Linux 6.9-rc1
[linux-2.6-microblaze.git] / fs / jbd2 / transaction.c
1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3  * linux/fs/jbd2/transaction.c
4  *
5  * Written by Stephen C. Tweedie <sct@redhat.com>, 1998
6  *
7  * Copyright 1998 Red Hat corp --- All Rights Reserved
8  *
9  * Generic filesystem transaction handling code; part of the ext2fs
10  * journaling system.
11  *
12  * This file manages transactions (compound commits managed by the
13  * journaling code) and handles (individual atomic operations by the
14  * filesystem).
15  */
16
17 #include <linux/time.h>
18 #include <linux/fs.h>
19 #include <linux/jbd2.h>
20 #include <linux/errno.h>
21 #include <linux/slab.h>
22 #include <linux/timer.h>
23 #include <linux/mm.h>
24 #include <linux/highmem.h>
25 #include <linux/hrtimer.h>
26 #include <linux/backing-dev.h>
27 #include <linux/bug.h>
28 #include <linux/module.h>
29 #include <linux/sched/mm.h>
30
31 #include <trace/events/jbd2.h>
32
33 static void __jbd2_journal_temp_unlink_buffer(struct journal_head *jh);
34 static void __jbd2_journal_unfile_buffer(struct journal_head *jh);
35
36 static struct kmem_cache *transaction_cache;
37 int __init jbd2_journal_init_transaction_cache(void)
38 {
39         J_ASSERT(!transaction_cache);
40         transaction_cache = kmem_cache_create("jbd2_transaction_s",
41                                         sizeof(transaction_t),
42                                         0,
43                                         SLAB_HWCACHE_ALIGN|SLAB_TEMPORARY,
44                                         NULL);
45         if (!transaction_cache) {
46                 pr_emerg("JBD2: failed to create transaction cache\n");
47                 return -ENOMEM;
48         }
49         return 0;
50 }
51
52 void jbd2_journal_destroy_transaction_cache(void)
53 {
54         kmem_cache_destroy(transaction_cache);
55         transaction_cache = NULL;
56 }
57
58 void jbd2_journal_free_transaction(transaction_t *transaction)
59 {
60         if (unlikely(ZERO_OR_NULL_PTR(transaction)))
61                 return;
62         kmem_cache_free(transaction_cache, transaction);
63 }
64
65 /*
66  * Base amount of descriptor blocks we reserve for each transaction.
67  */
68 static int jbd2_descriptor_blocks_per_trans(journal_t *journal)
69 {
70         int tag_space = journal->j_blocksize - sizeof(journal_header_t);
71         int tags_per_block;
72
73         /* Subtract UUID */
74         tag_space -= 16;
75         if (jbd2_journal_has_csum_v2or3(journal))
76                 tag_space -= sizeof(struct jbd2_journal_block_tail);
77         /* Commit code leaves a slack space of 16 bytes at the end of block */
78         tags_per_block = (tag_space - 16) / journal_tag_bytes(journal);
79         /*
80          * Revoke descriptors are accounted separately so we need to reserve
81          * space for commit block and normal transaction descriptor blocks.
82          */
83         return 1 + DIV_ROUND_UP(journal->j_max_transaction_buffers,
84                                 tags_per_block);
85 }
86
87 /*
88  * jbd2_get_transaction: obtain a new transaction_t object.
89  *
90  * Simply initialise a new transaction. Initialize it in
91  * RUNNING state and add it to the current journal (which should not
92  * have an existing running transaction: we only make a new transaction
93  * once we have started to commit the old one).
94  *
95  * Preconditions:
96  *      The journal MUST be locked.  We don't perform atomic mallocs on the
97  *      new transaction and we can't block without protecting against other
98  *      processes trying to touch the journal while it is in transition.
99  *
100  */
101
102 static void jbd2_get_transaction(journal_t *journal,
103                                 transaction_t *transaction)
104 {
105         transaction->t_journal = journal;
106         transaction->t_state = T_RUNNING;
107         transaction->t_start_time = ktime_get();
108         transaction->t_tid = journal->j_transaction_sequence++;
109         transaction->t_expires = jiffies + journal->j_commit_interval;
110         spin_lock_init(&transaction->t_handle_lock);
111         atomic_set(&transaction->t_updates, 0);
112         atomic_set(&transaction->t_outstanding_credits,
113                    jbd2_descriptor_blocks_per_trans(journal) +
114                    atomic_read(&journal->j_reserved_credits));
115         atomic_set(&transaction->t_outstanding_revokes, 0);
116         atomic_set(&transaction->t_handle_count, 0);
117         INIT_LIST_HEAD(&transaction->t_inode_list);
118         INIT_LIST_HEAD(&transaction->t_private_list);
119
120         /* Set up the commit timer for the new transaction. */
121         journal->j_commit_timer.expires = round_jiffies_up(transaction->t_expires);
122         add_timer(&journal->j_commit_timer);
123
124         J_ASSERT(journal->j_running_transaction == NULL);
125         journal->j_running_transaction = transaction;
126         transaction->t_max_wait = 0;
127         transaction->t_start = jiffies;
128         transaction->t_requested = 0;
129 }
130
131 /*
132  * Handle management.
133  *
134  * A handle_t is an object which represents a single atomic update to a
135  * filesystem, and which tracks all of the modifications which form part
136  * of that one update.
137  */
138
139 /*
140  * Update transaction's maximum wait time, if debugging is enabled.
141  *
142  * In order for t_max_wait to be reliable, it must be protected by a
143  * lock.  But doing so will mean that start_this_handle() can not be
144  * run in parallel on SMP systems, which limits our scalability.  So
145  * unless debugging is enabled, we no longer update t_max_wait, which
146  * means that maximum wait time reported by the jbd2_run_stats
147  * tracepoint will always be zero.
148  */
149 static inline void update_t_max_wait(transaction_t *transaction,
150                                      unsigned long ts)
151 {
152 #ifdef CONFIG_JBD2_DEBUG
153         if (jbd2_journal_enable_debug &&
154             time_after(transaction->t_start, ts)) {
155                 ts = jbd2_time_diff(ts, transaction->t_start);
156                 spin_lock(&transaction->t_handle_lock);
157                 if (ts > transaction->t_max_wait)
158                         transaction->t_max_wait = ts;
159                 spin_unlock(&transaction->t_handle_lock);
160         }
161 #endif
162 }
163
164 /*
165  * Wait until running transaction passes to T_FLUSH state and new transaction
166  * can thus be started. Also starts the commit if needed. The function expects
167  * running transaction to exist and releases j_state_lock.
168  */
169 static void wait_transaction_locked(journal_t *journal)
170         __releases(journal->j_state_lock)
171 {
172         DEFINE_WAIT(wait);
173         int need_to_start;
174         tid_t tid = journal->j_running_transaction->t_tid;
175
176         prepare_to_wait(&journal->j_wait_transaction_locked, &wait,
177                         TASK_UNINTERRUPTIBLE);
178         need_to_start = !tid_geq(journal->j_commit_request, tid);
179         read_unlock(&journal->j_state_lock);
180         if (need_to_start)
181                 jbd2_log_start_commit(journal, tid);
182         jbd2_might_wait_for_commit(journal);
183         schedule();
184         finish_wait(&journal->j_wait_transaction_locked, &wait);
185 }
186
187 /*
188  * Wait until running transaction transitions from T_SWITCH to T_FLUSH
189  * state and new transaction can thus be started. The function releases
190  * j_state_lock.
191  */
192 static void wait_transaction_switching(journal_t *journal)
193         __releases(journal->j_state_lock)
194 {
195         DEFINE_WAIT(wait);
196
197         if (WARN_ON(!journal->j_running_transaction ||
198                     journal->j_running_transaction->t_state != T_SWITCH)) {
199                 read_unlock(&journal->j_state_lock);
200                 return;
201         }
202         prepare_to_wait(&journal->j_wait_transaction_locked, &wait,
203                         TASK_UNINTERRUPTIBLE);
204         read_unlock(&journal->j_state_lock);
205         /*
206          * We don't call jbd2_might_wait_for_commit() here as there's no
207          * waiting for outstanding handles happening anymore in T_SWITCH state
208          * and handling of reserved handles actually relies on that for
209          * correctness.
210          */
211         schedule();
212         finish_wait(&journal->j_wait_transaction_locked, &wait);
213 }
214
215 static void sub_reserved_credits(journal_t *journal, int blocks)
216 {
217         atomic_sub(blocks, &journal->j_reserved_credits);
218         wake_up(&journal->j_wait_reserved);
219 }
220
221 /*
222  * Wait until we can add credits for handle to the running transaction.  Called
223  * with j_state_lock held for reading. Returns 0 if handle joined the running
224  * transaction. Returns 1 if we had to wait, j_state_lock is dropped, and
225  * caller must retry.
226  *
227  * Note: because j_state_lock may be dropped depending on the return
228  * value, we need to fake out sparse so ti doesn't complain about a
229  * locking imbalance.  Callers of add_transaction_credits will need to
230  * make a similar accomodation.
231  */
232 static int add_transaction_credits(journal_t *journal, int blocks,
233                                    int rsv_blocks)
234 __must_hold(&journal->j_state_lock)
235 {
236         transaction_t *t = journal->j_running_transaction;
237         int needed;
238         int total = blocks + rsv_blocks;
239
240         /*
241          * If the current transaction is locked down for commit, wait
242          * for the lock to be released.
243          */
244         if (t->t_state != T_RUNNING) {
245                 WARN_ON_ONCE(t->t_state >= T_FLUSH);
246                 wait_transaction_locked(journal);
247                 __acquire(&journal->j_state_lock); /* fake out sparse */
248                 return 1;
249         }
250
251         /*
252          * If there is not enough space left in the log to write all
253          * potential buffers requested by this operation, we need to
254          * stall pending a log checkpoint to free some more log space.
255          */
256         needed = atomic_add_return(total, &t->t_outstanding_credits);
257         if (needed > journal->j_max_transaction_buffers) {
258                 /*
259                  * If the current transaction is already too large,
260                  * then start to commit it: we can then go back and
261                  * attach this handle to a new transaction.
262                  */
263                 atomic_sub(total, &t->t_outstanding_credits);
264
265                 /*
266                  * Is the number of reserved credits in the current transaction too
267                  * big to fit this handle? Wait until reserved credits are freed.
268                  */
269                 if (atomic_read(&journal->j_reserved_credits) + total >
270                     journal->j_max_transaction_buffers) {
271                         read_unlock(&journal->j_state_lock);
272                         jbd2_might_wait_for_commit(journal);
273                         wait_event(journal->j_wait_reserved,
274                                    atomic_read(&journal->j_reserved_credits) + total <=
275                                    journal->j_max_transaction_buffers);
276                         __acquire(&journal->j_state_lock); /* fake out sparse */
277                         return 1;
278                 }
279
280                 wait_transaction_locked(journal);
281                 __acquire(&journal->j_state_lock); /* fake out sparse */
282                 return 1;
283         }
284
285         /*
286          * The commit code assumes that it can get enough log space
287          * without forcing a checkpoint.  This is *critical* for
288          * correctness: a checkpoint of a buffer which is also
289          * associated with a committing transaction creates a deadlock,
290          * so commit simply cannot force through checkpoints.
291          *
292          * We must therefore ensure the necessary space in the journal
293          * *before* starting to dirty potentially checkpointed buffers
294          * in the new transaction.
295          */
296         if (jbd2_log_space_left(journal) < journal->j_max_transaction_buffers) {
297                 atomic_sub(total, &t->t_outstanding_credits);
298                 read_unlock(&journal->j_state_lock);
299                 jbd2_might_wait_for_commit(journal);
300                 write_lock(&journal->j_state_lock);
301                 if (jbd2_log_space_left(journal) <
302                                         journal->j_max_transaction_buffers)
303                         __jbd2_log_wait_for_space(journal);
304                 write_unlock(&journal->j_state_lock);
305                 __acquire(&journal->j_state_lock); /* fake out sparse */
306                 return 1;
307         }
308
309         /* No reservation? We are done... */
310         if (!rsv_blocks)
311                 return 0;
312
313         needed = atomic_add_return(rsv_blocks, &journal->j_reserved_credits);
314         /* We allow at most half of a transaction to be reserved */
315         if (needed > journal->j_max_transaction_buffers / 2) {
316                 sub_reserved_credits(journal, rsv_blocks);
317                 atomic_sub(total, &t->t_outstanding_credits);
318                 read_unlock(&journal->j_state_lock);
319                 jbd2_might_wait_for_commit(journal);
320                 wait_event(journal->j_wait_reserved,
321                          atomic_read(&journal->j_reserved_credits) + rsv_blocks
322                          <= journal->j_max_transaction_buffers / 2);
323                 __acquire(&journal->j_state_lock); /* fake out sparse */
324                 return 1;
325         }
326         return 0;
327 }
328
329 /*
330  * start_this_handle: Given a handle, deal with any locking or stalling
331  * needed to make sure that there is enough journal space for the handle
332  * to begin.  Attach the handle to a transaction and set up the
333  * transaction's buffer credits.
334  */
335
336 static int start_this_handle(journal_t *journal, handle_t *handle,
337                              gfp_t gfp_mask)
338 {
339         transaction_t   *transaction, *new_transaction = NULL;
340         int             blocks = handle->h_total_credits;
341         int             rsv_blocks = 0;
342         unsigned long ts = jiffies;
343
344         if (handle->h_rsv_handle)
345                 rsv_blocks = handle->h_rsv_handle->h_total_credits;
346
347         /*
348          * Limit the number of reserved credits to 1/2 of maximum transaction
349          * size and limit the number of total credits to not exceed maximum
350          * transaction size per operation.
