369 static int __ocfs2_recovery_thread(void *arg)
1370 {
1371         int status, node_num, slot_num;
1372         struct ocfs2_super *osb = arg;
1373         struct ocfs2_recovery_map *rm = osb->recovery_map;
1374         int *rm_quota = NULL;
1375         int rm_quota_used = 0, i;
1376         struct ocfs2_quota_recovery *qrec;
1377
1378         /* Whether the quota supported. */
1379         int quota_enabled = OCFS2_HAS_RO_COMPAT_FEATURE(osb->sb,
1380                         OCFS2_FEATURE_RO_COMPAT_USRQUOTA)
1381                 || OCFS2_HAS_RO_COMPAT_FEATURE(osb->sb,
1382                         OCFS2_FEATURE_RO_COMPAT_GRPQUOTA);
1383
1384         status = ocfs2_wait_on_mount(osb);
1385         if (status < 0) {
1386                 goto bail;
1387         }
1388
1389         if (quota_enabled) {
1390                 rm_quota = kcalloc(osb->max_slots, sizeof(int), GFP_NOFS);
1391                 if (!rm_quota) {
1392                         status = -ENOMEM;
1393                         goto bail;
1394                 }
1395         }
1396 restart:
1397         status = ocfs2_super_lock(osb, 1);
1398         if (status < 0) {
1399                 mlog_errno(status);
1400                 goto bail;
1401         }
1402
1403         status = ocfs2_compute_replay_slots(osb);
1404         if (status < 0)
1405                 mlog_errno(status);
1406
1407         /* queue recovery for our own slot */
1408         ocfs2_queue_recovery_completion(osb->journal, osb->slot_num, NULL,
1409                                         NULL, NULL, ORPHAN_NO_NEED_TRUNCATE);
1410
1411         spin_lock(&osb->osb_lock);
1412         while (rm->rm_used) {
1413                 /* It's always safe to remove entry zero, as we won't
1414                  * clear it until ocfs2_recover_node() has succeeded. */
1415                 node_num = rm->rm_entries[0];
1416                 spin_unlock(&osb->osb_lock);
1417                 slot_num = ocfs2_node_num_to_slot(osb, node_num);
1418                 trace_ocfs2_recovery_thread_node(node_num, slot_num);
1419                 if (slot_num == -ENOENT) {
1420                         status = 0;
1421                         goto skip_recovery;
1422                 }
1423
1424                 /* It is a bit subtle with quota recovery. We cannot do it
1425                  * immediately because we have to obtain cluster locks from
1426                  * quota files and we also don't want to just skip it because
1427                  * then quota usage would be out of sync until some node takes
1428                  * the slot. So we remember which nodes need quota recovery
1429                  * and when everything else is done, we recover quotas. */
1430                 if (quota_enabled) {
1431                         for (i = 0; i < rm_quota_used
1432                                         && rm_quota[i] != slot_num; i++)
1433                                 ;
1434
1435                         if (i == rm_quota_used)
1436                                 rm_quota[rm_quota_used++] = slot_num;
1437                 }
1438
1439                 status = ocfs2_recover_node(osb, node_num, slot_num);
1440 skip_recovery:
1441                 if (!status) {
1442                         ocfs2_recovery_map_clear(osb, node_num);
1443                 } else {
1444                         mlog(ML_ERROR,
1445                              "Error %d recovering node %d on device (%u,%u)!\n",
1446                              status, node_num,
1447                              MAJOR(osb->sb->s_dev), MINOR(osb->sb->s_dev));
1448                         mlog(ML_ERROR, "Volume requires unmount.\n");
1449                 }
1450
1451                 spin_lock(&osb->osb_lock);
1452         }
1453         spin_unlock(&osb->osb_lock);
1454         trace_ocfs2_recovery_thread_end(status);
1455
1456         /* Refresh all journal recovery generations from disk */
1457         status = ocfs2_check_journals_nolocks(osb);
1458         status = (status == -EROFS) ? 0 : status;
1459         if (status < 0)
1460                 mlog_errno(status);
1461
1462         /* Now it is right time to recover quotas... We have to do this under
1463          * superblock lock so that no one can start using the slot (and crash)
1464          * before we recover it */
1465         if (quota_enabled) {
1466                 for (i = 0; i < rm_quota_used; i++) {
1467                         qrec = ocfs2_begin_quota_recovery(osb, rm_quota[i]);
1468                         if (IS_ERR(qrec)) {
1469                                 status = PTR_ERR(qrec);
1470                                 mlog_errno(status);
1471                                 continue;
1472                         }
1473                         ocfs2_queue_recovery_completion(osb->journal,
1474                                         rm_quota[i],
1475                                         NULL, NULL, qrec,
1476                                         ORPHAN_NEED_TRUNCATE);
1477                 }
1478         }
1479
1480         ocfs2_super_unlock(osb, 1);
1481
1482         /* queue recovery for offline slots */
1483         ocfs2_queue_replay_slots(osb, ORPHAN_NEED_TRUNCATE);
1484
1485 bail:
1486         mutex_lock(&osb->recovery_lock);
1487         if (!status && !ocfs2_recovery_completed(osb)) {
1488                 mutex_unlock(&osb->recovery_lock);
1489                 goto restart;
1490         }
1491
1492         ocfs2_free_replay_slots(osb);
1493         osb->recovery_thread_task = NULL;
1494         mb(); /* sync with ocfs2_recovery_thread_running */
1495         wake_up(&osb->recovery_event);
1496
1497         mutex_unlock(&osb->recovery_lock);
1498
1499         if (quota_enabled)
1500                 kfree(rm_quota);
1501
1502         /* no one is callint kthread_stop() for us so the kthread() api
1503          * requires that we call do_exit().  And it isn't exported, but
1504          * complete_and_exit() seems to be a minimal wrapper around it. */
1505         complete_and_exit(NULL, status);
1506 }
1507
1508 void ocfs2_recovery_thread(struct ocfs2_super *osb, int node_num)
1509 {
1510         mutex_lock(&osb->recovery_lock);
1511
1512         trace_ocfs2_recovery_thread(node_num, osb->node_num,
1513                 osb->disable_recovery, osb->recovery_thread_task,
1514                 osb->disable_recovery ?
