Merge tag 'kvmarm-fixes-5.10-2' of git://git.kernel.org/pub/scm/linux/kernel/git...
[linux-2.6-microblaze.git] / fs / jbd2 / journal.c
1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3  * linux/fs/jbd2/journal.c
4  *
5  * Written by Stephen C. Tweedie <sct@redhat.com>, 1998
6  *
7  * Copyright 1998 Red Hat corp --- All Rights Reserved
8  *
9  * Generic filesystem journal-writing code; part of the ext2fs
10  * journaling system.
11  *
12  * This file manages journals: areas of disk reserved for logging
13  * transactional updates.  This includes the kernel journaling thread
14  * which is responsible for scheduling updates to the log.
15  *
16  * We do not actually manage the physical storage of the journal in this
17  * file: that is left to a per-journal policy function, which allows us
18  * to store the journal within a filesystem-specified area for ext2
19  * journaling (ext2 can use a reserved inode for storing the log).
20  */
21
22 #include <linux/module.h>
23 #include <linux/time.h>
24 #include <linux/fs.h>
25 #include <linux/jbd2.h>
26 #include <linux/errno.h>
27 #include <linux/slab.h>
28 #include <linux/init.h>
29 #include <linux/mm.h>
30 #include <linux/freezer.h>
31 #include <linux/pagemap.h>
32 #include <linux/kthread.h>
33 #include <linux/poison.h>
34 #include <linux/proc_fs.h>
35 #include <linux/seq_file.h>
36 #include <linux/math64.h>
37 #include <linux/hash.h>
38 #include <linux/log2.h>
39 #include <linux/vmalloc.h>
40 #include <linux/backing-dev.h>
41 #include <linux/bitops.h>
42 #include <linux/ratelimit.h>
43 #include <linux/sched/mm.h>
44
45 #define CREATE_TRACE_POINTS
46 #include <trace/events/jbd2.h>
47
48 #include <linux/uaccess.h>
49 #include <asm/page.h>
50
51 #ifdef CONFIG_JBD2_DEBUG
52 ushort jbd2_journal_enable_debug __read_mostly;
53 EXPORT_SYMBOL(jbd2_journal_enable_debug);
54
55 module_param_named(jbd2_debug, jbd2_journal_enable_debug, ushort, 0644);
56 MODULE_PARM_DESC(jbd2_debug, "Debugging level for jbd2");
57 #endif
58
59 EXPORT_SYMBOL(jbd2_journal_extend);
60 EXPORT_SYMBOL(jbd2_journal_stop);
61 EXPORT_SYMBOL(jbd2_journal_lock_updates);
62 EXPORT_SYMBOL(jbd2_journal_unlock_updates);
63 EXPORT_SYMBOL(jbd2_journal_get_write_access);
64 EXPORT_SYMBOL(jbd2_journal_get_create_access);
65 EXPORT_SYMBOL(jbd2_journal_get_undo_access);
66 EXPORT_SYMBOL(jbd2_journal_set_triggers);
67 EXPORT_SYMBOL(jbd2_journal_dirty_metadata);
68 EXPORT_SYMBOL(jbd2_journal_forget);
69 EXPORT_SYMBOL(jbd2_journal_flush);
70 EXPORT_SYMBOL(jbd2_journal_revoke);
71
72 EXPORT_SYMBOL(jbd2_journal_init_dev);
73 EXPORT_SYMBOL(jbd2_journal_init_inode);
74 EXPORT_SYMBOL(jbd2_journal_check_used_features);
75 EXPORT_SYMBOL(jbd2_journal_check_available_features);
76 EXPORT_SYMBOL(jbd2_journal_set_features);
77 EXPORT_SYMBOL(jbd2_journal_load);
78 EXPORT_SYMBOL(jbd2_journal_destroy);
79 EXPORT_SYMBOL(jbd2_journal_abort);
80 EXPORT_SYMBOL(jbd2_journal_errno);
81 EXPORT_SYMBOL(jbd2_journal_ack_err);
82 EXPORT_SYMBOL(jbd2_journal_clear_err);
83 EXPORT_SYMBOL(jbd2_log_wait_commit);
84 EXPORT_SYMBOL(jbd2_log_start_commit);
85 EXPORT_SYMBOL(jbd2_journal_start_commit);
86 EXPORT_SYMBOL(jbd2_journal_force_commit_nested);
87 EXPORT_SYMBOL(jbd2_journal_wipe);
88 EXPORT_SYMBOL(jbd2_journal_blocks_per_page);
89 EXPORT_SYMBOL(jbd2_journal_invalidatepage);
90 EXPORT_SYMBOL(jbd2_journal_try_to_free_buffers);
91 EXPORT_SYMBOL(jbd2_journal_force_commit);
92 EXPORT_SYMBOL(jbd2_journal_inode_ranged_write);
93 EXPORT_SYMBOL(jbd2_journal_inode_ranged_wait);
94 EXPORT_SYMBOL(jbd2_journal_submit_inode_data_buffers);
95 EXPORT_SYMBOL(jbd2_journal_finish_inode_data_buffers);
96 EXPORT_SYMBOL(jbd2_journal_init_jbd_inode);
97 EXPORT_SYMBOL(jbd2_journal_release_jbd_inode);
98 EXPORT_SYMBOL(jbd2_journal_begin_ordered_truncate);
99 EXPORT_SYMBOL(jbd2_inode_cache);
100
101 static int jbd2_journal_create_slab(size_t slab_size);
102
103 #ifdef CONFIG_JBD2_DEBUG
104 void __jbd2_debug(int level, const char *file, const char *func,
105                   unsigned int line, const char *fmt, ...)
106 {
107         struct va_format vaf;
108         va_list args;
109
110         if (level > jbd2_journal_enable_debug)
111                 return;
112         va_start(args, fmt);
113         vaf.fmt = fmt;
114         vaf.va = &args;
115         printk(KERN_DEBUG "%s: (%s, %u): %pV", file, func, line, &vaf);
116         va_end(args);
117 }
118 EXPORT_SYMBOL(__jbd2_debug);
119 #endif
120
121 /* Checksumming functions */
122 static int jbd2_verify_csum_type(journal_t *j, journal_superblock_t *sb)
123 {
124         if (!jbd2_journal_has_csum_v2or3_feature(j))
125                 return 1;
126
127         return sb->s_checksum_type == JBD2_CRC32C_CHKSUM;
128 }
129
130 static __be32 jbd2_superblock_csum(journal_t *j, journal_superblock_t *sb)
131 {
132         __u32 csum;
133         __be32 old_csum;
134
135         old_csum = sb->s_checksum;
136         sb->s_checksum = 0;
137         csum = jbd2_chksum(j, ~0, (char *)sb, sizeof(journal_superblock_t));
138         sb->s_checksum = old_csum;
139
140         return cpu_to_be32(csum);
141 }
142
143 /*
144  * Helper function used to manage commit timeouts
145  */
146
147 static void commit_timeout(struct timer_list *t)
148 {
149         journal_t *journal = from_timer(journal, t, j_commit_timer);
150
151         wake_up_process(journal->j_task);
152 }
153
154 /*
155  * kjournald2: The main thread function used to manage a logging device
156  * journal.
157  *
158  * This kernel thread is responsible for two things:
159  *
160  * 1) COMMIT:  Every so often we need to commit the current state of the
161  *    filesystem to disk.  The journal thread is responsible for writing
162  *    all of the metadata buffers to disk. If a fast commit is ongoing
163  *    journal thread waits until it's done and then continues from
164  *    there on.
165  *
166  * 2) CHECKPOINT: We cannot reuse a used section of the log file until all
167  *    of the data in that part of the log has been rewritten elsewhere on
168  *    the disk.  Flushing these old buffers to reclaim space in the log is
169  *    known as checkpointing, and this thread is responsible for that job.
170  */
171
172 static int kjournald2(void *arg)
173 {
174         journal_t *journal = arg;
175         transaction_t *transaction;
176
177         /*
178          * Set up an interval timer which can be used to trigger a commit wakeup
179          * after the commit interval expires
180          */
181         timer_setup(&journal->j_commit_timer, commit_timeout, 0);
182
183         set_freezable();
184
185         /* Record that the journal thread is running */
186         journal->j_task = current;
187         wake_up(&journal->j_wait_done_commit);
188
189         /*
190          * Make sure that no allocations from this kernel thread will ever
191          * recurse to the fs layer because we are responsible for the
192          * transaction commit and any fs involvement might get stuck waiting for
193          * the trasn. commit.
194          */
195         memalloc_nofs_save();
196
197         /*
198          * And now, wait forever for commit wakeup events.
199          */
200         write_lock(&journal->j_state_lock);
201
202 loop:
203         if (journal->j_flags & JBD2_UNMOUNT)
204                 goto end_loop;
205
206         jbd_debug(1, "commit_sequence=%u, commit_request=%u\n",
207                 journal->j_commit_sequence, journal->j_commit_request);
208
209         if (journal->j_commit_sequence != journal->j_commit_request) {
210                 jbd_debug(1, "OK, requests differ\n");
211                 write_unlock(&journal->j_state_lock);
212                 del_timer_sync(&journal->j_commit_timer);
213                 jbd2_journal_commit_transaction(journal);
214                 write_lock(&journal->j_state_lock);
215                 goto loop;
216         }
217
218         wake_up(&journal->j_wait_done_commit);
219         if (freezing(current)) {
220                 /*
221                  * The simpler the better. Flushing journal isn't a
222                  * good idea, because that depends on threads that may
223                  * be already stopped.
224                  */
225                 jbd_debug(1, "Now suspending kjournald2\n");
226                 write_unlock(&journal->j_state_lock);
227                 try_to_freeze();
228                 write_lock(&journal->j_state_lock);
229         } else {
230                 /*
231                  * We assume on resume that commits are already there,
232                  * so we don't sleep
233                  */
234                 DEFINE_WAIT(wait);
235                 int should_sleep = 1;
236
237                 prepare_to_wait(&journal->j_wait_commit, &wait,
238                                 TASK_INTERRUPTIBLE);
239                 if (journal->j_commit_sequence != journal->j_commit_request)
240                         should_sleep = 0;
241                 transaction = journal->j_running_transaction;
242                 if (transaction && time_after_eq(jiffies,
243                                                 transaction->t_expires))
244                         should_sleep = 0;
245                 if (journal->j_flags & JBD2_UNMOUNT)
246                         should_sleep = 0;
247                 if (should_sleep) {
248                         write_unlock(&journal->j_state_lock);
249                         schedule();
250                         write_lock(&journal->j_state_lock);
251                 }
252                 finish_wait(&journal->j_wait_commit, &wait);
253         }
254
255         jbd_debug(1, "kjournald2 wakes\n");
256
257         /*
258          * Were we woken up by a commit wakeup event?
259          */
260         transaction = journal->j_running_transaction;
261         if (transaction && time_after_eq(jiffies, transaction->t_expires)) {
262                 journal->j_commit_request = transaction->t_tid;
263                 jbd_debug(1, "woke because of timeout\n");
264         }
265         goto loop;
266
267 end_loop:
268         del_timer_sync(&journal->j_commit_timer);
269         journal->j_task = NULL;
270         wake_up(&journal->j_wait_done_commit);
271         jbd_debug(1, "Journal thread exiting.\n");
272         write_unlock(&journal->j_state_lock);
273         return 0;
274 }
275
276 static int jbd2_journal_start_thread(journal_t *journal)
277 {
278         struct task_struct *t;
279
280         t = kthread_run(kjournald2, journal, "jbd2/%s",
281                         journal->j_devname);
282         if (IS_ERR(t))
283                 return PTR_ERR(t);
284
285         wait_event(journal->j_wait_done_commit, journal->j_task != NULL);
286         return 0;
287 }
288
289 static void journal_kill_thread(journal_t *journal)
290 {
291         write_lock(&journal->j_state_lock);
292         journal->j_flags |= JBD2_UNMOUNT;
293
294         while (journal->j_task) {
295                 write_unlock(&journal->j_state_lock);
296                 wake_up(&journal->j_wait_commit);
297                 wait_event(journal->j_wait_done_commit, journal->j_task == NULL);
298                 write_lock(&journal->j_state_lock);
299         }
300         write_unlock(&journal->j_state_lock);
301 }
302
303 /*
304  * jbd2_journal_write_metadata_buffer: write a metadata buffer to the journal.
305  *
306  * Writes a metadata buffer to a given disk block.  The actual IO is not
307  * performed but a new buffer_head is constructed which labels the data
308  * to be written with the correct destination disk block.
309  *
310  * Any magic-number escaping which needs to be done will cause a
311  * copy-out here.  If the buffer happens to start with the
312  * JBD2_MAGIC_NUMBER, then we can't write it to the log directly: the
313  * magic number is only written to the log for descripter blocks.  In
314  * this case, we copy the data and replace the first word with 0, and we
315  * return a result code which indicates that this buffer needs to be
316  * marked as an escaped buffer in the corresponding log descriptor
317  * block.  The missing word can then be restored when the block is read
318  * during recovery.
319  *
320  * If the source buffer has already been modified by a new transaction
321  * since we took the last commit snapshot, we use the frozen copy of
322  * that data for IO. If we end up using the existing buffer_head's data
323  * for the write, then we have to make sure nobody modifies it while the
324  * IO is in progress. do_get_write_access() handles this.
325  *
326  * The function returns a pointer to the buffer_head to be used for IO.
327  *
328  *
329  * Return value:
330  *  <0: Error
331  * >=0: Finished OK
332  *
333  * On success:
334  * Bit 0 set == escape performed on the data
335  * Bit 1 set == buffer copy-out performed (kfree the data after IO)
336  */
337
338 int jbd2_journal_write_metadata_buffer(transaction_t *transaction,
339                                   struct journal_head  *jh_in,
340                                   struct buffer_head **bh_out,
341                                   sector_t blocknr)
342 {
343         int need_copy_out = 0;
344         int done_copy_out = 0;
345         int do_escape = 0;
346         char *mapped_data;
347         struct buffer_head *new_bh;
348         struct page *new_page;
349         unsigned int new_offset;
350         struct buffer_head *bh_in = jh2bh(jh_in);
351         journal_t *journal = transaction->t_journal;
352
353         /*
354          * The buffer really shouldn't be locked: only the current committing
355          * transaction is allowed to write it, so nobody else is allowed
356          * to do any IO.
357          *
358          * akpm: except if we're journalling data, and write() output is
359          * also part of a shared mapping, and another thread has
360          * decided to launch a writepage() against this buffer.
