Merge tag 'for-linus-5.14-rc6-tag' of git://git.kernel.org/pub/scm/linux/kernel/git...
[linux-2.6-microblaze.git] / fs / jbd2 / transaction.c
1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3  * linux/fs/jbd2/transaction.c
4  *
5  * Written by Stephen C. Tweedie <sct@redhat.com>, 1998
6  *
7  * Copyright 1998 Red Hat corp --- All Rights Reserved
8  *
9  * Generic filesystem transaction handling code; part of the ext2fs
10  * journaling system.
11  *
12  * This file manages transactions (compound commits managed by the
13  * journaling code) and handles (individual atomic operations by the
14  * filesystem).
15  */
16
17 #include <linux/time.h>
18 #include <linux/fs.h>
19 #include <linux/jbd2.h>
20 #include <linux/errno.h>
21 #include <linux/slab.h>
22 #include <linux/timer.h>
23 #include <linux/mm.h>
24 #include <linux/highmem.h>
25 #include <linux/hrtimer.h>
26 #include <linux/backing-dev.h>
27 #include <linux/bug.h>
28 #include <linux/module.h>
29 #include <linux/sched/mm.h>
30
31 #include <trace/events/jbd2.h>
32
33 static void __jbd2_journal_temp_unlink_buffer(struct journal_head *jh);
34 static void __jbd2_journal_unfile_buffer(struct journal_head *jh);
35
36 static struct kmem_cache *transaction_cache;
37 int __init jbd2_journal_init_transaction_cache(void)
38 {
39         J_ASSERT(!transaction_cache);
40         transaction_cache = kmem_cache_create("jbd2_transaction_s",
41                                         sizeof(transaction_t),
42                                         0,
43                                         SLAB_HWCACHE_ALIGN|SLAB_TEMPORARY,
44                                         NULL);
45         if (!transaction_cache) {
46                 pr_emerg("JBD2: failed to create transaction cache\n");
47                 return -ENOMEM;
48         }
49         return 0;
50 }
51
52 void jbd2_journal_destroy_transaction_cache(void)
53 {
54         kmem_cache_destroy(transaction_cache);
55         transaction_cache = NULL;
56 }
57
58 void jbd2_journal_free_transaction(transaction_t *transaction)
59 {
60         if (unlikely(ZERO_OR_NULL_PTR(transaction)))
61                 return;
62         kmem_cache_free(transaction_cache, transaction);
63 }
64
65 /*
66  * Base amount of descriptor blocks we reserve for each transaction.
67  */
68 static int jbd2_descriptor_blocks_per_trans(journal_t *journal)
69 {
70         int tag_space = journal->j_blocksize - sizeof(journal_header_t);
71         int tags_per_block;
72
73         /* Subtract UUID */
74         tag_space -= 16;
75         if (jbd2_journal_has_csum_v2or3(journal))
76                 tag_space -= sizeof(struct jbd2_journal_block_tail);
77         /* Commit code leaves a slack space of 16 bytes at the end of block */
78         tags_per_block = (tag_space - 16) / journal_tag_bytes(journal);
79         /*
80          * Revoke descriptors are accounted separately so we need to reserve
81          * space for commit block and normal transaction descriptor blocks.
82          */
83         return 1 + DIV_ROUND_UP(journal->j_max_transaction_buffers,
84                                 tags_per_block);
85 }
86
87 /*
88  * jbd2_get_transaction: obtain a new transaction_t object.
89  *
90  * Simply initialise a new transaction. Initialize it in
91  * RUNNING state and add it to the current journal (which should not
92  * have an existing running transaction: we only make a new transaction
93  * once we have started to commit the old one).
94  *
95  * Preconditions:
96  *      The journal MUST be locked.  We don't perform atomic mallocs on the
97  *      new transaction and we can't block without protecting against other
98  *      processes trying to touch the journal while it is in transition.
99  *
100  */
101
102 static void jbd2_get_transaction(journal_t *journal,
103                                 transaction_t *transaction)
104 {
105         transaction->t_journal = journal;
106         transaction->t_state = T_RUNNING;
107         transaction->t_start_time = ktime_get();
108         transaction->t_tid = journal->j_transaction_sequence++;
109         transaction->t_expires = jiffies + journal->j_commit_interval;
110         spin_lock_init(&transaction->t_handle_lock);
111         atomic_set(&transaction->t_updates, 0);
112         atomic_set(&transaction->t_outstanding_credits,
113                    jbd2_descriptor_blocks_per_trans(journal) +
114                    atomic_read(&journal->j_reserved_credits));
115         atomic_set(&transaction->t_outstanding_revokes, 0);
116         atomic_set(&transaction->t_handle_count, 0);
117         INIT_LIST_HEAD(&transaction->t_inode_list);
118         INIT_LIST_HEAD(&transaction->t_private_list);
119
120         /* Set up the commit timer for the new transaction. */
121         journal->j_commit_timer.expires = round_jiffies_up(transaction->t_expires);
122         add_timer(&journal->j_commit_timer);
123
124         J_ASSERT(journal->j_running_transaction == NULL);
125         journal->j_running_transaction = transaction;
126         transaction->t_max_wait = 0;
127         transaction->t_start = jiffies;
128         transaction->t_requested = 0;
129 }
130
131 /*
132  * Handle management.
133  *
134  * A handle_t is an object which represents a single atomic update to a
135  * filesystem, and which tracks all of the modifications which form part
136  * of that one update.
137  */
138
139 /*
140  * Update transaction's maximum wait time, if debugging is enabled.
141  *
142  * In order for t_max_wait to be reliable, it must be protected by a
143  * lock.  But doing so will mean that start_this_handle() can not be
144  * run in parallel on SMP systems, which limits our scalability.  So
145  * unless debugging is enabled, we no longer update t_max_wait, which
146  * means that maximum wait time reported by the jbd2_run_stats
147  * tracepoint will always be zero.
148  */
149 static inline void update_t_max_wait(transaction_t *transaction,
150                                      unsigned long ts)
151 {
152 #ifdef CONFIG_JBD2_DEBUG
153         if (jbd2_journal_enable_debug &&
154             time_after(transaction->t_start, ts)) {
155                 ts = jbd2_time_diff(ts, transaction->t_start);
156                 spin_lock(&transaction->t_handle_lock);
157                 if (ts > transaction->t_max_wait)
158                         transaction->t_max_wait = ts;
159                 spin_unlock(&transaction->t_handle_lock);
160         }
161 #endif
162 }
163
164 /*
165  * Wait until running transaction passes to T_FLUSH state and new transaction
166  * can thus be started. Also starts the commit if needed. The function expects
167  * running transaction to exist and releases j_state_lock.
168  */
169 static void wait_transaction_locked(journal_t *journal)
170         __releases(journal->j_state_lock)
171 {
172         DEFINE_WAIT(wait);
173         int need_to_start;
174         tid_t tid = journal->j_running_transaction->t_tid;
175
176         prepare_to_wait(&journal->j_wait_transaction_locked, &wait,
177                         TASK_UNINTERRUPTIBLE);
178         need_to_start = !tid_geq(journal->j_commit_request, tid);
179         read_unlock(&journal->j_state_lock);
180         if (need_to_start)
181                 jbd2_log_start_commit(journal, tid);
182         jbd2_might_wait_for_commit(journal);
183         schedule();
184         finish_wait(&journal->j_wait_transaction_locked, &wait);
185 }
186
187 /*
188  * Wait until running transaction transitions from T_SWITCH to T_FLUSH
189  * state and new transaction can thus be started. The function releases
190  * j_state_lock.
191  */
192 static void wait_transaction_switching(journal_t *journal)
193         __releases(journal->j_state_lock)
194 {
195         DEFINE_WAIT(wait);
196
197         if (WARN_ON(!journal->j_running_transaction ||
198                     journal->j_running_transaction->t_state != T_SWITCH)) {
199                 read_unlock(&journal->j_state_lock);
200                 return;
201         }
202         prepare_to_wait(&journal->j_wait_transaction_locked, &wait,
203                         TASK_UNINTERRUPTIBLE);
204         read_unlock(&journal->j_state_lock);
205         /*
206          * We don't call jbd2_might_wait_for_commit() here as there's no
207          * waiting for outstanding handles happening anymore in T_SWITCH state
208          * and handling of reserved handles actually relies on that for
209          * correctness.
210          */
211         schedule();
212         finish_wait(&journal->j_wait_transaction_locked, &wait);
213 }
214
215 static void sub_reserved_credits(journal_t *journal, int blocks)
216 {
217         atomic_sub(blocks, &journal->j_reserved_credits);
218         wake_up(&journal->j_wait_reserved);
219 }
220
221 /*
222  * Wait until we can add credits for handle to the running transaction.  Called
223  * with j_state_lock held for reading. Returns 0 if handle joined the running
224  * transaction. Returns 1 if we had to wait, j_state_lock is dropped, and
225  * caller must retry.
226  */
227 static int add_transaction_credits(journal_t *journal, int blocks,
228                                    int rsv_blocks)
229 {
230         transaction_t *t = journal->j_running_transaction;
231         int needed;
232         int total = blocks + rsv_blocks;
233
234         /*
235          * If the current transaction is locked down for commit, wait
236          * for the lock to be released.
237          */
238         if (t->t_state != T_RUNNING) {
239                 WARN_ON_ONCE(t->t_state >= T_FLUSH);
240                 wait_transaction_locked(journal);
241                 return 1;
242         }
243
244         /*
245          * If there is not enough space left in the log to write all
246          * potential buffers requested by this operation, we need to
247          * stall pending a log checkpoint to free some more log space.
248          */
249         needed = atomic_add_return(total, &t->t_outstanding_credits);
250         if (needed > journal->j_max_transaction_buffers) {
251                 /*
252                  * If the current transaction is already too large,
253                  * then start to commit it: we can then go back and
254                  * attach this handle to a new transaction.
255                  */
256                 atomic_sub(total, &t->t_outstanding_credits);
257
258                 /*
259                  * Is the number of reserved credits in the current transaction too
260                  * big to fit this handle? Wait until reserved credits are freed.
261                  */
262                 if (atomic_read(&journal->j_reserved_credits) + total >
263                     journal->j_max_transaction_buffers) {
264                         read_unlock(&journal->j_state_lock);
265                         jbd2_might_wait_for_commit(journal);
266                         wait_event(journal->j_wait_reserved,
267                                    atomic_read(&journal->j_reserved_credits) + total <=
268                                    journal->j_max_transaction_buffers);
269                         return 1;
270                 }
271
272                 wait_transaction_locked(journal);
273                 return 1;
274         }
275
276         /*
277          * The commit code assumes that it can get enough log space
278          * without forcing a checkpoint.  This is *critical* for
279          * correctness: a checkpoint of a buffer which is also
280          * associated with a committing transaction creates a deadlock,
281          * so commit simply cannot force through checkpoints.
282          *
283          * We must therefore ensure the necessary space in the journal
284          * *before* starting to dirty potentially checkpointed buffers
285          * in the new transaction.
286          */
287         if (jbd2_log_space_left(journal) < journal->j_max_transaction_buffers) {
288                 atomic_sub(total, &t->t_outstanding_credits);
289                 read_unlock(&journal->j_state_lock);
290                 jbd2_might_wait_for_commit(journal);
291                 write_lock(&journal->j_state_lock);
292                 if (jbd2_log_space_left(journal) <
293                                         journal->j_max_transaction_buffers)
294                         __jbd2_log_wait_for_space(journal);
295                 write_unlock(&journal->j_state_lock);
296                 return 1;
297         }
298
299         /* No reservation? We are done... */
300         if (!rsv_blocks)
301                 return 0;
302
303         needed = atomic_add_return(rsv_blocks, &journal->j_reserved_credits);
304         /* We allow at most half of a transaction to be reserved */
305         if (needed > journal->j_max_transaction_buffers / 2) {
306                 sub_reserved_credits(journal, rsv_blocks);
307                 atomic_sub(total, &t->t_outstanding_credits);
308                 read_unlock(&journal->j_state_lock);
309                 jbd2_might_wait_for_commit(journal);
310                 wait_event(journal->j_wait_reserved,
311                          atomic_read(&journal->j_reserved_credits) + rsv_blocks
312                          <= journal->j_max_transaction_buffers / 2);
313                 return 1;
314         }
315         return 0;
316 }
317
318 /*
319  * start_this_handle: Given a handle, deal with any locking or stalling
320  * needed to make sure that there is enough journal space for the handle
321  * to begin.  Attach the handle to a transaction and set up the
322  * transaction's buffer credits.
323  */
324
325 static int start_this_handle(journal_t *journal, handle_t *handle,
326                              gfp_t gfp_mask)
327 {
328         transaction_t   *transaction, *new_transaction = NULL;
329         int             blocks = handle->h_total_credits;
330         int             rsv_blocks = 0;
331         unsigned long ts = jiffies;
332
333         if (handle->h_rsv_handle)
334                 rsv_blocks = handle->h_rsv_handle->h_total_credits;
335
336         /*
337          * Limit the number of reserved credits to 1/2 of maximum transaction
338          * size and limit the number of total credits to not exceed maximum
339          * transaction size per operation.
340          */
341         if ((rsv_blocks > journal->j_max_transaction_buffers / 2) ||
342             (rsv_blocks + blocks > journal->j_max_transaction_buffers)) {
343                 printk(KERN_ERR "JBD2: %s wants too many credits "
344                        "credits:%d rsv_credits:%d max:%d\n",
345                        current->comm, blocks, rsv_blocks,
346                        journal->j_max_transaction_buffers);
347                 WARN_ON(1);
348                 return -ENOSPC;
349         }
350
351 alloc_transaction:
352         /*
353          * This check is racy but it is just an optimization of allocating new
354          * transaction early if there are high chances we'll need it. If we
355          * guess wrong, we'll retry or free unused transaction.