1515                 -1 : ocfs2_recovery_map_set(osb, node_num));
1516
1517         if (osb->disable_recovery)
1518                 goto out;
1519
1520         if (osb->recovery_thread_task)
1521                 goto out;
1522
1523         osb->recovery_thread_task =  kthread_run(__ocfs2_recovery_thread, osb,
1524                         "ocfs2rec-%s", osb->uuid_str);
1525         if (IS_ERR(osb->recovery_thread_task)) {
1526                 mlog_errno((int)PTR_ERR(osb->recovery_thread_task));
1527                 osb->recovery_thread_task = NULL;
1528         }
1529
1530 out:
1531         mutex_unlock(&osb->recovery_lock);
1532         wake_up(&osb->recovery_event);
1533 }
1534
1535 static int ocfs2_read_journal_inode(struct ocfs2_super *osb,
1536                                     int slot_num,
1537                                     struct buffer_head **bh,
1538                                     struct inode **ret_inode)
1539 {
1540         int status = -EACCES;
1541         struct inode *inode = NULL;
1542
1543         BUG_ON(slot_num >= osb->max_slots);
1544
1545         inode = ocfs2_get_system_file_inode(osb, JOURNAL_SYSTEM_INODE,
1546                                             slot_num);
1547         if (!inode || is_bad_inode(inode)) {
1548                 mlog_errno(status);
1549                 goto bail;
1550         }
1551         SET_INODE_JOURNAL(inode);
1552
1553         status = ocfs2_read_inode_block_full(inode, bh, OCFS2_BH_IGNORE_CACHE);
1554         if (status < 0) {
1555                 mlog_errno(status);
1556                 goto bail;
1557         }
1558
1559         status = 0;
1560
1561 bail:
1562         if (inode) {
1563                 if (status || !ret_inode)
1564                         iput(inode);
1565                 else
1566                         *ret_inode = inode;
1567         }
1568         return status;
1569 }
1570
1571 /* Does the actual journal replay and marks the journal inode as
1572  * clean. Will only replay if the journal inode is marked dirty. */
1573 static int ocfs2_replay_journal(struct ocfs2_super *osb,
1574                                 int node_num,
1575                                 int slot_num)
1576 {
1577         int status;
1578         int got_lock = 0;
1579         unsigned int flags;
1580         struct inode *inode = NULL;
1581         struct ocfs2_dinode *fe;
1582         journal_t *journal = NULL;
1583         struct buffer_head *bh = NULL;
1584         u32 slot_reco_gen;
1585
1586         status = ocfs2_read_journal_inode(osb, slot_num, &bh, &inode);
1587         if (status) {
1588                 mlog_errno(status);
1589                 goto done;
1590         }
1591
1592         fe = (struct ocfs2_dinode *)bh->b_data;
1593         slot_reco_gen = ocfs2_get_recovery_generation(fe);
1594         brelse(bh);
1595         bh = NULL;
1596
1597         /*
1598          * As the fs recovery is asynchronous, there is a small chance that
1599          * another node mounted (and recovered) the slot before the recovery
1600          * thread could get the lock. To handle that, we dirty read the journal
1601          * inode for that slot to get the recovery generation. If it is
1602          * different than what we expected, the slot has been recovered.
1603          * If not, it needs recovery.