361          */
362         J_ASSERT_BH(bh_in, buffer_jbddirty(bh_in));
363
364         new_bh = alloc_buffer_head(GFP_NOFS|__GFP_NOFAIL);
365
366         /* keep subsequent assertions sane */
367         atomic_set(&new_bh->b_count, 1);
368
369         spin_lock(&jh_in->b_state_lock);
370 repeat:
371         /*
372          * If a new transaction has already done a buffer copy-out, then
373          * we use that version of the data for the commit.
374          */
375         if (jh_in->b_frozen_data) {
376                 done_copy_out = 1;
377                 new_page = virt_to_page(jh_in->b_frozen_data);
378                 new_offset = offset_in_page(jh_in->b_frozen_data);
379         } else {
380                 new_page = jh2bh(jh_in)->b_page;
381                 new_offset = offset_in_page(jh2bh(jh_in)->b_data);
382         }
383
384         mapped_data = kmap_atomic(new_page);
385         /*
386          * Fire data frozen trigger if data already wasn't frozen.  Do this
387          * before checking for escaping, as the trigger may modify the magic
388          * offset.  If a copy-out happens afterwards, it will have the correct
389          * data in the buffer.
390          */
391         if (!done_copy_out)
392                 jbd2_buffer_frozen_trigger(jh_in, mapped_data + new_offset,
393                                            jh_in->b_triggers);
394
395         /*
396          * Check for escaping
397          */
398         if (*((__be32 *)(mapped_data + new_offset)) ==
399                                 cpu_to_be32(JBD2_MAGIC_NUMBER)) {
400                 need_copy_out = 1;
401                 do_escape = 1;
402         }
403         kunmap_atomic(mapped_data);
404
405         /*
406          * Do we need to do a data copy?
407          */
408         if (need_copy_out && !done_copy_out) {
409                 char *tmp;
410
411                 spin_unlock(&jh_in->b_state_lock);
412                 tmp = jbd2_alloc(bh_in->b_size, GFP_NOFS);
413                 if (!tmp) {
414                         brelse(new_bh);
415                         return -ENOMEM;
416                 }
417                 spin_lock(&jh_in->b_state_lock);
418                 if (jh_in->b_frozen_data) {
419                         jbd2_free(tmp, bh_in->b_size);
420                         goto repeat;
421                 }
422
423                 jh_in->b_frozen_data = tmp;
424                 mapped_data = kmap_atomic(new_page);
425                 memcpy(tmp, mapped_data + new_offset, bh_in->b_size);
426                 kunmap_atomic(mapped_data);
427
428                 new_page = virt_to_page(tmp);
429                 new_offset = offset_in_page(tmp);
430                 done_copy_out = 1;
431
432                 /*
433                  * This isn't strictly necessary, as we're using frozen
434                  * data for the escaping, but it keeps consistency with
435                  * b_frozen_data usage.
436                  */
437                 jh_in->b_frozen_triggers = jh_in->b_triggers;
438         }
439
440         /*
441          * Did we need to do an escaping?  Now we've done all the
442          * copying, we can finally do so.
443          */
444         if (do_escape) {
445                 mapped_data = kmap_atomic(new_page);
446                 *((unsigned int *)(mapped_data + new_offset)) = 0;
447                 kunmap_atomic(mapped_data);
448         }
449
450         set_bh_page(new_bh, new_page, new_offset);
451         new_bh->b_size = bh_in->b_size;
452         new_bh->b_bdev = journal->j_dev;
453         new_bh->b_blocknr = blocknr;
454         new_bh->b_private = bh_in;
455         set_buffer_mapped(new_bh);
456         set_buffer_dirty(new_bh);
457
458         *bh_out = new_bh;
459
460         /*
461          * The to-be-written buffer needs to get moved to the io queue,
462          * and the original buffer whose contents we are shadowing or
463          * copying is moved to the transaction's shadow queue.
464          */
465         JBUFFER_TRACE(jh_in, "file as BJ_Shadow");
466         spin_lock(&journal->j_list_lock);
467         __jbd2_journal_file_buffer(jh_in, transaction, BJ_Shadow);
468         spin_unlock(&journal->j_list_lock);
469         set_buffer_shadow(bh_in);
470         spin_unlock(&jh_in->b_state_lock);
471
472         return do_escape | (done_copy_out << 1);
473 }
474
475 /*
476  * Allocation code for the journal file.  Manage the space left in the
477  * journal, so that we can begin checkpointing when appropriate.
478  */
479
480 /*
481  * Called with j_state_lock locked for writing.
482  * Returns true if a transaction commit was started.
483  */
484 int __jbd2_log_start_commit(journal_t *journal, tid_t target)
485 {
486         /* Return if the txn has already requested to be committed */
487         if (journal->j_commit_request == target)
488                 return 0;
489
490         /*
491          * The only transaction we can possibly wait upon is the
492          * currently running transaction (if it exists).  Otherwise,
493          * the target tid must be an old one.
494          */
495         if (journal->j_running_transaction &&
496             journal->j_running_transaction->t_tid == target) {
497                 /*
498                  * We want a new commit: OK, mark the request and wakeup the
499                  * commit thread.  We do _not_ do the commit ourselves.
500                  */
501
502                 journal->j_commit_request = target;
503                 jbd_debug(1, "JBD2: requesting commit %u/%u\n",
504                           journal->j_commit_request,
505                           journal->j_commit_sequence);
506                 journal->j_running_transaction->t_requested = jiffies;
507                 wake_up(&journal->j_wait_commit);
508                 return 1;
509         } else if (!tid_geq(journal->j_commit_request, target))
510                 /* This should never happen, but if it does, preserve
511                    the evidence before kjournald goes into a loop and
512                    increments j_commit_sequence beyond all recognition. */
513                 WARN_ONCE(1, "JBD2: bad log_start_commit: %u %u %u %u\n",
514                           journal->j_commit_request,
515                           journal->j_commit_sequence,
516                           target, journal->j_running_transaction ?
517                           journal->j_running_transaction->t_tid : 0);
518         return 0;
519 }
520
521 int jbd2_log_start_commit(journal_t *journal, tid_t tid)
522 {
523         int ret;
524
525         write_lock(&journal->j_state_lock);
526         ret = __jbd2_log_start_commit(journal, tid);
527         write_unlock(&journal->j_state_lock);
528         return ret;
529 }
530
531 /*
532  * Force and wait any uncommitted transactions.  We can only force the running
533  * transaction if we don't have an active handle, otherwise, we will deadlock.
534  * Returns: <0 in case of error,
535  *           0 if nothing to commit,
536  *           1 if transaction was successfully committed.
537  */
538 static int __jbd2_journal_force_commit(journal_t *journal)
539 {
540         transaction_t *transaction = NULL;
541         tid_t tid;
542         int need_to_start = 0, ret = 0;
543
544         read_lock(&journal->j_state_lock);
545         if (journal->j_running_transaction && !current->journal_info) {
546                 transaction = journal->j_running_transaction;
547                 if (!tid_geq(journal->j_commit_request, transaction->t_tid))
548                         need_to_start = 1;
549         } else if (journal->j_committing_transaction)
550                 transaction = journal->j_committing_transaction;
551
552         if (!transaction) {
553                 /* Nothing to commit */
554                 read_unlock(&journal->j_state_lock);
555                 return 0;
556         }
557         tid = transaction->t_tid;
558         read_unlock(&journal->j_state_lock);
559         if (need_to_start)
560                 jbd2_log_start_commit(journal, tid);
561         ret = jbd2_log_wait_commit(journal, tid);
562         if (!ret)
563                 ret = 1;
564
565         return ret;
566 }
567
568 /**
569  * Force and wait upon a commit if the calling process is not within
570  * transaction.  This is used for forcing out undo-protected data which contains
571  * bitmaps, when the fs is running out of space.
572  *
573  * @journal: journal to force
574  * Returns true if progress was made.
575  */
576 int jbd2_journal_force_commit_nested(journal_t *journal)
577 {
578         int ret;
579
580         ret = __jbd2_journal_force_commit(journal);
581         return ret > 0;
582 }
583
584 /**
585  * int journal_force_commit() - force any uncommitted transactions
586  * @journal: journal to force
587  *
588  * Caller want unconditional commit. We can only force the running transaction
589  * if we don't have an active handle, otherwise, we will deadlock.
590  */
591 int jbd2_journal_force_commit(journal_t *journal)
592 {
593         int ret;
594
595         J_ASSERT(!current->journal_info);
596         ret = __jbd2_journal_force_commit(journal);
597         if (ret > 0)
598                 ret = 0;
599         return ret;
600 }
601
602 /*
603  * Start a commit of the current running transaction (if any).  Returns true
604  * if a transaction is going to be committed (or is currently already
605  * committing), and fills its tid in at *ptid
606  */
607 int jbd2_journal_start_commit(journal_t *journal, tid_t *ptid)
608 {
609         int ret = 0;
610
611         write_lock(&journal->j_state_lock);
612         if (journal->j_running_transaction) {
613                 tid_t tid = journal->j_running_transaction->t_tid;
614
615                 __jbd2_log_start_commit(journal, tid);
616                 /* There's a running transaction and we've just made sure
617                  * it's commit has been scheduled. */
618                 if (ptid)
619                         *ptid = tid;
620                 ret = 1;
621         } else if (journal->j_committing_transaction) {
622                 /*
623                  * If commit has been started, then we have to wait for
624                  * completion of that transaction.
625                  */
626                 if (ptid)
627                         *ptid = journal->j_committing_transaction->t_tid;
628                 ret = 1;
629         }
630         write_unlock(&journal->j_state_lock);
631         return ret;
632 }
633
634 /*
635  * Return 1 if a given transaction has not yet sent barrier request
636  * connected with a transaction commit. If 0 is returned, transaction
637  * may or may not have sent the barrier. Used to avoid sending barrier
638  * twice in common cases.
639  */
640 int jbd2_trans_will_send_data_barrier(journal_t *journal, tid_t tid)
641 {
642         int ret = 0;
643         transaction_t *commit_trans;
644
645         if (!(journal->j_flags & JBD2_BARRIER))
646                 return 0;
647         read_lock(&journal->j_state_lock);
648         /* Transaction already committed? */
649         if (tid_geq(journal->j_commit_sequence, tid))
650                 goto out;
651         commit_trans = journal->j_committing_transaction;
652         if (!commit_trans || commit_trans->t_tid != tid) {
653                 ret = 1;
654                 goto out;
655         }
656         /*
657          * Transaction is being committed and we already proceeded to
658          * submitting a flush to fs partition?
659          */
660         if (journal->j_fs_dev != journal->j_dev) {
661                 if (!commit_trans->t_need_data_flush ||
662                     commit_trans->t_state >= T_COMMIT_DFLUSH)
663                         goto out;
664         } else {
665                 if (commit_trans->t_state >= T_COMMIT_JFLUSH)
666                         goto out;
667         }
668         ret = 1;
669 out:
670         read_unlock(&journal->j_state_lock);
671         return ret;
672 }
673 EXPORT_SYMBOL(jbd2_trans_will_send_data_barrier);
674
675 /*
676  * Wait for a specified commit to complete.
677  * The caller may not hold the journal lock.
678  */
679 int jbd2_log_wait_commit(journal_t *journal, tid_t tid)
680 {
681         int err = 0;
682
683         read_lock(&journal->j_state_lock);
684 #ifdef CONFIG_PROVE_LOCKING
685         /*
686          * Some callers make sure transaction is already committing and in that
687          * case we cannot block on open handles anymore. So don't warn in that
688          * case.
689          */
690         if (tid_gt(tid, journal->j_commit_sequence) &&
691             (!journal->j_committing_transaction ||
692              journal->j_committing_transaction->t_tid != tid)) {
693                 read_unlock(&journal->j_state_lock);
694                 jbd2_might_wait_for_commit(journal);
695                 read_lock(&journal->j_state_lock);
696         }
697 #endif
698 #ifdef CONFIG_JBD2_DEBUG
699         if (!tid_geq(journal->j_commit_request, tid)) {
700                 printk(KERN_ERR
701                        "%s: error: j_commit_request=%u, tid=%u\n",
702                        __func__, journal->j_commit_request, tid);
703         }
704 #endif
705         while (tid_gt(tid, journal->j_commit_sequence)) {
706                 jbd_debug(1, "JBD2: want %u, j_commit_sequence=%u\n",
707                                   tid, journal->j_commit_sequence);
708                 read_unlock(&journal->j_state_lock);
709                 wake_up(&journal->j_wait_commit);
710                 wait_event(journal->j_wait_done_commit,
711                                 !tid_gt(tid, journal->j_commit_sequence));
712                 read_lock(&journal->j_state_lock);
713         }
714         read_unlock(&journal->j_state_lock);
715
716         if (unlikely(is_journal_aborted(journal)))
717                 err = -EIO;
718         return err;
719 }
720
721 /*
722  * Start a fast commit. If there's an ongoing fast or full commit wait for
723  * it to complete. Returns 0 if a new fast commit was started. Returns -EALREADY
724  * if a fast commit is not needed, either because there's an already a commit
725  * going on or this tid has already been committed. Returns -EINVAL if no jbd2
726  * commit has yet been performed.
727  */
728 int jbd2_fc_begin_commit(journal_t *journal, tid_t tid)
729 {
730         /*
731          * Fast commits only allowed if at least one full commit has
732          * been processed.
733          */
734         if (!journal->j_stats.ts_tid)
735                 return -EINVAL;
736
737         if (tid <= journal->j_commit_sequence)
738                 return -EALREADY;
739
740         write_lock(&journal->j_state_lock);
741         if (journal->j_flags & JBD2_FULL_COMMIT_ONGOING ||
742             (journal->j_flags & JBD2_FAST_COMMIT_ONGOING)) {
743                 DEFINE_WAIT(wait);
744
745                 prepare_to_wait(&journal->j_fc_wait, &wait,
746                                 TASK_UNINTERRUPTIBLE);
747                 write_unlock(&journal->j_state_lock);
748                 schedule();
749                 finish_wait(&journal->j_fc_wait, &wait);
750                 return -EALREADY;
751         }
752         journal->j_flags |= JBD2_FAST_COMMIT_ONGOING;
753         write_unlock(&journal->j_state_lock);
754
755         return 0;
756 }
757 EXPORT_SYMBOL(jbd2_fc_begin_commit);
758
759 /*
760  * Stop a fast commit. If fallback is set, this function starts commit of
761  * TID tid before any other fast commit can start.
