Merge branches 'clk-mvebu', 'clk-const', 'clk-imx' and 'clk-rockchip' into clk-next
[linux-2.6-microblaze.git] / fs / jbd2 / transaction.c
1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3  * linux/fs/jbd2/transaction.c
4  *
5  * Written by Stephen C. Tweedie <sct@redhat.com>, 1998
6  *
7  * Copyright 1998 Red Hat corp --- All Rights Reserved
8  *
9  * Generic filesystem transaction handling code; part of the ext2fs
10  * journaling system.
11  *
12  * This file manages transactions (compound commits managed by the
13  * journaling code) and handles (individual atomic operations by the
14  * filesystem).
15  */
16
17 #include <linux/time.h>
18 #include <linux/fs.h>
19 #include <linux/jbd2.h>
20 #include <linux/errno.h>
21 #include <linux/slab.h>
22 #include <linux/timer.h>
23 #include <linux/mm.h>
24 #include <linux/highmem.h>
25 #include <linux/hrtimer.h>
26 #include <linux/backing-dev.h>
27 #include <linux/bug.h>
28 #include <linux/module.h>
29 #include <linux/sched/mm.h>
30
31 #include <trace/events/jbd2.h>
32
33 static void __jbd2_journal_temp_unlink_buffer(struct journal_head *jh);
34 static void __jbd2_journal_unfile_buffer(struct journal_head *jh);
35
36 static struct kmem_cache *transaction_cache;
37 int __init jbd2_journal_init_transaction_cache(void)
38 {
39         J_ASSERT(!transaction_cache);
40         transaction_cache = kmem_cache_create("jbd2_transaction_s",
41                                         sizeof(transaction_t),
42                                         0,
43                                         SLAB_HWCACHE_ALIGN|SLAB_TEMPORARY,
44                                         NULL);
45         if (!transaction_cache) {
46                 pr_emerg("JBD2: failed to create transaction cache\n");
47                 return -ENOMEM;
48         }
49         return 0;
50 }
51
52 void jbd2_journal_destroy_transaction_cache(void)
53 {
54         kmem_cache_destroy(transaction_cache);
55         transaction_cache = NULL;
56 }
57
58 void jbd2_journal_free_transaction(transaction_t *transaction)
59 {
60         if (unlikely(ZERO_OR_NULL_PTR(transaction)))
61                 return;
62         kmem_cache_free(transaction_cache, transaction);
63 }
64
65 /*
66  * Base amount of descriptor blocks we reserve for each transaction.
67  */
68 static int jbd2_descriptor_blocks_per_trans(journal_t *journal)
69 {
70         int tag_space = journal->j_blocksize - sizeof(journal_header_t);
71         int tags_per_block;
72
73         /* Subtract UUID */
74         tag_space -= 16;
75         if (jbd2_journal_has_csum_v2or3(journal))
76                 tag_space -= sizeof(struct jbd2_journal_block_tail);
77         /* Commit code leaves a slack space of 16 bytes at the end of block */
78         tags_per_block = (tag_space - 16) / journal_tag_bytes(journal);
79         /*
80          * Revoke descriptors are accounted separately so we need to reserve
81          * space for commit block and normal transaction descriptor blocks.
82          */
83         return 1 + DIV_ROUND_UP(journal->j_max_transaction_buffers,
84                                 tags_per_block);
85 }
86
87 /*
88  * jbd2_get_transaction: obtain a new transaction_t object.
89  *
90  * Simply initialise a new transaction. Initialize it in
91  * RUNNING state and add it to the current journal (which should not
92  * have an existing running transaction: we only make a new transaction
93  * once we have started to commit the old one).
94  *
95  * Preconditions:
96  *      The journal MUST be locked.  We don't perform atomic mallocs on the
97  *      new transaction and we can't block without protecting against other
98  *      processes trying to touch the journal while it is in transition.
99  *
100  */
101
102 static void jbd2_get_transaction(journal_t *journal,
103                                 transaction_t *transaction)
104 {
105         transaction->t_journal = journal;
106         transaction->t_state = T_RUNNING;
107         transaction->t_start_time = ktime_get();
108         transaction->t_tid = journal->j_transaction_sequence++;
109         transaction->t_expires = jiffies + journal->j_commit_interval;
110         spin_lock_init(&transaction->t_handle_lock);
111         atomic_set(&transaction->t_updates, 0);
112         atomic_set(&transaction->t_outstanding_credits,
113                    jbd2_descriptor_blocks_per_trans(journal) +
114                    atomic_read(&journal->j_reserved_credits));
115         atomic_set(&transaction->t_outstanding_revokes, 0);
116         atomic_set(&transaction->t_handle_count, 0);
117         INIT_LIST_HEAD(&transaction->t_inode_list);
118         INIT_LIST_HEAD(&transaction->t_private_list);
119
120         /* Set up the commit timer for the new transaction. */
121         journal->j_commit_timer.expires = round_jiffies_up(transaction->t_expires);
122         add_timer(&journal->j_commit_timer);
123
124         J_ASSERT(journal->j_running_transaction == NULL);
125         journal->j_running_transaction = transaction;
126         transaction->t_max_wait = 0;
127         transaction->t_start = jiffies;
128         transaction->t_requested = 0;
129 }
130
131 /*
132  * Handle management.
133  *
134  * A handle_t is an object which represents a single atomic update to a
135  * filesystem, and which tracks all of the modifications which form part
136  * of that one update.
137  */
138
139 /*
140  * Update transaction's maximum wait time, if debugging is enabled.
141  *
142  * In order for t_max_wait to be reliable, it must be protected by a
143  * lock.  But doing so will mean that start_this_handle() can not be
144  * run in parallel on SMP systems, which limits our scalability.  So
145  * unless debugging is enabled, we no longer update t_max_wait, which
146  * means that maximum wait time reported by the jbd2_run_stats
147  * tracepoint will always be zero.
148  */
149 static inline void update_t_max_wait(transaction_t *transaction,
150                                      unsigned long ts)
151 {
152 #ifdef CONFIG_JBD2_DEBUG
153         if (jbd2_journal_enable_debug &&
154             time_after(transaction->t_start, ts)) {
155                 ts = jbd2_time_diff(ts, transaction->t_start);
156                 spin_lock(&transaction->t_handle_lock);
157                 if (ts > transaction->t_max_wait)
158                         transaction->t_max_wait = ts;
159                 spin_unlock(&transaction->t_handle_lock);
160         }
161 #endif
162 }
163
164 /*
165  * Wait until running transaction passes to T_FLUSH state and new transaction
166  * can thus be started. Also starts the commit if needed. The function expects
167  * running transaction to exist and releases j_state_lock.
168  */
169 static void wait_transaction_locked(journal_t *journal)
170         __releases(journal->j_state_lock)
171 {
172         DEFINE_WAIT(wait);
173         int need_to_start;
174         tid_t tid = journal->j_running_transaction->t_tid;
175
176         prepare_to_wait(&journal->j_wait_transaction_locked, &wait,
177                         TASK_UNINTERRUPTIBLE);
178         need_to_start = !tid_geq(journal->j_commit_request, tid);
179         read_unlock(&journal->j_state_lock);
180         if (need_to_start)
181                 jbd2_log_start_commit(journal, tid);
182         jbd2_might_wait_for_commit(journal);
183         schedule();
184         finish_wait(&journal->j_wait_transaction_locked, &wait);
185 }
186
187 /*
188  * Wait until running transaction transitions from T_SWITCH to T_FLUSH
189  * state and new transaction can thus be started. The function releases
190  * j_state_lock.
191  */
192 static void wait_transaction_switching(journal_t *journal)
193         __releases(journal->j_state_lock)
194 {
195         DEFINE_WAIT(wait);
196
197         if (WARN_ON(!journal->j_running_transaction ||
198                     journal->j_running_transaction->t_state != T_SWITCH)) {
199                 read_unlock(&journal->j_state_lock);
200                 return;
201         }
202         prepare_to_wait(&journal->j_wait_transaction_locked, &wait,
203                         TASK_UNINTERRUPTIBLE);
204         read_unlock(&journal->j_state_lock);
205         /*
206          * We don't call jbd2_might_wait_for_commit() here as there's no
207          * waiting for outstanding handles happening anymore in T_SWITCH state
208          * and handling of reserved handles actually relies on that for
209          * correctness.
210          */
211         schedule();
212         finish_wait(&journal->j_wait_transaction_locked, &wait);
213 }
214
215 static void sub_reserved_credits(journal_t *journal, int blocks)
216 {
217         atomic_sub(blocks, &journal->j_reserved_credits);
218         wake_up(&journal->j_wait_reserved);
219 }
220
221 /*
222  * Wait until we can add credits for handle to the running transaction.  Called
223  * with j_state_lock held for reading. Returns 0 if handle joined the running
224  * transaction. Returns 1 if we had to wait, j_state_lock is dropped, and
225  * caller must retry.
226  *
227  * Note: because j_state_lock may be dropped depending on the return
228  * value, we need to fake out sparse so ti doesn't complain about a
229  * locking imbalance.  Callers of add_transaction_credits will need to
230  * make a similar accomodation.
231  */
232 static int add_transaction_credits(journal_t *journal, int blocks,
233                                    int rsv_blocks)
234 __must_hold(&journal->j_state_lock)
235 {
236         transaction_t *t = journal->j_running_transaction;
237         int needed;
238         int total = blocks + rsv_blocks;
239
240         /*
241          * If the current transaction is locked down for commit, wait
242          * for the lock to be released.
243          */
244         if (t->t_state != T_RUNNING) {
245                 WARN_ON_ONCE(t->t_state >= T_FLUSH);
246                 wait_transaction_locked(journal);
247                 __acquire(&journal->j_state_lock); /* fake out sparse */
248                 return 1;
249         }
250
251         /*
252          * If there is not enough space left in the log to write all
253          * potential buffers requested by this operation, we need to
254          * stall pending a log checkpoint to free some more log space.
255          */
256         needed = atomic_add_return(total, &t->t_outstanding_credits);
257         if (needed > journal->j_max_transaction_buffers) {
258                 /*
259                  * If the current transaction is already too large,
260                  * then start to commit it: we can then go back and
261                  * attach this handle to a new transaction.
262                  */
263                 atomic_sub(total, &t->t_outstanding_credits);
264
265                 /*
266                  * Is the number of reserved credits in the current transaction too
267                  * big to fit this handle? Wait until reserved credits are freed.
268                  */
269                 if (atomic_read(&journal->j_reserved_credits) + total >
270                     journal->j_max_transaction_buffers) {
271                         read_unlock(&journal->j_state_lock);
272                         jbd2_might_wait_for_commit(journal);
273                         wait_event(journal->j_wait_reserved,
274                                    atomic_read(&journal->j_reserved_credits) + total <=
275                                    journal->j_max_transaction_buffers);
276                         __acquire(&journal->j_state_lock); /* fake out sparse */
277                         return 1;
278                 }
279
280                 wait_transaction_locked(journal);
281                 __acquire(&journal->j_state_lock); /* fake out sparse */
282                 return 1;
283         }
284
285         /*
286          * The commit code assumes that it can get enough log space
287          * without forcing a checkpoint.  This is *critical* for
288          * correctness: a checkpoint of a buffer which is also
289          * associated with a committing transaction creates a deadlock,
290          * so commit simply cannot force through checkpoints.
291          *
292          * We must therefore ensure the necessary space in the journal
293          * *before* starting to dirty potentially checkpointed buffers
294          * in the new transaction.
295          */
296         if (jbd2_log_space_left(journal) < journal->j_max_transaction_buffers) {
297                 atomic_sub(total, &t->t_outstanding_credits);
298                 read_unlock(&journal->j_state_lock);
299                 jbd2_might_wait_for_commit(journal);
300                 write_lock(&journal->j_state_lock);
301                 if (jbd2_log_space_left(journal) <
302                                         journal->j_max_transaction_buffers)
303                         __jbd2_log_wait_for_space(journal);
304                 write_unlock(&journal->j_state_lock);
305                 __acquire(&journal->j_state_lock); /* fake out sparse */
306                 return 1;
307         }
308
309         /* No reservation? We are done... */
310         if (!rsv_blocks)
311                 return 0;
312
313         needed = atomic_add_return(rsv_blocks, &journal->j_reserved_credits);
314         /* We allow at most half of a transaction to be reserved */
315         if (needed > journal->j_max_transaction_buffers / 2) {
316                 sub_reserved_credits(journal, rsv_blocks);
317                 atomic_sub(total, &t->t_outstanding_credits);
318                 read_unlock(&journal->j_state_lock);
319                 jbd2_might_wait_for_commit(journal);
320                 wait_event(journal->j_wait_reserved,
321                          atomic_read(&journal->j_reserved_credits) + rsv_blocks
322                          <= journal->j_max_transaction_buffers / 2);
323                 __acquire(&journal->j_state_lock); /* fake out sparse */
324                 return 1;
325         }
326         return 0;
327 }
328
329 /*
330  * start_this_handle: Given a handle, deal with any locking or stalling
331  * needed to make sure that there is enough journal space for the handle
332  * to begin.  Attach the handle to a transaction and set up the
333  * transaction's buffer credits.
334  */
335
336 static int start_this_handle(journal_t *journal, handle_t *handle,
337                              gfp_t gfp_mask)
338 {
339         transaction_t   *transaction, *new_transaction = NULL;
340         int             blocks = handle->h_total_credits;
341         int             rsv_blocks = 0;
342         unsigned long ts = jiffies;
343
344         if (handle->h_rsv_handle)
345                 rsv_blocks = handle->h_rsv_handle->h_total_credits;
346
347         /*
348          * Limit the number of reserved credits to 1/2 of maximum transaction
349          * size and limit the number of total credits to not exceed maximum
350          * transaction size per operation.
