tools headers UAPI: Sync linux/prctl.h with the kernel sources
[linux-2.6-microblaze.git] / fs / jbd2 / transaction.c
1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3  * linux/fs/jbd2/transaction.c
4  *
5  * Written by Stephen C. Tweedie <sct@redhat.com>, 1998
6  *
7  * Copyright 1998 Red Hat corp --- All Rights Reserved
8  *
9  * Generic filesystem transaction handling code; part of the ext2fs
10  * journaling system.
11  *
12  * This file manages transactions (compound commits managed by the
13  * journaling code) and handles (individual atomic operations by the
14  * filesystem).
15  */
16
17 #include <linux/time.h>
18 #include <linux/fs.h>
19 #include <linux/jbd2.h>
20 #include <linux/errno.h>
21 #include <linux/slab.h>
22 #include <linux/timer.h>
23 #include <linux/mm.h>
24 #include <linux/highmem.h>
25 #include <linux/hrtimer.h>
26 #include <linux/backing-dev.h>
27 #include <linux/bug.h>
28 #include <linux/module.h>
29 #include <linux/sched/mm.h>
30
31 #include <trace/events/jbd2.h>
32
33 static void __jbd2_journal_temp_unlink_buffer(struct journal_head *jh);
34 static void __jbd2_journal_unfile_buffer(struct journal_head *jh);
35
36 static struct kmem_cache *transaction_cache;
37 int __init jbd2_journal_init_transaction_cache(void)
38 {
39         J_ASSERT(!transaction_cache);
40         transaction_cache = kmem_cache_create("jbd2_transaction_s",
41                                         sizeof(transaction_t),
42                                         0,
43                                         SLAB_HWCACHE_ALIGN|SLAB_TEMPORARY,
44                                         NULL);
45         if (!transaction_cache) {
46                 pr_emerg("JBD2: failed to create transaction cache\n");
47                 return -ENOMEM;
48         }
49         return 0;
50 }
51
52 void jbd2_journal_destroy_transaction_cache(void)
53 {
54         kmem_cache_destroy(transaction_cache);
55         transaction_cache = NULL;
56 }
57
58 void jbd2_journal_free_transaction(transaction_t *transaction)
59 {
60         if (unlikely(ZERO_OR_NULL_PTR(transaction)))
61                 return;
62         kmem_cache_free(transaction_cache, transaction);
63 }
64
65 /*
66  * Base amount of descriptor blocks we reserve for each transaction.
67  */
68 static int jbd2_descriptor_blocks_per_trans(journal_t *journal)
69 {
70         int tag_space = journal->j_blocksize - sizeof(journal_header_t);
71         int tags_per_block;
72
73         /* Subtract UUID */
74         tag_space -= 16;
75         if (jbd2_journal_has_csum_v2or3(journal))
76                 tag_space -= sizeof(struct jbd2_journal_block_tail);
77         /* Commit code leaves a slack space of 16 bytes at the end of block */
78         tags_per_block = (tag_space - 16) / journal_tag_bytes(journal);
79         /*
80          * Revoke descriptors are accounted separately so we need to reserve
81          * space for commit block and normal transaction descriptor blocks.
82          */
83         return 1 + DIV_ROUND_UP(journal->j_max_transaction_buffers,
84                                 tags_per_block);
85 }
86
87 /*
88  * jbd2_get_transaction: obtain a new transaction_t object.
89  *
90  * Simply initialise a new transaction. Initialize it in
91  * RUNNING state and add it to the current journal (which should not
92  * have an existing running transaction: we only make a new transaction
93  * once we have started to commit the old one).
94  *
95  * Preconditions:
96  *      The journal MUST be locked.  We don't perform atomic mallocs on the
97  *      new transaction and we can't block without protecting against other
98  *      processes trying to touch the journal while it is in transition.
99  *
100  */
101
102 static void jbd2_get_transaction(journal_t *journal,
103                                 transaction_t *transaction)
104 {
105         transaction->t_journal = journal;
106         transaction->t_state = T_RUNNING;
107         transaction->t_start_time = ktime_get();
108         transaction->t_tid = journal->j_transaction_sequence++;
109         transaction->t_expires = jiffies + journal->j_commit_interval;
110         spin_lock_init(&transaction->t_handle_lock);
111         atomic_set(&transaction->t_updates, 0);
112         atomic_set(&transaction->t_outstanding_credits,
113                    jbd2_descriptor_blocks_per_trans(journal) +
114                    atomic_read(&journal->j_reserved_credits));
115         atomic_set(&transaction->t_outstanding_revokes, 0);
116         atomic_set(&transaction->t_handle_count, 0);
117         INIT_LIST_HEAD(&transaction->t_inode_list);
118         INIT_LIST_HEAD(&transaction->t_private_list);
119
120         /* Set up the commit timer for the new transaction. */
121         journal->j_commit_timer.expires = round_jiffies_up(transaction->t_expires);
122         add_timer(&journal->j_commit_timer);
123
124         J_ASSERT(journal->j_running_transaction == NULL);
125         journal->j_running_transaction = transaction;
126         transaction->t_max_wait = 0;
127         transaction->t_start = jiffies;
128         transaction->t_requested = 0;
129 }
130
131 /*
132  * Handle management.
133  *
134  * A handle_t is an object which represents a single atomic update to a
135  * filesystem, and which tracks all of the modifications which form part
136  * of that one update.
137  */
138
139 /*
140  * Update transaction's maximum wait time, if debugging is enabled.
141  *
142  * In order for t_max_wait to be reliable, it must be protected by a
143  * lock.  But doing so will mean that start_this_handle() can not be
144  * run in parallel on SMP systems, which limits our scalability.  So
145  * unless debugging is enabled, we no longer update t_max_wait, which
146  * means that maximum wait time reported by the jbd2_run_stats
147  * tracepoint will always be zero.
148  */
149 static inline void update_t_max_wait(transaction_t *transaction,
150                                      unsigned long ts)
151 {
152 #ifdef CONFIG_JBD2_DEBUG
153         if (jbd2_journal_enable_debug &&
154             time_after(transaction->t_start, ts)) {
155                 ts = jbd2_time_diff(ts, transaction->t_start);
156                 spin_lock(&transaction->t_handle_lock);
157                 if (ts > transaction->t_max_wait)
158                         transaction->t_max_wait = ts;
159                 spin_unlock(&transaction->t_handle_lock);
160         }
161 #endif
162 }
163
164 /*
165  * Wait until running transaction passes to T_FLUSH state and new transaction
166  * can thus be started. Also starts the commit if needed. The function expects
167  * running transaction to exist and releases j_state_lock.
168  */
169 static void wait_transaction_locked(journal_t *journal)
170         __releases(journal->j_state_lock)
171 {
172         DEFINE_WAIT(wait);
173         int need_to_start;
174         tid_t tid = journal->j_running_transaction->t_tid;
175
176         prepare_to_wait(&journal->j_wait_transaction_locked, &wait,
177                         TASK_UNINTERRUPTIBLE);
178         need_to_start = !tid_geq(journal->j_commit_request, tid);
179         read_unlock(&journal->j_state_lock);
180         if (need_to_start)
181                 jbd2_log_start_commit(journal, tid);
182         jbd2_might_wait_for_commit(journal);
183         schedule();
184         finish_wait(&journal->j_wait_transaction_locked, &wait);
185 }
186
187 /*
188  * Wait until running transaction transitions from T_SWITCH to T_FLUSH
189  * state and new transaction can thus be started. The function releases
190  * j_state_lock.
191  */
192 static void wait_transaction_switching(journal_t *journal)
193         __releases(journal->j_state_lock)
194 {
195         DEFINE_WAIT(wait);
196
197         if (WARN_ON(!journal->j_running_transaction ||
198                     journal->j_running_transaction->t_state != T_SWITCH)) {
199                 read_unlock(&journal->j_state_lock);
200                 return;
201         }
202         prepare_to_wait(&journal->j_wait_transaction_locked, &wait,
203                         TASK_UNINTERRUPTIBLE);
204         read_unlock(&journal->j_state_lock);
205         /*
206          * We don't call jbd2_might_wait_for_commit() here as there's no
207          * waiting for outstanding handles happening anymore in T_SWITCH state
208          * and handling of reserved handles actually relies on that for
209          * correctness.
210          */
211         schedule();
212         finish_wait(&journal->j_wait_transaction_locked, &wait);
213 }
214
215 static void sub_reserved_credits(journal_t *journal, int blocks)
216 {
217         atomic_sub(blocks, &journal->j_reserved_credits);
218         wake_up(&journal->j_wait_reserved);
219 }
220
221 /*
222  * Wait until we can add credits for handle to the running transaction.  Called
223  * with j_state_lock held for reading. Returns 0 if handle joined the running
224  * transaction. Returns 1 if we had to wait, j_state_lock is dropped, and
225  * caller must retry.
226  */
227 static int add_transaction_credits(journal_t *journal, int blocks,
228                                    int rsv_blocks)
229 {
230         transaction_t *t = journal->j_running_transaction;
231         int needed;
232         int total = blocks + rsv_blocks;
233
234         /*
235          * If the current transaction is locked down for commit, wait
236          * for the lock to be released.
237          */
238         if (t->t_state != T_RUNNING) {
239                 WARN_ON_ONCE(t->t_state >= T_FLUSH);
240                 wait_transaction_locked(journal);
241                 return 1;
242         }
243
244         /*
245          * If there is not enough space left in the log to write all
246          * potential buffers requested by this operation, we need to
247          * stall pending a log checkpoint to free some more log space.
248          */
249         needed = atomic_add_return(total, &t->t_outstanding_credits);
250         if (needed > journal->j_max_transaction_buffers) {
251                 /*
252                  * If the current transaction is already too large,
253                  * then start to commit it: we can then go back and
254                  * attach this handle to a new transaction.
255                  */
256                 atomic_sub(total, &t->t_outstanding_credits);
257
258                 /*
259                  * Is the number of reserved credits in the current transaction too
260                  * big to fit this handle? Wait until reserved credits are freed.
261                  */
262                 if (atomic_read(&journal->j_reserved_credits) + total >
263                     journal->j_max_transaction_buffers) {
264                         read_unlock(&journal->j_state_lock);
265                         jbd2_might_wait_for_commit(journal);
266                         wait_event(journal->j_wait_reserved,
267                                    atomic_read(&journal->j_reserved_credits) + total <=
268                                    journal->j_max_transaction_buffers);
269                         return 1;
270                 }
271
272                 wait_transaction_locked(journal);
273                 return 1;
274         }
275
276         /*
277          * The commit code assumes that it can get enough log space
278          * without forcing a checkpoint.  This is *critical* for
279          * correctness: a checkpoint of a buffer which is also
280          * associated with a committing transaction creates a deadlock,
281          * so commit simply cannot force through checkpoints.
282          *
283          * We must therefore ensure the necessary space in the journal
284          * *before* starting to dirty potentially checkpointed buffers
285          * in the new transaction.
286          */
287         if (jbd2_log_space_left(journal) < journal->j_max_transaction_buffers) {
288                 atomic_sub(total, &t->t_outstanding_credits);
289                 read_unlock(&journal->j_state_lock);
290                 jbd2_might_wait_for_commit(journal);
291                 write_lock(&journal->j_state_lock);
292                 if (jbd2_log_space_left(journal) <
293                                         journal->j_max_transaction_buffers)
294                         __jbd2_log_wait_for_space(journal);
295                 write_unlock(&journal->j_state_lock);
296                 return 1;
297         }
298
299         /* No reservation? We are done... */
300         if (!rsv_blocks)
301                 return 0;
302
303         needed = atomic_add_return(rsv_blocks, &journal->j_reserved_credits);
304         /* We allow at most half of a transaction to be reserved */
305         if (needed > journal->j_max_transaction_buffers / 2) {
306                 sub_reserved_credits(journal, rsv_blocks);
307                 atomic_sub(total, &t->t_outstanding_credits);
308                 read_unlock(&journal->j_state_lock);
309                 jbd2_might_wait_for_commit(journal);
310                 wait_event(journal->j_wait_reserved,
311                          atomic_read(&journal->j_reserved_credits) + rsv_blocks
312                          <= journal->j_max_transaction_buffers / 2);
313                 return 1;
314         }
315         return 0;
316 }
317
318 /*
319  * start_this_handle: Given a handle, deal with any locking or stalling
320  * needed to make sure that there is enough journal space for the handle
321  * to begin.  Attach the handle to a transaction and set up the
322  * transaction's buffer credits.
323  */
324
325 static int start_this_handle(journal_t *journal, handle_t *handle,
326                              gfp_t gfp_mask)
327 {
328         transaction_t   *transaction, *new_transaction = NULL;
329         int             blocks = handle->h_total_credits;
330         int             rsv_blocks = 0;
331         unsigned long ts = jiffies;
332
333         if (handle->h_rsv_handle)
334                 rsv_blocks = handle->h_rsv_handle->h_total_credits;
335
336         /*
337          * Limit the number of reserved credits to 1/2 of maximum transaction
338          * size and limit the number of total credits to not exceed maximum
339          * transaction size per operation.
340          */
341         if ((rsv_blocks > journal->j_max_transaction_buffers / 2) ||
342             (rsv_blocks + blocks > journal->j_max_transaction_buffers)) {
343                 printk(KERN_ERR "JBD2: %s wants too many credits "
344                        "credits:%d rsv_credits:%d max:%d\n",
345                        current->comm, blocks, rsv_blocks,
346                        journal->j_max_transaction_buffers);
347                 WARN_ON(1);
348                 return -ENOSPC;
349         }
350
351 alloc_transaction:
352         if (!journal->j_running_transaction) {
353                 /*
354                  * If __GFP_FS is not present, then we may be being called from
355                  * inside the fs writeback layer, so we MUST NOT fail.