356          */
357         if (!data_race(journal->j_running_transaction)) {
358                 /*
359                  * If __GFP_FS is not present, then we may be being called from
360                  * inside the fs writeback layer, so we MUST NOT fail.
361                  */
362                 if ((gfp_mask & __GFP_FS) == 0)
363                         gfp_mask |= __GFP_NOFAIL;
364                 new_transaction = kmem_cache_zalloc(transaction_cache,
365                                                     gfp_mask);
366                 if (!new_transaction)
367                         return -ENOMEM;
368         }
369
370         jbd_debug(3, "New handle %p going live.\n", handle);
371
372         /*
373          * We need to hold j_state_lock until t_updates has been incremented,
374          * for proper journal barrier handling
375          */
376 repeat:
377         read_lock(&journal->j_state_lock);
378         BUG_ON(journal->j_flags & JBD2_UNMOUNT);
379         if (is_journal_aborted(journal) ||
380             (journal->j_errno != 0 && !(journal->j_flags & JBD2_ACK_ERR))) {
381                 read_unlock(&journal->j_state_lock);
382                 jbd2_journal_free_transaction(new_transaction);
383                 return -EROFS;
384         }
385
386         /*
387          * Wait on the journal's transaction barrier if necessary. Specifically
388          * we allow reserved handles to proceed because otherwise commit could
389          * deadlock on page writeback not being able to complete.
390          */
391         if (!handle->h_reserved && journal->j_barrier_count) {
392                 read_unlock(&journal->j_state_lock);
393                 wait_event(journal->j_wait_transaction_locked,
394                                 journal->j_barrier_count == 0);
395                 goto repeat;
396         }
397
398         if (!journal->j_running_transaction) {
399                 read_unlock(&journal->j_state_lock);
400                 if (!new_transaction)
401                         goto alloc_transaction;
402                 write_lock(&journal->j_state_lock);
403                 if (!journal->j_running_transaction &&
404                     (handle->h_reserved || !journal->j_barrier_count)) {
405                         jbd2_get_transaction(journal, new_transaction);
406                         new_transaction = NULL;
407                 }
408                 write_unlock(&journal->j_state_lock);
409                 goto repeat;
410         }
411
412         transaction = journal->j_running_transaction;
413
414         if (!handle->h_reserved) {
415                 /* We may have dropped j_state_lock - restart in that case */
416                 if (add_transaction_credits(journal, blocks, rsv_blocks))
417                         goto repeat;
418         } else {
419                 /*
420                  * We have handle reserved so we are allowed to join T_LOCKED
421                  * transaction and we don't have to check for transaction size
422                  * and journal space. But we still have to wait while running
423                  * transaction is being switched to a committing one as it
424                  * won't wait for any handles anymore.
425                  */
426                 if (transaction->t_state == T_SWITCH) {
427                         wait_transaction_switching(journal);
428                         goto repeat;
429                 }
430                 sub_reserved_credits(journal, blocks);
431                 handle->h_reserved = 0;
432         }
433
434         /* OK, account for the buffers that this operation expects to
435          * use and add the handle to the running transaction. 
436          */
437         update_t_max_wait(transaction, ts);
438         handle->h_transaction = transaction;
439         handle->h_requested_credits = blocks;
440         handle->h_revoke_credits_requested = handle->h_revoke_credits;
441         handle->h_start_jiffies = jiffies;
442         atomic_inc(&transaction->t_updates);
443         atomic_inc(&transaction->t_handle_count);
444         jbd_debug(4, "Handle %p given %d credits (total %d, free %lu)\n",
445                   handle, blocks,
446                   atomic_read(&transaction->t_outstanding_credits),
447                   jbd2_log_space_left(journal));
448         read_unlock(&journal->j_state_lock);
449         current->journal_info = handle;
450
451         rwsem_acquire_read(&journal->j_trans_commit_map, 0, 0, _THIS_IP_);
452         jbd2_journal_free_transaction(new_transaction);
453         /*
454          * Ensure that no allocations done while the transaction is open are
455          * going to recurse back to the fs layer.
456          */
457         handle->saved_alloc_context = memalloc_nofs_save();
458         return 0;
459 }
460
461 /* Allocate a new handle.  This should probably be in a slab... */
462 static handle_t *new_handle(int nblocks)
463 {
464         handle_t *handle = jbd2_alloc_handle(GFP_NOFS);
465         if (!handle)
466                 return NULL;
467         handle->h_total_credits = nblocks;
468         handle->h_ref = 1;
469
470         return handle;
471 }
472
473 handle_t *jbd2__journal_start(journal_t *journal, int nblocks, int rsv_blocks,
474                               int revoke_records, gfp_t gfp_mask,
475                               unsigned int type, unsigned int line_no)
476 {
477         handle_t *handle = journal_current_handle();
478         int err;
479
480         if (!journal)
481                 return ERR_PTR(-EROFS);
482
483         if (handle) {
484                 J_ASSERT(handle->h_transaction->t_journal == journal);
485                 handle->h_ref++;
486                 return handle;
487         }
488
489         nblocks += DIV_ROUND_UP(revoke_records,
490                                 journal->j_revoke_records_per_block);
491         handle = new_handle(nblocks);
492         if (!handle)
493                 return ERR_PTR(-ENOMEM);
494         if (rsv_blocks) {
495                 handle_t *rsv_handle;
496
497                 rsv_handle = new_handle(rsv_blocks);
498                 if (!rsv_handle) {
499                         jbd2_free_handle(handle);
500                         return ERR_PTR(-ENOMEM);
501                 }
502                 rsv_handle->h_reserved = 1;
503                 rsv_handle->h_journal = journal;
504                 handle->h_rsv_handle = rsv_handle;
505         }
506         handle->h_revoke_credits = revoke_records;
507
508         err = start_this_handle(journal, handle, gfp_mask);
509         if (err < 0) {
510                 if (handle->h_rsv_handle)
511                         jbd2_free_handle(handle->h_rsv_handle);
512                 jbd2_free_handle(handle);
513                 return ERR_PTR(err);
514         }
515         handle->h_type = type;
516         handle->h_line_no = line_no;
517         trace_jbd2_handle_start(journal->j_fs_dev->bd_dev,
518                                 handle->h_transaction->t_tid, type,
519                                 line_no, nblocks);
520
521         return handle;
522 }
523 EXPORT_SYMBOL(jbd2__journal_start);
524
525
526 /**
527  * jbd2_journal_start() - Obtain a new handle.
528  * @journal: Journal to start transaction on.
529  * @nblocks: number of block buffer we might modify
530  *
531  * We make sure that the transaction can guarantee at least nblocks of
532  * modified buffers in the log.  We block until the log can guarantee
533  * that much space. Additionally, if rsv_blocks > 0, we also create another
534  * handle with rsv_blocks reserved blocks in the journal. This handle is
535  * stored in h_rsv_handle. It is not attached to any particular transaction
536  * and thus doesn't block transaction commit. If the caller uses this reserved
537  * handle, it has to set h_rsv_handle to NULL as otherwise jbd2_journal_stop()
538  * on the parent handle will dispose the reserved one. Reserved handle has to
539  * be converted to a normal handle using jbd2_journal_start_reserved() before
540  * it can be used.
541  *
542  * Return a pointer to a newly allocated handle, or an ERR_PTR() value
543  * on failure.
544  */
545 handle_t *jbd2_journal_start(journal_t *journal, int nblocks)
546 {
547         return jbd2__journal_start(journal, nblocks, 0, 0, GFP_NOFS, 0, 0);
548 }
549 EXPORT_SYMBOL(jbd2_journal_start);
550
551 static void __jbd2_journal_unreserve_handle(handle_t *handle, transaction_t *t)
552 {
553         journal_t *journal = handle->h_journal;
554
555         WARN_ON(!handle->h_reserved);
556         sub_reserved_credits(journal, handle->h_total_credits);
557         if (t)
558                 atomic_sub(handle->h_total_credits, &t->t_outstanding_credits);
559 }
560
561 void jbd2_journal_free_reserved(handle_t *handle)
562 {
563         journal_t *journal = handle->h_journal;
564
565         /* Get j_state_lock to pin running transaction if it exists */
566         read_lock(&journal->j_state_lock);
567         __jbd2_journal_unreserve_handle(handle, journal->j_running_transaction);
568         read_unlock(&journal->j_state_lock);
569         jbd2_free_handle(handle);
570 }
571 EXPORT_SYMBOL(jbd2_journal_free_reserved);
572
573 /**
574  * jbd2_journal_start_reserved() - start reserved handle
575  * @handle: handle to start
576  * @type: for handle statistics
577  * @line_no: for handle statistics
578  *
579  * Start handle that has been previously reserved with jbd2_journal_reserve().
580  * This attaches @handle to the running transaction (or creates one if there's
581  * not transaction running). Unlike jbd2_journal_start() this function cannot
582  * block on journal commit, checkpointing, or similar stuff. It can block on
583  * memory allocation or frozen journal though.
584  *
585  * Return 0 on success, non-zero on error - handle is freed in that case.
586  */
587 int jbd2_journal_start_reserved(handle_t *handle, unsigned int type,
588                                 unsigned int line_no)
589 {
590         journal_t *journal = handle->h_journal;
591         int ret = -EIO;
592
593         if (WARN_ON(!handle->h_reserved)) {
594                 /* Someone passed in normal handle? Just stop it. */
595                 jbd2_journal_stop(handle);
596                 return ret;
597         }
598         /*
599          * Usefulness of mixing of reserved and unreserved handles is
600          * questionable. So far nobody seems to need it so just error out.
601          */
602         if (WARN_ON(current->journal_info)) {
603                 jbd2_journal_free_reserved(handle);
604                 return ret;
605         }
606
607         handle->h_journal = NULL;
608         /*
609          * GFP_NOFS is here because callers are likely from writeback or
610          * similarly constrained call sites
611          */
612         ret = start_this_handle(journal, handle, GFP_NOFS);
613         if (ret < 0) {
614                 handle->h_journal = journal;
615                 jbd2_journal_free_reserved(handle);
616                 return ret;
617         }
618         handle->h_type = type;
619         handle->h_line_no = line_no;
620         trace_jbd2_handle_start(journal->j_fs_dev->bd_dev,
621                                 handle->h_transaction->t_tid, type,
622                                 line_no, handle->h_total_credits);
623         return 0;
624 }
625 EXPORT_SYMBOL(jbd2_journal_start_reserved);
626
627 /**
628  * jbd2_journal_extend() - extend buffer credits.
629  * @handle:  handle to 'extend'
630  * @nblocks: nr blocks to try to extend by.
631  * @revoke_records: number of revoke records to try to extend by.
632  *
633  * Some transactions, such as large extends and truncates, can be done
634  * atomically all at once or in several stages.  The operation requests
635  * a credit for a number of buffer modifications in advance, but can
636  * extend its credit if it needs more.
637  *
638  * jbd2_journal_extend tries to give the running handle more buffer credits.
639  * It does not guarantee that allocation - this is a best-effort only.
640  * The calling process MUST be able to deal cleanly with a failure to
641  * extend here.
642  *
643  * Return 0 on success, non-zero on failure.
644  *
645  * return code < 0 implies an error
646  * return code > 0 implies normal transaction-full status.
647  */
648 int jbd2_journal_extend(handle_t *handle, int nblocks, int revoke_records)
649 {
650         transaction_t *transaction = handle->h_transaction;
651         journal_t *journal;
652         int result;
653         int wanted;
654
655         if (is_handle_aborted(handle))
656                 return -EROFS;
657         journal = transaction->t_journal;
658
659         result = 1;
660
661         read_lock(&journal->j_state_lock);
662
663         /* Don't extend a locked-down transaction! */
664         if (transaction->t_state != T_RUNNING) {
665                 jbd_debug(3, "denied handle %p %d blocks: "
666                           "transaction not running\n", handle, nblocks);
667                 goto error_out;
668         }
669
670         nblocks += DIV_ROUND_UP(
671                         handle->h_revoke_credits_requested + revoke_records,
672                         journal->j_revoke_records_per_block) -
673                 DIV_ROUND_UP(
674                         handle->h_revoke_credits_requested,
675                         journal->j_revoke_records_per_block);
676         spin_lock(&transaction->t_handle_lock);
677         wanted = atomic_add_return(nblocks,
678                                    &transaction->t_outstanding_credits);
679
680         if (wanted > journal->j_max_transaction_buffers) {
681                 jbd_debug(3, "denied handle %p %d blocks: "
682                           "transaction too large\n", handle, nblocks);
683                 atomic_sub(nblocks, &transaction->t_outstanding_credits);
684                 goto unlock;
685         }
686
687         trace_jbd2_handle_extend(journal->j_fs_dev->bd_dev,
688                                  transaction->t_tid,
689                                  handle->h_type, handle->h_line_no,
690                                  handle->h_total_credits,
691                                  nblocks);
692
693         handle->h_total_credits += nblocks;
694         handle->h_requested_credits += nblocks;
695         handle->h_revoke_credits += revoke_records;
696         handle->h_revoke_credits_requested += revoke_records;
697         result = 0;
698
699         jbd_debug(3, "extended handle %p by %d\n", handle, nblocks);
700 unlock:
701         spin_unlock(&transaction->t_handle_lock);
702 error_out:
703         read_unlock(&journal->j_state_lock);
704         return result;
705 }
706
707 static void stop_this_handle(handle_t *handle)
708 {
709         transaction_t *transaction = handle->h_transaction;
710         journal_t *journal = transaction->t_journal;
711         int revokes;
712
713         J_ASSERT(journal_current_handle() == handle);
714         J_ASSERT(atomic_read(&transaction->t_updates) > 0);
715         current->journal_info = NULL;
716         /*
717          * Subtract necessary revoke descriptor blocks from handle credits. We
718          * take care to account only for revoke descriptor blocks the
719          * transaction will really need as large sequences of transactions with
720          * small numbers of revokes are relatively common.