762  */
763 static int __jbd2_fc_end_commit(journal_t *journal, tid_t tid, bool fallback)
764 {
765         if (journal->j_fc_cleanup_callback)
766                 journal->j_fc_cleanup_callback(journal, 0);
767         write_lock(&journal->j_state_lock);
768         journal->j_flags &= ~JBD2_FAST_COMMIT_ONGOING;
769         if (fallback)
770                 journal->j_flags |= JBD2_FULL_COMMIT_ONGOING;
771         write_unlock(&journal->j_state_lock);
772         wake_up(&journal->j_fc_wait);
773         if (fallback)
774                 return jbd2_complete_transaction(journal, tid);
775         return 0;
776 }
777
778 int jbd2_fc_end_commit(journal_t *journal)
779 {
780         return __jbd2_fc_end_commit(journal, 0, 0);
781 }
782 EXPORT_SYMBOL(jbd2_fc_end_commit);
783
784 int jbd2_fc_end_commit_fallback(journal_t *journal, tid_t tid)
785 {
786         return __jbd2_fc_end_commit(journal, tid, 1);
787 }
788 EXPORT_SYMBOL(jbd2_fc_end_commit_fallback);
789
790 /* Return 1 when transaction with given tid has already committed. */
791 int jbd2_transaction_committed(journal_t *journal, tid_t tid)
792 {
793         int ret = 1;
794
795         read_lock(&journal->j_state_lock);
796         if (journal->j_running_transaction &&
797             journal->j_running_transaction->t_tid == tid)
798                 ret = 0;
799         if (journal->j_committing_transaction &&
800             journal->j_committing_transaction->t_tid == tid)
801                 ret = 0;
802         read_unlock(&journal->j_state_lock);
803         return ret;
804 }
805 EXPORT_SYMBOL(jbd2_transaction_committed);
806
807 /*
808  * When this function returns the transaction corresponding to tid
809  * will be completed.  If the transaction has currently running, start
810  * committing that transaction before waiting for it to complete.  If
811  * the transaction id is stale, it is by definition already completed,
812  * so just return SUCCESS.
813  */
814 int jbd2_complete_transaction(journal_t *journal, tid_t tid)
815 {
816         int     need_to_wait = 1;
817
818         read_lock(&journal->j_state_lock);
819         if (journal->j_running_transaction &&
820             journal->j_running_transaction->t_tid == tid) {
821                 if (journal->j_commit_request != tid) {
822                         /* transaction not yet started, so request it */
823                         read_unlock(&journal->j_state_lock);
824                         jbd2_log_start_commit(journal, tid);
825                         goto wait_commit;
826                 }
827         } else if (!(journal->j_committing_transaction &&
828                      journal->j_committing_transaction->t_tid == tid))
829                 need_to_wait = 0;
830         read_unlock(&journal->j_state_lock);
831         if (!need_to_wait)
832                 return 0;
833 wait_commit:
834         return jbd2_log_wait_commit(journal, tid);
835 }
836 EXPORT_SYMBOL(jbd2_complete_transaction);
837
838 /*
839  * Log buffer allocation routines:
840  */
841
842 int jbd2_journal_next_log_block(journal_t *journal, unsigned long long *retp)
843 {
844         unsigned long blocknr;
845
846         write_lock(&journal->j_state_lock);
847         J_ASSERT(journal->j_free > 1);
848
849         blocknr = journal->j_head;
850         journal->j_head++;
851         journal->j_free--;
852         if (journal->j_head == journal->j_last)
853                 journal->j_head = journal->j_first;
854         write_unlock(&journal->j_state_lock);
855         return jbd2_journal_bmap(journal, blocknr, retp);
856 }
857
858 /* Map one fast commit buffer for use by the file system */
859 int jbd2_fc_get_buf(journal_t *journal, struct buffer_head **bh_out)
860 {
861         unsigned long long pblock;
862         unsigned long blocknr;
863         int ret = 0;
864         struct buffer_head *bh;
865         int fc_off;
866
867         *bh_out = NULL;
868         write_lock(&journal->j_state_lock);
869
870         if (journal->j_fc_off + journal->j_fc_first < journal->j_fc_last) {
871                 fc_off = journal->j_fc_off;
872                 blocknr = journal->j_fc_first + fc_off;
873                 journal->j_fc_off++;
874         } else {
875                 ret = -EINVAL;
876         }
877         write_unlock(&journal->j_state_lock);
878
879         if (ret)
880                 return ret;
881
882         ret = jbd2_journal_bmap(journal, blocknr, &pblock);
883         if (ret)
884                 return ret;
885
886         bh = __getblk(journal->j_dev, pblock, journal->j_blocksize);
887         if (!bh)
888                 return -ENOMEM;
889
890         lock_buffer(bh);
891
892         clear_buffer_uptodate(bh);
893         set_buffer_dirty(bh);
894         unlock_buffer(bh);
895         journal->j_fc_wbuf[fc_off] = bh;
896
897         *bh_out = bh;
898
899         return 0;
900 }
901 EXPORT_SYMBOL(jbd2_fc_get_buf);
902
903 /*
904  * Wait on fast commit buffers that were allocated by jbd2_fc_get_buf
905  * for completion.
906  */
907 int jbd2_fc_wait_bufs(journal_t *journal, int num_blks)
908 {
909         struct buffer_head *bh;
910         int i, j_fc_off;
911
912         read_lock(&journal->j_state_lock);
913         j_fc_off = journal->j_fc_off;
914         read_unlock(&journal->j_state_lock);
915
916         /*
917          * Wait in reverse order to minimize chances of us being woken up before
918          * all IOs have completed
919          */
920         for (i = j_fc_off - 1; i >= j_fc_off - num_blks; i--) {
921                 bh = journal->j_fc_wbuf[i];
922                 wait_on_buffer(bh);
923                 put_bh(bh);
924                 journal->j_fc_wbuf[i] = NULL;
925                 if (unlikely(!buffer_uptodate(bh)))
926                         return -EIO;
927         }
928
929         return 0;
930 }
931 EXPORT_SYMBOL(jbd2_fc_wait_bufs);
932
933 /*
934  * Wait on fast commit buffers that were allocated by jbd2_fc_get_buf
935  * for completion.
936  */
937 int jbd2_fc_release_bufs(journal_t *journal)
938 {
939         struct buffer_head *bh;
940         int i, j_fc_off;
941
942         read_lock(&journal->j_state_lock);
943         j_fc_off = journal->j_fc_off;
944         read_unlock(&journal->j_state_lock);
945
946         /*
947          * Wait in reverse order to minimize chances of us being woken up before
948          * all IOs have completed
949          */
950         for (i = j_fc_off - 1; i >= 0; i--) {
951                 bh = journal->j_fc_wbuf[i];
952                 if (!bh)
953                         break;
954                 put_bh(bh);
955                 journal->j_fc_wbuf[i] = NULL;
956         }
957
958         return 0;
959 }
960 EXPORT_SYMBOL(jbd2_fc_release_bufs);
961
962 /*
963  * Conversion of logical to physical block numbers for the journal
964  *
965  * On external journals the journal blocks are identity-mapped, so
966  * this is a no-op.  If needed, we can use j_blk_offset - everything is
967  * ready.
968  */
969 int jbd2_journal_bmap(journal_t *journal, unsigned long blocknr,
970                  unsigned long long *retp)
971 {
972         int err = 0;
973         unsigned long long ret;
974         sector_t block = 0;
975
976         if (journal->j_inode) {
977                 block = blocknr;
978                 ret = bmap(journal->j_inode, &block);
979
980                 if (ret || !block) {
981                         printk(KERN_ALERT "%s: journal block not found "
982                                         "at offset %lu on %s\n",
983                                __func__, blocknr, journal->j_devname);
984                         err = -EIO;
985                         jbd2_journal_abort(journal, err);
986                 } else {
987                         *retp = block;
988                 }
989
990         } else {
991                 *retp = blocknr; /* +journal->j_blk_offset */
992         }
993         return err;
994 }
995
996 /*
997  * We play buffer_head aliasing tricks to write data/metadata blocks to
998  * the journal without copying their contents, but for journal
999  * descriptor blocks we do need to generate bona fide buffers.
1000  *
1001  * After the caller of jbd2_journal_get_descriptor_buffer() has finished modifying
1002  * the buffer's contents they really should run flush_dcache_page(bh->b_page).
1003  * But we don't bother doing that, so there will be coherency problems with
1004  * mmaps of blockdevs which hold live JBD-controlled filesystems.
1005  */
1006 struct buffer_head *
1007 jbd2_journal_get_descriptor_buffer(transaction_t *transaction, int type)
1008 {
1009         journal_t *journal = transaction->t_journal;
1010         struct buffer_head *bh;
1011         unsigned long long blocknr;
1012         journal_header_t *header;
1013         int err;
1014
1015         err = jbd2_journal_next_log_block(journal, &blocknr);
1016
1017         if (err)
1018                 return NULL;
1019
1020         bh = __getblk(journal->j_dev, blocknr, journal->j_blocksize);
1021         if (!bh)
1022                 return NULL;
1023         atomic_dec(&transaction->t_outstanding_credits);
1024         lock_buffer(bh);
1025         memset(bh->b_data, 0, journal->j_blocksize);
1026         header = (journal_header_t *)bh->b_data;
1027         header->h_magic = cpu_to_be32(JBD2_MAGIC_NUMBER);
1028         header->h_blocktype = cpu_to_be32(type);
1029         header->h_sequence = cpu_to_be32(transaction->t_tid);
1030         set_buffer_uptodate(bh);
1031         unlock_buffer(bh);
1032         BUFFER_TRACE(bh, "return this buffer");
1033         return bh;
1034 }
1035
1036 void jbd2_descriptor_block_csum_set(journal_t *j, struct buffer_head *bh)
1037 {
1038         struct jbd2_journal_block_tail *tail;
1039         __u32 csum;
1040
1041         if (!jbd2_journal_has_csum_v2or3(j))
1042                 return;
1043
1044         tail = (struct jbd2_journal_block_tail *)(bh->b_data + j->j_blocksize -
1045                         sizeof(struct jbd2_journal_block_tail));
1046         tail->t_checksum = 0;
1047         csum = jbd2_chksum(j, j->j_csum_seed, bh->b_data, j->j_blocksize);
1048         tail->t_checksum = cpu_to_be32(csum);
1049 }
1050
1051 /*
1052  * Return tid of the oldest transaction in the journal and block in the journal
1053  * where the transaction starts.
1054  *
1055  * If the journal is now empty, return which will be the next transaction ID
1056  * we will write and where will that transaction start.
1057  *
1058  * The return value is 0 if journal tail cannot be pushed any further, 1 if
1059  * it can.
1060  */
1061 int jbd2_journal_get_log_tail(journal_t *journal, tid_t *tid,
1062                               unsigned long *block)
1063 {
1064         transaction_t *transaction;
1065         int ret;
1066
1067         read_lock(&journal->j_state_lock);
1068         spin_lock(&journal->j_list_lock);
1069         transaction = journal->j_checkpoint_transactions;
1070         if (transaction) {
1071                 *tid = transaction->t_tid;
1072                 *block = transaction->t_log_start;
1073         } else if ((transaction = journal->j_committing_transaction) != NULL) {
1074                 *tid = transaction->t_tid;
1075                 *block = transaction->t_log_start;
1076         } else if ((transaction = journal->j_running_transaction) != NULL) {
1077                 *tid = transaction->t_tid;
1078                 *block = journal->j_head;
1079         } else {
1080                 *tid = journal->j_transaction_sequence;
1081                 *block = journal->j_head;
1082         }
1083         ret = tid_gt(*tid, journal->j_tail_sequence);
1084         spin_unlock(&journal->j_list_lock);
1085         read_unlock(&journal->j_state_lock);
1086
1087         return ret;
1088 }
1089
1090 /*
1091  * Update information in journal structure and in on disk journal superblock
1092  * about log tail. This function does not check whether information passed in
1093  * really pushes log tail further. It's responsibility of the caller to make
1094  * sure provided log tail information is valid (e.g. by holding
1095  * j_checkpoint_mutex all the time between computing log tail and calling this
1096  * function as is the case with jbd2_cleanup_journal_tail()).
1097  *
1098  * Requires j_checkpoint_mutex
1099  */
1100 int __jbd2_update_log_tail(journal_t *journal, tid_t tid, unsigned long block)
1101 {
1102         unsigned long freed;
1103         int ret;
1104
1105         BUG_ON(!mutex_is_locked(&journal->j_checkpoint_mutex));
1106
1107         /*
1108          * We cannot afford for write to remain in drive's caches since as
1109          * soon as we update j_tail, next transaction can start reusing journal
1110          * space and if we lose sb update during power failure we'd replay
1111          * old transaction with possibly newly overwritten data.
1112          */
1113         ret = jbd2_journal_update_sb_log_tail(journal, tid, block,
1114                                               REQ_SYNC | REQ_FUA);
1115         if (ret)
1116                 goto out;
1117
1118         write_lock(&journal->j_state_lock);
1119         freed = block - journal->j_tail;
1120         if (block < journal->j_tail)
1121                 freed += journal->j_last - journal->j_first;
1122
1123         trace_jbd2_update_log_tail(journal, tid, block, freed);
1124         jbd_debug(1,
1125                   "Cleaning journal tail from %u to %u (offset %lu), "
1126                   "freeing %lu\n",
1127                   journal->j_tail_sequence, tid, block, freed);
1128
1129         journal->j_free += freed;
1130         journal->j_tail_sequence = tid;
1131         journal->j_tail = block;
1132         write_unlock(&journal->j_state_lock);
1133
1134 out:
1135         return ret;
1136 }
1137
1138 /*
1139  * This is a variation of __jbd2_update_log_tail which checks for validity of
1140  * provided log tail and locks j_checkpoint_mutex. So it is safe against races
1141  * with other threads updating log tail.