356                  */
357                 if ((gfp_mask & __GFP_FS) == 0)
358                         gfp_mask |= __GFP_NOFAIL;
359                 new_transaction = kmem_cache_zalloc(transaction_cache,
360                                                     gfp_mask);
361                 if (!new_transaction)
362                         return -ENOMEM;
363         }
364
365         jbd_debug(3, "New handle %p going live.\n", handle);
366
367         /*
368          * We need to hold j_state_lock until t_updates has been incremented,
369          * for proper journal barrier handling
370          */
371 repeat:
372         read_lock(&journal->j_state_lock);
373         BUG_ON(journal->j_flags & JBD2_UNMOUNT);
374         if (is_journal_aborted(journal) ||
375             (journal->j_errno != 0 && !(journal->j_flags & JBD2_ACK_ERR))) {
376                 read_unlock(&journal->j_state_lock);
377                 jbd2_journal_free_transaction(new_transaction);
378                 return -EROFS;
379         }
380
381         /*
382          * Wait on the journal's transaction barrier if necessary. Specifically
383          * we allow reserved handles to proceed because otherwise commit could
384          * deadlock on page writeback not being able to complete.
385          */
386         if (!handle->h_reserved && journal->j_barrier_count) {
387                 read_unlock(&journal->j_state_lock);
388                 wait_event(journal->j_wait_transaction_locked,
389                                 journal->j_barrier_count == 0);
390                 goto repeat;
391         }
392
393         if (!journal->j_running_transaction) {
394                 read_unlock(&journal->j_state_lock);
395                 if (!new_transaction)
396                         goto alloc_transaction;
397                 write_lock(&journal->j_state_lock);
398                 if (!journal->j_running_transaction &&
399                     (handle->h_reserved || !journal->j_barrier_count)) {
400                         jbd2_get_transaction(journal, new_transaction);
401                         new_transaction = NULL;
402                 }
403                 write_unlock(&journal->j_state_lock);
404                 goto repeat;
405         }
406
407         transaction = journal->j_running_transaction;
408
409         if (!handle->h_reserved) {
410                 /* We may have dropped j_state_lock - restart in that case */
411                 if (add_transaction_credits(journal, blocks, rsv_blocks))
412                         goto repeat;
413         } else {
414                 /*
415                  * We have handle reserved so we are allowed to join T_LOCKED
416                  * transaction and we don't have to check for transaction size
417                  * and journal space. But we still have to wait while running
418                  * transaction is being switched to a committing one as it
419                  * won't wait for any handles anymore.
420                  */
421                 if (transaction->t_state == T_SWITCH) {
422                         wait_transaction_switching(journal);
423                         goto repeat;
424                 }
425                 sub_reserved_credits(journal, blocks);
426                 handle->h_reserved = 0;
427         }
428
429         /* OK, account for the buffers that this operation expects to
430          * use and add the handle to the running transaction. 
431          */
432         update_t_max_wait(transaction, ts);
433         handle->h_transaction = transaction;
434         handle->h_requested_credits = blocks;
435         handle->h_revoke_credits_requested = handle->h_revoke_credits;
436         handle->h_start_jiffies = jiffies;
437         atomic_inc(&transaction->t_updates);
438         atomic_inc(&transaction->t_handle_count);
439         jbd_debug(4, "Handle %p given %d credits (total %d, free %lu)\n",
440                   handle, blocks,
441                   atomic_read(&transaction->t_outstanding_credits),
442                   jbd2_log_space_left(journal));
443         read_unlock(&journal->j_state_lock);
444         current->journal_info = handle;
445
446         rwsem_acquire_read(&journal->j_trans_commit_map, 0, 0, _THIS_IP_);
447         jbd2_journal_free_transaction(new_transaction);
448         /*
449          * Ensure that no allocations done while the transaction is open are
450          * going to recurse back to the fs layer.
451          */
452         handle->saved_alloc_context = memalloc_nofs_save();
453         return 0;
454 }
455
456 /* Allocate a new handle.  This should probably be in a slab... */
457 static handle_t *new_handle(int nblocks)
458 {
459         handle_t *handle = jbd2_alloc_handle(GFP_NOFS);
460         if (!handle)
461                 return NULL;
462         handle->h_total_credits = nblocks;
463         handle->h_ref = 1;
464
465         return handle;
466 }
467
468 handle_t *jbd2__journal_start(journal_t *journal, int nblocks, int rsv_blocks,
469                               int revoke_records, gfp_t gfp_mask,
470                               unsigned int type, unsigned int line_no)
471 {
472         handle_t *handle = journal_current_handle();
473         int err;
474
475         if (!journal)
476                 return ERR_PTR(-EROFS);
477
478         if (handle) {
479                 J_ASSERT(handle->h_transaction->t_journal == journal);
480                 handle->h_ref++;
481                 return handle;
482         }
483
484         nblocks += DIV_ROUND_UP(revoke_records,
485                                 journal->j_revoke_records_per_block);
486         handle = new_handle(nblocks);
487         if (!handle)
488                 return ERR_PTR(-ENOMEM);
489         if (rsv_blocks) {
490                 handle_t *rsv_handle;
491
492                 rsv_handle = new_handle(rsv_blocks);
493                 if (!rsv_handle) {
494                         jbd2_free_handle(handle);
495                         return ERR_PTR(-ENOMEM);
496                 }
497                 rsv_handle->h_reserved = 1;
498                 rsv_handle->h_journal = journal;
499                 handle->h_rsv_handle = rsv_handle;
500         }
501         handle->h_revoke_credits = revoke_records;
502
503         err = start_this_handle(journal, handle, gfp_mask);
504         if (err < 0) {
505                 if (handle->h_rsv_handle)
506                         jbd2_free_handle(handle->h_rsv_handle);
507                 jbd2_free_handle(handle);
508                 return ERR_PTR(err);
509         }
510         handle->h_type = type;
511         handle->h_line_no = line_no;
512         trace_jbd2_handle_start(journal->j_fs_dev->bd_dev,
513                                 handle->h_transaction->t_tid, type,
514                                 line_no, nblocks);
515
516         return handle;
517 }
518 EXPORT_SYMBOL(jbd2__journal_start);
519
520
521 /**
522  * jbd2_journal_start() - Obtain a new handle.
523  * @journal: Journal to start transaction on.
524  * @nblocks: number of block buffer we might modify
525  *
526  * We make sure that the transaction can guarantee at least nblocks of
527  * modified buffers in the log.  We block until the log can guarantee
528  * that much space. Additionally, if rsv_blocks > 0, we also create another
529  * handle with rsv_blocks reserved blocks in the journal. This handle is
530  * stored in h_rsv_handle. It is not attached to any particular transaction
531  * and thus doesn't block transaction commit. If the caller uses this reserved
532  * handle, it has to set h_rsv_handle to NULL as otherwise jbd2_journal_stop()
533  * on the parent handle will dispose the reserved one. Reserved handle has to
534  * be converted to a normal handle using jbd2_journal_start_reserved() before
535  * it can be used.
536  *
537  * Return a pointer to a newly allocated handle, or an ERR_PTR() value
538  * on failure.
539  */
540 handle_t *jbd2_journal_start(journal_t *journal, int nblocks)
541 {
542         return jbd2__journal_start(journal, nblocks, 0, 0, GFP_NOFS, 0, 0);
543 }
544 EXPORT_SYMBOL(jbd2_journal_start);
545
546 static void __jbd2_journal_unreserve_handle(handle_t *handle, transaction_t *t)
547 {
548         journal_t *journal = handle->h_journal;
549
550         WARN_ON(!handle->h_reserved);
551         sub_reserved_credits(journal, handle->h_total_credits);
552         if (t)
553                 atomic_sub(handle->h_total_credits, &t->t_outstanding_credits);
554 }
555
556 void jbd2_journal_free_reserved(handle_t *handle)
557 {
558         journal_t *journal = handle->h_journal;
559
560         /* Get j_state_lock to pin running transaction if it exists */
561         read_lock(&journal->j_state_lock);
562         __jbd2_journal_unreserve_handle(handle, journal->j_running_transaction);
563         read_unlock(&journal->j_state_lock);
564         jbd2_free_handle(handle);
565 }
566 EXPORT_SYMBOL(jbd2_journal_free_reserved);
567
568 /**
569  * jbd2_journal_start_reserved() - start reserved handle
570  * @handle: handle to start
571  * @type: for handle statistics
572  * @line_no: for handle statistics
573  *
574  * Start handle that has been previously reserved with jbd2_journal_reserve().
575  * This attaches @handle to the running transaction (or creates one if there's
576  * not transaction running). Unlike jbd2_journal_start() this function cannot
577  * block on journal commit, checkpointing, or similar stuff. It can block on
578  * memory allocation or frozen journal though.
579  *
580  * Return 0 on success, non-zero on error - handle is freed in that case.
581  */
582 int jbd2_journal_start_reserved(handle_t *handle, unsigned int type,
583                                 unsigned int line_no)
584 {
585         journal_t *journal = handle->h_journal;
586         int ret = -EIO;
587
588         if (WARN_ON(!handle->h_reserved)) {
589                 /* Someone passed in normal handle? Just stop it. */
590                 jbd2_journal_stop(handle);
591                 return ret;
592         }
593         /*
594          * Usefulness of mixing of reserved and unreserved handles is
595          * questionable. So far nobody seems to need it so just error out.
596          */
597         if (WARN_ON(current->journal_info)) {
598                 jbd2_journal_free_reserved(handle);
599                 return ret;
600         }
601
602         handle->h_journal = NULL;
603         /*
604          * GFP_NOFS is here because callers are likely from writeback or
605          * similarly constrained call sites
606          */
607         ret = start_this_handle(journal, handle, GFP_NOFS);
608         if (ret < 0) {
609                 handle->h_journal = journal;
610                 jbd2_journal_free_reserved(handle);
611                 return ret;
612         }
613         handle->h_type = type;
614         handle->h_line_no = line_no;
615         trace_jbd2_handle_start(journal->j_fs_dev->bd_dev,
616                                 handle->h_transaction->t_tid, type,
617                                 line_no, handle->h_total_credits);
618         return 0;
619 }
620 EXPORT_SYMBOL(jbd2_journal_start_reserved);
621
622 /**
623  * jbd2_journal_extend() - extend buffer credits.
624  * @handle:  handle to 'extend'
625  * @nblocks: nr blocks to try to extend by.
626  * @revoke_records: number of revoke records to try to extend by.
627  *
628  * Some transactions, such as large extends and truncates, can be done
629  * atomically all at once or in several stages.  The operation requests
630  * a credit for a number of buffer modifications in advance, but can
631  * extend its credit if it needs more.
632  *
633  * jbd2_journal_extend tries to give the running handle more buffer credits.
634  * It does not guarantee that allocation - this is a best-effort only.
635  * The calling process MUST be able to deal cleanly with a failure to
636  * extend here.
637  *
638  * Return 0 on success, non-zero on failure.
639  *
640  * return code < 0 implies an error
641  * return code > 0 implies normal transaction-full status.
642  */
643 int jbd2_journal_extend(handle_t *handle, int nblocks, int revoke_records)
644 {
645         transaction_t *transaction = handle->h_transaction;
646         journal_t *journal;
647         int result;
648         int wanted;
649
650         if (is_handle_aborted(handle))
651                 return -EROFS;
652         journal = transaction->t_journal;
653
654         result = 1;
655
656         read_lock(&journal->j_state_lock);
657
658         /* Don't extend a locked-down transaction! */
659         if (transaction->t_state != T_RUNNING) {
660                 jbd_debug(3, "denied handle %p %d blocks: "
661                           "transaction not running\n", handle, nblocks);
662                 goto error_out;
663         }
664
665         nblocks += DIV_ROUND_UP(
666                         handle->h_revoke_credits_requested + revoke_records,
667                         journal->j_revoke_records_per_block) -
668                 DIV_ROUND_UP(
669                         handle->h_revoke_credits_requested,
670                         journal->j_revoke_records_per_block);
671         spin_lock(&transaction->t_handle_lock);
672         wanted = atomic_add_return(nblocks,
673                                    &transaction->t_outstanding_credits);
674
675         if (wanted > journal->j_max_transaction_buffers) {
676                 jbd_debug(3, "denied handle %p %d blocks: "
677                           "transaction too large\n", handle, nblocks);
678                 atomic_sub(nblocks, &transaction->t_outstanding_credits);
679                 goto unlock;
680         }
681
682         trace_jbd2_handle_extend(journal->j_fs_dev->bd_dev,
683                                  transaction->t_tid,
684                                  handle->h_type, handle->h_line_no,
685                                  handle->h_total_credits,
686                                  nblocks);
687
688         handle->h_total_credits += nblocks;
689         handle->h_requested_credits += nblocks;
690         handle->h_revoke_credits += revoke_records;
691         handle->h_revoke_credits_requested += revoke_records;
692         result = 0;
693
694         jbd_debug(3, "extended handle %p by %d\n", handle, nblocks);
695 unlock:
696         spin_unlock(&transaction->t_handle_lock);
697 error_out:
698         read_unlock(&journal->j_state_lock);
699         return result;
700 }
701
702 static void stop_this_handle(handle_t *handle)
703 {
704         transaction_t *transaction = handle->h_transaction;
705         journal_t *journal = transaction->t_journal;
706         int revokes;
707
708         J_ASSERT(journal_current_handle() == handle);
709         J_ASSERT(atomic_read(&transaction->t_updates) > 0);
710         current->journal_info = NULL;
711         /*
712          * Subtract necessary revoke descriptor blocks from handle credits. We
713          * take care to account only for revoke descriptor blocks the
714          * transaction will really need as large sequences of transactions with
715          * small numbers of revokes are relatively common.