351          */
352         if ((rsv_blocks > journal->j_max_transaction_buffers / 2) ||
353             (rsv_blocks + blocks > journal->j_max_transaction_buffers)) {
354                 printk(KERN_ERR "JBD2: %s wants too many credits "
355                        "credits:%d rsv_credits:%d max:%d\n",
356                        current->comm, blocks, rsv_blocks,
357                        journal->j_max_transaction_buffers);
358                 WARN_ON(1);
359                 return -ENOSPC;
360         }
361
362 alloc_transaction:
363         /*
364          * This check is racy but it is just an optimization of allocating new
365          * transaction early if there are high chances we'll need it. If we
366          * guess wrong, we'll retry or free unused transaction.
367          */
368         if (!data_race(journal->j_running_transaction)) {
369                 /*
370                  * If __GFP_FS is not present, then we may be being called from
371                  * inside the fs writeback layer, so we MUST NOT fail.
372                  */
373                 if ((gfp_mask & __GFP_FS) == 0)
374                         gfp_mask |= __GFP_NOFAIL;
375                 new_transaction = kmem_cache_zalloc(transaction_cache,
376                                                     gfp_mask);
377                 if (!new_transaction)
378                         return -ENOMEM;
379         }
380
381         jbd_debug(3, "New handle %p going live.\n", handle);
382
383         /*
384          * We need to hold j_state_lock until t_updates has been incremented,
385          * for proper journal barrier handling
386          */
387 repeat:
388         read_lock(&journal->j_state_lock);
389         BUG_ON(journal->j_flags & JBD2_UNMOUNT);
390         if (is_journal_aborted(journal) ||
391             (journal->j_errno != 0 && !(journal->j_flags & JBD2_ACK_ERR))) {
392                 read_unlock(&journal->j_state_lock);
393                 jbd2_journal_free_transaction(new_transaction);
394                 return -EROFS;
395         }
396
397         /*
398          * Wait on the journal's transaction barrier if necessary. Specifically
399          * we allow reserved handles to proceed because otherwise commit could
400          * deadlock on page writeback not being able to complete.
401          */
402         if (!handle->h_reserved && journal->j_barrier_count) {
403                 read_unlock(&journal->j_state_lock);
404                 wait_event(journal->j_wait_transaction_locked,
405                                 journal->j_barrier_count == 0);
406                 goto repeat;
407         }
408
409         if (!journal->j_running_transaction) {
410                 read_unlock(&journal->j_state_lock);
411                 if (!new_transaction)
412                         goto alloc_transaction;
413                 write_lock(&journal->j_state_lock);
414                 if (!journal->j_running_transaction &&
415                     (handle->h_reserved || !journal->j_barrier_count)) {
416                         jbd2_get_transaction(journal, new_transaction);
417                         new_transaction = NULL;
418                 }
419                 write_unlock(&journal->j_state_lock);
420                 goto repeat;
421         }
422
423         transaction = journal->j_running_transaction;
424
425         if (!handle->h_reserved) {
426                 /* We may have dropped j_state_lock - restart in that case */
427                 if (add_transaction_credits(journal, blocks, rsv_blocks)) {
428                         /*
429                          * add_transaction_credits releases
430                          * j_state_lock on a non-zero return
431                          */
432                         __release(&journal->j_state_lock);
433                         goto repeat;
434                 }
435         } else {
436                 /*
437                  * We have handle reserved so we are allowed to join T_LOCKED
438                  * transaction and we don't have to check for transaction size
439                  * and journal space. But we still have to wait while running
440                  * transaction is being switched to a committing one as it
441                  * won't wait for any handles anymore.
442                  */
443                 if (transaction->t_state == T_SWITCH) {
444                         wait_transaction_switching(journal);
445                         goto repeat;
446                 }
447                 sub_reserved_credits(journal, blocks);
448                 handle->h_reserved = 0;
449         }
450
451         /* OK, account for the buffers that this operation expects to
452          * use and add the handle to the running transaction. 
453          */
454         update_t_max_wait(transaction, ts);
455         handle->h_transaction = transaction;
456         handle->h_requested_credits = blocks;
457         handle->h_revoke_credits_requested = handle->h_revoke_credits;
458         handle->h_start_jiffies = jiffies;
459         atomic_inc(&transaction->t_updates);
460         atomic_inc(&transaction->t_handle_count);
461         jbd_debug(4, "Handle %p given %d credits (total %d, free %lu)\n",
462                   handle, blocks,
463                   atomic_read(&transaction->t_outstanding_credits),
464                   jbd2_log_space_left(journal));
465         read_unlock(&journal->j_state_lock);
466         current->journal_info = handle;
467
468         rwsem_acquire_read(&journal->j_trans_commit_map, 0, 0, _THIS_IP_);
469         jbd2_journal_free_transaction(new_transaction);
470         /*
471          * Ensure that no allocations done while the transaction is open are
472          * going to recurse back to the fs layer.
473          */
474         handle->saved_alloc_context = memalloc_nofs_save();
475         return 0;
476 }
477
478 /* Allocate a new handle.  This should probably be in a slab... */
479 static handle_t *new_handle(int nblocks)
480 {
481         handle_t *handle = jbd2_alloc_handle(GFP_NOFS);
482         if (!handle)
483                 return NULL;
484         handle->h_total_credits = nblocks;
485         handle->h_ref = 1;
486
487         return handle;
488 }
489
490 handle_t *jbd2__journal_start(journal_t *journal, int nblocks, int rsv_blocks,
491                               int revoke_records, gfp_t gfp_mask,
492                               unsigned int type, unsigned int line_no)
493 {
494         handle_t *handle = journal_current_handle();
495         int err;
496
497         if (!journal)
498                 return ERR_PTR(-EROFS);
499
500         if (handle) {
501                 J_ASSERT(handle->h_transaction->t_journal == journal);
502                 handle->h_ref++;
503                 return handle;
504         }
505
506         nblocks += DIV_ROUND_UP(revoke_records,
507                                 journal->j_revoke_records_per_block);
508         handle = new_handle(nblocks);
509         if (!handle)
510                 return ERR_PTR(-ENOMEM);
511         if (rsv_blocks) {
512                 handle_t *rsv_handle;
513
514                 rsv_handle = new_handle(rsv_blocks);
515                 if (!rsv_handle) {
516                         jbd2_free_handle(handle);
517                         return ERR_PTR(-ENOMEM);
518                 }
519                 rsv_handle->h_reserved = 1;
520                 rsv_handle->h_journal = journal;
521                 handle->h_rsv_handle = rsv_handle;
522         }
523         handle->h_revoke_credits = revoke_records;
524
525         err = start_this_handle(journal, handle, gfp_mask);
526         if (err < 0) {
527                 if (handle->h_rsv_handle)
528                         jbd2_free_handle(handle->h_rsv_handle);
529                 jbd2_free_handle(handle);
530                 return ERR_PTR(err);
531         }
532         handle->h_type = type;
533         handle->h_line_no = line_no;
534         trace_jbd2_handle_start(journal->j_fs_dev->bd_dev,
535                                 handle->h_transaction->t_tid, type,
536                                 line_no, nblocks);
537
538         return handle;
539 }
540 EXPORT_SYMBOL(jbd2__journal_start);
541
542
543 /**
544  * jbd2_journal_start() - Obtain a new handle.
545  * @journal: Journal to start transaction on.
546  * @nblocks: number of block buffer we might modify
547  *
548  * We make sure that the transaction can guarantee at least nblocks of
549  * modified buffers in the log.  We block until the log can guarantee
550  * that much space. Additionally, if rsv_blocks > 0, we also create another
551  * handle with rsv_blocks reserved blocks in the journal. This handle is
552  * stored in h_rsv_handle. It is not attached to any particular transaction
553  * and thus doesn't block transaction commit. If the caller uses this reserved
554  * handle, it has to set h_rsv_handle to NULL as otherwise jbd2_journal_stop()
555  * on the parent handle will dispose the reserved one. Reserved handle has to
556  * be converted to a normal handle using jbd2_journal_start_reserved() before
557  * it can be used.
558  *
559  * Return a pointer to a newly allocated handle, or an ERR_PTR() value
560  * on failure.
561  */
562 handle_t *jbd2_journal_start(journal_t *journal, int nblocks)
563 {
564         return jbd2__journal_start(journal, nblocks, 0, 0, GFP_NOFS, 0, 0);
565 }
566 EXPORT_SYMBOL(jbd2_journal_start);
567
568 static void __jbd2_journal_unreserve_handle(handle_t *handle, transaction_t *t)
569 {
570         journal_t *journal = handle->h_journal;
571
572         WARN_ON(!handle->h_reserved);
573         sub_reserved_credits(journal, handle->h_total_credits);
574         if (t)
575                 atomic_sub(handle->h_total_credits, &t->t_outstanding_credits);
576 }
577
578 void jbd2_journal_free_reserved(handle_t *handle)
579 {
580         journal_t *journal = handle->h_journal;
581
582         /* Get j_state_lock to pin running transaction if it exists */
583         read_lock(&journal->j_state_lock);
584         __jbd2_journal_unreserve_handle(handle, journal->j_running_transaction);
585         read_unlock(&journal->j_state_lock);
586         jbd2_free_handle(handle);
587 }
588 EXPORT_SYMBOL(jbd2_journal_free_reserved);
589
590 /**
591  * jbd2_journal_start_reserved() - start reserved handle
592  * @handle: handle to start
593  * @type: for handle statistics
594  * @line_no: for handle statistics
595  *
596  * Start handle that has been previously reserved with jbd2_journal_reserve().
597  * This attaches @handle to the running transaction (or creates one if there's
598  * not transaction running). Unlike jbd2_journal_start() this function cannot
599  * block on journal commit, checkpointing, or similar stuff. It can block on
600  * memory allocation or frozen journal though.
601  *
602  * Return 0 on success, non-zero on error - handle is freed in that case.
603  */
604 int jbd2_journal_start_reserved(handle_t *handle, unsigned int type,
605                                 unsigned int line_no)
606 {
607         journal_t *journal = handle->h_journal;
608         int ret = -EIO;
609
610         if (WARN_ON(!handle->h_reserved)) {
611                 /* Someone passed in normal handle? Just stop it. */
612                 jbd2_journal_stop(handle);
613                 return ret;
614         }
615         /*
616          * Usefulness of mixing of reserved and unreserved handles is
617          * questionable. So far nobody seems to need it so just error out.
618          */
619         if (WARN_ON(current->journal_info)) {
620                 jbd2_journal_free_reserved(handle);
621                 return ret;
622         }
623
624         handle->h_journal = NULL;
625         /*
626          * GFP_NOFS is here because callers are likely from writeback or
627          * similarly constrained call sites
628          */
629         ret = start_this_handle(journal, handle, GFP_NOFS);
630         if (ret < 0) {
631                 handle->h_journal = journal;
632                 jbd2_journal_free_reserved(handle);
633                 return ret;
634         }
635         handle->h_type = type;
636         handle->h_line_no = line_no;
637         trace_jbd2_handle_start(journal->j_fs_dev->bd_dev,
638                                 handle->h_transaction->t_tid, type,
639                                 line_no, handle->h_total_credits);
640         return 0;
641 }
642 EXPORT_SYMBOL(jbd2_journal_start_reserved);
643
644 /**
645  * jbd2_journal_extend() - extend buffer credits.
646  * @handle:  handle to 'extend'
647  * @nblocks: nr blocks to try to extend by.
648  * @revoke_records: number of revoke records to try to extend by.
649  *
650  * Some transactions, such as large extends and truncates, can be done
651  * atomically all at once or in several stages.  The operation requests
652  * a credit for a number of buffer modifications in advance, but can
653  * extend its credit if it needs more.
654  *
655  * jbd2_journal_extend tries to give the running handle more buffer credits.
656  * It does not guarantee that allocation - this is a best-effort only.
657  * The calling process MUST be able to deal cleanly with a failure to
658  * extend here.
659  *
660  * Return 0 on success, non-zero on failure.
661  *
662  * return code < 0 implies an error
663  * return code > 0 implies normal transaction-full status.
664  */
665 int jbd2_journal_extend(handle_t *handle, int nblocks, int revoke_records)
666 {
667         transaction_t *transaction = handle->h_transaction;
668         journal_t *journal;
669         int result;
670         int wanted;
671
672         if (is_handle_aborted(handle))
673                 return -EROFS;
674         journal = transaction->t_journal;
675
676         result = 1;
677
678         read_lock(&journal->j_state_lock);
679
680         /* Don't extend a locked-down transaction! */
681         if (transaction->t_state != T_RUNNING) {
682                 jbd_debug(3, "denied handle %p %d blocks: "
683                           "transaction not running\n", handle, nblocks);
684                 goto error_out;
685         }
686
687         nblocks += DIV_ROUND_UP(
688                         handle->h_revoke_credits_requested + revoke_records,
689                         journal->j_revoke_records_per_block) -
690                 DIV_ROUND_UP(
691                         handle->h_revoke_credits_requested,
692                         journal->j_revoke_records_per_block);
693         spin_lock(&transaction->t_handle_lock);
694         wanted = atomic_add_return(nblocks,
695                                    &transaction->t_outstanding_credits);
696
697         if (wanted > journal->j_max_transaction_buffers) {
698                 jbd_debug(3, "denied handle %p %d blocks: "
699                           "transaction too large\n", handle, nblocks);
700                 atomic_sub(nblocks, &transaction->t_outstanding_credits);
701                 goto unlock;
702         }
703
704         trace_jbd2_handle_extend(journal->j_fs_dev->bd_dev,
705                                  transaction->t_tid,
706                                  handle->h_type, handle->h_line_no,
707                                  handle->h_total_credits,
708                                  nblocks);
709
710         handle->h_total_credits += nblocks;
711         handle->h_requested_credits += nblocks;
712         handle->h_revoke_credits += revoke_records;
713         handle->h_revoke_credits_requested += revoke_records;
714         result = 0;
715
716         jbd_debug(3, "extended handle %p by %d\n", handle, nblocks);
717 unlock:
718         spin_unlock(&transaction->t_handle_lock);
719 error_out:
720         read_unlock(&journal->j_state_lock);
721         return result;
722 }
723
724 static void stop_this_handle(handle_t *handle)
725 {
726         transaction_t *transaction = handle->h_transaction;
727         journal_t *journal = transaction->t_journal;
728         int revokes;
729
730         J_ASSERT(journal_current_handle() == handle);
731         J_ASSERT(atomic_read(&transaction->t_updates) > 0);
732         current->journal_info = NULL;
733         /*
734          * Subtract necessary revoke descriptor blocks from handle credits. We
735          * take care to account only for revoke descriptor blocks the
736          * transaction will really need as large sequences of transactions with
737          * small numbers of revokes are relatively common.