1142  */
1143 void jbd2_update_log_tail(journal_t *journal, tid_t tid, unsigned long block)
1144 {
1145         mutex_lock_io(&journal->j_checkpoint_mutex);
1146         if (tid_gt(tid, journal->j_tail_sequence))
1147                 __jbd2_update_log_tail(journal, tid, block);
1148         mutex_unlock(&journal->j_checkpoint_mutex);
1149 }
1150
1151 struct jbd2_stats_proc_session {
1152         journal_t *journal;
1153         struct transaction_stats_s *stats;
1154         int start;
1155         int max;
1156 };
1157
1158 static void *jbd2_seq_info_start(struct seq_file *seq, loff_t *pos)
1159 {
1160         return *pos ? NULL : SEQ_START_TOKEN;
1161 }
1162
1163 static void *jbd2_seq_info_next(struct seq_file *seq, void *v, loff_t *pos)
1164 {
1165         (*pos)++;
1166         return NULL;
1167 }
1168
1169 static int jbd2_seq_info_show(struct seq_file *seq, void *v)
1170 {
1171         struct jbd2_stats_proc_session *s = seq->private;
1172
1173         if (v != SEQ_START_TOKEN)
1174                 return 0;
1175         seq_printf(seq, "%lu transactions (%lu requested), "
1176                    "each up to %u blocks\n",
1177                    s->stats->ts_tid, s->stats->ts_requested,
1178                    s->journal->j_max_transaction_buffers);
1179         if (s->stats->ts_tid == 0)
1180                 return 0;
1181         seq_printf(seq, "average: \n  %ums waiting for transaction\n",
1182             jiffies_to_msecs(s->stats->run.rs_wait / s->stats->ts_tid));
1183         seq_printf(seq, "  %ums request delay\n",
1184             (s->stats->ts_requested == 0) ? 0 :
1185             jiffies_to_msecs(s->stats->run.rs_request_delay /
1186                              s->stats->ts_requested));
1187         seq_printf(seq, "  %ums running transaction\n",
1188             jiffies_to_msecs(s->stats->run.rs_running / s->stats->ts_tid));
1189         seq_printf(seq, "  %ums transaction was being locked\n",
1190             jiffies_to_msecs(s->stats->run.rs_locked / s->stats->ts_tid));
1191         seq_printf(seq, "  %ums flushing data (in ordered mode)\n",
1192             jiffies_to_msecs(s->stats->run.rs_flushing / s->stats->ts_tid));
1193         seq_printf(seq, "  %ums logging transaction\n",
1194             jiffies_to_msecs(s->stats->run.rs_logging / s->stats->ts_tid));
1195         seq_printf(seq, "  %lluus average transaction commit time\n",
1196                    div_u64(s->journal->j_average_commit_time, 1000));
1197         seq_printf(seq, "  %lu handles per transaction\n",
1198             s->stats->run.rs_handle_count / s->stats->ts_tid);
1199         seq_printf(seq, "  %lu blocks per transaction\n",
1200             s->stats->run.rs_blocks / s->stats->ts_tid);
1201         seq_printf(seq, "  %lu logged blocks per transaction\n",
1202             s->stats->run.rs_blocks_logged / s->stats->ts_tid);
1203         return 0;
1204 }
1205
1206 static void jbd2_seq_info_stop(struct seq_file *seq, void *v)
1207 {
1208 }
1209
1210 static const struct seq_operations jbd2_seq_info_ops = {
1211         .start  = jbd2_seq_info_start,
1212         .next   = jbd2_seq_info_next,
1213         .stop   = jbd2_seq_info_stop,
1214         .show   = jbd2_seq_info_show,
1215 };
1216
1217 static int jbd2_seq_info_open(struct inode *inode, struct file *file)
1218 {
1219         journal_t *journal = PDE_DATA(inode);
1220         struct jbd2_stats_proc_session *s;
1221         int rc, size;
1222
1223         s = kmalloc(sizeof(*s), GFP_KERNEL);
1224         if (s == NULL)
1225                 return -ENOMEM;
1226         size = sizeof(struct transaction_stats_s);
1227         s->stats = kmalloc(size, GFP_KERNEL);
1228         if (s->stats == NULL) {
1229                 kfree(s);
1230                 return -ENOMEM;
1231         }
1232         spin_lock(&journal->j_history_lock);
1233         memcpy(s->stats, &journal->j_stats, size);
1234         s->journal = journal;
1235         spin_unlock(&journal->j_history_lock);
1236
1237         rc = seq_open(file, &jbd2_seq_info_ops);
1238         if (rc == 0) {
1239                 struct seq_file *m = file->private_data;
1240                 m->private = s;
1241         } else {
1242                 kfree(s->stats);
1243                 kfree(s);
1244         }
1245         return rc;
1246
1247 }
1248
1249 static int jbd2_seq_info_release(struct inode *inode, struct file *file)
1250 {
1251         struct seq_file *seq = file->private_data;
1252         struct jbd2_stats_proc_session *s = seq->private;
1253         kfree(s->stats);
1254         kfree(s);
1255         return seq_release(inode, file);
1256 }
1257
1258 static const struct proc_ops jbd2_info_proc_ops = {
1259         .proc_open      = jbd2_seq_info_open,
1260         .proc_read      = seq_read,
1261         .proc_lseek     = seq_lseek,
1262         .proc_release   = jbd2_seq_info_release,
1263 };
1264
1265 static struct proc_dir_entry *proc_jbd2_stats;
1266
1267 static void jbd2_stats_proc_init(journal_t *journal)
1268 {
1269         journal->j_proc_entry = proc_mkdir(journal->j_devname, proc_jbd2_stats);
1270         if (journal->j_proc_entry) {
1271                 proc_create_data("info", S_IRUGO, journal->j_proc_entry,
1272                                  &jbd2_info_proc_ops, journal);
1273         }
1274 }
1275
1276 static void jbd2_stats_proc_exit(journal_t *journal)
1277 {
1278         remove_proc_entry("info", journal->j_proc_entry);
1279         remove_proc_entry(journal->j_devname, proc_jbd2_stats);
1280 }
1281
1282 /* Minimum size of descriptor tag */
1283 static int jbd2_min_tag_size(void)
1284 {
1285         /*
1286          * Tag with 32-bit block numbers does not use last four bytes of the
1287          * structure
1288          */
1289         return sizeof(journal_block_tag_t) - 4;
1290 }
1291
1292 /*
1293  * Management for journal control blocks: functions to create and
1294  * destroy journal_t structures, and to initialise and read existing
1295  * journal blocks from disk.  */
1296
1297 /* First: create and setup a journal_t object in memory.  We initialise
1298  * very few fields yet: that has to wait until we have created the
1299  * journal structures from from scratch, or loaded them from disk. */
1300
1301 static journal_t *journal_init_common(struct block_device *bdev,
1302                         struct block_device *fs_dev,
1303                         unsigned long long start, int len, int blocksize)
1304 {
1305         static struct lock_class_key jbd2_trans_commit_key;
1306         journal_t *journal;
1307         int err;
1308         struct buffer_head *bh;
1309         int n;
1310
1311         journal = kzalloc(sizeof(*journal), GFP_KERNEL);
1312         if (!journal)
1313                 return NULL;
1314
1315         init_waitqueue_head(&journal->j_wait_transaction_locked);
1316         init_waitqueue_head(&journal->j_wait_done_commit);
1317         init_waitqueue_head(&journal->j_wait_commit);
1318         init_waitqueue_head(&journal->j_wait_updates);
1319         init_waitqueue_head(&journal->j_wait_reserved);
1320         init_waitqueue_head(&journal->j_fc_wait);
1321         mutex_init(&journal->j_abort_mutex);
1322         mutex_init(&journal->j_barrier);
1323         mutex_init(&journal->j_checkpoint_mutex);
1324         spin_lock_init(&journal->j_revoke_lock);
1325         spin_lock_init(&journal->j_list_lock);
1326         rwlock_init(&journal->j_state_lock);
1327
1328         journal->j_commit_interval = (HZ * JBD2_DEFAULT_MAX_COMMIT_AGE);
1329         journal->j_min_batch_time = 0;
1330         journal->j_max_batch_time = 15000; /* 15ms */
1331         atomic_set(&journal->j_reserved_credits, 0);
1332
1333         /* The journal is marked for error until we succeed with recovery! */
1334         journal->j_flags = JBD2_ABORT;
1335
1336         /* Set up a default-sized revoke table for the new mount. */
1337         err = jbd2_journal_init_revoke(journal, JOURNAL_REVOKE_DEFAULT_HASH);
1338         if (err)
1339                 goto err_cleanup;
1340
1341         spin_lock_init(&journal->j_history_lock);
1342
1343         lockdep_init_map(&journal->j_trans_commit_map, "jbd2_handle",
1344                          &jbd2_trans_commit_key, 0);
1345
1346         /* journal descriptor can store up to n blocks -bzzz */
1347         journal->j_blocksize = blocksize;
1348         journal->j_dev = bdev;
1349         journal->j_fs_dev = fs_dev;
1350         journal->j_blk_offset = start;
1351         journal->j_maxlen = len;
1352         /* We need enough buffers to write out full descriptor block. */
1353         n = journal->j_blocksize / jbd2_min_tag_size();
1354         journal->j_wbufsize = n;
1355         journal->j_wbuf = kmalloc_array(n, sizeof(struct buffer_head *),
1356                                         GFP_KERNEL);
1357         if (!journal->j_wbuf)
1358                 goto err_cleanup;
1359
1360         if (journal->j_fc_wbufsize > 0) {
1361                 journal->j_fc_wbuf = kmalloc_array(journal->j_fc_wbufsize,
1362                                         sizeof(struct buffer_head *),
1363                                         GFP_KERNEL);
1364                 if (!journal->j_fc_wbuf)
1365                         goto err_cleanup;
1366         }
1367
1368         bh = getblk_unmovable(journal->j_dev, start, journal->j_blocksize);
1369         if (!bh) {
1370                 pr_err("%s: Cannot get buffer for journal superblock\n",
1371                         __func__);
1372                 goto err_cleanup;
1373         }
1374         journal->j_sb_buffer = bh;
1375         journal->j_superblock = (journal_superblock_t *)bh->b_data;
1376
1377         return journal;
1378
1379 err_cleanup:
1380         kfree(journal->j_wbuf);
1381         kfree(journal->j_fc_wbuf);
1382         jbd2_journal_destroy_revoke(journal);
1383         kfree(journal);
1384         return NULL;
1385 }
1386
1387 int jbd2_fc_init(journal_t *journal, int num_fc_blks)
1388 {
1389         journal->j_fc_wbufsize = num_fc_blks;
1390         journal->j_fc_wbuf = kmalloc_array(journal->j_fc_wbufsize,
1391                                 sizeof(struct buffer_head *), GFP_KERNEL);
1392         if (!journal->j_fc_wbuf)
1393                 return -ENOMEM;
1394         return 0;
1395 }
1396 EXPORT_SYMBOL(jbd2_fc_init);
1397
1398 /* jbd2_journal_init_dev and jbd2_journal_init_inode:
1399  *
1400  * Create a journal structure assigned some fixed set of disk blocks to
1401  * the journal.  We don't actually touch those disk blocks yet, but we
1402  * need to set up all of the mapping information to tell the journaling
1403  * system where the journal blocks are.
1404  *
1405  */
1406
1407 /**
1408  *  journal_t * jbd2_journal_init_dev() - creates and initialises a journal structure
1409  *  @bdev: Block device on which to create the journal
1410  *  @fs_dev: Device which hold journalled filesystem for this journal.
1411  *  @start: Block nr Start of journal.
1412  *  @len:  Length of the journal in blocks.
1413  *  @blocksize: blocksize of journalling device
1414  *
1415  *  Returns: a newly created journal_t *
1416  *
1417  *  jbd2_journal_init_dev creates a journal which maps a fixed contiguous
1418  *  range of blocks on an arbitrary block device.
1419  *
1420  */
1421 journal_t *jbd2_journal_init_dev(struct block_device *bdev,
1422                         struct block_device *fs_dev,
1423                         unsigned long long start, int len, int blocksize)
1424 {
1425         journal_t *journal;
1426
1427         journal = journal_init_common(bdev, fs_dev, start, len, blocksize);
1428         if (!journal)
1429                 return NULL;
1430
1431         bdevname(journal->j_dev, journal->j_devname);
1432         strreplace(journal->j_devname, '/', '!');
1433         jbd2_stats_proc_init(journal);
1434
1435         return journal;
1436 }
1437
1438 /**
1439  *  journal_t * jbd2_journal_init_inode () - creates a journal which maps to a inode.
1440  *  @inode: An inode to create the journal in
1441  *
1442  * jbd2_journal_init_inode creates a journal which maps an on-disk inode as
1443  * the journal.  The inode must exist already, must support bmap() and
1444  * must have all data blocks preallocated.
1445  */
1446 journal_t *jbd2_journal_init_inode(struct inode *inode)
1447 {
1448         journal_t *journal;
1449         sector_t blocknr;
1450         char *p;
1451         int err = 0;
1452
1453         blocknr = 0;
1454         err = bmap(inode, &blocknr);
1455
1456         if (err || !blocknr) {
1457                 pr_err("%s: Cannot locate journal superblock\n",
1458                         __func__);
1459                 return NULL;
1460         }
1461
1462         jbd_debug(1, "JBD2: inode %s/%ld, size %lld, bits %d, blksize %ld\n",
1463                   inode->i_sb->s_id, inode->i_ino, (long long) inode->i_size,
1464                   inode->i_sb->s_blocksize_bits, inode->i_sb->s_blocksize);
1465
1466         journal = journal_init_common(inode->i_sb->s_bdev, inode->i_sb->s_bdev,
1467                         blocknr, inode->i_size >> inode->i_sb->s_blocksize_bits,
1468                         inode->i_sb->s_blocksize);
1469         if (!journal)
1470                 return NULL;
1471
1472         journal->j_inode = inode;
1473         bdevname(journal->j_dev, journal->j_devname);
1474         p = strreplace(journal->j_devname, '/', '!');
1475         sprintf(p, "-%lu", journal->j_inode->i_ino);
1476         jbd2_stats_proc_init(journal);
1477
1478         return journal;
1479 }
1480
1481 /*
1482  * If the journal init or create aborts, we need to mark the journal
1483  * superblock as being NULL to prevent the journal destroy from writing
1484  * back a bogus superblock.
1485  */
1486 static void journal_fail_superblock(journal_t *journal)
1487 {
1488         struct buffer_head *bh = journal->j_sb_buffer;
1489         brelse(bh);
1490         journal->j_sb_buffer = NULL;
1491 }
1492
1493 /*
1494  * Given a journal_t structure, initialise the various fields for
1495  * startup of a new journaling session.  We use this both when creating
1496  * a journal, and after recovering an old journal to reset it for
1497  * subsequent use.
1498  */
1499
1500 static int journal_reset(journal_t *journal)
1501 {
1502         journal_superblock_t *sb = journal->j_superblock;
1503         unsigned long long first, last;
1504
1505         first = be32_to_cpu(sb->s_first);
1506         last = be32_to_cpu(sb->s_maxlen);
1507         if (first + JBD2_MIN_JOURNAL_BLOCKS > last + 1) {
1508                 printk(KERN_ERR "JBD2: Journal too short (blocks %llu-%llu).\n",
1509                        first, last);
1510                 journal_fail_superblock(journal);
1511                 return -EINVAL;
1512         }
1513
1514         journal->j_first = first;
1515
1516         if (jbd2_has_feature_fast_commit(journal) &&
1517             journal->j_fc_wbufsize > 0) {
1518                 journal->j_fc_last = last;
1519                 journal->j_last = last - journal->j_fc_wbufsize;
1520                 journal->j_fc_first = journal->j_last + 1;
1521                 journal->j_fc_off = 0;
1522         } else {
1523                 journal->j_last = last;
1524         }
1525
1526         journal->j_head = journal->j_first;
1527         journal->j_tail = journal->j_first;
1528         journal->j_free = journal->j_last - journal->j_first;
1529
1530         journal->j_tail_sequence = journal->j_transaction_sequence;
1531         journal->j_commit_sequence = journal->j_transaction_sequence - 1;
1532         journal->j_commit_request = journal->j_commit_sequence;
1533
1534         journal->j_max_transaction_buffers = journal->j_maxlen / 4;
1535
1536         /*
1537          * As a special case, if the on-disk copy is already marked as needing
1538          * no recovery (s_start == 0), then we can safely defer the superblock
1539          * update until the next commit by setting JBD2_FLUSHED.  This avoids
1540          * attempting a write to a potential-readonly device.