716          */
717         revokes = handle->h_revoke_credits_requested - handle->h_revoke_credits;
718         if (revokes) {
719                 int t_revokes, revoke_descriptors;
720                 int rr_per_blk = journal->j_revoke_records_per_block;
721
722                 WARN_ON_ONCE(DIV_ROUND_UP(revokes, rr_per_blk)
723                                 > handle->h_total_credits);
724                 t_revokes = atomic_add_return(revokes,
725                                 &transaction->t_outstanding_revokes);
726                 revoke_descriptors =
727                         DIV_ROUND_UP(t_revokes, rr_per_blk) -
728                         DIV_ROUND_UP(t_revokes - revokes, rr_per_blk);
729                 handle->h_total_credits -= revoke_descriptors;
730         }
731         atomic_sub(handle->h_total_credits,
732                    &transaction->t_outstanding_credits);
733         if (handle->h_rsv_handle)
734                 __jbd2_journal_unreserve_handle(handle->h_rsv_handle,
735                                                 transaction);
736         if (atomic_dec_and_test(&transaction->t_updates))
737                 wake_up(&journal->j_wait_updates);
738
739         rwsem_release(&journal->j_trans_commit_map, _THIS_IP_);
740         /*
741          * Scope of the GFP_NOFS context is over here and so we can restore the
742          * original alloc context.
743          */
744         memalloc_nofs_restore(handle->saved_alloc_context);
745 }
746
747 /**
748  * jbd2__journal_restart() - restart a handle .
749  * @handle:  handle to restart
750  * @nblocks: nr credits requested
751  * @revoke_records: number of revoke record credits requested
752  * @gfp_mask: memory allocation flags (for start_this_handle)
753  *
754  * Restart a handle for a multi-transaction filesystem
755  * operation.
756  *
757  * If the jbd2_journal_extend() call above fails to grant new buffer credits
758  * to a running handle, a call to jbd2_journal_restart will commit the
759  * handle's transaction so far and reattach the handle to a new
760  * transaction capable of guaranteeing the requested number of
761  * credits. We preserve reserved handle if there's any attached to the
762  * passed in handle.
763  */
764 int jbd2__journal_restart(handle_t *handle, int nblocks, int revoke_records,
765                           gfp_t gfp_mask)
766 {
767         transaction_t *transaction = handle->h_transaction;
768         journal_t *journal;
769         tid_t           tid;
770         int             need_to_start;
771         int             ret;
772
773         /* If we've had an abort of any type, don't even think about
774          * actually doing the restart! */
775         if (is_handle_aborted(handle))
776                 return 0;
777         journal = transaction->t_journal;
778         tid = transaction->t_tid;
779
780         /*
781          * First unlink the handle from its current transaction, and start the
782          * commit on that.
783          */
784         jbd_debug(2, "restarting handle %p\n", handle);
785         stop_this_handle(handle);
786         handle->h_transaction = NULL;
787
788         /*
789          * TODO: If we use READ_ONCE / WRITE_ONCE for j_commit_request we can
790          * get rid of pointless j_state_lock traffic like this.
791          */
792         read_lock(&journal->j_state_lock);
793         need_to_start = !tid_geq(journal->j_commit_request, tid);
794         read_unlock(&journal->j_state_lock);
795         if (need_to_start)
796                 jbd2_log_start_commit(journal, tid);
797         handle->h_total_credits = nblocks +
798                 DIV_ROUND_UP(revoke_records,
799                              journal->j_revoke_records_per_block);
800         handle->h_revoke_credits = revoke_records;
801         ret = start_this_handle(journal, handle, gfp_mask);
802         trace_jbd2_handle_restart(journal->j_fs_dev->bd_dev,
803                                  ret ? 0 : handle->h_transaction->t_tid,
804                                  handle->h_type, handle->h_line_no,
805                                  handle->h_total_credits);
806         return ret;
807 }
808 EXPORT_SYMBOL(jbd2__journal_restart);
809
810
811 int jbd2_journal_restart(handle_t *handle, int nblocks)
812 {
813         return jbd2__journal_restart(handle, nblocks, 0, GFP_NOFS);
814 }
815 EXPORT_SYMBOL(jbd2_journal_restart);
816
817 /**
818  * jbd2_journal_lock_updates () - establish a transaction barrier.
819  * @journal:  Journal to establish a barrier on.
820  *
821  * This locks out any further updates from being started, and blocks
822  * until all existing updates have completed, returning only once the
823  * journal is in a quiescent state with no updates running.
824  *
825  * The journal lock should not be held on entry.
826  */
827 void jbd2_journal_lock_updates(journal_t *journal)
828 {
829         DEFINE_WAIT(wait);
830
831         jbd2_might_wait_for_commit(journal);
832
833         write_lock(&journal->j_state_lock);
834         ++journal->j_barrier_count;
835
836         /* Wait until there are no reserved handles */
837         if (atomic_read(&journal->j_reserved_credits)) {
838                 write_unlock(&journal->j_state_lock);
839                 wait_event(journal->j_wait_reserved,
840                            atomic_read(&journal->j_reserved_credits) == 0);
841                 write_lock(&journal->j_state_lock);
842         }
843
844         /* Wait until there are no running updates */
845         while (1) {
846                 transaction_t *transaction = journal->j_running_transaction;
847
848                 if (!transaction)
849                         break;
850
851                 spin_lock(&transaction->t_handle_lock);
852                 prepare_to_wait(&journal->j_wait_updates, &wait,
853                                 TASK_UNINTERRUPTIBLE);
854                 if (!atomic_read(&transaction->t_updates)) {
855                         spin_unlock(&transaction->t_handle_lock);
856                         finish_wait(&journal->j_wait_updates, &wait);
857                         break;
858                 }
859                 spin_unlock(&transaction->t_handle_lock);
860                 write_unlock(&journal->j_state_lock);
861                 schedule();
862                 finish_wait(&journal->j_wait_updates, &wait);
863                 write_lock(&journal->j_state_lock);
864         }
865         write_unlock(&journal->j_state_lock);
866
867         /*
868          * We have now established a barrier against other normal updates, but
869          * we also need to barrier against other jbd2_journal_lock_updates() calls
870          * to make sure that we serialise special journal-locked operations
871          * too.
872          */
873         mutex_lock(&journal->j_barrier);
874 }
875
876 /**
877  * jbd2_journal_unlock_updates () - release barrier
878  * @journal:  Journal to release the barrier on.
879  *
880  * Release a transaction barrier obtained with jbd2_journal_lock_updates().
881  *
882  * Should be called without the journal lock held.
883  */
884 void jbd2_journal_unlock_updates (journal_t *journal)
885 {
886         J_ASSERT(journal->j_barrier_count != 0);
887
888         mutex_unlock(&journal->j_barrier);
889         write_lock(&journal->j_state_lock);
890         --journal->j_barrier_count;
891         write_unlock(&journal->j_state_lock);
892         wake_up(&journal->j_wait_transaction_locked);
893 }
894
895 static void warn_dirty_buffer(struct buffer_head *bh)
896 {
897         printk(KERN_WARNING
898                "JBD2: Spotted dirty metadata buffer (dev = %pg, blocknr = %llu). "
899                "There's a risk of filesystem corruption in case of system "
900                "crash.\n",
901                bh->b_bdev, (unsigned long long)bh->b_blocknr);
902 }
903
904 /* Call t_frozen trigger and copy buffer data into jh->b_frozen_data. */
905 static void jbd2_freeze_jh_data(struct journal_head *jh)
906 {
907         struct page *page;
908         int offset;
909         char *source;
910         struct buffer_head *bh = jh2bh(jh);
911
912         J_EXPECT_JH(jh, buffer_uptodate(bh), "Possible IO failure.\n");
913         page = bh->b_page;
914         offset = offset_in_page(bh->b_data);
915         source = kmap_atomic(page);
916         /* Fire data frozen trigger just before we copy the data */
917         jbd2_buffer_frozen_trigger(jh, source + offset, jh->b_triggers);
918         memcpy(jh->b_frozen_data, source + offset, bh->b_size);
919         kunmap_atomic(source);
920
921         /*
922          * Now that the frozen data is saved off, we need to store any matching
923          * triggers.
924          */
925         jh->b_frozen_triggers = jh->b_triggers;
926 }
927
928 /*
929  * If the buffer is already part of the current transaction, then there
930  * is nothing we need to do.  If it is already part of a prior
931  * transaction which we are still committing to disk, then we need to
932  * make sure that we do not overwrite the old copy: we do copy-out to
933  * preserve the copy going to disk.  We also account the buffer against
934  * the handle's metadata buffer credits (unless the buffer is already
935  * part of the transaction, that is).
936  *
937  */
938 static int
939 do_get_write_access(handle_t *handle, struct journal_head *jh,
940                         int force_copy)
941 {
942         struct buffer_head *bh;
943         transaction_t *transaction = handle->h_transaction;
944         journal_t *journal;
945         int error;
946         char *frozen_buffer = NULL;
947         unsigned long start_lock, time_lock;
948
949         journal = transaction->t_journal;
950
951         jbd_debug(5, "journal_head %p, force_copy %d\n", jh, force_copy);
952
953         JBUFFER_TRACE(jh, "entry");
954 repeat:
955         bh = jh2bh(jh);
956
957         /* @@@ Need to check for errors here at some point. */
958
959         start_lock = jiffies;
960         lock_buffer(bh);
961         spin_lock(&jh->b_state_lock);
962
963         /* If it takes too long to lock the buffer, trace it */
964         time_lock = jbd2_time_diff(start_lock, jiffies);
965         if (time_lock > HZ/10)
966                 trace_jbd2_lock_buffer_stall(bh->b_bdev->bd_dev,
967                         jiffies_to_msecs(time_lock));
968
969         /* We now hold the buffer lock so it is safe to query the buffer
970          * state.  Is the buffer dirty?
971          *
972          * If so, there are two possibilities.  The buffer may be
973          * non-journaled, and undergoing a quite legitimate writeback.
974          * Otherwise, it is journaled, and we don't expect dirty buffers
975          * in that state (the buffers should be marked JBD_Dirty
976          * instead.)  So either the IO is being done under our own
977          * control and this is a bug, or it's a third party IO such as
978          * dump(8) (which may leave the buffer scheduled for read ---
979          * ie. locked but not dirty) or tune2fs (which may actually have
980          * the buffer dirtied, ugh.)  */
981
982         if (buffer_dirty(bh)) {
983                 /*
984                  * First question: is this buffer already part of the current
985                  * transaction or the existing committing transaction?
986                  */
987                 if (jh->b_transaction) {
988                         J_ASSERT_JH(jh,
989                                 jh->b_transaction == transaction ||
990                                 jh->b_transaction ==
991                                         journal->j_committing_transaction);
992                         if (jh->b_next_transaction)
993                                 J_ASSERT_JH(jh, jh->b_next_transaction ==
994                                                         transaction);
995                         warn_dirty_buffer(bh);
996                 }
997                 /*
998                  * In any case we need to clean the dirty flag and we must
999                  * do it under the buffer lock to be sure we don't race
1000                  * with running write-out.
1001                  */
1002                 JBUFFER_TRACE(jh, "Journalling dirty buffer");
1003                 clear_buffer_dirty(bh);
1004                 set_buffer_jbddirty(bh);
1005         }
1006
1007         unlock_buffer(bh);
1008
1009         error = -EROFS;
1010         if (is_handle_aborted(handle)) {
1011                 spin_unlock(&jh->b_state_lock);
1012                 goto out;
1013         }
1014         error = 0;
1015
1016         /*
1017          * The buffer is already part of this transaction if b_transaction or
1018          * b_next_transaction points to it
1019          */
1020         if (jh->b_transaction == transaction ||
1021             jh->b_next_transaction == transaction)
1022                 goto done;
1023
1024         /*
1025          * this is the first time this transaction is touching this buffer,
1026          * reset the modified flag
1027          */
1028         jh->b_modified = 0;
1029
1030         /*
1031          * If the buffer is not journaled right now, we need to make sure it
1032          * doesn't get written to disk before the caller actually commits the
1033          * new data
1034          */
1035         if (!jh->b_transaction) {
1036                 JBUFFER_TRACE(jh, "no transaction");
1037                 J_ASSERT_JH(jh, !jh->b_next_transaction);
1038                 JBUFFER_TRACE(jh, "file as BJ_Reserved");
1039                 /*
1040                  * Make sure all stores to jh (b_modified, b_frozen_data) are
1041                  * visible before attaching it to the running transaction.
1042                  * Paired with barrier in jbd2_write_access_granted()
1043                  */
1044                 smp_wmb();
1045                 spin_lock(&journal->j_list_lock);
1046                 __jbd2_journal_file_buffer(jh, transaction, BJ_Reserved);
1047                 spin_unlock(&journal->j_list_lock);
1048                 goto done;
1049         }
1050         /*
1051          * If there is already a copy-out version of this buffer, then we don't
1052          * need to make another one
1053          */
1054         if (jh->b_frozen_data) {
1055                 JBUFFER_TRACE(jh, "has frozen data");
1056                 J_ASSERT_JH(jh, jh->b_next_transaction == NULL);
1057                 goto attach_next;
1058         }
1059
1060         JBUFFER_TRACE(jh, "owned by older transaction");
1061         J_ASSERT_JH(jh, jh->b_next_transaction == NULL);
1062         J_ASSERT_JH(jh, jh->b_transaction == journal->j_committing_transaction);
1063
1064         /*
1065          * There is one case we have to be very careful about.  If the
1066          * committing transaction is currently writing this buffer out to disk
1067          * and has NOT made a copy-out, then we cannot modify the buffer
1068          * contents at all right now.  The essence of copy-out is that it is
1069          * the extra copy, not the primary copy, which gets journaled.  If the
1070          * primary copy is already going to disk then we cannot do copy-out
1071          * here.