738          */
739         revokes = handle->h_revoke_credits_requested - handle->h_revoke_credits;
740         if (revokes) {
741                 int t_revokes, revoke_descriptors;
742                 int rr_per_blk = journal->j_revoke_records_per_block;
743
744                 WARN_ON_ONCE(DIV_ROUND_UP(revokes, rr_per_blk)
745                                 > handle->h_total_credits);
746                 t_revokes = atomic_add_return(revokes,
747                                 &transaction->t_outstanding_revokes);
748                 revoke_descriptors =
749                         DIV_ROUND_UP(t_revokes, rr_per_blk) -
750                         DIV_ROUND_UP(t_revokes - revokes, rr_per_blk);
751                 handle->h_total_credits -= revoke_descriptors;
752         }
753         atomic_sub(handle->h_total_credits,
754                    &transaction->t_outstanding_credits);
755         if (handle->h_rsv_handle)
756                 __jbd2_journal_unreserve_handle(handle->h_rsv_handle,
757                                                 transaction);
758         if (atomic_dec_and_test(&transaction->t_updates))
759                 wake_up(&journal->j_wait_updates);
760
761         rwsem_release(&journal->j_trans_commit_map, _THIS_IP_);
762         /*
763          * Scope of the GFP_NOFS context is over here and so we can restore the
764          * original alloc context.
765          */
766         memalloc_nofs_restore(handle->saved_alloc_context);
767 }
768
769 /**
770  * jbd2__journal_restart() - restart a handle .
771  * @handle:  handle to restart
772  * @nblocks: nr credits requested
773  * @revoke_records: number of revoke record credits requested
774  * @gfp_mask: memory allocation flags (for start_this_handle)
775  *
776  * Restart a handle for a multi-transaction filesystem
777  * operation.
778  *
779  * If the jbd2_journal_extend() call above fails to grant new buffer credits
780  * to a running handle, a call to jbd2_journal_restart will commit the
781  * handle's transaction so far and reattach the handle to a new
782  * transaction capable of guaranteeing the requested number of
783  * credits. We preserve reserved handle if there's any attached to the
784  * passed in handle.
785  */
786 int jbd2__journal_restart(handle_t *handle, int nblocks, int revoke_records,
787                           gfp_t gfp_mask)
788 {
789         transaction_t *transaction = handle->h_transaction;
790         journal_t *journal;
791         tid_t           tid;
792         int             need_to_start;
793         int             ret;
794
795         /* If we've had an abort of any type, don't even think about
796          * actually doing the restart! */
797         if (is_handle_aborted(handle))
798                 return 0;
799         journal = transaction->t_journal;
800         tid = transaction->t_tid;
801
802         /*
803          * First unlink the handle from its current transaction, and start the
804          * commit on that.
805          */
806         jbd_debug(2, "restarting handle %p\n", handle);
807         stop_this_handle(handle);
808         handle->h_transaction = NULL;
809
810         /*
811          * TODO: If we use READ_ONCE / WRITE_ONCE for j_commit_request we can
812          * get rid of pointless j_state_lock traffic like this.
813          */
814         read_lock(&journal->j_state_lock);
815         need_to_start = !tid_geq(journal->j_commit_request, tid);
816         read_unlock(&journal->j_state_lock);
817         if (need_to_start)
818                 jbd2_log_start_commit(journal, tid);
819         handle->h_total_credits = nblocks +
820                 DIV_ROUND_UP(revoke_records,
821                              journal->j_revoke_records_per_block);
822         handle->h_revoke_credits = revoke_records;
823         ret = start_this_handle(journal, handle, gfp_mask);
824         trace_jbd2_handle_restart(journal->j_fs_dev->bd_dev,
825                                  ret ? 0 : handle->h_transaction->t_tid,
826                                  handle->h_type, handle->h_line_no,
827                                  handle->h_total_credits);
828         return ret;
829 }
830 EXPORT_SYMBOL(jbd2__journal_restart);
831
832
833 int jbd2_journal_restart(handle_t *handle, int nblocks)
834 {
835         return jbd2__journal_restart(handle, nblocks, 0, GFP_NOFS);
836 }
837 EXPORT_SYMBOL(jbd2_journal_restart);
838
839 /**
840  * jbd2_journal_lock_updates () - establish a transaction barrier.
841  * @journal:  Journal to establish a barrier on.
842  *
843  * This locks out any further updates from being started, and blocks
844  * until all existing updates have completed, returning only once the
845  * journal is in a quiescent state with no updates running.
846  *
847  * The journal lock should not be held on entry.
848  */
849 void jbd2_journal_lock_updates(journal_t *journal)
850 {
851         DEFINE_WAIT(wait);
852
853         jbd2_might_wait_for_commit(journal);
854
855         write_lock(&journal->j_state_lock);
856         ++journal->j_barrier_count;
857
858         /* Wait until there are no reserved handles */
859         if (atomic_read(&journal->j_reserved_credits)) {
860                 write_unlock(&journal->j_state_lock);
861                 wait_event(journal->j_wait_reserved,
862                            atomic_read(&journal->j_reserved_credits) == 0);
863                 write_lock(&journal->j_state_lock);
864         }
865
866         /* Wait until there are no running updates */
867         while (1) {
868                 transaction_t *transaction = journal->j_running_transaction;
869
870                 if (!transaction)
871                         break;
872
873                 spin_lock(&transaction->t_handle_lock);
874                 prepare_to_wait(&journal->j_wait_updates, &wait,
875                                 TASK_UNINTERRUPTIBLE);
876                 if (!atomic_read(&transaction->t_updates)) {
877                         spin_unlock(&transaction->t_handle_lock);
878                         finish_wait(&journal->j_wait_updates, &wait);
879                         break;
880                 }
881                 spin_unlock(&transaction->t_handle_lock);
882                 write_unlock(&journal->j_state_lock);
883                 schedule();
884                 finish_wait(&journal->j_wait_updates, &wait);
885                 write_lock(&journal->j_state_lock);
886         }
887         write_unlock(&journal->j_state_lock);
888
889         /*
890          * We have now established a barrier against other normal updates, but
891          * we also need to barrier against other jbd2_journal_lock_updates() calls
892          * to make sure that we serialise special journal-locked operations
893          * too.
894          */
895         mutex_lock(&journal->j_barrier);
896 }
897
898 /**
899  * jbd2_journal_unlock_updates () - release barrier
900  * @journal:  Journal to release the barrier on.
901  *
902  * Release a transaction barrier obtained with jbd2_journal_lock_updates().
903  *
904  * Should be called without the journal lock held.
905  */
906 void jbd2_journal_unlock_updates (journal_t *journal)
907 {
908         J_ASSERT(journal->j_barrier_count != 0);
909
910         mutex_unlock(&journal->j_barrier);
911         write_lock(&journal->j_state_lock);
912         --journal->j_barrier_count;
913         write_unlock(&journal->j_state_lock);
914         wake_up(&journal->j_wait_transaction_locked);
915 }
916
917 static void warn_dirty_buffer(struct buffer_head *bh)
918 {
919         printk(KERN_WARNING
920                "JBD2: Spotted dirty metadata buffer (dev = %pg, blocknr = %llu). "
921                "There's a risk of filesystem corruption in case of system "
922                "crash.\n",
923                bh->b_bdev, (unsigned long long)bh->b_blocknr);
924 }
925
926 /* Call t_frozen trigger and copy buffer data into jh->b_frozen_data. */
927 static void jbd2_freeze_jh_data(struct journal_head *jh)
928 {
929         struct page *page;
930         int offset;
931         char *source;
932         struct buffer_head *bh = jh2bh(jh);
933
934         J_EXPECT_JH(jh, buffer_uptodate(bh), "Possible IO failure.\n");
935         page = bh->b_page;
936         offset = offset_in_page(bh->b_data);
937         source = kmap_atomic(page);
938         /* Fire data frozen trigger just before we copy the data */
939         jbd2_buffer_frozen_trigger(jh, source + offset, jh->b_triggers);
940         memcpy(jh->b_frozen_data, source + offset, bh->b_size);
941         kunmap_atomic(source);
942
943         /*
944          * Now that the frozen data is saved off, we need to store any matching
945          * triggers.
946          */
947         jh->b_frozen_triggers = jh->b_triggers;
948 }
949
950 /*
951  * If the buffer is already part of the current transaction, then there
952  * is nothing we need to do.  If it is already part of a prior
953  * transaction which we are still committing to disk, then we need to
954  * make sure that we do not overwrite the old copy: we do copy-out to
955  * preserve the copy going to disk.  We also account the buffer against
956  * the handle's metadata buffer credits (unless the buffer is already
957  * part of the transaction, that is).
958  *
959  */
960 static int
961 do_get_write_access(handle_t *handle, struct journal_head *jh,
962                         int force_copy)
963 {
964         struct buffer_head *bh;
965         transaction_t *transaction = handle->h_transaction;
966         journal_t *journal;
967         int error;
968         char *frozen_buffer = NULL;
969         unsigned long start_lock, time_lock;
970
971         journal = transaction->t_journal;
972
973         jbd_debug(5, "journal_head %p, force_copy %d\n", jh, force_copy);
974
975         JBUFFER_TRACE(jh, "entry");
976 repeat:
977         bh = jh2bh(jh);
978
979         /* @@@ Need to check for errors here at some point. */
980
981         start_lock = jiffies;
982         lock_buffer(bh);
983         spin_lock(&jh->b_state_lock);
984
985         /* If it takes too long to lock the buffer, trace it */
986         time_lock = jbd2_time_diff(start_lock, jiffies);
987         if (time_lock > HZ/10)
988                 trace_jbd2_lock_buffer_stall(bh->b_bdev->bd_dev,
989                         jiffies_to_msecs(time_lock));
990
991         /* We now hold the buffer lock so it is safe to query the buffer
992          * state.  Is the buffer dirty?
993          *
994          * If so, there are two possibilities.  The buffer may be
995          * non-journaled, and undergoing a quite legitimate writeback.
996          * Otherwise, it is journaled, and we don't expect dirty buffers
997          * in that state (the buffers should be marked JBD_Dirty
998          * instead.)  So either the IO is being done under our own
999          * control and this is a bug, or it's a third party IO such as
1000          * dump(8) (which may leave the buffer scheduled for read ---
1001          * ie. locked but not dirty) or tune2fs (which may actually have
1002          * the buffer dirtied, ugh.)  */
1003
1004         if (buffer_dirty(bh)) {
1005                 /*
1006                  * First question: is this buffer already part of the current
1007                  * transaction or the existing committing transaction?
1008                  */
1009                 if (jh->b_transaction) {
1010                         J_ASSERT_JH(jh,
1011                                 jh->b_transaction == transaction ||
1012                                 jh->b_transaction ==
1013                                         journal->j_committing_transaction);
1014                         if (jh->b_next_transaction)
1015                                 J_ASSERT_JH(jh, jh->b_next_transaction ==
1016                                                         transaction);
1017                         warn_dirty_buffer(bh);
1018                 }
1019                 /*
1020                  * In any case we need to clean the dirty flag and we must
1021                  * do it under the buffer lock to be sure we don't race
1022                  * with running write-out.
1023                  */
1024                 JBUFFER_TRACE(jh, "Journalling dirty buffer");
1025                 clear_buffer_dirty(bh);
1026                 set_buffer_jbddirty(bh);
1027         }
1028
1029         unlock_buffer(bh);
1030
1031         error = -EROFS;
1032         if (is_handle_aborted(handle)) {
1033                 spin_unlock(&jh->b_state_lock);
1034                 goto out;
1035         }
1036         error = 0;
1037
1038         /*
1039          * The buffer is already part of this transaction if b_transaction or
1040          * b_next_transaction points to it
1041          */
1042         if (jh->b_transaction == transaction ||
1043             jh->b_next_transaction == transaction)
1044                 goto done;
1045
1046         /*
1047          * this is the first time this transaction is touching this buffer,
1048          * reset the modified flag
1049          */
1050         jh->b_modified = 0;
1051
1052         /*
1053          * If the buffer is not journaled right now, we need to make sure it
1054          * doesn't get written to disk before the caller actually commits the
1055          * new data
1056          */
1057         if (!jh->b_transaction) {
1058                 JBUFFER_TRACE(jh, "no transaction");
1059                 J_ASSERT_JH(jh, !jh->b_next_transaction);
1060                 JBUFFER_TRACE(jh, "file as BJ_Reserved");
1061                 /*
1062                  * Make sure all stores to jh (b_modified, b_frozen_data) are
1063                  * visible before attaching it to the running transaction.
