treewide: remove editor modelines and cruft
[linux-2.6-microblaze.git] / fs / ocfs2 / aops.c
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * Copyright (C) 2002, 2004 Oracle.  All rights reserved.
4  */
5
6 #include <linux/fs.h>
7 #include <linux/slab.h>
8 #include <linux/highmem.h>
9 #include <linux/pagemap.h>
10 #include <asm/byteorder.h>
11 #include <linux/swap.h>
12 #include <linux/mpage.h>
13 #include <linux/quotaops.h>
14 #include <linux/blkdev.h>
15 #include <linux/uio.h>
16 #include <linux/mm.h>
17
18 #include <cluster/masklog.h>
19
20 #include "ocfs2.h"
21
22 #include "alloc.h"
23 #include "aops.h"
24 #include "dlmglue.h"
25 #include "extent_map.h"
26 #include "file.h"
27 #include "inode.h"
28 #include "journal.h"
29 #include "suballoc.h"
30 #include "super.h"
31 #include "symlink.h"
32 #include "refcounttree.h"
33 #include "ocfs2_trace.h"
34
35 #include "buffer_head_io.h"
36 #include "dir.h"
37 #include "namei.h"
38 #include "sysfile.h"
39
40 static int ocfs2_symlink_get_block(struct inode *inode, sector_t iblock,
41                                    struct buffer_head *bh_result, int create)
42 {
43         int err = -EIO;
44         int status;
45         struct ocfs2_dinode *fe = NULL;
46         struct buffer_head *bh = NULL;
47         struct buffer_head *buffer_cache_bh = NULL;
48         struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
49         void *kaddr;
50
51         trace_ocfs2_symlink_get_block(
52                         (unsigned long long)OCFS2_I(inode)->ip_blkno,
53                         (unsigned long long)iblock, bh_result, create);
54
55         BUG_ON(ocfs2_inode_is_fast_symlink(inode));
56
57         if ((iblock << inode->i_sb->s_blocksize_bits) > PATH_MAX + 1) {
58                 mlog(ML_ERROR, "block offset > PATH_MAX: %llu",
59                      (unsigned long long)iblock);
60                 goto bail;
61         }
62
63         status = ocfs2_read_inode_block(inode, &bh);
64         if (status < 0) {
65                 mlog_errno(status);
66                 goto bail;
67         }
68         fe = (struct ocfs2_dinode *) bh->b_data;
69
70         if ((u64)iblock >= ocfs2_clusters_to_blocks(inode->i_sb,
71                                                     le32_to_cpu(fe->i_clusters))) {
72                 err = -ENOMEM;
73                 mlog(ML_ERROR, "block offset is outside the allocated size: "
74                      "%llu\n", (unsigned long long)iblock);
75                 goto bail;
76         }
77
78         /* We don't use the page cache to create symlink data, so if
79          * need be, copy it over from the buffer cache. */
80         if (!buffer_uptodate(bh_result) && ocfs2_inode_is_new(inode)) {
81                 u64 blkno = le64_to_cpu(fe->id2.i_list.l_recs[0].e_blkno) +
82                             iblock;
83                 buffer_cache_bh = sb_getblk(osb->sb, blkno);
84                 if (!buffer_cache_bh) {
85                         err = -ENOMEM;
86                         mlog(ML_ERROR, "couldn't getblock for symlink!\n");
87                         goto bail;
88                 }
89
90                 /* we haven't locked out transactions, so a commit
91                  * could've happened. Since we've got a reference on
92                  * the bh, even if it commits while we're doing the
93                  * copy, the data is still good. */
94                 if (buffer_jbd(buffer_cache_bh)
95                     && ocfs2_inode_is_new(inode)) {
96                         kaddr = kmap_atomic(bh_result->b_page);
97                         if (!kaddr) {
98                                 mlog(ML_ERROR, "couldn't kmap!\n");
99                                 goto bail;
100                         }
101                         memcpy(kaddr + (bh_result->b_size * iblock),
102                                buffer_cache_bh->b_data,
103                                bh_result->b_size);
104                         kunmap_atomic(kaddr);
105                         set_buffer_uptodate(bh_result);
106                 }
107                 brelse(buffer_cache_bh);
108         }
109
110         map_bh(bh_result, inode->i_sb,
111                le64_to_cpu(fe->id2.i_list.l_recs[0].e_blkno) + iblock);
112
113         err = 0;
114
115 bail:
116         brelse(bh);
117
118         return err;
119 }
120
121 static int ocfs2_lock_get_block(struct inode *inode, sector_t iblock,
122                     struct buffer_head *bh_result, int create)
123 {
124         int ret = 0;
125         struct ocfs2_inode_info *oi = OCFS2_I(inode);
126
127         down_read(&oi->ip_alloc_sem);
128         ret = ocfs2_get_block(inode, iblock, bh_result, create);
129         up_read(&oi->ip_alloc_sem);
130
131         return ret;
132 }
133
134 int ocfs2_get_block(struct inode *inode, sector_t iblock,
135                     struct buffer_head *bh_result, int create)
136 {
137         int err = 0;
138         unsigned int ext_flags;
139         u64 max_blocks = bh_result->b_size >> inode->i_blkbits;
140         u64 p_blkno, count, past_eof;
141         struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
142
143         trace_ocfs2_get_block((unsigned long long)OCFS2_I(inode)->ip_blkno,
144                               (unsigned long long)iblock, bh_result, create);
145
146         if (OCFS2_I(inode)->ip_flags & OCFS2_INODE_SYSTEM_FILE)
147                 mlog(ML_NOTICE, "get_block on system inode 0x%p (%lu)\n",
148                      inode, inode->i_ino);
149
150         if (S_ISLNK(inode->i_mode)) {
151                 /* this always does I/O for some reason. */
152                 err = ocfs2_symlink_get_block(inode, iblock, bh_result, create);
153                 goto bail;
154         }
155
156         err = ocfs2_extent_map_get_blocks(inode, iblock, &p_blkno, &count,
157                                           &ext_flags);
158         if (err) {
159                 mlog(ML_ERROR, "Error %d from get_blocks(0x%p, %llu, 1, "
160                      "%llu, NULL)\n", err, inode, (unsigned long long)iblock,
161                      (unsigned long long)p_blkno);
162                 goto bail;
163         }
164
165         if (max_blocks < count)
166                 count = max_blocks;
167
168         /*
169          * ocfs2 never allocates in this function - the only time we
170          * need to use BH_New is when we're extending i_size on a file
171          * system which doesn't support holes, in which case BH_New
172          * allows __block_write_begin() to zero.
173          *
174          * If we see this on a sparse file system, then a truncate has
175          * raced us and removed the cluster. In this case, we clear
176          * the buffers dirty and uptodate bits and let the buffer code
177          * ignore it as a hole.
178          */
179         if (create && p_blkno == 0 && ocfs2_sparse_alloc(osb)) {
180                 clear_buffer_dirty(bh_result);
181                 clear_buffer_uptodate(bh_result);
182                 goto bail;
183         }
184
185         /* Treat the unwritten extent as a hole for zeroing purposes. */
186         if (p_blkno && !(ext_flags & OCFS2_EXT_UNWRITTEN))
187                 map_bh(bh_result, inode->i_sb, p_blkno);
188
189         bh_result->b_size = count << inode->i_blkbits;
190
191         if (!ocfs2_sparse_alloc(osb)) {
192                 if (p_blkno == 0) {
193                         err = -EIO;
194                         mlog(ML_ERROR,
195                              "iblock = %llu p_blkno = %llu blkno=(%llu)\n",
196                              (unsigned long long)iblock,
197                              (unsigned long long)p_blkno,
198                              (unsigned long long)OCFS2_I(inode)->ip_blkno);
199                         mlog(ML_ERROR, "Size %llu, clusters %u\n", (unsigned long long)i_size_read(inode), OCFS2_I(inode)->ip_clusters);
200                         dump_stack();
201                         goto bail;
202                 }
203         }
204
205         past_eof = ocfs2_blocks_for_bytes(inode->i_sb, i_size_read(inode));
206
207         trace_ocfs2_get_block_end((unsigned long long)OCFS2_I(inode)->ip_blkno,
208                                   (unsigned long long)past_eof);
209         if (create && (iblock >= past_eof))
210                 set_buffer_new(bh_result);
211
212 bail:
213         if (err < 0)
214                 err = -EIO;
215
216         return err;
217 }
218
219 int ocfs2_read_inline_data(struct inode *inode, struct page *page,
220                            struct buffer_head *di_bh)
221 {
222         void *kaddr;
223         loff_t size;
224         struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data;
225
226         if (!(le16_to_cpu(di->i_dyn_features) & OCFS2_INLINE_DATA_FL)) {
227                 ocfs2_error(inode->i_sb, "Inode %llu lost inline data flag\n",
228                             (unsigned long long)OCFS2_I(inode)->ip_blkno);
229                 return -EROFS;
230         }
231
232         size = i_size_read(inode);
233
234         if (size > PAGE_SIZE ||
235             size > ocfs2_max_inline_data_with_xattr(inode->i_sb, di)) {
236                 ocfs2_error(inode->i_sb,
237                             "Inode %llu has with inline data has bad size: %Lu\n",
238                             (unsigned long long)OCFS2_I(inode)->ip_blkno,
239                             (unsigned long long)size);
240                 return -EROFS;
241         }
242
243         kaddr = kmap_atomic(page);
244         if (size)
245                 memcpy(kaddr, di->id2.i_data.id_data, size);
246         /* Clear the remaining part of the page */
247         memset(kaddr + size, 0, PAGE_SIZE - size);
248         flush_dcache_page(page);
249         kunmap_atomic(kaddr);
250
251         SetPageUptodate(page);
252
253         return 0;
254 }
255
256 static int ocfs2_readpage_inline(struct inode *inode, struct page *page)
257 {
258         int ret;
259         struct buffer_head *di_bh = NULL;
260
261         BUG_ON(!PageLocked(page));
262         BUG_ON(!(OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL));
263
264         ret = ocfs2_read_inode_block(inode, &di_bh);
265         if (ret) {
266                 mlog_errno(ret);
267                 goto out;
268         }
269
270         ret = ocfs2_read_inline_data(inode, page, di_bh);
271 out:
272         unlock_page(page);
273
274         brelse(di_bh);
275         return ret;
276 }
277
278 static int ocfs2_readpage(struct file *file, struct page *page)
279 {
280         struct inode *inode = page->mapping->host;
281         struct ocfs2_inode_info *oi = OCFS2_I(inode);
282         loff_t start = (loff_t)page->index << PAGE_SHIFT;
283         int ret, unlock = 1;
284
285         trace_ocfs2_readpage((unsigned long long)oi->ip_blkno,
286                              (page ? page->index : 0));
287
288         ret = ocfs2_inode_lock_with_page(inode, NULL, 0, page);
289         if (ret != 0) {
290                 if (ret == AOP_TRUNCATED_PAGE)
291                         unlock = 0;
292                 mlog_errno(ret);
293                 goto out;
294         }
295
296         if (down_read_trylock(&oi->ip_alloc_sem) == 0) {
297                 /*
298                  * Unlock the page and cycle ip_alloc_sem so that we don't
299                  * busyloop waiting for ip_alloc_sem to unlock
300                  */
301                 ret = AOP_TRUNCATED_PAGE;
302                 unlock_page(page);
303                 unlock = 0;
304                 down_read(&oi->ip_alloc_sem);
305                 up_read(&oi->ip_alloc_sem);
306                 goto out_inode_unlock;
307         }
308
309         /*
310          * i_size might have just been updated as we grabed the meta lock.  We
311          * might now be discovering a truncate that hit on another node.