1604          */
1605         if (osb->slot_recovery_generations[slot_num] != slot_reco_gen) {
1606                 trace_ocfs2_replay_journal_recovered(slot_num,
1607                      osb->slot_recovery_generations[slot_num], slot_reco_gen);
1608                 osb->slot_recovery_generations[slot_num] = slot_reco_gen;
1609                 status = -EBUSY;
1610                 goto done;
1611         }
1612
1613         /* Continue with recovery as the journal has not yet been recovered */
1614
1615         status = ocfs2_inode_lock_full(inode, &bh, 1, OCFS2_META_LOCK_RECOVERY);
1616         if (status < 0) {
1617                 trace_ocfs2_replay_journal_lock_err(status);
1618                 if (status != -ERESTARTSYS)
1619                         mlog(ML_ERROR, "Could not lock journal!\n");
1620                 goto done;
1621         }
1622         got_lock = 1;
1623
1624         fe = (struct ocfs2_dinode *) bh->b_data;
1625
1626         flags = le32_to_cpu(fe->id1.journal1.ij_flags);
1627         slot_reco_gen = ocfs2_get_recovery_generation(fe);
1628
1629         if (!(flags & OCFS2_JOURNAL_DIRTY_FL)) {
1630                 trace_ocfs2_replay_journal_skip(node_num);
1631                 /* Refresh recovery generation for the slot */
1632                 osb->slot_recovery_generations[slot_num] = slot_reco_gen;
1633                 goto done;
1634         }
1635
1636         /* we need to run complete recovery for offline orphan slots */
1637         ocfs2_replay_map_set_state(osb, REPLAY_NEEDED);
1638
1639         printk(KERN_NOTICE "ocfs2: Begin replay journal (node %d, slot %d) on "\
1640                "device (%u,%u)\n", node_num, slot_num, MAJOR(osb->sb->s_dev),
1641                MINOR(osb->sb->s_dev));
1642
1643         OCFS2_I(inode)->ip_clusters = le32_to_cpu(fe->i_clusters);
1644
1645         status = ocfs2_force_read_journal(inode);
1646         if (status < 0) {
1647                 mlog_errno(status);
1648                 goto done;
1649         }
1650
1651         journal = jbd2_journal_init_inode(inode);
1652         if (journal == NULL) {
1653                 mlog(ML_ERROR, "Linux journal layer error\n");
1654                 status = -EIO;
1655                 goto done;
1656         }
1657
1658         status = jbd2_journal_load(journal);
1659         if (status < 0) {
1660                 mlog_errno(status);
1661                 if (!igrab(inode))
1662                         BUG();
1663                 jbd2_journal_destroy(journal);
1664                 goto done;
1665         }
1666
1667         ocfs2_clear_journal_error(osb->sb, journal, slot_num);
1668
1669         /* wipe the journal */
1670         jbd2_journal_lock_updates(journal);
1671         status = jbd2_journal_flush(journal);
1672         jbd2_journal_unlock_updates(journal);
1673         if (status < 0)
1674                 mlog_errno(status);
1675
1676         /* This will mark the node clean */
1677         flags = le32_to_cpu(fe->id1.journal1.ij_flags);
1678         flags &= ~OCFS2_JOURNAL_DIRTY_FL;
1679         fe->id1.journal1.ij_flags = cpu_to_le32(flags);
1680
1681         /* Increment recovery generation to indicate successful recovery */
1682         ocfs2_bump_recovery_generation(fe);
1683         osb->slot_recovery_generations[slot_num] =
1684                                         ocfs2_get_recovery_generation(fe);
1685
1686         ocfs2_compute_meta_ecc(osb->sb, bh->b_data, &fe->i_check);
1687         status = ocfs2_write_block(osb, bh, INODE_CACHE(inode));
1688         if (status < 0)
1689                 mlog_errno(status);
1690
1691         if (!igrab(inode))
1692                 BUG();
1693
1694         jbd2_journal_destroy(journal);
1695
1696         printk(KERN_NOTICE "ocfs2: End replay journal (node %d, slot %d) on "\
1697                "device (%u,%u)\n", node_num, slot_num, MAJOR(osb->sb->s_dev),
1698                MINOR(osb->sb->s_dev));
1699 done:
1700         /* drop the lock on this nodes journal */
1701         if (got_lock)
1702                 ocfs2_inode_unlock(inode, 1);
1703
1704         iput(inode);
1705         brelse(bh);
1706
1707         return status;
1708 }
1709
1710 /*
1711  * Do the most important parts of node recovery:
1712  *  - Replay it's journal
1713  *  - Stamp a clean local allocator file
1714  *  - Stamp a clean truncate log
1715  *  - Mark the node clean
1716  *
1717  * If this function completes without error, a node in OCFS2 can be
1718  * said to have been safely recovered. As a result, failure during the
1719  * second part of a nodes recovery process (local alloc recovery) is
1720  * far less concerning.