1064                  * Paired with barrier in jbd2_write_access_granted()
1065                  */
1066                 smp_wmb();
1067                 spin_lock(&journal->j_list_lock);
1068                 __jbd2_journal_file_buffer(jh, transaction, BJ_Reserved);
1069                 spin_unlock(&journal->j_list_lock);
1070                 goto done;
1071         }
1072         /*
1073          * If there is already a copy-out version of this buffer, then we don't
1074          * need to make another one
1075          */
1076         if (jh->b_frozen_data) {
1077                 JBUFFER_TRACE(jh, "has frozen data");
1078                 J_ASSERT_JH(jh, jh->b_next_transaction == NULL);
1079                 goto attach_next;
1080         }
1081
1082         JBUFFER_TRACE(jh, "owned by older transaction");
1083         J_ASSERT_JH(jh, jh->b_next_transaction == NULL);
1084         J_ASSERT_JH(jh, jh->b_transaction == journal->j_committing_transaction);
1085
1086         /*
1087          * There is one case we have to be very careful about.  If the
1088          * committing transaction is currently writing this buffer out to disk
1089          * and has NOT made a copy-out, then we cannot modify the buffer
1090          * contents at all right now.  The essence of copy-out is that it is
1091          * the extra copy, not the primary copy, which gets journaled.  If the
1092          * primary copy is already going to disk then we cannot do copy-out
1093          * here.
1094          */
1095         if (buffer_shadow(bh)) {
1096                 JBUFFER_TRACE(jh, "on shadow: sleep");
1097                 spin_unlock(&jh->b_state_lock);
1098                 wait_on_bit_io(&bh->b_state, BH_Shadow, TASK_UNINTERRUPTIBLE);
1099                 goto repeat;
1100         }
1101
1102         /*
1103          * Only do the copy if the currently-owning transaction still needs it.
1104          * If buffer isn't on BJ_Metadata list, the committing transaction is
1105          * past that stage (here we use the fact that BH_Shadow is set under
1106          * bh_state lock together with refiling to BJ_Shadow list and at this
1107          * point we know the buffer doesn't have BH_Shadow set).
1108          *
1109          * Subtle point, though: if this is a get_undo_access, then we will be
1110          * relying on the frozen_data to contain the new value of the
1111          * committed_data record after the transaction, so we HAVE to force the
1112          * frozen_data copy in that case.
1113          */
1114         if (jh->b_jlist == BJ_Metadata || force_copy) {
1115                 JBUFFER_TRACE(jh, "generate frozen data");
1116                 if (!frozen_buffer) {
1117                         JBUFFER_TRACE(jh, "allocate memory for buffer");
1118                         spin_unlock(&jh->b_state_lock);
1119                         frozen_buffer = jbd2_alloc(jh2bh(jh)->b_size,
1120                                                    GFP_NOFS | __GFP_NOFAIL);
1121                         goto repeat;
1122                 }
1123                 jh->b_frozen_data = frozen_buffer;
1124                 frozen_buffer = NULL;
1125                 jbd2_freeze_jh_data(jh);
1126         }
1127 attach_next:
1128         /*
1129          * Make sure all stores to jh (b_modified, b_frozen_data) are visible
1130          * before attaching it to the running transaction. Paired with barrier
1131          * in jbd2_write_access_granted()
1132          */
1133         smp_wmb();
1134         jh->b_next_transaction = transaction;
1135
1136 done:
1137         spin_unlock(&jh->b_state_lock);
1138
1139         /*
1140          * If we are about to journal a buffer, then any revoke pending on it is
1141          * no longer valid
1142          */
1143         jbd2_journal_cancel_revoke(handle, jh);
1144
1145 out:
1146         if (unlikely(frozen_buffer))    /* It's usually NULL */
1147                 jbd2_free(frozen_buffer, bh->b_size);
1148
1149         JBUFFER_TRACE(jh, "exit");
1150         return error;
1151 }
1152
1153 /* Fast check whether buffer is already attached to the required transaction */
1154 static bool jbd2_write_access_granted(handle_t *handle, struct buffer_head *bh,
1155                                                         bool undo)
1156 {
1157         struct journal_head *jh;
1158         bool ret = false;
1159
1160         /* Dirty buffers require special handling... */
1161         if (buffer_dirty(bh))
1162                 return false;
1163
1164         /*
1165          * RCU protects us from dereferencing freed pages. So the checks we do
1166          * are guaranteed not to oops. However the jh slab object can get freed
1167          * & reallocated while we work with it. So we have to be careful. When
1168          * we see jh attached to the running transaction, we know it must stay
1169          * so until the transaction is committed. Thus jh won't be freed and
1170          * will be attached to the same bh while we run.  However it can
1171          * happen jh gets freed, reallocated, and attached to the transaction
1172          * just after we get pointer to it from bh. So we have to be careful
1173          * and recheck jh still belongs to our bh before we return success.
1174          */
1175         rcu_read_lock();
1176         if (!buffer_jbd(bh))
1177                 goto out;
1178         /* This should be bh2jh() but that doesn't work with inline functions */
1179         jh = READ_ONCE(bh->b_private);
1180         if (!jh)
1181                 goto out;
1182         /* For undo access buffer must have data copied */
1183         if (undo && !jh->b_committed_data)
1184                 goto out;
1185         if (READ_ONCE(jh->b_transaction) != handle->h_transaction &&
1186             READ_ONCE(jh->b_next_transaction) != handle->h_transaction)
1187                 goto out;
1188         /*
1189          * There are two reasons for the barrier here:
1190          * 1) Make sure to fetch b_bh after we did previous checks so that we
1191          * detect when jh went through free, realloc, attach to transaction
1192          * while we were checking. Paired with implicit barrier in that path.
1193          * 2) So that access to bh done after jbd2_write_access_granted()
1194          * doesn't get reordered and see inconsistent state of concurrent
1195          * do_get_write_access().
1196          */
1197         smp_mb();
1198         if (unlikely(jh->b_bh != bh))
1199                 goto out;
1200         ret = true;
1201 out:
1202         rcu_read_unlock();
1203         return ret;
1204 }
1205
1206 /**
1207  * jbd2_journal_get_write_access() - notify intent to modify a buffer
1208  *                                   for metadata (not data) update.
1209  * @handle: transaction to add buffer modifications to
1210  * @bh:     bh to be used for metadata writes
1211  *
1212  * Returns: error code or 0 on success.
1213  *
1214  * In full data journalling mode the buffer may be of type BJ_AsyncData,
1215  * because we're ``write()ing`` a buffer which is also part of a shared mapping.
1216  */
1217
1218 int jbd2_journal_get_write_access(handle_t *handle, struct buffer_head *bh)
1219 {
1220         struct journal_head *jh;
1221         int rc;
1222
1223         if (is_handle_aborted(handle))
1224                 return -EROFS;
1225
1226         if (jbd2_write_access_granted(handle, bh, false))
1227                 return 0;
1228
1229         jh = jbd2_journal_add_journal_head(bh);
1230         /* We do not want to get caught playing with fields which the
1231          * log thread also manipulates.  Make sure that the buffer
1232          * completes any outstanding IO before proceeding. */
1233         rc = do_get_write_access(handle, jh, 0);
1234         jbd2_journal_put_journal_head(jh);
1235         return rc;
1236 }
1237
1238
1239 /*
1240  * When the user wants to journal a newly created buffer_head
1241  * (ie. getblk() returned a new buffer and we are going to populate it
1242  * manually rather than reading off disk), then we need to keep the
1243  * buffer_head locked until it has been completely filled with new
1244  * data.  In this case, we should be able to make the assertion that
1245  * the bh is not already part of an existing transaction.
1246  *
1247  * The buffer should already be locked by the caller by this point.
1248  * There is no lock ranking violation: it was a newly created,
1249  * unlocked buffer beforehand. */
1250
1251 /**
1252  * jbd2_journal_get_create_access () - notify intent to use newly created bh
1253  * @handle: transaction to new buffer to
1254  * @bh: new buffer.
1255  *
1256  * Call this if you create a new bh.
1257  */
1258 int jbd2_journal_get_create_access(handle_t *handle, struct buffer_head *bh)
1259 {
1260         transaction_t *transaction = handle->h_transaction;
1261         journal_t *journal;
1262         struct journal_head *jh = jbd2_journal_add_journal_head(bh);
1263         int err;
1264
1265         jbd_debug(5, "journal_head %p\n", jh);
1266         err = -EROFS;
1267         if (is_handle_aborted(handle))
1268                 goto out;
1269         journal = transaction->t_journal;
1270         err = 0;
1271
1272         JBUFFER_TRACE(jh, "entry");
1273         /*
1274          * The buffer may already belong to this transaction due to pre-zeroing
1275          * in the filesystem's new_block code.  It may also be on the previous,
1276          * committing transaction's lists, but it HAS to be in Forget state in
1277          * that case: the transaction must have deleted the buffer for it to be
1278          * reused here.
1279          */
1280         spin_lock(&jh->b_state_lock);
1281         J_ASSERT_JH(jh, (jh->b_transaction == transaction ||
1282                 jh->b_transaction == NULL ||
1283                 (jh->b_transaction == journal->j_committing_transaction &&
1284                           jh->b_jlist == BJ_Forget)));
1285
1286         J_ASSERT_JH(jh, jh->b_next_transaction == NULL);
1287         J_ASSERT_JH(jh, buffer_locked(jh2bh(jh)));
1288
1289         if (jh->b_transaction == NULL) {
1290                 /*
1291                  * Previous jbd2_journal_forget() could have left the buffer
1292                  * with jbddirty bit set because it was being committed. When
1293                  * the commit finished, we've filed the buffer for
1294                  * checkpointing and marked it dirty. Now we are reallocating
1295                  * the buffer so the transaction freeing it must have
1296                  * committed and so it's safe to clear the dirty bit.
1297                  */
1298                 clear_buffer_dirty(jh2bh(jh));
1299                 /* first access by this transaction */
1300                 jh->b_modified = 0;
1301
1302                 JBUFFER_TRACE(jh, "file as BJ_Reserved");
1303                 spin_lock(&journal->j_list_lock);
1304                 __jbd2_journal_file_buffer(jh, transaction, BJ_Reserved);
1305                 spin_unlock(&journal->j_list_lock);
1306         } else if (jh->b_transaction == journal->j_committing_transaction) {
1307                 /* first access by this transaction */
1308                 jh->b_modified = 0;
1309
1310                 JBUFFER_TRACE(jh, "set next transaction");
1311                 spin_lock(&journal->j_list_lock);
1312                 jh->b_next_transaction = transaction;
1313                 spin_unlock(&journal->j_list_lock);
1314         }
1315         spin_unlock(&jh->b_state_lock);
1316
1317         /*
1318          * akpm: I added this.  ext3_alloc_branch can pick up new indirect
1319          * blocks which contain freed but then revoked metadata.  We need
1320          * to cancel the revoke in case we end up freeing it yet again
1321          * and the reallocating as data - this would cause a second revoke,
1322          * which hits an assertion error.
1323          */
1324         JBUFFER_TRACE(jh, "cancelling revoke");
1325         jbd2_journal_cancel_revoke(handle, jh);
1326 out:
1327         jbd2_journal_put_journal_head(jh);
1328         return err;
1329 }
1330
1331 /**
1332  * jbd2_journal_get_undo_access() -  Notify intent to modify metadata with
1333  *     non-rewindable consequences
1334  * @handle: transaction
1335  * @bh: buffer to undo
1336  *
1337  * Sometimes there is a need to distinguish between metadata which has
1338  * been committed to disk and that which has not.  The ext3fs code uses
1339  * this for freeing and allocating space, we have to make sure that we
1340  * do not reuse freed space until the deallocation has been committed,
1341  * since if we overwrote that space we would make the delete
1342  * un-rewindable in case of a crash.
1343  *
1344  * To deal with that, jbd2_journal_get_undo_access requests write access to a
1345  * buffer for parts of non-rewindable operations such as delete
1346  * operations on the bitmaps.  The journaling code must keep a copy of
1347  * the buffer's contents prior to the undo_access call until such time
1348  * as we know that the buffer has definitely been committed to disk.
1349  *
1350  * We never need to know which transaction the committed data is part
1351  * of, buffers touched here are guaranteed to be dirtied later and so
1352  * will be committed to a new transaction in due course, at which point
1353  * we can discard the old committed data pointer.
1354  *
1355  * Returns error number or 0 on success.
1356  */
1357 int jbd2_journal_get_undo_access(handle_t *handle, struct buffer_head *bh)
1358 {
1359         int err;
1360         struct journal_head *jh;
1361         char *committed_data = NULL;
1362
1363         if (is_handle_aborted(handle))
1364                 return -EROFS;
1365
1366         if (jbd2_write_access_granted(handle, bh, true))
1367                 return 0;
1368
1369         jh = jbd2_journal_add_journal_head(bh);
1370         JBUFFER_TRACE(jh, "entry");
1371
1372         /*
1373          * Do this first --- it can drop the journal lock, so we want to
1374          * make sure that obtaining the committed_data is done
1375          * atomically wrt. completion of any outstanding commits.