312          * block_read_full_page->get_block freaks out if it is asked to read
313          * beyond the end of a file, so we check here.  Callers
314          * (generic_file_read, vm_ops->fault) are clever enough to check i_size
315          * and notice that the page they just read isn't needed.
316          *
317          * XXX sys_readahead() seems to get that wrong?
318          */
319         if (start >= i_size_read(inode)) {
320                 zero_user(page, 0, PAGE_SIZE);
321                 SetPageUptodate(page);
322                 ret = 0;
323                 goto out_alloc;
324         }
325
326         if (oi->ip_dyn_features & OCFS2_INLINE_DATA_FL)
327                 ret = ocfs2_readpage_inline(inode, page);
328         else
329                 ret = block_read_full_page(page, ocfs2_get_block);
330         unlock = 0;
331
332 out_alloc:
333         up_read(&oi->ip_alloc_sem);
334 out_inode_unlock:
335         ocfs2_inode_unlock(inode, 0);
336 out:
337         if (unlock)
338                 unlock_page(page);
339         return ret;
340 }
341
342 /*
343  * This is used only for read-ahead. Failures or difficult to handle
344  * situations are safe to ignore.
345  *
346  * Right now, we don't bother with BH_Boundary - in-inode extent lists
347  * are quite large (243 extents on 4k blocks), so most inodes don't
348  * grow out to a tree. If need be, detecting boundary extents could
349  * trivially be added in a future version of ocfs2_get_block().
350  */
351 static void ocfs2_readahead(struct readahead_control *rac)
352 {
353         int ret;
354         struct inode *inode = rac->mapping->host;
355         struct ocfs2_inode_info *oi = OCFS2_I(inode);
356
357         /*
358          * Use the nonblocking flag for the dlm code to avoid page
359          * lock inversion, but don't bother with retrying.
360          */
361         ret = ocfs2_inode_lock_full(inode, NULL, 0, OCFS2_LOCK_NONBLOCK);
362         if (ret)
363                 return;
364
365         if (down_read_trylock(&oi->ip_alloc_sem) == 0)
366                 goto out_unlock;
367
368         /*
369          * Don't bother with inline-data. There isn't anything
370          * to read-ahead in that case anyway...
371          */
372         if (oi->ip_dyn_features & OCFS2_INLINE_DATA_FL)
373                 goto out_up;
374
375         /*
376          * Check whether a remote node truncated this file - we just
377          * drop out in that case as it's not worth handling here.
378          */
379         if (readahead_pos(rac) >= i_size_read(inode))
380                 goto out_up;
381
382         mpage_readahead(rac, ocfs2_get_block);
383
384 out_up:
385         up_read(&oi->ip_alloc_sem);
386 out_unlock:
387         ocfs2_inode_unlock(inode, 0);
388 }
389
390 /* Note: Because we don't support holes, our allocation has
391  * already happened (allocation writes zeros to the file data)
392  * so we don't have to worry about ordered writes in
393  * ocfs2_writepage.
394  *
395  * ->writepage is called during the process of invalidating the page cache
396  * during blocked lock processing.  It can't block on any cluster locks
397  * to during block mapping.  It's relying on the fact that the block
398  * mapping can't have disappeared under the dirty pages that it is
399  * being asked to write back.
400  */
401 static int ocfs2_writepage(struct page *page, struct writeback_control *wbc)
402 {
403         trace_ocfs2_writepage(
404                 (unsigned long long)OCFS2_I(page->mapping->host)->ip_blkno,
405                 page->index);
406
407         return block_write_full_page(page, ocfs2_get_block, wbc);
408 }
409
410 /* Taken from ext3. We don't necessarily need the full blown
411  * functionality yet, but IMHO it's better to cut and paste the whole
412  * thing so we can avoid introducing our own bugs (and easily pick up
413  * their fixes when they happen) --Mark */
414 int walk_page_buffers(  handle_t *handle,
415                         struct buffer_head *head,
416                         unsigned from,
417                         unsigned to,
418                         int *partial,
419                         int (*fn)(      handle_t *handle,
420                                         struct buffer_head *bh))
421 {
422         struct buffer_head *bh;
423         unsigned block_start, block_end;
424         unsigned blocksize = head->b_size;
425         int err, ret = 0;
426         struct buffer_head *next;
427
428         for (   bh = head, block_start = 0;
429                 ret == 0 && (bh != head || !block_start);
430                 block_start = block_end, bh = next)
431         {
432                 next = bh->b_this_page;
433                 block_end = block_start + blocksize;
434                 if (block_end <= from || block_start >= to) {
435                         if (partial && !buffer_uptodate(bh))
436                                 *partial = 1;
437                         continue;
438                 }
439                 err = (*fn)(handle, bh);
440                 if (!ret)
441                         ret = err;
442         }
443         return ret;
444 }
445
446 static sector_t ocfs2_bmap(struct address_space *mapping, sector_t block)
447 {
448         sector_t status;
449         u64 p_blkno = 0;
450         int err = 0;
451         struct inode *inode = mapping->host;
452
453         trace_ocfs2_bmap((unsigned long long)OCFS2_I(inode)->ip_blkno,
454                          (unsigned long long)block);
455
456         /*
457          * The swap code (ab-)uses ->bmap to get a block mapping and then
458          * bypasseÑ• the file system for actual I/O.  We really can't allow
459          * that on refcounted inodes, so we have to skip out here.  And yes,
460          * 0 is the magic code for a bmap error..
461          */
462         if (ocfs2_is_refcount_inode(inode))
463                 return 0;
464
465         /* We don't need to lock journal system files, since they aren't
466          * accessed concurrently from multiple nodes.
467          */
468         if (!INODE_JOURNAL(inode)) {
469                 err = ocfs2_inode_lock(inode, NULL, 0);
470                 if (err) {
471                         if (err != -ENOENT)
472                                 mlog_errno(err);
473                         goto bail;
474                 }
475                 down_read(&OCFS2_I(inode)->ip_alloc_sem);
476         }
477
478         if (!(OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL))
479                 err = ocfs2_extent_map_get_blocks(inode, block, &p_blkno, NULL,
480                                                   NULL);
481
482         if (!INODE_JOURNAL(inode)) {
483                 up_read(&OCFS2_I(inode)->ip_alloc_sem);
484                 ocfs2_inode_unlock(inode, 0);
485         }
486
487         if (err) {
488                 mlog(ML_ERROR, "get_blocks() failed, block = %llu\n",
489                      (unsigned long long)block);
490                 mlog_errno(err);
491                 goto bail;
492         }
493
494 bail:
495         status = err ? 0 : p_blkno;
496
497         return status;
498 }
499
500 static int ocfs2_releasepage(struct page *page, gfp_t wait)
501 {
502         if (!page_has_buffers(page))
503                 return 0;
504         return try_to_free_buffers(page);
505 }
506
507 static void ocfs2_figure_cluster_boundaries(struct ocfs2_super *osb,
508                                             u32 cpos,
509                                             unsigned int *start,
510                                             unsigned int *end)
511 {
512         unsigned int cluster_start = 0, cluster_end = PAGE_SIZE;
513
514         if (unlikely(PAGE_SHIFT > osb->s_clustersize_bits)) {
515                 unsigned int cpp;
516
517                 cpp = 1 << (PAGE_SHIFT - osb->s_clustersize_bits);
518
519                 cluster_start = cpos % cpp;
520                 cluster_start = cluster_start << osb->s_clustersize_bits;
521
522                 cluster_end = cluster_start + osb->s_clustersize;
523         }
524
525         BUG_ON(cluster_start > PAGE_SIZE);
526         BUG_ON(cluster_end > PAGE_SIZE);
527
528         if (start)
529                 *start = cluster_start;
530         if (end)
531                 *end = cluster_end;
532 }
533
534 /*
535  * 'from' and 'to' are the region in the page to avoid zeroing.
536  *
537  * If pagesize > clustersize, this function will avoid zeroing outside
538  * of the cluster boundary.
539  *
540  * from == to == 0 is code for "zero the entire cluster region"
541  */
542 static void ocfs2_clear_page_regions(struct page *page,
543                                      struct ocfs2_super *osb, u32 cpos,
544                                      unsigned from, unsigned to)
545 {
546         void *kaddr;
547         unsigned int cluster_start, cluster_end;
548
549         ocfs2_figure_cluster_boundaries(osb, cpos, &cluster_start, &cluster_end);
550
551         kaddr = kmap_atomic(page);
552
553         if (from || to) {
554                 if (from > cluster_start)
555                         memset(kaddr + cluster_start, 0, from - cluster_start);
556                 if (to < cluster_end)
557                         memset(kaddr + to, 0, cluster_end - to);
558         } else {
559                 memset(kaddr + cluster_start, 0, cluster_end - cluster_start);
560         }
561
562         kunmap_atomic(kaddr);
563 }
564
565 /*
566  * Nonsparse file systems fully allocate before we get to the write
567  * code. This prevents ocfs2_write() from tagging the write as an
568  * allocating one, which means ocfs2_map_page_blocks() might try to
569  * read-in the blocks at the tail of our file. Avoid reading them by
570  * testing i_size against each block offset.
571  */
572 static int ocfs2_should_read_blk(struct inode *inode, struct page *page,
573                                  unsigned int block_start)
574 {
575         u64 offset = page_offset(page) + block_start;
576
577         if (ocfs2_sparse_alloc(OCFS2_SB(inode->i_sb)))
578                 return 1;
579
580         if (i_size_read(inode) > offset)
581                 return 1;
582
583         return 0;
584 }
585
586 /*
587  * Some of this taken from __block_write_begin(). We already have our
588  * mapping by now though, and the entire write will be allocating or
589  * it won't, so not much need to use BH_New.
590  *
591  * This will also skip zeroing, which is handled externally.
592  */
593 int ocfs2_map_page_blocks(struct page *page, u64 *p_blkno,
594                           struct inode *inode, unsigned int from,
595                           unsigned int to, int new)
596 {
597         int ret = 0;
598         struct buffer_head *head, *bh, *wait[2], **wait_bh = wait;
599         unsigned int block_end, block_start;
600         unsigned int bsize = i_blocksize(inode);
601
602         if (!page_has_buffers(page))
603                 create_empty_buffers(page, bsize, 0);
604
605         head = page_buffers(page);
606         for (bh = head, block_start = 0; bh != head || !block_start;
607              bh = bh->b_this_page, block_start += bsize) {
608                 block_end = block_start + bsize;
609
610                 clear_buffer_new(bh);
611
612                 /*
613                  * Ignore blocks outside of our i/o range -
614                  * they may belong to unallocated clusters.
615                  */
616                 if (block_start >= to || block_end <= from) {
617                         if (PageUptodate(page))
618                                 set_buffer_uptodate(bh);
619                         continue;
620                 }
621
622                 /*
623                  * For an allocating write with cluster size >= page
624                  * size, we always write the entire page.