1721  */
1722 static int ocfs2_recover_node(struct ocfs2_super *osb,
1723                               int node_num, int slot_num)
1724 {
1725         int status = 0;
1726         struct ocfs2_dinode *la_copy = NULL;
1727         struct ocfs2_dinode *tl_copy = NULL;
1728
1729         trace_ocfs2_recover_node(node_num, slot_num, osb->node_num);
1730
1731         /* Should not ever be called to recover ourselves -- in that
1732          * case we should've called ocfs2_journal_load instead. */
1733         BUG_ON(osb->node_num == node_num);
1734
1735         status = ocfs2_replay_journal(osb, node_num, slot_num);
1736         if (status < 0) {
1737                 if (status == -EBUSY) {
1738                         trace_ocfs2_recover_node_skip(slot_num, node_num);
1739                         status = 0;
1740                         goto done;
1741                 }
1742                 mlog_errno(status);
1743                 goto done;
1744         }
1745
1746         /* Stamp a clean local alloc file AFTER recovering the journal... */
1747         status = ocfs2_begin_local_alloc_recovery(osb, slot_num, &la_copy);
1748         if (status < 0) {
1749                 mlog_errno(status);
1750                 goto done;
1751         }
1752
1753         /* An error from begin_truncate_log_recovery is not
1754          * serious enough to warrant halting the rest of
1755          * recovery. */
1756         status = ocfs2_begin_truncate_log_recovery(osb, slot_num, &tl_copy);
1757         if (status < 0)
1758                 mlog_errno(status);
1759
1760         /* Likewise, this would be a strange but ultimately not so
1761          * harmful place to get an error... */
1762         status = ocfs2_clear_slot(osb, slot_num);
1763         if (status < 0)
1764                 mlog_errno(status);
1765
1766         /* This will kfree the memory pointed to by la_copy and tl_copy */
1767         ocfs2_queue_recovery_completion(osb->journal, slot_num, la_copy,
1768                                         tl_copy, NULL, ORPHAN_NEED_TRUNCATE);
1769
1770         status = 0;
1771 done:
1772
1773         return status;
1774 }
1775
1776 /* Test node liveness by trylocking his journal. If we get the lock,
1777  * we drop it here. Return 0 if we got the lock, -EAGAIN if node is
1778  * still alive (we couldn't get the lock) and < 0 on error. */
1779 static int ocfs2_trylock_journal(struct ocfs2_super *osb,
1780                                  int slot_num)
1781 {
1782         int status, flags;
1783         struct inode *inode = NULL;
1784
1785         inode = ocfs2_get_system_file_inode(osb, JOURNAL_SYSTEM_INODE,
1786                                             slot_num);
1787         if (inode == NULL) {
1788                 mlog(ML_ERROR, "access error\n");
1789                 status = -EACCES;
1790                 goto bail;
1791         }
1792         if (is_bad_inode(inode)) {
1793                 mlog(ML_ERROR, "access error (bad inode)\n");
1794                 iput(inode);
1795                 inode = NULL;
1796                 status = -EACCES;
1797                 goto bail;
1798         }
1799         SET_INODE_JOURNAL(inode);
1800
1801         flags = OCFS2_META_LOCK_RECOVERY | OCFS2_META_LOCK_NOQUEUE;
1802         status = ocfs2_inode_lock_full(inode, NULL, 1, flags);
1803         if (status < 0) {
1804                 if (status != -EAGAIN)
1805                         mlog_errno(status);
1806                 goto bail;
1807         }
1808
1809         ocfs2_inode_unlock(inode, 1);
1810 bail:
1811         iput(inode);
1812
1813         return status;
1814 }
1815
1816 /* Call this underneath ocfs2_super_lock. It also assumes that the
1817  * slot info struct has been updated from disk. */
1818 int ocfs2_mark_dead_nodes(struct ocfs2_super *osb)
1819 {
1820         unsigned int node_num;
1821         int status, i;
1822         u32 gen;
1823         struct buffer_head *bh = NULL;
1824         struct ocfs2_dinode *di;
1825
1826         /* This is called with the super block cluster lock, so we
1827          * know that the slot map can't change underneath us. */
1828
1829         for (i = 0; i < osb->max_slots; i++) {
1830                 /* Read journal inode to get the recovery generation */
1831                 status = ocfs2_read_journal_inode(osb, i, &bh, NULL);
1832                 if (status) {
1833                         mlog_errno(status);
1834                         goto bail;
1835                 }
1836                 di = (struct ocfs2_dinode *)bh->b_data;
1837                 gen = ocfs2_get_recovery_generation(di);
1838                 brelse(bh);
1839                 bh = NULL;
1840
1841                 spin_lock(&osb->osb_lock);
1842                 osb->slot_recovery_generations[i] = gen;
1843
1844                 trace_ocfs2_mark_dead_nodes(i,
1845                                             osb->slot_recovery_generations[i]);
1846
1847                 if (i == osb->slot_num) {
1848                         spin_unlock(&osb->osb_lock);
1849                         continue;
1850                 }
1851
1852                 status = ocfs2_slot_to_node_num_locked(osb, i, &node_num);
1853                 if (status == -ENOENT) {
1854                         spin_unlock(&osb->osb_lock);
1855                         continue;
1856                 }
1857
1858                 if (__ocfs2_recovery_map_test(osb, node_num)) {
1859                         spin_unlock(&osb->osb_lock);
1860                         continue;
1861                 }
1862                 spin_unlock(&osb->osb_lock);
1863
1864                 /* Ok, we have a slot occupied by another node which
1865                  * is not in the recovery map. We trylock his journal
1866                  * file here to test if he's alive. */
1867                 status = ocfs2_trylock_journal(osb, i);
1868                 if (!status) {
1869                         /* Since we're called from mount, we know that
1870                          * the recovery thread can't race us on
1871                          * setting / checking the recovery bits. */
1872                         ocfs2_recovery_thread(osb, node_num);
1873                 } else if ((status < 0) && (status != -EAGAIN)) {
1874                         mlog_errno(status);
1875                         goto bail;
1876                 }
1877         }
1878
1879         status = 0;
1880 bail:
1881         return status;
1882 }
1883
1884 /*
1885  * Scan timer should get fired every ORPHAN_SCAN_SCHEDULE_TIMEOUT. Add some
1886  * randomness to the timeout to minimize multple nodes firing the timer at the
1887  * same time.