351          */
352         if ((rsv_blocks > journal->j_max_transaction_buffers / 2) ||
353             (rsv_blocks + blocks > journal->j_max_transaction_buffers)) {
354                 printk(KERN_ERR "JBD2: %s wants too many credits "
355                        "credits:%d rsv_credits:%d max:%d\n",
356                        current->comm, blocks, rsv_blocks,
357                        journal->j_max_transaction_buffers);
358                 WARN_ON(1);
359                 return -ENOSPC;
360         }
361
362 alloc_transaction:
363         /*
364          * This check is racy but it is just an optimization of allocating new
365          * transaction early if there are high chances we'll need it. If we
366          * guess wrong, we'll retry or free unused transaction.
367          */
368         if (!data_race(journal->j_running_transaction)) {
369                 /*
370                  * If __GFP_FS is not present, then we may be being called from
371                  * inside the fs writeback layer, so we MUST NOT fail.
372                  */
373                 if ((gfp_mask & __GFP_FS) == 0)
374                         gfp_mask |= __GFP_NOFAIL;
375                 new_transaction = kmem_cache_zalloc(transaction_cache,
376                                                     gfp_mask);
377                 if (!new_transaction)
378                         return -ENOMEM;
379         }
380
381         jbd_debug(3, "New handle %p going live.\n", handle);
382
383         /*
384          * We need to hold j_state_lock until t_updates has been incremented,
385          * for proper journal barrier handling
386          */
387 repeat:
388         read_lock(&journal->j_state_lock);
389         BUG_ON(journal->j_flags & JBD2_UNMOUNT);
390         if (is_journal_aborted(journal) ||
391             (journal->j_errno != 0 && !(journal->j_flags & JBD2_ACK_ERR))) {
392                 read_unlock(&journal->j_state_lock);
393                 jbd2_journal_free_transaction(new_transaction);
394                 return -EROFS;
395         }
396
397         /*
398          * Wait on the journal's transaction barrier if necessary. Specifically
399          * we allow reserved handles to proceed because otherwise commit could
400          * deadlock on page writeback not being able to complete.
401          */
402         if (!handle->h_reserved && journal->j_barrier_count) {
403                 read_unlock(&journal->j_state_lock);
404                 wait_event(journal->j_wait_transaction_locked,
405                                 journal->j_barrier_count == 0);
406                 goto repeat;
407         }
408
409         if (!journal->j_running_transaction) {
410                 read_unlock(&journal->j_state_lock);
411                 if (!new_transaction)
412                         goto alloc_transaction;
413                 write_lock(&journal->j_state_lock);
414                 if (!journal->j_running_transaction &&
415                     (handle->h_reserved || !journal->j_barrier_count)) {
416                         jbd2_get_transaction(journal, new_transaction);
417                         new_transaction = NULL;
418                 }
419                 write_unlock(&journal->j_state_lock);
420                 goto repeat;
421         }
422
423         transaction = journal->j_running_transaction;
424
425         if (!handle->h_reserved) {
426                 /* We may have dropped j_state_lock - restart in that case */
427                 if (add_transaction_credits(journal, blocks, rsv_blocks)) {
428                         /*
429                          * add_transaction_credits releases
430                          * j_state_lock on a non-zero return
431                          */
432                         __release(&journal->j_state_lock);
433                         goto repeat;
434                 }
435         } else {
436                 /*
437                  * We have handle reserved so we are allowed to join T_LOCKED
438                  * transaction and we don't have to check for transaction size
439                  * and journal space. But we still have to wait while running
440                  * transaction is being switched to a committing one as it
441                  * won't wait for any handles anymore.
442                  */
443                 if (transaction->t_state == T_SWITCH) {
444                         wait_transaction_switching(journal);
445                         goto repeat;
446                 }
447                 sub_reserved_credits(journal, blocks);
448                 handle->h_reserved = 0;
449         }
450
451         /* OK, account for the buffers that this operation expects to
452          * use and add the handle to the running transaction.
453          */
454         update_t_max_wait(transaction, ts);
455         handle->h_transaction = transaction;
456         handle->h_requested_credits = blocks;
457         handle->h_revoke_credits_requested = handle->h_revoke_credits;
458         handle->h_start_jiffies = jiffies;
459         atomic_inc(&transaction->t_updates);
460         atomic_inc(&transaction->t_handle_count);
461         jbd_debug(4, "Handle %p given %d credits (total %d, free %lu)\n",
462                   handle, blocks,
463                   atomic_read(&transaction->t_outstanding_credits),
464                   jbd2_log_space_left(journal));
465         read_unlock(&journal->j_state_lock);
466         current->journal_info = handle;
467
468         rwsem_acquire_read(&journal->j_trans_commit_map, 0, 0, _THIS_IP_);
469         jbd2_journal_free_transaction(new_transaction);
470         /*
471          * Ensure that no allocations done while the transaction is open are
472          * going to recurse back to the fs layer.
473          */
474         handle->saved_alloc_context = memalloc_nofs_save();
475         return 0;
476 }
477
478 /* Allocate a new handle.  This should probably be in a slab... */
479 static handle_t *new_handle(int nblocks)
480 {
481         handle_t *handle = jbd2_alloc_handle(GFP_NOFS);
482         if (!handle)
483                 return NULL;
484         handle->h_total_credits = nblocks;
485         handle->h_ref = 1;
486
487         return handle;
488 }
489
490 handle_t *jbd2__journal_start(journal_t *journal, int nblocks, int rsv_blocks,
491                               int revoke_records, gfp_t gfp_mask,
492                               unsigned int type, unsigned int line_no)
493 {
494         handle_t *handle = journal_current_handle();
495         int err;
496
497         if (!journal)
498                 return ERR_PTR(-EROFS);
499
500         if (handle) {
501                 J_ASSERT(handle->h_transaction->t_journal == journal);
502                 handle->h_ref++;
503                 return handle;
504         }
505
506         nblocks += DIV_ROUND_UP(revoke_records,
507                                 journal->j_revoke_records_per_block);
508         handle = new_handle(nblocks);
509         if (!handle)
510                 return ERR_PTR(-ENOMEM);
511         if (rsv_blocks) {
512                 handle_t *rsv_handle;
513
514                 rsv_handle = new_handle(rsv_blocks);
515                 if (!rsv_handle) {
516                         jbd2_free_handle(handle);
517                         return ERR_PTR(-ENOMEM);
518                 }
519                 rsv_handle->h_reserved = 1;
520                 rsv_handle->h_journal = journal;
521                 handle->h_rsv_handle = rsv_handle;
522         }
523         handle->h_revoke_credits = revoke_records;
524
525         err = start_this_handle(journal, handle, gfp_mask);
526         if (err < 0) {
527                 if (handle->h_rsv_handle)
528                         jbd2_free_handle(handle->h_rsv_handle);
529                 jbd2_free_handle(handle);
530                 return ERR_PTR(err);
531         }
532         handle->h_type = type;
533         handle->h_line_no = line_no;
534         trace_jbd2_handle_start(journal->j_fs_dev->bd_dev,
535                                 handle->h_transaction->t_tid, type,
536                                 line_no, nblocks);
537
538         return handle;
539 }
540 EXPORT_SYMBOL(jbd2__journal_start);
541
542
543 /**
544  * jbd2_journal_start() - Obtain a new handle.
545  * @journal: Journal to start transaction on.
546  * @nblocks: number of block buffer we might modify
547  *
548  * We make sure that the transaction can guarantee at least nblocks of
549  * modified buffers in the log.  We block until the log can guarantee
550  * that much space. Additionally, if rsv_blocks > 0, we also create another
551  * handle with rsv_blocks reserved blocks in the journal. This handle is
552  * stored in h_rsv_handle. It is not attached to any particular transaction
553  * and thus doesn't block transaction commit. If the caller uses this reserved
554  * handle, it has to set h_rsv_handle to NULL as otherwise jbd2_journal_stop()
555  * on the parent handle will dispose the reserved one. Reserved handle has to
556  * be converted to a normal handle using jbd2_journal_start_reserved() before
557  * it can be used.
558  *
559  * Return a pointer to a newly allocated handle, or an ERR_PTR() value
560  * on failure.
561  */
562 handle_t *jbd2_journal_start(journal_t *journal, int nblocks)
563 {
564         return jbd2__journal_start(journal, nblocks, 0, 0, GFP_NOFS, 0, 0);
565 }
566 EXPORT_SYMBOL(jbd2_journal_start);
567
568 static void __jbd2_journal_unreserve_handle(handle_t *handle, transaction_t *t)
569 {
570         journal_t *journal = handle->h_journal;
571
572         WARN_ON(!handle->h_reserved);
573         sub_reserved_credits(journal, handle->h_total_credits);
574         if (t)
575                 atomic_sub(handle->h_total_credits, &t->t_outstanding_credits);
576 }
577
578 void jbd2_journal_free_reserved(handle_t *handle)
579 {
580         journal_t *journal = handle->h_journal;
581
582         /* Get j_state_lock to pin running transaction if it exists */
583         read_lock(&journal->j_state_lock);
584         __jbd2_journal_unreserve_handle(handle, journal->j_running_transaction);
585         read_unlock(&journal->j_state_lock);
586         jbd2_free_handle(handle);
587 }
588 EXPORT_SYMBOL(jbd2_journal_free_reserved);
589
590 /**
591  * jbd2_journal_start_reserved() - start reserved handle
592  * @handle: handle to start
593  * @type: for handle statistics
594  * @line_no: for handle statistics
595  *
596  * Start handle that has been previously reserved with jbd2_journal_reserve().
597  * This attaches @handle to the running transaction (or creates one if there's
598  * not transaction running). Unlike jbd2_journal_start() this function cannot
599  * block on journal commit, checkpointing, or similar stuff. It can block on
600  * memory allocation or frozen journal though.
601  *
602  * Return 0 on success, non-zero on error - handle is freed in that case.
603  */
604 int jbd2_journal_start_reserved(handle_t *handle, unsigned int type,
605                                 unsigned int line_no)
606 {
607         journal_t *journal = handle->h_journal;
608         int ret = -EIO;
609
610         if (WARN_ON(!handle->h_reserved)) {
611                 /* Someone passed in normal handle? Just stop it. */
612                 jbd2_journal_stop(handle);
613                 return ret;
614         }
615         /*
616          * Usefulness of mixing of reserved and unreserved handles is
617          * questionable. So far nobody seems to need it so just error out.
618          */
619         if (WARN_ON(current->journal_info)) {
620                 jbd2_journal_free_reserved(handle);
621                 return ret;
622         }
623
624         handle->h_journal = NULL;
625         /*
626          * GFP_NOFS is here because callers are likely from writeback or
627          * similarly constrained call sites
628          */
629         ret = start_this_handle(journal, handle, GFP_NOFS);
630         if (ret < 0) {
631                 handle->h_journal = journal;
632                 jbd2_journal_free_reserved(handle);
633                 return ret;
634         }
635         handle->h_type = type;
636         handle->h_line_no = line_no;
637         trace_jbd2_handle_start(journal->j_fs_dev->bd_dev,
638                                 handle->h_transaction->t_tid, type,
639                                 line_no, handle->h_total_credits);
640         return 0;
641 }
642 EXPORT_SYMBOL(jbd2_journal_start_reserved);
643
644 /**
645  * jbd2_journal_extend() - extend buffer credits.
646  * @handle:  handle to 'extend'
647  * @nblocks: nr blocks to try to extend by.
648  * @revoke_records: number of revoke records to try to extend by.
649  *
650  * Some transactions, such as large extends and truncates, can be done
651  * atomically all at once or in several stages.  The operation requests
652  * a credit for a number of buffer modifications in advance, but can
653  * extend its credit if it needs more.
654  *
655  * jbd2_journal_extend tries to give the running handle more buffer credits.
656  * It does not guarantee that allocation - this is a best-effort only.
657  * The calling process MUST be able to deal cleanly with a failure to
658  * extend here.
659  *
660  * Return 0 on success, non-zero on failure.
661  *
662  * return code < 0 implies an error
663  * return code > 0 implies normal transaction-full status.
664  */
665 int jbd2_journal_extend(handle_t *handle, int nblocks, int revoke_records)
666 {
667         transaction_t *transaction = handle->h_transaction;
668         journal_t *journal;
669         int result;
670         int wanted;
671
672         if (is_handle_aborted(handle))
673                 return -EROFS;
674         journal = transaction->t_journal;
675
676         result = 1;
677
678         read_lock(&journal->j_state_lock);
679
680         /* Don't extend a locked-down transaction! */
681         if (transaction->t_state != T_RUNNING) {
682                 jbd_debug(3, "denied handle %p %d blocks: "
683                           "transaction not running\n", handle, nblocks);
684                 goto error_out;
685         }
686
687         nblocks += DIV_ROUND_UP(
688                         handle->h_revoke_credits_requested + revoke_records,
689                         journal->j_revoke_records_per_block) -
690                 DIV_ROUND_UP(
691                         handle->h_revoke_credits_requested,
692                         journal->j_revoke_records_per_block);
693         spin_lock(&transaction->t_handle_lock);
694         wanted = atomic_add_return(nblocks,
695                                    &transaction->t_outstanding_credits);
696
697         if (wanted > journal->j_max_transaction_buffers) {
698                 jbd_debug(3, "denied handle %p %d blocks: "
699                           "transaction too large\n", handle, nblocks);
700                 atomic_sub(nblocks, &transaction->t_outstanding_credits);
701                 goto unlock;
702         }
703
704         trace_jbd2_handle_extend(journal->j_fs_dev->bd_dev,
705                                  transaction->t_tid,
706                                  handle->h_type, handle->h_line_no,
707                                  handle->h_total_credits,
708                                  nblocks);
709
710         handle->h_total_credits += nblocks;
711         handle->h_requested_credits += nblocks;
712         handle->h_revoke_credits += revoke_records;
713         handle->h_revoke_credits_requested += revoke_records;
714         result = 0;
715
716         jbd_debug(3, "extended handle %p by %d\n", handle, nblocks);
717 unlock:
718         spin_unlock(&transaction->t_handle_lock);
719 error_out:
720         read_unlock(&journal->j_state_lock);
721         return result;
722 }
723
724 static void stop_this_handle(handle_t *handle)
725 {
726         transaction_t *transaction = handle->h_transaction;
727         journal_t *journal = transaction->t_journal;
728         int revokes;
729
730         J_ASSERT(journal_current_handle() == handle);
731         J_ASSERT(atomic_read(&transaction->t_updates) > 0);
732         current->journal_info = NULL;
733         /*
734          * Subtract necessary revoke descriptor blocks from handle credits. We
735          * take care to account only for revoke descriptor blocks the
736          * transaction will really need as large sequences of transactions with
737          * small numbers of revokes are relatively common.
