hugetlbfs: use i_mmap_rwsem for more pmd sharing synchronization
[linux-2.6-microblaze.git] / fs / hugetlbfs / inode.c
1 /*
2  * hugetlbpage-backed filesystem.  Based on ramfs.
3  *
4  * Nadia Yvette Chambers, 2002
5  *
6  * Copyright (C) 2002 Linus Torvalds.
7  * License: GPL
8  */
9
10 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
11
12 #include <linux/thread_info.h>
13 #include <asm/current.h>
14 #include <linux/sched/signal.h>         /* remove ASAP */
15 #include <linux/falloc.h>
16 #include <linux/fs.h>
17 #include <linux/mount.h>
18 #include <linux/file.h>
19 #include <linux/kernel.h>
20 #include <linux/writeback.h>
21 #include <linux/pagemap.h>
22 #include <linux/highmem.h>
23 #include <linux/init.h>
24 #include <linux/string.h>
25 #include <linux/capability.h>
26 #include <linux/ctype.h>
27 #include <linux/backing-dev.h>
28 #include <linux/hugetlb.h>
29 #include <linux/pagevec.h>
30 #include <linux/fs_parser.h>
31 #include <linux/mman.h>
32 #include <linux/slab.h>
33 #include <linux/dnotify.h>
34 #include <linux/statfs.h>
35 #include <linux/security.h>
36 #include <linux/magic.h>
37 #include <linux/migrate.h>
38 #include <linux/uio.h>
39
40 #include <linux/uaccess.h>
41
42 static const struct super_operations hugetlbfs_ops;
43 static const struct address_space_operations hugetlbfs_aops;
44 const struct file_operations hugetlbfs_file_operations;
45 static const struct inode_operations hugetlbfs_dir_inode_operations;
46 static const struct inode_operations hugetlbfs_inode_operations;
47
48 enum hugetlbfs_size_type { NO_SIZE, SIZE_STD, SIZE_PERCENT };
49
50 struct hugetlbfs_fs_context {
51         struct hstate           *hstate;
52         unsigned long long      max_size_opt;
53         unsigned long long      min_size_opt;
54         long                    max_hpages;
55         long                    nr_inodes;
56         long                    min_hpages;
57         enum hugetlbfs_size_type max_val_type;
58         enum hugetlbfs_size_type min_val_type;
59         kuid_t                  uid;
60         kgid_t                  gid;
61         umode_t                 mode;
62 };
63
64 int sysctl_hugetlb_shm_group;
65
66 enum hugetlb_param {
67         Opt_gid,
68         Opt_min_size,
69         Opt_mode,
70         Opt_nr_inodes,
71         Opt_pagesize,
72         Opt_size,
73         Opt_uid,
74 };
75
76 static const struct fs_parameter_spec hugetlb_fs_parameters[] = {
77         fsparam_u32   ("gid",           Opt_gid),
78         fsparam_string("min_size",      Opt_min_size),
79         fsparam_u32   ("mode",          Opt_mode),
80         fsparam_string("nr_inodes",     Opt_nr_inodes),
81         fsparam_string("pagesize",      Opt_pagesize),
82         fsparam_string("size",          Opt_size),
83         fsparam_u32   ("uid",           Opt_uid),
84         {}
85 };
86
87 #ifdef CONFIG_NUMA
88 static inline void hugetlb_set_vma_policy(struct vm_area_struct *vma,
89                                         struct inode *inode, pgoff_t index)
90 {
91         vma->vm_policy = mpol_shared_policy_lookup(&HUGETLBFS_I(inode)->policy,
92                                                         index);
93 }
94
95 static inline void hugetlb_drop_vma_policy(struct vm_area_struct *vma)
96 {
97         mpol_cond_put(vma->vm_policy);
98 }
99 #else
100 static inline void hugetlb_set_vma_policy(struct vm_area_struct *vma,
101                                         struct inode *inode, pgoff_t index)
102 {
103 }
104
105 static inline void hugetlb_drop_vma_policy(struct vm_area_struct *vma)
106 {
107 }
108 #endif
109
110 static void huge_pagevec_release(struct pagevec *pvec)
111 {
112         int i;
113
114         for (i = 0; i < pagevec_count(pvec); ++i)
115                 put_page(pvec->pages[i]);
116
117         pagevec_reinit(pvec);
118 }
119
120 /*
121  * Mask used when checking the page offset value passed in via system
122  * calls.  This value will be converted to a loff_t which is signed.