1541          */
1542         if (sb->s_start == 0) {
1543                 jbd_debug(1, "JBD2: Skipping superblock update on recovered sb "
1544                         "(start %ld, seq %u, errno %d)\n",
1545                         journal->j_tail, journal->j_tail_sequence,
1546                         journal->j_errno);
1547                 journal->j_flags |= JBD2_FLUSHED;
1548         } else {
1549                 /* Lock here to make assertions happy... */
1550                 mutex_lock_io(&journal->j_checkpoint_mutex);
1551                 /*
1552                  * Update log tail information. We use REQ_FUA since new
1553                  * transaction will start reusing journal space and so we
1554                  * must make sure information about current log tail is on
1555                  * disk before that.
1556                  */
1557                 jbd2_journal_update_sb_log_tail(journal,
1558                                                 journal->j_tail_sequence,
1559                                                 journal->j_tail,
1560                                                 REQ_SYNC | REQ_FUA);
1561                 mutex_unlock(&journal->j_checkpoint_mutex);
1562         }
1563         return jbd2_journal_start_thread(journal);
1564 }
1565
1566 /*
1567  * This function expects that the caller will have locked the journal
1568  * buffer head, and will return with it unlocked
1569  */
1570 static int jbd2_write_superblock(journal_t *journal, int write_flags)
1571 {
1572         struct buffer_head *bh = journal->j_sb_buffer;
1573         journal_superblock_t *sb = journal->j_superblock;
1574         int ret;
1575
1576         /* Buffer got discarded which means block device got invalidated */
1577         if (!buffer_mapped(bh)) {
1578                 unlock_buffer(bh);
1579                 return -EIO;
1580         }
1581
1582         trace_jbd2_write_superblock(journal, write_flags);
1583         if (!(journal->j_flags & JBD2_BARRIER))
1584                 write_flags &= ~(REQ_FUA | REQ_PREFLUSH);
1585         if (buffer_write_io_error(bh)) {
1586                 /*
1587                  * Oh, dear.  A previous attempt to write the journal
1588                  * superblock failed.  This could happen because the
1589                  * USB device was yanked out.  Or it could happen to
1590                  * be a transient write error and maybe the block will
1591                  * be remapped.  Nothing we can do but to retry the
1592                  * write and hope for the best.
1593                  */
1594                 printk(KERN_ERR "JBD2: previous I/O error detected "
1595                        "for journal superblock update for %s.\n",
1596                        journal->j_devname);
1597                 clear_buffer_write_io_error(bh);
1598                 set_buffer_uptodate(bh);
1599         }
1600         if (jbd2_journal_has_csum_v2or3(journal))
1601                 sb->s_checksum = jbd2_superblock_csum(journal, sb);
1602         get_bh(bh);
1603         bh->b_end_io = end_buffer_write_sync;
1604         ret = submit_bh(REQ_OP_WRITE, write_flags, bh);
1605         wait_on_buffer(bh);
1606         if (buffer_write_io_error(bh)) {
1607                 clear_buffer_write_io_error(bh);
1608                 set_buffer_uptodate(bh);
1609                 ret = -EIO;
1610         }
1611         if (ret) {
1612                 printk(KERN_ERR "JBD2: Error %d detected when updating "
1613                        "journal superblock for %s.\n", ret,
1614                        journal->j_devname);
1615                 if (!is_journal_aborted(journal))
1616                         jbd2_journal_abort(journal, ret);
1617         }
1618
1619         return ret;
1620 }
1621
1622 /**
1623  * jbd2_journal_update_sb_log_tail() - Update log tail in journal sb on disk.
1624  * @journal: The journal to update.
1625  * @tail_tid: TID of the new transaction at the tail of the log
1626  * @tail_block: The first block of the transaction at the tail of the log
1627  * @write_op: With which operation should we write the journal sb
1628  *
1629  * Update a journal's superblock information about log tail and write it to
1630  * disk, waiting for the IO to complete.
1631  */
1632 int jbd2_journal_update_sb_log_tail(journal_t *journal, tid_t tail_tid,
1633                                      unsigned long tail_block, int write_op)
1634 {
1635         journal_superblock_t *sb = journal->j_superblock;
1636         int ret;
1637
1638         if (is_journal_aborted(journal))
1639                 return -EIO;
1640
1641         BUG_ON(!mutex_is_locked(&journal->j_checkpoint_mutex));
1642         jbd_debug(1, "JBD2: updating superblock (start %lu, seq %u)\n",
1643                   tail_block, tail_tid);
1644
1645         lock_buffer(journal->j_sb_buffer);
1646         sb->s_sequence = cpu_to_be32(tail_tid);
1647         sb->s_start    = cpu_to_be32(tail_block);
1648
1649         ret = jbd2_write_superblock(journal, write_op);
1650         if (ret)
1651                 goto out;
1652
1653         /* Log is no longer empty */
1654         write_lock(&journal->j_state_lock);
1655         WARN_ON(!sb->s_sequence);
1656         journal->j_flags &= ~JBD2_FLUSHED;
1657         write_unlock(&journal->j_state_lock);
1658
1659 out:
1660         return ret;
1661 }
1662
1663 /**
1664  * jbd2_mark_journal_empty() - Mark on disk journal as empty.
1665  * @journal: The journal to update.
1666  * @write_op: With which operation should we write the journal sb
1667  *
1668  * Update a journal's dynamic superblock fields to show that journal is empty.
1669  * Write updated superblock to disk waiting for IO to complete.
1670  */
1671 static void jbd2_mark_journal_empty(journal_t *journal, int write_op)
1672 {
1673         journal_superblock_t *sb = journal->j_superblock;
1674         bool had_fast_commit = false;
1675
1676         BUG_ON(!mutex_is_locked(&journal->j_checkpoint_mutex));
1677         lock_buffer(journal->j_sb_buffer);
1678         if (sb->s_start == 0) {         /* Is it already empty? */
1679                 unlock_buffer(journal->j_sb_buffer);
1680                 return;
1681         }
1682
1683         jbd_debug(1, "JBD2: Marking journal as empty (seq %u)\n",
1684                   journal->j_tail_sequence);
1685
1686         sb->s_sequence = cpu_to_be32(journal->j_tail_sequence);
1687         sb->s_start    = cpu_to_be32(0);
1688         if (jbd2_has_feature_fast_commit(journal)) {
1689                 /*
1690                  * When journal is clean, no need to commit fast commit flag and
1691                  * make file system incompatible with older kernels.
1692                  */
1693                 jbd2_clear_feature_fast_commit(journal);
1694                 had_fast_commit = true;
1695         }
1696
1697         jbd2_write_superblock(journal, write_op);
1698
1699         if (had_fast_commit)
1700                 jbd2_set_feature_fast_commit(journal);
1701
1702         /* Log is no longer empty */
1703         write_lock(&journal->j_state_lock);
1704         journal->j_flags |= JBD2_FLUSHED;
1705         write_unlock(&journal->j_state_lock);
1706 }
1707
1708
1709 /**
1710  * jbd2_journal_update_sb_errno() - Update error in the journal.
1711  * @journal: The journal to update.
1712  *
1713  * Update a journal's errno.  Write updated superblock to disk waiting for IO
1714  * to complete.
1715  */
1716 void jbd2_journal_update_sb_errno(journal_t *journal)
1717 {
1718         journal_superblock_t *sb = journal->j_superblock;
1719         int errcode;
1720
1721         lock_buffer(journal->j_sb_buffer);
1722         errcode = journal->j_errno;
1723         if (errcode == -ESHUTDOWN)
1724                 errcode = 0;
1725         jbd_debug(1, "JBD2: updating superblock error (errno %d)\n", errcode);
1726         sb->s_errno    = cpu_to_be32(errcode);
1727
1728         jbd2_write_superblock(journal, REQ_SYNC | REQ_FUA);
1729 }
1730 EXPORT_SYMBOL(jbd2_journal_update_sb_errno);
1731
1732 static int journal_revoke_records_per_block(journal_t *journal)
1733 {
1734         int record_size;
1735         int space = journal->j_blocksize - sizeof(jbd2_journal_revoke_header_t);
1736
1737         if (jbd2_has_feature_64bit(journal))
1738                 record_size = 8;
1739         else
1740                 record_size = 4;
1741
1742         if (jbd2_journal_has_csum_v2or3(journal))
1743                 space -= sizeof(struct jbd2_journal_block_tail);
1744         return space / record_size;
1745 }
1746
1747 /*
1748  * Read the superblock for a given journal, performing initial
1749  * validation of the format.
1750  */
1751 static int journal_get_superblock(journal_t *journal)
1752 {
1753         struct buffer_head *bh;
1754         journal_superblock_t *sb;
1755         int err = -EIO;
1756
1757         bh = journal->j_sb_buffer;
1758
1759         J_ASSERT(bh != NULL);
1760         if (!buffer_uptodate(bh)) {
1761                 ll_rw_block(REQ_OP_READ, 0, 1, &bh);
1762                 wait_on_buffer(bh);
1763                 if (!buffer_uptodate(bh)) {
1764                         printk(KERN_ERR
1765                                 "JBD2: IO error reading journal superblock\n");
1766                         goto out;
1767                 }
1768         }
1769
1770         if (buffer_verified(bh))
1771                 return 0;
1772
1773         sb = journal->j_superblock;
1774
1775         err = -EINVAL;
1776
1777         if (sb->s_header.h_magic != cpu_to_be32(JBD2_MAGIC_NUMBER) ||
1778             sb->s_blocksize != cpu_to_be32(journal->j_blocksize)) {
1779                 printk(KERN_WARNING "JBD2: no valid journal superblock found\n");
1780                 goto out;
1781         }
1782
1783         switch(be32_to_cpu(sb->s_header.h_blocktype)) {
1784         case JBD2_SUPERBLOCK_V1:
1785                 journal->j_format_version = 1;
1786                 break;
1787         case JBD2_SUPERBLOCK_V2:
1788                 journal->j_format_version = 2;
1789                 break;
1790         default:
1791                 printk(KERN_WARNING "JBD2: unrecognised superblock format ID\n");
1792                 goto out;
1793         }
1794
1795         if (be32_to_cpu(sb->s_maxlen) < journal->j_maxlen)
1796                 journal->j_maxlen = be32_to_cpu(sb->s_maxlen);
1797         else if (be32_to_cpu(sb->s_maxlen) > journal->j_maxlen) {
1798                 printk(KERN_WARNING "JBD2: journal file too short\n");
1799                 goto out;
1800         }
1801
1802         if (be32_to_cpu(sb->s_first) == 0 ||
1803             be32_to_cpu(sb->s_first) >= journal->j_maxlen) {
1804                 printk(KERN_WARNING
1805                         "JBD2: Invalid start block of journal: %u\n",
1806                         be32_to_cpu(sb->s_first));
1807                 goto out;
1808         }
1809
1810         if (jbd2_has_feature_csum2(journal) &&
1811             jbd2_has_feature_csum3(journal)) {
1812                 /* Can't have checksum v2 and v3 at the same time! */
1813                 printk(KERN_ERR "JBD2: Can't enable checksumming v2 and v3 "
1814                        "at the same time!\n");
1815                 goto out;
1816         }
1817
1818         if (jbd2_journal_has_csum_v2or3_feature(journal) &&
1819             jbd2_has_feature_checksum(journal)) {
1820                 /* Can't have checksum v1 and v2 on at the same time! */
1821                 printk(KERN_ERR "JBD2: Can't enable checksumming v1 and v2/3 "
1822                        "at the same time!\n");
1823                 goto out;
1824         }
1825
1826         if (!jbd2_verify_csum_type(journal, sb)) {
1827                 printk(KERN_ERR "JBD2: Unknown checksum type\n");
1828                 goto out;
1829         }
1830
1831         /* Load the checksum driver */
1832         if (jbd2_journal_has_csum_v2or3_feature(journal)) {
1833                 journal->j_chksum_driver = crypto_alloc_shash("crc32c", 0, 0);
1834                 if (IS_ERR(journal->j_chksum_driver)) {
1835                         printk(KERN_ERR "JBD2: Cannot load crc32c driver.\n");
1836                         err = PTR_ERR(journal->j_chksum_driver);
1837                         journal->j_chksum_driver = NULL;
1838                         goto out;
1839                 }
1840         }
1841
1842         if (jbd2_journal_has_csum_v2or3(journal)) {
1843                 /* Check superblock checksum */
1844                 if (sb->s_checksum != jbd2_superblock_csum(journal, sb)) {
1845                         printk(KERN_ERR "JBD2: journal checksum error\n");
1846                         err = -EFSBADCRC;
1847                         goto out;
1848                 }
1849
1850                 /* Precompute checksum seed for all metadata */
1851                 journal->j_csum_seed = jbd2_chksum(journal, ~0, sb->s_uuid,
1852                                                    sizeof(sb->s_uuid));
1853         }
1854
1855         journal->j_revoke_records_per_block =
1856                                 journal_revoke_records_per_block(journal);
1857         set_buffer_verified(bh);
1858
1859         return 0;
1860
1861 out:
1862         journal_fail_superblock(journal);
1863         return err;
1864 }
1865
1866 /*
1867  * Load the on-disk journal superblock and read the key fields into the
1868  * journal_t.
1869  */
1870
1871 static int load_superblock(journal_t *journal)
1872 {
1873         int err;
1874         journal_superblock_t *sb;
1875
1876         err = journal_get_superblock(journal);
1877         if (err)
1878                 return err;
1879
1880         sb = journal->j_superblock;
1881
1882         journal->j_tail_sequence = be32_to_cpu(sb->s_sequence);
1883         journal->j_tail = be32_to_cpu(sb->s_start);
1884         journal->j_first = be32_to_cpu(sb->s_first);
1885         journal->j_errno = be32_to_cpu(sb->s_errno);
1886
1887         if (jbd2_has_feature_fast_commit(journal) &&
1888             journal->j_fc_wbufsize > 0) {
1889                 journal->j_fc_last = be32_to_cpu(sb->s_maxlen);
1890                 journal->j_last = journal->j_fc_last - journal->j_fc_wbufsize;
1891                 journal->j_fc_first = journal->j_last + 1;
1892                 journal->j_fc_off = 0;
1893         } else {
1894                 journal->j_last = be32_to_cpu(sb->s_maxlen);
1895         }
1896
1897         return 0;
1898 }
1899
1900
1901 /**
1902  * int jbd2_journal_load() - Read journal from disk.