738          */
739         revokes = handle->h_revoke_credits_requested - handle->h_revoke_credits;
740         if (revokes) {
741                 int t_revokes, revoke_descriptors;
742                 int rr_per_blk = journal->j_revoke_records_per_block;
743
744                 WARN_ON_ONCE(DIV_ROUND_UP(revokes, rr_per_blk)
745                                 > handle->h_total_credits);
746                 t_revokes = atomic_add_return(revokes,
747                                 &transaction->t_outstanding_revokes);
748                 revoke_descriptors =
749                         DIV_ROUND_UP(t_revokes, rr_per_blk) -
750                         DIV_ROUND_UP(t_revokes - revokes, rr_per_blk);
751                 handle->h_total_credits -= revoke_descriptors;
752         }
753         atomic_sub(handle->h_total_credits,
754                    &transaction->t_outstanding_credits);
755         if (handle->h_rsv_handle)
756                 __jbd2_journal_unreserve_handle(handle->h_rsv_handle,
757                                                 transaction);
758         if (atomic_dec_and_test(&transaction->t_updates))
759                 wake_up(&journal->j_wait_updates);
760
761         rwsem_release(&journal->j_trans_commit_map, _THIS_IP_);
762         /*
763          * Scope of the GFP_NOFS context is over here and so we can restore the
764          * original alloc context.
765          */
766         memalloc_nofs_restore(handle->saved_alloc_context);
767 }
768
769 /**
770  * jbd2__journal_restart() - restart a handle .
771  * @handle:  handle to restart
772  * @nblocks: nr credits requested
773  * @revoke_records: number of revoke record credits requested
774  * @gfp_mask: memory allocation flags (for start_this_handle)
775  *
776  * Restart a handle for a multi-transaction filesystem
777  * operation.
778  *
779  * If the jbd2_journal_extend() call above fails to grant new buffer credits
780  * to a running handle, a call to jbd2_journal_restart will commit the
781  * handle's transaction so far and reattach the handle to a new
782  * transaction capable of guaranteeing the requested number of
783  * credits. We preserve reserved handle if there's any attached to the
784  * passed in handle.
785  */
786 int jbd2__journal_restart(handle_t *handle, int nblocks, int revoke_records,
787                           gfp_t gfp_mask)
788 {
789         transaction_t *transaction = handle->h_transaction;
790         journal_t *journal;
791         tid_t           tid;
792         int             need_to_start;
793         int             ret;
794
795         /* If we've had an abort of any type, don't even think about
796          * actually doing the restart! */
797         if (is_handle_aborted(handle))
798                 return 0;
799         journal = transaction->t_journal;
800         tid = transaction->t_tid;
801
802         /*
803          * First unlink the handle from its current transaction, and start the
804          * commit on that.
805          */
806         jbd_debug(2, "restarting handle %p\n", handle);
807         stop_this_handle(handle);
808         handle->h_transaction = NULL;
809
810         /*
811          * TODO: If we use READ_ONCE / WRITE_ONCE for j_commit_request we can
812          * get rid of pointless j_state_lock traffic like this.
813          */
814         read_lock(&journal->j_state_lock);
815         need_to_start = !tid_geq(journal->j_commit_request, tid);
816         read_unlock(&journal->j_state_lock);
817         if (need_to_start)
818                 jbd2_log_start_commit(journal, tid);
819         handle->h_total_credits = nblocks +
820                 DIV_ROUND_UP(revoke_records,
821                              journal->j_revoke_records_per_block);
822         handle->h_revoke_credits = revoke_records;
823         ret = start_this_handle(journal, handle, gfp_mask);
824         trace_jbd2_handle_restart(journal->j_fs_dev->bd_dev,
825                                  ret ? 0 : handle->h_transaction->t_tid,
826                                  handle->h_type, handle->h_line_no,
827                                  handle->h_total_credits);
828         return ret;
829 }
830 EXPORT_SYMBOL(jbd2__journal_restart);
831
832
833 int jbd2_journal_restart(handle_t *handle, int nblocks)
834 {
835         return jbd2__journal_restart(handle, nblocks, 0, GFP_NOFS);
836 }
837 EXPORT_SYMBOL(jbd2_journal_restart);
838
839 /*
840  * Waits for any outstanding t_updates to finish.
841  * This is called with write j_state_lock held.
842  */
843 void jbd2_journal_wait_updates(journal_t *journal)
844 {
845         transaction_t *commit_transaction = journal->j_running_transaction;
846
847         if (!commit_transaction)
848                 return;
849
850         spin_lock(&commit_transaction->t_handle_lock);
851         while (atomic_read(&commit_transaction->t_updates)) {
852                 DEFINE_WAIT(wait);
853
854                 prepare_to_wait(&journal->j_wait_updates, &wait,
855                                         TASK_UNINTERRUPTIBLE);
856                 if (atomic_read(&commit_transaction->t_updates)) {
857                         spin_unlock(&commit_transaction->t_handle_lock);
858                         write_unlock(&journal->j_state_lock);
859                         schedule();
860                         write_lock(&journal->j_state_lock);
861                         spin_lock(&commit_transaction->t_handle_lock);
862                 }
863                 finish_wait(&journal->j_wait_updates, &wait);
864         }
865         spin_unlock(&commit_transaction->t_handle_lock);
866 }
867
868 /**
869  * jbd2_journal_lock_updates () - establish a transaction barrier.
870  * @journal:  Journal to establish a barrier on.
871  *
872  * This locks out any further updates from being started, and blocks
873  * until all existing updates have completed, returning only once the
874  * journal is in a quiescent state with no updates running.
875  *
876  * The journal lock should not be held on entry.
877  */
878 void jbd2_journal_lock_updates(journal_t *journal)
879 {
880         DEFINE_WAIT(wait);
881
882         jbd2_might_wait_for_commit(journal);
883
884         write_lock(&journal->j_state_lock);
885         ++journal->j_barrier_count;
886
887         /* Wait until there are no reserved handles */
888         if (atomic_read(&journal->j_reserved_credits)) {
889                 write_unlock(&journal->j_state_lock);
890                 wait_event(journal->j_wait_reserved,
891                            atomic_read(&journal->j_reserved_credits) == 0);
892                 write_lock(&journal->j_state_lock);
893         }
894
895         /* Wait until there are no running t_updates */
896         jbd2_journal_wait_updates(journal);
897
898         write_unlock(&journal->j_state_lock);
899
900         /*
901          * We have now established a barrier against other normal updates, but
902          * we also need to barrier against other jbd2_journal_lock_updates() calls
903          * to make sure that we serialise special journal-locked operations
904          * too.
905          */
906         mutex_lock(&journal->j_barrier);
907 }
908
909 /**
910  * jbd2_journal_unlock_updates () - release barrier
911  * @journal:  Journal to release the barrier on.
912  *
913  * Release a transaction barrier obtained with jbd2_journal_lock_updates().
914  *
915  * Should be called without the journal lock held.
916  */
917 void jbd2_journal_unlock_updates (journal_t *journal)
918 {
919         J_ASSERT(journal->j_barrier_count != 0);
920
921         mutex_unlock(&journal->j_barrier);
922         write_lock(&journal->j_state_lock);
923         --journal->j_barrier_count;
924         write_unlock(&journal->j_state_lock);
925         wake_up(&journal->j_wait_transaction_locked);
926 }
927
928 static void warn_dirty_buffer(struct buffer_head *bh)
929 {
930         printk(KERN_WARNING
931                "JBD2: Spotted dirty metadata buffer (dev = %pg, blocknr = %llu). "
932                "There's a risk of filesystem corruption in case of system "
933                "crash.\n",
934                bh->b_bdev, (unsigned long long)bh->b_blocknr);
935 }
936
937 /* Call t_frozen trigger and copy buffer data into jh->b_frozen_data. */
938 static void jbd2_freeze_jh_data(struct journal_head *jh)
939 {
940         struct page *page;
941         int offset;
942         char *source;
943         struct buffer_head *bh = jh2bh(jh);
944
945         J_EXPECT_JH(jh, buffer_uptodate(bh), "Possible IO failure.\n");
946         page = bh->b_page;
947         offset = offset_in_page(bh->b_data);
948         source = kmap_atomic(page);
949         /* Fire data frozen trigger just before we copy the data */
950         jbd2_buffer_frozen_trigger(jh, source + offset, jh->b_triggers);
951         memcpy(jh->b_frozen_data, source + offset, bh->b_size);
952         kunmap_atomic(source);
953
954         /*
955          * Now that the frozen data is saved off, we need to store any matching
956          * triggers.
957          */
958         jh->b_frozen_triggers = jh->b_triggers;
959 }
960
961 /*
962  * If the buffer is already part of the current transaction, then there
963  * is nothing we need to do.  If it is already part of a prior
964  * transaction which we are still committing to disk, then we need to
965  * make sure that we do not overwrite the old copy: we do copy-out to
966  * preserve the copy going to disk.  We also account the buffer against
967  * the handle's metadata buffer credits (unless the buffer is already
968  * part of the transaction, that is).
969  *
970  */
971 static int
972 do_get_write_access(handle_t *handle, struct journal_head *jh,
973                         int force_copy)
974 {
975         struct buffer_head *bh;
976         transaction_t *transaction = handle->h_transaction;
977         journal_t *journal;
978         int error;
979         char *frozen_buffer = NULL;
980         unsigned long start_lock, time_lock;
981
982         journal = transaction->t_journal;
983
984         jbd_debug(5, "journal_head %p, force_copy %d\n", jh, force_copy);
985
986         JBUFFER_TRACE(jh, "entry");
987 repeat:
988         bh = jh2bh(jh);
989
990         /* @@@ Need to check for errors here at some point. */
991
992         start_lock = jiffies;
993         lock_buffer(bh);
994         spin_lock(&jh->b_state_lock);
995
996         /* If it takes too long to lock the buffer, trace it */
997         time_lock = jbd2_time_diff(start_lock, jiffies);
998         if (time_lock > HZ/10)
999                 trace_jbd2_lock_buffer_stall(bh->b_bdev->bd_dev,
1000                         jiffies_to_msecs(time_lock));
1001
1002         /* We now hold the buffer lock so it is safe to query the buffer
1003          * state.  Is the buffer dirty?
1004          *
1005          * If so, there are two possibilities.  The buffer may be
1006          * non-journaled, and undergoing a quite legitimate writeback.
1007          * Otherwise, it is journaled, and we don't expect dirty buffers
1008          * in that state (the buffers should be marked JBD_Dirty
1009          * instead.)  So either the IO is being done under our own
1010          * control and this is a bug, or it's a third party IO such as
1011          * dump(8) (which may leave the buffer scheduled for read ---
1012          * ie. locked but not dirty) or tune2fs (which may actually have
1013          * the buffer dirtied, ugh.)  */
1014
1015         if (buffer_dirty(bh)) {
1016                 /*
1017                  * First question: is this buffer already part of the current
1018                  * transaction or the existing committing transaction?
1019                  */
1020                 if (jh->b_transaction) {
1021                         J_ASSERT_JH(jh,
1022                                 jh->b_transaction == transaction ||
1023                                 jh->b_transaction ==
1024                                         journal->j_committing_transaction);
1025                         if (jh->b_next_transaction)
1026                                 J_ASSERT_JH(jh, jh->b_next_transaction ==
1027                                                         transaction);
1028                         warn_dirty_buffer(bh);
1029                 }
1030                 /*
1031                  * In any case we need to clean the dirty flag and we must
1032                  * do it under the buffer lock to be sure we don't race
1033                  * with running write-out.
1034                  */
1035                 JBUFFER_TRACE(jh, "Journalling dirty buffer");
1036                 clear_buffer_dirty(bh);
1037                 set_buffer_jbddirty(bh);
1038         }
1039
1040         unlock_buffer(bh);
1041
1042         error = -EROFS;
1043         if (is_handle_aborted(handle)) {
1044                 spin_unlock(&jh->b_state_lock);
1045                 goto out;
1046         }
1047         error = 0;
1048
1049         /*
1050          * The buffer is already part of this transaction if b_transaction or
1051          * b_next_transaction points to it
1052          */
1053         if (jh->b_transaction == transaction ||
1054             jh->b_next_transaction == transaction)
1055                 goto done;
1056
1057         /*
1058          * this is the first time this transaction is touching this buffer,
1059          * reset the modified flag
1060          */
1061         jh->b_modified = 0;
1062
1063         /*
1064          * If the buffer is not journaled right now, we need to make sure it
1065          * doesn't get written to disk before the caller actually commits the
1066          * new data
1067          */
1068         if (!jh->b_transaction) {
1069                 JBUFFER_TRACE(jh, "no transaction");
1070                 J_ASSERT_JH(jh, !jh->b_next_transaction);
1071                 JBUFFER_TRACE(jh, "file as BJ_Reserved");
1072                 /*
1073                  * Make sure all stores to jh (b_modified, b_frozen_data) are
1074                  * visible before attaching it to the running transaction.