1072          */
1073         if (buffer_shadow(bh)) {
1074                 JBUFFER_TRACE(jh, "on shadow: sleep");
1075                 spin_unlock(&jh->b_state_lock);
1076                 wait_on_bit_io(&bh->b_state, BH_Shadow, TASK_UNINTERRUPTIBLE);
1077                 goto repeat;
1078         }
1079
1080         /*
1081          * Only do the copy if the currently-owning transaction still needs it.
1082          * If buffer isn't on BJ_Metadata list, the committing transaction is
1083          * past that stage (here we use the fact that BH_Shadow is set under
1084          * bh_state lock together with refiling to BJ_Shadow list and at this
1085          * point we know the buffer doesn't have BH_Shadow set).
1086          *
1087          * Subtle point, though: if this is a get_undo_access, then we will be
1088          * relying on the frozen_data to contain the new value of the
1089          * committed_data record after the transaction, so we HAVE to force the
1090          * frozen_data copy in that case.
1091          */
1092         if (jh->b_jlist == BJ_Metadata || force_copy) {
1093                 JBUFFER_TRACE(jh, "generate frozen data");
1094                 if (!frozen_buffer) {
1095                         JBUFFER_TRACE(jh, "allocate memory for buffer");
1096                         spin_unlock(&jh->b_state_lock);
1097                         frozen_buffer = jbd2_alloc(jh2bh(jh)->b_size,
1098                                                    GFP_NOFS | __GFP_NOFAIL);
1099                         goto repeat;
1100                 }
1101                 jh->b_frozen_data = frozen_buffer;
1102                 frozen_buffer = NULL;
1103                 jbd2_freeze_jh_data(jh);
1104         }
1105 attach_next:
1106         /*
1107          * Make sure all stores to jh (b_modified, b_frozen_data) are visible
1108          * before attaching it to the running transaction. Paired with barrier
1109          * in jbd2_write_access_granted()
1110          */
1111         smp_wmb();
1112         jh->b_next_transaction = transaction;
1113
1114 done:
1115         spin_unlock(&jh->b_state_lock);
1116
1117         /*
1118          * If we are about to journal a buffer, then any revoke pending on it is
1119          * no longer valid
1120          */
1121         jbd2_journal_cancel_revoke(handle, jh);
1122
1123 out:
1124         if (unlikely(frozen_buffer))    /* It's usually NULL */
1125                 jbd2_free(frozen_buffer, bh->b_size);
1126
1127         JBUFFER_TRACE(jh, "exit");
1128         return error;
1129 }
1130
1131 /* Fast check whether buffer is already attached to the required transaction */
1132 static bool jbd2_write_access_granted(handle_t *handle, struct buffer_head *bh,
1133                                                         bool undo)
1134 {
1135         struct journal_head *jh;
1136         bool ret = false;
1137
1138         /* Dirty buffers require special handling... */
1139         if (buffer_dirty(bh))
1140                 return false;
1141
1142         /*
1143          * RCU protects us from dereferencing freed pages. So the checks we do
1144          * are guaranteed not to oops. However the jh slab object can get freed
1145          * & reallocated while we work with it. So we have to be careful. When
1146          * we see jh attached to the running transaction, we know it must stay
1147          * so until the transaction is committed. Thus jh won't be freed and
1148          * will be attached to the same bh while we run.  However it can
1149          * happen jh gets freed, reallocated, and attached to the transaction
1150          * just after we get pointer to it from bh. So we have to be careful
1151          * and recheck jh still belongs to our bh before we return success.
1152          */
1153         rcu_read_lock();
1154         if (!buffer_jbd(bh))
1155                 goto out;
1156         /* This should be bh2jh() but that doesn't work with inline functions */
1157         jh = READ_ONCE(bh->b_private);
1158         if (!jh)
1159                 goto out;
1160         /* For undo access buffer must have data copied */
1161         if (undo && !jh->b_committed_data)
1162                 goto out;
1163         if (READ_ONCE(jh->b_transaction) != handle->h_transaction &&
1164             READ_ONCE(jh->b_next_transaction) != handle->h_transaction)
1165                 goto out;
1166         /*
1167          * There are two reasons for the barrier here:
1168          * 1) Make sure to fetch b_bh after we did previous checks so that we
1169          * detect when jh went through free, realloc, attach to transaction
1170          * while we were checking. Paired with implicit barrier in that path.
1171          * 2) So that access to bh done after jbd2_write_access_granted()
1172          * doesn't get reordered and see inconsistent state of concurrent
1173          * do_get_write_access().
1174          */
1175         smp_mb();
1176         if (unlikely(jh->b_bh != bh))
1177                 goto out;
1178         ret = true;
1179 out:
1180         rcu_read_unlock();
1181         return ret;
1182 }
1183
1184 /**
1185  * jbd2_journal_get_write_access() - notify intent to modify a buffer
1186  *                                   for metadata (not data) update.
1187  * @handle: transaction to add buffer modifications to
1188  * @bh:     bh to be used for metadata writes
1189  *
1190  * Returns: error code or 0 on success.
1191  *
1192  * In full data journalling mode the buffer may be of type BJ_AsyncData,
1193  * because we're ``write()ing`` a buffer which is also part of a shared mapping.
1194  */
1195
1196 int jbd2_journal_get_write_access(handle_t *handle, struct buffer_head *bh)
1197 {
1198         struct journal_head *jh;
1199         int rc;
1200
1201         if (is_handle_aborted(handle))
1202                 return -EROFS;
1203
1204         if (jbd2_write_access_granted(handle, bh, false))
1205                 return 0;
1206
1207         jh = jbd2_journal_add_journal_head(bh);
1208         /* We do not want to get caught playing with fields which the
1209          * log thread also manipulates.  Make sure that the buffer
1210          * completes any outstanding IO before proceeding. */
1211         rc = do_get_write_access(handle, jh, 0);
1212         jbd2_journal_put_journal_head(jh);
1213         return rc;
1214 }
1215
1216
1217 /*
1218  * When the user wants to journal a newly created buffer_head
1219  * (ie. getblk() returned a new buffer and we are going to populate it
1220  * manually rather than reading off disk), then we need to keep the
1221  * buffer_head locked until it has been completely filled with new
1222  * data.  In this case, we should be able to make the assertion that
1223  * the bh is not already part of an existing transaction.
1224  *
1225  * The buffer should already be locked by the caller by this point.
1226  * There is no lock ranking violation: it was a newly created,
1227  * unlocked buffer beforehand. */
1228
1229 /**
1230  * jbd2_journal_get_create_access () - notify intent to use newly created bh
1231  * @handle: transaction to new buffer to
1232  * @bh: new buffer.
1233  *
1234  * Call this if you create a new bh.
1235  */
1236 int jbd2_journal_get_create_access(handle_t *handle, struct buffer_head *bh)
1237 {
1238         transaction_t *transaction = handle->h_transaction;
1239         journal_t *journal;
1240         struct journal_head *jh = jbd2_journal_add_journal_head(bh);
1241         int err;
1242
1243         jbd_debug(5, "journal_head %p\n", jh);
1244         err = -EROFS;
1245         if (is_handle_aborted(handle))
1246                 goto out;
1247         journal = transaction->t_journal;
1248         err = 0;
1249
1250         JBUFFER_TRACE(jh, "entry");
1251         /*
1252          * The buffer may already belong to this transaction due to pre-zeroing
1253          * in the filesystem's new_block code.  It may also be on the previous,
1254          * committing transaction's lists, but it HAS to be in Forget state in
1255          * that case: the transaction must have deleted the buffer for it to be
1256          * reused here.
1257          */
1258         spin_lock(&jh->b_state_lock);
1259         J_ASSERT_JH(jh, (jh->b_transaction == transaction ||
1260                 jh->b_transaction == NULL ||
1261                 (jh->b_transaction == journal->j_committing_transaction &&
1262                           jh->b_jlist == BJ_Forget)));
1263
1264         J_ASSERT_JH(jh, jh->b_next_transaction == NULL);
1265         J_ASSERT_JH(jh, buffer_locked(jh2bh(jh)));
1266
1267         if (jh->b_transaction == NULL) {
1268                 /*
1269                  * Previous jbd2_journal_forget() could have left the buffer
1270                  * with jbddirty bit set because it was being committed. When
1271                  * the commit finished, we've filed the buffer for
1272                  * checkpointing and marked it dirty. Now we are reallocating
1273                  * the buffer so the transaction freeing it must have
1274                  * committed and so it's safe to clear the dirty bit.
1275                  */
1276                 clear_buffer_dirty(jh2bh(jh));
1277                 /* first access by this transaction */
1278                 jh->b_modified = 0;
1279
1280                 JBUFFER_TRACE(jh, "file as BJ_Reserved");
1281                 spin_lock(&journal->j_list_lock);
1282                 __jbd2_journal_file_buffer(jh, transaction, BJ_Reserved);
1283                 spin_unlock(&journal->j_list_lock);
1284         } else if (jh->b_transaction == journal->j_committing_transaction) {
1285                 /* first access by this transaction */
1286                 jh->b_modified = 0;
1287
1288                 JBUFFER_TRACE(jh, "set next transaction");
1289                 spin_lock(&journal->j_list_lock);
1290                 jh->b_next_transaction = transaction;
1291                 spin_unlock(&journal->j_list_lock);
1292         }
1293         spin_unlock(&jh->b_state_lock);
1294
1295         /*
1296          * akpm: I added this.  ext3_alloc_branch can pick up new indirect
1297          * blocks which contain freed but then revoked metadata.  We need
1298          * to cancel the revoke in case we end up freeing it yet again
1299          * and the reallocating as data - this would cause a second revoke,
1300          * which hits an assertion error.
1301          */
1302         JBUFFER_TRACE(jh, "cancelling revoke");
1303         jbd2_journal_cancel_revoke(handle, jh);
1304 out:
1305         jbd2_journal_put_journal_head(jh);
1306         return err;
1307 }
1308
1309 /**
1310  * jbd2_journal_get_undo_access() -  Notify intent to modify metadata with
1311  *     non-rewindable consequences
1312  * @handle: transaction
1313  * @bh: buffer to undo
1314  *
1315  * Sometimes there is a need to distinguish between metadata which has
1316  * been committed to disk and that which has not.  The ext3fs code uses
1317  * this for freeing and allocating space, we have to make sure that we
1318  * do not reuse freed space until the deallocation has been committed,
1319  * since if we overwrote that space we would make the delete
1320  * un-rewindable in case of a crash.
1321  *
1322  * To deal with that, jbd2_journal_get_undo_access requests write access to a
1323  * buffer for parts of non-rewindable operations such as delete
1324  * operations on the bitmaps.  The journaling code must keep a copy of
1325  * the buffer's contents prior to the undo_access call until such time
1326  * as we know that the buffer has definitely been committed to disk.
1327  *
1328  * We never need to know which transaction the committed data is part
1329  * of, buffers touched here are guaranteed to be dirtied later and so
1330  * will be committed to a new transaction in due course, at which point
1331  * we can discard the old committed data pointer.
1332  *
1333  * Returns error number or 0 on success.
1334  */
1335 int jbd2_journal_get_undo_access(handle_t *handle, struct buffer_head *bh)
1336 {
1337         int err;
1338         struct journal_head *jh;
1339         char *committed_data = NULL;
1340
1341         if (is_handle_aborted(handle))
1342                 return -EROFS;
1343
1344         if (jbd2_write_access_granted(handle, bh, true))
1345                 return 0;
1346
1347         jh = jbd2_journal_add_journal_head(bh);
1348         JBUFFER_TRACE(jh, "entry");
1349
1350         /*
1351          * Do this first --- it can drop the journal lock, so we want to
1352          * make sure that obtaining the committed_data is done
1353          * atomically wrt. completion of any outstanding commits.
1354          */
1355         err = do_get_write_access(handle, jh, 1);
1356         if (err)
1357                 goto out;
1358
1359 repeat:
1360         if (!jh->b_committed_data)
1361                 committed_data = jbd2_alloc(jh2bh(jh)->b_size,
1362                                             GFP_NOFS|__GFP_NOFAIL);
1363
1364         spin_lock(&jh->b_state_lock);
1365         if (!jh->b_committed_data) {
1366                 /* Copy out the current buffer contents into the
1367                  * preserved, committed copy. */
1368                 JBUFFER_TRACE(jh, "generate b_committed data");
1369                 if (!committed_data) {
1370                         spin_unlock(&jh->b_state_lock);
1371                         goto repeat;
1372                 }
1373
1374                 jh->b_committed_data = committed_data;
1375                 committed_data = NULL;
1376                 memcpy(jh->b_committed_data, bh->b_data, bh->b_size);
1377         }
1378         spin_unlock(&jh->b_state_lock);
1379 out:
1380         jbd2_journal_put_journal_head(jh);
1381         if (unlikely(committed_data))
1382                 jbd2_free(committed_data, bh->b_size);
1383         return err;
1384 }
1385
1386 /**
1387  * jbd2_journal_set_triggers() - Add triggers for commit writeout
1388  * @bh: buffer to trigger on
1389  * @type: struct jbd2_buffer_trigger_type containing the trigger(s).