1888  */
1889 static inline unsigned long ocfs2_orphan_scan_timeout(void)
1890 {
1891         unsigned long time;
1892
1893         get_random_bytes(&time, sizeof(time));
1894         time = ORPHAN_SCAN_SCHEDULE_TIMEOUT + (time % 5000);
1895         return msecs_to_jiffies(time);
1896 }
1897
1898 /*
1899  * ocfs2_queue_orphan_scan calls ocfs2_queue_recovery_completion for
1900  * every slot, queuing a recovery of the slot on the ocfs2_wq thread. This
1901  * is done to catch any orphans that are left over in orphan directories.
1902  *
1903  * It scans all slots, even ones that are in use. It does so to handle the
1904  * case described below:
1905  *
1906  *   Node 1 has an inode it was using. The dentry went away due to memory
1907  *   pressure.  Node 1 closes the inode, but it's on the free list. The node
1908  *   has the open lock.
1909  *   Node 2 unlinks the inode. It grabs the dentry lock to notify others,
1910  *   but node 1 has no dentry and doesn't get the message. It trylocks the
1911  *   open lock, sees that another node has a PR, and does nothing.
1912  *   Later node 2 runs its orphan dir. It igets the inode, trylocks the
1913  *   open lock, sees the PR still, and does nothing.
1914  *   Basically, we have to trigger an orphan iput on node 1. The only way
1915  *   for this to happen is if node 1 runs node 2's orphan dir.
1916  *
1917  * ocfs2_queue_orphan_scan gets called every ORPHAN_SCAN_SCHEDULE_TIMEOUT
1918  * seconds.  It gets an EX lock on os_lockres and checks sequence number
1919  * stored in LVB. If the sequence number has changed, it means some other
1920  * node has done the scan.  This node skips the scan and tracks the
1921  * sequence number.  If the sequence number didn't change, it means a scan
1922  * hasn't happened.  The node queues a scan and increments the
1923  * sequence number in the LVB.
1924  */
1925 static void ocfs2_queue_orphan_scan(struct ocfs2_super *osb)
1926 {
1927         struct ocfs2_orphan_scan *os;
1928         int status, i;
1929         u32 seqno = 0;
1930
1931         os = &osb->osb_orphan_scan;
1932
1933         if (atomic_read(&os->os_state) == ORPHAN_SCAN_INACTIVE)
1934                 goto out;
1935
1936         trace_ocfs2_queue_orphan_scan_begin(os->os_count, os->os_seqno,
1937                                             atomic_read(&os->os_state));
1938
1939         status = ocfs2_orphan_scan_lock(osb, &seqno);
1940         if (status < 0) {
1941                 if (status != -EAGAIN)
1942                         mlog_errno(status);
1943                 goto out;
1944         }
1945
1946         /* Do no queue the tasks if the volume is being umounted */
1947         if (atomic_read(&os->os_state) == ORPHAN_SCAN_INACTIVE)
1948                 goto unlock;
1949
1950         if (os->os_seqno != seqno) {
1951                 os->os_seqno = seqno;
1952                 goto unlock;
1953         }
1954
1955         for (i = 0; i < osb->max_slots; i++)
1956                 ocfs2_queue_recovery_completion(osb->journal, i, NULL, NULL,
1957                                                 NULL, ORPHAN_NO_NEED_TRUNCATE);
1958         /*
1959          * We queued a recovery on orphan slots, increment the sequence
1960          * number and update LVB so other node will skip the scan for a while
1961          */
1962         seqno++;
1963         os->os_count++;
1964         os->os_scantime = ktime_get_seconds();
1965 unlock:
1966         ocfs2_orphan_scan_unlock(osb, seqno);
1967 out:
1968         trace_ocfs2_queue_orphan_scan_end(os->os_count, os->os_seqno,
1969                                           atomic_read(&os->os_state));
1970         return;
1971 }
1972
1973 /* Worker task that gets fired every ORPHAN_SCAN_SCHEDULE_TIMEOUT millsec */
1974 static void ocfs2_orphan_scan_work(struct work_struct *work)
1975 {
1976         struct ocfs2_orphan_scan *os;
1977         struct ocfs2_super *osb;
1978
1979         os = container_of(work, struct ocfs2_orphan_scan,
1980                           os_orphan_scan_work.work);
1981         osb = os->os_osb;
1982
1983         mutex_lock(&os->os_lock);
1984         ocfs2_queue_orphan_scan(osb);
1985         if (atomic_read(&os->os_state) == ORPHAN_SCAN_ACTIVE)
1986                 queue_delayed_work(osb->ocfs2_wq, &os->os_orphan_scan_work,
1987                                       ocfs2_orphan_scan_timeout());
1988         mutex_unlock(&os->os_lock);
1989 }
1990
1991 void ocfs2_orphan_scan_stop(struct ocfs2_super *osb)
1992 {
1993         struct ocfs2_orphan_scan *os;
1994
1995         os = &osb->osb_orphan_scan;
1996         if (atomic_read(&os->os_state) == ORPHAN_SCAN_ACTIVE) {