1075                  * Paired with barrier in jbd2_write_access_granted()
1076                  */
1077                 smp_wmb();
1078                 spin_lock(&journal->j_list_lock);
1079                 __jbd2_journal_file_buffer(jh, transaction, BJ_Reserved);
1080                 spin_unlock(&journal->j_list_lock);
1081                 goto done;
1082         }
1083         /*
1084          * If there is already a copy-out version of this buffer, then we don't
1085          * need to make another one
1086          */
1087         if (jh->b_frozen_data) {
1088                 JBUFFER_TRACE(jh, "has frozen data");
1089                 J_ASSERT_JH(jh, jh->b_next_transaction == NULL);
1090                 goto attach_next;
1091         }
1092
1093         JBUFFER_TRACE(jh, "owned by older transaction");
1094         J_ASSERT_JH(jh, jh->b_next_transaction == NULL);
1095         J_ASSERT_JH(jh, jh->b_transaction == journal->j_committing_transaction);
1096
1097         /*
1098          * There is one case we have to be very careful about.  If the
1099          * committing transaction is currently writing this buffer out to disk
1100          * and has NOT made a copy-out, then we cannot modify the buffer
1101          * contents at all right now.  The essence of copy-out is that it is
1102          * the extra copy, not the primary copy, which gets journaled.  If the
1103          * primary copy is already going to disk then we cannot do copy-out
1104          * here.
1105          */
1106         if (buffer_shadow(bh)) {
1107                 JBUFFER_TRACE(jh, "on shadow: sleep");
1108                 spin_unlock(&jh->b_state_lock);
1109                 wait_on_bit_io(&bh->b_state, BH_Shadow, TASK_UNINTERRUPTIBLE);
1110                 goto repeat;
1111         }
1112
1113         /*
1114          * Only do the copy if the currently-owning transaction still needs it.
1115          * If buffer isn't on BJ_Metadata list, the committing transaction is
1116          * past that stage (here we use the fact that BH_Shadow is set under
1117          * bh_state lock together with refiling to BJ_Shadow list and at this
1118          * point we know the buffer doesn't have BH_Shadow set).
1119          *
1120          * Subtle point, though: if this is a get_undo_access, then we will be
1121          * relying on the frozen_data to contain the new value of the
1122          * committed_data record after the transaction, so we HAVE to force the
1123          * frozen_data copy in that case.
1124          */
1125         if (jh->b_jlist == BJ_Metadata || force_copy) {
1126                 JBUFFER_TRACE(jh, "generate frozen data");
1127                 if (!frozen_buffer) {
1128                         JBUFFER_TRACE(jh, "allocate memory for buffer");
1129                         spin_unlock(&jh->b_state_lock);
1130                         frozen_buffer = jbd2_alloc(jh2bh(jh)->b_size,
1131                                                    GFP_NOFS | __GFP_NOFAIL);
1132                         goto repeat;
1133                 }
1134                 jh->b_frozen_data = frozen_buffer;
1135                 frozen_buffer = NULL;
1136                 jbd2_freeze_jh_data(jh);
1137         }
1138 attach_next:
1139         /*
1140          * Make sure all stores to jh (b_modified, b_frozen_data) are visible
1141          * before attaching it to the running transaction. Paired with barrier
1142          * in jbd2_write_access_granted()
1143          */
1144         smp_wmb();
1145         jh->b_next_transaction = transaction;
1146
1147 done:
1148         spin_unlock(&jh->b_state_lock);
1149
1150         /*
1151          * If we are about to journal a buffer, then any revoke pending on it is
1152          * no longer valid
1153          */
1154         jbd2_journal_cancel_revoke(handle, jh);
1155
1156 out:
1157         if (unlikely(frozen_buffer))    /* It's usually NULL */
1158                 jbd2_free(frozen_buffer, bh->b_size);
1159
1160         JBUFFER_TRACE(jh, "exit");
1161         return error;
1162 }
1163
1164 /* Fast check whether buffer is already attached to the required transaction */
1165 static bool jbd2_write_access_granted(handle_t *handle, struct buffer_head *bh,
1166                                                         bool undo)
1167 {
1168         struct journal_head *jh;
1169         bool ret = false;
1170
1171         /* Dirty buffers require special handling... */
1172         if (buffer_dirty(bh))
1173                 return false;
1174
1175         /*
1176          * RCU protects us from dereferencing freed pages. So the checks we do
1177          * are guaranteed not to oops. However the jh slab object can get freed
1178          * & reallocated while we work with it. So we have to be careful. When
1179          * we see jh attached to the running transaction, we know it must stay
1180          * so until the transaction is committed. Thus jh won't be freed and
1181          * will be attached to the same bh while we run.  However it can
1182          * happen jh gets freed, reallocated, and attached to the transaction
1183          * just after we get pointer to it from bh. So we have to be careful
1184          * and recheck jh still belongs to our bh before we return success.
1185          */
1186         rcu_read_lock();
1187         if (!buffer_jbd(bh))
1188                 goto out;
1189         /* This should be bh2jh() but that doesn't work with inline functions */
1190         jh = READ_ONCE(bh->b_private);
1191         if (!jh)
1192                 goto out;
1193         /* For undo access buffer must have data copied */
1194         if (undo && !jh->b_committed_data)
1195                 goto out;
1196         if (READ_ONCE(jh->b_transaction) != handle->h_transaction &&
1197             READ_ONCE(jh->b_next_transaction) != handle->h_transaction)
1198                 goto out;
1199         /*
1200          * There are two reasons for the barrier here:
1201          * 1) Make sure to fetch b_bh after we did previous checks so that we
1202          * detect when jh went through free, realloc, attach to transaction
1203          * while we were checking. Paired with implicit barrier in that path.
1204          * 2) So that access to bh done after jbd2_write_access_granted()
1205          * doesn't get reordered and see inconsistent state of concurrent
1206          * do_get_write_access().
1207          */
1208         smp_mb();
1209         if (unlikely(jh->b_bh != bh))
1210                 goto out;
1211         ret = true;
1212 out:
1213         rcu_read_unlock();
1214         return ret;
1215 }
1216
1217 /**
1218  * jbd2_journal_get_write_access() - notify intent to modify a buffer
1219  *                                   for metadata (not data) update.
1220  * @handle: transaction to add buffer modifications to
1221  * @bh:     bh to be used for metadata writes
1222  *
1223  * Returns: error code or 0 on success.
1224  *
1225  * In full data journalling mode the buffer may be of type BJ_AsyncData,
1226  * because we're ``write()ing`` a buffer which is also part of a shared mapping.
1227  */
1228
1229 int jbd2_journal_get_write_access(handle_t *handle, struct buffer_head *bh)
1230 {
1231         struct journal_head *jh;
1232         int rc;
1233
1234         if (is_handle_aborted(handle))
1235                 return -EROFS;
1236
1237         if (jbd2_write_access_granted(handle, bh, false))
1238                 return 0;
1239
1240         jh = jbd2_journal_add_journal_head(bh);
1241         /* We do not want to get caught playing with fields which the
1242          * log thread also manipulates.  Make sure that the buffer
1243          * completes any outstanding IO before proceeding. */
1244         rc = do_get_write_access(handle, jh, 0);
1245         jbd2_journal_put_journal_head(jh);
1246         return rc;
1247 }
1248
1249
1250 /*
1251  * When the user wants to journal a newly created buffer_head
1252  * (ie. getblk() returned a new buffer and we are going to populate it
1253  * manually rather than reading off disk), then we need to keep the
1254  * buffer_head locked until it has been completely filled with new
1255  * data.  In this case, we should be able to make the assertion that
1256  * the bh is not already part of an existing transaction.
1257  *
1258  * The buffer should already be locked by the caller by this point.
1259  * There is no lock ranking violation: it was a newly created,
1260  * unlocked buffer beforehand. */
1261
1262 /**
1263  * jbd2_journal_get_create_access () - notify intent to use newly created bh
1264  * @handle: transaction to new buffer to
1265  * @bh: new buffer.
1266  *
1267  * Call this if you create a new bh.
1268  */
1269 int jbd2_journal_get_create_access(handle_t *handle, struct buffer_head *bh)
1270 {
1271         transaction_t *transaction = handle->h_transaction;
1272         journal_t *journal;
1273         struct journal_head *jh = jbd2_journal_add_journal_head(bh);
1274         int err;
1275
1276         jbd_debug(5, "journal_head %p\n", jh);
1277         err = -EROFS;
1278         if (is_handle_aborted(handle))
1279                 goto out;
1280         journal = transaction->t_journal;
1281         err = 0;
1282
1283         JBUFFER_TRACE(jh, "entry");
1284         /*
1285          * The buffer may already belong to this transaction due to pre-zeroing
1286          * in the filesystem's new_block code.  It may also be on the previous,
1287          * committing transaction's lists, but it HAS to be in Forget state in
1288          * that case: the transaction must have deleted the buffer for it to be
1289          * reused here.
1290          */
1291         spin_lock(&jh->b_state_lock);
1292         J_ASSERT_JH(jh, (jh->b_transaction == transaction ||
1293                 jh->b_transaction == NULL ||
1294                 (jh->b_transaction == journal->j_committing_transaction &&
1295                           jh->b_jlist == BJ_Forget)));
1296
1297         J_ASSERT_JH(jh, jh->b_next_transaction == NULL);
1298         J_ASSERT_JH(jh, buffer_locked(jh2bh(jh)));
1299
1300         if (jh->b_transaction == NULL) {
1301                 /*
1302                  * Previous jbd2_journal_forget() could have left the buffer
1303                  * with jbddirty bit set because it was being committed. When
1304                  * the commit finished, we've filed the buffer for
1305                  * checkpointing and marked it dirty. Now we are reallocating
1306                  * the buffer so the transaction freeing it must have
1307                  * committed and so it's safe to clear the dirty bit.
1308                  */
1309                 clear_buffer_dirty(jh2bh(jh));
1310                 /* first access by this transaction */
1311                 jh->b_modified = 0;
1312
1313                 JBUFFER_TRACE(jh, "file as BJ_Reserved");
1314                 spin_lock(&journal->j_list_lock);
1315                 __jbd2_journal_file_buffer(jh, transaction, BJ_Reserved);
1316                 spin_unlock(&journal->j_list_lock);
1317         } else if (jh->b_transaction == journal->j_committing_transaction) {
1318                 /* first access by this transaction */
1319                 jh->b_modified = 0;
1320
1321                 JBUFFER_TRACE(jh, "set next transaction");
1322                 spin_lock(&journal->j_list_lock);
1323                 jh->b_next_transaction = transaction;
1324                 spin_unlock(&journal->j_list_lock);
1325         }
1326         spin_unlock(&jh->b_state_lock);
1327
1328         /*
1329          * akpm: I added this.  ext3_alloc_branch can pick up new indirect
1330          * blocks which contain freed but then revoked metadata.  We need
1331          * to cancel the revoke in case we end up freeing it yet again
1332          * and the reallocating as data - this would cause a second revoke,
1333          * which hits an assertion error.
1334          */
1335         JBUFFER_TRACE(jh, "cancelling revoke");
1336         jbd2_journal_cancel_revoke(handle, jh);
1337 out:
1338         jbd2_journal_put_journal_head(jh);
1339         return err;
1340 }
1341
1342 /**
1343  * jbd2_journal_get_undo_access() -  Notify intent to modify metadata with
1344  *     non-rewindable consequences
1345  * @handle: transaction
1346  * @bh: buffer to undo
1347  *
1348  * Sometimes there is a need to distinguish between metadata which has
1349  * been committed to disk and that which has not.  The ext3fs code uses
1350  * this for freeing and allocating space, we have to make sure that we
1351  * do not reuse freed space until the deallocation has been committed,
1352  * since if we overwrote that space we would make the delete
1353  * un-rewindable in case of a crash.
1354  *
1355  * To deal with that, jbd2_journal_get_undo_access requests write access to a
1356  * buffer for parts of non-rewindable operations such as delete
1357  * operations on the bitmaps.  The journaling code must keep a copy of
1358  * the buffer's contents prior to the undo_access call until such time
1359  * as we know that the buffer has definitely been committed to disk.
1360  *
1361  * We never need to know which transaction the committed data is part
1362  * of, buffers touched here are guaranteed to be dirtied later and so
1363  * will be committed to a new transaction in due course, at which point
1364  * we can discard the old committed data pointer.
1365  *
1366  * Returns error number or 0 on success.
1367  */
1368 int jbd2_journal_get_undo_access(handle_t *handle, struct buffer_head *bh)
1369 {
1370         int err;
1371         struct journal_head *jh;
1372         char *committed_data = NULL;
1373
1374         if (is_handle_aborted(handle))
1375                 return -EROFS;
1376
1377         if (jbd2_write_access_granted(handle, bh, true))
1378                 return 0;
1379
1380         jh = jbd2_journal_add_journal_head(bh);
1381         JBUFFER_TRACE(jh, "entry");
1382
1383         /*
1384          * Do this first --- it can drop the journal lock, so we want to
1385          * make sure that obtaining the committed_data is done
1386          * atomically wrt. completion of any outstanding commits.