1376          */
1377         err = do_get_write_access(handle, jh, 1);
1378         if (err)
1379                 goto out;
1380
1381 repeat:
1382         if (!jh->b_committed_data)
1383                 committed_data = jbd2_alloc(jh2bh(jh)->b_size,
1384                                             GFP_NOFS|__GFP_NOFAIL);
1385
1386         spin_lock(&jh->b_state_lock);
1387         if (!jh->b_committed_data) {
1388                 /* Copy out the current buffer contents into the
1389                  * preserved, committed copy. */
1390                 JBUFFER_TRACE(jh, "generate b_committed data");
1391                 if (!committed_data) {
1392                         spin_unlock(&jh->b_state_lock);
1393                         goto repeat;
1394                 }
1395
1396                 jh->b_committed_data = committed_data;
1397                 committed_data = NULL;
1398                 memcpy(jh->b_committed_data, bh->b_data, bh->b_size);
1399         }
1400         spin_unlock(&jh->b_state_lock);
1401 out:
1402         jbd2_journal_put_journal_head(jh);
1403         if (unlikely(committed_data))
1404                 jbd2_free(committed_data, bh->b_size);
1405         return err;
1406 }
1407
1408 /**
1409  * jbd2_journal_set_triggers() - Add triggers for commit writeout
1410  * @bh: buffer to trigger on
1411  * @type: struct jbd2_buffer_trigger_type containing the trigger(s).
1412  *
1413  * Set any triggers on this journal_head.  This is always safe, because
1414  * triggers for a committing buffer will be saved off, and triggers for
1415  * a running transaction will match the buffer in that transaction.
1416  *
1417  * Call with NULL to clear the triggers.
1418  */
1419 void jbd2_journal_set_triggers(struct buffer_head *bh,
1420                                struct jbd2_buffer_trigger_type *type)
1421 {
1422         struct journal_head *jh = jbd2_journal_grab_journal_head(bh);
1423
1424         if (WARN_ON_ONCE(!jh))
1425                 return;
1426         jh->b_triggers = type;
1427         jbd2_journal_put_journal_head(jh);
1428 }
1429
1430 void jbd2_buffer_frozen_trigger(struct journal_head *jh, void *mapped_data,
1431                                 struct jbd2_buffer_trigger_type *triggers)
1432 {
1433         struct buffer_head *bh = jh2bh(jh);
1434
1435         if (!triggers || !triggers->t_frozen)
1436                 return;
1437
1438         triggers->t_frozen(triggers, bh, mapped_data, bh->b_size);
1439 }
1440
1441 void jbd2_buffer_abort_trigger(struct journal_head *jh,
1442                                struct jbd2_buffer_trigger_type *triggers)
1443 {
1444         if (!triggers || !triggers->t_abort)
1445                 return;
1446
1447         triggers->t_abort(triggers, jh2bh(jh));
1448 }
1449
1450 /**
1451  * jbd2_journal_dirty_metadata() -  mark a buffer as containing dirty metadata
1452  * @handle: transaction to add buffer to.
1453  * @bh: buffer to mark
1454  *
1455  * mark dirty metadata which needs to be journaled as part of the current
1456  * transaction.
1457  *
1458  * The buffer must have previously had jbd2_journal_get_write_access()
1459  * called so that it has a valid journal_head attached to the buffer
1460  * head.
1461  *
1462  * The buffer is placed on the transaction's metadata list and is marked
1463  * as belonging to the transaction.
1464  *
1465  * Returns error number or 0 on success.
1466  *
1467  * Special care needs to be taken if the buffer already belongs to the
1468  * current committing transaction (in which case we should have frozen
1469  * data present for that commit).  In that case, we don't relink the
1470  * buffer: that only gets done when the old transaction finally
1471  * completes its commit.
1472  */
1473 int jbd2_journal_dirty_metadata(handle_t *handle, struct buffer_head *bh)
1474 {
1475         transaction_t *transaction = handle->h_transaction;
1476         journal_t *journal;
1477         struct journal_head *jh;
1478         int ret = 0;
1479
1480         if (is_handle_aborted(handle))
1481                 return -EROFS;
1482         if (!buffer_jbd(bh))
1483                 return -EUCLEAN;
1484
1485         /*
1486          * We don't grab jh reference here since the buffer must be part
1487          * of the running transaction.
1488          */
1489         jh = bh2jh(bh);
1490         jbd_debug(5, "journal_head %p\n", jh);
1491         JBUFFER_TRACE(jh, "entry");
1492
1493         /*
1494          * This and the following assertions are unreliable since we may see jh
1495          * in inconsistent state unless we grab bh_state lock. But this is
1496          * crucial to catch bugs so let's do a reliable check until the
1497          * lockless handling is fully proven.
1498          */
1499         if (data_race(jh->b_transaction != transaction &&
1500             jh->b_next_transaction != transaction)) {
1501                 spin_lock(&jh->b_state_lock);
1502                 J_ASSERT_JH(jh, jh->b_transaction == transaction ||
1503                                 jh->b_next_transaction == transaction);
1504                 spin_unlock(&jh->b_state_lock);
1505         }
1506         if (jh->b_modified == 1) {
1507                 /* If it's in our transaction it must be in BJ_Metadata list. */
1508                 if (data_race(jh->b_transaction == transaction &&
1509                     jh->b_jlist != BJ_Metadata)) {
1510                         spin_lock(&jh->b_state_lock);
1511                         if (jh->b_transaction == transaction &&
1512                             jh->b_jlist != BJ_Metadata)
1513                                 pr_err("JBD2: assertion failure: h_type=%u "
1514                                        "h_line_no=%u block_no=%llu jlist=%u\n",
1515                                        handle->h_type, handle->h_line_no,
1516                                        (unsigned long long) bh->b_blocknr,
1517                                        jh->b_jlist);
1518                         J_ASSERT_JH(jh, jh->b_transaction != transaction ||
1519                                         jh->b_jlist == BJ_Metadata);
1520                         spin_unlock(&jh->b_state_lock);
1521                 }
1522                 goto out;
1523         }
1524
1525         journal = transaction->t_journal;
1526         spin_lock(&jh->b_state_lock);
1527
1528         if (jh->b_modified == 0) {
1529                 /*
1530                  * This buffer's got modified and becoming part
1531                  * of the transaction. This needs to be done
1532                  * once a transaction -bzzz
1533                  */
1534                 if (WARN_ON_ONCE(jbd2_handle_buffer_credits(handle) <= 0)) {
1535                         ret = -ENOSPC;
1536                         goto out_unlock_bh;
1537                 }
1538                 jh->b_modified = 1;
1539                 handle->h_total_credits--;
1540         }
1541
1542         /*
1543          * fastpath, to avoid expensive locking.  If this buffer is already
1544          * on the running transaction's metadata list there is nothing to do.
1545          * Nobody can take it off again because there is a handle open.
1546          * I _think_ we're OK here with SMP barriers - a mistaken decision will
1547          * result in this test being false, so we go in and take the locks.
1548          */
1549         if (jh->b_transaction == transaction && jh->b_jlist == BJ_Metadata) {
1550                 JBUFFER_TRACE(jh, "fastpath");
1551                 if (unlikely(jh->b_transaction !=
1552                              journal->j_running_transaction)) {
1553                         printk(KERN_ERR "JBD2: %s: "
1554                                "jh->b_transaction (%llu, %p, %u) != "
1555                                "journal->j_running_transaction (%p, %u)\n",
1556                                journal->j_devname,
1557                                (unsigned long long) bh->b_blocknr,
1558                                jh->b_transaction,
1559                                jh->b_transaction ? jh->b_transaction->t_tid : 0,
1560                                journal->j_running_transaction,
1561                                journal->j_running_transaction ?
1562                                journal->j_running_transaction->t_tid : 0);
1563                         ret = -EINVAL;
1564                 }
1565                 goto out_unlock_bh;
1566         }
1567
1568         set_buffer_jbddirty(bh);
1569
1570         /*
1571          * Metadata already on the current transaction list doesn't
1572          * need to be filed.  Metadata on another transaction's list must
1573          * be committing, and will be refiled once the commit completes:
1574          * leave it alone for now.
1575          */
1576         if (jh->b_transaction != transaction) {
1577                 JBUFFER_TRACE(jh, "already on other transaction");
1578                 if (unlikely(((jh->b_transaction !=
1579                                journal->j_committing_transaction)) ||
1580                              (jh->b_next_transaction != transaction))) {
1581                         printk(KERN_ERR "jbd2_journal_dirty_metadata: %s: "
1582                                "bad jh for block %llu: "
1583                                "transaction (%p, %u), "
1584                                "jh->b_transaction (%p, %u), "
1585                                "jh->b_next_transaction (%p, %u), jlist %u\n",
1586                                journal->j_devname,
1587                                (unsigned long long) bh->b_blocknr,
1588                                transaction, transaction->t_tid,
1589                                jh->b_transaction,
1590                                jh->b_transaction ?
1591                                jh->b_transaction->t_tid : 0,
1592                                jh->b_next_transaction,
1593                                jh->b_next_transaction ?
1594                                jh->b_next_transaction->t_tid : 0,
1595                                jh->b_jlist);
1596                         WARN_ON(1);
1597                         ret = -EINVAL;
1598                 }
1599                 /* And this case is illegal: we can't reuse another
1600                  * transaction's data buffer, ever. */
1601                 goto out_unlock_bh;
1602         }
1603
1604         /* That test should have eliminated the following case: */
1605         J_ASSERT_JH(jh, jh->b_frozen_data == NULL);
1606
1607         JBUFFER_TRACE(jh, "file as BJ_Metadata");
1608         spin_lock(&journal->j_list_lock);
1609         __jbd2_journal_file_buffer(jh, transaction, BJ_Metadata);
1610         spin_unlock(&journal->j_list_lock);
1611 out_unlock_bh:
1612         spin_unlock(&jh->b_state_lock);
1613 out:
1614         JBUFFER_TRACE(jh, "exit");
1615         return ret;
1616 }
1617
1618 /**
1619  * jbd2_journal_forget() - bforget() for potentially-journaled buffers.
1620  * @handle: transaction handle
1621  * @bh:     bh to 'forget'
1622  *
1623  * We can only do the bforget if there are no commits pending against the
1624  * buffer.  If the buffer is dirty in the current running transaction we
1625  * can safely unlink it.
1626  *
1627  * bh may not be a journalled buffer at all - it may be a non-JBD
1628  * buffer which came off the hashtable.  Check for this.
1629  *
1630  * Decrements bh->b_count by one.
1631  *
1632  * Allow this call even if the handle has aborted --- it may be part of
1633  * the caller's cleanup after an abort.
1634  */
1635 int jbd2_journal_forget(handle_t *handle, struct buffer_head *bh)
1636 {
1637         transaction_t *transaction = handle->h_transaction;
1638         journal_t *journal;
1639         struct journal_head *jh;
1640         int drop_reserve = 0;
1641         int err = 0;
1642         int was_modified = 0;
1643
1644         if (is_handle_aborted(handle))
1645                 return -EROFS;
1646         journal = transaction->t_journal;
1647
1648         BUFFER_TRACE(bh, "entry");
1649
1650         jh = jbd2_journal_grab_journal_head(bh);
1651         if (!jh) {
1652                 __bforget(bh);
1653                 return 0;
1654         }
1655
1656         spin_lock(&jh->b_state_lock);
1657
1658         /* Critical error: attempting to delete a bitmap buffer, maybe?
1659          * Don't do any jbd operations, and return an error. */
1660         if (!J_EXPECT_JH(jh, !jh->b_committed_data,
1661                          "inconsistent data on disk")) {
1662                 err = -EIO;
1663                 goto drop;
1664         }
1665
1666         /* keep track of whether or not this transaction modified us */
1667         was_modified = jh->b_modified;
1668
1669         /*
1670          * The buffer's going from the transaction, we must drop
1671          * all references -bzzz
1672          */
1673         jh->b_modified = 0;
1674
1675         if (jh->b_transaction == transaction) {
1676                 J_ASSERT_JH(jh, !jh->b_frozen_data);
1677
1678                 /* If we are forgetting a buffer which is already part
1679                  * of this transaction, then we can just drop it from
1680                  * the transaction immediately. */
1681                 clear_buffer_dirty(bh);
1682                 clear_buffer_jbddirty(bh);
1683
1684                 JBUFFER_TRACE(jh, "belongs to current transaction: unfile");
1685
1686                 /*
1687                  * we only want to drop a reference if this transaction
1688                  * modified the buffer
1689                  */
1690                 if (was_modified)
1691                         drop_reserve = 1;
1692
1693                 /*
1694                  * We are no longer going to journal this buffer.
1695                  * However, the commit of this transaction is still
1696                  * important to the buffer: the delete that we are now
1697                  * processing might obsolete an old log entry, so by
1698                  * committing, we can satisfy the buffer's checkpoint.
1699                  *
1700                  * So, if we have a checkpoint on the buffer, we should
1701                  * now refile the buffer on our BJ_Forget list so that
1702                  * we know to remove the checkpoint after we commit.
1703                  */
1704
1705                 spin_lock(&journal->j_list_lock);
1706                 if (jh->b_cp_transaction) {
1707                         __jbd2_journal_temp_unlink_buffer(jh);
1708                         __jbd2_journal_file_buffer(jh, transaction, BJ_Forget);
1709                 } else {
1710                         __jbd2_journal_unfile_buffer(jh);
1711                         jbd2_journal_put_journal_head(jh);
1712                 }
1713                 spin_unlock(&journal->j_list_lock);
1714         } else if (jh->b_transaction) {
1715                 J_ASSERT_JH(jh, (jh->b_transaction ==
1716                                  journal->j_committing_transaction));
1717                 /* However, if the buffer is still owned by a prior
1718                  * (committing) transaction, we can't drop it yet... */
1719                 JBUFFER_TRACE(jh, "belongs to older transaction");
1720                 /* ... but we CAN drop it from the new transaction through
1721                  * marking the buffer as freed and set j_next_transaction to
1722                  * the new transaction, so that not only the commit code
1723                  * knows it should clear dirty bits when it is done with the
1724                  * buffer, but also the buffer can be checkpointed only
1725                  * after the new transaction commits. */
1726
1727                 set_buffer_freed(bh);
1728
1729                 if (!jh->b_next_transaction) {
1730                         spin_lock(&journal->j_list_lock);
1731                         jh->b_next_transaction = transaction;
1732                         spin_unlock(&journal->j_list_lock);
1733                 } else {
1734                         J_ASSERT(jh->b_next_transaction == transaction);
1735
1736                         /*
1737                          * only drop a reference if this transaction modified
1738                          * the buffer
1739                          */
1740                         if (was_modified)
1741                                 drop_reserve = 1;
1742                 }
1743         } else {
1744                 /*
1745                  * Finally, if the buffer is not belongs to any
1746                  * transaction, we can just drop it now if it has no
1747                  * checkpoint.