1390  *
1391  * Set any triggers on this journal_head.  This is always safe, because
1392  * triggers for a committing buffer will be saved off, and triggers for
1393  * a running transaction will match the buffer in that transaction.
1394  *
1395  * Call with NULL to clear the triggers.
1396  */
1397 void jbd2_journal_set_triggers(struct buffer_head *bh,
1398                                struct jbd2_buffer_trigger_type *type)
1399 {
1400         struct journal_head *jh = jbd2_journal_grab_journal_head(bh);
1401
1402         if (WARN_ON(!jh))
1403                 return;
1404         jh->b_triggers = type;
1405         jbd2_journal_put_journal_head(jh);
1406 }
1407
1408 void jbd2_buffer_frozen_trigger(struct journal_head *jh, void *mapped_data,
1409                                 struct jbd2_buffer_trigger_type *triggers)
1410 {
1411         struct buffer_head *bh = jh2bh(jh);
1412
1413         if (!triggers || !triggers->t_frozen)
1414                 return;
1415
1416         triggers->t_frozen(triggers, bh, mapped_data, bh->b_size);
1417 }
1418
1419 void jbd2_buffer_abort_trigger(struct journal_head *jh,
1420                                struct jbd2_buffer_trigger_type *triggers)
1421 {
1422         if (!triggers || !triggers->t_abort)
1423                 return;
1424
1425         triggers->t_abort(triggers, jh2bh(jh));
1426 }
1427
1428 /**
1429  * jbd2_journal_dirty_metadata() -  mark a buffer as containing dirty metadata
1430  * @handle: transaction to add buffer to.
1431  * @bh: buffer to mark
1432  *
1433  * mark dirty metadata which needs to be journaled as part of the current
1434  * transaction.
1435  *
1436  * The buffer must have previously had jbd2_journal_get_write_access()
1437  * called so that it has a valid journal_head attached to the buffer
1438  * head.
1439  *
1440  * The buffer is placed on the transaction's metadata list and is marked
1441  * as belonging to the transaction.
1442  *
1443  * Returns error number or 0 on success.
1444  *
1445  * Special care needs to be taken if the buffer already belongs to the
1446  * current committing transaction (in which case we should have frozen
1447  * data present for that commit).  In that case, we don't relink the
1448  * buffer: that only gets done when the old transaction finally
1449  * completes its commit.
1450  */
1451 int jbd2_journal_dirty_metadata(handle_t *handle, struct buffer_head *bh)
1452 {
1453         transaction_t *transaction = handle->h_transaction;
1454         journal_t *journal;
1455         struct journal_head *jh;
1456         int ret = 0;
1457
1458         if (is_handle_aborted(handle))
1459                 return -EROFS;
1460         if (!buffer_jbd(bh))
1461                 return -EUCLEAN;
1462
1463         /*
1464          * We don't grab jh reference here since the buffer must be part
1465          * of the running transaction.
1466          */
1467         jh = bh2jh(bh);
1468         jbd_debug(5, "journal_head %p\n", jh);
1469         JBUFFER_TRACE(jh, "entry");
1470
1471         /*
1472          * This and the following assertions are unreliable since we may see jh
1473          * in inconsistent state unless we grab bh_state lock. But this is
1474          * crucial to catch bugs so let's do a reliable check until the
1475          * lockless handling is fully proven.
1476          */
1477         if (jh->b_transaction != transaction &&
1478             jh->b_next_transaction != transaction) {
1479                 spin_lock(&jh->b_state_lock);
1480                 J_ASSERT_JH(jh, jh->b_transaction == transaction ||
1481                                 jh->b_next_transaction == transaction);
1482                 spin_unlock(&jh->b_state_lock);
1483         }
1484         if (jh->b_modified == 1) {
1485                 /* If it's in our transaction it must be in BJ_Metadata list. */
1486                 if (jh->b_transaction == transaction &&
1487                     jh->b_jlist != BJ_Metadata) {
1488                         spin_lock(&jh->b_state_lock);
1489                         if (jh->b_transaction == transaction &&
1490                             jh->b_jlist != BJ_Metadata)
1491                                 pr_err("JBD2: assertion failure: h_type=%u "
1492                                        "h_line_no=%u block_no=%llu jlist=%u\n",
1493                                        handle->h_type, handle->h_line_no,
1494                                        (unsigned long long) bh->b_blocknr,
1495                                        jh->b_jlist);
1496                         J_ASSERT_JH(jh, jh->b_transaction != transaction ||
1497                                         jh->b_jlist == BJ_Metadata);
1498                         spin_unlock(&jh->b_state_lock);
1499                 }
1500                 goto out;
1501         }
1502
1503         journal = transaction->t_journal;
1504         spin_lock(&jh->b_state_lock);
1505
1506         if (jh->b_modified == 0) {
1507                 /*
1508                  * This buffer's got modified and becoming part
1509                  * of the transaction. This needs to be done
1510                  * once a transaction -bzzz
1511                  */
1512                 if (WARN_ON_ONCE(jbd2_handle_buffer_credits(handle) <= 0)) {
1513                         ret = -ENOSPC;
1514                         goto out_unlock_bh;
1515                 }
1516                 jh->b_modified = 1;
1517                 handle->h_total_credits--;
1518         }
1519
1520         /*
1521          * fastpath, to avoid expensive locking.  If this buffer is already
1522          * on the running transaction's metadata list there is nothing to do.
1523          * Nobody can take it off again because there is a handle open.
1524          * I _think_ we're OK here with SMP barriers - a mistaken decision will
1525          * result in this test being false, so we go in and take the locks.
1526          */
1527         if (jh->b_transaction == transaction && jh->b_jlist == BJ_Metadata) {
1528                 JBUFFER_TRACE(jh, "fastpath");
1529                 if (unlikely(jh->b_transaction !=
1530                              journal->j_running_transaction)) {
1531                         printk(KERN_ERR "JBD2: %s: "
1532                                "jh->b_transaction (%llu, %p, %u) != "
1533                                "journal->j_running_transaction (%p, %u)\n",
1534                                journal->j_devname,
1535                                (unsigned long long) bh->b_blocknr,
1536                                jh->b_transaction,
1537                                jh->b_transaction ? jh->b_transaction->t_tid : 0,
1538                                journal->j_running_transaction,
1539                                journal->j_running_transaction ?
1540                                journal->j_running_transaction->t_tid : 0);
1541                         ret = -EINVAL;
1542                 }
1543                 goto out_unlock_bh;
1544         }
1545
1546         set_buffer_jbddirty(bh);
1547
1548         /*
1549          * Metadata already on the current transaction list doesn't
1550          * need to be filed.  Metadata on another transaction's list must
1551          * be committing, and will be refiled once the commit completes:
1552          * leave it alone for now.
1553          */
1554         if (jh->b_transaction != transaction) {
1555                 JBUFFER_TRACE(jh, "already on other transaction");
1556                 if (unlikely(((jh->b_transaction !=
1557                                journal->j_committing_transaction)) ||
1558                              (jh->b_next_transaction != transaction))) {
1559                         printk(KERN_ERR "jbd2_journal_dirty_metadata: %s: "
1560                                "bad jh for block %llu: "
1561                                "transaction (%p, %u), "
1562                                "jh->b_transaction (%p, %u), "
1563                                "jh->b_next_transaction (%p, %u), jlist %u\n",
1564                                journal->j_devname,
1565                                (unsigned long long) bh->b_blocknr,
1566                                transaction, transaction->t_tid,
1567                                jh->b_transaction,
1568                                jh->b_transaction ?
1569                                jh->b_transaction->t_tid : 0,
1570                                jh->b_next_transaction,
1571                                jh->b_next_transaction ?
1572                                jh->b_next_transaction->t_tid : 0,
1573                                jh->b_jlist);
1574                         WARN_ON(1);
1575                         ret = -EINVAL;
1576                 }
1577                 /* And this case is illegal: we can't reuse another
1578                  * transaction's data buffer, ever. */
1579                 goto out_unlock_bh;
1580         }
1581
1582         /* That test should have eliminated the following case: */
1583         J_ASSERT_JH(jh, jh->b_frozen_data == NULL);
1584
1585         JBUFFER_TRACE(jh, "file as BJ_Metadata");
1586         spin_lock(&journal->j_list_lock);
1587         __jbd2_journal_file_buffer(jh, transaction, BJ_Metadata);
1588         spin_unlock(&journal->j_list_lock);
1589 out_unlock_bh:
1590         spin_unlock(&jh->b_state_lock);
1591 out:
1592         JBUFFER_TRACE(jh, "exit");
1593         return ret;
1594 }
1595
1596 /**
1597  * jbd2_journal_forget() - bforget() for potentially-journaled buffers.
1598  * @handle: transaction handle
1599  * @bh:     bh to 'forget'
1600  *
1601  * We can only do the bforget if there are no commits pending against the
1602  * buffer.  If the buffer is dirty in the current running transaction we
1603  * can safely unlink it.
1604  *
1605  * bh may not be a journalled buffer at all - it may be a non-JBD
1606  * buffer which came off the hashtable.  Check for this.
1607  *
1608  * Decrements bh->b_count by one.
1609  *
1610  * Allow this call even if the handle has aborted --- it may be part of
1611  * the caller's cleanup after an abort.
1612  */
1613 int jbd2_journal_forget(handle_t *handle, struct buffer_head *bh)
1614 {
1615         transaction_t *transaction = handle->h_transaction;
1616         journal_t *journal;
1617         struct journal_head *jh;
1618         int drop_reserve = 0;
1619         int err = 0;
1620         int was_modified = 0;
1621
1622         if (is_handle_aborted(handle))
1623                 return -EROFS;
1624         journal = transaction->t_journal;
1625
1626         BUFFER_TRACE(bh, "entry");
1627
1628         jh = jbd2_journal_grab_journal_head(bh);
1629         if (!jh) {
1630                 __bforget(bh);
1631                 return 0;
1632         }
1633
1634         spin_lock(&jh->b_state_lock);
1635
1636         /* Critical error: attempting to delete a bitmap buffer, maybe?
1637          * Don't do any jbd operations, and return an error. */
1638         if (!J_EXPECT_JH(jh, !jh->b_committed_data,
1639                          "inconsistent data on disk")) {
1640                 err = -EIO;
1641                 goto drop;
1642         }
1643
1644         /* keep track of whether or not this transaction modified us */
1645         was_modified = jh->b_modified;
1646
1647         /*
1648          * The buffer's going from the transaction, we must drop
1649          * all references -bzzz
1650          */
1651         jh->b_modified = 0;
1652
1653         if (jh->b_transaction == transaction) {
1654                 J_ASSERT_JH(jh, !jh->b_frozen_data);
1655
1656                 /* If we are forgetting a buffer which is already part
1657                  * of this transaction, then we can just drop it from
1658                  * the transaction immediately. */
1659                 clear_buffer_dirty(bh);
1660                 clear_buffer_jbddirty(bh);
1661
1662                 JBUFFER_TRACE(jh, "belongs to current transaction: unfile");
1663
1664                 /*
1665                  * we only want to drop a reference if this transaction
1666                  * modified the buffer
1667                  */
1668                 if (was_modified)
1669                         drop_reserve = 1;
1670
1671                 /*
1672                  * We are no longer going to journal this buffer.
1673                  * However, the commit of this transaction is still
1674                  * important to the buffer: the delete that we are now
1675                  * processing might obsolete an old log entry, so by
1676                  * committing, we can satisfy the buffer's checkpoint.
1677                  *
1678                  * So, if we have a checkpoint on the buffer, we should
1679                  * now refile the buffer on our BJ_Forget list so that
1680                  * we know to remove the checkpoint after we commit.
1681                  */
1682
1683                 spin_lock(&journal->j_list_lock);
1684                 if (jh->b_cp_transaction) {
1685                         __jbd2_journal_temp_unlink_buffer(jh);
1686                         __jbd2_journal_file_buffer(jh, transaction, BJ_Forget);
1687                 } else {
1688                         __jbd2_journal_unfile_buffer(jh);
1689                         jbd2_journal_put_journal_head(jh);
1690                 }
1691                 spin_unlock(&journal->j_list_lock);
1692         } else if (jh->b_transaction) {
1693                 J_ASSERT_JH(jh, (jh->b_transaction ==
1694                                  journal->j_committing_transaction));
1695                 /* However, if the buffer is still owned by a prior
1696                  * (committing) transaction, we can't drop it yet... */
1697                 JBUFFER_TRACE(jh, "belongs to older transaction");
1698                 /* ... but we CAN drop it from the new transaction through
1699                  * marking the buffer as freed and set j_next_transaction to
1700                  * the new transaction, so that not only the commit code
1701                  * knows it should clear dirty bits when it is done with the
1702                  * buffer, but also the buffer can be checkpointed only
1703                  * after the new transaction commits. */
1704
1705                 set_buffer_freed(bh);
1706
1707                 if (!jh->b_next_transaction) {
1708                         spin_lock(&journal->j_list_lock);
1709                         jh->b_next_transaction = transaction;
1710                         spin_unlock(&journal->j_list_lock);
1711                 } else {
1712                         J_ASSERT(jh->b_next_transaction == transaction);
1713
1714                         /*
1715                          * only drop a reference if this transaction modified
1716                          * the buffer
1717                          */
1718                         if (was_modified)
1719                                 drop_reserve = 1;
1720                 }
1721         } else {
1722                 /*
1723                  * Finally, if the buffer is not belongs to any
1724                  * transaction, we can just drop it now if it has no
1725                  * checkpoint.