625                  */
626                 if (new)
627                         set_buffer_new(bh);
628
629                 if (!buffer_mapped(bh)) {
630                         map_bh(bh, inode->i_sb, *p_blkno);
631                         clean_bdev_bh_alias(bh);
632                 }
633
634                 if (PageUptodate(page)) {
635                         if (!buffer_uptodate(bh))
636                                 set_buffer_uptodate(bh);
637                 } else if (!buffer_uptodate(bh) && !buffer_delay(bh) &&
638                            !buffer_new(bh) &&
639                            ocfs2_should_read_blk(inode, page, block_start) &&
640                            (block_start < from || block_end > to)) {
641                         ll_rw_block(REQ_OP_READ, 0, 1, &bh);
642                         *wait_bh++=bh;
643                 }
644
645                 *p_blkno = *p_blkno + 1;
646         }
647
648         /*
649          * If we issued read requests - let them complete.
650          */
651         while(wait_bh > wait) {
652                 wait_on_buffer(*--wait_bh);
653                 if (!buffer_uptodate(*wait_bh))
654                         ret = -EIO;
655         }
656
657         if (ret == 0 || !new)
658                 return ret;
659
660         /*
661          * If we get -EIO above, zero out any newly allocated blocks
662          * to avoid exposing stale data.
663          */
664         bh = head;
665         block_start = 0;
666         do {
667                 block_end = block_start + bsize;
668                 if (block_end <= from)
669                         goto next_bh;
670                 if (block_start >= to)
671                         break;
672
673                 zero_user(page, block_start, bh->b_size);
674                 set_buffer_uptodate(bh);
675                 mark_buffer_dirty(bh);
676
677 next_bh:
678                 block_start = block_end;
679                 bh = bh->b_this_page;
680         } while (bh != head);
681
682         return ret;
683 }
684
685 #if (PAGE_SIZE >= OCFS2_MAX_CLUSTERSIZE)
686 #define OCFS2_MAX_CTXT_PAGES    1
687 #else
688 #define OCFS2_MAX_CTXT_PAGES    (OCFS2_MAX_CLUSTERSIZE / PAGE_SIZE)
689 #endif
690
691 #define OCFS2_MAX_CLUSTERS_PER_PAGE     (PAGE_SIZE / OCFS2_MIN_CLUSTERSIZE)
692
693 struct ocfs2_unwritten_extent {
694         struct list_head        ue_node;
695         struct list_head        ue_ip_node;
696         u32                     ue_cpos;
697         u32                     ue_phys;
698 };
699
700 /*
701  * Describe the state of a single cluster to be written to.
702  */
703 struct ocfs2_write_cluster_desc {
704         u32             c_cpos;
705         u32             c_phys;
706         /*
707          * Give this a unique field because c_phys eventually gets
708          * filled.
709          */
710         unsigned        c_new;
711         unsigned        c_clear_unwritten;
712         unsigned        c_needs_zero;
713 };
714
715 struct ocfs2_write_ctxt {
716         /* Logical cluster position / len of write */
717         u32                             w_cpos;
718         u32                             w_clen;
719
720         /* First cluster allocated in a nonsparse extend */
721         u32                             w_first_new_cpos;
722
723         /* Type of caller. Must be one of buffer, mmap, direct.  */
724         ocfs2_write_type_t              w_type;
725
726         struct ocfs2_write_cluster_desc w_desc[OCFS2_MAX_CLUSTERS_PER_PAGE];
727
728         /*
729          * This is true if page_size > cluster_size.
730          *
731          * It triggers a set of special cases during write which might
732          * have to deal with allocating writes to partial pages.
733          */
734         unsigned int                    w_large_pages;
735
736         /*
737          * Pages involved in this write.
738          *
739          * w_target_page is the page being written to by the user.
740          *
741          * w_pages is an array of pages which always contains
742          * w_target_page, and in the case of an allocating write with
743          * page_size < cluster size, it will contain zero'd and mapped
744          * pages adjacent to w_target_page which need to be written
745          * out in so that future reads from that region will get
746          * zero's.
747          */
748         unsigned int                    w_num_pages;
749         struct page                     *w_pages[OCFS2_MAX_CTXT_PAGES];
750         struct page                     *w_target_page;
751
752         /*
753          * w_target_locked is used for page_mkwrite path indicating no unlocking
754          * against w_target_page in ocfs2_write_end_nolock.
755          */
756         unsigned int                    w_target_locked:1;
757
758         /*
759          * ocfs2_write_end() uses this to know what the real range to
760          * write in the target should be.
761          */
762         unsigned int                    w_target_from;
763         unsigned int                    w_target_to;
764
765         /*
766          * We could use journal_current_handle() but this is cleaner,
767          * IMHO -Mark
768          */
769         handle_t                        *w_handle;
770
771         struct buffer_head              *w_di_bh;
772
773         struct ocfs2_cached_dealloc_ctxt w_dealloc;
774
775         struct list_head                w_unwritten_list;
776         unsigned int                    w_unwritten_count;
777 };
778
779 void ocfs2_unlock_and_free_pages(struct page **pages, int num_pages)
780 {
781         int i;
782
783         for(i = 0; i < num_pages; i++) {
784                 if (pages[i]) {
785                         unlock_page(pages[i]);
786                         mark_page_accessed(pages[i]);
787                         put_page(pages[i]);
788                 }
789         }
790 }
791
792 static void ocfs2_unlock_pages(struct ocfs2_write_ctxt *wc)
793 {
794         int i;
795
796         /*
797          * w_target_locked is only set to true in the page_mkwrite() case.
798          * The intent is to allow us to lock the target page from write_begin()
799          * to write_end(). The caller must hold a ref on w_target_page.
800          */
801         if (wc->w_target_locked) {
802                 BUG_ON(!wc->w_target_page);
803                 for (i = 0; i < wc->w_num_pages; i++) {
804                         if (wc->w_target_page == wc->w_pages[i]) {
805                                 wc->w_pages[i] = NULL;
806                                 break;
807                         }
808                 }
809                 mark_page_accessed(wc->w_target_page);
810                 put_page(wc->w_target_page);
811         }
812         ocfs2_unlock_and_free_pages(wc->w_pages, wc->w_num_pages);
813 }
814
815 static void ocfs2_free_unwritten_list(struct inode *inode,
816                                  struct list_head *head)
817 {
818         struct ocfs2_inode_info *oi = OCFS2_I(inode);
819         struct ocfs2_unwritten_extent *ue = NULL, *tmp = NULL;
820
821         list_for_each_entry_safe(ue, tmp, head, ue_node) {
822                 list_del(&ue->ue_node);
823                 spin_lock(&oi->ip_lock);
824                 list_del(&ue->ue_ip_node);
825                 spin_unlock(&oi->ip_lock);
826                 kfree(ue);
827         }
828 }
829
830 static void ocfs2_free_write_ctxt(struct inode *inode,
831                                   struct ocfs2_write_ctxt *wc)
832 {
833         ocfs2_free_unwritten_list(inode, &wc->w_unwritten_list);
834         ocfs2_unlock_pages(wc);
835         brelse(wc->w_di_bh);
836         kfree(wc);
837 }
838
839 static int ocfs2_alloc_write_ctxt(struct ocfs2_write_ctxt **wcp,
840                                   struct ocfs2_super *osb, loff_t pos,
841                                   unsigned len, ocfs2_write_type_t type,
842                                   struct buffer_head *di_bh)
843 {
844         u32 cend;
845         struct ocfs2_write_ctxt *wc;
846
847         wc = kzalloc(sizeof(struct ocfs2_write_ctxt), GFP_NOFS);
848         if (!wc)
849                 return -ENOMEM;
850
851         wc->w_cpos = pos >> osb->s_clustersize_bits;
852         wc->w_first_new_cpos = UINT_MAX;
853         cend = (pos + len - 1) >> osb->s_clustersize_bits;
854         wc->w_clen = cend - wc->w_cpos + 1;
855         get_bh(di_bh);
856         wc->w_di_bh = di_bh;
857         wc->w_type = type;
858
859         if (unlikely(PAGE_SHIFT > osb->s_clustersize_bits))
860                 wc->w_large_pages = 1;
861         else
862                 wc->w_large_pages = 0;
863
864         ocfs2_init_dealloc_ctxt(&wc->w_dealloc);
865         INIT_LIST_HEAD(&wc->w_unwritten_list);
866
867         *wcp = wc;
868
869         return 0;
870 }
871
872 /*
873  * If a page has any new buffers, zero them out here, and mark them uptodate
874  * and dirty so they'll be written out (in order to prevent uninitialised
875  * block data from leaking). And clear the new bit.
876  */
877 static void ocfs2_zero_new_buffers(struct page *page, unsigned from, unsigned to)
878 {
879         unsigned int block_start, block_end;
880         struct buffer_head *head, *bh;
881
882         BUG_ON(!PageLocked(page));
883         if (!page_has_buffers(page))
884                 return;
885
886         bh = head = page_buffers(page);
887         block_start = 0;
888         do {
889                 block_end = block_start + bh->b_size;
890
891                 if (buffer_new(bh)) {
892                         if (block_end > from && block_start < to) {
893                                 if (!PageUptodate(page)) {
894                                         unsigned start, end;
895
896                                         start = max(from, block_start);
897                                         end = min(to, block_end);
898
899                                         zero_user_segment(page, start, end);
900                                         set_buffer_uptodate(bh);
901                                 }
902
903                                 clear_buffer_new(bh);
904                                 mark_buffer_dirty(bh);
905                         }
906                 }
907
908                 block_start = block_end;
909                 bh = bh->b_this_page;
910         } while (bh != head);
911 }
912
913 /*
914  * Only called when we have a failure during allocating write to write
915  * zero's to the newly allocated region.
916  */
917 static void ocfs2_write_failure(struct inode *inode,
918                                 struct ocfs2_write_ctxt *wc,
919                                 loff_t user_pos, unsigned user_len)
920 {
921         int i;
922         unsigned from = user_pos & (PAGE_SIZE - 1),
923                 to = user_pos + user_len;
924         struct page *tmppage;
925
926         if (wc->w_target_page)
927                 ocfs2_zero_new_buffers(wc->w_target_page, from, to);
928
929         for(i = 0; i < wc->w_num_pages; i++) {
930                 tmppage = wc->w_pages[i];
931
932                 if (tmppage && page_has_buffers(tmppage)) {
933                         if (ocfs2_should_order_data(inode))
934                                 ocfs2_jbd2_inode_add_write(wc->w_handle, inode,
935                                                            user_pos, user_len);
936
937                         block_commit_write(tmppage, from, to);
938                 }
939         }
940 }
941
942 static int ocfs2_prepare_page_for_write(struct inode *inode, u64 *p_blkno,
943                                         struct ocfs2_write_ctxt *wc,
944                                         struct page *page, u32 cpos,
945                                         loff_t user_pos, unsigned user_len,
946                                         int new)
947 {
948         int ret;
949         unsigned int map_from = 0, map_to = 0;
950         unsigned int cluster_start, cluster_end;
951         unsigned int user_data_from = 0, user_data_to = 0;
952
953         ocfs2_figure_cluster_boundaries(OCFS2_SB(inode->i_sb), cpos,
954                                         &cluster_start, &cluster_end);
955
956         /* treat the write as new if the a hole/lseek spanned across
957          * the page boundary.