1748                  */
1749                 spin_lock(&journal->j_list_lock);
1750                 if (!jh->b_cp_transaction) {
1751                         JBUFFER_TRACE(jh, "belongs to none transaction");
1752                         spin_unlock(&journal->j_list_lock);
1753                         goto drop;
1754                 }
1755
1756                 /*
1757                  * Otherwise, if the buffer has been written to disk,
1758                  * it is safe to remove the checkpoint and drop it.
1759                  */
1760                 if (!buffer_dirty(bh)) {
1761                         __jbd2_journal_remove_checkpoint(jh);
1762                         spin_unlock(&journal->j_list_lock);
1763                         goto drop;
1764                 }
1765
1766                 /*
1767                  * The buffer is still not written to disk, we should
1768                  * attach this buffer to current transaction so that the
1769                  * buffer can be checkpointed only after the current
1770                  * transaction commits.
1771                  */
1772                 clear_buffer_dirty(bh);
1773                 __jbd2_journal_file_buffer(jh, transaction, BJ_Forget);
1774                 spin_unlock(&journal->j_list_lock);
1775         }
1776 drop:
1777         __brelse(bh);
1778         spin_unlock(&jh->b_state_lock);
1779         jbd2_journal_put_journal_head(jh);
1780         if (drop_reserve) {
1781                 /* no need to reserve log space for this block -bzzz */
1782                 handle->h_total_credits++;
1783         }
1784         return err;
1785 }
1786
1787 /**
1788  * jbd2_journal_stop() - complete a transaction
1789  * @handle: transaction to complete.
1790  *
1791  * All done for a particular handle.
1792  *
1793  * There is not much action needed here.  We just return any remaining
1794  * buffer credits to the transaction and remove the handle.  The only
1795  * complication is that we need to start a commit operation if the
1796  * filesystem is marked for synchronous update.
1797  *
1798  * jbd2_journal_stop itself will not usually return an error, but it may
1799  * do so in unusual circumstances.  In particular, expect it to
1800  * return -EIO if a jbd2_journal_abort has been executed since the
1801  * transaction began.
1802  */
1803 int jbd2_journal_stop(handle_t *handle)
1804 {
1805         transaction_t *transaction = handle->h_transaction;
1806         journal_t *journal;
1807         int err = 0, wait_for_commit = 0;
1808         tid_t tid;
1809         pid_t pid;
1810
1811         if (--handle->h_ref > 0) {
1812                 jbd_debug(4, "h_ref %d -> %d\n", handle->h_ref + 1,
1813                                                  handle->h_ref);
1814                 if (is_handle_aborted(handle))
1815                         return -EIO;
1816                 return 0;
1817         }
1818         if (!transaction) {
1819                 /*
1820                  * Handle is already detached from the transaction so there is
1821                  * nothing to do other than free the handle.
1822                  */
1823                 memalloc_nofs_restore(handle->saved_alloc_context);
1824                 goto free_and_exit;
1825         }
1826         journal = transaction->t_journal;
1827         tid = transaction->t_tid;
1828
1829         if (is_handle_aborted(handle))
1830                 err = -EIO;
1831
1832         jbd_debug(4, "Handle %p going down\n", handle);
1833         trace_jbd2_handle_stats(journal->j_fs_dev->bd_dev,
1834                                 tid, handle->h_type, handle->h_line_no,
1835                                 jiffies - handle->h_start_jiffies,
1836                                 handle->h_sync, handle->h_requested_credits,
1837                                 (handle->h_requested_credits -
1838                                  handle->h_total_credits));
1839
1840         /*
1841          * Implement synchronous transaction batching.  If the handle
1842          * was synchronous, don't force a commit immediately.  Let's
1843          * yield and let another thread piggyback onto this
1844          * transaction.  Keep doing that while new threads continue to
1845          * arrive.  It doesn't cost much - we're about to run a commit
1846          * and sleep on IO anyway.  Speeds up many-threaded, many-dir
1847          * operations by 30x or more...
1848          *
1849          * We try and optimize the sleep time against what the
1850          * underlying disk can do, instead of having a static sleep
1851          * time.  This is useful for the case where our storage is so
1852          * fast that it is more optimal to go ahead and force a flush
1853          * and wait for the transaction to be committed than it is to
1854          * wait for an arbitrary amount of time for new writers to
1855          * join the transaction.  We achieve this by measuring how
1856          * long it takes to commit a transaction, and compare it with
1857          * how long this transaction has been running, and if run time
1858          * < commit time then we sleep for the delta and commit.  This
1859          * greatly helps super fast disks that would see slowdowns as
1860          * more threads started doing fsyncs.
1861          *
1862          * But don't do this if this process was the most recent one
1863          * to perform a synchronous write.  We do this to detect the
1864          * case where a single process is doing a stream of sync
1865          * writes.  No point in waiting for joiners in that case.
1866          *
1867          * Setting max_batch_time to 0 disables this completely.
1868          */
1869         pid = current->pid;
1870         if (handle->h_sync && journal->j_last_sync_writer != pid &&
1871             journal->j_max_batch_time) {
1872                 u64 commit_time, trans_time;
1873
1874                 journal->j_last_sync_writer = pid;
1875
1876                 read_lock(&journal->j_state_lock);
1877                 commit_time = journal->j_average_commit_time;
1878                 read_unlock(&journal->j_state_lock);
1879
1880                 trans_time = ktime_to_ns(ktime_sub(ktime_get(),
1881                                                    transaction->t_start_time));
1882
1883                 commit_time = max_t(u64, commit_time,
1884                                     1000*journal->j_min_batch_time);
1885                 commit_time = min_t(u64, commit_time,
1886                                     1000*journal->j_max_batch_time);
1887
1888                 if (trans_time < commit_time) {
1889                         ktime_t expires = ktime_add_ns(ktime_get(),
1890                                                        commit_time);
1891                         set_current_state(TASK_UNINTERRUPTIBLE);
1892                         schedule_hrtimeout(&expires, HRTIMER_MODE_ABS);
1893                 }
1894         }
1895
1896         if (handle->h_sync)
1897                 transaction->t_synchronous_commit = 1;
1898
1899         /*
1900          * If the handle is marked SYNC, we need to set another commit
1901          * going!  We also want to force a commit if the transaction is too
1902          * old now.
1903          */
1904         if (handle->h_sync ||
1905             time_after_eq(jiffies, transaction->t_expires)) {
1906                 /* Do this even for aborted journals: an abort still
1907                  * completes the commit thread, it just doesn't write
1908                  * anything to disk. */
1909
1910                 jbd_debug(2, "transaction too old, requesting commit for "
1911                                         "handle %p\n", handle);
1912                 /* This is non-blocking */
1913                 jbd2_log_start_commit(journal, tid);
1914
1915                 /*
1916                  * Special case: JBD2_SYNC synchronous updates require us
1917                  * to wait for the commit to complete.
1918                  */
1919                 if (handle->h_sync && !(current->flags & PF_MEMALLOC))
1920                         wait_for_commit = 1;
1921         }
1922
1923         /*
1924          * Once stop_this_handle() drops t_updates, the transaction could start
1925          * committing on us and eventually disappear.  So we must not
1926          * dereference transaction pointer again after calling
1927          * stop_this_handle().
1928          */
1929         stop_this_handle(handle);
1930
1931         if (wait_for_commit)
1932                 err = jbd2_log_wait_commit(journal, tid);
1933
1934 free_and_exit:
1935         if (handle->h_rsv_handle)
1936                 jbd2_free_handle(handle->h_rsv_handle);
1937         jbd2_free_handle(handle);
1938         return err;
1939 }
1940
1941 /*
1942  *
1943  * List management code snippets: various functions for manipulating the
1944  * transaction buffer lists.
1945  *
1946  */
1947
1948 /*
1949  * Append a buffer to a transaction list, given the transaction's list head
1950  * pointer.
1951  *
1952  * j_list_lock is held.
1953  *
1954  * jh->b_state_lock is held.
1955  */
1956
1957 static inline void
1958 __blist_add_buffer(struct journal_head **list, struct journal_head *jh)
1959 {
1960         if (!*list) {
1961                 jh->b_tnext = jh->b_tprev = jh;
1962                 *list = jh;
1963         } else {
1964                 /* Insert at the tail of the list to preserve order */
1965                 struct journal_head *first = *list, *last = first->b_tprev;
1966                 jh->b_tprev = last;
1967                 jh->b_tnext = first;
1968                 last->b_tnext = first->b_tprev = jh;
1969         }
1970 }
1971
1972 /*
1973  * Remove a buffer from a transaction list, given the transaction's list
1974  * head pointer.
1975  *
1976  * Called with j_list_lock held, and the journal may not be locked.
1977  *
1978  * jh->b_state_lock is held.
1979  */
1980
1981 static inline void
1982 __blist_del_buffer(struct journal_head **list, struct journal_head *jh)
1983 {
1984         if (*list == jh) {
1985                 *list = jh->b_tnext;
1986                 if (*list == jh)
1987                         *list = NULL;
1988         }
1989         jh->b_tprev->b_tnext = jh->b_tnext;
1990         jh->b_tnext->b_tprev = jh->b_tprev;
1991 }
1992
1993 /*
1994  * Remove a buffer from the appropriate transaction list.
1995  *
1996  * Note that this function can *change* the value of
1997  * bh->b_transaction->t_buffers, t_forget, t_shadow_list, t_log_list or
1998  * t_reserved_list.  If the caller is holding onto a copy of one of these
1999  * pointers, it could go bad.  Generally the caller needs to re-read the
2000  * pointer from the transaction_t.
2001  *
2002  * Called under j_list_lock.
2003  */
2004 static void __jbd2_journal_temp_unlink_buffer(struct journal_head *jh)
2005 {
2006         struct journal_head **list = NULL;
2007         transaction_t *transaction;
2008         struct buffer_head *bh = jh2bh(jh);
2009
2010         lockdep_assert_held(&jh->b_state_lock);
2011         transaction = jh->b_transaction;
2012         if (transaction)
2013                 assert_spin_locked(&transaction->t_journal->j_list_lock);
2014
2015         J_ASSERT_JH(jh, jh->b_jlist < BJ_Types);
2016         if (jh->b_jlist != BJ_None)
2017                 J_ASSERT_JH(jh, transaction != NULL);
2018
2019         switch (jh->b_jlist) {
2020         case BJ_None:
2021                 return;
2022         case BJ_Metadata:
2023                 transaction->t_nr_buffers--;
2024                 J_ASSERT_JH(jh, transaction->t_nr_buffers >= 0);
2025                 list = &transaction->t_buffers;
2026                 break;
2027         case BJ_Forget:
2028                 list = &transaction->t_forget;
2029                 break;
2030         case BJ_Shadow:
2031                 list = &transaction->t_shadow_list;
2032                 break;
2033         case BJ_Reserved:
2034                 list = &transaction->t_reserved_list;
2035                 break;
2036         }
2037
2038         __blist_del_buffer(list, jh);
2039         jh->b_jlist = BJ_None;
2040         if (transaction && is_journal_aborted(transaction->t_journal))
2041                 clear_buffer_jbddirty(bh);
2042         else if (test_clear_buffer_jbddirty(bh))
2043                 mark_buffer_dirty(bh);  /* Expose it to the VM */
2044 }
2045
2046 /*
2047  * Remove buffer from all transactions. The caller is responsible for dropping
2048  * the jh reference that belonged to the transaction.
2049  *
2050  * Called with bh_state lock and j_list_lock
2051  */
2052 static void __jbd2_journal_unfile_buffer(struct journal_head *jh)
2053 {
2054         J_ASSERT_JH(jh, jh->b_transaction != NULL);
2055         J_ASSERT_JH(jh, jh->b_next_transaction == NULL);
2056
2057         __jbd2_journal_temp_unlink_buffer(jh);
2058         jh->b_transaction = NULL;
2059 }
2060
2061 void jbd2_journal_unfile_buffer(journal_t *journal, struct journal_head *jh)
2062 {
2063         struct buffer_head *bh = jh2bh(jh);
2064
2065         /* Get reference so that buffer cannot be freed before we unlock it */
2066         get_bh(bh);
2067         spin_lock(&jh->b_state_lock);
2068         spin_lock(&journal->j_list_lock);
2069         __jbd2_journal_unfile_buffer(jh);
2070         spin_unlock(&journal->j_list_lock);
2071         spin_unlock(&jh->b_state_lock);
2072         jbd2_journal_put_journal_head(jh);
2073         __brelse(bh);
2074 }
2075
2076 /*
2077  * Called from jbd2_journal_try_to_free_buffers().