721          */
722         revokes = handle->h_revoke_credits_requested - handle->h_revoke_credits;
723         if (revokes) {
724                 int t_revokes, revoke_descriptors;
725                 int rr_per_blk = journal->j_revoke_records_per_block;
726
727                 WARN_ON_ONCE(DIV_ROUND_UP(revokes, rr_per_blk)
728                                 > handle->h_total_credits);
729                 t_revokes = atomic_add_return(revokes,
730                                 &transaction->t_outstanding_revokes);
731                 revoke_descriptors =
732                         DIV_ROUND_UP(t_revokes, rr_per_blk) -
733                         DIV_ROUND_UP(t_revokes - revokes, rr_per_blk);
734                 handle->h_total_credits -= revoke_descriptors;
735         }
736         atomic_sub(handle->h_total_credits,
737                    &transaction->t_outstanding_credits);
738         if (handle->h_rsv_handle)
739                 __jbd2_journal_unreserve_handle(handle->h_rsv_handle,
740                                                 transaction);
741         if (atomic_dec_and_test(&transaction->t_updates))
742                 wake_up(&journal->j_wait_updates);
743
744         rwsem_release(&journal->j_trans_commit_map, _THIS_IP_);
745         /*
746          * Scope of the GFP_NOFS context is over here and so we can restore the
747          * original alloc context.
748          */
749         memalloc_nofs_restore(handle->saved_alloc_context);
750 }
751
752 /**
753  * jbd2__journal_restart() - restart a handle .
754  * @handle:  handle to restart
755  * @nblocks: nr credits requested
756  * @revoke_records: number of revoke record credits requested
757  * @gfp_mask: memory allocation flags (for start_this_handle)
758  *
759  * Restart a handle for a multi-transaction filesystem
760  * operation.
761  *
762  * If the jbd2_journal_extend() call above fails to grant new buffer credits
763  * to a running handle, a call to jbd2_journal_restart will commit the
764  * handle's transaction so far and reattach the handle to a new
765  * transaction capable of guaranteeing the requested number of
766  * credits. We preserve reserved handle if there's any attached to the
767  * passed in handle.
768  */
769 int jbd2__journal_restart(handle_t *handle, int nblocks, int revoke_records,
770                           gfp_t gfp_mask)
771 {
772         transaction_t *transaction = handle->h_transaction;
773         journal_t *journal;
774         tid_t           tid;
775         int             need_to_start;
776         int             ret;
777
778         /* If we've had an abort of any type, don't even think about
779          * actually doing the restart! */
780         if (is_handle_aborted(handle))
781                 return 0;
782         journal = transaction->t_journal;
783         tid = transaction->t_tid;
784
785         /*
786          * First unlink the handle from its current transaction, and start the
787          * commit on that.
788          */
789         jbd_debug(2, "restarting handle %p\n", handle);
790         stop_this_handle(handle);
791         handle->h_transaction = NULL;
792
793         /*
794          * TODO: If we use READ_ONCE / WRITE_ONCE for j_commit_request we can
795          * get rid of pointless j_state_lock traffic like this.
796          */
797         read_lock(&journal->j_state_lock);
798         need_to_start = !tid_geq(journal->j_commit_request, tid);
799         read_unlock(&journal->j_state_lock);
800         if (need_to_start)
801                 jbd2_log_start_commit(journal, tid);
802         handle->h_total_credits = nblocks +
803                 DIV_ROUND_UP(revoke_records,
804                              journal->j_revoke_records_per_block);
805         handle->h_revoke_credits = revoke_records;
806         ret = start_this_handle(journal, handle, gfp_mask);
807         trace_jbd2_handle_restart(journal->j_fs_dev->bd_dev,
808                                  ret ? 0 : handle->h_transaction->t_tid,
809                                  handle->h_type, handle->h_line_no,
810                                  handle->h_total_credits);
811         return ret;
812 }
813 EXPORT_SYMBOL(jbd2__journal_restart);
814
815
816 int jbd2_journal_restart(handle_t *handle, int nblocks)
817 {
818         return jbd2__journal_restart(handle, nblocks, 0, GFP_NOFS);
819 }
820 EXPORT_SYMBOL(jbd2_journal_restart);
821
822 /**
823  * jbd2_journal_lock_updates () - establish a transaction barrier.
824  * @journal:  Journal to establish a barrier on.
825  *
826  * This locks out any further updates from being started, and blocks
827  * until all existing updates have completed, returning only once the
828  * journal is in a quiescent state with no updates running.
829  *
830  * The journal lock should not be held on entry.
831  */
832 void jbd2_journal_lock_updates(journal_t *journal)
833 {
834         DEFINE_WAIT(wait);
835
836         jbd2_might_wait_for_commit(journal);
837
838         write_lock(&journal->j_state_lock);
839         ++journal->j_barrier_count;
840
841         /* Wait until there are no reserved handles */
842         if (atomic_read(&journal->j_reserved_credits)) {
843                 write_unlock(&journal->j_state_lock);
844                 wait_event(journal->j_wait_reserved,
845                            atomic_read(&journal->j_reserved_credits) == 0);
846                 write_lock(&journal->j_state_lock);
847         }
848
849         /* Wait until there are no running updates */
850         while (1) {
851                 transaction_t *transaction = journal->j_running_transaction;
852
853                 if (!transaction)
854                         break;
855
856                 spin_lock(&transaction->t_handle_lock);
857                 prepare_to_wait(&journal->j_wait_updates, &wait,
858                                 TASK_UNINTERRUPTIBLE);
859                 if (!atomic_read(&transaction->t_updates)) {
860                         spin_unlock(&transaction->t_handle_lock);
861                         finish_wait(&journal->j_wait_updates, &wait);
862                         break;
863                 }
864                 spin_unlock(&transaction->t_handle_lock);
865                 write_unlock(&journal->j_state_lock);
866                 schedule();
867                 finish_wait(&journal->j_wait_updates, &wait);
868                 write_lock(&journal->j_state_lock);
869         }
870         write_unlock(&journal->j_state_lock);
871
872         /*
873          * We have now established a barrier against other normal updates, but
874          * we also need to barrier against other jbd2_journal_lock_updates() calls
875          * to make sure that we serialise special journal-locked operations
876          * too.
877          */
878         mutex_lock(&journal->j_barrier);
879 }
880
881 /**
882  * jbd2_journal_unlock_updates () - release barrier
883  * @journal:  Journal to release the barrier on.
884  *
885  * Release a transaction barrier obtained with jbd2_journal_lock_updates().
886  *
887  * Should be called without the journal lock held.
888  */
889 void jbd2_journal_unlock_updates (journal_t *journal)
890 {
891         J_ASSERT(journal->j_barrier_count != 0);
892
893         mutex_unlock(&journal->j_barrier);
894         write_lock(&journal->j_state_lock);
895         --journal->j_barrier_count;
896         write_unlock(&journal->j_state_lock);
897         wake_up(&journal->j_wait_transaction_locked);
898 }
899
900 static void warn_dirty_buffer(struct buffer_head *bh)
901 {
902         printk(KERN_WARNING
903                "JBD2: Spotted dirty metadata buffer (dev = %pg, blocknr = %llu). "
904                "There's a risk of filesystem corruption in case of system "
905                "crash.\n",
906                bh->b_bdev, (unsigned long long)bh->b_blocknr);
907 }
908
909 /* Call t_frozen trigger and copy buffer data into jh->b_frozen_data. */
910 static void jbd2_freeze_jh_data(struct journal_head *jh)
911 {
912         struct page *page;
913         int offset;
914         char *source;
915         struct buffer_head *bh = jh2bh(jh);
916
917         J_EXPECT_JH(jh, buffer_uptodate(bh), "Possible IO failure.\n");
918         page = bh->b_page;
919         offset = offset_in_page(bh->b_data);
920         source = kmap_atomic(page);
921         /* Fire data frozen trigger just before we copy the data */
922         jbd2_buffer_frozen_trigger(jh, source + offset, jh->b_triggers);
923         memcpy(jh->b_frozen_data, source + offset, bh->b_size);
924         kunmap_atomic(source);
925
926         /*
927          * Now that the frozen data is saved off, we need to store any matching
928          * triggers.
929          */
930         jh->b_frozen_triggers = jh->b_triggers;
931 }
932
933 /*
934  * If the buffer is already part of the current transaction, then there
935  * is nothing we need to do.  If it is already part of a prior
936  * transaction which we are still committing to disk, then we need to
937  * make sure that we do not overwrite the old copy: we do copy-out to
938  * preserve the copy going to disk.  We also account the buffer against
939  * the handle's metadata buffer credits (unless the buffer is already
940  * part of the transaction, that is).
941  *
942  */
943 static int
944 do_get_write_access(handle_t *handle, struct journal_head *jh,
945                         int force_copy)
946 {
947         struct buffer_head *bh;
948         transaction_t *transaction = handle->h_transaction;
949         journal_t *journal;
950         int error;
951         char *frozen_buffer = NULL;
952         unsigned long start_lock, time_lock;
953
954         journal = transaction->t_journal;
955
956         jbd_debug(5, "journal_head %p, force_copy %d\n", jh, force_copy);
957
958         JBUFFER_TRACE(jh, "entry");
959 repeat:
960         bh = jh2bh(jh);
961
962         /* @@@ Need to check for errors here at some point. */
963
964         start_lock = jiffies;
965         lock_buffer(bh);
966         spin_lock(&jh->b_state_lock);
967
968         /* If it takes too long to lock the buffer, trace it */
969         time_lock = jbd2_time_diff(start_lock, jiffies);
970         if (time_lock > HZ/10)
971                 trace_jbd2_lock_buffer_stall(bh->b_bdev->bd_dev,
972                         jiffies_to_msecs(time_lock));
973
974         /* We now hold the buffer lock so it is safe to query the buffer
975          * state.  Is the buffer dirty?
976          *
977          * If so, there are two possibilities.  The buffer may be
978          * non-journaled, and undergoing a quite legitimate writeback.
979          * Otherwise, it is journaled, and we don't expect dirty buffers
980          * in that state (the buffers should be marked JBD_Dirty
981          * instead.)  So either the IO is being done under our own
982          * control and this is a bug, or it's a third party IO such as
983          * dump(8) (which may leave the buffer scheduled for read ---
984          * ie. locked but not dirty) or tune2fs (which may actually have
985          * the buffer dirtied, ugh.)  */
986
987         if (buffer_dirty(bh)) {
988                 /*
989                  * First question: is this buffer already part of the current
990                  * transaction or the existing committing transaction?
991                  */
992                 if (jh->b_transaction) {
993                         J_ASSERT_JH(jh,
994                                 jh->b_transaction == transaction ||
995                                 jh->b_transaction ==
996                                         journal->j_committing_transaction);
997                         if (jh->b_next_transaction)
998                                 J_ASSERT_JH(jh, jh->b_next_transaction ==
999                                                         transaction);
1000                         warn_dirty_buffer(bh);
1001                 }
1002                 /*
1003                  * In any case we need to clean the dirty flag and we must
1004                  * do it under the buffer lock to be sure we don't race
1005                  * with running write-out.
1006                  */
1007                 JBUFFER_TRACE(jh, "Journalling dirty buffer");
1008                 clear_buffer_dirty(bh);
1009                 set_buffer_jbddirty(bh);
1010         }
1011
1012         unlock_buffer(bh);
1013
1014         error = -EROFS;
1015         if (is_handle_aborted(handle)) {
1016                 spin_unlock(&jh->b_state_lock);
1017                 goto out;
1018         }
1019         error = 0;
1020
1021         /*
1022          * The buffer is already part of this transaction if b_transaction or
1023          * b_next_transaction points to it
1024          */
1025         if (jh->b_transaction == transaction ||
1026             jh->b_next_transaction == transaction)
1027                 goto done;
1028
1029         /*
1030          * this is the first time this transaction is touching this buffer,
1031          * reset the modified flag
1032          */
1033         jh->b_modified = 0;
1034
1035         /*
1036          * If the buffer is not journaled right now, we need to make sure it
1037          * doesn't get written to disk before the caller actually commits the
1038          * new data
1039          */
1040         if (!jh->b_transaction) {
1041                 JBUFFER_TRACE(jh, "no transaction");
1042                 J_ASSERT_JH(jh, !jh->b_next_transaction);
1043                 JBUFFER_TRACE(jh, "file as BJ_Reserved");
1044                 /*
1045                  * Make sure all stores to jh (b_modified, b_frozen_data) are
1046                  * visible before attaching it to the running transaction.