958          */
959         new = new | ((i_size_read(inode) <= page_offset(page)) &&
960                         (page_offset(page) <= user_pos));
961
962         if (page == wc->w_target_page) {
963                 map_from = user_pos & (PAGE_SIZE - 1);
964                 map_to = map_from + user_len;
965
966                 if (new)
967                         ret = ocfs2_map_page_blocks(page, p_blkno, inode,
968                                                     cluster_start, cluster_end,
969                                                     new);
970                 else
971                         ret = ocfs2_map_page_blocks(page, p_blkno, inode,
972                                                     map_from, map_to, new);
973                 if (ret) {
974                         mlog_errno(ret);
975                         goto out;
976                 }
977
978                 user_data_from = map_from;
979                 user_data_to = map_to;
980                 if (new) {
981                         map_from = cluster_start;
982                         map_to = cluster_end;
983                 }
984         } else {
985                 /*
986                  * If we haven't allocated the new page yet, we
987                  * shouldn't be writing it out without copying user
988                  * data. This is likely a math error from the caller.
989                  */
990                 BUG_ON(!new);
991
992                 map_from = cluster_start;
993                 map_to = cluster_end;
994
995                 ret = ocfs2_map_page_blocks(page, p_blkno, inode,
996                                             cluster_start, cluster_end, new);
997                 if (ret) {
998                         mlog_errno(ret);
999                         goto out;
1000                 }
1001         }
1002
1003         /*
1004          * Parts of newly allocated pages need to be zero'd.
1005          *
1006          * Above, we have also rewritten 'to' and 'from' - as far as
1007          * the rest of the function is concerned, the entire cluster
1008          * range inside of a page needs to be written.
1009          *
1010          * We can skip this if the page is up to date - it's already
1011          * been zero'd from being read in as a hole.
1012          */
1013         if (new && !PageUptodate(page))
1014                 ocfs2_clear_page_regions(page, OCFS2_SB(inode->i_sb),
1015                                          cpos, user_data_from, user_data_to);
1016
1017         flush_dcache_page(page);
1018
1019 out:
1020         return ret;
1021 }
1022
1023 /*
1024  * This function will only grab one clusters worth of pages.
1025  */
1026 static int ocfs2_grab_pages_for_write(struct address_space *mapping,
1027                                       struct ocfs2_write_ctxt *wc,
1028                                       u32 cpos, loff_t user_pos,
1029                                       unsigned user_len, int new,
1030                                       struct page *mmap_page)
1031 {
1032         int ret = 0, i;
1033         unsigned long start, target_index, end_index, index;
1034         struct inode *inode = mapping->host;
1035         loff_t last_byte;
1036
1037         target_index = user_pos >> PAGE_SHIFT;
1038
1039         /*
1040          * Figure out how many pages we'll be manipulating here. For
1041          * non allocating write, we just change the one
1042          * page. Otherwise, we'll need a whole clusters worth.  If we're
1043          * writing past i_size, we only need enough pages to cover the
1044          * last page of the write.
1045          */
1046         if (new) {
1047                 wc->w_num_pages = ocfs2_pages_per_cluster(inode->i_sb);
1048                 start = ocfs2_align_clusters_to_page_index(inode->i_sb, cpos);
1049                 /*
1050                  * We need the index *past* the last page we could possibly
1051                  * touch.  This is the page past the end of the write or
1052                  * i_size, whichever is greater.
1053                  */
1054                 last_byte = max(user_pos + user_len, i_size_read(inode));
1055                 BUG_ON(last_byte < 1);
1056                 end_index = ((last_byte - 1) >> PAGE_SHIFT) + 1;
1057                 if ((start + wc->w_num_pages) > end_index)
1058                         wc->w_num_pages = end_index - start;
1059         } else {
1060                 wc->w_num_pages = 1;
1061                 start = target_index;
1062         }
1063         end_index = (user_pos + user_len - 1) >> PAGE_SHIFT;
1064
1065         for(i = 0; i < wc->w_num_pages; i++) {
1066                 index = start + i;
1067
1068                 if (index >= target_index && index <= end_index &&
1069                     wc->w_type == OCFS2_WRITE_MMAP) {
1070                         /*
1071                          * ocfs2_pagemkwrite() is a little different
1072                          * and wants us to directly use the page
1073                          * passed in.
1074                          */
1075                         lock_page(mmap_page);
1076
1077                         /* Exit and let the caller retry */
1078                         if (mmap_page->mapping != mapping) {
1079                                 WARN_ON(mmap_page->mapping);
1080                                 unlock_page(mmap_page);
1081                                 ret = -EAGAIN;
1082                                 goto out;
1083                         }
1084
1085                         get_page(mmap_page);
1086                         wc->w_pages[i] = mmap_page;
1087                         wc->w_target_locked = true;
1088                 } else if (index >= target_index && index <= end_index &&
1089                            wc->w_type == OCFS2_WRITE_DIRECT) {
1090                         /* Direct write has no mapping page. */
1091                         wc->w_pages[i] = NULL;
1092                         continue;
1093                 } else {
1094                         wc->w_pages[i] = find_or_create_page(mapping, index,
1095                                                              GFP_NOFS);
1096                         if (!wc->w_pages[i]) {
1097                                 ret = -ENOMEM;
1098                                 mlog_errno(ret);
1099                                 goto out;
1100                         }
1101                 }
1102                 wait_for_stable_page(wc->w_pages[i]);
1103
1104                 if (index == target_index)
1105                         wc->w_target_page = wc->w_pages[i];
1106         }
1107 out:
1108         if (ret)
1109                 wc->w_target_locked = false;
1110         return ret;
1111 }
1112
1113 /*
1114  * Prepare a single cluster for write one cluster into the file.
1115  */
1116 static int ocfs2_write_cluster(struct address_space *mapping,
1117                                u32 *phys, unsigned int new,
1118                                unsigned int clear_unwritten,
1119                                unsigned int should_zero,
1120                                struct ocfs2_alloc_context *data_ac,
1121                                struct ocfs2_alloc_context *meta_ac,
1122                                struct ocfs2_write_ctxt *wc, u32 cpos,
1123                                loff_t user_pos, unsigned user_len)
1124 {
1125         int ret, i;
1126         u64 p_blkno;
1127         struct inode *inode = mapping->host;
1128         struct ocfs2_extent_tree et;
1129         int bpc = ocfs2_clusters_to_blocks(inode->i_sb, 1);
1130
1131         if (new) {
1132                 u32 tmp_pos;
1133
1134                 /*
1135                  * This is safe to call with the page locks - it won't take
1136                  * any additional semaphores or cluster locks.
1137                  */
1138                 tmp_pos = cpos;
1139                 ret = ocfs2_add_inode_data(OCFS2_SB(inode->i_sb), inode,
1140                                            &tmp_pos, 1, !clear_unwritten,
1141                                            wc->w_di_bh, wc->w_handle,
1142                                            data_ac, meta_ac, NULL);
1143                 /*
1144                  * This shouldn't happen because we must have already
1145                  * calculated the correct meta data allocation required. The
1146                  * internal tree allocation code should know how to increase
1147                  * transaction credits itself.
1148                  *
1149                  * If need be, we could handle -EAGAIN for a
1150                  * RESTART_TRANS here.
1151                  */
1152                 mlog_bug_on_msg(ret == -EAGAIN,
1153                                 "Inode %llu: EAGAIN return during allocation.\n",
1154                                 (unsigned long long)OCFS2_I(inode)->ip_blkno);
1155                 if (ret < 0) {
1156                         mlog_errno(ret);
1157                         goto out;
1158                 }
1159         } else if (clear_unwritten) {
1160                 ocfs2_init_dinode_extent_tree(&et, INODE_CACHE(inode),
1161                                               wc->w_di_bh);
1162                 ret = ocfs2_mark_extent_written(inode, &et,
1163                                                 wc->w_handle, cpos, 1, *phys,
1164                                                 meta_ac, &wc->w_dealloc);
1165                 if (ret < 0) {
1166                         mlog_errno(ret);
1167                         goto out;
1168                 }
1169         }
1170
1171         /*
1172          * The only reason this should fail is due to an inability to
1173          * find the extent added.
1174          */
1175         ret = ocfs2_get_clusters(inode, cpos, phys, NULL, NULL);
1176         if (ret < 0) {
1177                 mlog(ML_ERROR, "Get physical blkno failed for inode %llu, "
1178                             "at logical cluster %u",
1179                             (unsigned long long)OCFS2_I(inode)->ip_blkno, cpos);
1180                 goto out;
1181         }
1182
1183         BUG_ON(*phys == 0);
1184
1185         p_blkno = ocfs2_clusters_to_blocks(inode->i_sb, *phys);
1186         if (!should_zero)
1187                 p_blkno += (user_pos >> inode->i_sb->s_blocksize_bits) & (u64)(bpc - 1);
1188
1189         for(i = 0; i < wc->w_num_pages; i++) {
1190                 int tmpret;
1191
1192                 /* This is the direct io target page. */
1193                 if (wc->w_pages[i] == NULL) {
1194                         p_blkno++;
1195                         continue;
1196                 }
1197
1198                 tmpret = ocfs2_prepare_page_for_write(inode, &p_blkno, wc,
1199                                                       wc->w_pages[i], cpos,
1200                                                       user_pos, user_len,
1201                                                       should_zero);
1202                 if (tmpret) {
1203                         mlog_errno(tmpret);
1204                         if (ret == 0)
1205                                 ret = tmpret;
1206                 }
1207         }
1208
1209         /*
1210          * We only have cleanup to do in case of allocating write.
1211          */
1212         if (ret && new)
1213                 ocfs2_write_failure(inode, wc, user_pos, user_len);
1214
1215 out:
1216
1217         return ret;
1218 }
1219
1220 static int ocfs2_write_cluster_by_desc(struct address_space *mapping,
1221                                        struct ocfs2_alloc_context *data_ac,
1222                                        struct ocfs2_alloc_context *meta_ac,
1223                                        struct ocfs2_write_ctxt *wc,
1224                                        loff_t pos, unsigned len)
1225 {
1226         int ret, i;
1227         loff_t cluster_off;
1228         unsigned int local_len = len;
1229         struct ocfs2_write_cluster_desc *desc;
1230         struct ocfs2_super *osb = OCFS2_SB(mapping->host->i_sb);
1231
1232         for (i = 0; i < wc->w_clen; i++) {
1233                 desc = &wc->w_desc[i];
1234
1235                 /*
1236                  * We have to make sure that the total write passed in
1237                  * doesn't extend past a single cluster.
1238                  */
1239                 local_len = len;
1240                 cluster_off = pos & (osb->s_clustersize - 1);
1241                 if ((cluster_off + local_len) > osb->s_clustersize)
1242                         local_len = osb->s_clustersize - cluster_off;
1243
1244                 ret = ocfs2_write_cluster(mapping, &desc->c_phys,
1245                                           desc->c_new,
1246                                           desc->c_clear_unwritten,
1247                                           desc->c_needs_zero,
1248                                           data_ac, meta_ac,
1249                                           wc, desc->c_cpos, pos, local_len);
1250                 if (ret) {
1251                         mlog_errno(ret);
1252                         goto out;
1253                 }
1254
1255                 len -= local_len;
1256                 pos += local_len;
1257         }
1258
1259         ret = 0;
1260 out:
1261         return ret;
1262 }
1263
1264 /*
1265  * ocfs2_write_end() wants to know which parts of the target page it
1266  * should complete the write on. It's easiest to compute them ahead of
1267  * time when a more complete view of the write is available.
1268  */
1269 static void ocfs2_set_target_boundaries(struct ocfs2_super *osb,
1270                                         struct ocfs2_write_ctxt *wc,
1271                                         loff_t pos, unsigned len, int alloc)
1272 {
1273         struct ocfs2_write_cluster_desc *desc;
1274
1275         wc->w_target_from = pos & (PAGE_SIZE - 1);
1276         wc->w_target_to = wc->w_target_from + len;
1277
1278         if (alloc == 0)
1279                 return;
1280
1281         /*
1282          * Allocating write - we may have different boundaries based
1283          * on page size and cluster size.