1903  * @journal: Journal to act on.
1904  *
1905  * Given a journal_t structure which tells us which disk blocks contain
1906  * a journal, read the journal from disk to initialise the in-memory
1907  * structures.
1908  */
1909 int jbd2_journal_load(journal_t *journal)
1910 {
1911         int err;
1912         journal_superblock_t *sb;
1913
1914         err = load_superblock(journal);
1915         if (err)
1916                 return err;
1917
1918         sb = journal->j_superblock;
1919         /* If this is a V2 superblock, then we have to check the
1920          * features flags on it. */
1921
1922         if (journal->j_format_version >= 2) {
1923                 if ((sb->s_feature_ro_compat &
1924                      ~cpu_to_be32(JBD2_KNOWN_ROCOMPAT_FEATURES)) ||
1925                     (sb->s_feature_incompat &
1926                      ~cpu_to_be32(JBD2_KNOWN_INCOMPAT_FEATURES))) {
1927                         printk(KERN_WARNING
1928                                 "JBD2: Unrecognised features on journal\n");
1929                         return -EINVAL;
1930                 }
1931         }
1932
1933         /*
1934          * Create a slab for this blocksize
1935          */
1936         err = jbd2_journal_create_slab(be32_to_cpu(sb->s_blocksize));
1937         if (err)
1938                 return err;
1939
1940         /* Let the recovery code check whether it needs to recover any
1941          * data from the journal. */
1942         if (jbd2_journal_recover(journal))
1943                 goto recovery_error;
1944
1945         if (journal->j_failed_commit) {
1946                 printk(KERN_ERR "JBD2: journal transaction %u on %s "
1947                        "is corrupt.\n", journal->j_failed_commit,
1948                        journal->j_devname);
1949                 return -EFSCORRUPTED;
1950         }
1951         /*
1952          * clear JBD2_ABORT flag initialized in journal_init_common
1953          * here to update log tail information with the newest seq.
1954          */
1955         journal->j_flags &= ~JBD2_ABORT;
1956
1957         if (journal->j_fc_wbufsize > 0)
1958                 jbd2_journal_set_features(journal, 0, 0,
1959                                           JBD2_FEATURE_INCOMPAT_FAST_COMMIT);
1960         /* OK, we've finished with the dynamic journal bits:
1961          * reinitialise the dynamic contents of the superblock in memory
1962          * and reset them on disk. */
1963         if (journal_reset(journal))
1964                 goto recovery_error;
1965
1966         journal->j_flags |= JBD2_LOADED;
1967         return 0;
1968
1969 recovery_error:
1970         printk(KERN_WARNING "JBD2: recovery failed\n");
1971         return -EIO;
1972 }
1973
1974 /**
1975  * void jbd2_journal_destroy() - Release a journal_t structure.
1976  * @journal: Journal to act on.
1977  *
1978  * Release a journal_t structure once it is no longer in use by the
1979  * journaled object.
1980  * Return <0 if we couldn't clean up the journal.
1981  */
1982 int jbd2_journal_destroy(journal_t *journal)
1983 {
1984         int err = 0;
1985
1986         /* Wait for the commit thread to wake up and die. */
1987         journal_kill_thread(journal);
1988
1989         /* Force a final log commit */
1990         if (journal->j_running_transaction)
1991                 jbd2_journal_commit_transaction(journal);
1992
1993         /* Force any old transactions to disk */
1994
1995         /* Totally anal locking here... */
1996         spin_lock(&journal->j_list_lock);
1997         while (journal->j_checkpoint_transactions != NULL) {
1998                 spin_unlock(&journal->j_list_lock);
1999                 mutex_lock_io(&journal->j_checkpoint_mutex);
2000                 err = jbd2_log_do_checkpoint(journal);
2001                 mutex_unlock(&journal->j_checkpoint_mutex);
2002                 /*
2003                  * If checkpointing failed, just free the buffers to avoid
2004                  * looping forever
2005                  */
2006                 if (err) {
2007                         jbd2_journal_destroy_checkpoint(journal);
2008                         spin_lock(&journal->j_list_lock);
2009                         break;
2010                 }
2011                 spin_lock(&journal->j_list_lock);
2012         }
2013
2014         J_ASSERT(journal->j_running_transaction == NULL);
2015         J_ASSERT(journal->j_committing_transaction == NULL);
2016         J_ASSERT(journal->j_checkpoint_transactions == NULL);
2017         spin_unlock(&journal->j_list_lock);
2018
2019         if (journal->j_sb_buffer) {
2020                 if (!is_journal_aborted(journal)) {
2021                         mutex_lock_io(&journal->j_checkpoint_mutex);
2022
2023                         write_lock(&journal->j_state_lock);
2024                         journal->j_tail_sequence =
2025                                 ++journal->j_transaction_sequence;
2026                         write_unlock(&journal->j_state_lock);
2027
2028                         jbd2_mark_journal_empty(journal,
2029                                         REQ_SYNC | REQ_PREFLUSH | REQ_FUA);
2030                         mutex_unlock(&journal->j_checkpoint_mutex);
2031                 } else
2032                         err = -EIO;
2033                 brelse(journal->j_sb_buffer);
2034         }
2035
2036         if (journal->j_proc_entry)
2037                 jbd2_stats_proc_exit(journal);
2038         iput(journal->j_inode);
2039         if (journal->j_revoke)
2040                 jbd2_journal_destroy_revoke(journal);
2041         if (journal->j_chksum_driver)
2042                 crypto_free_shash(journal->j_chksum_driver);
2043         if (journal->j_fc_wbufsize > 0)
2044                 kfree(journal->j_fc_wbuf);
2045         kfree(journal->j_wbuf);
2046         kfree(journal);
2047
2048         return err;
2049 }
2050
2051
2052 /**
2053  *int jbd2_journal_check_used_features() - Check if features specified are used.
2054  * @journal: Journal to check.
2055  * @compat: bitmask of compatible features
2056  * @ro: bitmask of features that force read-only mount
2057  * @incompat: bitmask of incompatible features
2058  *
2059  * Check whether the journal uses all of a given set of
2060  * features.  Return true (non-zero) if it does.
2061  **/
2062
2063 int jbd2_journal_check_used_features(journal_t *journal, unsigned long compat,
2064                                  unsigned long ro, unsigned long incompat)
2065 {
2066         journal_superblock_t *sb;
2067
2068         if (!compat && !ro && !incompat)
2069                 return 1;
2070         /* Load journal superblock if it is not loaded yet. */
2071         if (journal->j_format_version == 0 &&
2072             journal_get_superblock(journal) != 0)
2073                 return 0;
2074         if (journal->j_format_version == 1)
2075                 return 0;
2076
2077         sb = journal->j_superblock;
2078
2079         if (((be32_to_cpu(sb->s_feature_compat) & compat) == compat) &&
2080             ((be32_to_cpu(sb->s_feature_ro_compat) & ro) == ro) &&
2081             ((be32_to_cpu(sb->s_feature_incompat) & incompat) == incompat))
2082                 return 1;
2083
2084         return 0;
2085 }
2086
2087 /**
2088  * int jbd2_journal_check_available_features() - Check feature set in journalling layer
2089  * @journal: Journal to check.
2090  * @compat: bitmask of compatible features
2091  * @ro: bitmask of features that force read-only mount
2092  * @incompat: bitmask of incompatible features
2093  *
2094  * Check whether the journaling code supports the use of
2095  * all of a given set of features on this journal.  Return true
2096  * (non-zero) if it can. */
2097
2098 int jbd2_journal_check_available_features(journal_t *journal, unsigned long compat,
2099                                       unsigned long ro, unsigned long incompat)
2100 {
2101         if (!compat && !ro && !incompat)
2102                 return 1;
2103
2104         /* We can support any known requested features iff the
2105          * superblock is in version 2.  Otherwise we fail to support any
2106          * extended sb features. */
2107
2108         if (journal->j_format_version != 2)
2109                 return 0;
2110
2111         if ((compat   & JBD2_KNOWN_COMPAT_FEATURES) == compat &&
2112             (ro       & JBD2_KNOWN_ROCOMPAT_FEATURES) == ro &&
2113             (incompat & JBD2_KNOWN_INCOMPAT_FEATURES) == incompat)
2114                 return 1;
2115
2116         return 0;
2117 }
2118
2119 /**
2120  * int jbd2_journal_set_features() - Mark a given journal feature in the superblock
2121  * @journal: Journal to act on.
2122  * @compat: bitmask of compatible features
2123  * @ro: bitmask of features that force read-only mount
2124  * @incompat: bitmask of incompatible features
2125  *
2126  * Mark a given journal feature as present on the
2127  * superblock.  Returns true if the requested features could be set.
2128  *
2129  */
2130
2131 int jbd2_journal_set_features(journal_t *journal, unsigned long compat,
2132                           unsigned long ro, unsigned long incompat)
2133 {
2134 #define INCOMPAT_FEATURE_ON(f) \
2135                 ((incompat & (f)) && !(sb->s_feature_incompat & cpu_to_be32(f)))
2136 #define COMPAT_FEATURE_ON(f) \
2137                 ((compat & (f)) && !(sb->s_feature_compat & cpu_to_be32(f)))
2138         journal_superblock_t *sb;
2139
2140         if (jbd2_journal_check_used_features(journal, compat, ro, incompat))
2141                 return 1;
2142
2143         if (!jbd2_journal_check_available_features(journal, compat, ro, incompat))
2144                 return 0;
2145
2146         /* If enabling v2 checksums, turn on v3 instead */
2147         if (incompat & JBD2_FEATURE_INCOMPAT_CSUM_V2) {
2148                 incompat &= ~JBD2_FEATURE_INCOMPAT_CSUM_V2;
2149                 incompat |= JBD2_FEATURE_INCOMPAT_CSUM_V3;
2150         }
2151
2152         /* Asking for checksumming v3 and v1?  Only give them v3. */
2153         if (incompat & JBD2_FEATURE_INCOMPAT_CSUM_V3 &&
2154             compat & JBD2_FEATURE_COMPAT_CHECKSUM)
2155                 compat &= ~JBD2_FEATURE_COMPAT_CHECKSUM;
2156
2157         jbd_debug(1, "Setting new features 0x%lx/0x%lx/0x%lx\n",
2158                   compat, ro, incompat);
2159
2160         sb = journal->j_superblock;
2161
2162         /* Load the checksum driver if necessary */
2163         if ((journal->j_chksum_driver == NULL) &&
2164             INCOMPAT_FEATURE_ON(JBD2_FEATURE_INCOMPAT_CSUM_V3)) {
2165                 journal->j_chksum_driver = crypto_alloc_shash("crc32c", 0, 0);
2166                 if (IS_ERR(journal->j_chksum_driver)) {
2167                         printk(KERN_ERR "JBD2: Cannot load crc32c driver.\n");
2168                         journal->j_chksum_driver = NULL;
2169                         return 0;
2170                 }
2171                 /* Precompute checksum seed for all metadata */
2172                 journal->j_csum_seed = jbd2_chksum(journal, ~0, sb->s_uuid,
2173                                                    sizeof(sb->s_uuid));
2174         }
2175
2176         lock_buffer(journal->j_sb_buffer);
2177
2178         /* If enabling v3 checksums, update superblock */
2179         if (INCOMPAT_FEATURE_ON(JBD2_FEATURE_INCOMPAT_CSUM_V3)) {
2180                 sb->s_checksum_type = JBD2_CRC32C_CHKSUM;
2181                 sb->s_feature_compat &=
2182                         ~cpu_to_be32(JBD2_FEATURE_COMPAT_CHECKSUM);
2183         }
2184
2185         /* If enabling v1 checksums, downgrade superblock */
2186         if (COMPAT_FEATURE_ON(JBD2_FEATURE_COMPAT_CHECKSUM))
2187                 sb->s_feature_incompat &=
2188                         ~cpu_to_be32(JBD2_FEATURE_INCOMPAT_CSUM_V2 |
2189                                      JBD2_FEATURE_INCOMPAT_CSUM_V3);
2190
2191         sb->s_feature_compat    |= cpu_to_be32(compat);
2192         sb->s_feature_ro_compat |= cpu_to_be32(ro);
2193         sb->s_feature_incompat  |= cpu_to_be32(incompat);
2194         unlock_buffer(journal->j_sb_buffer);
2195         journal->j_revoke_records_per_block =
2196                                 journal_revoke_records_per_block(journal);
2197
2198         return 1;
2199 #undef COMPAT_FEATURE_ON
2200 #undef INCOMPAT_FEATURE_ON
2201 }
2202
2203 /*
2204  * jbd2_journal_clear_features () - Clear a given journal feature in the
2205  *                                  superblock
2206  * @journal: Journal to act on.
2207  * @compat: bitmask of compatible features
2208  * @ro: bitmask of features that force read-only mount
2209  * @incompat: bitmask of incompatible features
2210  *
2211  * Clear a given journal feature as present on the
2212  * superblock.
2213  */
2214 void jbd2_journal_clear_features(journal_t *journal, unsigned long compat,
2215                                 unsigned long ro, unsigned long incompat)
2216 {
2217         journal_superblock_t *sb;
2218
2219         jbd_debug(1, "Clear features 0x%lx/0x%lx/0x%lx\n",
2220                   compat, ro, incompat);
2221
2222         sb = journal->j_superblock;
2223
2224         sb->s_feature_compat    &= ~cpu_to_be32(compat);
2225         sb->s_feature_ro_compat &= ~cpu_to_be32(ro);
2226         sb->s_feature_incompat  &= ~cpu_to_be32(incompat);
2227         journal->j_revoke_records_per_block =
2228                                 journal_revoke_records_per_block(journal);
2229 }
2230 EXPORT_SYMBOL(jbd2_journal_clear_features);
2231
2232 /**
2233  * int jbd2_journal_flush () - Flush journal
2234  * @journal: Journal to act on.
2235  *
2236  * Flush all data for a given journal to disk and empty the journal.
2237  * Filesystems can use this when remounting readonly to ensure that
2238  * recovery does not need to happen on remount.