1997                 atomic_set(&os->os_state, ORPHAN_SCAN_INACTIVE);
1998                 mutex_lock(&os->os_lock);
1999                 cancel_delayed_work(&os->os_orphan_scan_work);
2000                 mutex_unlock(&os->os_lock);
2001         }
2002 }
2003
2004 void ocfs2_orphan_scan_init(struct ocfs2_super *osb)
2005 {
2006         struct ocfs2_orphan_scan *os;
2007
2008         os = &osb->osb_orphan_scan;
2009         os->os_osb = osb;
2010         os->os_count = 0;
2011         os->os_seqno = 0;
2012         mutex_init(&os->os_lock);
2013         INIT_DELAYED_WORK(&os->os_orphan_scan_work, ocfs2_orphan_scan_work);
2014 }
2015
2016 void ocfs2_orphan_scan_start(struct ocfs2_super *osb)
2017 {
2018         struct ocfs2_orphan_scan *os;
2019
2020         os = &osb->osb_orphan_scan;
2021         os->os_scantime = ktime_get_seconds();
2022         if (ocfs2_is_hard_readonly(osb) || ocfs2_mount_local(osb))
2023                 atomic_set(&os->os_state, ORPHAN_SCAN_INACTIVE);
2024         else {
2025                 atomic_set(&os->os_state, ORPHAN_SCAN_ACTIVE);
2026                 queue_delayed_work(osb->ocfs2_wq, &os->os_orphan_scan_work,
2027                                    ocfs2_orphan_scan_timeout());
2028         }
2029 }
2030
2031 struct ocfs2_orphan_filldir_priv {
2032         struct dir_context      ctx;
2033         struct inode            *head;
2034         struct ocfs2_super      *osb;
2035         enum ocfs2_orphan_reco_type orphan_reco_type;
2036 };
2037
2038 static int ocfs2_orphan_filldir(struct dir_context *ctx, const char *name,
2039                                 int name_len, loff_t pos, u64 ino,
2040                                 unsigned type)
2041 {
2042         struct ocfs2_orphan_filldir_priv *p =
2043                 container_of(ctx, struct ocfs2_orphan_filldir_priv, ctx);
2044         struct inode *iter;
2045
2046         if (name_len == 1 && !strncmp(".", name, 1))
2047                 return 0;
2048         if (name_len == 2 && !strncmp("..", name, 2))
2049                 return 0;
2050
2051         /* do not include dio entry in case of orphan scan */
2052         if ((p->orphan_reco_type == ORPHAN_NO_NEED_TRUNCATE) &&
2053                         (!strncmp(name, OCFS2_DIO_ORPHAN_PREFIX,
2054                         OCFS2_DIO_ORPHAN_PREFIX_LEN)))
2055                 return 0;
2056
2057         /* Skip bad inodes so that recovery can continue */
2058         iter = ocfs2_iget(p->osb, ino,
2059                           OCFS2_FI_FLAG_ORPHAN_RECOVERY, 0);
2060         if (IS_ERR(iter))
2061                 return 0;
2062
2063         if (!strncmp(name, OCFS2_DIO_ORPHAN_PREFIX,
2064                         OCFS2_DIO_ORPHAN_PREFIX_LEN))
2065                 OCFS2_I(iter)->ip_flags |= OCFS2_INODE_DIO_ORPHAN_ENTRY;
2066
2067         /* Skip inodes which are already added to recover list, since dio may
2068          * happen concurrently with unlink/rename */
2069         if (OCFS2_I(iter)->ip_next_orphan) {
2070                 iput(iter);
2071                 return 0;
2072         }
2073
2074         trace_ocfs2_orphan_filldir((unsigned long long)OCFS2_I(iter)->ip_blkno);
2075         /* No locking is required for the next_orphan queue as there
2076          * is only ever a single process doing orphan recovery. */
2077         OCFS2_I(iter)->ip_next_orphan = p->head;
2078         p->head = iter;
2079
2080         return 0;
2081 }
2082
2083 static int ocfs2_queue_orphans(struct ocfs2_super *osb,
2084                                int slot,
2085                                struct inode **head,
2086                                enum ocfs2_orphan_reco_type orphan_reco_type)
2087 {
2088         int status;
2089         struct inode *orphan_dir_inode = NULL;
2090         struct ocfs2_orphan_filldir_priv priv = {
2091                 .ctx.actor = ocfs2_orphan_filldir,
2092                 .osb = osb,
2093                 .head = *head,
2094                 .orphan_reco_type = orphan_reco_type
2095         };
2096
2097         orphan_dir_inode = ocfs2_get_system_file_inode(osb,
2098                                                        ORPHAN_DIR_SYSTEM_INODE,
2099                                                        slot);
2100         if  (!orphan_dir_inode) {
2101                 status = -ENOENT;
2102                 mlog_errno(status);
2103                 return status;
2104         }
2105
2106         inode_lock(orphan_dir_inode);
2107         status = ocfs2_inode_lock(orphan_dir_inode, NULL, 0);
2108         if (status < 0) {
2109                 mlog_errno(status);
2110                 goto out;