1726                  */
1727                 spin_lock(&journal->j_list_lock);
1728                 if (!jh->b_cp_transaction) {
1729                         JBUFFER_TRACE(jh, "belongs to none transaction");
1730                         spin_unlock(&journal->j_list_lock);
1731                         goto drop;
1732                 }
1733
1734                 /*
1735                  * Otherwise, if the buffer has been written to disk,
1736                  * it is safe to remove the checkpoint and drop it.
1737                  */
1738                 if (!buffer_dirty(bh)) {
1739                         __jbd2_journal_remove_checkpoint(jh);
1740                         spin_unlock(&journal->j_list_lock);
1741                         goto drop;
1742                 }
1743
1744                 /*
1745                  * The buffer is still not written to disk, we should
1746                  * attach this buffer to current transaction so that the
1747                  * buffer can be checkpointed only after the current
1748                  * transaction commits.
1749                  */
1750                 clear_buffer_dirty(bh);
1751                 __jbd2_journal_file_buffer(jh, transaction, BJ_Forget);
1752                 spin_unlock(&journal->j_list_lock);
1753         }
1754 drop:
1755         __brelse(bh);
1756         spin_unlock(&jh->b_state_lock);
1757         jbd2_journal_put_journal_head(jh);
1758         if (drop_reserve) {
1759                 /* no need to reserve log space for this block -bzzz */
1760                 handle->h_total_credits++;
1761         }
1762         return err;
1763 }
1764
1765 /**
1766  * jbd2_journal_stop() - complete a transaction
1767  * @handle: transaction to complete.
1768  *
1769  * All done for a particular handle.
1770  *
1771  * There is not much action needed here.  We just return any remaining
1772  * buffer credits to the transaction and remove the handle.  The only
1773  * complication is that we need to start a commit operation if the
1774  * filesystem is marked for synchronous update.
1775  *
1776  * jbd2_journal_stop itself will not usually return an error, but it may
1777  * do so in unusual circumstances.  In particular, expect it to
1778  * return -EIO if a jbd2_journal_abort has been executed since the
1779  * transaction began.
1780  */
1781 int jbd2_journal_stop(handle_t *handle)
1782 {
1783         transaction_t *transaction = handle->h_transaction;
1784         journal_t *journal;
1785         int err = 0, wait_for_commit = 0;
1786         tid_t tid;
1787         pid_t pid;
1788
1789         if (--handle->h_ref > 0) {
1790                 jbd_debug(4, "h_ref %d -> %d\n", handle->h_ref + 1,
1791                                                  handle->h_ref);
1792                 if (is_handle_aborted(handle))
1793                         return -EIO;
1794                 return 0;
1795         }
1796         if (!transaction) {
1797                 /*
1798                  * Handle is already detached from the transaction so there is
1799                  * nothing to do other than free the handle.
1800                  */
1801                 memalloc_nofs_restore(handle->saved_alloc_context);
1802                 goto free_and_exit;
1803         }
1804         journal = transaction->t_journal;
1805         tid = transaction->t_tid;
1806
1807         if (is_handle_aborted(handle))
1808                 err = -EIO;
1809
1810         jbd_debug(4, "Handle %p going down\n", handle);
1811         trace_jbd2_handle_stats(journal->j_fs_dev->bd_dev,
1812                                 tid, handle->h_type, handle->h_line_no,
1813                                 jiffies - handle->h_start_jiffies,
1814                                 handle->h_sync, handle->h_requested_credits,
1815                                 (handle->h_requested_credits -
1816                                  handle->h_total_credits));
1817
1818         /*
1819          * Implement synchronous transaction batching.  If the handle
1820          * was synchronous, don't force a commit immediately.  Let's
1821          * yield and let another thread piggyback onto this
1822          * transaction.  Keep doing that while new threads continue to
1823          * arrive.  It doesn't cost much - we're about to run a commit
1824          * and sleep on IO anyway.  Speeds up many-threaded, many-dir
1825          * operations by 30x or more...
1826          *
1827          * We try and optimize the sleep time against what the
1828          * underlying disk can do, instead of having a static sleep
1829          * time.  This is useful for the case where our storage is so
1830          * fast that it is more optimal to go ahead and force a flush
1831          * and wait for the transaction to be committed than it is to
1832          * wait for an arbitrary amount of time for new writers to
1833          * join the transaction.  We achieve this by measuring how
1834          * long it takes to commit a transaction, and compare it with
1835          * how long this transaction has been running, and if run time
1836          * < commit time then we sleep for the delta and commit.  This
1837          * greatly helps super fast disks that would see slowdowns as
1838          * more threads started doing fsyncs.
1839          *
1840          * But don't do this if this process was the most recent one
1841          * to perform a synchronous write.  We do this to detect the
1842          * case where a single process is doing a stream of sync
1843          * writes.  No point in waiting for joiners in that case.
1844          *
1845          * Setting max_batch_time to 0 disables this completely.
1846          */
1847         pid = current->pid;
1848         if (handle->h_sync && journal->j_last_sync_writer != pid &&
1849             journal->j_max_batch_time) {
1850                 u64 commit_time, trans_time;
1851
1852                 journal->j_last_sync_writer = pid;
1853
1854                 read_lock(&journal->j_state_lock);
1855                 commit_time = journal->j_average_commit_time;
1856                 read_unlock(&journal->j_state_lock);
1857
1858                 trans_time = ktime_to_ns(ktime_sub(ktime_get(),
1859                                                    transaction->t_start_time));
1860
1861                 commit_time = max_t(u64, commit_time,
1862                                     1000*journal->j_min_batch_time);
1863                 commit_time = min_t(u64, commit_time,
1864                                     1000*journal->j_max_batch_time);
1865
1866                 if (trans_time < commit_time) {
1867                         ktime_t expires = ktime_add_ns(ktime_get(),
1868                                                        commit_time);
1869                         set_current_state(TASK_UNINTERRUPTIBLE);
1870                         schedule_hrtimeout(&expires, HRTIMER_MODE_ABS);
1871                 }
1872         }
1873
1874         if (handle->h_sync)
1875                 transaction->t_synchronous_commit = 1;
1876
1877         /*
1878          * If the handle is marked SYNC, we need to set another commit
1879          * going!  We also want to force a commit if the transaction is too
1880          * old now.
1881          */
1882         if (handle->h_sync ||
1883             time_after_eq(jiffies, transaction->t_expires)) {
1884                 /* Do this even for aborted journals: an abort still
1885                  * completes the commit thread, it just doesn't write
1886                  * anything to disk. */
1887
1888                 jbd_debug(2, "transaction too old, requesting commit for "
1889                                         "handle %p\n", handle);
1890                 /* This is non-blocking */
1891                 jbd2_log_start_commit(journal, tid);
1892
1893                 /*
1894                  * Special case: JBD2_SYNC synchronous updates require us
1895                  * to wait for the commit to complete.
1896                  */
1897                 if (handle->h_sync && !(current->flags & PF_MEMALLOC))
1898                         wait_for_commit = 1;
1899         }
1900
1901         /*
1902          * Once stop_this_handle() drops t_updates, the transaction could start
1903          * committing on us and eventually disappear.  So we must not
1904          * dereference transaction pointer again after calling
1905          * stop_this_handle().
1906          */
1907         stop_this_handle(handle);
1908
1909         if (wait_for_commit)
1910                 err = jbd2_log_wait_commit(journal, tid);
1911
1912 free_and_exit:
1913         if (handle->h_rsv_handle)
1914                 jbd2_free_handle(handle->h_rsv_handle);
1915         jbd2_free_handle(handle);
1916         return err;
1917 }
1918
1919 /*
1920  *
1921  * List management code snippets: various functions for manipulating the
1922  * transaction buffer lists.
1923  *
1924  */
1925
1926 /*
1927  * Append a buffer to a transaction list, given the transaction's list head
1928  * pointer.
1929  *
1930  * j_list_lock is held.
1931  *
1932  * jh->b_state_lock is held.
1933  */
1934
1935 static inline void
1936 __blist_add_buffer(struct journal_head **list, struct journal_head *jh)
1937 {
1938         if (!*list) {
1939                 jh->b_tnext = jh->b_tprev = jh;
1940                 *list = jh;
1941         } else {
1942                 /* Insert at the tail of the list to preserve order */
1943                 struct journal_head *first = *list, *last = first->b_tprev;
1944                 jh->b_tprev = last;
1945                 jh->b_tnext = first;
1946                 last->b_tnext = first->b_tprev = jh;
1947         }
1948 }
1949
1950 /*
1951  * Remove a buffer from a transaction list, given the transaction's list
1952  * head pointer.
1953  *
1954  * Called with j_list_lock held, and the journal may not be locked.
1955  *
1956  * jh->b_state_lock is held.
1957  */
1958
1959 static inline void
1960 __blist_del_buffer(struct journal_head **list, struct journal_head *jh)
1961 {
1962         if (*list == jh) {
1963                 *list = jh->b_tnext;
1964                 if (*list == jh)
1965                         *list = NULL;
1966         }
1967         jh->b_tprev->b_tnext = jh->b_tnext;
1968         jh->b_tnext->b_tprev = jh->b_tprev;
1969 }
1970
1971 /*
1972  * Remove a buffer from the appropriate transaction list.
1973  *
1974  * Note that this function can *change* the value of
1975  * bh->b_transaction->t_buffers, t_forget, t_shadow_list, t_log_list or
1976  * t_reserved_list.  If the caller is holding onto a copy of one of these
1977  * pointers, it could go bad.  Generally the caller needs to re-read the
1978  * pointer from the transaction_t.
1979  *
1980  * Called under j_list_lock.
1981  */
1982 static void __jbd2_journal_temp_unlink_buffer(struct journal_head *jh)
1983 {
1984         struct journal_head **list = NULL;
1985         transaction_t *transaction;
1986         struct buffer_head *bh = jh2bh(jh);
1987
1988         lockdep_assert_held(&jh->b_state_lock);
1989         transaction = jh->b_transaction;
1990         if (transaction)
1991                 assert_spin_locked(&transaction->t_journal->j_list_lock);
1992
1993         J_ASSERT_JH(jh, jh->b_jlist < BJ_Types);
1994         if (jh->b_jlist != BJ_None)
1995                 J_ASSERT_JH(jh, transaction != NULL);
1996
1997         switch (jh->b_jlist) {
1998         case BJ_None:
1999                 return;
2000         case BJ_Metadata:
2001                 transaction->t_nr_buffers--;
2002                 J_ASSERT_JH(jh, transaction->t_nr_buffers >= 0);
2003                 list = &transaction->t_buffers;
2004                 break;
2005         case BJ_Forget:
2006                 list = &transaction->t_forget;
2007                 break;
2008         case BJ_Shadow:
2009                 list = &transaction->t_shadow_list;
2010                 break;
2011         case BJ_Reserved:
2012                 list = &transaction->t_reserved_list;
2013                 break;
2014         }
2015
2016         __blist_del_buffer(list, jh);
2017         jh->b_jlist = BJ_None;
2018         if (transaction && is_journal_aborted(transaction->t_journal))
2019                 clear_buffer_jbddirty(bh);
2020         else if (test_clear_buffer_jbddirty(bh))
2021                 mark_buffer_dirty(bh);  /* Expose it to the VM */
2022 }
2023
2024 /*
2025  * Remove buffer from all transactions. The caller is responsible for dropping
2026  * the jh reference that belonged to the transaction.
2027  *
2028  * Called with bh_state lock and j_list_lock
2029  */
2030 static void __jbd2_journal_unfile_buffer(struct journal_head *jh)
2031 {
2032         J_ASSERT_JH(jh, jh->b_transaction != NULL);
2033         J_ASSERT_JH(jh, jh->b_next_transaction == NULL);
2034
2035         __jbd2_journal_temp_unlink_buffer(jh);
2036         jh->b_transaction = NULL;
2037 }
2038
2039 void jbd2_journal_unfile_buffer(journal_t *journal, struct journal_head *jh)
2040 {
2041         struct buffer_head *bh = jh2bh(jh);
2042
2043         /* Get reference so that buffer cannot be freed before we unlock it */
2044         get_bh(bh);
2045         spin_lock(&jh->b_state_lock);
2046         spin_lock(&journal->j_list_lock);
2047         __jbd2_journal_unfile_buffer(jh);
2048         spin_unlock(&journal->j_list_lock);
2049         spin_unlock(&jh->b_state_lock);
2050         jbd2_journal_put_journal_head(jh);
2051         __brelse(bh);
2052 }
2053
2054 /*
2055  * Called from jbd2_journal_try_to_free_buffers().
2056  *
2057  * Called under jh->b_state_lock
2058  */
2059 static void
2060 __journal_try_to_free_buffer(journal_t *journal, struct buffer_head *bh)
2061 {
2062         struct journal_head *jh;
2063
2064         jh = bh2jh(bh);
2065
2066         if (buffer_locked(bh) || buffer_dirty(bh))
2067                 goto out;
2068
2069         if (jh->b_next_transaction != NULL || jh->b_transaction != NULL)
2070                 goto out;
2071
2072         spin_lock(&journal->j_list_lock);
2073         if (jh->b_cp_transaction != NULL) {
2074                 /* written-back checkpointed metadata buffer */
2075                 JBUFFER_TRACE(jh, "remove from checkpoint list");
2076                 __jbd2_journal_remove_checkpoint(jh);
2077         }
2078         spin_unlock(&journal->j_list_lock);
2079 out:
2080         return;
2081 }
2082
2083 /**
2084  * jbd2_journal_try_to_free_buffers() - try to free page buffers.
2085  * @journal: journal for operation
2086  * @page: to try and free
2087  *
2088  * For all the buffers on this page,
2089  * if they are fully written out ordered data, move them onto BUF_CLEAN
2090  * so try_to_free_buffers() can reap them.