123  * Therefore, we want to check the upper PAGE_SHIFT + 1 bits of the
124  * value.  The extra bit (- 1 in the shift value) is to take the sign
125  * bit into account.
126  */
127 #define PGOFF_LOFFT_MAX \
128         (((1UL << (PAGE_SHIFT + 1)) - 1) <<  (BITS_PER_LONG - (PAGE_SHIFT + 1)))
129
130 static int hugetlbfs_file_mmap(struct file *file, struct vm_area_struct *vma)
131 {
132         struct inode *inode = file_inode(file);
133         loff_t len, vma_len;
134         int ret;
135         struct hstate *h = hstate_file(file);
136
137         /*
138          * vma address alignment (but not the pgoff alignment) has
139          * already been checked by prepare_hugepage_range.  If you add
140          * any error returns here, do so after setting VM_HUGETLB, so
141          * is_vm_hugetlb_page tests below unmap_region go the right
142          * way when do_mmap_pgoff unwinds (may be important on powerpc
143          * and ia64).
144          */
145         vma->vm_flags |= VM_HUGETLB | VM_DONTEXPAND;
146         vma->vm_ops = &hugetlb_vm_ops;
147
148         /*
149          * page based offset in vm_pgoff could be sufficiently large to
150          * overflow a loff_t when converted to byte offset.  This can
151          * only happen on architectures where sizeof(loff_t) ==
152          * sizeof(unsigned long).  So, only check in those instances.
153          */
154         if (sizeof(unsigned long) == sizeof(loff_t)) {
155                 if (vma->vm_pgoff & PGOFF_LOFFT_MAX)
156                         return -EINVAL;
157         }
158
159         /* must be huge page aligned */
160         if (vma->vm_pgoff & (~huge_page_mask(h) >> PAGE_SHIFT))
161                 return -EINVAL;
162
163         vma_len = (loff_t)(vma->vm_end - vma->vm_start);
164         len = vma_len + ((loff_t)vma->vm_pgoff << PAGE_SHIFT);
165         /* check for overflow */
166         if (len < vma_len)
167                 return -EINVAL;
168
169         inode_lock(inode);
170         file_accessed(file);
171
172         ret = -ENOMEM;
173         if (hugetlb_reserve_pages(inode,
174                                 vma->vm_pgoff >> huge_page_order(h),
175                                 len >> huge_page_shift(h), vma,
176                                 vma->vm_flags))
177                 goto out;
178
179         ret = 0;
180         if (vma->vm_flags & VM_WRITE && inode->i_size < len)
181                 i_size_write(inode, len);
182 out:
183         inode_unlock(inode);
184
185         return ret;
186 }
187
188 /*
189  * Called under down_write(mmap_sem).
190  */
191
192 #ifndef HAVE_ARCH_HUGETLB_UNMAPPED_AREA
193 static unsigned long
194 hugetlb_get_unmapped_area(struct file *file, unsigned long addr,
195                 unsigned long len, unsigned long pgoff, unsigned long flags)
196 {
197         struct mm_struct *mm = current->mm;
198         struct vm_area_struct *vma;
199         struct hstate *h = hstate_file(file);
200         struct vm_unmapped_area_info info;
201
202         if (len & ~huge_page_mask(h))
203                 return -EINVAL;
204         if (len > TASK_SIZE)
205                 return -ENOMEM;
206
207         if (flags & MAP_FIXED) {
208                 if (prepare_hugepage_range(file, addr, len))
209                         return -EINVAL;
210                 return addr;
211         }
212
213         if (addr) {
214                 addr = ALIGN(addr, huge_page_size(h));
215                 vma = find_vma(mm, addr);
216                 if (TASK_SIZE - len >= addr &&
217                     (!vma || addr + len <= vm_start_gap(vma)))
218                         return addr;
219         }
220
221         info.flags = 0;
222         info.length = len;
223         info.low_limit = TASK_UNMAPPED_BASE;
224         info.high_limit = TASK_SIZE;
225         info.align_mask = PAGE_MASK & ~huge_page_mask(h);
226         info.align_offset = 0;
227         return vm_unmapped_area(&info);
228 }
229 #endif
230
231 static size_t
232 hugetlbfs_read_actor(struct page *page, unsigned long offset,
233                         struct iov_iter *to, unsigned long size)
234 {
235         size_t copied = 0;
236         int i, chunksize;
237
238         /* Find which 4k chunk and offset with in that chunk */
239         i = offset >> PAGE_SHIFT;
240         offset = offset & ~PAGE_MASK;
241
242         while (size) {
243                 size_t n;
244                 chunksize = PAGE_SIZE;
245                 if (offset)
246                         chunksize -= offset;
247                 if (chunksize > size)
248                         chunksize = size;
249                 n = copy_page_to_iter(&page[i], offset, chunksize, to);
250                 copied += n;
251                 if (n != chunksize)
252                         return copied;
253                 offset = 0;
254                 size -= chunksize;
255                 i++;
256         }
257         return copied;
258 }
259
260 /*
261  * Support for read() - Find the page attached to f_mapping and copy out the
262  * data. Its *very* similar to do_generic_mapping_read(), we can't use that
263  * since it has PAGE_SIZE assumptions.