2078  *
2079  * Called under jh->b_state_lock
2080  */
2081 static void
2082 __journal_try_to_free_buffer(journal_t *journal, struct buffer_head *bh)
2083 {
2084         struct journal_head *jh;
2085
2086         jh = bh2jh(bh);
2087
2088         if (buffer_locked(bh) || buffer_dirty(bh))
2089                 goto out;
2090
2091         if (jh->b_next_transaction != NULL || jh->b_transaction != NULL)
2092                 goto out;
2093
2094         spin_lock(&journal->j_list_lock);
2095         if (jh->b_cp_transaction != NULL) {
2096                 /* written-back checkpointed metadata buffer */
2097                 JBUFFER_TRACE(jh, "remove from checkpoint list");
2098                 __jbd2_journal_remove_checkpoint(jh);
2099         }
2100         spin_unlock(&journal->j_list_lock);
2101 out:
2102         return;
2103 }
2104
2105 /**
2106  * jbd2_journal_try_to_free_buffers() - try to free page buffers.
2107  * @journal: journal for operation
2108  * @page: to try and free
2109  *
2110  * For all the buffers on this page,
2111  * if they are fully written out ordered data, move them onto BUF_CLEAN
2112  * so try_to_free_buffers() can reap them.
2113  *
2114  * This function returns non-zero if we wish try_to_free_buffers()
2115  * to be called. We do this if the page is releasable by try_to_free_buffers().
2116  * We also do it if the page has locked or dirty buffers and the caller wants
2117  * us to perform sync or async writeout.
2118  *
2119  * This complicates JBD locking somewhat.  We aren't protected by the
2120  * BKL here.  We wish to remove the buffer from its committing or
2121  * running transaction's ->t_datalist via __jbd2_journal_unfile_buffer.
2122  *
2123  * This may *change* the value of transaction_t->t_datalist, so anyone
2124  * who looks at t_datalist needs to lock against this function.
2125  *
2126  * Even worse, someone may be doing a jbd2_journal_dirty_data on this
2127  * buffer.  So we need to lock against that.  jbd2_journal_dirty_data()
2128  * will come out of the lock with the buffer dirty, which makes it
2129  * ineligible for release here.
2130  *
2131  * Who else is affected by this?  hmm...  Really the only contender
2132  * is do_get_write_access() - it could be looking at the buffer while
2133  * journal_try_to_free_buffer() is changing its state.  But that
2134  * cannot happen because we never reallocate freed data as metadata
2135  * while the data is part of a transaction.  Yes?
2136  *
2137  * Return 0 on failure, 1 on success
2138  */
2139 int jbd2_journal_try_to_free_buffers(journal_t *journal, struct page *page)
2140 {
2141         struct buffer_head *head;
2142         struct buffer_head *bh;
2143         int ret = 0;
2144
2145         J_ASSERT(PageLocked(page));
2146
2147         head = page_buffers(page);
2148         bh = head;
2149         do {
2150                 struct journal_head *jh;
2151
2152                 /*
2153                  * We take our own ref against the journal_head here to avoid
2154                  * having to add tons of locking around each instance of
2155                  * jbd2_journal_put_journal_head().
2156                  */
2157                 jh = jbd2_journal_grab_journal_head(bh);
2158                 if (!jh)
2159                         continue;
2160
2161                 spin_lock(&jh->b_state_lock);
2162                 __journal_try_to_free_buffer(journal, bh);
2163                 spin_unlock(&jh->b_state_lock);
2164                 jbd2_journal_put_journal_head(jh);
2165                 if (buffer_jbd(bh))
2166                         goto busy;
2167         } while ((bh = bh->b_this_page) != head);
2168
2169         ret = try_to_free_buffers(page);
2170 busy:
2171         return ret;
2172 }
2173
2174 /*
2175  * This buffer is no longer needed.  If it is on an older transaction's
2176  * checkpoint list we need to record it on this transaction's forget list
2177  * to pin this buffer (and hence its checkpointing transaction) down until
2178  * this transaction commits.  If the buffer isn't on a checkpoint list, we
2179  * release it.
2180  * Returns non-zero if JBD no longer has an interest in the buffer.
2181  *
2182  * Called under j_list_lock.
2183  *
2184  * Called under jh->b_state_lock.
2185  */
2186 static int __dispose_buffer(struct journal_head *jh, transaction_t *transaction)
2187 {
2188         int may_free = 1;
2189         struct buffer_head *bh = jh2bh(jh);
2190
2191         if (jh->b_cp_transaction) {
2192                 JBUFFER_TRACE(jh, "on running+cp transaction");
2193                 __jbd2_journal_temp_unlink_buffer(jh);
2194                 /*
2195                  * We don't want to write the buffer anymore, clear the
2196                  * bit so that we don't confuse checks in
2197                  * __journal_file_buffer
2198                  */
2199                 clear_buffer_dirty(bh);
2200                 __jbd2_journal_file_buffer(jh, transaction, BJ_Forget);
2201                 may_free = 0;
2202         } else {
2203                 JBUFFER_TRACE(jh, "on running transaction");
2204                 __jbd2_journal_unfile_buffer(jh);
2205                 jbd2_journal_put_journal_head(jh);
2206         }
2207         return may_free;
2208 }
2209
2210 /*
2211  * jbd2_journal_invalidatepage
2212  *
2213  * This code is tricky.  It has a number of cases to deal with.
2214  *
2215  * There are two invariants which this code relies on:
2216  *
2217  * i_size must be updated on disk before we start calling invalidatepage on the
2218  * data.
2219  *
2220  *  This is done in ext3 by defining an ext3_setattr method which
2221  *  updates i_size before truncate gets going.  By maintaining this
2222  *  invariant, we can be sure that it is safe to throw away any buffers
2223  *  attached to the current transaction: once the transaction commits,
2224  *  we know that the data will not be needed.
2225  *
2226  *  Note however that we can *not* throw away data belonging to the
2227  *  previous, committing transaction!
2228  *
2229  * Any disk blocks which *are* part of the previous, committing
2230  * transaction (and which therefore cannot be discarded immediately) are
2231  * not going to be reused in the new running transaction
2232  *
2233  *  The bitmap committed_data images guarantee this: any block which is
2234  *  allocated in one transaction and removed in the next will be marked
2235  *  as in-use in the committed_data bitmap, so cannot be reused until
2236  *  the next transaction to delete the block commits.  This means that
2237  *  leaving committing buffers dirty is quite safe: the disk blocks
2238  *  cannot be reallocated to a different file and so buffer aliasing is
2239  *  not possible.
2240  *
2241  *
2242  * The above applies mainly to ordered data mode.  In writeback mode we
2243  * don't make guarantees about the order in which data hits disk --- in
2244  * particular we don't guarantee that new dirty data is flushed before
2245  * transaction commit --- so it is always safe just to discard data
2246  * immediately in that mode.  --sct
2247  */
2248
2249 /*
2250  * The journal_unmap_buffer helper function returns zero if the buffer
2251  * concerned remains pinned as an anonymous buffer belonging to an older
2252  * transaction.
2253  *
2254  * We're outside-transaction here.  Either or both of j_running_transaction
2255  * and j_committing_transaction may be NULL.
2256  */
2257 static int journal_unmap_buffer(journal_t *journal, struct buffer_head *bh,
2258                                 int partial_page)
2259 {
2260         transaction_t *transaction;
2261         struct journal_head *jh;
2262         int may_free = 1;
2263
2264         BUFFER_TRACE(bh, "entry");
2265
2266         /*
2267          * It is safe to proceed here without the j_list_lock because the
2268          * buffers cannot be stolen by try_to_free_buffers as long as we are
2269          * holding the page lock. --sct
2270          */
2271
2272         jh = jbd2_journal_grab_journal_head(bh);
2273         if (!jh)
2274                 goto zap_buffer_unlocked;
2275
2276         /* OK, we have data buffer in journaled mode */
2277         write_lock(&journal->j_state_lock);
2278         spin_lock(&jh->b_state_lock);
2279         spin_lock(&journal->j_list_lock);
2280
2281         /*
2282          * We cannot remove the buffer from checkpoint lists until the
2283          * transaction adding inode to orphan list (let's call it T)
2284          * is committed.  Otherwise if the transaction changing the
2285          * buffer would be cleaned from the journal before T is
2286          * committed, a crash will cause that the correct contents of
2287          * the buffer will be lost.  On the other hand we have to
2288          * clear the buffer dirty bit at latest at the moment when the
2289          * transaction marking the buffer as freed in the filesystem
2290          * structures is committed because from that moment on the
2291          * block can be reallocated and used by a different page.
2292          * Since the block hasn't been freed yet but the inode has
2293          * already been added to orphan list, it is safe for us to add
2294          * the buffer to BJ_Forget list of the newest transaction.
2295          *
2296          * Also we have to clear buffer_mapped flag of a truncated buffer
2297          * because the buffer_head may be attached to the page straddling
2298          * i_size (can happen only when blocksize < pagesize) and thus the
2299          * buffer_head can be reused when the file is extended again. So we end
2300          * up keeping around invalidated buffers attached to transactions'
2301          * BJ_Forget list just to stop checkpointing code from cleaning up
2302          * the transaction this buffer was modified in.
2303          */
2304         transaction = jh->b_transaction;
2305         if (transaction == NULL) {
2306                 /* First case: not on any transaction.  If it
2307                  * has no checkpoint link, then we can zap it:
2308                  * it's a writeback-mode buffer so we don't care
2309                  * if it hits disk safely. */
2310                 if (!jh->b_cp_transaction) {
2311                         JBUFFER_TRACE(jh, "not on any transaction: zap");
2312                         goto zap_buffer;
2313                 }
2314
2315                 if (!buffer_dirty(bh)) {
2316                         /* bdflush has written it.  We can drop it now */
2317                         __jbd2_journal_remove_checkpoint(jh);
2318                         goto zap_buffer;
2319                 }
2320
2321                 /* OK, it must be in the journal but still not
2322                  * written fully to disk: it's metadata or
2323                  * journaled data... */
2324
2325                 if (journal->j_running_transaction) {
2326                         /* ... and once the current transaction has
2327                          * committed, the buffer won't be needed any
2328                          * longer. */
2329                         JBUFFER_TRACE(jh, "checkpointed: add to BJ_Forget");
2330                         may_free = __dispose_buffer(jh,
2331                                         journal->j_running_transaction);
2332                         goto zap_buffer;
2333                 } else {
2334                         /* There is no currently-running transaction. So the
2335                          * orphan record which we wrote for this file must have
2336                          * passed into commit.  We must attach this buffer to
2337                          * the committing transaction, if it exists. */
2338                         if (journal->j_committing_transaction) {
2339                                 JBUFFER_TRACE(jh, "give to committing trans");
2340                                 may_free = __dispose_buffer(jh,
2341                                         journal->j_committing_transaction);
2342                                 goto zap_buffer;
2343                         } else {
2344                                 /* The orphan record's transaction has
2345                                  * committed.  We can cleanse this buffer */
2346                                 clear_buffer_jbddirty(bh);
2347                                 __jbd2_journal_remove_checkpoint(jh);
2348                                 goto zap_buffer;
2349                         }
2350                 }
2351         } else if (transaction == journal->j_committing_transaction) {
2352                 JBUFFER_TRACE(jh, "on committing transaction");
2353                 /*
2354                  * The buffer is committing, we simply cannot touch
2355                  * it. If the page is straddling i_size we have to wait
2356                  * for commit and try again.
2357                  */
2358                 if (partial_page) {
2359                         spin_unlock(&journal->j_list_lock);
2360                         spin_unlock(&jh->b_state_lock);
2361                         write_unlock(&journal->j_state_lock);
2362                         jbd2_journal_put_journal_head(jh);
2363                         return -EBUSY;
2364                 }
2365                 /*
2366                  * OK, buffer won't be reachable after truncate. We just clear
2367                  * b_modified to not confuse transaction credit accounting, and
2368                  * set j_next_transaction to the running transaction (if there
2369                  * is one) and mark buffer as freed so that commit code knows
2370                  * it should clear dirty bits when it is done with the buffer.
2371                  */
2372                 set_buffer_freed(bh);
2373                 if (journal->j_running_transaction && buffer_jbddirty(bh))
2374                         jh->b_next_transaction = journal->j_running_transaction;
2375                 jh->b_modified = 0;
2376                 spin_unlock(&journal->j_list_lock);
2377                 spin_unlock(&jh->b_state_lock);
2378                 write_unlock(&journal->j_state_lock);
2379                 jbd2_journal_put_journal_head(jh);
2380                 return 0;
2381         } else {
2382                 /* Good, the buffer belongs to the running transaction.
2383                  * We are writing our own transaction's data, not any
2384                  * previous one's, so it is safe to throw it away
2385                  * (remember that we expect the filesystem to have set
2386                  * i_size already for this truncate so recovery will not
2387                  * expose the disk blocks we are discarding here.) */
2388                 J_ASSERT_JH(jh, transaction == journal->j_running_transaction);
2389                 JBUFFER_TRACE(jh, "on running transaction");
2390                 may_free = __dispose_buffer(jh, transaction);
2391         }
2392
2393 zap_buffer:
2394         /*
2395          * This is tricky. Although the buffer is truncated, it may be reused
2396          * if blocksize < pagesize and it is attached to the page straddling
2397          * EOF. Since the buffer might have been added to BJ_Forget list of the
2398          * running transaction, journal_get_write_access() won't clear
2399          * b_modified and credit accounting gets confused. So clear b_modified
2400          * here.
2401          */
2402         jh->b_modified = 0;
2403         spin_unlock(&journal->j_list_lock);
2404         spin_unlock(&jh->b_state_lock);
2405         write_unlock(&journal->j_state_lock);
2406         jbd2_journal_put_journal_head(jh);
2407 zap_buffer_unlocked:
2408         clear_buffer_dirty(bh);
2409         J_ASSERT_BH(bh, !buffer_jbddirty(bh));
2410         clear_buffer_mapped(bh);
2411         clear_buffer_req(bh);
2412         clear_buffer_new(bh);
2413         clear_buffer_delay(bh);
2414         clear_buffer_unwritten(bh);
2415         bh->b_bdev = NULL;
2416         return may_free;
2417 }
2418
2419 /**
2420  * jbd2_journal_invalidatepage()
2421  * @journal: journal to use for flush...