2091  *
2092  * This function returns non-zero if we wish try_to_free_buffers()
2093  * to be called. We do this if the page is releasable by try_to_free_buffers().
2094  * We also do it if the page has locked or dirty buffers and the caller wants
2095  * us to perform sync or async writeout.
2096  *
2097  * This complicates JBD locking somewhat.  We aren't protected by the
2098  * BKL here.  We wish to remove the buffer from its committing or
2099  * running transaction's ->t_datalist via __jbd2_journal_unfile_buffer.
2100  *
2101  * This may *change* the value of transaction_t->t_datalist, so anyone
2102  * who looks at t_datalist needs to lock against this function.
2103  *
2104  * Even worse, someone may be doing a jbd2_journal_dirty_data on this
2105  * buffer.  So we need to lock against that.  jbd2_journal_dirty_data()
2106  * will come out of the lock with the buffer dirty, which makes it
2107  * ineligible for release here.
2108  *
2109  * Who else is affected by this?  hmm...  Really the only contender
2110  * is do_get_write_access() - it could be looking at the buffer while
2111  * journal_try_to_free_buffer() is changing its state.  But that
2112  * cannot happen because we never reallocate freed data as metadata
2113  * while the data is part of a transaction.  Yes?
2114  *
2115  * Return 0 on failure, 1 on success
2116  */
2117 int jbd2_journal_try_to_free_buffers(journal_t *journal, struct page *page)
2118 {
2119         struct buffer_head *head;
2120         struct buffer_head *bh;
2121         bool has_write_io_error = false;
2122         int ret = 0;
2123
2124         J_ASSERT(PageLocked(page));
2125
2126         head = page_buffers(page);
2127         bh = head;
2128         do {
2129                 struct journal_head *jh;
2130
2131                 /*
2132                  * We take our own ref against the journal_head here to avoid
2133                  * having to add tons of locking around each instance of
2134                  * jbd2_journal_put_journal_head().
2135                  */
2136                 jh = jbd2_journal_grab_journal_head(bh);
2137                 if (!jh)
2138                         continue;
2139
2140                 spin_lock(&jh->b_state_lock);
2141                 __journal_try_to_free_buffer(journal, bh);
2142                 spin_unlock(&jh->b_state_lock);
2143                 jbd2_journal_put_journal_head(jh);
2144                 if (buffer_jbd(bh))
2145                         goto busy;
2146
2147                 /*
2148                  * If we free a metadata buffer which has been failed to
2149                  * write out, the jbd2 checkpoint procedure will not detect
2150                  * this failure and may lead to filesystem inconsistency
2151                  * after cleanup journal tail.
2152                  */
2153                 if (buffer_write_io_error(bh)) {
2154                         pr_err("JBD2: Error while async write back metadata bh %llu.",
2155                                (unsigned long long)bh->b_blocknr);
2156                         has_write_io_error = true;
2157                 }
2158         } while ((bh = bh->b_this_page) != head);
2159
2160         ret = try_to_free_buffers(page);
2161
2162 busy:
2163         if (has_write_io_error)
2164                 jbd2_journal_abort(journal, -EIO);
2165
2166         return ret;
2167 }
2168
2169 /*
2170  * This buffer is no longer needed.  If it is on an older transaction's
2171  * checkpoint list we need to record it on this transaction's forget list
2172  * to pin this buffer (and hence its checkpointing transaction) down until
2173  * this transaction commits.  If the buffer isn't on a checkpoint list, we
2174  * release it.
2175  * Returns non-zero if JBD no longer has an interest in the buffer.
2176  *
2177  * Called under j_list_lock.
2178  *
2179  * Called under jh->b_state_lock.
2180  */
2181 static int __dispose_buffer(struct journal_head *jh, transaction_t *transaction)
2182 {
2183         int may_free = 1;
2184         struct buffer_head *bh = jh2bh(jh);
2185
2186         if (jh->b_cp_transaction) {
2187                 JBUFFER_TRACE(jh, "on running+cp transaction");
2188                 __jbd2_journal_temp_unlink_buffer(jh);
2189                 /*
2190                  * We don't want to write the buffer anymore, clear the
2191                  * bit so that we don't confuse checks in
2192                  * __journal_file_buffer
2193                  */
2194                 clear_buffer_dirty(bh);
2195                 __jbd2_journal_file_buffer(jh, transaction, BJ_Forget);
2196                 may_free = 0;
2197         } else {
2198                 JBUFFER_TRACE(jh, "on running transaction");
2199                 __jbd2_journal_unfile_buffer(jh);
2200                 jbd2_journal_put_journal_head(jh);
2201         }
2202         return may_free;
2203 }
2204
2205 /*
2206  * jbd2_journal_invalidatepage
2207  *
2208  * This code is tricky.  It has a number of cases to deal with.
2209  *
2210  * There are two invariants which this code relies on:
2211  *
2212  * i_size must be updated on disk before we start calling invalidatepage on the
2213  * data.
2214  *
2215  *  This is done in ext3 by defining an ext3_setattr method which
2216  *  updates i_size before truncate gets going.  By maintaining this
2217  *  invariant, we can be sure that it is safe to throw away any buffers
2218  *  attached to the current transaction: once the transaction commits,
2219  *  we know that the data will not be needed.
2220  *
2221  *  Note however that we can *not* throw away data belonging to the
2222  *  previous, committing transaction!
2223  *
2224  * Any disk blocks which *are* part of the previous, committing
2225  * transaction (and which therefore cannot be discarded immediately) are
2226  * not going to be reused in the new running transaction
2227  *
2228  *  The bitmap committed_data images guarantee this: any block which is
2229  *  allocated in one transaction and removed in the next will be marked
2230  *  as in-use in the committed_data bitmap, so cannot be reused until
2231  *  the next transaction to delete the block commits.  This means that
2232  *  leaving committing buffers dirty is quite safe: the disk blocks
2233  *  cannot be reallocated to a different file and so buffer aliasing is
2234  *  not possible.
2235  *
2236  *
2237  * The above applies mainly to ordered data mode.  In writeback mode we
2238  * don't make guarantees about the order in which data hits disk --- in
2239  * particular we don't guarantee that new dirty data is flushed before
2240  * transaction commit --- so it is always safe just to discard data
2241  * immediately in that mode.  --sct
2242  */
2243
2244 /*
2245  * The journal_unmap_buffer helper function returns zero if the buffer
2246  * concerned remains pinned as an anonymous buffer belonging to an older
2247  * transaction.
2248  *
2249  * We're outside-transaction here.  Either or both of j_running_transaction
2250  * and j_committing_transaction may be NULL.
2251  */
2252 static int journal_unmap_buffer(journal_t *journal, struct buffer_head *bh,
2253                                 int partial_page)
2254 {
2255         transaction_t *transaction;
2256         struct journal_head *jh;
2257         int may_free = 1;
2258
2259         BUFFER_TRACE(bh, "entry");
2260
2261         /*
2262          * It is safe to proceed here without the j_list_lock because the
2263          * buffers cannot be stolen by try_to_free_buffers as long as we are
2264          * holding the page lock. --sct
2265          */
2266
2267         jh = jbd2_journal_grab_journal_head(bh);
2268         if (!jh)
2269                 goto zap_buffer_unlocked;
2270
2271         /* OK, we have data buffer in journaled mode */
2272         write_lock(&journal->j_state_lock);
2273         spin_lock(&jh->b_state_lock);
2274         spin_lock(&journal->j_list_lock);
2275
2276         /*
2277          * We cannot remove the buffer from checkpoint lists until the
2278          * transaction adding inode to orphan list (let's call it T)
2279          * is committed.  Otherwise if the transaction changing the
2280          * buffer would be cleaned from the journal before T is
2281          * committed, a crash will cause that the correct contents of
2282          * the buffer will be lost.  On the other hand we have to
2283          * clear the buffer dirty bit at latest at the moment when the
2284          * transaction marking the buffer as freed in the filesystem
2285          * structures is committed because from that moment on the
2286          * block can be reallocated and used by a different page.
2287          * Since the block hasn't been freed yet but the inode has
2288          * already been added to orphan list, it is safe for us to add
2289          * the buffer to BJ_Forget list of the newest transaction.
2290          *
2291          * Also we have to clear buffer_mapped flag of a truncated buffer
2292          * because the buffer_head may be attached to the page straddling
2293          * i_size (can happen only when blocksize < pagesize) and thus the
2294          * buffer_head can be reused when the file is extended again. So we end
2295          * up keeping around invalidated buffers attached to transactions'
2296          * BJ_Forget list just to stop checkpointing code from cleaning up
2297          * the transaction this buffer was modified in.
2298          */
2299         transaction = jh->b_transaction;
2300         if (transaction == NULL) {
2301                 /* First case: not on any transaction.  If it
2302                  * has no checkpoint link, then we can zap it:
2303                  * it's a writeback-mode buffer so we don't care
2304                  * if it hits disk safely. */
2305                 if (!jh->b_cp_transaction) {
2306                         JBUFFER_TRACE(jh, "not on any transaction: zap");
2307                         goto zap_buffer;
2308                 }
2309
2310                 if (!buffer_dirty(bh)) {
2311                         /* bdflush has written it.  We can drop it now */
2312                         __jbd2_journal_remove_checkpoint(jh);
2313                         goto zap_buffer;
2314                 }
2315
2316                 /* OK, it must be in the journal but still not
2317                  * written fully to disk: it's metadata or
2318                  * journaled data... */
2319
2320                 if (journal->j_running_transaction) {
2321                         /* ... and once the current transaction has
2322                          * committed, the buffer won't be needed any
2323                          * longer. */
2324                         JBUFFER_TRACE(jh, "checkpointed: add to BJ_Forget");
2325                         may_free = __dispose_buffer(jh,
2326                                         journal->j_running_transaction);
2327                         goto zap_buffer;
2328                 } else {
2329                         /* There is no currently-running transaction. So the
2330                          * orphan record which we wrote for this file must have
2331                          * passed into commit.  We must attach this buffer to
2332                          * the committing transaction, if it exists. */
2333                         if (journal->j_committing_transaction) {
2334                                 JBUFFER_TRACE(jh, "give to committing trans");
2335                                 may_free = __dispose_buffer(jh,
2336                                         journal->j_committing_transaction);
2337                                 goto zap_buffer;
2338                         } else {
2339                                 /* The orphan record's transaction has
2340                                  * committed.  We can cleanse this buffer */
2341                                 clear_buffer_jbddirty(bh);
2342                                 __jbd2_journal_remove_checkpoint(jh);
2343                                 goto zap_buffer;
2344                         }
2345                 }
2346         } else if (transaction == journal->j_committing_transaction) {
2347                 JBUFFER_TRACE(jh, "on committing transaction");
2348                 /*
2349                  * The buffer is committing, we simply cannot touch
2350                  * it. If the page is straddling i_size we have to wait
2351                  * for commit and try again.
2352                  */
2353                 if (partial_page) {
2354                         spin_unlock(&journal->j_list_lock);
2355                         spin_unlock(&jh->b_state_lock);
2356                         write_unlock(&journal->j_state_lock);
2357                         jbd2_journal_put_journal_head(jh);
2358                         return -EBUSY;
2359                 }
2360                 /*
2361                  * OK, buffer won't be reachable after truncate. We just clear
2362                  * b_modified to not confuse transaction credit accounting, and
2363                  * set j_next_transaction to the running transaction (if there
2364                  * is one) and mark buffer as freed so that commit code knows
2365                  * it should clear dirty bits when it is done with the buffer.
2366                  */
2367                 set_buffer_freed(bh);
2368                 if (journal->j_running_transaction && buffer_jbddirty(bh))
2369                         jh->b_next_transaction = journal->j_running_transaction;
2370                 jh->b_modified = 0;
2371                 spin_unlock(&journal->j_list_lock);
2372                 spin_unlock(&jh->b_state_lock);
2373                 write_unlock(&journal->j_state_lock);
2374                 jbd2_journal_put_journal_head(jh);
2375                 return 0;
2376         } else {
2377                 /* Good, the buffer belongs to the running transaction.
2378                  * We are writing our own transaction's data, not any
2379                  * previous one's, so it is safe to throw it away
2380                  * (remember that we expect the filesystem to have set
2381                  * i_size already for this truncate so recovery will not
2382                  * expose the disk blocks we are discarding here.) */
2383                 J_ASSERT_JH(jh, transaction == journal->j_running_transaction);
2384                 JBUFFER_TRACE(jh, "on running transaction");
2385                 may_free = __dispose_buffer(jh, transaction);
2386         }
2387
2388 zap_buffer:
2389         /*
2390          * This is tricky. Although the buffer is truncated, it may be reused
2391          * if blocksize < pagesize and it is attached to the page straddling
2392          * EOF. Since the buffer might have been added to BJ_Forget list of the
2393          * running transaction, journal_get_write_access() won't clear
2394          * b_modified and credit accounting gets confused. So clear b_modified
2395          * here.
2396          */
2397         jh->b_modified = 0;
2398         spin_unlock(&journal->j_list_lock);
2399         spin_unlock(&jh->b_state_lock);
2400         write_unlock(&journal->j_state_lock);
2401         jbd2_journal_put_journal_head(jh);
2402 zap_buffer_unlocked:
2403         clear_buffer_dirty(bh);
2404         J_ASSERT_BH(bh, !buffer_jbddirty(bh));
2405         clear_buffer_mapped(bh);
2406         clear_buffer_req(bh);
2407         clear_buffer_new(bh);
2408         clear_buffer_delay(bh);
2409         clear_buffer_unwritten(bh);
2410         bh->b_bdev = NULL;
2411         return may_free;
2412 }
2413
2414 /**
2415  * jbd2_journal_invalidatepage()
2416  * @journal: journal to use for flush...