264  */
265 static ssize_t hugetlbfs_read_iter(struct kiocb *iocb, struct iov_iter *to)
266 {
267         struct file *file = iocb->ki_filp;
268         struct hstate *h = hstate_file(file);
269         struct address_space *mapping = file->f_mapping;
270         struct inode *inode = mapping->host;
271         unsigned long index = iocb->ki_pos >> huge_page_shift(h);
272         unsigned long offset = iocb->ki_pos & ~huge_page_mask(h);
273         unsigned long end_index;
274         loff_t isize;
275         ssize_t retval = 0;
276
277         while (iov_iter_count(to)) {
278                 struct page *page;
279                 size_t nr, copied;
280
281                 /* nr is the maximum number of bytes to copy from this page */
282                 nr = huge_page_size(h);
283                 isize = i_size_read(inode);
284                 if (!isize)
285                         break;
286                 end_index = (isize - 1) >> huge_page_shift(h);
287                 if (index > end_index)
288                         break;
289                 if (index == end_index) {
290                         nr = ((isize - 1) & ~huge_page_mask(h)) + 1;
291                         if (nr <= offset)
292                                 break;
293                 }
294                 nr = nr - offset;
295
296                 /* Find the page */
297                 page = find_lock_page(mapping, index);
298                 if (unlikely(page == NULL)) {
299                         /*
300                          * We have a HOLE, zero out the user-buffer for the
301                          * length of the hole or request.
302                          */
303                         copied = iov_iter_zero(nr, to);
304                 } else {
305                         unlock_page(page);
306
307                         /*
308                          * We have the page, copy it to user space buffer.
309                          */
310                         copied = hugetlbfs_read_actor(page, offset, to, nr);
311                         put_page(page);
312                 }
313                 offset += copied;
314                 retval += copied;
315                 if (copied != nr && iov_iter_count(to)) {
316                         if (!retval)
317                                 retval = -EFAULT;
318                         break;
319                 }
320                 index += offset >> huge_page_shift(h);
321                 offset &= ~huge_page_mask(h);
322         }
323         iocb->ki_pos = ((loff_t)index << huge_page_shift(h)) + offset;
324         return retval;
325 }
326
327 static int hugetlbfs_write_begin(struct file *file,
328                         struct address_space *mapping,
329                         loff_t pos, unsigned len, unsigned flags,
330                         struct page **pagep, void **fsdata)
331 {
332         return -EINVAL;
333 }
334
335 static int hugetlbfs_write_end(struct file *file, struct address_space *mapping,
336                         loff_t pos, unsigned len, unsigned copied,
337                         struct page *page, void *fsdata)
338 {
339         BUG();
340         return -EINVAL;
341 }
342
343 static void remove_huge_page(struct page *page)
344 {
345         ClearPageDirty(page);
346         ClearPageUptodate(page);
347         delete_from_page_cache(page);
348 }
349
350 static void
351 hugetlb_vmdelete_list(struct rb_root_cached *root, pgoff_t start, pgoff_t end)
352 {
353         struct vm_area_struct *vma;
354
355         /*
356          * end == 0 indicates that the entire range after
357          * start should be unmapped.