2111         }
2112
2113         status = ocfs2_dir_foreach(orphan_dir_inode, &priv.ctx);
2114         if (status) {
2115                 mlog_errno(status);
2116                 goto out_cluster;
2117         }
2118
2119         *head = priv.head;
2120
2121 out_cluster:
2122         ocfs2_inode_unlock(orphan_dir_inode, 0);
2123 out:
2124         inode_unlock(orphan_dir_inode);
2125         iput(orphan_dir_inode);
2126         return status;
2127 }
2128
2129 static int ocfs2_orphan_recovery_can_continue(struct ocfs2_super *osb,
2130                                               int slot)
2131 {
2132         int ret;
2133
2134         spin_lock(&osb->osb_lock);
2135         ret = !osb->osb_orphan_wipes[slot];
2136         spin_unlock(&osb->osb_lock);
2137         return ret;
2138 }
2139
2140 static void ocfs2_mark_recovering_orphan_dir(struct ocfs2_super *osb,
2141                                              int slot)
2142 {
2143         spin_lock(&osb->osb_lock);
2144         /* Mark ourselves such that new processes in delete_inode()
2145          * know to quit early. */
2146         ocfs2_node_map_set_bit(osb, &osb->osb_recovering_orphan_dirs, slot);
2147         while (osb->osb_orphan_wipes[slot]) {
2148                 /* If any processes are already in the middle of an
2149                  * orphan wipe on this dir, then we need to wait for
2150                  * them. */
2151                 spin_unlock(&osb->osb_lock);
2152                 wait_event_interruptible(osb->osb_wipe_event,
2153                                          ocfs2_orphan_recovery_can_continue(osb, slot));
2154                 spin_lock(&osb->osb_lock);
2155         }
2156         spin_unlock(&osb->osb_lock);
2157 }
2158
2159 static void ocfs2_clear_recovering_orphan_dir(struct ocfs2_super *osb,
2160                                               int slot)
2161 {
2162         ocfs2_node_map_clear_bit(osb, &osb->osb_recovering_orphan_dirs, slot);
2163 }
2164
2165 /*
2166  * Orphan recovery. Each mounted node has it's own orphan dir which we
2167  * must run during recovery. Our strategy here is to build a list of
2168  * the inodes in the orphan dir and iget/iput them. The VFS does
2169  * (most) of the rest of the work.
2170  *
2171  * Orphan recovery can happen at any time, not just mount so we have a
2172  * couple of extra considerations.
2173  *
2174  * - We grab as many inodes as we can under the orphan dir lock -
2175  *   doing iget() outside the orphan dir risks getting a reference on
2176  *   an invalid inode.
2177  * - We must be sure not to deadlock with other processes on the
2178  *   system wanting to run delete_inode(). This can happen when they go
2179  *   to lock the orphan dir and the orphan recovery process attempts to
2180  *   iget() inside the orphan dir lock. This can be avoided by
2181  *   advertising our state to ocfs2_delete_inode().
2182  */
2183 static int ocfs2_recover_orphans(struct ocfs2_super *osb,
2184                                  int slot,
2185                                  enum ocfs2_orphan_reco_type orphan_reco_type)
2186 {
2187         int ret = 0;
2188         struct inode *inode = NULL;
2189         struct inode *iter;
2190         struct ocfs2_inode_info *oi;
2191         struct buffer_head *di_bh = NULL;
2192         struct ocfs2_dinode *di = NULL;
2193
2194         trace_ocfs2_recover_orphans(slot);
2195
2196         ocfs2_mark_recovering_orphan_dir(osb, slot);
2197         ret = ocfs2_queue_orphans(osb, slot, &inode, orphan_reco_type);
2198         ocfs2_clear_recovering_orphan_dir(osb, slot);
2199
2200         /* Error here should be noted, but we want to continue with as
2201          * many queued inodes as we've got. */
2202         if (ret)
2203                 mlog_errno(ret);
2204
2205         while (inode) {
2206                 oi = OCFS2_I(inode);
2207                 trace_ocfs2_recover_orphans_iput(
2208                                         (unsigned long long)oi->ip_blkno);
2209
2210                 iter = oi->ip_next_orphan;
2211                 oi->ip_next_orphan = NULL;
2212
2213                 if (oi->ip_flags & OCFS2_INODE_DIO_ORPHAN_ENTRY) {
2214                         inode_lock(inode);
2215                         ret = ocfs2_rw_lock(inode, 1);
2216                         if (ret < 0) {
2217                                 mlog_errno(ret);
2218                                 goto unlock_mutex;
2219                         }
2220                         /*
2221                          * We need to take and drop the inode lock to
2222                          * force read inode from disk.