1047                  * Paired with barrier in jbd2_write_access_granted()
1048                  */
1049                 smp_wmb();
1050                 spin_lock(&journal->j_list_lock);
1051                 __jbd2_journal_file_buffer(jh, transaction, BJ_Reserved);
1052                 spin_unlock(&journal->j_list_lock);
1053                 goto done;
1054         }
1055         /*
1056          * If there is already a copy-out version of this buffer, then we don't
1057          * need to make another one
1058          */
1059         if (jh->b_frozen_data) {
1060                 JBUFFER_TRACE(jh, "has frozen data");
1061                 J_ASSERT_JH(jh, jh->b_next_transaction == NULL);
1062                 goto attach_next;
1063         }
1064
1065         JBUFFER_TRACE(jh, "owned by older transaction");
1066         J_ASSERT_JH(jh, jh->b_next_transaction == NULL);
1067         J_ASSERT_JH(jh, jh->b_transaction == journal->j_committing_transaction);
1068
1069         /*
1070          * There is one case we have to be very careful about.  If the
1071          * committing transaction is currently writing this buffer out to disk
1072          * and has NOT made a copy-out, then we cannot modify the buffer
1073          * contents at all right now.  The essence of copy-out is that it is
1074          * the extra copy, not the primary copy, which gets journaled.  If the
1075          * primary copy is already going to disk then we cannot do copy-out
1076          * here.
1077          */
1078         if (buffer_shadow(bh)) {
1079                 JBUFFER_TRACE(jh, "on shadow: sleep");
1080                 spin_unlock(&jh->b_state_lock);
1081                 wait_on_bit_io(&bh->b_state, BH_Shadow, TASK_UNINTERRUPTIBLE);
1082                 goto repeat;
1083         }
1084
1085         /*
1086          * Only do the copy if the currently-owning transaction still needs it.
1087          * If buffer isn't on BJ_Metadata list, the committing transaction is
1088          * past that stage (here we use the fact that BH_Shadow is set under
1089          * bh_state lock together with refiling to BJ_Shadow list and at this
1090          * point we know the buffer doesn't have BH_Shadow set).
1091          *
1092          * Subtle point, though: if this is a get_undo_access, then we will be
1093          * relying on the frozen_data to contain the new value of the
1094          * committed_data record after the transaction, so we HAVE to force the
1095          * frozen_data copy in that case.
1096          */
1097         if (jh->b_jlist == BJ_Metadata || force_copy) {
1098                 JBUFFER_TRACE(jh, "generate frozen data");
1099                 if (!frozen_buffer) {
1100                         JBUFFER_TRACE(jh, "allocate memory for buffer");
1101                         spin_unlock(&jh->b_state_lock);
1102                         frozen_buffer = jbd2_alloc(jh2bh(jh)->b_size,
1103                                                    GFP_NOFS | __GFP_NOFAIL);
1104                         goto repeat;
1105                 }
1106                 jh->b_frozen_data = frozen_buffer;
1107                 frozen_buffer = NULL;
1108                 jbd2_freeze_jh_data(jh);
1109         }
1110 attach_next:
1111         /*
1112          * Make sure all stores to jh (b_modified, b_frozen_data) are visible
1113          * before attaching it to the running transaction. Paired with barrier
1114          * in jbd2_write_access_granted()
1115          */
1116         smp_wmb();
1117         jh->b_next_transaction = transaction;
1118
1119 done:
1120         spin_unlock(&jh->b_state_lock);
1121
1122         /*
1123          * If we are about to journal a buffer, then any revoke pending on it is
1124          * no longer valid
1125          */
1126         jbd2_journal_cancel_revoke(handle, jh);
1127
1128 out:
1129         if (unlikely(frozen_buffer))    /* It's usually NULL */
1130                 jbd2_free(frozen_buffer, bh->b_size);
1131
1132         JBUFFER_TRACE(jh, "exit");
1133         return error;
1134 }
1135
1136 /* Fast check whether buffer is already attached to the required transaction */
1137 static bool jbd2_write_access_granted(handle_t *handle, struct buffer_head *bh,
1138                                                         bool undo)
1139 {
1140         struct journal_head *jh;
1141         bool ret = false;
1142
1143         /* Dirty buffers require special handling... */
1144         if (buffer_dirty(bh))
1145                 return false;
1146
1147         /*
1148          * RCU protects us from dereferencing freed pages. So the checks we do
1149          * are guaranteed not to oops. However the jh slab object can get freed
1150          * & reallocated while we work with it. So we have to be careful. When
1151          * we see jh attached to the running transaction, we know it must stay
1152          * so until the transaction is committed. Thus jh won't be freed and
1153          * will be attached to the same bh while we run.  However it can
1154          * happen jh gets freed, reallocated, and attached to the transaction
1155          * just after we get pointer to it from bh. So we have to be careful
1156          * and recheck jh still belongs to our bh before we return success.
1157          */
1158         rcu_read_lock();
1159         if (!buffer_jbd(bh))
1160                 goto out;
1161         /* This should be bh2jh() but that doesn't work with inline functions */
1162         jh = READ_ONCE(bh->b_private);
1163         if (!jh)
1164                 goto out;
1165         /* For undo access buffer must have data copied */
1166         if (undo && !jh->b_committed_data)
1167                 goto out;
1168         if (READ_ONCE(jh->b_transaction) != handle->h_transaction &&
1169             READ_ONCE(jh->b_next_transaction) != handle->h_transaction)
1170                 goto out;
1171         /*
1172          * There are two reasons for the barrier here:
1173          * 1) Make sure to fetch b_bh after we did previous checks so that we
1174          * detect when jh went through free, realloc, attach to transaction
1175          * while we were checking. Paired with implicit barrier in that path.
1176          * 2) So that access to bh done after jbd2_write_access_granted()
1177          * doesn't get reordered and see inconsistent state of concurrent
1178          * do_get_write_access().
1179          */
1180         smp_mb();
1181         if (unlikely(jh->b_bh != bh))
1182                 goto out;
1183         ret = true;
1184 out:
1185         rcu_read_unlock();
1186         return ret;
1187 }
1188
1189 /**
1190  * jbd2_journal_get_write_access() - notify intent to modify a buffer
1191  *                                   for metadata (not data) update.
1192  * @handle: transaction to add buffer modifications to
1193  * @bh:     bh to be used for metadata writes
1194  *
1195  * Returns: error code or 0 on success.
1196  *
1197  * In full data journalling mode the buffer may be of type BJ_AsyncData,
1198  * because we're ``write()ing`` a buffer which is also part of a shared mapping.
1199  */
1200
1201 int jbd2_journal_get_write_access(handle_t *handle, struct buffer_head *bh)
1202 {
1203         struct journal_head *jh;
1204         int rc;
1205
1206         if (is_handle_aborted(handle))
1207                 return -EROFS;
1208
1209         if (jbd2_write_access_granted(handle, bh, false))
1210                 return 0;
1211
1212         jh = jbd2_journal_add_journal_head(bh);
1213         /* We do not want to get caught playing with fields which the
1214          * log thread also manipulates.  Make sure that the buffer
1215          * completes any outstanding IO before proceeding. */
1216         rc = do_get_write_access(handle, jh, 0);
1217         jbd2_journal_put_journal_head(jh);
1218         return rc;
1219 }
1220
1221
1222 /*
1223  * When the user wants to journal a newly created buffer_head
1224  * (ie. getblk() returned a new buffer and we are going to populate it
1225  * manually rather than reading off disk), then we need to keep the
1226  * buffer_head locked until it has been completely filled with new
1227  * data.  In this case, we should be able to make the assertion that
1228  * the bh is not already part of an existing transaction.
1229  *
1230  * The buffer should already be locked by the caller by this point.
1231  * There is no lock ranking violation: it was a newly created,
1232  * unlocked buffer beforehand. */
1233
1234 /**
1235  * jbd2_journal_get_create_access () - notify intent to use newly created bh
1236  * @handle: transaction to new buffer to
1237  * @bh: new buffer.
1238  *
1239  * Call this if you create a new bh.
1240  */
1241 int jbd2_journal_get_create_access(handle_t *handle, struct buffer_head *bh)
1242 {
1243         transaction_t *transaction = handle->h_transaction;
1244         journal_t *journal;
1245         struct journal_head *jh = jbd2_journal_add_journal_head(bh);
1246         int err;
1247
1248         jbd_debug(5, "journal_head %p\n", jh);
1249         err = -EROFS;
1250         if (is_handle_aborted(handle))
1251                 goto out;
1252         journal = transaction->t_journal;
1253         err = 0;
1254
1255         JBUFFER_TRACE(jh, "entry");
1256         /*
1257          * The buffer may already belong to this transaction due to pre-zeroing
1258          * in the filesystem's new_block code.  It may also be on the previous,
1259          * committing transaction's lists, but it HAS to be in Forget state in
1260          * that case: the transaction must have deleted the buffer for it to be
1261          * reused here.
1262          */
1263         spin_lock(&jh->b_state_lock);
1264         J_ASSERT_JH(jh, (jh->b_transaction == transaction ||
1265                 jh->b_transaction == NULL ||
1266                 (jh->b_transaction == journal->j_committing_transaction &&
1267                           jh->b_jlist == BJ_Forget)));
1268
1269         J_ASSERT_JH(jh, jh->b_next_transaction == NULL);
1270         J_ASSERT_JH(jh, buffer_locked(jh2bh(jh)));
1271
1272         if (jh->b_transaction == NULL) {
1273                 /*
1274                  * Previous jbd2_journal_forget() could have left the buffer
1275                  * with jbddirty bit set because it was being committed. When
1276                  * the commit finished, we've filed the buffer for
1277                  * checkpointing and marked it dirty. Now we are reallocating
1278                  * the buffer so the transaction freeing it must have
1279                  * committed and so it's safe to clear the dirty bit.
1280                  */
1281                 clear_buffer_dirty(jh2bh(jh));
1282                 /* first access by this transaction */
1283                 jh->b_modified = 0;
1284
1285                 JBUFFER_TRACE(jh, "file as BJ_Reserved");
1286                 spin_lock(&journal->j_list_lock);
1287                 __jbd2_journal_file_buffer(jh, transaction, BJ_Reserved);
1288                 spin_unlock(&journal->j_list_lock);
1289         } else if (jh->b_transaction == journal->j_committing_transaction) {
1290                 /* first access by this transaction */
1291                 jh->b_modified = 0;
1292
1293                 JBUFFER_TRACE(jh, "set next transaction");
1294                 spin_lock(&journal->j_list_lock);
1295                 jh->b_next_transaction = transaction;
1296                 spin_unlock(&journal->j_list_lock);
1297         }
1298         spin_unlock(&jh->b_state_lock);
1299
1300         /*
1301          * akpm: I added this.  ext3_alloc_branch can pick up new indirect
1302          * blocks which contain freed but then revoked metadata.  We need
1303          * to cancel the revoke in case we end up freeing it yet again
1304          * and the reallocating as data - this would cause a second revoke,
1305          * which hits an assertion error.
1306          */
1307         JBUFFER_TRACE(jh, "cancelling revoke");
1308         jbd2_journal_cancel_revoke(handle, jh);
1309 out:
1310         jbd2_journal_put_journal_head(jh);
1311         return err;
1312 }
1313
1314 /**
1315  * jbd2_journal_get_undo_access() -  Notify intent to modify metadata with
1316  *     non-rewindable consequences
1317  * @handle: transaction
1318  * @bh: buffer to undo
1319  *
1320  * Sometimes there is a need to distinguish between metadata which has
1321  * been committed to disk and that which has not.  The ext3fs code uses
1322  * this for freeing and allocating space, we have to make sure that we
1323  * do not reuse freed space until the deallocation has been committed,
1324  * since if we overwrote that space we would make the delete
1325  * un-rewindable in case of a crash.
1326  *
1327  * To deal with that, jbd2_journal_get_undo_access requests write access to a
1328  * buffer for parts of non-rewindable operations such as delete
1329  * operations on the bitmaps.  The journaling code must keep a copy of
1330  * the buffer's contents prior to the undo_access call until such time
1331  * as we know that the buffer has definitely been committed to disk.
1332  *
1333  * We never need to know which transaction the committed data is part
1334  * of, buffers touched here are guaranteed to be dirtied later and so
1335  * will be committed to a new transaction in due course, at which point
1336  * we can discard the old committed data pointer.
1337  *
1338  * Returns error number or 0 on success.
1339  */
1340 int jbd2_journal_get_undo_access(handle_t *handle, struct buffer_head *bh)
1341 {
1342         int err;
1343         struct journal_head *jh;
1344         char *committed_data = NULL;
1345
1346         if (is_handle_aborted(handle))
1347                 return -EROFS;
1348
1349         if (jbd2_write_access_granted(handle, bh, true))
1350                 return 0;
1351
1352         jh = jbd2_journal_add_journal_head(bh);
1353         JBUFFER_TRACE(jh, "entry");
1354
1355         /*
1356          * Do this first --- it can drop the journal lock, so we want to
1357          * make sure that obtaining the committed_data is done
1358          * atomically wrt. completion of any outstanding commits.
1359          */
1360         err = do_get_write_access(handle, jh, 1);
1361         if (err)
1362                 goto out;
1363
1364 repeat:
1365         if (!jh->b_committed_data)
1366                 committed_data = jbd2_alloc(jh2bh(jh)->b_size,
1367                                             GFP_NOFS|__GFP_NOFAIL);
1368
1369         spin_lock(&jh->b_state_lock);
1370         if (!jh->b_committed_data) {
1371                 /* Copy out the current buffer contents into the
1372                  * preserved, committed copy. */
1373                 JBUFFER_TRACE(jh, "generate b_committed data");
1374                 if (!committed_data) {
1375                         spin_unlock(&jh->b_state_lock);
1376                         goto repeat;
1377                 }
1378
1379                 jh->b_committed_data = committed_data;
1380                 committed_data = NULL;
1381                 memcpy(jh->b_committed_data, bh->b_data, bh->b_size);
1382         }
1383         spin_unlock(&jh->b_state_lock);
1384 out:
1385         jbd2_journal_put_journal_head(jh);
1386         if (unlikely(committed_data))
1387                 jbd2_free(committed_data, bh->b_size);
1388         return err;
1389 }
1390
1391 /**
1392  * jbd2_journal_set_triggers() - Add triggers for commit writeout
1393  * @bh: buffer to trigger on
1394  * @type: struct jbd2_buffer_trigger_type containing the trigger(s).