1284          *
1285          * NOTE: We can no longer compute one value from the other as
1286          * the actual write length and user provided length may be
1287          * different.
1288          */
1289
1290         if (wc->w_large_pages) {
1291                 /*
1292                  * We only care about the 1st and last cluster within
1293                  * our range and whether they should be zero'd or not. Either
1294                  * value may be extended out to the start/end of a
1295                  * newly allocated cluster.
1296                  */
1297                 desc = &wc->w_desc[0];
1298                 if (desc->c_needs_zero)
1299                         ocfs2_figure_cluster_boundaries(osb,
1300                                                         desc->c_cpos,
1301                                                         &wc->w_target_from,
1302                                                         NULL);
1303
1304                 desc = &wc->w_desc[wc->w_clen - 1];
1305                 if (desc->c_needs_zero)
1306                         ocfs2_figure_cluster_boundaries(osb,
1307                                                         desc->c_cpos,
1308                                                         NULL,
1309                                                         &wc->w_target_to);
1310         } else {
1311                 wc->w_target_from = 0;
1312                 wc->w_target_to = PAGE_SIZE;
1313         }
1314 }
1315
1316 /*
1317  * Check if this extent is marked UNWRITTEN by direct io. If so, we need not to
1318  * do the zero work. And should not to clear UNWRITTEN since it will be cleared
1319  * by the direct io procedure.
1320  * If this is a new extent that allocated by direct io, we should mark it in
1321  * the ip_unwritten_list.
1322  */
1323 static int ocfs2_unwritten_check(struct inode *inode,
1324                                  struct ocfs2_write_ctxt *wc,
1325                                  struct ocfs2_write_cluster_desc *desc)
1326 {
1327         struct ocfs2_inode_info *oi = OCFS2_I(inode);
1328         struct ocfs2_unwritten_extent *ue = NULL, *new = NULL;
1329         int ret = 0;
1330
1331         if (!desc->c_needs_zero)
1332                 return 0;
1333
1334 retry:
1335         spin_lock(&oi->ip_lock);
1336         /* Needs not to zero no metter buffer or direct. The one who is zero
1337          * the cluster is doing zero. And he will clear unwritten after all
1338          * cluster io finished. */
1339         list_for_each_entry(ue, &oi->ip_unwritten_list, ue_ip_node) {
1340                 if (desc->c_cpos == ue->ue_cpos) {
1341                         BUG_ON(desc->c_new);
1342                         desc->c_needs_zero = 0;
1343                         desc->c_clear_unwritten = 0;
1344                         goto unlock;
1345                 }
1346         }
1347
1348         if (wc->w_type != OCFS2_WRITE_DIRECT)
1349                 goto unlock;
1350
1351         if (new == NULL) {
1352                 spin_unlock(&oi->ip_lock);
1353                 new = kmalloc(sizeof(struct ocfs2_unwritten_extent),
1354                              GFP_NOFS);
1355                 if (new == NULL) {
1356                         ret = -ENOMEM;
1357                         goto out;
1358                 }
1359                 goto retry;
1360         }
1361         /* This direct write will doing zero. */
1362         new->ue_cpos = desc->c_cpos;
1363         new->ue_phys = desc->c_phys;
1364         desc->c_clear_unwritten = 0;
1365         list_add_tail(&new->ue_ip_node, &oi->ip_unwritten_list);
1366         list_add_tail(&new->ue_node, &wc->w_unwritten_list);
1367         wc->w_unwritten_count++;
1368         new = NULL;
1369 unlock:
1370         spin_unlock(&oi->ip_lock);
1371 out:
1372         kfree(new);
1373         return ret;
1374 }
1375
1376 /*
1377  * Populate each single-cluster write descriptor in the write context
1378  * with information about the i/o to be done.
1379  *
1380  * Returns the number of clusters that will have to be allocated, as
1381  * well as a worst case estimate of the number of extent records that
1382  * would have to be created during a write to an unwritten region.
1383  */
1384 static int ocfs2_populate_write_desc(struct inode *inode,
1385                                      struct ocfs2_write_ctxt *wc,
1386                                      unsigned int *clusters_to_alloc,
1387                                      unsigned int *extents_to_split)
1388 {
1389         int ret;
1390         struct ocfs2_write_cluster_desc *desc;
1391         unsigned int num_clusters = 0;
1392         unsigned int ext_flags = 0;
1393         u32 phys = 0;
1394         int i;
1395
1396         *clusters_to_alloc = 0;
1397         *extents_to_split = 0;
1398
1399         for (i = 0; i < wc->w_clen; i++) {
1400                 desc = &wc->w_desc[i];
1401                 desc->c_cpos = wc->w_cpos + i;
1402
1403                 if (num_clusters == 0) {
1404                         /*
1405                          * Need to look up the next extent record.
1406                          */
1407                         ret = ocfs2_get_clusters(inode, desc->c_cpos, &phys,
1408                                                  &num_clusters, &ext_flags);
1409                         if (ret) {
1410                                 mlog_errno(ret);
1411                                 goto out;
1412                         }
1413
1414                         /* We should already CoW the refcountd extent. */
1415                         BUG_ON(ext_flags & OCFS2_EXT_REFCOUNTED);
1416
1417                         /*
1418                          * Assume worst case - that we're writing in
1419                          * the middle of the extent.
1420                          *
1421                          * We can assume that the write proceeds from
1422                          * left to right, in which case the extent
1423                          * insert code is smart enough to coalesce the
1424                          * next splits into the previous records created.
1425                          */
1426                         if (ext_flags & OCFS2_EXT_UNWRITTEN)
1427                                 *extents_to_split = *extents_to_split + 2;
1428                 } else if (phys) {
1429                         /*
1430                          * Only increment phys if it doesn't describe
1431                          * a hole.
1432                          */
1433                         phys++;
1434                 }
1435
1436                 /*
1437                  * If w_first_new_cpos is < UINT_MAX, we have a non-sparse
1438                  * file that got extended.  w_first_new_cpos tells us
1439                  * where the newly allocated clusters are so we can
1440                  * zero them.
1441                  */
1442                 if (desc->c_cpos >= wc->w_first_new_cpos) {
1443                         BUG_ON(phys == 0);
1444                         desc->c_needs_zero = 1;
1445                 }
1446
1447                 desc->c_phys = phys;
1448                 if (phys == 0) {
1449                         desc->c_new = 1;
1450                         desc->c_needs_zero = 1;
1451                         desc->c_clear_unwritten = 1;
1452                         *clusters_to_alloc = *clusters_to_alloc + 1;
1453                 }
1454
1455                 if (ext_flags & OCFS2_EXT_UNWRITTEN) {
1456                         desc->c_clear_unwritten = 1;
1457                         desc->c_needs_zero = 1;
1458                 }
1459
1460                 ret = ocfs2_unwritten_check(inode, wc, desc);
1461                 if (ret) {
1462                         mlog_errno(ret);
1463                         goto out;
1464                 }
1465
1466                 num_clusters--;
1467         }
1468
1469         ret = 0;
1470 out:
1471         return ret;
1472 }
1473
1474 static int ocfs2_write_begin_inline(struct address_space *mapping,
1475                                     struct inode *inode,
1476                                     struct ocfs2_write_ctxt *wc)
1477 {
1478         int ret;
1479         struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
1480         struct page *page;
1481         handle_t *handle;
1482         struct ocfs2_dinode *di = (struct ocfs2_dinode *)wc->w_di_bh->b_data;
1483
1484         handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS);
1485         if (IS_ERR(handle)) {
1486                 ret = PTR_ERR(handle);
1487                 mlog_errno(ret);
1488                 goto out;
1489         }
1490
1491         page = find_or_create_page(mapping, 0, GFP_NOFS);
1492         if (!page) {
1493                 ocfs2_commit_trans(osb, handle);
1494                 ret = -ENOMEM;
1495                 mlog_errno(ret);
1496                 goto out;
1497         }
1498         /*
1499          * If we don't set w_num_pages then this page won't get unlocked
1500          * and freed on cleanup of the write context.
1501          */
1502         wc->w_pages[0] = wc->w_target_page = page;
1503         wc->w_num_pages = 1;
1504
1505         ret = ocfs2_journal_access_di(handle, INODE_CACHE(inode), wc->w_di_bh,
1506                                       OCFS2_JOURNAL_ACCESS_WRITE);
1507         if (ret) {
1508                 ocfs2_commit_trans(osb, handle);
1509
1510                 mlog_errno(ret);
1511                 goto out;
1512         }
1513
1514         if (!(OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL))
1515                 ocfs2_set_inode_data_inline(inode, di);
1516
1517         if (!PageUptodate(page)) {
1518                 ret = ocfs2_read_inline_data(inode, page, wc->w_di_bh);
1519                 if (ret) {
1520                         ocfs2_commit_trans(osb, handle);
1521
1522                         goto out;
1523                 }
1524         }
1525
1526         wc->w_handle = handle;
1527 out:
1528         return ret;
1529 }
1530
1531 int ocfs2_size_fits_inline_data(struct buffer_head *di_bh, u64 new_size)
1532 {
1533         struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data;
1534
1535         if (new_size <= le16_to_cpu(di->id2.i_data.id_count))
1536                 return 1;
1537         return 0;
1538 }
1539
1540 static int ocfs2_try_to_write_inline_data(struct address_space *mapping,
1541                                           struct inode *inode, loff_t pos,
1542                                           unsigned len, struct page *mmap_page,
1543                                           struct ocfs2_write_ctxt *wc)
1544 {
1545         int ret, written = 0;
1546         loff_t end = pos + len;
1547         struct ocfs2_inode_info *oi = OCFS2_I(inode);
1548         struct ocfs2_dinode *di = NULL;
1549
1550         trace_ocfs2_try_to_write_inline_data((unsigned long long)oi->ip_blkno,
1551                                              len, (unsigned long long)pos,
1552                                              oi->ip_dyn_features);
1553
1554         /*
1555          * Handle inodes which already have inline data 1st.
1556          */
1557         if (oi->ip_dyn_features & OCFS2_INLINE_DATA_FL) {
1558                 if (mmap_page == NULL &&
1559                     ocfs2_size_fits_inline_data(wc->w_di_bh, end))
1560                         goto do_inline_write;
1561
1562                 /*
1563                  * The write won't fit - we have to give this inode an
1564                  * inline extent list now.
1565                  */
1566                 ret = ocfs2_convert_inline_data_to_extents(inode, wc->w_di_bh);
1567                 if (ret)
1568                         mlog_errno(ret);
1569                 goto out;
1570         }
1571
1572         /*
1573          * Check whether the inode can accept inline data.
1574          */
1575         if (oi->ip_clusters != 0 || i_size_read(inode) != 0)
1576                 return 0;
1577
1578         /*
1579          * Check whether the write can fit.
1580          */
1581         di = (struct ocfs2_dinode *)wc->w_di_bh->b_data;
1582         if (mmap_page ||
1583             end > ocfs2_max_inline_data_with_xattr(inode->i_sb, di))
1584                 return 0;
1585
1586 do_inline_write:
1587         ret = ocfs2_write_begin_inline(mapping, inode, wc);
1588         if (ret) {
1589                 mlog_errno(ret);
1590                 goto out;
1591         }
1592
1593         /*
1594          * This signals to the caller that the data can be written
1595          * inline.