1387          */
1388         err = do_get_write_access(handle, jh, 1);
1389         if (err)
1390                 goto out;
1391
1392 repeat:
1393         if (!jh->b_committed_data)
1394                 committed_data = jbd2_alloc(jh2bh(jh)->b_size,
1395                                             GFP_NOFS|__GFP_NOFAIL);
1396
1397         spin_lock(&jh->b_state_lock);
1398         if (!jh->b_committed_data) {
1399                 /* Copy out the current buffer contents into the
1400                  * preserved, committed copy. */
1401                 JBUFFER_TRACE(jh, "generate b_committed data");
1402                 if (!committed_data) {
1403                         spin_unlock(&jh->b_state_lock);
1404                         goto repeat;
1405                 }
1406
1407                 jh->b_committed_data = committed_data;
1408                 committed_data = NULL;
1409                 memcpy(jh->b_committed_data, bh->b_data, bh->b_size);
1410         }
1411         spin_unlock(&jh->b_state_lock);
1412 out:
1413         jbd2_journal_put_journal_head(jh);
1414         if (unlikely(committed_data))
1415                 jbd2_free(committed_data, bh->b_size);
1416         return err;
1417 }
1418
1419 /**
1420  * jbd2_journal_set_triggers() - Add triggers for commit writeout
1421  * @bh: buffer to trigger on
1422  * @type: struct jbd2_buffer_trigger_type containing the trigger(s).
1423  *
1424  * Set any triggers on this journal_head.  This is always safe, because
1425  * triggers for a committing buffer will be saved off, and triggers for
1426  * a running transaction will match the buffer in that transaction.
1427  *
1428  * Call with NULL to clear the triggers.
1429  */
1430 void jbd2_journal_set_triggers(struct buffer_head *bh,
1431                                struct jbd2_buffer_trigger_type *type)
1432 {
1433         struct journal_head *jh = jbd2_journal_grab_journal_head(bh);
1434
1435         if (WARN_ON_ONCE(!jh))
1436                 return;
1437         jh->b_triggers = type;
1438         jbd2_journal_put_journal_head(jh);
1439 }
1440
1441 void jbd2_buffer_frozen_trigger(struct journal_head *jh, void *mapped_data,
1442                                 struct jbd2_buffer_trigger_type *triggers)
1443 {
1444         struct buffer_head *bh = jh2bh(jh);
1445
1446         if (!triggers || !triggers->t_frozen)
1447                 return;
1448
1449         triggers->t_frozen(triggers, bh, mapped_data, bh->b_size);
1450 }
1451
1452 void jbd2_buffer_abort_trigger(struct journal_head *jh,
1453                                struct jbd2_buffer_trigger_type *triggers)
1454 {
1455         if (!triggers || !triggers->t_abort)
1456                 return;
1457
1458         triggers->t_abort(triggers, jh2bh(jh));
1459 }
1460
1461 /**
1462  * jbd2_journal_dirty_metadata() -  mark a buffer as containing dirty metadata
1463  * @handle: transaction to add buffer to.
1464  * @bh: buffer to mark
1465  *
1466  * mark dirty metadata which needs to be journaled as part of the current
1467  * transaction.
1468  *
1469  * The buffer must have previously had jbd2_journal_get_write_access()
1470  * called so that it has a valid journal_head attached to the buffer
1471  * head.
1472  *
1473  * The buffer is placed on the transaction's metadata list and is marked
1474  * as belonging to the transaction.
1475  *
1476  * Returns error number or 0 on success.
1477  *
1478  * Special care needs to be taken if the buffer already belongs to the
1479  * current committing transaction (in which case we should have frozen
1480  * data present for that commit).  In that case, we don't relink the
1481  * buffer: that only gets done when the old transaction finally
1482  * completes its commit.
1483  */
1484 int jbd2_journal_dirty_metadata(handle_t *handle, struct buffer_head *bh)
1485 {
1486         transaction_t *transaction = handle->h_transaction;
1487         journal_t *journal;
1488         struct journal_head *jh;
1489         int ret = 0;
1490
1491         if (is_handle_aborted(handle))
1492                 return -EROFS;
1493         if (!buffer_jbd(bh))
1494                 return -EUCLEAN;
1495
1496         /*
1497          * We don't grab jh reference here since the buffer must be part
1498          * of the running transaction.
1499          */
1500         jh = bh2jh(bh);
1501         jbd_debug(5, "journal_head %p\n", jh);
1502         JBUFFER_TRACE(jh, "entry");
1503
1504         /*
1505          * This and the following assertions are unreliable since we may see jh
1506          * in inconsistent state unless we grab bh_state lock. But this is
1507          * crucial to catch bugs so let's do a reliable check until the
1508          * lockless handling is fully proven.
1509          */
1510         if (data_race(jh->b_transaction != transaction &&
1511             jh->b_next_transaction != transaction)) {
1512                 spin_lock(&jh->b_state_lock);
1513                 J_ASSERT_JH(jh, jh->b_transaction == transaction ||
1514                                 jh->b_next_transaction == transaction);
1515                 spin_unlock(&jh->b_state_lock);
1516         }
1517         if (jh->b_modified == 1) {
1518                 /* If it's in our transaction it must be in BJ_Metadata list. */
1519                 if (data_race(jh->b_transaction == transaction &&
1520                     jh->b_jlist != BJ_Metadata)) {
1521                         spin_lock(&jh->b_state_lock);
1522                         if (jh->b_transaction == transaction &&
1523                             jh->b_jlist != BJ_Metadata)
1524                                 pr_err("JBD2: assertion failure: h_type=%u "
1525                                        "h_line_no=%u block_no=%llu jlist=%u\n",
1526                                        handle->h_type, handle->h_line_no,
1527                                        (unsigned long long) bh->b_blocknr,
1528                                        jh->b_jlist);
1529                         J_ASSERT_JH(jh, jh->b_transaction != transaction ||
1530                                         jh->b_jlist == BJ_Metadata);
1531                         spin_unlock(&jh->b_state_lock);
1532                 }
1533                 goto out;
1534         }
1535
1536         journal = transaction->t_journal;
1537         spin_lock(&jh->b_state_lock);
1538
1539         if (jh->b_modified == 0) {
1540                 /*
1541                  * This buffer's got modified and becoming part
1542                  * of the transaction. This needs to be done
1543                  * once a transaction -bzzz
1544                  */
1545                 if (WARN_ON_ONCE(jbd2_handle_buffer_credits(handle) <= 0)) {
1546                         ret = -ENOSPC;
1547                         goto out_unlock_bh;
1548                 }
1549                 jh->b_modified = 1;
1550                 handle->h_total_credits--;
1551         }
1552
1553         /*
1554          * fastpath, to avoid expensive locking.  If this buffer is already
1555          * on the running transaction's metadata list there is nothing to do.
1556          * Nobody can take it off again because there is a handle open.
1557          * I _think_ we're OK here with SMP barriers - a mistaken decision will
1558          * result in this test being false, so we go in and take the locks.
1559          */
1560         if (jh->b_transaction == transaction && jh->b_jlist == BJ_Metadata) {
1561                 JBUFFER_TRACE(jh, "fastpath");
1562                 if (unlikely(jh->b_transaction !=
1563                              journal->j_running_transaction)) {
1564                         printk(KERN_ERR "JBD2: %s: "
1565                                "jh->b_transaction (%llu, %p, %u) != "
1566                                "journal->j_running_transaction (%p, %u)\n",
1567                                journal->j_devname,
1568                                (unsigned long long) bh->b_blocknr,
1569                                jh->b_transaction,
1570                                jh->b_transaction ? jh->b_transaction->t_tid : 0,
1571                                journal->j_running_transaction,
1572                                journal->j_running_transaction ?
1573                                journal->j_running_transaction->t_tid : 0);
1574                         ret = -EINVAL;
1575                 }
1576                 goto out_unlock_bh;
1577         }
1578
1579         set_buffer_jbddirty(bh);
1580
1581         /*
1582          * Metadata already on the current transaction list doesn't
1583          * need to be filed.  Metadata on another transaction's list must
1584          * be committing, and will be refiled once the commit completes:
1585          * leave it alone for now.
1586          */
1587         if (jh->b_transaction != transaction) {
1588                 JBUFFER_TRACE(jh, "already on other transaction");
1589                 if (unlikely(((jh->b_transaction !=
1590                                journal->j_committing_transaction)) ||
1591                              (jh->b_next_transaction != transaction))) {
1592                         printk(KERN_ERR "jbd2_journal_dirty_metadata: %s: "
1593                                "bad jh for block %llu: "
1594                                "transaction (%p, %u), "
1595                                "jh->b_transaction (%p, %u), "
1596                                "jh->b_next_transaction (%p, %u), jlist %u\n",
1597                                journal->j_devname,
1598                                (unsigned long long) bh->b_blocknr,
1599                                transaction, transaction->t_tid,
1600                                jh->b_transaction,
1601                                jh->b_transaction ?
1602                                jh->b_transaction->t_tid : 0,
1603                                jh->b_next_transaction,
1604                                jh->b_next_transaction ?
1605                                jh->b_next_transaction->t_tid : 0,
1606                                jh->b_jlist);
1607                         WARN_ON(1);
1608                         ret = -EINVAL;
1609                 }
1610                 /* And this case is illegal: we can't reuse another
1611                  * transaction's data buffer, ever. */
1612                 goto out_unlock_bh;
1613         }
1614
1615         /* That test should have eliminated the following case: */
1616         J_ASSERT_JH(jh, jh->b_frozen_data == NULL);
1617
1618         JBUFFER_TRACE(jh, "file as BJ_Metadata");
1619         spin_lock(&journal->j_list_lock);
1620         __jbd2_journal_file_buffer(jh, transaction, BJ_Metadata);
1621         spin_unlock(&journal->j_list_lock);
1622 out_unlock_bh:
1623         spin_unlock(&jh->b_state_lock);
1624 out:
1625         JBUFFER_TRACE(jh, "exit");
1626         return ret;
1627 }
1628
1629 /**
1630  * jbd2_journal_forget() - bforget() for potentially-journaled buffers.
1631  * @handle: transaction handle
1632  * @bh:     bh to 'forget'
1633  *
1634  * We can only do the bforget if there are no commits pending against the
1635  * buffer.  If the buffer is dirty in the current running transaction we
1636  * can safely unlink it.
1637  *
1638  * bh may not be a journalled buffer at all - it may be a non-JBD
1639  * buffer which came off the hashtable.  Check for this.
1640  *
1641  * Decrements bh->b_count by one.
1642  *
1643  * Allow this call even if the handle has aborted --- it may be part of
1644  * the caller's cleanup after an abort.
1645  */
1646 int jbd2_journal_forget(handle_t *handle, struct buffer_head *bh)
1647 {
1648         transaction_t *transaction = handle->h_transaction;
1649         journal_t *journal;
1650         struct journal_head *jh;
1651         int drop_reserve = 0;
1652         int err = 0;
1653         int was_modified = 0;
1654
1655         if (is_handle_aborted(handle))
1656                 return -EROFS;
1657         journal = transaction->t_journal;
1658
1659         BUFFER_TRACE(bh, "entry");
1660
1661         jh = jbd2_journal_grab_journal_head(bh);
1662         if (!jh) {
1663                 __bforget(bh);
1664                 return 0;
1665         }
1666
1667         spin_lock(&jh->b_state_lock);
1668
1669         /* Critical error: attempting to delete a bitmap buffer, maybe?
1670          * Don't do any jbd operations, and return an error. */
1671         if (!J_EXPECT_JH(jh, !jh->b_committed_data,
1672                          "inconsistent data on disk")) {
1673                 err = -EIO;
1674                 goto drop;
1675         }
1676
1677         /* keep track of whether or not this transaction modified us */
1678         was_modified = jh->b_modified;
1679
1680         /*
1681          * The buffer's going from the transaction, we must drop
1682          * all references -bzzz
1683          */
1684         jh->b_modified = 0;
1685
1686         if (jh->b_transaction == transaction) {
1687                 J_ASSERT_JH(jh, !jh->b_frozen_data);
1688
1689                 /* If we are forgetting a buffer which is already part
1690                  * of this transaction, then we can just drop it from
1691                  * the transaction immediately. */
1692                 clear_buffer_dirty(bh);
1693                 clear_buffer_jbddirty(bh);
1694
1695                 JBUFFER_TRACE(jh, "belongs to current transaction: unfile");
1696
1697                 /*
1698                  * we only want to drop a reference if this transaction
1699                  * modified the buffer
1700                  */
1701                 if (was_modified)
1702                         drop_reserve = 1;
1703
1704                 /*
1705                  * We are no longer going to journal this buffer.
1706                  * However, the commit of this transaction is still
1707                  * important to the buffer: the delete that we are now
1708                  * processing might obsolete an old log entry, so by
1709                  * committing, we can satisfy the buffer's checkpoint.
1710                  *
1711                  * So, if we have a checkpoint on the buffer, we should
1712                  * now refile the buffer on our BJ_Forget list so that
1713                  * we know to remove the checkpoint after we commit.
1714                  */
1715
1716                 spin_lock(&journal->j_list_lock);
1717                 if (jh->b_cp_transaction) {
1718                         __jbd2_journal_temp_unlink_buffer(jh);
1719                         __jbd2_journal_file_buffer(jh, transaction, BJ_Forget);
1720                 } else {
1721                         __jbd2_journal_unfile_buffer(jh);
1722                         jbd2_journal_put_journal_head(jh);
1723                 }
1724                 spin_unlock(&journal->j_list_lock);
1725         } else if (jh->b_transaction) {
1726                 J_ASSERT_JH(jh, (jh->b_transaction ==
1727                                  journal->j_committing_transaction));
1728                 /* However, if the buffer is still owned by a prior
1729                  * (committing) transaction, we can't drop it yet... */
1730                 JBUFFER_TRACE(jh, "belongs to older transaction");
1731                 /* ... but we CAN drop it from the new transaction through
1732                  * marking the buffer as freed and set j_next_transaction to
1733                  * the new transaction, so that not only the commit code
1734                  * knows it should clear dirty bits when it is done with the
1735                  * buffer, but also the buffer can be checkpointed only
1736                  * after the new transaction commits. */
1737
1738                 set_buffer_freed(bh);
1739
1740                 if (!jh->b_next_transaction) {
1741                         spin_lock(&journal->j_list_lock);
1742                         jh->b_next_transaction = transaction;
1743                         spin_unlock(&journal->j_list_lock);
1744                 } else {
1745                         J_ASSERT(jh->b_next_transaction == transaction);
1746
1747                         /*
1748                          * only drop a reference if this transaction modified
1749                          * the buffer
1750                          */
1751                         if (was_modified)
1752                                 drop_reserve = 1;
1753                 }
1754         } else {
1755                 /*
1756                  * Finally, if the buffer is not belongs to any
1757                  * transaction, we can just drop it now if it has no
1758                  * checkpoint.