2417  * @page:    page to flush
2418  * @offset:  start of the range to invalidate
2419  * @length:  length of the range to invalidate
2420  *
2421  * Reap page buffers containing data after in the specified range in page.
2422  * Can return -EBUSY if buffers are part of the committing transaction and
2423  * the page is straddling i_size. Caller then has to wait for current commit
2424  * and try again.
2425  */
2426 int jbd2_journal_invalidatepage(journal_t *journal,
2427                                 struct page *page,
2428                                 unsigned int offset,
2429                                 unsigned int length)
2430 {
2431         struct buffer_head *head, *bh, *next;
2432         unsigned int stop = offset + length;
2433         unsigned int curr_off = 0;
2434         int partial_page = (offset || length < PAGE_SIZE);
2435         int may_free = 1;
2436         int ret = 0;
2437
2438         if (!PageLocked(page))
2439                 BUG();
2440         if (!page_has_buffers(page))
2441                 return 0;
2442
2443         BUG_ON(stop > PAGE_SIZE || stop < length);
2444
2445         /* We will potentially be playing with lists other than just the
2446          * data lists (especially for journaled data mode), so be
2447          * cautious in our locking. */
2448
2449         head = bh = page_buffers(page);
2450         do {
2451                 unsigned int next_off = curr_off + bh->b_size;
2452                 next = bh->b_this_page;
2453
2454                 if (next_off > stop)
2455                         return 0;
2456
2457                 if (offset <= curr_off) {
2458                         /* This block is wholly outside the truncation point */
2459                         lock_buffer(bh);
2460                         ret = journal_unmap_buffer(journal, bh, partial_page);
2461                         unlock_buffer(bh);
2462                         if (ret < 0)
2463                                 return ret;
2464                         may_free &= ret;
2465                 }
2466                 curr_off = next_off;
2467                 bh = next;
2468
2469         } while (bh != head);
2470
2471         if (!partial_page) {
2472                 if (may_free && try_to_free_buffers(page))
2473                         J_ASSERT(!page_has_buffers(page));
2474         }
2475         return 0;
2476 }
2477
2478 /*
2479  * File a buffer on the given transaction list.
2480  */
2481 void __jbd2_journal_file_buffer(struct journal_head *jh,
2482                         transaction_t *transaction, int jlist)
2483 {
2484         struct journal_head **list = NULL;
2485         int was_dirty = 0;
2486         struct buffer_head *bh = jh2bh(jh);
2487
2488         lockdep_assert_held(&jh->b_state_lock);
2489         assert_spin_locked(&transaction->t_journal->j_list_lock);
2490
2491         J_ASSERT_JH(jh, jh->b_jlist < BJ_Types);
2492         J_ASSERT_JH(jh, jh->b_transaction == transaction ||
2493                                 jh->b_transaction == NULL);
2494
2495         if (jh->b_transaction && jh->b_jlist == jlist)
2496                 return;
2497
2498         if (jlist == BJ_Metadata || jlist == BJ_Reserved ||
2499             jlist == BJ_Shadow || jlist == BJ_Forget) {
2500                 /*
2501                  * For metadata buffers, we track dirty bit in buffer_jbddirty
2502                  * instead of buffer_dirty. We should not see a dirty bit set
2503                  * here because we clear it in do_get_write_access but e.g.
2504                  * tune2fs can modify the sb and set the dirty bit at any time
2505                  * so we try to gracefully handle that.
2506                  */
2507                 if (buffer_dirty(bh))
2508                         warn_dirty_buffer(bh);
2509                 if (test_clear_buffer_dirty(bh) ||
2510                     test_clear_buffer_jbddirty(bh))
2511                         was_dirty = 1;
2512         }
2513
2514         if (jh->b_transaction)
2515                 __jbd2_journal_temp_unlink_buffer(jh);
2516         else
2517                 jbd2_journal_grab_journal_head(bh);
2518         jh->b_transaction = transaction;
2519
2520         switch (jlist) {
2521         case BJ_None:
2522                 J_ASSERT_JH(jh, !jh->b_committed_data);
2523                 J_ASSERT_JH(jh, !jh->b_frozen_data);
2524                 return;
2525         case BJ_Metadata:
2526                 transaction->t_nr_buffers++;
2527                 list = &transaction->t_buffers;
2528                 break;
2529         case BJ_Forget:
2530                 list = &transaction->t_forget;
2531                 break;
2532         case BJ_Shadow:
2533                 list = &transaction->t_shadow_list;
2534                 break;
2535         case BJ_Reserved:
2536                 list = &transaction->t_reserved_list;
2537                 break;
2538         }
2539
2540         __blist_add_buffer(list, jh);
2541         jh->b_jlist = jlist;
2542
2543         if (was_dirty)
2544                 set_buffer_jbddirty(bh);
2545 }
2546
2547 void jbd2_journal_file_buffer(struct journal_head *jh,
2548                                 transaction_t *transaction, int jlist)
2549 {
2550         spin_lock(&jh->b_state_lock);
2551         spin_lock(&transaction->t_journal->j_list_lock);
2552         __jbd2_journal_file_buffer(jh, transaction, jlist);
2553         spin_unlock(&transaction->t_journal->j_list_lock);
2554         spin_unlock(&jh->b_state_lock);
2555 }
2556
2557 /*
2558  * Remove a buffer from its current buffer list in preparation for
2559  * dropping it from its current transaction entirely.  If the buffer has
2560  * already started to be used by a subsequent transaction, refile the
2561  * buffer on that transaction's metadata list.
2562  *
2563  * Called under j_list_lock
2564  * Called under jh->b_state_lock
2565  *
2566  * When this function returns true, there's no next transaction to refile to
2567  * and the caller has to drop jh reference through
2568  * jbd2_journal_put_journal_head().
2569  */
2570 bool __jbd2_journal_refile_buffer(struct journal_head *jh)
2571 {
2572         int was_dirty, jlist;
2573         struct buffer_head *bh = jh2bh(jh);
2574
2575         lockdep_assert_held(&jh->b_state_lock);
2576         if (jh->b_transaction)
2577                 assert_spin_locked(&jh->b_transaction->t_journal->j_list_lock);
2578
2579         /* If the buffer is now unused, just drop it. */
2580         if (jh->b_next_transaction == NULL) {
2581                 __jbd2_journal_unfile_buffer(jh);
2582                 return true;
2583         }
2584
2585         /*
2586          * It has been modified by a later transaction: add it to the new
2587          * transaction's metadata list.
2588          */
2589
2590         was_dirty = test_clear_buffer_jbddirty(bh);
2591         __jbd2_journal_temp_unlink_buffer(jh);
2592
2593         /*
2594          * b_transaction must be set, otherwise the new b_transaction won't
2595          * be holding jh reference
2596          */
2597         J_ASSERT_JH(jh, jh->b_transaction != NULL);
2598
2599         /*
2600          * We set b_transaction here because b_next_transaction will inherit
2601          * our jh reference and thus __jbd2_journal_file_buffer() must not
2602          * take a new one.
2603          */
2604         WRITE_ONCE(jh->b_transaction, jh->b_next_transaction);
2605         WRITE_ONCE(jh->b_next_transaction, NULL);
2606         if (buffer_freed(bh))
2607                 jlist = BJ_Forget;
2608         else if (jh->b_modified)
2609                 jlist = BJ_Metadata;
2610         else
2611                 jlist = BJ_Reserved;
2612         __jbd2_journal_file_buffer(jh, jh->b_transaction, jlist);
2613         J_ASSERT_JH(jh, jh->b_transaction->t_state == T_RUNNING);
2614
2615         if (was_dirty)
2616                 set_buffer_jbddirty(bh);
2617         return false;
2618 }
2619
2620 /*
2621  * __jbd2_journal_refile_buffer() with necessary locking added. We take our
2622  * bh reference so that we can safely unlock bh.
2623  *
2624  * The jh and bh may be freed by this call.
2625  */
2626 void jbd2_journal_refile_buffer(journal_t *journal, struct journal_head *jh)
2627 {
2628         bool drop;
2629
2630         spin_lock(&jh->b_state_lock);
2631         spin_lock(&journal->j_list_lock);
2632         drop = __jbd2_journal_refile_buffer(jh);
2633         spin_unlock(&jh->b_state_lock);
2634         spin_unlock(&journal->j_list_lock);
2635         if (drop)
2636                 jbd2_journal_put_journal_head(jh);
2637 }
2638
2639 /*
2640  * File inode in the inode list of the handle's transaction
2641  */
2642 static int jbd2_journal_file_inode(handle_t *handle, struct jbd2_inode *jinode,
2643                 unsigned long flags, loff_t start_byte, loff_t end_byte)
2644 {
2645         transaction_t *transaction = handle->h_transaction;
2646         journal_t *journal;
2647
2648         if (is_handle_aborted(handle))
2649                 return -EROFS;
2650         journal = transaction->t_journal;
2651
2652         jbd_debug(4, "Adding inode %lu, tid:%d\n", jinode->i_vfs_inode->i_ino,
2653                         transaction->t_tid);
2654
2655         spin_lock(&journal->j_list_lock);
2656         jinode->i_flags |= flags;
2657
2658         if (jinode->i_dirty_end) {
2659                 jinode->i_dirty_start = min(jinode->i_dirty_start, start_byte);
2660                 jinode->i_dirty_end = max(jinode->i_dirty_end, end_byte);
2661         } else {
2662                 jinode->i_dirty_start = start_byte;
2663                 jinode->i_dirty_end = end_byte;
2664         }
2665
2666         /* Is inode already attached where we need it? */
2667         if (jinode->i_transaction == transaction ||
2668             jinode->i_next_transaction == transaction)
2669                 goto done;
2670
2671         /*
2672          * We only ever set this variable to 1 so the test is safe. Since
2673          * t_need_data_flush is likely to be set, we do the test to save some
2674          * cacheline bouncing
2675          */
2676         if (!transaction->t_need_data_flush)
2677                 transaction->t_need_data_flush = 1;
2678         /* On some different transaction's list - should be
2679          * the committing one */
2680         if (jinode->i_transaction) {
2681                 J_ASSERT(jinode->i_next_transaction == NULL);
2682                 J_ASSERT(jinode->i_transaction ==
2683                                         journal->j_committing_transaction);
2684                 jinode->i_next_transaction = transaction;
2685                 goto done;
2686         }
2687         /* Not on any transaction list... */
2688         J_ASSERT(!jinode->i_next_transaction);
2689         jinode->i_transaction = transaction;
2690         list_add(&jinode->i_list, &transaction->t_inode_list);
2691 done:
2692         spin_unlock(&journal->j_list_lock);
2693
2694         return 0;
2695 }
2696
2697 int jbd2_journal_inode_ranged_write(handle_t *handle,
2698                 struct jbd2_inode *jinode, loff_t start_byte, loff_t length)
2699 {
2700         return jbd2_journal_file_inode(handle, jinode,
2701                         JI_WRITE_DATA | JI_WAIT_DATA, start_byte,
2702                         start_byte + length - 1);
2703 }
2704
2705 int jbd2_journal_inode_ranged_wait(handle_t *handle, struct jbd2_inode *jinode,
2706                 loff_t start_byte, loff_t length)
2707 {
2708         return jbd2_journal_file_inode(handle, jinode, JI_WAIT_DATA,
2709                         start_byte, start_byte + length - 1);
2710 }
2711
2712 /*
2713  * File truncate and transaction commit interact with each other in a
2714  * non-trivial way.  If a transaction writing data block A is
2715  * committing, we cannot discard the data by truncate until we have
2716  * written them.  Otherwise if we crashed after the transaction with
2717  * write has committed but before the transaction with truncate has
2718  * committed, we could see stale data in block A.  This function is a
2719  * helper to solve this problem.  It starts writeout of the truncated
2720  * part in case it is in the committing transaction.
2721  *
2722  * Filesystem code must call this function when inode is journaled in
2723  * ordered mode before truncation happens and after the inode has been
2724  * placed on orphan list with the new inode size. The second condition
2725  * avoids the race that someone writes new data and we start
2726  * committing the transaction after this function has been called but
2727  * before a transaction for truncate is started (and furthermore it
2728  * allows us to optimize the case where the addition to orphan list
2729  * happens in the same transaction as write --- we don't have to write
2730  * any data in such case).
2731  */
2732 int jbd2_journal_begin_ordered_truncate(journal_t *journal,
2733                                         struct jbd2_inode *jinode,
2734                                         loff_t new_size)
2735 {
2736         transaction_t *inode_trans, *commit_trans;
2737         int ret = 0;
2738
2739         /* This is a quick check to avoid locking if not necessary */
2740         if (!jinode->i_transaction)
2741                 goto out;
2742         /* Locks are here just to force reading of recent values, it is
2743          * enough that the transaction was not committing before we started
2744          * a transaction adding the inode to orphan list */
2745         read_lock(&journal->j_state_lock);
2746         commit_trans = journal->j_committing_transaction;
2747         read_unlock(&journal->j_state_lock);
2748         spin_lock(&journal->j_list_lock);
2749         inode_trans = jinode->i_transaction;
2750         spin_unlock(&journal->j_list_lock);
2751         if (inode_trans == commit_trans) {
2752                 ret = filemap_fdatawrite_range(jinode->i_vfs_inode->i_mapping,
2753                         new_size, LLONG_MAX);
2754                 if (ret)
2755                         jbd2_journal_abort(journal, ret);
2756         }
2757 out:
2758         return ret;
2759 }