1596          */
1597         written = 1;
1598 out:
1599         return written ? written : ret;
1600 }
1601
1602 /*
1603  * This function only does anything for file systems which can't
1604  * handle sparse files.
1605  *
1606  * What we want to do here is fill in any hole between the current end
1607  * of allocation and the end of our write. That way the rest of the
1608  * write path can treat it as an non-allocating write, which has no
1609  * special case code for sparse/nonsparse files.
1610  */
1611 static int ocfs2_expand_nonsparse_inode(struct inode *inode,
1612                                         struct buffer_head *di_bh,
1613                                         loff_t pos, unsigned len,
1614                                         struct ocfs2_write_ctxt *wc)
1615 {
1616         int ret;
1617         loff_t newsize = pos + len;
1618
1619         BUG_ON(ocfs2_sparse_alloc(OCFS2_SB(inode->i_sb)));
1620
1621         if (newsize <= i_size_read(inode))
1622                 return 0;
1623
1624         ret = ocfs2_extend_no_holes(inode, di_bh, newsize, pos);
1625         if (ret)
1626                 mlog_errno(ret);
1627
1628         /* There is no wc if this is call from direct. */
1629         if (wc)
1630                 wc->w_first_new_cpos =
1631                         ocfs2_clusters_for_bytes(inode->i_sb, i_size_read(inode));
1632
1633         return ret;
1634 }
1635
1636 static int ocfs2_zero_tail(struct inode *inode, struct buffer_head *di_bh,
1637                            loff_t pos)
1638 {
1639         int ret = 0;
1640
1641         BUG_ON(!ocfs2_sparse_alloc(OCFS2_SB(inode->i_sb)));
1642         if (pos > i_size_read(inode))
1643                 ret = ocfs2_zero_extend(inode, di_bh, pos);
1644
1645         return ret;
1646 }
1647
1648 int ocfs2_write_begin_nolock(struct address_space *mapping,
1649                              loff_t pos, unsigned len, ocfs2_write_type_t type,
1650                              struct page **pagep, void **fsdata,
1651                              struct buffer_head *di_bh, struct page *mmap_page)
1652 {
1653         int ret, cluster_of_pages, credits = OCFS2_INODE_UPDATE_CREDITS;
1654         unsigned int clusters_to_alloc, extents_to_split, clusters_need = 0;
1655         struct ocfs2_write_ctxt *wc;
1656         struct inode *inode = mapping->host;
1657         struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
1658         struct ocfs2_dinode *di;
1659         struct ocfs2_alloc_context *data_ac = NULL;
1660         struct ocfs2_alloc_context *meta_ac = NULL;
1661         handle_t *handle;
1662         struct ocfs2_extent_tree et;
1663         int try_free = 1, ret1;
1664
1665 try_again:
1666         ret = ocfs2_alloc_write_ctxt(&wc, osb, pos, len, type, di_bh);
1667         if (ret) {
1668                 mlog_errno(ret);
1669                 return ret;
1670         }
1671
1672         if (ocfs2_supports_inline_data(osb)) {
1673                 ret = ocfs2_try_to_write_inline_data(mapping, inode, pos, len,
1674                                                      mmap_page, wc);
1675                 if (ret == 1) {
1676                         ret = 0;
1677                         goto success;
1678                 }
1679                 if (ret < 0) {
1680                         mlog_errno(ret);
1681                         goto out;
1682                 }
1683         }
1684
1685         /* Direct io change i_size late, should not zero tail here. */
1686         if (type != OCFS2_WRITE_DIRECT) {
1687                 if (ocfs2_sparse_alloc(osb))
1688                         ret = ocfs2_zero_tail(inode, di_bh, pos);
1689                 else
1690                         ret = ocfs2_expand_nonsparse_inode(inode, di_bh, pos,
1691                                                            len, wc);
1692                 if (ret) {
1693                         mlog_errno(ret);
1694                         goto out;
1695                 }
1696         }
1697
1698         ret = ocfs2_check_range_for_refcount(inode, pos, len);
1699         if (ret < 0) {
1700                 mlog_errno(ret);
1701                 goto out;
1702         } else if (ret == 1) {
1703                 clusters_need = wc->w_clen;
1704                 ret = ocfs2_refcount_cow(inode, di_bh,
1705                                          wc->w_cpos, wc->w_clen, UINT_MAX);
1706                 if (ret) {
1707                         mlog_errno(ret);
1708                         goto out;
1709                 }
1710         }
1711
1712         ret = ocfs2_populate_write_desc(inode, wc, &clusters_to_alloc,
1713                                         &extents_to_split);
1714         if (ret) {
1715                 mlog_errno(ret);
1716                 goto out;
1717         }
1718         clusters_need += clusters_to_alloc;
1719
1720         di = (struct ocfs2_dinode *)wc->w_di_bh->b_data;
1721
1722         trace_ocfs2_write_begin_nolock(
1723                         (unsigned long long)OCFS2_I(inode)->ip_blkno,
1724                         (long long)i_size_read(inode),
1725                         le32_to_cpu(di->i_clusters),
1726                         pos, len, type, mmap_page,
1727                         clusters_to_alloc, extents_to_split);
1728
1729         /*
1730          * We set w_target_from, w_target_to here so that
1731          * ocfs2_write_end() knows which range in the target page to
1732          * write out. An allocation requires that we write the entire
1733          * cluster range.
1734          */
1735         if (clusters_to_alloc || extents_to_split) {
1736                 /*
1737                  * XXX: We are stretching the limits of
1738                  * ocfs2_lock_allocators(). It greatly over-estimates
1739                  * the work to be done.
1740                  */
1741                 ocfs2_init_dinode_extent_tree(&et, INODE_CACHE(inode),
1742                                               wc->w_di_bh);
1743                 ret = ocfs2_lock_allocators(inode, &et,
1744                                             clusters_to_alloc, extents_to_split,
1745                                             &data_ac, &meta_ac);
1746                 if (ret) {
1747                         mlog_errno(ret);
1748                         goto out;
1749                 }
1750
1751                 if (data_ac)
1752                         data_ac->ac_resv = &OCFS2_I(inode)->ip_la_data_resv;
1753
1754                 credits = ocfs2_calc_extend_credits(inode->i_sb,
1755                                                     &di->id2.i_list);
1756         } else if (type == OCFS2_WRITE_DIRECT)
1757                 /* direct write needs not to start trans if no extents alloc. */
1758                 goto success;
1759
1760         /*
1761          * We have to zero sparse allocated clusters, unwritten extent clusters,
1762          * and non-sparse clusters we just extended.  For non-sparse writes,
1763          * we know zeros will only be needed in the first and/or last cluster.
1764          */
1765         if (wc->w_clen && (wc->w_desc[0].c_needs_zero ||
1766                            wc->w_desc[wc->w_clen - 1].c_needs_zero))
1767                 cluster_of_pages = 1;
1768         else
1769                 cluster_of_pages = 0;
1770
1771         ocfs2_set_target_boundaries(osb, wc, pos, len, cluster_of_pages);
1772
1773         handle = ocfs2_start_trans(osb, credits);
1774         if (IS_ERR(handle)) {
1775                 ret = PTR_ERR(handle);
1776                 mlog_errno(ret);
1777                 goto out;
1778         }
1779
1780         wc->w_handle = handle;
1781
1782         if (clusters_to_alloc) {
1783                 ret = dquot_alloc_space_nodirty(inode,
1784                         ocfs2_clusters_to_bytes(osb->sb, clusters_to_alloc));
1785                 if (ret)
1786                         goto out_commit;
1787         }
1788
1789         ret = ocfs2_journal_access_di(handle, INODE_CACHE(inode), wc->w_di_bh,
1790                                       OCFS2_JOURNAL_ACCESS_WRITE);
1791         if (ret) {
1792                 mlog_errno(ret);
1793                 goto out_quota;
1794         }
1795
1796         /*
1797          * Fill our page array first. That way we've grabbed enough so
1798          * that we can zero and flush if we error after adding the
1799          * extent.
1800          */
1801         ret = ocfs2_grab_pages_for_write(mapping, wc, wc->w_cpos, pos, len,
1802                                          cluster_of_pages, mmap_page);
1803         if (ret && ret != -EAGAIN) {
1804                 mlog_errno(ret);
1805                 goto out_quota;
1806         }
1807
1808         /*
1809          * ocfs2_grab_pages_for_write() returns -EAGAIN if it could not lock
1810          * the target page. In this case, we exit with no error and no target
1811          * page. This will trigger the caller, page_mkwrite(), to re-try
1812          * the operation.
1813          */
1814         if (ret == -EAGAIN) {
1815                 BUG_ON(wc->w_target_page);
1816                 ret = 0;
1817                 goto out_quota;
1818         }
1819
1820         ret = ocfs2_write_cluster_by_desc(mapping, data_ac, meta_ac, wc, pos,
1821                                           len);
1822         if (ret) {
1823                 mlog_errno(ret);
1824                 goto out_quota;
1825         }
1826
1827         if (data_ac)
1828                 ocfs2_free_alloc_context(data_ac);
1829         if (meta_ac)
1830                 ocfs2_free_alloc_context(meta_ac);
1831
1832 success:
1833         if (pagep)
1834                 *pagep = wc->w_target_page;
1835         *fsdata = wc;
1836         return 0;
1837 out_quota:
1838         if (clusters_to_alloc)
1839                 dquot_free_space(inode,
1840                           ocfs2_clusters_to_bytes(osb->sb, clusters_to_alloc));
1841 out_commit:
1842         ocfs2_commit_trans(osb, handle);
1843
1844 out:
1845         /*
1846          * The mmapped page won't be unlocked in ocfs2_free_write_ctxt(),
1847          * even in case of error here like ENOSPC and ENOMEM. So, we need
1848          * to unlock the target page manually to prevent deadlocks when
1849          * retrying again on ENOSPC, or when returning non-VM_FAULT_LOCKED
1850          * to VM code.
1851          */
1852         if (wc->w_target_locked)
1853                 unlock_page(mmap_page);
1854
1855         ocfs2_free_write_ctxt(inode, wc);
1856
1857         if (data_ac) {
1858                 ocfs2_free_alloc_context(data_ac);
1859                 data_ac = NULL;
1860         }
1861         if (meta_ac) {
1862                 ocfs2_free_alloc_context(meta_ac);
1863                 meta_ac = NULL;
1864         }
1865
1866         if (ret == -ENOSPC && try_free) {
1867                 /*
1868                  * Try to free some truncate log so that we can have enough
1869                  * clusters to allocate.
1870                  */
1871                 try_free = 0;
1872
1873                 ret1 = ocfs2_try_to_free_truncate_log(osb, clusters_need);
1874                 if (ret1 == 1)
1875                         goto try_again;
1876
1877                 if (ret1 < 0)
1878                         mlog_errno(ret1);
1879         }
1880
1881         return ret;
1882 }
1883
1884 static int ocfs2_write_begin(struct file *file, struct address_space *mapping,
1885                              loff_t pos, unsigned len, unsigned flags,
1886                              struct page **pagep, void **fsdata)
1887 {
1888         int ret;
1889         struct buffer_head *di_bh = NULL;
1890         struct inode *inode = mapping->host;
1891
1892         ret = ocfs2_inode_lock(inode, &di_bh, 1);
1893         if (ret) {
1894                 mlog_errno(ret);
1895                 return ret;
1896         }
1897
1898         /*
1899          * Take alloc sem here to prevent concurrent lookups. That way
1900          * the mapping, zeroing and tree manipulation within
1901          * ocfs2_write() will be safe against ->readpage(). This
1902          * should also serve to lock out allocation from a shared
1903          * writeable region.