2422  * @page:    page to flush
2423  * @offset:  start of the range to invalidate
2424  * @length:  length of the range to invalidate
2425  *
2426  * Reap page buffers containing data after in the specified range in page.
2427  * Can return -EBUSY if buffers are part of the committing transaction and
2428  * the page is straddling i_size. Caller then has to wait for current commit
2429  * and try again.
2430  */
2431 int jbd2_journal_invalidatepage(journal_t *journal,
2432                                 struct page *page,
2433                                 unsigned int offset,
2434                                 unsigned int length)
2435 {
2436         struct buffer_head *head, *bh, *next;
2437         unsigned int stop = offset + length;
2438         unsigned int curr_off = 0;
2439         int partial_page = (offset || length < PAGE_SIZE);
2440         int may_free = 1;
2441         int ret = 0;
2442
2443         if (!PageLocked(page))
2444                 BUG();
2445         if (!page_has_buffers(page))
2446                 return 0;
2447
2448         BUG_ON(stop > PAGE_SIZE || stop < length);
2449
2450         /* We will potentially be playing with lists other than just the
2451          * data lists (especially for journaled data mode), so be
2452          * cautious in our locking. */
2453
2454         head = bh = page_buffers(page);
2455         do {
2456                 unsigned int next_off = curr_off + bh->b_size;
2457                 next = bh->b_this_page;
2458
2459                 if (next_off > stop)
2460                         return 0;
2461
2462                 if (offset <= curr_off) {
2463                         /* This block is wholly outside the truncation point */
2464                         lock_buffer(bh);
2465                         ret = journal_unmap_buffer(journal, bh, partial_page);
2466                         unlock_buffer(bh);
2467                         if (ret < 0)
2468                                 return ret;
2469                         may_free &= ret;
2470                 }
2471                 curr_off = next_off;
2472                 bh = next;
2473
2474         } while (bh != head);
2475
2476         if (!partial_page) {
2477                 if (may_free && try_to_free_buffers(page))
2478                         J_ASSERT(!page_has_buffers(page));
2479         }
2480         return 0;
2481 }
2482
2483 /*
2484  * File a buffer on the given transaction list.
2485  */
2486 void __jbd2_journal_file_buffer(struct journal_head *jh,
2487                         transaction_t *transaction, int jlist)
2488 {
2489         struct journal_head **list = NULL;
2490         int was_dirty = 0;
2491         struct buffer_head *bh = jh2bh(jh);
2492
2493         lockdep_assert_held(&jh->b_state_lock);
2494         assert_spin_locked(&transaction->t_journal->j_list_lock);
2495
2496         J_ASSERT_JH(jh, jh->b_jlist < BJ_Types);
2497         J_ASSERT_JH(jh, jh->b_transaction == transaction ||
2498                                 jh->b_transaction == NULL);
2499
2500         if (jh->b_transaction && jh->b_jlist == jlist)
2501                 return;
2502
2503         if (jlist == BJ_Metadata || jlist == BJ_Reserved ||
2504             jlist == BJ_Shadow || jlist == BJ_Forget) {
2505                 /*
2506                  * For metadata buffers, we track dirty bit in buffer_jbddirty
2507                  * instead of buffer_dirty. We should not see a dirty bit set
2508                  * here because we clear it in do_get_write_access but e.g.
2509                  * tune2fs can modify the sb and set the dirty bit at any time
2510                  * so we try to gracefully handle that.
2511                  */
2512                 if (buffer_dirty(bh))
2513                         warn_dirty_buffer(bh);
2514                 if (test_clear_buffer_dirty(bh) ||
2515                     test_clear_buffer_jbddirty(bh))
2516                         was_dirty = 1;
2517         }
2518
2519         if (jh->b_transaction)
2520                 __jbd2_journal_temp_unlink_buffer(jh);
2521         else
2522                 jbd2_journal_grab_journal_head(bh);
2523         jh->b_transaction = transaction;
2524
2525         switch (jlist) {
2526         case BJ_None:
2527                 J_ASSERT_JH(jh, !jh->b_committed_data);
2528                 J_ASSERT_JH(jh, !jh->b_frozen_data);
2529                 return;
2530         case BJ_Metadata:
2531                 transaction->t_nr_buffers++;
2532                 list = &transaction->t_buffers;
2533                 break;
2534         case BJ_Forget:
2535                 list = &transaction->t_forget;
2536                 break;
2537         case BJ_Shadow:
2538                 list = &transaction->t_shadow_list;
2539                 break;
2540         case BJ_Reserved:
2541                 list = &transaction->t_reserved_list;
2542                 break;
2543         }
2544
2545         __blist_add_buffer(list, jh);
2546         jh->b_jlist = jlist;
2547
2548         if (was_dirty)
2549                 set_buffer_jbddirty(bh);
2550 }
2551
2552 void jbd2_journal_file_buffer(struct journal_head *jh,
2553                                 transaction_t *transaction, int jlist)
2554 {
2555         spin_lock(&jh->b_state_lock);
2556         spin_lock(&transaction->t_journal->j_list_lock);
2557         __jbd2_journal_file_buffer(jh, transaction, jlist);
2558         spin_unlock(&transaction->t_journal->j_list_lock);
2559         spin_unlock(&jh->b_state_lock);
2560 }
2561
2562 /*
2563  * Remove a buffer from its current buffer list in preparation for
2564  * dropping it from its current transaction entirely.  If the buffer has
2565  * already started to be used by a subsequent transaction, refile the
2566  * buffer on that transaction's metadata list.
2567  *
2568  * Called under j_list_lock
2569  * Called under jh->b_state_lock
2570  *
2571  * When this function returns true, there's no next transaction to refile to
2572  * and the caller has to drop jh reference through
2573  * jbd2_journal_put_journal_head().
2574  */
2575 bool __jbd2_journal_refile_buffer(struct journal_head *jh)
2576 {
2577         int was_dirty, jlist;
2578         struct buffer_head *bh = jh2bh(jh);
2579
2580         lockdep_assert_held(&jh->b_state_lock);
2581         if (jh->b_transaction)
2582                 assert_spin_locked(&jh->b_transaction->t_journal->j_list_lock);
2583
2584         /* If the buffer is now unused, just drop it. */
2585         if (jh->b_next_transaction == NULL) {
2586                 __jbd2_journal_unfile_buffer(jh);
2587                 return true;
2588         }
2589
2590         /*
2591          * It has been modified by a later transaction: add it to the new
2592          * transaction's metadata list.
2593          */
2594
2595         was_dirty = test_clear_buffer_jbddirty(bh);
2596         __jbd2_journal_temp_unlink_buffer(jh);
2597
2598         /*
2599          * b_transaction must be set, otherwise the new b_transaction won't
2600          * be holding jh reference
2601          */
2602         J_ASSERT_JH(jh, jh->b_transaction != NULL);
2603
2604         /*
2605          * We set b_transaction here because b_next_transaction will inherit
2606          * our jh reference and thus __jbd2_journal_file_buffer() must not
2607          * take a new one.
2608          */
2609         WRITE_ONCE(jh->b_transaction, jh->b_next_transaction);
2610         WRITE_ONCE(jh->b_next_transaction, NULL);
2611         if (buffer_freed(bh))
2612                 jlist = BJ_Forget;
2613         else if (jh->b_modified)
2614                 jlist = BJ_Metadata;
2615         else
2616                 jlist = BJ_Reserved;
2617         __jbd2_journal_file_buffer(jh, jh->b_transaction, jlist);
2618         J_ASSERT_JH(jh, jh->b_transaction->t_state == T_RUNNING);
2619
2620         if (was_dirty)
2621                 set_buffer_jbddirty(bh);
2622         return false;
2623 }
2624
2625 /*
2626  * __jbd2_journal_refile_buffer() with necessary locking added. We take our
2627  * bh reference so that we can safely unlock bh.
2628  *
2629  * The jh and bh may be freed by this call.
2630  */
2631 void jbd2_journal_refile_buffer(journal_t *journal, struct journal_head *jh)
2632 {
2633         bool drop;
2634
2635         spin_lock(&jh->b_state_lock);
2636         spin_lock(&journal->j_list_lock);
2637         drop = __jbd2_journal_refile_buffer(jh);
2638         spin_unlock(&jh->b_state_lock);
2639         spin_unlock(&journal->j_list_lock);
2640         if (drop)
2641                 jbd2_journal_put_journal_head(jh);
2642 }
2643
2644 /*
2645  * File inode in the inode list of the handle's transaction
2646  */
2647 static int jbd2_journal_file_inode(handle_t *handle, struct jbd2_inode *jinode,
2648                 unsigned long flags, loff_t start_byte, loff_t end_byte)
2649 {
2650         transaction_t *transaction = handle->h_transaction;
2651         journal_t *journal;
2652
2653         if (is_handle_aborted(handle))
2654                 return -EROFS;
2655         journal = transaction->t_journal;
2656
2657         jbd_debug(4, "Adding inode %lu, tid:%d\n", jinode->i_vfs_inode->i_ino,
2658                         transaction->t_tid);
2659
2660         spin_lock(&journal->j_list_lock);
2661         jinode->i_flags |= flags;
2662
2663         if (jinode->i_dirty_end) {
2664                 jinode->i_dirty_start = min(jinode->i_dirty_start, start_byte);
2665                 jinode->i_dirty_end = max(jinode->i_dirty_end, end_byte);
2666         } else {
2667                 jinode->i_dirty_start = start_byte;
2668                 jinode->i_dirty_end = end_byte;
2669         }
2670
2671         /* Is inode already attached where we need it? */
2672         if (jinode->i_transaction == transaction ||
2673             jinode->i_next_transaction == transaction)
2674                 goto done;
2675
2676         /*
2677          * We only ever set this variable to 1 so the test is safe. Since
2678          * t_need_data_flush is likely to be set, we do the test to save some
2679          * cacheline bouncing
2680          */
2681         if (!transaction->t_need_data_flush)
2682                 transaction->t_need_data_flush = 1;
2683         /* On some different transaction's list - should be
2684          * the committing one */
2685         if (jinode->i_transaction) {
2686                 J_ASSERT(jinode->i_next_transaction == NULL);
2687                 J_ASSERT(jinode->i_transaction ==
2688                                         journal->j_committing_transaction);
2689                 jinode->i_next_transaction = transaction;
2690                 goto done;
2691         }
2692         /* Not on any transaction list... */
2693         J_ASSERT(!jinode->i_next_transaction);
2694         jinode->i_transaction = transaction;
2695         list_add(&jinode->i_list, &transaction->t_inode_list);
2696 done:
2697         spin_unlock(&journal->j_list_lock);
2698
2699         return 0;
2700 }
2701
2702 int jbd2_journal_inode_ranged_write(handle_t *handle,
2703                 struct jbd2_inode *jinode, loff_t start_byte, loff_t length)
2704 {
2705         return jbd2_journal_file_inode(handle, jinode,
2706                         JI_WRITE_DATA | JI_WAIT_DATA, start_byte,
2707                         start_byte + length - 1);
2708 }
2709
2710 int jbd2_journal_inode_ranged_wait(handle_t *handle, struct jbd2_inode *jinode,
2711                 loff_t start_byte, loff_t length)
2712 {
2713         return jbd2_journal_file_inode(handle, jinode, JI_WAIT_DATA,
2714                         start_byte, start_byte + length - 1);
2715 }
2716
2717 /*
2718  * File truncate and transaction commit interact with each other in a
2719  * non-trivial way.  If a transaction writing data block A is
2720  * committing, we cannot discard the data by truncate until we have
2721  * written them.  Otherwise if we crashed after the transaction with
2722  * write has committed but before the transaction with truncate has
2723  * committed, we could see stale data in block A.  This function is a
2724  * helper to solve this problem.  It starts writeout of the truncated
2725  * part in case it is in the committing transaction.
2726  *
2727  * Filesystem code must call this function when inode is journaled in
2728  * ordered mode before truncation happens and after the inode has been
2729  * placed on orphan list with the new inode size. The second condition
2730  * avoids the race that someone writes new data and we start
2731  * committing the transaction after this function has been called but
2732  * before a transaction for truncate is started (and furthermore it
2733  * allows us to optimize the case where the addition to orphan list
2734  * happens in the same transaction as write --- we don't have to write
2735  * any data in such case).
2736  */
2737 int jbd2_journal_begin_ordered_truncate(journal_t *journal,
2738                                         struct jbd2_inode *jinode,
2739                                         loff_t new_size)
2740 {
2741         transaction_t *inode_trans, *commit_trans;
2742         int ret = 0;
2743
2744         /* This is a quick check to avoid locking if not necessary */
2745         if (!jinode->i_transaction)
2746                 goto out;
2747         /* Locks are here just to force reading of recent values, it is
2748          * enough that the transaction was not committing before we started
2749          * a transaction adding the inode to orphan list */
2750         read_lock(&journal->j_state_lock);
2751         commit_trans = journal->j_committing_transaction;
2752         read_unlock(&journal->j_state_lock);
2753         spin_lock(&journal->j_list_lock);
2754         inode_trans = jinode->i_transaction;
2755         spin_unlock(&journal->j_list_lock);
2756         if (inode_trans == commit_trans) {
2757                 ret = filemap_fdatawrite_range(jinode->i_vfs_inode->i_mapping,
2758                         new_size, LLONG_MAX);
2759                 if (ret)
2760                         jbd2_journal_abort(journal, ret);
2761         }
2762 out:
2763         return ret;
2764 }