1395  *
1396  * Set any triggers on this journal_head.  This is always safe, because
1397  * triggers for a committing buffer will be saved off, and triggers for
1398  * a running transaction will match the buffer in that transaction.
1399  *
1400  * Call with NULL to clear the triggers.
1401  */
1402 void jbd2_journal_set_triggers(struct buffer_head *bh,
1403                                struct jbd2_buffer_trigger_type *type)
1404 {
1405         struct journal_head *jh = jbd2_journal_grab_journal_head(bh);
1406
1407         if (WARN_ON(!jh))
1408                 return;
1409         jh->b_triggers = type;
1410         jbd2_journal_put_journal_head(jh);
1411 }
1412
1413 void jbd2_buffer_frozen_trigger(struct journal_head *jh, void *mapped_data,
1414                                 struct jbd2_buffer_trigger_type *triggers)
1415 {
1416         struct buffer_head *bh = jh2bh(jh);
1417
1418         if (!triggers || !triggers->t_frozen)
1419                 return;
1420
1421         triggers->t_frozen(triggers, bh, mapped_data, bh->b_size);
1422 }
1423
1424 void jbd2_buffer_abort_trigger(struct journal_head *jh,
1425                                struct jbd2_buffer_trigger_type *triggers)
1426 {
1427         if (!triggers || !triggers->t_abort)
1428                 return;
1429
1430         triggers->t_abort(triggers, jh2bh(jh));
1431 }
1432
1433 /**
1434  * jbd2_journal_dirty_metadata() -  mark a buffer as containing dirty metadata
1435  * @handle: transaction to add buffer to.
1436  * @bh: buffer to mark
1437  *
1438  * mark dirty metadata which needs to be journaled as part of the current
1439  * transaction.
1440  *
1441  * The buffer must have previously had jbd2_journal_get_write_access()
1442  * called so that it has a valid journal_head attached to the buffer
1443  * head.
1444  *
1445  * The buffer is placed on the transaction's metadata list and is marked
1446  * as belonging to the transaction.
1447  *
1448  * Returns error number or 0 on success.
1449  *
1450  * Special care needs to be taken if the buffer already belongs to the
1451  * current committing transaction (in which case we should have frozen
1452  * data present for that commit).  In that case, we don't relink the
1453  * buffer: that only gets done when the old transaction finally
1454  * completes its commit.
1455  */
1456 int jbd2_journal_dirty_metadata(handle_t *handle, struct buffer_head *bh)
1457 {
1458         transaction_t *transaction = handle->h_transaction;
1459         journal_t *journal;
1460         struct journal_head *jh;
1461         int ret = 0;
1462
1463         if (is_handle_aborted(handle))
1464                 return -EROFS;
1465         if (!buffer_jbd(bh))
1466                 return -EUCLEAN;
1467
1468         /*
1469          * We don't grab jh reference here since the buffer must be part
1470          * of the running transaction.
1471          */
1472         jh = bh2jh(bh);
1473         jbd_debug(5, "journal_head %p\n", jh);
1474         JBUFFER_TRACE(jh, "entry");
1475
1476         /*
1477          * This and the following assertions are unreliable since we may see jh
1478          * in inconsistent state unless we grab bh_state lock. But this is
1479          * crucial to catch bugs so let's do a reliable check until the
1480          * lockless handling is fully proven.
1481          */
1482         if (data_race(jh->b_transaction != transaction &&
1483             jh->b_next_transaction != transaction)) {
1484                 spin_lock(&jh->b_state_lock);
1485                 J_ASSERT_JH(jh, jh->b_transaction == transaction ||
1486                                 jh->b_next_transaction == transaction);
1487                 spin_unlock(&jh->b_state_lock);
1488         }
1489         if (jh->b_modified == 1) {
1490                 /* If it's in our transaction it must be in BJ_Metadata list. */
1491                 if (data_race(jh->b_transaction == transaction &&
1492                     jh->b_jlist != BJ_Metadata)) {
1493                         spin_lock(&jh->b_state_lock);
1494                         if (jh->b_transaction == transaction &&
1495                             jh->b_jlist != BJ_Metadata)
1496                                 pr_err("JBD2: assertion failure: h_type=%u "
1497                                        "h_line_no=%u block_no=%llu jlist=%u\n",
1498                                        handle->h_type, handle->h_line_no,
1499                                        (unsigned long long) bh->b_blocknr,
1500                                        jh->b_jlist);
1501                         J_ASSERT_JH(jh, jh->b_transaction != transaction ||
1502                                         jh->b_jlist == BJ_Metadata);
1503                         spin_unlock(&jh->b_state_lock);
1504                 }
1505                 goto out;
1506         }
1507
1508         journal = transaction->t_journal;
1509         spin_lock(&jh->b_state_lock);
1510
1511         if (jh->b_modified == 0) {
1512                 /*
1513                  * This buffer's got modified and becoming part
1514                  * of the transaction. This needs to be done
1515                  * once a transaction -bzzz
1516                  */
1517                 if (WARN_ON_ONCE(jbd2_handle_buffer_credits(handle) <= 0)) {
1518                         ret = -ENOSPC;
1519                         goto out_unlock_bh;
1520                 }
1521                 jh->b_modified = 1;
1522                 handle->h_total_credits--;
1523         }
1524
1525         /*
1526          * fastpath, to avoid expensive locking.  If this buffer is already
1527          * on the running transaction's metadata list there is nothing to do.
1528          * Nobody can take it off again because there is a handle open.
1529          * I _think_ we're OK here with SMP barriers - a mistaken decision will
1530          * result in this test being false, so we go in and take the locks.
1531          */
1532         if (jh->b_transaction == transaction && jh->b_jlist == BJ_Metadata) {
1533                 JBUFFER_TRACE(jh, "fastpath");
1534                 if (unlikely(jh->b_transaction !=
1535                              journal->j_running_transaction)) {
1536                         printk(KERN_ERR "JBD2: %s: "
1537                                "jh->b_transaction (%llu, %p, %u) != "
1538                                "journal->j_running_transaction (%p, %u)\n",
1539                                journal->j_devname,
1540                                (unsigned long long) bh->b_blocknr,
1541                                jh->b_transaction,
1542                                jh->b_transaction ? jh->b_transaction->t_tid : 0,
1543                                journal->j_running_transaction,
1544                                journal->j_running_transaction ?
1545                                journal->j_running_transaction->t_tid : 0);
1546                         ret = -EINVAL;
1547                 }
1548                 goto out_unlock_bh;
1549         }
1550
1551         set_buffer_jbddirty(bh);
1552
1553         /*
1554          * Metadata already on the current transaction list doesn't
1555          * need to be filed.  Metadata on another transaction's list must
1556          * be committing, and will be refiled once the commit completes:
1557          * leave it alone for now.
1558          */
1559         if (jh->b_transaction != transaction) {
1560                 JBUFFER_TRACE(jh, "already on other transaction");
1561                 if (unlikely(((jh->b_transaction !=
1562                                journal->j_committing_transaction)) ||
1563                              (jh->b_next_transaction != transaction))) {
1564                         printk(KERN_ERR "jbd2_journal_dirty_metadata: %s: "
1565                                "bad jh for block %llu: "
1566                                "transaction (%p, %u), "
1567                                "jh->b_transaction (%p, %u), "
1568                                "jh->b_next_transaction (%p, %u), jlist %u\n",
1569                                journal->j_devname,
1570                                (unsigned long long) bh->b_blocknr,
1571                                transaction, transaction->t_tid,
1572                                jh->b_transaction,
1573                                jh->b_transaction ?
1574                                jh->b_transaction->t_tid : 0,
1575                                jh->b_next_transaction,
1576                                jh->b_next_transaction ?
1577                                jh->b_next_transaction->t_tid : 0,
1578                                jh->b_jlist);
1579                         WARN_ON(1);
1580                         ret = -EINVAL;
1581                 }
1582                 /* And this case is illegal: we can't reuse another
1583                  * transaction's data buffer, ever. */
1584                 goto out_unlock_bh;
1585         }
1586
1587         /* That test should have eliminated the following case: */
1588         J_ASSERT_JH(jh, jh->b_frozen_data == NULL);
1589
1590         JBUFFER_TRACE(jh, "file as BJ_Metadata");
1591         spin_lock(&journal->j_list_lock);
1592         __jbd2_journal_file_buffer(jh, transaction, BJ_Metadata);
1593         spin_unlock(&journal->j_list_lock);
1594 out_unlock_bh:
1595         spin_unlock(&jh->b_state_lock);
1596 out:
1597         JBUFFER_TRACE(jh, "exit");
1598         return ret;
1599 }
1600
1601 /**
1602  * jbd2_journal_forget() - bforget() for potentially-journaled buffers.
1603  * @handle: transaction handle
1604  * @bh:     bh to 'forget'
1605  *
1606  * We can only do the bforget if there are no commits pending against the
1607  * buffer.  If the buffer is dirty in the current running transaction we
1608  * can safely unlink it.
1609  *
1610  * bh may not be a journalled buffer at all - it may be a non-JBD
1611  * buffer which came off the hashtable.  Check for this.
1612  *
1613  * Decrements bh->b_count by one.
1614  *
1615  * Allow this call even if the handle has aborted --- it may be part of
1616  * the caller's cleanup after an abort.
1617  */
1618 int jbd2_journal_forget(handle_t *handle, struct buffer_head *bh)
1619 {
1620         transaction_t *transaction = handle->h_transaction;
1621         journal_t *journal;
1622         struct journal_head *jh;
1623         int drop_reserve = 0;
1624         int err = 0;
1625         int was_modified = 0;
1626
1627         if (is_handle_aborted(handle))
1628                 return -EROFS;
1629         journal = transaction->t_journal;
1630
1631         BUFFER_TRACE(bh, "entry");
1632
1633         jh = jbd2_journal_grab_journal_head(bh);
1634         if (!jh) {
1635                 __bforget(bh);
1636                 return 0;
1637         }
1638
1639         spin_lock(&jh->b_state_lock);
1640
1641         /* Critical error: attempting to delete a bitmap buffer, maybe?
1642          * Don't do any jbd operations, and return an error. */
1643         if (!J_EXPECT_JH(jh, !jh->b_committed_data,
1644                          "inconsistent data on disk")) {
1645                 err = -EIO;
1646                 goto drop;
1647         }
1648
1649         /* keep track of whether or not this transaction modified us */
1650         was_modified = jh->b_modified;
1651
1652         /*
1653          * The buffer's going from the transaction, we must drop
1654          * all references -bzzz
1655          */
1656         jh->b_modified = 0;
1657
1658         if (jh->b_transaction == transaction) {
1659                 J_ASSERT_JH(jh, !jh->b_frozen_data);
1660
1661                 /* If we are forgetting a buffer which is already part
1662                  * of this transaction, then we can just drop it from
1663                  * the transaction immediately. */
1664                 clear_buffer_dirty(bh);
1665                 clear_buffer_jbddirty(bh);
1666
1667                 JBUFFER_TRACE(jh, "belongs to current transaction: unfile");
1668
1669                 /*
1670                  * we only want to drop a reference if this transaction
1671                  * modified the buffer
1672                  */
1673                 if (was_modified)
1674                         drop_reserve = 1;
1675
1676                 /*
1677                  * We are no longer going to journal this buffer.
1678                  * However, the commit of this transaction is still
1679                  * important to the buffer: the delete that we are now
1680                  * processing might obsolete an old log entry, so by
1681                  * committing, we can satisfy the buffer's checkpoint.
1682                  *
1683                  * So, if we have a checkpoint on the buffer, we should
1684                  * now refile the buffer on our BJ_Forget list so that
1685                  * we know to remove the checkpoint after we commit.
1686                  */
1687
1688                 spin_lock(&journal->j_list_lock);
1689                 if (jh->b_cp_transaction) {
1690                         __jbd2_journal_temp_unlink_buffer(jh);
1691                         __jbd2_journal_file_buffer(jh, transaction, BJ_Forget);
1692                 } else {
1693                         __jbd2_journal_unfile_buffer(jh);
1694                         jbd2_journal_put_journal_head(jh);
1695                 }
1696                 spin_unlock(&journal->j_list_lock);
1697         } else if (jh->b_transaction) {
1698                 J_ASSERT_JH(jh, (jh->b_transaction ==
1699                                  journal->j_committing_transaction));
1700                 /* However, if the buffer is still owned by a prior
1701                  * (committing) transaction, we can't drop it yet... */
1702                 JBUFFER_TRACE(jh, "belongs to older transaction");
1703                 /* ... but we CAN drop it from the new transaction through
1704                  * marking the buffer as freed and set j_next_transaction to
1705                  * the new transaction, so that not only the commit code
1706                  * knows it should clear dirty bits when it is done with the
1707                  * buffer, but also the buffer can be checkpointed only
1708                  * after the new transaction commits. */
1709
1710                 set_buffer_freed(bh);
1711
1712                 if (!jh->b_next_transaction) {
1713                         spin_lock(&journal->j_list_lock);
1714                         jh->b_next_transaction = transaction;
1715                         spin_unlock(&journal->j_list_lock);
1716                 } else {
1717                         J_ASSERT(jh->b_next_transaction == transaction);
1718
1719                         /*
1720                          * only drop a reference if this transaction modified
1721                          * the buffer
1722                          */
1723                         if (was_modified)
1724                                 drop_reserve = 1;
1725                 }
1726         } else {
1727                 /*
1728                  * Finally, if the buffer is not belongs to any
1729                  * transaction, we can just drop it now if it has no
1730                  * checkpoint.