2223                          */
2224                         ret = ocfs2_inode_lock(inode, &di_bh, 1);
2225                         if (ret) {
2226                                 mlog_errno(ret);
2227                                 goto unlock_rw;
2228                         }
2229
2230                         di = (struct ocfs2_dinode *)di_bh->b_data;
2231
2232                         if (di->i_flags & cpu_to_le32(OCFS2_DIO_ORPHANED_FL)) {
2233                                 ret = ocfs2_truncate_file(inode, di_bh,
2234                                                 i_size_read(inode));
2235                                 if (ret < 0) {
2236                                         if (ret != -ENOSPC)
2237                                                 mlog_errno(ret);
2238                                         goto unlock_inode;
2239                                 }
2240
2241                                 ret = ocfs2_del_inode_from_orphan(osb, inode,
2242                                                 di_bh, 0, 0);
2243                                 if (ret)
2244                                         mlog_errno(ret);
2245                         }
2246 unlock_inode:
2247                         ocfs2_inode_unlock(inode, 1);
2248                         brelse(di_bh);
2249                         di_bh = NULL;
2250 unlock_rw:
2251                         ocfs2_rw_unlock(inode, 1);
2252 unlock_mutex:
2253                         inode_unlock(inode);
2254
2255                         /* clear dio flag in ocfs2_inode_info */
2256                         oi->ip_flags &= ~OCFS2_INODE_DIO_ORPHAN_ENTRY;
2257                 } else {
2258                         spin_lock(&oi->ip_lock);
2259                         /* Set the proper information to get us going into
2260                          * ocfs2_delete_inode. */
2261                         oi->ip_flags |= OCFS2_INODE_MAYBE_ORPHANED;
2262                         spin_unlock(&oi->ip_lock);
2263                 }
2264
2265                 iput(inode);
2266                 inode = iter;
2267         }
2268
2269         return ret;
2270 }
2271
2272 static int __ocfs2_wait_on_mount(struct ocfs2_super *osb, int quota)
2273 {
2274         /* This check is good because ocfs2 will wait on our recovery
2275          * thread before changing it to something other than MOUNTED
2276          * or DISABLED. */
2277         wait_event(osb->osb_mount_event,
2278                   (!quota && atomic_read(&osb->vol_state) == VOLUME_MOUNTED) ||
2279                    atomic_read(&osb->vol_state) == VOLUME_MOUNTED_QUOTAS ||
2280                    atomic_read(&osb->vol_state) == VOLUME_DISABLED);
2281
2282         /* If there's an error on mount, then we may never get to the
2283          * MOUNTED flag, but this is set right before
2284          * dismount_volume() so we can trust it. */
2285         if (atomic_read(&osb->vol_state) == VOLUME_DISABLED) {
2286                 trace_ocfs2_wait_on_mount(VOLUME_DISABLED);
2287                 mlog(0, "mount error, exiting!\n");
2288                 return -EBUSY;
2289         }
2290
2291         return 0;
2292 }
2293
2294 static int ocfs2_commit_thread(void *arg)
2295 {
2296         int status;
2297         struct ocfs2_super *osb = arg;
2298         struct ocfs2_journal *journal = osb->journal;
2299
2300         /* we can trust j_num_trans here because _should_stop() is only set in
2301          * shutdown and nobody other than ourselves should be able to start
2302          * transactions.  committing on shutdown might take a few iterations
2303          * as final transactions put deleted inodes on the list */
2304         while (!(kthread_should_stop() &&
2305                  atomic_read(&journal->j_num_trans) == 0)) {
2306
2307                 wait_event_interruptible(osb->checkpoint_event,
2308                                          atomic_read(&journal->j_num_trans)
2309                                          || kthread_should_stop());
2310
2311                 status = ocfs2_commit_cache(osb);
2312                 if (status < 0) {
2313                         static unsigned long abort_warn_time;
2314
2315                         /* Warn about this once per minute */
2316                         if (printk_timed_ratelimit(&abort_warn_time, 60*HZ))
2317                                 mlog(ML_ERROR, "status = %d, journal is "
2318                                                 "already aborted.\n", status);
2319                         /*
2320                          * After ocfs2_commit_cache() fails, j_num_trans has a
2321                          * non-zero value.  Sleep here to avoid a busy-wait
2322                          * loop.
2323                          */
2324                         msleep_interruptible(1000);
2325                 }
2326
2327                 if (kthread_should_stop() && atomic_read(&journal->j_num_trans)){
2328                         mlog(ML_KTHREAD,
2329                              "commit_thread: %u transactions pending on "
2330                              "shutdown\n",
2331                              atomic_read(&journal->j_num_trans));
2332                 }
2333         }
2334
2335         return 0;
2336 }
2337
2338 /* Reads all the journal inodes without taking any cluster locks. Used
2339  * for hard readonly access to determine whether any journal requires
2340  * recovery. Also used to refresh the recovery generation numbers after
2341  * a journal has been recovered by another node.
2342  */
2343 int ocfs2_check_journals_nolocks(struct ocfs2_super *osb)
2344 {
2345         int ret = 0;
2346         unsigned int slot;
2347         struct buffer_head *di_bh = NULL;
2348         struct ocfs2_dinode *di;
2349         int journal_dirty = 0;
2350
2351         for(slot = 0; slot < osb->max_slots; slot++) {
2352                 ret = ocfs2_read_journal_inode(osb, slot, &di_bh, NULL);
2353                 if (ret) {
2354                         mlog_errno(ret);
2355                         goto out;
2356                 }
2357
2358                 di = (struct ocfs2_dinode *) di_bh->b_data;
2359
2360                 osb->slot_recovery_generations[slot] =
2361                                         ocfs2_get_recovery_generation(di);
2362
2363                 if (le32_to_cpu(di->id1.journal1.ij_flags) &
2364                     OCFS2_JOURNAL_DIRTY_FL)
2365                         journal_dirty = 1;
2366
2367                 brelse(di_bh);
2368                 di_bh = NULL;
2369         }
2370
2371 out:
2372         if (journal_dirty)
2373                 ret = -EROFS;
2374         return ret;
2375 }