1904          */
1905         down_write(&OCFS2_I(inode)->ip_alloc_sem);
1906
1907         ret = ocfs2_write_begin_nolock(mapping, pos, len, OCFS2_WRITE_BUFFER,
1908                                        pagep, fsdata, di_bh, NULL);
1909         if (ret) {
1910                 mlog_errno(ret);
1911                 goto out_fail;
1912         }
1913
1914         brelse(di_bh);
1915
1916         return 0;
1917
1918 out_fail:
1919         up_write(&OCFS2_I(inode)->ip_alloc_sem);
1920
1921         brelse(di_bh);
1922         ocfs2_inode_unlock(inode, 1);
1923
1924         return ret;
1925 }
1926
1927 static void ocfs2_write_end_inline(struct inode *inode, loff_t pos,
1928                                    unsigned len, unsigned *copied,
1929                                    struct ocfs2_dinode *di,
1930                                    struct ocfs2_write_ctxt *wc)
1931 {
1932         void *kaddr;
1933
1934         if (unlikely(*copied < len)) {
1935                 if (!PageUptodate(wc->w_target_page)) {
1936                         *copied = 0;
1937                         return;
1938                 }
1939         }
1940
1941         kaddr = kmap_atomic(wc->w_target_page);
1942         memcpy(di->id2.i_data.id_data + pos, kaddr + pos, *copied);
1943         kunmap_atomic(kaddr);
1944
1945         trace_ocfs2_write_end_inline(
1946              (unsigned long long)OCFS2_I(inode)->ip_blkno,
1947              (unsigned long long)pos, *copied,
1948              le16_to_cpu(di->id2.i_data.id_count),
1949              le16_to_cpu(di->i_dyn_features));
1950 }
1951
1952 int ocfs2_write_end_nolock(struct address_space *mapping,
1953                            loff_t pos, unsigned len, unsigned copied, void *fsdata)
1954 {
1955         int i, ret;
1956         unsigned from, to, start = pos & (PAGE_SIZE - 1);
1957         struct inode *inode = mapping->host;
1958         struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
1959         struct ocfs2_write_ctxt *wc = fsdata;
1960         struct ocfs2_dinode *di = (struct ocfs2_dinode *)wc->w_di_bh->b_data;
1961         handle_t *handle = wc->w_handle;
1962         struct page *tmppage;
1963
1964         BUG_ON(!list_empty(&wc->w_unwritten_list));
1965
1966         if (handle) {
1967                 ret = ocfs2_journal_access_di(handle, INODE_CACHE(inode),
1968                                 wc->w_di_bh, OCFS2_JOURNAL_ACCESS_WRITE);
1969                 if (ret) {
1970                         copied = ret;
1971                         mlog_errno(ret);
1972                         goto out;
1973                 }
1974         }
1975
1976         if (OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL) {
1977                 ocfs2_write_end_inline(inode, pos, len, &copied, di, wc);
1978                 goto out_write_size;
1979         }
1980
1981         if (unlikely(copied < len) && wc->w_target_page) {
1982                 if (!PageUptodate(wc->w_target_page))
1983                         copied = 0;
1984
1985                 ocfs2_zero_new_buffers(wc->w_target_page, start+copied,
1986                                        start+len);
1987         }
1988         if (wc->w_target_page)
1989                 flush_dcache_page(wc->w_target_page);
1990
1991         for(i = 0; i < wc->w_num_pages; i++) {
1992                 tmppage = wc->w_pages[i];
1993
1994                 /* This is the direct io target page. */
1995                 if (tmppage == NULL)
1996                         continue;
1997
1998                 if (tmppage == wc->w_target_page) {
1999                         from = wc->w_target_from;
2000                         to = wc->w_target_to;
2001
2002                         BUG_ON(from > PAGE_SIZE ||
2003                                to > PAGE_SIZE ||
2004                                to < from);
2005                 } else {
2006                         /*
2007                          * Pages adjacent to the target (if any) imply
2008                          * a hole-filling write in which case we want
2009                          * to flush their entire range.
2010                          */
2011                         from = 0;
2012                         to = PAGE_SIZE;
2013                 }
2014
2015                 if (page_has_buffers(tmppage)) {
2016                         if (handle && ocfs2_should_order_data(inode)) {
2017                                 loff_t start_byte =
2018                                         ((loff_t)tmppage->index << PAGE_SHIFT) +
2019                                         from;
2020                                 loff_t length = to - from;
2021                                 ocfs2_jbd2_inode_add_write(handle, inode,
2022                                                            start_byte, length);
2023                         }
2024                         block_commit_write(tmppage, from, to);
2025                 }
2026         }
2027
2028 out_write_size:
2029         /* Direct io do not update i_size here. */
2030         if (wc->w_type != OCFS2_WRITE_DIRECT) {
2031                 pos += copied;
2032                 if (pos > i_size_read(inode)) {
2033                         i_size_write(inode, pos);
2034                         mark_inode_dirty(inode);
2035                 }
2036                 inode->i_blocks = ocfs2_inode_sector_count(inode);
2037                 di->i_size = cpu_to_le64((u64)i_size_read(inode));
2038                 inode->i_mtime = inode->i_ctime = current_time(inode);
2039                 di->i_mtime = di->i_ctime = cpu_to_le64(inode->i_mtime.tv_sec);
2040                 di->i_mtime_nsec = di->i_ctime_nsec = cpu_to_le32(inode->i_mtime.tv_nsec);
2041                 if (handle)
2042                         ocfs2_update_inode_fsync_trans(handle, inode, 1);
2043         }
2044         if (handle)
2045                 ocfs2_journal_dirty(handle, wc->w_di_bh);
2046
2047 out:
2048         /* unlock pages before dealloc since it needs acquiring j_trans_barrier
2049          * lock, or it will cause a deadlock since journal commit threads holds
2050          * this lock and will ask for the page lock when flushing the data.
2051          * put it here to preserve the unlock order.
2052          */
2053         ocfs2_unlock_pages(wc);
2054
2055         if (handle)
2056                 ocfs2_commit_trans(osb, handle);
2057
2058         ocfs2_run_deallocs(osb, &wc->w_dealloc);
2059
2060         brelse(wc->w_di_bh);
2061         kfree(wc);
2062
2063         return copied;
2064 }
2065
2066 static int ocfs2_write_end(struct file *file, struct address_space *mapping,
2067                            loff_t pos, unsigned len, unsigned copied,
2068                            struct page *page, void *fsdata)
2069 {
2070         int ret;
2071         struct inode *inode = mapping->host;
2072
2073         ret = ocfs2_write_end_nolock(mapping, pos, len, copied, fsdata);
2074
2075         up_write(&OCFS2_I(inode)->ip_alloc_sem);
2076         ocfs2_inode_unlock(inode, 1);
2077
2078         return ret;
2079 }
2080
2081 struct ocfs2_dio_write_ctxt {
2082         struct list_head        dw_zero_list;
2083         unsigned                dw_zero_count;
2084         int                     dw_orphaned;
2085         pid_t                   dw_writer_pid;
2086 };
2087
2088 static struct ocfs2_dio_write_ctxt *
2089 ocfs2_dio_alloc_write_ctx(struct buffer_head *bh, int *alloc)
2090 {
2091         struct ocfs2_dio_write_ctxt *dwc = NULL;
2092
2093         if (bh->b_private)
2094                 return bh->b_private;
2095
2096         dwc = kmalloc(sizeof(struct ocfs2_dio_write_ctxt), GFP_NOFS);
2097         if (dwc == NULL)
2098                 return NULL;
2099         INIT_LIST_HEAD(&dwc->dw_zero_list);
2100         dwc->dw_zero_count = 0;
2101         dwc->dw_orphaned = 0;
2102         dwc->dw_writer_pid = task_pid_nr(current);
2103         bh->b_private = dwc;
2104         *alloc = 1;
2105
2106         return dwc;
2107 }
2108
2109 static void ocfs2_dio_free_write_ctx(struct inode *inode,
2110                                      struct ocfs2_dio_write_ctxt *dwc)
2111 {
2112         ocfs2_free_unwritten_list(inode, &dwc->dw_zero_list);
2113         kfree(dwc);
2114 }
2115
2116 /*
2117  * TODO: Make this into a generic get_blocks function.
2118  *
2119  * From do_direct_io in direct-io.c:
2120  *  "So what we do is to permit the ->get_blocks function to populate
2121  *   bh.b_size with the size of IO which is permitted at this offset and
2122  *   this i_blkbits."
2123  *
2124  * This function is called directly from get_more_blocks in direct-io.c.
2125  *
2126  * called like this: dio->get_blocks(dio->inode, fs_startblk,
2127  *                                      fs_count, map_bh, dio->rw == WRITE);
2128  */
2129 static int ocfs2_dio_wr_get_block(struct inode *inode, sector_t iblock,
2130                                struct buffer_head *bh_result, int create)
2131 {
2132         struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
2133         struct ocfs2_inode_info *oi = OCFS2_I(inode);
2134         struct ocfs2_write_ctxt *wc;
2135         struct ocfs2_write_cluster_desc *desc = NULL;
2136         struct ocfs2_dio_write_ctxt *dwc = NULL;
2137         struct buffer_head *di_bh = NULL;
2138         u64 p_blkno;
2139         unsigned int i_blkbits = inode->i_sb->s_blocksize_bits;
2140         loff_t pos = iblock << i_blkbits;
2141         sector_t endblk = (i_size_read(inode) - 1) >> i_blkbits;
2142         unsigned len, total_len = bh_result->b_size;
2143         int ret = 0, first_get_block = 0;
2144
2145         len = osb->s_clustersize - (pos & (osb->s_clustersize - 1));
2146         len = min(total_len, len);
2147
2148         /*
2149          * bh_result->b_size is count in get_more_blocks according to write
2150          * "pos" and "end", we need map twice to return different buffer state:
2151          * 1. area in file size, not set NEW;
2152          * 2. area out file size, set  NEW.
2153          *
2154          *                 iblock    endblk
2155          * |--------|---------|---------|---------
2156          * |<-------area in file------->|
2157          */
2158
2159         if ((iblock <= endblk) &&
2160             ((iblock + ((len - 1) >> i_blkbits)) > endblk))
2161                 len = (endblk - iblock + 1) << i_blkbits;
2162
2163         mlog(0, "get block of %lu at %llu:%u req %u\n",
2164                         inode->i_ino, pos, len, total_len);
2165
2166         /*
2167          * Because we need to change file size in ocfs2_dio_end_io_write(), or
2168          * we may need to add it to orphan dir. So can not fall to fast path
2169          * while file size will be changed.