1731                  */
1732                 spin_lock(&journal->j_list_lock);
1733                 if (!jh->b_cp_transaction) {
1734                         JBUFFER_TRACE(jh, "belongs to none transaction");
1735                         spin_unlock(&journal->j_list_lock);
1736                         goto drop;
1737                 }
1738
1739                 /*
1740                  * Otherwise, if the buffer has been written to disk,
1741                  * it is safe to remove the checkpoint and drop it.
1742                  */
1743                 if (!buffer_dirty(bh)) {
1744                         __jbd2_journal_remove_checkpoint(jh);
1745                         spin_unlock(&journal->j_list_lock);
1746                         goto drop;
1747                 }
1748
1749                 /*
1750                  * The buffer is still not written to disk, we should
1751                  * attach this buffer to current transaction so that the
1752                  * buffer can be checkpointed only after the current
1753                  * transaction commits.
1754                  */
1755                 clear_buffer_dirty(bh);
1756                 __jbd2_journal_file_buffer(jh, transaction, BJ_Forget);
1757                 spin_unlock(&journal->j_list_lock);
1758         }
1759 drop:
1760         __brelse(bh);
1761         spin_unlock(&jh->b_state_lock);
1762         jbd2_journal_put_journal_head(jh);
1763         if (drop_reserve) {
1764                 /* no need to reserve log space for this block -bzzz */
1765                 handle->h_total_credits++;
1766         }
1767         return err;
1768 }
1769
1770 /**
1771  * jbd2_journal_stop() - complete a transaction
1772  * @handle: transaction to complete.
1773  *
1774  * All done for a particular handle.
1775  *
1776  * There is not much action needed here.  We just return any remaining
1777  * buffer credits to the transaction and remove the handle.  The only
1778  * complication is that we need to start a commit operation if the
1779  * filesystem is marked for synchronous update.
1780  *
1781  * jbd2_journal_stop itself will not usually return an error, but it may
1782  * do so in unusual circumstances.  In particular, expect it to
1783  * return -EIO if a jbd2_journal_abort has been executed since the
1784  * transaction began.
1785  */
1786 int jbd2_journal_stop(handle_t *handle)
1787 {
1788         transaction_t *transaction = handle->h_transaction;
1789         journal_t *journal;
1790         int err = 0, wait_for_commit = 0;
1791         tid_t tid;
1792         pid_t pid;
1793
1794         if (--handle->h_ref > 0) {
1795                 jbd_debug(4, "h_ref %d -> %d\n", handle->h_ref + 1,
1796                                                  handle->h_ref);
1797                 if (is_handle_aborted(handle))
1798                         return -EIO;
1799                 return 0;
1800         }
1801         if (!transaction) {
1802                 /*
1803                  * Handle is already detached from the transaction so there is
1804                  * nothing to do other than free the handle.
1805                  */
1806                 memalloc_nofs_restore(handle->saved_alloc_context);
1807                 goto free_and_exit;
1808         }
1809         journal = transaction->t_journal;
1810         tid = transaction->t_tid;
1811
1812         if (is_handle_aborted(handle))
1813                 err = -EIO;
1814
1815         jbd_debug(4, "Handle %p going down\n", handle);
1816         trace_jbd2_handle_stats(journal->j_fs_dev->bd_dev,
1817                                 tid, handle->h_type, handle->h_line_no,
1818                                 jiffies - handle->h_start_jiffies,
1819                                 handle->h_sync, handle->h_requested_credits,
1820                                 (handle->h_requested_credits -
1821                                  handle->h_total_credits));
1822
1823         /*
1824          * Implement synchronous transaction batching.  If the handle
1825          * was synchronous, don't force a commit immediately.  Let's
1826          * yield and let another thread piggyback onto this
1827          * transaction.  Keep doing that while new threads continue to
1828          * arrive.  It doesn't cost much - we're about to run a commit
1829          * and sleep on IO anyway.  Speeds up many-threaded, many-dir
1830          * operations by 30x or more...
1831          *
1832          * We try and optimize the sleep time against what the
1833          * underlying disk can do, instead of having a static sleep
1834          * time.  This is useful for the case where our storage is so
1835          * fast that it is more optimal to go ahead and force a flush
1836          * and wait for the transaction to be committed than it is to
1837          * wait for an arbitrary amount of time for new writers to
1838          * join the transaction.  We achieve this by measuring how
1839          * long it takes to commit a transaction, and compare it with
1840          * how long this transaction has been running, and if run time
1841          * < commit time then we sleep for the delta and commit.  This
1842          * greatly helps super fast disks that would see slowdowns as
1843          * more threads started doing fsyncs.
1844          *
1845          * But don't do this if this process was the most recent one
1846          * to perform a synchronous write.  We do this to detect the
1847          * case where a single process is doing a stream of sync
1848          * writes.  No point in waiting for joiners in that case.
1849          *
1850          * Setting max_batch_time to 0 disables this completely.
1851          */
1852         pid = current->pid;
1853         if (handle->h_sync && journal->j_last_sync_writer != pid &&
1854             journal->j_max_batch_time) {
1855                 u64 commit_time, trans_time;
1856
1857                 journal->j_last_sync_writer = pid;
1858
1859                 read_lock(&journal->j_state_lock);
1860                 commit_time = journal->j_average_commit_time;
1861                 read_unlock(&journal->j_state_lock);
1862
1863                 trans_time = ktime_to_ns(ktime_sub(ktime_get(),
1864                                                    transaction->t_start_time));
1865
1866                 commit_time = max_t(u64, commit_time,
1867                                     1000*journal->j_min_batch_time);
1868                 commit_time = min_t(u64, commit_time,
1869                                     1000*journal->j_max_batch_time);
1870
1871                 if (trans_time < commit_time) {
1872                         ktime_t expires = ktime_add_ns(ktime_get(),
1873                                                        commit_time);
1874                         set_current_state(TASK_UNINTERRUPTIBLE);
1875                         schedule_hrtimeout(&expires, HRTIMER_MODE_ABS);
1876                 }
1877         }
1878
1879         if (handle->h_sync)
1880                 transaction->t_synchronous_commit = 1;
1881
1882         /*
1883          * If the handle is marked SYNC, we need to set another commit
1884          * going!  We also want to force a commit if the transaction is too
1885          * old now.
1886          */
1887         if (handle->h_sync ||
1888             time_after_eq(jiffies, transaction->t_expires)) {
1889                 /* Do this even for aborted journals: an abort still
1890                  * completes the commit thread, it just doesn't write
1891                  * anything to disk. */
1892
1893                 jbd_debug(2, "transaction too old, requesting commit for "
1894                                         "handle %p\n", handle);
1895                 /* This is non-blocking */
1896                 jbd2_log_start_commit(journal, tid);
1897
1898                 /*
1899                  * Special case: JBD2_SYNC synchronous updates require us
1900                  * to wait for the commit to complete.
1901                  */
1902                 if (handle->h_sync && !(current->flags & PF_MEMALLOC))
1903                         wait_for_commit = 1;
1904         }
1905
1906         /*
1907          * Once stop_this_handle() drops t_updates, the transaction could start
1908          * committing on us and eventually disappear.  So we must not
1909          * dereference transaction pointer again after calling
1910          * stop_this_handle().
1911          */
1912         stop_this_handle(handle);
1913
1914         if (wait_for_commit)
1915                 err = jbd2_log_wait_commit(journal, tid);
1916
1917 free_and_exit:
1918         if (handle->h_rsv_handle)
1919                 jbd2_free_handle(handle->h_rsv_handle);
1920         jbd2_free_handle(handle);
1921         return err;
1922 }
1923
1924 /*
1925  *
1926  * List management code snippets: various functions for manipulating the
1927  * transaction buffer lists.
1928  *
1929  */
1930
1931 /*
1932  * Append a buffer to a transaction list, given the transaction's list head
1933  * pointer.
1934  *
1935  * j_list_lock is held.
1936  *
1937  * jh->b_state_lock is held.
1938  */
1939
1940 static inline void
1941 __blist_add_buffer(struct journal_head **list, struct journal_head *jh)
1942 {
1943         if (!*list) {
1944                 jh->b_tnext = jh->b_tprev = jh;
1945                 *list = jh;
1946         } else {
1947                 /* Insert at the tail of the list to preserve order */
1948                 struct journal_head *first = *list, *last = first->b_tprev;
1949                 jh->b_tprev = last;
1950                 jh->b_tnext = first;
1951                 last->b_tnext = first->b_tprev = jh;
1952         }
1953 }
1954
1955 /*
1956  * Remove a buffer from a transaction list, given the transaction's list
1957  * head pointer.
1958  *
1959  * Called with j_list_lock held, and the journal may not be locked.
1960  *
1961  * jh->b_state_lock is held.
1962  */
1963
1964 static inline void
1965 __blist_del_buffer(struct journal_head **list, struct journal_head *jh)
1966 {
1967         if (*list == jh) {
1968                 *list = jh->b_tnext;
1969                 if (*list == jh)
1970                         *list = NULL;
1971         }
1972         jh->b_tprev->b_tnext = jh->b_tnext;
1973         jh->b_tnext->b_tprev = jh->b_tprev;
1974 }
1975
1976 /*
1977  * Remove a buffer from the appropriate transaction list.
1978  *
1979  * Note that this function can *change* the value of
1980  * bh->b_transaction->t_buffers, t_forget, t_shadow_list, t_log_list or
1981  * t_reserved_list.  If the caller is holding onto a copy of one of these
1982  * pointers, it could go bad.  Generally the caller needs to re-read the
1983  * pointer from the transaction_t.
1984  *
1985  * Called under j_list_lock.
1986  */
1987 static void __jbd2_journal_temp_unlink_buffer(struct journal_head *jh)
1988 {
1989         struct journal_head **list = NULL;
1990         transaction_t *transaction;
1991         struct buffer_head *bh = jh2bh(jh);
1992
1993         lockdep_assert_held(&jh->b_state_lock);
1994         transaction = jh->b_transaction;
1995         if (transaction)
1996                 assert_spin_locked(&transaction->t_journal->j_list_lock);
1997
1998         J_ASSERT_JH(jh, jh->b_jlist < BJ_Types);
1999         if (jh->b_jlist != BJ_None)
2000                 J_ASSERT_JH(jh, transaction != NULL);
2001
2002         switch (jh->b_jlist) {
2003         case BJ_None:
2004                 return;
2005         case BJ_Metadata:
2006                 transaction->t_nr_buffers--;
2007                 J_ASSERT_JH(jh, transaction->t_nr_buffers >= 0);
2008                 list = &transaction->t_buffers;
2009                 break;
2010         case BJ_Forget:
2011                 list = &transaction->t_forget;
2012                 break;
2013         case BJ_Shadow:
2014                 list = &transaction->t_shadow_list;
2015                 break;
2016         case BJ_Reserved:
2017                 list = &transaction->t_reserved_list;
2018                 break;
2019         }
2020
2021         __blist_del_buffer(list, jh);
2022         jh->b_jlist = BJ_None;
2023         if (transaction && is_journal_aborted(transaction->t_journal))
2024                 clear_buffer_jbddirty(bh);
2025         else if (test_clear_buffer_jbddirty(bh))
2026                 mark_buffer_dirty(bh);  /* Expose it to the VM */
2027 }
2028
2029 /*
2030  * Remove buffer from all transactions. The caller is responsible for dropping
2031  * the jh reference that belonged to the transaction.
2032  *
2033  * Called with bh_state lock and j_list_lock
2034  */
2035 static void __jbd2_journal_unfile_buffer(struct journal_head *jh)
2036 {
2037         J_ASSERT_JH(jh, jh->b_transaction != NULL);
2038         J_ASSERT_JH(jh, jh->b_next_transaction == NULL);
2039
2040         __jbd2_journal_temp_unlink_buffer(jh);
2041         jh->b_transaction = NULL;
2042 }
2043
2044 void jbd2_journal_unfile_buffer(journal_t *journal, struct journal_head *jh)
2045 {
2046         struct buffer_head *bh = jh2bh(jh);
2047
2048         /* Get reference so that buffer cannot be freed before we unlock it */
2049         get_bh(bh);
2050         spin_lock(&jh->b_state_lock);
2051         spin_lock(&journal->j_list_lock);
2052         __jbd2_journal_unfile_buffer(jh);
2053         spin_unlock(&journal->j_list_lock);
2054         spin_unlock(&jh->b_state_lock);
2055         jbd2_journal_put_journal_head(jh);
2056         __brelse(bh);
2057 }
2058
2059 /*
2060  * Called from jbd2_journal_try_to_free_buffers().
2061  *
2062  * Called under jh->b_state_lock
2063  */
2064 static void
2065 __journal_try_to_free_buffer(journal_t *journal, struct buffer_head *bh)
2066 {
2067         struct journal_head *jh;
2068
2069         jh = bh2jh(bh);
2070
2071         if (buffer_locked(bh) || buffer_dirty(bh))
2072                 goto out;
2073
2074         if (jh->b_next_transaction != NULL || jh->b_transaction != NULL)
2075                 goto out;
2076
2077         spin_lock(&journal->j_list_lock);
2078         if (jh->b_cp_transaction != NULL) {
2079                 /* written-back checkpointed metadata buffer */
2080                 JBUFFER_TRACE(jh, "remove from checkpoint list");
2081                 __jbd2_journal_remove_checkpoint(jh);
2082         }
2083         spin_unlock(&journal->j_list_lock);
2084 out:
2085         return;
2086 }
2087
2088 /**
2089  * jbd2_journal_try_to_free_buffers() - try to free page buffers.