1759                  */
1760                 spin_lock(&journal->j_list_lock);
1761                 if (!jh->b_cp_transaction) {
1762                         JBUFFER_TRACE(jh, "belongs to none transaction");
1763                         spin_unlock(&journal->j_list_lock);
1764                         goto drop;
1765                 }
1766
1767                 /*
1768                  * Otherwise, if the buffer has been written to disk,
1769                  * it is safe to remove the checkpoint and drop it.
1770                  */
1771                 if (!buffer_dirty(bh)) {
1772                         __jbd2_journal_remove_checkpoint(jh);
1773                         spin_unlock(&journal->j_list_lock);
1774                         goto drop;
1775                 }
1776
1777                 /*
1778                  * The buffer is still not written to disk, we should
1779                  * attach this buffer to current transaction so that the
1780                  * buffer can be checkpointed only after the current
1781                  * transaction commits.
1782                  */
1783                 clear_buffer_dirty(bh);
1784                 __jbd2_journal_file_buffer(jh, transaction, BJ_Forget);
1785                 spin_unlock(&journal->j_list_lock);
1786         }
1787 drop:
1788         __brelse(bh);
1789         spin_unlock(&jh->b_state_lock);
1790         jbd2_journal_put_journal_head(jh);
1791         if (drop_reserve) {
1792                 /* no need to reserve log space for this block -bzzz */
1793                 handle->h_total_credits++;
1794         }
1795         return err;
1796 }
1797
1798 /**
1799  * jbd2_journal_stop() - complete a transaction
1800  * @handle: transaction to complete.
1801  *
1802  * All done for a particular handle.
1803  *
1804  * There is not much action needed here.  We just return any remaining
1805  * buffer credits to the transaction and remove the handle.  The only
1806  * complication is that we need to start a commit operation if the
1807  * filesystem is marked for synchronous update.
1808  *
1809  * jbd2_journal_stop itself will not usually return an error, but it may
1810  * do so in unusual circumstances.  In particular, expect it to
1811  * return -EIO if a jbd2_journal_abort has been executed since the
1812  * transaction began.
1813  */
1814 int jbd2_journal_stop(handle_t *handle)
1815 {
1816         transaction_t *transaction = handle->h_transaction;
1817         journal_t *journal;
1818         int err = 0, wait_for_commit = 0;
1819         tid_t tid;
1820         pid_t pid;
1821
1822         if (--handle->h_ref > 0) {
1823                 jbd_debug(4, "h_ref %d -> %d\n", handle->h_ref + 1,
1824                                                  handle->h_ref);
1825                 if (is_handle_aborted(handle))
1826                         return -EIO;
1827                 return 0;
1828         }
1829         if (!transaction) {
1830                 /*
1831                  * Handle is already detached from the transaction so there is
1832                  * nothing to do other than free the handle.
1833                  */
1834                 memalloc_nofs_restore(handle->saved_alloc_context);
1835                 goto free_and_exit;
1836         }
1837         journal = transaction->t_journal;
1838         tid = transaction->t_tid;
1839
1840         if (is_handle_aborted(handle))
1841                 err = -EIO;
1842
1843         jbd_debug(4, "Handle %p going down\n", handle);
1844         trace_jbd2_handle_stats(journal->j_fs_dev->bd_dev,
1845                                 tid, handle->h_type, handle->h_line_no,
1846                                 jiffies - handle->h_start_jiffies,
1847                                 handle->h_sync, handle->h_requested_credits,
1848                                 (handle->h_requested_credits -
1849                                  handle->h_total_credits));
1850
1851         /*
1852          * Implement synchronous transaction batching.  If the handle
1853          * was synchronous, don't force a commit immediately.  Let's
1854          * yield and let another thread piggyback onto this
1855          * transaction.  Keep doing that while new threads continue to
1856          * arrive.  It doesn't cost much - we're about to run a commit
1857          * and sleep on IO anyway.  Speeds up many-threaded, many-dir
1858          * operations by 30x or more...
1859          *
1860          * We try and optimize the sleep time against what the
1861          * underlying disk can do, instead of having a static sleep
1862          * time.  This is useful for the case where our storage is so
1863          * fast that it is more optimal to go ahead and force a flush
1864          * and wait for the transaction to be committed than it is to
1865          * wait for an arbitrary amount of time for new writers to
1866          * join the transaction.  We achieve this by measuring how
1867          * long it takes to commit a transaction, and compare it with
1868          * how long this transaction has been running, and if run time
1869          * < commit time then we sleep for the delta and commit.  This
1870          * greatly helps super fast disks that would see slowdowns as
1871          * more threads started doing fsyncs.
1872          *
1873          * But don't do this if this process was the most recent one
1874          * to perform a synchronous write.  We do this to detect the
1875          * case where a single process is doing a stream of sync
1876          * writes.  No point in waiting for joiners in that case.
1877          *
1878          * Setting max_batch_time to 0 disables this completely.
1879          */
1880         pid = current->pid;
1881         if (handle->h_sync && journal->j_last_sync_writer != pid &&
1882             journal->j_max_batch_time) {
1883                 u64 commit_time, trans_time;
1884
1885                 journal->j_last_sync_writer = pid;
1886
1887                 read_lock(&journal->j_state_lock);
1888                 commit_time = journal->j_average_commit_time;
1889                 read_unlock(&journal->j_state_lock);
1890
1891                 trans_time = ktime_to_ns(ktime_sub(ktime_get(),
1892                                                    transaction->t_start_time));
1893
1894                 commit_time = max_t(u64, commit_time,
1895                                     1000*journal->j_min_batch_time);
1896                 commit_time = min_t(u64, commit_time,
1897                                     1000*journal->j_max_batch_time);
1898
1899                 if (trans_time < commit_time) {
1900                         ktime_t expires = ktime_add_ns(ktime_get(),
1901                                                        commit_time);
1902                         set_current_state(TASK_UNINTERRUPTIBLE);
1903                         schedule_hrtimeout(&expires, HRTIMER_MODE_ABS);
1904                 }
1905         }
1906
1907         if (handle->h_sync)
1908                 transaction->t_synchronous_commit = 1;
1909
1910         /*
1911          * If the handle is marked SYNC, we need to set another commit
1912          * going!  We also want to force a commit if the transaction is too
1913          * old now.
1914          */
1915         if (handle->h_sync ||
1916             time_after_eq(jiffies, transaction->t_expires)) {
1917                 /* Do this even for aborted journals: an abort still
1918                  * completes the commit thread, it just doesn't write
1919                  * anything to disk. */
1920
1921                 jbd_debug(2, "transaction too old, requesting commit for "
1922                                         "handle %p\n", handle);
1923                 /* This is non-blocking */
1924                 jbd2_log_start_commit(journal, tid);
1925
1926                 /*
1927                  * Special case: JBD2_SYNC synchronous updates require us
1928                  * to wait for the commit to complete.
1929                  */
1930                 if (handle->h_sync && !(current->flags & PF_MEMALLOC))
1931                         wait_for_commit = 1;
1932         }
1933
1934         /*
1935          * Once stop_this_handle() drops t_updates, the transaction could start
1936          * committing on us and eventually disappear.  So we must not
1937          * dereference transaction pointer again after calling
1938          * stop_this_handle().
1939          */
1940         stop_this_handle(handle);
1941
1942         if (wait_for_commit)
1943                 err = jbd2_log_wait_commit(journal, tid);
1944
1945 free_and_exit:
1946         if (handle->h_rsv_handle)
1947                 jbd2_free_handle(handle->h_rsv_handle);
1948         jbd2_free_handle(handle);
1949         return err;
1950 }
1951
1952 /*
1953  *
1954  * List management code snippets: various functions for manipulating the
1955  * transaction buffer lists.
1956  *
1957  */
1958
1959 /*
1960  * Append a buffer to a transaction list, given the transaction's list head
1961  * pointer.
1962  *
1963  * j_list_lock is held.
1964  *
1965  * jh->b_state_lock is held.
1966  */
1967
1968 static inline void
1969 __blist_add_buffer(struct journal_head **list, struct journal_head *jh)
1970 {
1971         if (!*list) {
1972                 jh->b_tnext = jh->b_tprev = jh;
1973                 *list = jh;
1974         } else {
1975                 /* Insert at the tail of the list to preserve order */
1976                 struct journal_head *first = *list, *last = first->b_tprev;
1977                 jh->b_tprev = last;
1978                 jh->b_tnext = first;
1979                 last->b_tnext = first->b_tprev = jh;
1980         }
1981 }
1982
1983 /*
1984  * Remove a buffer from a transaction list, given the transaction's list
1985  * head pointer.
1986  *
1987  * Called with j_list_lock held, and the journal may not be locked.
1988  *
1989  * jh->b_state_lock is held.
1990  */
1991
1992 static inline void
1993 __blist_del_buffer(struct journal_head **list, struct journal_head *jh)
1994 {
1995         if (*list == jh) {
1996                 *list = jh->b_tnext;
1997                 if (*list == jh)
1998                         *list = NULL;
1999         }
2000         jh->b_tprev->b_tnext = jh->b_tnext;
2001         jh->b_tnext->b_tprev = jh->b_tprev;
2002 }
2003
2004 /*
2005  * Remove a buffer from the appropriate transaction list.
2006  *
2007  * Note that this function can *change* the value of
2008  * bh->b_transaction->t_buffers, t_forget, t_shadow_list, t_log_list or
2009  * t_reserved_list.  If the caller is holding onto a copy of one of these
2010  * pointers, it could go bad.  Generally the caller needs to re-read the
2011  * pointer from the transaction_t.
2012  *
2013  * Called under j_list_lock.
2014  */
2015 static void __jbd2_journal_temp_unlink_buffer(struct journal_head *jh)
2016 {
2017         struct journal_head **list = NULL;
2018         transaction_t *transaction;
2019         struct buffer_head *bh = jh2bh(jh);
2020
2021         lockdep_assert_held(&jh->b_state_lock);
2022         transaction = jh->b_transaction;
2023         if (transaction)
2024                 assert_spin_locked(&transaction->t_journal->j_list_lock);
2025
2026         J_ASSERT_JH(jh, jh->b_jlist < BJ_Types);
2027         if (jh->b_jlist != BJ_None)
2028                 J_ASSERT_JH(jh, transaction != NULL);
2029
2030         switch (jh->b_jlist) {
2031         case BJ_None:
2032                 return;
2033         case BJ_Metadata:
2034                 transaction->t_nr_buffers--;
2035                 J_ASSERT_JH(jh, transaction->t_nr_buffers >= 0);
2036                 list = &transaction->t_buffers;
2037                 break;
2038         case BJ_Forget:
2039                 list = &transaction->t_forget;
2040                 break;
2041         case BJ_Shadow:
2042                 list = &transaction->t_shadow_list;
2043                 break;
2044         case BJ_Reserved:
2045                 list = &transaction->t_reserved_list;
2046                 break;
2047         }
2048
2049         __blist_del_buffer(list, jh);
2050         jh->b_jlist = BJ_None;
2051         if (transaction && is_journal_aborted(transaction->t_journal))
2052                 clear_buffer_jbddirty(bh);
2053         else if (test_clear_buffer_jbddirty(bh))
2054                 mark_buffer_dirty(bh);  /* Expose it to the VM */
2055 }
2056
2057 /*
2058  * Remove buffer from all transactions. The caller is responsible for dropping
2059  * the jh reference that belonged to the transaction.
2060  *
2061  * Called with bh_state lock and j_list_lock
2062  */
2063 static void __jbd2_journal_unfile_buffer(struct journal_head *jh)
2064 {
2065         J_ASSERT_JH(jh, jh->b_transaction != NULL);
2066         J_ASSERT_JH(jh, jh->b_next_transaction == NULL);
2067
2068         __jbd2_journal_temp_unlink_buffer(jh);
2069         jh->b_transaction = NULL;
2070 }
2071
2072 void jbd2_journal_unfile_buffer(journal_t *journal, struct journal_head *jh)
2073 {
2074         struct buffer_head *bh = jh2bh(jh);
2075
2076         /* Get reference so that buffer cannot be freed before we unlock it */
2077         get_bh(bh);
2078         spin_lock(&jh->b_state_lock);
2079         spin_lock(&journal->j_list_lock);
2080         __jbd2_journal_unfile_buffer(jh);
2081         spin_unlock(&journal->j_list_lock);
2082         spin_unlock(&jh->b_state_lock);
2083         jbd2_journal_put_journal_head(jh);
2084         __brelse(bh);
2085 }
2086
2087 /*
2088  * Called from jbd2_journal_try_to_free_buffers().