2239  */
2240
2241 int jbd2_journal_flush(journal_t *journal)
2242 {
2243         int err = 0;
2244         transaction_t *transaction = NULL;
2245
2246         write_lock(&journal->j_state_lock);
2247
2248         /* Force everything buffered to the log... */
2249         if (journal->j_running_transaction) {
2250                 transaction = journal->j_running_transaction;
2251                 __jbd2_log_start_commit(journal, transaction->t_tid);
2252         } else if (journal->j_committing_transaction)
2253                 transaction = journal->j_committing_transaction;
2254
2255         /* Wait for the log commit to complete... */
2256         if (transaction) {
2257                 tid_t tid = transaction->t_tid;
2258
2259                 write_unlock(&journal->j_state_lock);
2260                 jbd2_log_wait_commit(journal, tid);
2261         } else {
2262                 write_unlock(&journal->j_state_lock);
2263         }
2264
2265         /* ...and flush everything in the log out to disk. */
2266         spin_lock(&journal->j_list_lock);
2267         while (!err && journal->j_checkpoint_transactions != NULL) {
2268                 spin_unlock(&journal->j_list_lock);
2269                 mutex_lock_io(&journal->j_checkpoint_mutex);
2270                 err = jbd2_log_do_checkpoint(journal);
2271                 mutex_unlock(&journal->j_checkpoint_mutex);
2272                 spin_lock(&journal->j_list_lock);
2273         }
2274         spin_unlock(&journal->j_list_lock);
2275
2276         if (is_journal_aborted(journal))
2277                 return -EIO;
2278
2279         mutex_lock_io(&journal->j_checkpoint_mutex);
2280         if (!err) {
2281                 err = jbd2_cleanup_journal_tail(journal);
2282                 if (err < 0) {
2283                         mutex_unlock(&journal->j_checkpoint_mutex);
2284                         goto out;
2285                 }
2286                 err = 0;
2287         }
2288
2289         /* Finally, mark the journal as really needing no recovery.
2290          * This sets s_start==0 in the underlying superblock, which is
2291          * the magic code for a fully-recovered superblock.  Any future
2292          * commits of data to the journal will restore the current
2293          * s_start value. */
2294         jbd2_mark_journal_empty(journal, REQ_SYNC | REQ_FUA);
2295         mutex_unlock(&journal->j_checkpoint_mutex);
2296         write_lock(&journal->j_state_lock);
2297         J_ASSERT(!journal->j_running_transaction);
2298         J_ASSERT(!journal->j_committing_transaction);
2299         J_ASSERT(!journal->j_checkpoint_transactions);
2300         J_ASSERT(journal->j_head == journal->j_tail);
2301         J_ASSERT(journal->j_tail_sequence == journal->j_transaction_sequence);
2302         write_unlock(&journal->j_state_lock);
2303 out:
2304         return err;
2305 }
2306
2307 /**
2308  * int jbd2_journal_wipe() - Wipe journal contents
2309  * @journal: Journal to act on.
2310  * @write: flag (see below)
2311  *
2312  * Wipe out all of the contents of a journal, safely.  This will produce
2313  * a warning if the journal contains any valid recovery information.
2314  * Must be called between journal_init_*() and jbd2_journal_load().
2315  *
2316  * If 'write' is non-zero, then we wipe out the journal on disk; otherwise
2317  * we merely suppress recovery.
2318  */
2319
2320 int jbd2_journal_wipe(journal_t *journal, int write)
2321 {
2322         int err = 0;
2323
2324         J_ASSERT (!(journal->j_flags & JBD2_LOADED));
2325
2326         err = load_superblock(journal);
2327         if (err)
2328                 return err;
2329
2330         if (!journal->j_tail)
2331                 goto no_recovery;
2332
2333         printk(KERN_WARNING "JBD2: %s recovery information on journal\n",
2334                 write ? "Clearing" : "Ignoring");
2335
2336         err = jbd2_journal_skip_recovery(journal);
2337         if (write) {
2338                 /* Lock to make assertions happy... */
2339                 mutex_lock_io(&journal->j_checkpoint_mutex);
2340                 jbd2_mark_journal_empty(journal, REQ_SYNC | REQ_FUA);
2341                 mutex_unlock(&journal->j_checkpoint_mutex);
2342         }
2343
2344  no_recovery:
2345         return err;
2346 }
2347
2348 /**
2349  * void jbd2_journal_abort () - Shutdown the journal immediately.
2350  * @journal: the journal to shutdown.
2351  * @errno:   an error number to record in the journal indicating
2352  *           the reason for the shutdown.
2353  *
2354  * Perform a complete, immediate shutdown of the ENTIRE
2355  * journal (not of a single transaction).  This operation cannot be
2356  * undone without closing and reopening the journal.
2357  *
2358  * The jbd2_journal_abort function is intended to support higher level error
2359  * recovery mechanisms such as the ext2/ext3 remount-readonly error
2360  * mode.
2361  *
2362  * Journal abort has very specific semantics.  Any existing dirty,
2363  * unjournaled buffers in the main filesystem will still be written to
2364  * disk by bdflush, but the journaling mechanism will be suspended
2365  * immediately and no further transaction commits will be honoured.
2366  *
2367  * Any dirty, journaled buffers will be written back to disk without
2368  * hitting the journal.  Atomicity cannot be guaranteed on an aborted
2369  * filesystem, but we _do_ attempt to leave as much data as possible
2370  * behind for fsck to use for cleanup.
2371  *
2372  * Any attempt to get a new transaction handle on a journal which is in
2373  * ABORT state will just result in an -EROFS error return.  A
2374  * jbd2_journal_stop on an existing handle will return -EIO if we have
2375  * entered abort state during the update.
2376  *
2377  * Recursive transactions are not disturbed by journal abort until the
2378  * final jbd2_journal_stop, which will receive the -EIO error.
2379  *
2380  * Finally, the jbd2_journal_abort call allows the caller to supply an errno
2381  * which will be recorded (if possible) in the journal superblock.  This
2382  * allows a client to record failure conditions in the middle of a
2383  * transaction without having to complete the transaction to record the
2384  * failure to disk.  ext3_error, for example, now uses this
2385  * functionality.
2386  *
2387  */
2388
2389 void jbd2_journal_abort(journal_t *journal, int errno)
2390 {
2391         transaction_t *transaction;
2392
2393         /*
2394          * Lock the aborting procedure until everything is done, this avoid
2395          * races between filesystem's error handling flow (e.g. ext4_abort()),
2396          * ensure panic after the error info is written into journal's
2397          * superblock.
2398          */
2399         mutex_lock(&journal->j_abort_mutex);
2400         /*
2401          * ESHUTDOWN always takes precedence because a file system check
2402          * caused by any other journal abort error is not required after
2403          * a shutdown triggered.
2404          */
2405         write_lock(&journal->j_state_lock);
2406         if (journal->j_flags & JBD2_ABORT) {
2407                 int old_errno = journal->j_errno;
2408
2409                 write_unlock(&journal->j_state_lock);
2410                 if (old_errno != -ESHUTDOWN && errno == -ESHUTDOWN) {
2411                         journal->j_errno = errno;
2412                         jbd2_journal_update_sb_errno(journal);
2413                 }
2414                 mutex_unlock(&journal->j_abort_mutex);
2415                 return;
2416         }
2417
2418         /*
2419          * Mark the abort as occurred and start current running transaction
2420          * to release all journaled buffer.
2421          */
2422         pr_err("Aborting journal on device %s.\n", journal->j_devname);
2423
2424         journal->j_flags |= JBD2_ABORT;
2425         journal->j_errno = errno;
2426         transaction = journal->j_running_transaction;
2427         if (transaction)
2428                 __jbd2_log_start_commit(journal, transaction->t_tid);
2429         write_unlock(&journal->j_state_lock);
2430
2431         /*
2432          * Record errno to the journal super block, so that fsck and jbd2
2433          * layer could realise that a filesystem check is needed.
2434          */
2435         jbd2_journal_update_sb_errno(journal);
2436         mutex_unlock(&journal->j_abort_mutex);
2437 }
2438
2439 /**
2440  * int jbd2_journal_errno () - returns the journal's error state.
2441  * @journal: journal to examine.
2442  *
2443  * This is the errno number set with jbd2_journal_abort(), the last
2444  * time the journal was mounted - if the journal was stopped
2445  * without calling abort this will be 0.
2446  *
2447  * If the journal has been aborted on this mount time -EROFS will
2448  * be returned.
2449  */
2450 int jbd2_journal_errno(journal_t *journal)
2451 {
2452         int err;
2453
2454         read_lock(&journal->j_state_lock);
2455         if (journal->j_flags & JBD2_ABORT)
2456                 err = -EROFS;
2457         else
2458                 err = journal->j_errno;
2459         read_unlock(&journal->j_state_lock);
2460         return err;
2461 }
2462
2463 /**
2464  * int jbd2_journal_clear_err () - clears the journal's error state
2465  * @journal: journal to act on.
2466  *
2467  * An error must be cleared or acked to take a FS out of readonly
2468  * mode.
2469  */
2470 int jbd2_journal_clear_err(journal_t *journal)
2471 {
2472         int err = 0;
2473
2474         write_lock(&journal->j_state_lock);
2475         if (journal->j_flags & JBD2_ABORT)
2476                 err = -EROFS;
2477         else
2478                 journal->j_errno = 0;
2479         write_unlock(&journal->j_state_lock);
2480         return err;
2481 }
2482
2483 /**
2484  * void jbd2_journal_ack_err() - Ack journal err.
2485  * @journal: journal to act on.
2486  *
2487  * An error must be cleared or acked to take a FS out of readonly
2488  * mode.
2489  */
2490 void jbd2_journal_ack_err(journal_t *journal)
2491 {
2492         write_lock(&journal->j_state_lock);
2493         if (journal->j_errno)
2494                 journal->j_flags |= JBD2_ACK_ERR;
2495         write_unlock(&journal->j_state_lock);
2496 }
2497
2498 int jbd2_journal_blocks_per_page(struct inode *inode)
2499 {
2500         return 1 << (PAGE_SHIFT - inode->i_sb->s_blocksize_bits);
2501 }
2502
2503 /*
2504  * helper functions to deal with 32 or 64bit block numbers.
2505  */
2506 size_t journal_tag_bytes(journal_t *journal)
2507 {
2508         size_t sz;
2509
2510         if (jbd2_has_feature_csum3(journal))
2511                 return sizeof(journal_block_tag3_t);
2512
2513         sz = sizeof(journal_block_tag_t);
2514
2515         if (jbd2_has_feature_csum2(journal))
2516                 sz += sizeof(__u16);
2517
2518         if (jbd2_has_feature_64bit(journal))
2519                 return sz;
2520         else
2521                 return sz - sizeof(__u32);
2522 }
2523
2524 /*
2525  * JBD memory management
2526  *
2527  * These functions are used to allocate block-sized chunks of memory
2528  * used for making copies of buffer_head data.  Very often it will be
2529  * page-sized chunks of data, but sometimes it will be in
2530  * sub-page-size chunks.  (For example, 16k pages on Power systems
2531  * with a 4k block file system.)  For blocks smaller than a page, we
2532  * use a SLAB allocator.  There are slab caches for each block size,
2533  * which are allocated at mount time, if necessary, and we only free
2534  * (all of) the slab caches when/if the jbd2 module is unloaded.  For
2535  * this reason we don't need to a mutex to protect access to
2536  * jbd2_slab[] allocating or releasing memory; only in
2537  * jbd2_journal_create_slab().
2538  */
2539 #define JBD2_MAX_SLABS 8
2540 static struct kmem_cache *jbd2_slab[JBD2_MAX_SLABS];
2541
2542 static const char *jbd2_slab_names[JBD2_MAX_SLABS] = {
2543         "jbd2_1k", "jbd2_2k", "jbd2_4k", "jbd2_8k",
2544         "jbd2_16k", "jbd2_32k", "jbd2_64k", "jbd2_128k"
2545 };
2546
2547
2548 static void jbd2_journal_destroy_slabs(void)
2549 {
2550         int i;
2551
2552         for (i = 0; i < JBD2_MAX_SLABS; i++) {
2553                 kmem_cache_destroy(jbd2_slab[i]);
2554                 jbd2_slab[i] = NULL;
2555         }
2556 }
2557
2558 static int jbd2_journal_create_slab(size_t size)
2559 {
2560         static DEFINE_MUTEX(jbd2_slab_create_mutex);
2561         int i = order_base_2(size) - 10;
2562         size_t slab_size;
2563
2564         if (size == PAGE_SIZE)
2565                 return 0;
2566
2567         if (i >= JBD2_MAX_SLABS)
2568                 return -EINVAL;
2569
2570         if (unlikely(i < 0))
2571                 i = 0;
2572         mutex_lock(&jbd2_slab_create_mutex);
2573         if (jbd2_slab[i]) {
2574                 mutex_unlock(&jbd2_slab_create_mutex);
2575                 return 0;       /* Already created */
2576         }
2577
2578         slab_size = 1 << (i+10);
2579         jbd2_slab[i] = kmem_cache_create(jbd2_slab_names[i], slab_size,
2580                                          slab_size, 0, NULL);
2581         mutex_unlock(&jbd2_slab_create_mutex);
2582         if (!jbd2_slab[i]) {
2583                 printk(KERN_EMERG "JBD2: no memory for jbd2_slab cache\n");
2584                 return -ENOMEM;
2585         }
2586         return 0;
2587 }
2588
2589 static struct kmem_cache *get_slab(size_t size)
2590 {
2591         int i = order_base_2(size) - 10;
2592
2593         BUG_ON(i >= JBD2_MAX_SLABS);
2594         if (unlikely(i < 0))
2595                 i = 0;
2596         BUG_ON(jbd2_slab[i] == NULL);
2597         return jbd2_slab[i];
2598 }
2599
2600 void *jbd2_alloc(size_t size, gfp_t flags)
2601 {
2602         void *ptr;
2603
2604         BUG_ON(size & (size-1)); /* Must be a power of 2 */
2605
2606         if (size < PAGE_SIZE)
2607                 ptr = kmem_cache_alloc(get_slab(size), flags);
2608         else
2609                 ptr = (void *)__get_free_pages(flags, get_order(size));
2610
2611         /* Check alignment; SLUB has gotten this wrong in the past,
2612          * and this can lead to user data corruption! */
2613         BUG_ON(((unsigned long) ptr) & (size-1));
2614
2615         return ptr;
2616 }
2617
2618 void jbd2_free(void *ptr, size_t size)
2619 {
2620         if (size < PAGE_SIZE)
2621                 kmem_cache_free(get_slab(size), ptr);
2622         else
2623                 free_pages((unsigned long)ptr, get_order(size));
2624 };
2625
2626 /*
2627  * Journal_head storage management
2628  */
2629 static struct kmem_cache *jbd2_journal_head_cache;
2630 #ifdef CONFIG_JBD2_DEBUG
2631 static atomic_t nr_journal_heads = ATOMIC_INIT(0);
2632 #endif
2633
2634 static int __init jbd2_journal_init_journal_head_cache(void)
2635 {
2636         J_ASSERT(!jbd2_journal_head_cache);
2637         jbd2_journal_head_cache = kmem_cache_create("jbd2_journal_head",
2638                                 sizeof(struct journal_head),
2639                                 0,              /* offset */
2640                                 SLAB_TEMPORARY | SLAB_TYPESAFE_BY_RCU,
2641                                 NULL);          /* ctor */
2642         if (!jbd2_journal_head_cache) {
2643                 printk(KERN_EMERG "JBD2: no memory for journal_head cache\n");
2644                 return -ENOMEM;
2645         }
2646         return 0;
2647 }
2648
2649 static void jbd2_journal_destroy_journal_head_cache(void)
2650 {
2651         kmem_cache_destroy(jbd2_journal_head_cache);
2652         jbd2_journal_head_cache = NULL;
2653 }
2654
2655 /*
2656  * journal_head splicing and dicing
2657  */
2658 static struct journal_head *journal_alloc_journal_head(void)
2659 {
2660         struct journal_head *ret;
2661
2662 #ifdef CONFIG_JBD2_DEBUG
2663         atomic_inc(&nr_journal_heads);
2664 #endif
2665         ret = kmem_cache_zalloc(jbd2_journal_head_cache, GFP_NOFS);
2666         if (!ret) {
2667                 jbd_debug(1, "out of memory for journal_head\n");
2668                 pr_notice_ratelimited("ENOMEM in %s, retrying.\n", __func__);
2669                 ret = kmem_cache_zalloc(jbd2_journal_head_cache,
2670                                 GFP_NOFS | __GFP_NOFAIL);
2671         }
2672         if (ret)
2673                 spin_lock_init(&ret->b_state_lock);
2674         return ret;
2675 }
2676
2677 static void journal_free_journal_head(struct journal_head *jh)
2678 {
2679 #ifdef CONFIG_JBD2_DEBUG
2680         atomic_dec(&nr_journal_heads);
2681         memset(jh, JBD2_POISON_FREE, sizeof(*jh));
2682 #endif
2683         kmem_cache_free(jbd2_journal_head_cache, jh);
2684 }
2685
2686 /*
2687  * A journal_head is attached to a buffer_head whenever JBD has an
2688  * interest in the buffer.