2090  * @journal: journal for operation
2091  * @page: to try and free
2092  *
2093  * For all the buffers on this page,
2094  * if they are fully written out ordered data, move them onto BUF_CLEAN
2095  * so try_to_free_buffers() can reap them.
2096  *
2097  * This function returns non-zero if we wish try_to_free_buffers()
2098  * to be called. We do this if the page is releasable by try_to_free_buffers().
2099  * We also do it if the page has locked or dirty buffers and the caller wants
2100  * us to perform sync or async writeout.
2101  *
2102  * This complicates JBD locking somewhat.  We aren't protected by the
2103  * BKL here.  We wish to remove the buffer from its committing or
2104  * running transaction's ->t_datalist via __jbd2_journal_unfile_buffer.
2105  *
2106  * This may *change* the value of transaction_t->t_datalist, so anyone
2107  * who looks at t_datalist needs to lock against this function.
2108  *
2109  * Even worse, someone may be doing a jbd2_journal_dirty_data on this
2110  * buffer.  So we need to lock against that.  jbd2_journal_dirty_data()
2111  * will come out of the lock with the buffer dirty, which makes it
2112  * ineligible for release here.
2113  *
2114  * Who else is affected by this?  hmm...  Really the only contender
2115  * is do_get_write_access() - it could be looking at the buffer while
2116  * journal_try_to_free_buffer() is changing its state.  But that
2117  * cannot happen because we never reallocate freed data as metadata
2118  * while the data is part of a transaction.  Yes?
2119  *
2120  * Return 0 on failure, 1 on success
2121  */
2122 int jbd2_journal_try_to_free_buffers(journal_t *journal, struct page *page)
2123 {
2124         struct buffer_head *head;
2125         struct buffer_head *bh;
2126         int ret = 0;
2127
2128         J_ASSERT(PageLocked(page));
2129
2130         head = page_buffers(page);
2131         bh = head;
2132         do {
2133                 struct journal_head *jh;
2134
2135                 /*
2136                  * We take our own ref against the journal_head here to avoid
2137                  * having to add tons of locking around each instance of
2138                  * jbd2_journal_put_journal_head().
2139                  */
2140                 jh = jbd2_journal_grab_journal_head(bh);
2141                 if (!jh)
2142                         continue;
2143
2144                 spin_lock(&jh->b_state_lock);
2145                 __journal_try_to_free_buffer(journal, bh);
2146                 spin_unlock(&jh->b_state_lock);
2147                 jbd2_journal_put_journal_head(jh);
2148                 if (buffer_jbd(bh))
2149                         goto busy;
2150         } while ((bh = bh->b_this_page) != head);
2151
2152         ret = try_to_free_buffers(page);
2153 busy:
2154         return ret;
2155 }
2156
2157 /*
2158  * This buffer is no longer needed.  If it is on an older transaction's
2159  * checkpoint list we need to record it on this transaction's forget list
2160  * to pin this buffer (and hence its checkpointing transaction) down until
2161  * this transaction commits.  If the buffer isn't on a checkpoint list, we
2162  * release it.
2163  * Returns non-zero if JBD no longer has an interest in the buffer.
2164  *
2165  * Called under j_list_lock.
2166  *
2167  * Called under jh->b_state_lock.
2168  */
2169 static int __dispose_buffer(struct journal_head *jh, transaction_t *transaction)
2170 {
2171         int may_free = 1;
2172         struct buffer_head *bh = jh2bh(jh);
2173
2174         if (jh->b_cp_transaction) {
2175                 JBUFFER_TRACE(jh, "on running+cp transaction");
2176                 __jbd2_journal_temp_unlink_buffer(jh);
2177                 /*
2178                  * We don't want to write the buffer anymore, clear the
2179                  * bit so that we don't confuse checks in
2180                  * __journal_file_buffer
2181                  */
2182                 clear_buffer_dirty(bh);
2183                 __jbd2_journal_file_buffer(jh, transaction, BJ_Forget);
2184                 may_free = 0;
2185         } else {
2186                 JBUFFER_TRACE(jh, "on running transaction");
2187                 __jbd2_journal_unfile_buffer(jh);
2188                 jbd2_journal_put_journal_head(jh);
2189         }
2190         return may_free;
2191 }
2192
2193 /*
2194  * jbd2_journal_invalidatepage
2195  *
2196  * This code is tricky.  It has a number of cases to deal with.
2197  *
2198  * There are two invariants which this code relies on:
2199  *
2200  * i_size must be updated on disk before we start calling invalidatepage on the
2201  * data.
2202  *
2203  *  This is done in ext3 by defining an ext3_setattr method which
2204  *  updates i_size before truncate gets going.  By maintaining this
2205  *  invariant, we can be sure that it is safe to throw away any buffers
2206  *  attached to the current transaction: once the transaction commits,
2207  *  we know that the data will not be needed.
2208  *
2209  *  Note however that we can *not* throw away data belonging to the
2210  *  previous, committing transaction!
2211  *
2212  * Any disk blocks which *are* part of the previous, committing
2213  * transaction (and which therefore cannot be discarded immediately) are
2214  * not going to be reused in the new running transaction
2215  *
2216  *  The bitmap committed_data images guarantee this: any block which is
2217  *  allocated in one transaction and removed in the next will be marked
2218  *  as in-use in the committed_data bitmap, so cannot be reused until
2219  *  the next transaction to delete the block commits.  This means that
2220  *  leaving committing buffers dirty is quite safe: the disk blocks
2221  *  cannot be reallocated to a different file and so buffer aliasing is
2222  *  not possible.
2223  *
2224  *
2225  * The above applies mainly to ordered data mode.  In writeback mode we
2226  * don't make guarantees about the order in which data hits disk --- in
2227  * particular we don't guarantee that new dirty data is flushed before
2228  * transaction commit --- so it is always safe just to discard data
2229  * immediately in that mode.  --sct
2230  */
2231
2232 /*
2233  * The journal_unmap_buffer helper function returns zero if the buffer
2234  * concerned remains pinned as an anonymous buffer belonging to an older
2235  * transaction.
2236  *
2237  * We're outside-transaction here.  Either or both of j_running_transaction
2238  * and j_committing_transaction may be NULL.
2239  */
2240 static int journal_unmap_buffer(journal_t *journal, struct buffer_head *bh,
2241                                 int partial_page)
2242 {
2243         transaction_t *transaction;
2244         struct journal_head *jh;
2245         int may_free = 1;
2246
2247         BUFFER_TRACE(bh, "entry");
2248
2249         /*
2250          * It is safe to proceed here without the j_list_lock because the
2251          * buffers cannot be stolen by try_to_free_buffers as long as we are
2252          * holding the page lock. --sct
2253          */
2254
2255         jh = jbd2_journal_grab_journal_head(bh);
2256         if (!jh)
2257                 goto zap_buffer_unlocked;
2258
2259         /* OK, we have data buffer in journaled mode */
2260         write_lock(&journal->j_state_lock);
2261         spin_lock(&jh->b_state_lock);
2262         spin_lock(&journal->j_list_lock);
2263
2264         /*
2265          * We cannot remove the buffer from checkpoint lists until the
2266          * transaction adding inode to orphan list (let's call it T)
2267          * is committed.  Otherwise if the transaction changing the
2268          * buffer would be cleaned from the journal before T is
2269          * committed, a crash will cause that the correct contents of
2270          * the buffer will be lost.  On the other hand we have to
2271          * clear the buffer dirty bit at latest at the moment when the
2272          * transaction marking the buffer as freed in the filesystem
2273          * structures is committed because from that moment on the
2274          * block can be reallocated and used by a different page.
2275          * Since the block hasn't been freed yet but the inode has
2276          * already been added to orphan list, it is safe for us to add
2277          * the buffer to BJ_Forget list of the newest transaction.
2278          *
2279          * Also we have to clear buffer_mapped flag of a truncated buffer
2280          * because the buffer_head may be attached to the page straddling
2281          * i_size (can happen only when blocksize < pagesize) and thus the
2282          * buffer_head can be reused when the file is extended again. So we end
2283          * up keeping around invalidated buffers attached to transactions'
2284          * BJ_Forget list just to stop checkpointing code from cleaning up
2285          * the transaction this buffer was modified in.
2286          */
2287         transaction = jh->b_transaction;
2288         if (transaction == NULL) {
2289                 /* First case: not on any transaction.  If it
2290                  * has no checkpoint link, then we can zap it:
2291                  * it's a writeback-mode buffer so we don't care
2292                  * if it hits disk safely. */
2293                 if (!jh->b_cp_transaction) {
2294                         JBUFFER_TRACE(jh, "not on any transaction: zap");
2295                         goto zap_buffer;
2296                 }
2297
2298                 if (!buffer_dirty(bh)) {
2299                         /* bdflush has written it.  We can drop it now */
2300                         __jbd2_journal_remove_checkpoint(jh);
2301                         goto zap_buffer;
2302                 }
2303
2304                 /* OK, it must be in the journal but still not
2305                  * written fully to disk: it's metadata or
2306                  * journaled data... */
2307
2308                 if (journal->j_running_transaction) {
2309                         /* ... and once the current transaction has
2310                          * committed, the buffer won't be needed any
2311                          * longer. */
2312                         JBUFFER_TRACE(jh, "checkpointed: add to BJ_Forget");
2313                         may_free = __dispose_buffer(jh,
2314                                         journal->j_running_transaction);
2315                         goto zap_buffer;
2316                 } else {
2317                         /* There is no currently-running transaction. So the
2318                          * orphan record which we wrote for this file must have
2319                          * passed into commit.  We must attach this buffer to
2320                          * the committing transaction, if it exists. */
2321                         if (journal->j_committing_transaction) {
2322                                 JBUFFER_TRACE(jh, "give to committing trans");
2323                                 may_free = __dispose_buffer(jh,
2324                                         journal->j_committing_transaction);
2325                                 goto zap_buffer;
2326                         } else {
2327                                 /* The orphan record's transaction has
2328                                  * committed.  We can cleanse this buffer */
2329                                 clear_buffer_jbddirty(bh);
2330                                 __jbd2_journal_remove_checkpoint(jh);
2331                                 goto zap_buffer;
2332                         }
2333                 }
2334         } else if (transaction == journal->j_committing_transaction) {
2335                 JBUFFER_TRACE(jh, "on committing transaction");
2336                 /*
2337                  * The buffer is committing, we simply cannot touch
2338                  * it. If the page is straddling i_size we have to wait
2339                  * for commit and try again.
2340                  */
2341                 if (partial_page) {
2342                         spin_unlock(&journal->j_list_lock);
2343                         spin_unlock(&jh->b_state_lock);
2344                         write_unlock(&journal->j_state_lock);
2345                         jbd2_journal_put_journal_head(jh);
2346                         return -EBUSY;
2347                 }
2348                 /*
2349                  * OK, buffer won't be reachable after truncate. We just clear
2350                  * b_modified to not confuse transaction credit accounting, and
2351                  * set j_next_transaction to the running transaction (if there
2352                  * is one) and mark buffer as freed so that commit code knows
2353                  * it should clear dirty bits when it is done with the buffer.
2354                  */
2355                 set_buffer_freed(bh);
2356                 if (journal->j_running_transaction && buffer_jbddirty(bh))
2357                         jh->b_next_transaction = journal->j_running_transaction;
2358                 jh->b_modified = 0;
2359                 spin_unlock(&journal->j_list_lock);
2360                 spin_unlock(&jh->b_state_lock);
2361                 write_unlock(&journal->j_state_lock);
2362                 jbd2_journal_put_journal_head(jh);
2363                 return 0;
2364         } else {
2365                 /* Good, the buffer belongs to the running transaction.
2366                  * We are writing our own transaction's data, not any
2367                  * previous one's, so it is safe to throw it away
2368                  * (remember that we expect the filesystem to have set
2369                  * i_size already for this truncate so recovery will not
2370                  * expose the disk blocks we are discarding here.) */
2371                 J_ASSERT_JH(jh, transaction == journal->j_running_transaction);
2372                 JBUFFER_TRACE(jh, "on running transaction");
2373                 may_free = __dispose_buffer(jh, transaction);
2374         }
2375
2376 zap_buffer:
2377         /*
2378          * This is tricky. Although the buffer is truncated, it may be reused
2379          * if blocksize < pagesize and it is attached to the page straddling
2380          * EOF. Since the buffer might have been added to BJ_Forget list of the
2381          * running transaction, journal_get_write_access() won't clear
2382          * b_modified and credit accounting gets confused. So clear b_modified
2383          * here.
2384          */
2385         jh->b_modified = 0;
2386         spin_unlock(&journal->j_list_lock);
2387         spin_unlock(&jh->b_state_lock);
2388         write_unlock(&journal->j_state_lock);
2389         jbd2_journal_put_journal_head(jh);
2390 zap_buffer_unlocked:
2391         clear_buffer_dirty(bh);
2392         J_ASSERT_BH(bh, !buffer_jbddirty(bh));
2393         clear_buffer_mapped(bh);
2394         clear_buffer_req(bh);
2395         clear_buffer_new(bh);
2396         clear_buffer_delay(bh);
2397         clear_buffer_unwritten(bh);
2398         bh->b_bdev = NULL;
2399         return may_free;
2400 }
2401
2402 /**
2403  * jbd2_journal_invalidatepage()
2404  * @journal: journal to use for flush...