2089  *
2090  * Called under jh->b_state_lock
2091  */
2092 static void
2093 __journal_try_to_free_buffer(journal_t *journal, struct buffer_head *bh)
2094 {
2095         struct journal_head *jh;
2096
2097         jh = bh2jh(bh);
2098
2099         if (buffer_locked(bh) || buffer_dirty(bh))
2100                 goto out;
2101
2102         if (jh->b_next_transaction != NULL || jh->b_transaction != NULL)
2103                 goto out;
2104
2105         spin_lock(&journal->j_list_lock);
2106         if (jh->b_cp_transaction != NULL) {
2107                 /* written-back checkpointed metadata buffer */
2108                 JBUFFER_TRACE(jh, "remove from checkpoint list");
2109                 __jbd2_journal_remove_checkpoint(jh);
2110         }
2111         spin_unlock(&journal->j_list_lock);
2112 out:
2113         return;
2114 }
2115
2116 /**
2117  * jbd2_journal_try_to_free_buffers() - try to free page buffers.
2118  * @journal: journal for operation
2119  * @page: to try and free
2120  *
2121  * For all the buffers on this page,
2122  * if they are fully written out ordered data, move them onto BUF_CLEAN
2123  * so try_to_free_buffers() can reap them.
2124  *
2125  * This function returns non-zero if we wish try_to_free_buffers()
2126  * to be called. We do this if the page is releasable by try_to_free_buffers().
2127  * We also do it if the page has locked or dirty buffers and the caller wants
2128  * us to perform sync or async writeout.
2129  *
2130  * This complicates JBD locking somewhat.  We aren't protected by the
2131  * BKL here.  We wish to remove the buffer from its committing or
2132  * running transaction's ->t_datalist via __jbd2_journal_unfile_buffer.
2133  *
2134  * This may *change* the value of transaction_t->t_datalist, so anyone
2135  * who looks at t_datalist needs to lock against this function.
2136  *
2137  * Even worse, someone may be doing a jbd2_journal_dirty_data on this
2138  * buffer.  So we need to lock against that.  jbd2_journal_dirty_data()
2139  * will come out of the lock with the buffer dirty, which makes it
2140  * ineligible for release here.
2141  *
2142  * Who else is affected by this?  hmm...  Really the only contender
2143  * is do_get_write_access() - it could be looking at the buffer while
2144  * journal_try_to_free_buffer() is changing its state.  But that
2145  * cannot happen because we never reallocate freed data as metadata
2146  * while the data is part of a transaction.  Yes?
2147  *
2148  * Return 0 on failure, 1 on success
2149  */
2150 int jbd2_journal_try_to_free_buffers(journal_t *journal, struct page *page)
2151 {
2152         struct buffer_head *head;
2153         struct buffer_head *bh;
2154         int ret = 0;
2155
2156         J_ASSERT(PageLocked(page));
2157
2158         head = page_buffers(page);
2159         bh = head;
2160         do {
2161                 struct journal_head *jh;
2162
2163                 /*
2164                  * We take our own ref against the journal_head here to avoid
2165                  * having to add tons of locking around each instance of
2166                  * jbd2_journal_put_journal_head().
2167                  */
2168                 jh = jbd2_journal_grab_journal_head(bh);
2169                 if (!jh)
2170                         continue;
2171
2172                 spin_lock(&jh->b_state_lock);
2173                 __journal_try_to_free_buffer(journal, bh);
2174                 spin_unlock(&jh->b_state_lock);
2175                 jbd2_journal_put_journal_head(jh);
2176                 if (buffer_jbd(bh))
2177                         goto busy;
2178         } while ((bh = bh->b_this_page) != head);
2179
2180         ret = try_to_free_buffers(page);
2181 busy:
2182         return ret;
2183 }
2184
2185 /*
2186  * This buffer is no longer needed.  If it is on an older transaction's
2187  * checkpoint list we need to record it on this transaction's forget list
2188  * to pin this buffer (and hence its checkpointing transaction) down until
2189  * this transaction commits.  If the buffer isn't on a checkpoint list, we
2190  * release it.
2191  * Returns non-zero if JBD no longer has an interest in the buffer.
2192  *
2193  * Called under j_list_lock.
2194  *
2195  * Called under jh->b_state_lock.
2196  */
2197 static int __dispose_buffer(struct journal_head *jh, transaction_t *transaction)
2198 {
2199         int may_free = 1;
2200         struct buffer_head *bh = jh2bh(jh);
2201
2202         if (jh->b_cp_transaction) {
2203                 JBUFFER_TRACE(jh, "on running+cp transaction");
2204                 __jbd2_journal_temp_unlink_buffer(jh);
2205                 /*
2206                  * We don't want to write the buffer anymore, clear the
2207                  * bit so that we don't confuse checks in
2208                  * __journal_file_buffer
2209                  */
2210                 clear_buffer_dirty(bh);
2211                 __jbd2_journal_file_buffer(jh, transaction, BJ_Forget);
2212                 may_free = 0;
2213         } else {
2214                 JBUFFER_TRACE(jh, "on running transaction");
2215                 __jbd2_journal_unfile_buffer(jh);
2216                 jbd2_journal_put_journal_head(jh);
2217         }
2218         return may_free;
2219 }
2220
2221 /*
2222  * jbd2_journal_invalidatepage
2223  *
2224  * This code is tricky.  It has a number of cases to deal with.
2225  *
2226  * There are two invariants which this code relies on:
2227  *
2228  * i_size must be updated on disk before we start calling invalidatepage on the
2229  * data.
2230  *
2231  *  This is done in ext3 by defining an ext3_setattr method which
2232  *  updates i_size before truncate gets going.  By maintaining this
2233  *  invariant, we can be sure that it is safe to throw away any buffers
2234  *  attached to the current transaction: once the transaction commits,
2235  *  we know that the data will not be needed.
2236  *
2237  *  Note however that we can *not* throw away data belonging to the
2238  *  previous, committing transaction!
2239  *
2240  * Any disk blocks which *are* part of the previous, committing
2241  * transaction (and which therefore cannot be discarded immediately) are
2242  * not going to be reused in the new running transaction
2243  *
2244  *  The bitmap committed_data images guarantee this: any block which is
2245  *  allocated in one transaction and removed in the next will be marked
2246  *  as in-use in the committed_data bitmap, so cannot be reused until
2247  *  the next transaction to delete the block commits.  This means that
2248  *  leaving committing buffers dirty is quite safe: the disk blocks
2249  *  cannot be reallocated to a different file and so buffer aliasing is
2250  *  not possible.
2251  *
2252  *
2253  * The above applies mainly to ordered data mode.  In writeback mode we
2254  * don't make guarantees about the order in which data hits disk --- in
2255  * particular we don't guarantee that new dirty data is flushed before
2256  * transaction commit --- so it is always safe just to discard data
2257  * immediately in that mode.  --sct
2258  */
2259
2260 /*
2261  * The journal_unmap_buffer helper function returns zero if the buffer
2262  * concerned remains pinned as an anonymous buffer belonging to an older
2263  * transaction.
2264  *
2265  * We're outside-transaction here.  Either or both of j_running_transaction
2266  * and j_committing_transaction may be NULL.
2267  */
2268 static int journal_unmap_buffer(journal_t *journal, struct buffer_head *bh,
2269                                 int partial_page)
2270 {
2271         transaction_t *transaction;
2272         struct journal_head *jh;
2273         int may_free = 1;
2274
2275         BUFFER_TRACE(bh, "entry");
2276
2277         /*
2278          * It is safe to proceed here without the j_list_lock because the
2279          * buffers cannot be stolen by try_to_free_buffers as long as we are
2280          * holding the page lock. --sct
2281          */
2282
2283         jh = jbd2_journal_grab_journal_head(bh);
2284         if (!jh)
2285                 goto zap_buffer_unlocked;
2286
2287         /* OK, we have data buffer in journaled mode */
2288         write_lock(&journal->j_state_lock);
2289         spin_lock(&jh->b_state_lock);
2290         spin_lock(&journal->j_list_lock);
2291
2292         /*
2293          * We cannot remove the buffer from checkpoint lists until the
2294          * transaction adding inode to orphan list (let's call it T)
2295          * is committed.  Otherwise if the transaction changing the
2296          * buffer would be cleaned from the journal before T is
2297          * committed, a crash will cause that the correct contents of
2298          * the buffer will be lost.  On the other hand we have to
2299          * clear the buffer dirty bit at latest at the moment when the
2300          * transaction marking the buffer as freed in the filesystem
2301          * structures is committed because from that moment on the
2302          * block can be reallocated and used by a different page.
2303          * Since the block hasn't been freed yet but the inode has
2304          * already been added to orphan list, it is safe for us to add
2305          * the buffer to BJ_Forget list of the newest transaction.
2306          *
2307          * Also we have to clear buffer_mapped flag of a truncated buffer
2308          * because the buffer_head may be attached to the page straddling
2309          * i_size (can happen only when blocksize < pagesize) and thus the
2310          * buffer_head can be reused when the file is extended again. So we end
2311          * up keeping around invalidated buffers attached to transactions'
2312          * BJ_Forget list just to stop checkpointing code from cleaning up
2313          * the transaction this buffer was modified in.
2314          */
2315         transaction = jh->b_transaction;
2316         if (transaction == NULL) {
2317                 /* First case: not on any transaction.  If it
2318                  * has no checkpoint link, then we can zap it:
2319                  * it's a writeback-mode buffer so we don't care
2320                  * if it hits disk safely. */
2321                 if (!jh->b_cp_transaction) {
2322                         JBUFFER_TRACE(jh, "not on any transaction: zap");
2323                         goto zap_buffer;
2324                 }
2325
2326                 if (!buffer_dirty(bh)) {
2327                         /* bdflush has written it.  We can drop it now */
2328                         __jbd2_journal_remove_checkpoint(jh);
2329                         goto zap_buffer;
2330                 }
2331
2332                 /* OK, it must be in the journal but still not
2333                  * written fully to disk: it's metadata or
2334                  * journaled data... */
2335
2336                 if (journal->j_running_transaction) {
2337                         /* ... and once the current transaction has
2338                          * committed, the buffer won't be needed any
2339                          * longer. */
2340                         JBUFFER_TRACE(jh, "checkpointed: add to BJ_Forget");
2341                         may_free = __dispose_buffer(jh,
2342                                         journal->j_running_transaction);
2343                         goto zap_buffer;
2344                 } else {
2345                         /* There is no currently-running transaction. So the
2346                          * orphan record which we wrote for this file must have
2347                          * passed into commit.  We must attach this buffer to
2348                          * the committing transaction, if it exists. */
2349                         if (journal->j_committing_transaction) {
2350                                 JBUFFER_TRACE(jh, "give to committing trans");
2351                                 may_free = __dispose_buffer(jh,
2352                                         journal->j_committing_transaction);
2353                                 goto zap_buffer;
2354                         } else {
2355                                 /* The orphan record's transaction has
2356                                  * committed.  We can cleanse this buffer */
2357                                 clear_buffer_jbddirty(bh);
2358                                 __jbd2_journal_remove_checkpoint(jh);
2359                                 goto zap_buffer;
2360                         }
2361                 }
2362         } else if (transaction == journal->j_committing_transaction) {
2363                 JBUFFER_TRACE(jh, "on committing transaction");
2364                 /*
2365                  * The buffer is committing, we simply cannot touch
2366                  * it. If the page is straddling i_size we have to wait
2367                  * for commit and try again.
2368                  */
2369                 if (partial_page) {
2370                         spin_unlock(&journal->j_list_lock);
2371                         spin_unlock(&jh->b_state_lock);
2372                         write_unlock(&journal->j_state_lock);
2373                         jbd2_journal_put_journal_head(jh);
2374                         return -EBUSY;
2375                 }
2376                 /*
2377                  * OK, buffer won't be reachable after truncate. We just clear
2378                  * b_modified to not confuse transaction credit accounting, and
2379                  * set j_next_transaction to the running transaction (if there
2380                  * is one) and mark buffer as freed so that commit code knows
2381                  * it should clear dirty bits when it is done with the buffer.
2382                  */
2383                 set_buffer_freed(bh);
2384                 if (journal->j_running_transaction && buffer_jbddirty(bh))
2385                         jh->b_next_transaction = journal->j_running_transaction;
2386                 jh->b_modified = 0;
2387                 spin_unlock(&journal->j_list_lock);
2388                 spin_unlock(&jh->b_state_lock);
2389                 write_unlock(&journal->j_state_lock);
2390                 jbd2_journal_put_journal_head(jh);
2391                 return 0;
2392         } else {
2393                 /* Good, the buffer belongs to the running transaction.
2394                  * We are writing our own transaction's data, not any
2395                  * previous one's, so it is safe to throw it away
2396                  * (remember that we expect the filesystem to have set
2397                  * i_size already for this truncate so recovery will not
2398                  * expose the disk blocks we are discarding here.) */
2399                 J_ASSERT_JH(jh, transaction == journal->j_running_transaction);
2400                 JBUFFER_TRACE(jh, "on running transaction");
2401                 may_free = __dispose_buffer(jh, transaction);
2402         }
2403
2404 zap_buffer:
2405         /*
2406          * This is tricky. Although the buffer is truncated, it may be reused
2407          * if blocksize < pagesize and it is attached to the page straddling
2408          * EOF. Since the buffer might have been added to BJ_Forget list of the
2409          * running transaction, journal_get_write_access() won't clear
2410          * b_modified and credit accounting gets confused. So clear b_modified
2411          * here.
2412          */
2413         jh->b_modified = 0;
2414         spin_unlock(&journal->j_list_lock);
2415         spin_unlock(&jh->b_state_lock);
2416         write_unlock(&journal->j_state_lock);
2417         jbd2_journal_put_journal_head(jh);
2418 zap_buffer_unlocked:
2419         clear_buffer_dirty(bh);
2420         J_ASSERT_BH(bh, !buffer_jbddirty(bh));
2421         clear_buffer_mapped(bh);
2422         clear_buffer_req(bh);
2423         clear_buffer_new(bh);
2424         clear_buffer_delay(bh);
2425         clear_buffer_unwritten(bh);
2426         bh->b_bdev = NULL;
2427         return may_free;
2428 }
2429
2430 /**
2431  * jbd2_journal_invalidatepage()
2432  * @journal: journal to use for flush...