2689  *
2690  * Whenever a buffer has an attached journal_head, its ->b_state:BH_JBD bit
2691  * is set.  This bit is tested in core kernel code where we need to take
2692  * JBD-specific actions.  Testing the zeroness of ->b_private is not reliable
2693  * there.
2694  *
2695  * When a buffer has its BH_JBD bit set, its ->b_count is elevated by one.
2696  *
2697  * When a buffer has its BH_JBD bit set it is immune from being released by
2698  * core kernel code, mainly via ->b_count.
2699  *
2700  * A journal_head is detached from its buffer_head when the journal_head's
2701  * b_jcount reaches zero. Running transaction (b_transaction) and checkpoint
2702  * transaction (b_cp_transaction) hold their references to b_jcount.
2703  *
2704  * Various places in the kernel want to attach a journal_head to a buffer_head
2705  * _before_ attaching the journal_head to a transaction.  To protect the
2706  * journal_head in this situation, jbd2_journal_add_journal_head elevates the
2707  * journal_head's b_jcount refcount by one.  The caller must call
2708  * jbd2_journal_put_journal_head() to undo this.
2709  *
2710  * So the typical usage would be:
2711  *
2712  *      (Attach a journal_head if needed.  Increments b_jcount)
2713  *      struct journal_head *jh = jbd2_journal_add_journal_head(bh);
2714  *      ...
2715  *      (Get another reference for transaction)
2716  *      jbd2_journal_grab_journal_head(bh);
2717  *      jh->b_transaction = xxx;
2718  *      (Put original reference)
2719  *      jbd2_journal_put_journal_head(jh);
2720  */
2721
2722 /*
2723  * Give a buffer_head a journal_head.
2724  *
2725  * May sleep.
2726  */
2727 struct journal_head *jbd2_journal_add_journal_head(struct buffer_head *bh)
2728 {
2729         struct journal_head *jh;
2730         struct journal_head *new_jh = NULL;
2731
2732 repeat:
2733         if (!buffer_jbd(bh))
2734                 new_jh = journal_alloc_journal_head();
2735
2736         jbd_lock_bh_journal_head(bh);
2737         if (buffer_jbd(bh)) {
2738                 jh = bh2jh(bh);
2739         } else {
2740                 J_ASSERT_BH(bh,
2741                         (atomic_read(&bh->b_count) > 0) ||
2742                         (bh->b_page && bh->b_page->mapping));
2743
2744                 if (!new_jh) {
2745                         jbd_unlock_bh_journal_head(bh);
2746                         goto repeat;
2747                 }
2748
2749                 jh = new_jh;
2750                 new_jh = NULL;          /* We consumed it */
2751                 set_buffer_jbd(bh);
2752                 bh->b_private = jh;
2753                 jh->b_bh = bh;
2754                 get_bh(bh);
2755                 BUFFER_TRACE(bh, "added journal_head");
2756         }
2757         jh->b_jcount++;
2758         jbd_unlock_bh_journal_head(bh);
2759         if (new_jh)
2760                 journal_free_journal_head(new_jh);
2761         return bh->b_private;
2762 }
2763
2764 /*
2765  * Grab a ref against this buffer_head's journal_head.  If it ended up not
2766  * having a journal_head, return NULL
2767  */
2768 struct journal_head *jbd2_journal_grab_journal_head(struct buffer_head *bh)
2769 {
2770         struct journal_head *jh = NULL;
2771
2772         jbd_lock_bh_journal_head(bh);
2773         if (buffer_jbd(bh)) {
2774                 jh = bh2jh(bh);
2775                 jh->b_jcount++;
2776         }
2777         jbd_unlock_bh_journal_head(bh);
2778         return jh;
2779 }
2780
2781 static void __journal_remove_journal_head(struct buffer_head *bh)
2782 {
2783         struct journal_head *jh = bh2jh(bh);
2784
2785         J_ASSERT_JH(jh, jh->b_transaction == NULL);
2786         J_ASSERT_JH(jh, jh->b_next_transaction == NULL);
2787         J_ASSERT_JH(jh, jh->b_cp_transaction == NULL);
2788         J_ASSERT_JH(jh, jh->b_jlist == BJ_None);
2789         J_ASSERT_BH(bh, buffer_jbd(bh));
2790         J_ASSERT_BH(bh, jh2bh(jh) == bh);
2791         BUFFER_TRACE(bh, "remove journal_head");
2792
2793         /* Unlink before dropping the lock */
2794         bh->b_private = NULL;
2795         jh->b_bh = NULL;        /* debug, really */
2796         clear_buffer_jbd(bh);
2797 }
2798
2799 static void journal_release_journal_head(struct journal_head *jh, size_t b_size)
2800 {
2801         if (jh->b_frozen_data) {
2802                 printk(KERN_WARNING "%s: freeing b_frozen_data\n", __func__);
2803                 jbd2_free(jh->b_frozen_data, b_size);
2804         }
2805         if (jh->b_committed_data) {
2806                 printk(KERN_WARNING "%s: freeing b_committed_data\n", __func__);
2807                 jbd2_free(jh->b_committed_data, b_size);
2808         }
2809         journal_free_journal_head(jh);
2810 }
2811
2812 /*
2813  * Drop a reference on the passed journal_head.  If it fell to zero then
2814  * release the journal_head from the buffer_head.
2815  */
2816 void jbd2_journal_put_journal_head(struct journal_head *jh)
2817 {
2818         struct buffer_head *bh = jh2bh(jh);
2819
2820         jbd_lock_bh_journal_head(bh);
2821         J_ASSERT_JH(jh, jh->b_jcount > 0);
2822         --jh->b_jcount;
2823         if (!jh->b_jcount) {
2824                 __journal_remove_journal_head(bh);
2825                 jbd_unlock_bh_journal_head(bh);
2826                 journal_release_journal_head(jh, bh->b_size);
2827                 __brelse(bh);
2828         } else {
2829                 jbd_unlock_bh_journal_head(bh);
2830         }
2831 }
2832
2833 /*
2834  * Initialize jbd inode head
2835  */
2836 void jbd2_journal_init_jbd_inode(struct jbd2_inode *jinode, struct inode *inode)
2837 {
2838         jinode->i_transaction = NULL;
2839         jinode->i_next_transaction = NULL;
2840         jinode->i_vfs_inode = inode;
2841         jinode->i_flags = 0;
2842         jinode->i_dirty_start = 0;
2843         jinode->i_dirty_end = 0;
2844         INIT_LIST_HEAD(&jinode->i_list);
2845 }
2846
2847 /*
2848  * Function to be called before we start removing inode from memory (i.e.,
2849  * clear_inode() is a fine place to be called from). It removes inode from
2850  * transaction's lists.
2851  */
2852 void jbd2_journal_release_jbd_inode(journal_t *journal,
2853                                     struct jbd2_inode *jinode)
2854 {
2855         if (!journal)
2856                 return;
2857 restart:
2858         spin_lock(&journal->j_list_lock);
2859         /* Is commit writing out inode - we have to wait */
2860         if (jinode->i_flags & JI_COMMIT_RUNNING) {
2861                 wait_queue_head_t *wq;
2862                 DEFINE_WAIT_BIT(wait, &jinode->i_flags, __JI_COMMIT_RUNNING);
2863                 wq = bit_waitqueue(&jinode->i_flags, __JI_COMMIT_RUNNING);
2864                 prepare_to_wait(wq, &wait.wq_entry, TASK_UNINTERRUPTIBLE);
2865                 spin_unlock(&journal->j_list_lock);
2866                 schedule();
2867                 finish_wait(wq, &wait.wq_entry);
2868                 goto restart;
2869         }
2870
2871         if (jinode->i_transaction) {
2872                 list_del(&jinode->i_list);
2873                 jinode->i_transaction = NULL;
2874         }
2875         spin_unlock(&journal->j_list_lock);
2876 }
2877
2878
2879 #ifdef CONFIG_PROC_FS
2880
2881 #define JBD2_STATS_PROC_NAME "fs/jbd2"
2882
2883 static void __init jbd2_create_jbd_stats_proc_entry(void)
2884 {
2885         proc_jbd2_stats = proc_mkdir(JBD2_STATS_PROC_NAME, NULL);
2886 }
2887
2888 static void __exit jbd2_remove_jbd_stats_proc_entry(void)
2889 {
2890         if (proc_jbd2_stats)
2891                 remove_proc_entry(JBD2_STATS_PROC_NAME, NULL);
2892 }
2893
2894 #else
2895
2896 #define jbd2_create_jbd_stats_proc_entry() do {} while (0)
2897 #define jbd2_remove_jbd_stats_proc_entry() do {} while (0)
2898
2899 #endif
2900
2901 struct kmem_cache *jbd2_handle_cache, *jbd2_inode_cache;
2902
2903 static int __init jbd2_journal_init_inode_cache(void)
2904 {
2905         J_ASSERT(!jbd2_inode_cache);
2906         jbd2_inode_cache = KMEM_CACHE(jbd2_inode, 0);
2907         if (!jbd2_inode_cache) {
2908                 pr_emerg("JBD2: failed to create inode cache\n");
2909                 return -ENOMEM;
2910         }
2911         return 0;
2912 }
2913
2914 static int __init jbd2_journal_init_handle_cache(void)
2915 {
2916         J_ASSERT(!jbd2_handle_cache);
2917         jbd2_handle_cache = KMEM_CACHE(jbd2_journal_handle, SLAB_TEMPORARY);
2918         if (!jbd2_handle_cache) {
2919                 printk(KERN_EMERG "JBD2: failed to create handle cache\n");
2920                 return -ENOMEM;
2921         }
2922         return 0;
2923 }
2924
2925 static void jbd2_journal_destroy_inode_cache(void)
2926 {
2927         kmem_cache_destroy(jbd2_inode_cache);
2928         jbd2_inode_cache = NULL;
2929 }
2930
2931 static void jbd2_journal_destroy_handle_cache(void)
2932 {
2933         kmem_cache_destroy(jbd2_handle_cache);
2934         jbd2_handle_cache = NULL;
2935 }
2936
2937 /*
2938  * Module startup and shutdown
2939  */
2940
2941 static int __init journal_init_caches(void)
2942 {
2943         int ret;
2944
2945         ret = jbd2_journal_init_revoke_record_cache();
2946         if (ret == 0)
2947                 ret = jbd2_journal_init_revoke_table_cache();
2948         if (ret == 0)
2949                 ret = jbd2_journal_init_journal_head_cache();
2950         if (ret == 0)
2951                 ret = jbd2_journal_init_handle_cache();
2952         if (ret == 0)
2953                 ret = jbd2_journal_init_inode_cache();
2954         if (ret == 0)
2955                 ret = jbd2_journal_init_transaction_cache();
2956         return ret;
2957 }
2958
2959 static void jbd2_journal_destroy_caches(void)
2960 {
2961         jbd2_journal_destroy_revoke_record_cache();
2962         jbd2_journal_destroy_revoke_table_cache();
2963         jbd2_journal_destroy_journal_head_cache();
2964         jbd2_journal_destroy_handle_cache();
2965         jbd2_journal_destroy_inode_cache();
2966         jbd2_journal_destroy_transaction_cache();
2967         jbd2_journal_destroy_slabs();
2968 }
2969
2970 static int __init journal_init(void)
2971 {
2972         int ret;
2973
2974         BUILD_BUG_ON(sizeof(struct journal_superblock_s) != 1024);
2975
2976         ret = journal_init_caches();
2977         if (ret == 0) {
2978                 jbd2_create_jbd_stats_proc_entry();
2979         } else {
2980                 jbd2_journal_destroy_caches();
2981         }
2982         return ret;
2983 }
2984
2985 static void __exit journal_exit(void)
2986 {
2987 #ifdef CONFIG_JBD2_DEBUG
2988         int n = atomic_read(&nr_journal_heads);
2989         if (n)
2990                 printk(KERN_ERR "JBD2: leaked %d journal_heads!\n", n);
2991 #endif
2992         jbd2_remove_jbd_stats_proc_entry();
2993         jbd2_journal_destroy_caches();
2994 }
2995
2996 MODULE_LICENSE("GPL");
2997 module_init(journal_init);
2998 module_exit(journal_exit);
2999