2405  * @page:    page to flush
2406  * @offset:  start of the range to invalidate
2407  * @length:  length of the range to invalidate
2408  *
2409  * Reap page buffers containing data after in the specified range in page.
2410  * Can return -EBUSY if buffers are part of the committing transaction and
2411  * the page is straddling i_size. Caller then has to wait for current commit
2412  * and try again.
2413  */
2414 int jbd2_journal_invalidatepage(journal_t *journal,
2415                                 struct page *page,
2416                                 unsigned int offset,
2417                                 unsigned int length)
2418 {
2419         struct buffer_head *head, *bh, *next;
2420         unsigned int stop = offset + length;
2421         unsigned int curr_off = 0;
2422         int partial_page = (offset || length < PAGE_SIZE);
2423         int may_free = 1;
2424         int ret = 0;
2425
2426         if (!PageLocked(page))
2427                 BUG();
2428         if (!page_has_buffers(page))
2429                 return 0;
2430
2431         BUG_ON(stop > PAGE_SIZE || stop < length);
2432
2433         /* We will potentially be playing with lists other than just the
2434          * data lists (especially for journaled data mode), so be
2435          * cautious in our locking. */
2436
2437         head = bh = page_buffers(page);
2438         do {
2439                 unsigned int next_off = curr_off + bh->b_size;
2440                 next = bh->b_this_page;
2441
2442                 if (next_off > stop)
2443                         return 0;
2444
2445                 if (offset <= curr_off) {
2446                         /* This block is wholly outside the truncation point */
2447                         lock_buffer(bh);
2448                         ret = journal_unmap_buffer(journal, bh, partial_page);
2449                         unlock_buffer(bh);
2450                         if (ret < 0)
2451                                 return ret;
2452                         may_free &= ret;
2453                 }
2454                 curr_off = next_off;
2455                 bh = next;
2456
2457         } while (bh != head);
2458
2459         if (!partial_page) {
2460                 if (may_free && try_to_free_buffers(page))
2461                         J_ASSERT(!page_has_buffers(page));
2462         }
2463         return 0;
2464 }
2465
2466 /*
2467  * File a buffer on the given transaction list.
2468  */
2469 void __jbd2_journal_file_buffer(struct journal_head *jh,
2470                         transaction_t *transaction, int jlist)
2471 {
2472         struct journal_head **list = NULL;
2473         int was_dirty = 0;
2474         struct buffer_head *bh = jh2bh(jh);
2475
2476         lockdep_assert_held(&jh->b_state_lock);
2477         assert_spin_locked(&transaction->t_journal->j_list_lock);
2478
2479         J_ASSERT_JH(jh, jh->b_jlist < BJ_Types);
2480         J_ASSERT_JH(jh, jh->b_transaction == transaction ||
2481                                 jh->b_transaction == NULL);
2482
2483         if (jh->b_transaction && jh->b_jlist == jlist)
2484                 return;
2485
2486         if (jlist == BJ_Metadata || jlist == BJ_Reserved ||
2487             jlist == BJ_Shadow || jlist == BJ_Forget) {
2488                 /*
2489                  * For metadata buffers, we track dirty bit in buffer_jbddirty
2490                  * instead of buffer_dirty. We should not see a dirty bit set
2491                  * here because we clear it in do_get_write_access but e.g.
2492                  * tune2fs can modify the sb and set the dirty bit at any time
2493                  * so we try to gracefully handle that.
2494                  */
2495                 if (buffer_dirty(bh))
2496                         warn_dirty_buffer(bh);
2497                 if (test_clear_buffer_dirty(bh) ||
2498                     test_clear_buffer_jbddirty(bh))
2499                         was_dirty = 1;
2500         }
2501
2502         if (jh->b_transaction)
2503                 __jbd2_journal_temp_unlink_buffer(jh);
2504         else
2505                 jbd2_journal_grab_journal_head(bh);
2506         jh->b_transaction = transaction;
2507
2508         switch (jlist) {
2509         case BJ_None:
2510                 J_ASSERT_JH(jh, !jh->b_committed_data);
2511                 J_ASSERT_JH(jh, !jh->b_frozen_data);
2512                 return;
2513         case BJ_Metadata:
2514                 transaction->t_nr_buffers++;
2515                 list = &transaction->t_buffers;
2516                 break;
2517         case BJ_Forget:
2518                 list = &transaction->t_forget;
2519                 break;
2520         case BJ_Shadow:
2521                 list = &transaction->t_shadow_list;
2522                 break;
2523         case BJ_Reserved:
2524                 list = &transaction->t_reserved_list;
2525                 break;
2526         }
2527
2528         __blist_add_buffer(list, jh);
2529         jh->b_jlist = jlist;
2530
2531         if (was_dirty)
2532                 set_buffer_jbddirty(bh);
2533 }
2534
2535 void jbd2_journal_file_buffer(struct journal_head *jh,
2536                                 transaction_t *transaction, int jlist)
2537 {
2538         spin_lock(&jh->b_state_lock);
2539         spin_lock(&transaction->t_journal->j_list_lock);
2540         __jbd2_journal_file_buffer(jh, transaction, jlist);
2541         spin_unlock(&transaction->t_journal->j_list_lock);
2542         spin_unlock(&jh->b_state_lock);
2543 }
2544
2545 /*
2546  * Remove a buffer from its current buffer list in preparation for
2547  * dropping it from its current transaction entirely.  If the buffer has
2548  * already started to be used by a subsequent transaction, refile the
2549  * buffer on that transaction's metadata list.
2550  *
2551  * Called under j_list_lock
2552  * Called under jh->b_state_lock
2553  *
2554  * When this function returns true, there's no next transaction to refile to
2555  * and the caller has to drop jh reference through
2556  * jbd2_journal_put_journal_head().
2557  */
2558 bool __jbd2_journal_refile_buffer(struct journal_head *jh)
2559 {
2560         int was_dirty, jlist;
2561         struct buffer_head *bh = jh2bh(jh);
2562
2563         lockdep_assert_held(&jh->b_state_lock);
2564         if (jh->b_transaction)
2565                 assert_spin_locked(&jh->b_transaction->t_journal->j_list_lock);
2566
2567         /* If the buffer is now unused, just drop it. */
2568         if (jh->b_next_transaction == NULL) {
2569                 __jbd2_journal_unfile_buffer(jh);
2570                 return true;
2571         }
2572
2573         /*
2574          * It has been modified by a later transaction: add it to the new
2575          * transaction's metadata list.
2576          */
2577
2578         was_dirty = test_clear_buffer_jbddirty(bh);
2579         __jbd2_journal_temp_unlink_buffer(jh);
2580
2581         /*
2582          * b_transaction must be set, otherwise the new b_transaction won't
2583          * be holding jh reference
2584          */
2585         J_ASSERT_JH(jh, jh->b_transaction != NULL);
2586
2587         /*
2588          * We set b_transaction here because b_next_transaction will inherit
2589          * our jh reference and thus __jbd2_journal_file_buffer() must not
2590          * take a new one.
2591          */
2592         WRITE_ONCE(jh->b_transaction, jh->b_next_transaction);
2593         WRITE_ONCE(jh->b_next_transaction, NULL);
2594         if (buffer_freed(bh))
2595                 jlist = BJ_Forget;
2596         else if (jh->b_modified)
2597                 jlist = BJ_Metadata;
2598         else
2599                 jlist = BJ_Reserved;
2600         __jbd2_journal_file_buffer(jh, jh->b_transaction, jlist);
2601         J_ASSERT_JH(jh, jh->b_transaction->t_state == T_RUNNING);
2602
2603         if (was_dirty)
2604                 set_buffer_jbddirty(bh);
2605         return false;
2606 }
2607
2608 /*
2609  * __jbd2_journal_refile_buffer() with necessary locking added. We take our
2610  * bh reference so that we can safely unlock bh.
2611  *
2612  * The jh and bh may be freed by this call.
2613  */
2614 void jbd2_journal_refile_buffer(journal_t *journal, struct journal_head *jh)
2615 {
2616         bool drop;
2617
2618         spin_lock(&jh->b_state_lock);
2619         spin_lock(&journal->j_list_lock);
2620         drop = __jbd2_journal_refile_buffer(jh);
2621         spin_unlock(&jh->b_state_lock);
2622         spin_unlock(&journal->j_list_lock);
2623         if (drop)
2624                 jbd2_journal_put_journal_head(jh);
2625 }
2626
2627 /*
2628  * File inode in the inode list of the handle's transaction
2629  */
2630 static int jbd2_journal_file_inode(handle_t *handle, struct jbd2_inode *jinode,
2631                 unsigned long flags, loff_t start_byte, loff_t end_byte)
2632 {
2633         transaction_t *transaction = handle->h_transaction;
2634         journal_t *journal;
2635
2636         if (is_handle_aborted(handle))
2637                 return -EROFS;
2638         journal = transaction->t_journal;
2639
2640         jbd_debug(4, "Adding inode %lu, tid:%d\n", jinode->i_vfs_inode->i_ino,
2641                         transaction->t_tid);
2642
2643         spin_lock(&journal->j_list_lock);
2644         jinode->i_flags |= flags;
2645
2646         if (jinode->i_dirty_end) {
2647                 jinode->i_dirty_start = min(jinode->i_dirty_start, start_byte);
2648                 jinode->i_dirty_end = max(jinode->i_dirty_end, end_byte);
2649         } else {
2650                 jinode->i_dirty_start = start_byte;
2651                 jinode->i_dirty_end = end_byte;
2652         }
2653
2654         /* Is inode already attached where we need it? */
2655         if (jinode->i_transaction == transaction ||
2656             jinode->i_next_transaction == transaction)
2657                 goto done;
2658
2659         /*
2660          * We only ever set this variable to 1 so the test is safe. Since
2661          * t_need_data_flush is likely to be set, we do the test to save some
2662          * cacheline bouncing
2663          */
2664         if (!transaction->t_need_data_flush)
2665                 transaction->t_need_data_flush = 1;
2666         /* On some different transaction's list - should be
2667          * the committing one */
2668         if (jinode->i_transaction) {
2669                 J_ASSERT(jinode->i_next_transaction == NULL);
2670                 J_ASSERT(jinode->i_transaction ==
2671                                         journal->j_committing_transaction);
2672                 jinode->i_next_transaction = transaction;
2673                 goto done;
2674         }
2675         /* Not on any transaction list... */
2676         J_ASSERT(!jinode->i_next_transaction);
2677         jinode->i_transaction = transaction;
2678         list_add(&jinode->i_list, &transaction->t_inode_list);
2679 done:
2680         spin_unlock(&journal->j_list_lock);
2681
2682         return 0;
2683 }
2684
2685 int jbd2_journal_inode_ranged_write(handle_t *handle,
2686                 struct jbd2_inode *jinode, loff_t start_byte, loff_t length)
2687 {
2688         return jbd2_journal_file_inode(handle, jinode,
2689                         JI_WRITE_DATA | JI_WAIT_DATA, start_byte,
2690                         start_byte + length - 1);
2691 }
2692
2693 int jbd2_journal_inode_ranged_wait(handle_t *handle, struct jbd2_inode *jinode,
2694                 loff_t start_byte, loff_t length)
2695 {
2696         return jbd2_journal_file_inode(handle, jinode, JI_WAIT_DATA,
2697                         start_byte, start_byte + length - 1);
2698 }
2699
2700 /*
2701  * File truncate and transaction commit interact with each other in a
2702  * non-trivial way.  If a transaction writing data block A is
2703  * committing, we cannot discard the data by truncate until we have
2704  * written them.  Otherwise if we crashed after the transaction with
2705  * write has committed but before the transaction with truncate has
2706  * committed, we could see stale data in block A.  This function is a
2707  * helper to solve this problem.  It starts writeout of the truncated
2708  * part in case it is in the committing transaction.
2709  *
2710  * Filesystem code must call this function when inode is journaled in
2711  * ordered mode before truncation happens and after the inode has been
2712  * placed on orphan list with the new inode size. The second condition
2713  * avoids the race that someone writes new data and we start
2714  * committing the transaction after this function has been called but
2715  * before a transaction for truncate is started (and furthermore it
2716  * allows us to optimize the case where the addition to orphan list
2717  * happens in the same transaction as write --- we don't have to write
2718  * any data in such case).
2719  */
2720 int jbd2_journal_begin_ordered_truncate(journal_t *journal,
2721                                         struct jbd2_inode *jinode,
2722                                         loff_t new_size)
2723 {
2724         transaction_t *inode_trans, *commit_trans;
2725         int ret = 0;
2726
2727         /* This is a quick check to avoid locking if not necessary */
2728         if (!jinode->i_transaction)
2729                 goto out;
2730         /* Locks are here just to force reading of recent values, it is
2731          * enough that the transaction was not committing before we started
2732          * a transaction adding the inode to orphan list */
2733         read_lock(&journal->j_state_lock);
2734         commit_trans = journal->j_committing_transaction;
2735         read_unlock(&journal->j_state_lock);
2736         spin_lock(&journal->j_list_lock);
2737         inode_trans = jinode->i_transaction;
2738         spin_unlock(&journal->j_list_lock);
2739         if (inode_trans == commit_trans) {
2740                 ret = filemap_fdatawrite_range(jinode->i_vfs_inode->i_mapping,
2741                         new_size, LLONG_MAX);
2742                 if (ret)
2743                         jbd2_journal_abort(journal, ret);
2744         }
2745 out:
2746         return ret;
2747 }