2433  * @page:    page to flush
2434  * @offset:  start of the range to invalidate
2435  * @length:  length of the range to invalidate
2436  *
2437  * Reap page buffers containing data after in the specified range in page.
2438  * Can return -EBUSY if buffers are part of the committing transaction and
2439  * the page is straddling i_size. Caller then has to wait for current commit
2440  * and try again.
2441  */
2442 int jbd2_journal_invalidatepage(journal_t *journal,
2443                                 struct page *page,
2444                                 unsigned int offset,
2445                                 unsigned int length)
2446 {
2447         struct buffer_head *head, *bh, *next;
2448         unsigned int stop = offset + length;
2449         unsigned int curr_off = 0;
2450         int partial_page = (offset || length < PAGE_SIZE);
2451         int may_free = 1;
2452         int ret = 0;
2453
2454         if (!PageLocked(page))
2455                 BUG();
2456         if (!page_has_buffers(page))
2457                 return 0;
2458
2459         BUG_ON(stop > PAGE_SIZE || stop < length);
2460
2461         /* We will potentially be playing with lists other than just the
2462          * data lists (especially for journaled data mode), so be
2463          * cautious in our locking. */
2464
2465         head = bh = page_buffers(page);
2466         do {
2467                 unsigned int next_off = curr_off + bh->b_size;
2468                 next = bh->b_this_page;
2469
2470                 if (next_off > stop)
2471                         return 0;
2472
2473                 if (offset <= curr_off) {
2474                         /* This block is wholly outside the truncation point */
2475                         lock_buffer(bh);
2476                         ret = journal_unmap_buffer(journal, bh, partial_page);
2477                         unlock_buffer(bh);
2478                         if (ret < 0)
2479                                 return ret;
2480                         may_free &= ret;
2481                 }
2482                 curr_off = next_off;
2483                 bh = next;
2484
2485         } while (bh != head);
2486
2487         if (!partial_page) {
2488                 if (may_free && try_to_free_buffers(page))
2489                         J_ASSERT(!page_has_buffers(page));
2490         }
2491         return 0;
2492 }
2493
2494 /*
2495  * File a buffer on the given transaction list.
2496  */
2497 void __jbd2_journal_file_buffer(struct journal_head *jh,
2498                         transaction_t *transaction, int jlist)
2499 {
2500         struct journal_head **list = NULL;
2501         int was_dirty = 0;
2502         struct buffer_head *bh = jh2bh(jh);
2503
2504         lockdep_assert_held(&jh->b_state_lock);
2505         assert_spin_locked(&transaction->t_journal->j_list_lock);
2506
2507         J_ASSERT_JH(jh, jh->b_jlist < BJ_Types);
2508         J_ASSERT_JH(jh, jh->b_transaction == transaction ||
2509                                 jh->b_transaction == NULL);
2510
2511         if (jh->b_transaction && jh->b_jlist == jlist)
2512                 return;
2513
2514         if (jlist == BJ_Metadata || jlist == BJ_Reserved ||
2515             jlist == BJ_Shadow || jlist == BJ_Forget) {
2516                 /*
2517                  * For metadata buffers, we track dirty bit in buffer_jbddirty
2518                  * instead of buffer_dirty. We should not see a dirty bit set
2519                  * here because we clear it in do_get_write_access but e.g.
2520                  * tune2fs can modify the sb and set the dirty bit at any time
2521                  * so we try to gracefully handle that.
2522                  */
2523                 if (buffer_dirty(bh))
2524                         warn_dirty_buffer(bh);
2525                 if (test_clear_buffer_dirty(bh) ||
2526                     test_clear_buffer_jbddirty(bh))
2527                         was_dirty = 1;
2528         }
2529
2530         if (jh->b_transaction)
2531                 __jbd2_journal_temp_unlink_buffer(jh);
2532         else
2533                 jbd2_journal_grab_journal_head(bh);
2534         jh->b_transaction = transaction;
2535
2536         switch (jlist) {
2537         case BJ_None:
2538                 J_ASSERT_JH(jh, !jh->b_committed_data);
2539                 J_ASSERT_JH(jh, !jh->b_frozen_data);
2540                 return;
2541         case BJ_Metadata:
2542                 transaction->t_nr_buffers++;
2543                 list = &transaction->t_buffers;
2544                 break;
2545         case BJ_Forget:
2546                 list = &transaction->t_forget;
2547                 break;
2548         case BJ_Shadow:
2549                 list = &transaction->t_shadow_list;
2550                 break;
2551         case BJ_Reserved:
2552                 list = &transaction->t_reserved_list;
2553                 break;
2554         }
2555
2556         __blist_add_buffer(list, jh);
2557         jh->b_jlist = jlist;
2558
2559         if (was_dirty)
2560                 set_buffer_jbddirty(bh);
2561 }
2562
2563 void jbd2_journal_file_buffer(struct journal_head *jh,
2564                                 transaction_t *transaction, int jlist)
2565 {
2566         spin_lock(&jh->b_state_lock);
2567         spin_lock(&transaction->t_journal->j_list_lock);
2568         __jbd2_journal_file_buffer(jh, transaction, jlist);
2569         spin_unlock(&transaction->t_journal->j_list_lock);
2570         spin_unlock(&jh->b_state_lock);
2571 }
2572
2573 /*
2574  * Remove a buffer from its current buffer list in preparation for
2575  * dropping it from its current transaction entirely.  If the buffer has
2576  * already started to be used by a subsequent transaction, refile the
2577  * buffer on that transaction's metadata list.
2578  *
2579  * Called under j_list_lock
2580  * Called under jh->b_state_lock
2581  *
2582  * When this function returns true, there's no next transaction to refile to
2583  * and the caller has to drop jh reference through
2584  * jbd2_journal_put_journal_head().
2585  */
2586 bool __jbd2_journal_refile_buffer(struct journal_head *jh)
2587 {
2588         int was_dirty, jlist;
2589         struct buffer_head *bh = jh2bh(jh);
2590
2591         lockdep_assert_held(&jh->b_state_lock);
2592         if (jh->b_transaction)
2593                 assert_spin_locked(&jh->b_transaction->t_journal->j_list_lock);
2594
2595         /* If the buffer is now unused, just drop it. */
2596         if (jh->b_next_transaction == NULL) {
2597                 __jbd2_journal_unfile_buffer(jh);
2598                 return true;
2599         }
2600
2601         /*
2602          * It has been modified by a later transaction: add it to the new
2603          * transaction's metadata list.
2604          */
2605
2606         was_dirty = test_clear_buffer_jbddirty(bh);
2607         __jbd2_journal_temp_unlink_buffer(jh);
2608
2609         /*
2610          * b_transaction must be set, otherwise the new b_transaction won't
2611          * be holding jh reference
2612          */
2613         J_ASSERT_JH(jh, jh->b_transaction != NULL);
2614
2615         /*
2616          * We set b_transaction here because b_next_transaction will inherit
2617          * our jh reference and thus __jbd2_journal_file_buffer() must not
2618          * take a new one.
2619          */
2620         WRITE_ONCE(jh->b_transaction, jh->b_next_transaction);
2621         WRITE_ONCE(jh->b_next_transaction, NULL);
2622         if (buffer_freed(bh))
2623                 jlist = BJ_Forget;
2624         else if (jh->b_modified)
2625                 jlist = BJ_Metadata;
2626         else
2627                 jlist = BJ_Reserved;
2628         __jbd2_journal_file_buffer(jh, jh->b_transaction, jlist);
2629         J_ASSERT_JH(jh, jh->b_transaction->t_state == T_RUNNING);
2630
2631         if (was_dirty)
2632                 set_buffer_jbddirty(bh);
2633         return false;
2634 }
2635
2636 /*
2637  * __jbd2_journal_refile_buffer() with necessary locking added. We take our
2638  * bh reference so that we can safely unlock bh.
2639  *
2640  * The jh and bh may be freed by this call.
2641  */
2642 void jbd2_journal_refile_buffer(journal_t *journal, struct journal_head *jh)
2643 {
2644         bool drop;
2645
2646         spin_lock(&jh->b_state_lock);
2647         spin_lock(&journal->j_list_lock);
2648         drop = __jbd2_journal_refile_buffer(jh);
2649         spin_unlock(&jh->b_state_lock);
2650         spin_unlock(&journal->j_list_lock);
2651         if (drop)
2652                 jbd2_journal_put_journal_head(jh);
2653 }
2654
2655 /*
2656  * File inode in the inode list of the handle's transaction
2657  */
2658 static int jbd2_journal_file_inode(handle_t *handle, struct jbd2_inode *jinode,
2659                 unsigned long flags, loff_t start_byte, loff_t end_byte)
2660 {
2661         transaction_t *transaction = handle->h_transaction;
2662         journal_t *journal;
2663
2664         if (is_handle_aborted(handle))
2665                 return -EROFS;
2666         journal = transaction->t_journal;
2667
2668         jbd_debug(4, "Adding inode %lu, tid:%d\n", jinode->i_vfs_inode->i_ino,
2669                         transaction->t_tid);
2670
2671         spin_lock(&journal->j_list_lock);
2672         jinode->i_flags |= flags;
2673
2674         if (jinode->i_dirty_end) {
2675                 jinode->i_dirty_start = min(jinode->i_dirty_start, start_byte);
2676                 jinode->i_dirty_end = max(jinode->i_dirty_end, end_byte);
2677         } else {
2678                 jinode->i_dirty_start = start_byte;
2679                 jinode->i_dirty_end = end_byte;
2680         }
2681
2682         /* Is inode already attached where we need it? */
2683         if (jinode->i_transaction == transaction ||
2684             jinode->i_next_transaction == transaction)
2685                 goto done;
2686
2687         /*
2688          * We only ever set this variable to 1 so the test is safe. Since
2689          * t_need_data_flush is likely to be set, we do the test to save some
2690          * cacheline bouncing
2691          */
2692         if (!transaction->t_need_data_flush)
2693                 transaction->t_need_data_flush = 1;
2694         /* On some different transaction's list - should be
2695          * the committing one */
2696         if (jinode->i_transaction) {
2697                 J_ASSERT(jinode->i_next_transaction == NULL);
2698                 J_ASSERT(jinode->i_transaction ==
2699                                         journal->j_committing_transaction);
2700                 jinode->i_next_transaction = transaction;
2701                 goto done;
2702         }
2703         /* Not on any transaction list... */
2704         J_ASSERT(!jinode->i_next_transaction);
2705         jinode->i_transaction = transaction;
2706         list_add(&jinode->i_list, &transaction->t_inode_list);
2707 done:
2708         spin_unlock(&journal->j_list_lock);
2709
2710         return 0;
2711 }
2712
2713 int jbd2_journal_inode_ranged_write(handle_t *handle,
2714                 struct jbd2_inode *jinode, loff_t start_byte, loff_t length)
2715 {
2716         return jbd2_journal_file_inode(handle, jinode,
2717                         JI_WRITE_DATA | JI_WAIT_DATA, start_byte,
2718                         start_byte + length - 1);
2719 }
2720
2721 int jbd2_journal_inode_ranged_wait(handle_t *handle, struct jbd2_inode *jinode,
2722                 loff_t start_byte, loff_t length)
2723 {
2724         return jbd2_journal_file_inode(handle, jinode, JI_WAIT_DATA,
2725                         start_byte, start_byte + length - 1);
2726 }
2727
2728 /*
2729  * File truncate and transaction commit interact with each other in a
2730  * non-trivial way.  If a transaction writing data block A is
2731  * committing, we cannot discard the data by truncate until we have
2732  * written them.  Otherwise if we crashed after the transaction with
2733  * write has committed but before the transaction with truncate has
2734  * committed, we could see stale data in block A.  This function is a
2735  * helper to solve this problem.  It starts writeout of the truncated
2736  * part in case it is in the committing transaction.
2737  *
2738  * Filesystem code must call this function when inode is journaled in
2739  * ordered mode before truncation happens and after the inode has been
2740  * placed on orphan list with the new inode size. The second condition
2741  * avoids the race that someone writes new data and we start
2742  * committing the transaction after this function has been called but
2743  * before a transaction for truncate is started (and furthermore it
2744  * allows us to optimize the case where the addition to orphan list
2745  * happens in the same transaction as write --- we don't have to write
2746  * any data in such case).
2747  */
2748 int jbd2_journal_begin_ordered_truncate(journal_t *journal,
2749                                         struct jbd2_inode *jinode,
2750                                         loff_t new_size)
2751 {
2752         transaction_t *inode_trans, *commit_trans;
2753         int ret = 0;
2754
2755         /* This is a quick check to avoid locking if not necessary */
2756         if (!jinode->i_transaction)
2757                 goto out;
2758         /* Locks are here just to force reading of recent values, it is
2759          * enough that the transaction was not committing before we started
2760          * a transaction adding the inode to orphan list */
2761         read_lock(&journal->j_state_lock);
2762         commit_trans = journal->j_committing_transaction;
2763         read_unlock(&journal->j_state_lock);
2764         spin_lock(&journal->j_list_lock);
2765         inode_trans = jinode->i_transaction;
2766         spin_unlock(&journal->j_list_lock);
2767         if (inode_trans == commit_trans) {
2768                 ret = filemap_fdatawrite_range(jinode->i_vfs_inode->i_mapping,
2769                         new_size, LLONG_MAX);
2770                 if (ret)
2771                         jbd2_journal_abort(journal, ret);
2772         }
2773 out:
2774         return ret;
2775 }