2170          */
2171         if (pos + total_len <= i_size_read(inode)) {
2172
2173                 /* This is the fast path for re-write. */
2174                 ret = ocfs2_lock_get_block(inode, iblock, bh_result, create);
2175                 if (buffer_mapped(bh_result) &&
2176                     !buffer_new(bh_result) &&
2177                     ret == 0)
2178                         goto out;
2179
2180                 /* Clear state set by ocfs2_get_block. */
2181                 bh_result->b_state = 0;
2182         }
2183
2184         dwc = ocfs2_dio_alloc_write_ctx(bh_result, &first_get_block);
2185         if (unlikely(dwc == NULL)) {
2186                 ret = -ENOMEM;
2187                 mlog_errno(ret);
2188                 goto out;
2189         }
2190
2191         if (ocfs2_clusters_for_bytes(inode->i_sb, pos + total_len) >
2192             ocfs2_clusters_for_bytes(inode->i_sb, i_size_read(inode)) &&
2193             !dwc->dw_orphaned) {
2194                 /*
2195                  * when we are going to alloc extents beyond file size, add the
2196                  * inode to orphan dir, so we can recall those spaces when
2197                  * system crashed during write.
2198                  */
2199                 ret = ocfs2_add_inode_to_orphan(osb, inode);
2200                 if (ret < 0) {
2201                         mlog_errno(ret);
2202                         goto out;
2203                 }
2204                 dwc->dw_orphaned = 1;
2205         }
2206
2207         ret = ocfs2_inode_lock(inode, &di_bh, 1);
2208         if (ret) {
2209                 mlog_errno(ret);
2210                 goto out;
2211         }
2212
2213         down_write(&oi->ip_alloc_sem);
2214
2215         if (first_get_block) {
2216                 if (ocfs2_sparse_alloc(osb))
2217                         ret = ocfs2_zero_tail(inode, di_bh, pos);
2218                 else
2219                         ret = ocfs2_expand_nonsparse_inode(inode, di_bh, pos,
2220                                                            total_len, NULL);
2221                 if (ret < 0) {
2222                         mlog_errno(ret);
2223                         goto unlock;
2224                 }
2225         }
2226
2227         ret = ocfs2_write_begin_nolock(inode->i_mapping, pos, len,
2228                                        OCFS2_WRITE_DIRECT, NULL,
2229                                        (void **)&wc, di_bh, NULL);
2230         if (ret) {
2231                 mlog_errno(ret);
2232                 goto unlock;
2233         }
2234
2235         desc = &wc->w_desc[0];
2236
2237         p_blkno = ocfs2_clusters_to_blocks(inode->i_sb, desc->c_phys);
2238         BUG_ON(p_blkno == 0);
2239         p_blkno += iblock & (u64)(ocfs2_clusters_to_blocks(inode->i_sb, 1) - 1);
2240
2241         map_bh(bh_result, inode->i_sb, p_blkno);
2242         bh_result->b_size = len;
2243         if (desc->c_needs_zero)
2244                 set_buffer_new(bh_result);
2245
2246         if (iblock > endblk)
2247                 set_buffer_new(bh_result);
2248
2249         /* May sleep in end_io. It should not happen in a irq context. So defer
2250          * it to dio work queue. */
2251         set_buffer_defer_completion(bh_result);
2252
2253         if (!list_empty(&wc->w_unwritten_list)) {
2254                 struct ocfs2_unwritten_extent *ue = NULL;
2255
2256                 ue = list_first_entry(&wc->w_unwritten_list,
2257                                       struct ocfs2_unwritten_extent,
2258                                       ue_node);
2259                 BUG_ON(ue->ue_cpos != desc->c_cpos);
2260                 /* The physical address may be 0, fill it. */
2261                 ue->ue_phys = desc->c_phys;
2262
2263                 list_splice_tail_init(&wc->w_unwritten_list, &dwc->dw_zero_list);
2264                 dwc->dw_zero_count += wc->w_unwritten_count;
2265         }
2266
2267         ret = ocfs2_write_end_nolock(inode->i_mapping, pos, len, len, wc);
2268         BUG_ON(ret != len);
2269         ret = 0;
2270 unlock:
2271         up_write(&oi->ip_alloc_sem);
2272         ocfs2_inode_unlock(inode, 1);
2273         brelse(di_bh);
2274 out:
2275         if (ret < 0)
2276                 ret = -EIO;
2277         return ret;
2278 }
2279
2280 static int ocfs2_dio_end_io_write(struct inode *inode,
2281                                   struct ocfs2_dio_write_ctxt *dwc,
2282                                   loff_t offset,
2283                                   ssize_t bytes)
2284 {
2285         struct ocfs2_cached_dealloc_ctxt dealloc;
2286         struct ocfs2_extent_tree et;
2287         struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
2288         struct ocfs2_inode_info *oi = OCFS2_I(inode);
2289         struct ocfs2_unwritten_extent *ue = NULL;
2290         struct buffer_head *di_bh = NULL;
2291         struct ocfs2_dinode *di;
2292         struct ocfs2_alloc_context *data_ac = NULL;
2293         struct ocfs2_alloc_context *meta_ac = NULL;
2294         handle_t *handle = NULL;
2295         loff_t end = offset + bytes;
2296         int ret = 0, credits = 0;
2297
2298         ocfs2_init_dealloc_ctxt(&dealloc);
2299
2300         /* We do clear unwritten, delete orphan, change i_size here. If neither
2301          * of these happen, we can skip all this. */
2302         if (list_empty(&dwc->dw_zero_list) &&
2303             end <= i_size_read(inode) &&
2304             !dwc->dw_orphaned)
2305                 goto out;
2306
2307         ret = ocfs2_inode_lock(inode, &di_bh, 1);
2308         if (ret < 0) {
2309                 mlog_errno(ret);
2310                 goto out;
2311         }
2312
2313         down_write(&oi->ip_alloc_sem);
2314
2315         /* Delete orphan before acquire i_mutex. */
2316         if (dwc->dw_orphaned) {
2317                 BUG_ON(dwc->dw_writer_pid != task_pid_nr(current));
2318
2319                 end = end > i_size_read(inode) ? end : 0;
2320
2321                 ret = ocfs2_del_inode_from_orphan(osb, inode, di_bh,
2322                                 !!end, end);
2323                 if (ret < 0)
2324                         mlog_errno(ret);
2325         }
2326
2327         di = (struct ocfs2_dinode *)di_bh->b_data;
2328
2329         ocfs2_init_dinode_extent_tree(&et, INODE_CACHE(inode), di_bh);
2330
2331         /* Attach dealloc with extent tree in case that we may reuse extents
2332          * which are already unlinked from current extent tree due to extent
2333          * rotation and merging.
2334          */
2335         et.et_dealloc = &dealloc;
2336
2337         ret = ocfs2_lock_allocators(inode, &et, 0, dwc->dw_zero_count*2,
2338                                     &data_ac, &meta_ac);
2339         if (ret) {
2340                 mlog_errno(ret);
2341                 goto unlock;
2342         }
2343
2344         credits = ocfs2_calc_extend_credits(inode->i_sb, &di->id2.i_list);
2345
2346         handle = ocfs2_start_trans(osb, credits);
2347         if (IS_ERR(handle)) {
2348                 ret = PTR_ERR(handle);
2349                 mlog_errno(ret);
2350                 goto unlock;
2351         }
2352         ret = ocfs2_journal_access_di(handle, INODE_CACHE(inode), di_bh,
2353                                       OCFS2_JOURNAL_ACCESS_WRITE);
2354         if (ret) {
2355                 mlog_errno(ret);
2356                 goto commit;
2357         }
2358
2359         list_for_each_entry(ue, &dwc->dw_zero_list, ue_node) {
2360                 ret = ocfs2_mark_extent_written(inode, &et, handle,
2361                                                 ue->ue_cpos, 1,
2362                                                 ue->ue_phys,
2363                                                 meta_ac, &dealloc);
2364                 if (ret < 0) {
2365                         mlog_errno(ret);
2366                         break;
2367                 }
2368         }
2369
2370         if (end > i_size_read(inode)) {
2371                 ret = ocfs2_set_inode_size(handle, inode, di_bh, end);
2372                 if (ret < 0)
2373                         mlog_errno(ret);
2374         }
2375 commit:
2376         ocfs2_commit_trans(osb, handle);
2377 unlock:
2378         up_write(&oi->ip_alloc_sem);
2379         ocfs2_inode_unlock(inode, 1);
2380         brelse(di_bh);
2381 out:
2382         if (data_ac)
2383                 ocfs2_free_alloc_context(data_ac);
2384         if (meta_ac)
2385                 ocfs2_free_alloc_context(meta_ac);
2386         ocfs2_run_deallocs(osb, &dealloc);
2387         ocfs2_dio_free_write_ctx(inode, dwc);
2388
2389         return ret;
2390 }
2391
2392 /*
2393  * ocfs2_dio_end_io is called by the dio core when a dio is finished.  We're
2394  * particularly interested in the aio/dio case.  We use the rw_lock DLM lock
2395  * to protect io on one node from truncation on another.
2396  */
2397 static int ocfs2_dio_end_io(struct kiocb *iocb,
2398                             loff_t offset,
2399                             ssize_t bytes,
2400                             void *private)
2401 {
2402         struct inode *inode = file_inode(iocb->ki_filp);
2403         int level;
2404         int ret = 0;
2405
2406         /* this io's submitter should not have unlocked this before we could */
2407         BUG_ON(!ocfs2_iocb_is_rw_locked(iocb));
2408
2409         if (bytes <= 0)
2410                 mlog_ratelimited(ML_ERROR, "Direct IO failed, bytes = %lld",
2411                                  (long long)bytes);
2412         if (private) {
2413                 if (bytes > 0)
2414                         ret = ocfs2_dio_end_io_write(inode, private, offset,
2415                                                      bytes);
2416                 else
2417                         ocfs2_dio_free_write_ctx(inode, private);
2418         }
2419
2420         ocfs2_iocb_clear_rw_locked(iocb);
2421
2422         level = ocfs2_iocb_rw_locked_level(iocb);
2423         ocfs2_rw_unlock(inode, level);
2424         return ret;
2425 }
2426
2427 static ssize_t ocfs2_direct_IO(struct kiocb *iocb, struct iov_iter *iter)
2428 {
2429         struct file *file = iocb->ki_filp;
2430         struct inode *inode = file->f_mapping->host;
2431         struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
2432         get_block_t *get_block;
2433
2434         /*
2435          * Fallback to buffered I/O if we see an inode without
2436          * extents.
2437          */
2438         if (OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL)
2439                 return 0;
2440
2441         /* Fallback to buffered I/O if we do not support append dio. */
2442         if (iocb->ki_pos + iter->count > i_size_read(inode) &&
2443             !ocfs2_supports_append_dio(osb))
2444                 return 0;
2445
2446         if (iov_iter_rw(iter) == READ)
2447                 get_block = ocfs2_lock_get_block;
2448         else
2449                 get_block = ocfs2_dio_wr_get_block;
2450
2451         return __blockdev_direct_IO(iocb, inode, inode->i_sb->s_bdev,
2452                                     iter, get_block,
2453                                     ocfs2_dio_end_io, NULL, 0);
2454 }
2455
2456 const struct address_space_operations ocfs2_aops = {
2457         .readpage               = ocfs2_readpage,
2458         .readahead              = ocfs2_readahead,
2459         .writepage              = ocfs2_writepage,
2460         .write_begin            = ocfs2_write_begin,
2461         .write_end              = ocfs2_write_end,
2462         .bmap                   = ocfs2_bmap,
2463         .direct_IO              = ocfs2_direct_IO,
2464         .invalidatepage         = block_invalidatepage,
2465         .releasepage            = ocfs2_releasepage,
2466         .migratepage            = buffer_migrate_page,
2467         .is_partially_uptodate  = block_is_partially_uptodate,
2468         .error_remove_page      = generic_error_remove_page,
2469 };