358          */
359         vma_interval_tree_foreach(vma, root, start, end ? end : ULONG_MAX) {
360                 unsigned long v_offset;
361                 unsigned long v_end;
362
363                 /*
364                  * Can the expression below overflow on 32-bit arches?
365                  * No, because the interval tree returns us only those vmas
366                  * which overlap the truncated area starting at pgoff,
367                  * and no vma on a 32-bit arch can span beyond the 4GB.
368                  */
369                 if (vma->vm_pgoff < start)
370                         v_offset = (start - vma->vm_pgoff) << PAGE_SHIFT;
371                 else
372                         v_offset = 0;
373
374                 if (!end)
375                         v_end = vma->vm_end;
376                 else {
377                         v_end = ((end - vma->vm_pgoff) << PAGE_SHIFT)
378                                                         + vma->vm_start;
379                         if (v_end > vma->vm_end)
380                                 v_end = vma->vm_end;
381                 }
382
383                 unmap_hugepage_range(vma, vma->vm_start + v_offset, v_end,
384                                                                         NULL);
385         }
386 }
387
388 /*
389  * remove_inode_hugepages handles two distinct cases: truncation and hole
390  * punch.  There are subtle differences in operation for each case.
391  *
392  * truncation is indicated by end of range being LLONG_MAX
393  *      In this case, we first scan the range and release found pages.
394  *      After releasing pages, hugetlb_unreserve_pages cleans up region/reserv
395  *      maps and global counts.  Page faults can not race with truncation
396  *      in this routine.  hugetlb_no_page() prevents page faults in the
397  *      truncated range.  It checks i_size before allocation, and again after
398  *      with the page table lock for the page held.  The same lock must be
399  *      acquired to unmap a page.
400  * hole punch is indicated if end is not LLONG_MAX
401  *      In the hole punch case we scan the range and release found pages.
402  *      Only when releasing a page is the associated region/reserv map
403  *      deleted.  The region/reserv map for ranges without associated
404  *      pages are not modified.  Page faults can race with hole punch.
405  *      This is indicated if we find a mapped page.
406  * Note: If the passed end of range value is beyond the end of file, but
407  * not LLONG_MAX this routine still performs a hole punch operation.
408  */
409 static void remove_inode_hugepages(struct inode *inode, loff_t lstart,
410                                    loff_t lend)
411 {
412         struct hstate *h = hstate_inode(inode);
413         struct address_space *mapping = &inode->i_data;
414         const pgoff_t start = lstart >> huge_page_shift(h);
415         const pgoff_t end = lend >> huge_page_shift(h);
416         struct vm_area_struct pseudo_vma;
417         struct pagevec pvec;
418         pgoff_t next, index;
419         int i, freed = 0;
420         bool truncate_op = (lend == LLONG_MAX);
421
422         vma_init(&pseudo_vma, current->mm);
423         pseudo_vma.vm_flags = (VM_HUGETLB | VM_MAYSHARE | VM_SHARED);
424         pagevec_init(&pvec);
425         next = start;
426         while (next < end) {
427                 /*
428                  * When no more pages are found, we are done.
429                  */
430                 if (!pagevec_lookup_range(&pvec, mapping, &next, end - 1))
431                         break;
432
433                 for (i = 0; i < pagevec_count(&pvec); ++i) {
434                         struct page *page = pvec.pages[i];
435                         u32 hash;
436
437                         index = page->index;
438                         hash = hugetlb_fault_mutex_hash(mapping, index);
439                         mutex_lock(&hugetlb_fault_mutex_table[hash]);
440
441                         /*
442                          * If page is mapped, it was faulted in after being
443                          * unmapped in caller.  Unmap (again) now after taking
444                          * the fault mutex.  The mutex will prevent faults
445                          * until we finish removing the page.
446                          *
447                          * This race can only happen in the hole punch case.
448                          * Getting here in a truncate operation is a bug.
449                          */
450                         if (unlikely(page_mapped(page))) {
451                                 BUG_ON(truncate_op);
452
453                                 mutex_unlock(&hugetlb_fault_mutex_table[hash]);
454                                 i_mmap_lock_write(mapping);
455                                 mutex_lock(&hugetlb_fault_mutex_table[hash]);
456                                 hugetlb_vmdelete_list(&mapping->i_mmap,
457                                         index * pages_per_huge_page(h),
458                                         (index + 1) * pages_per_huge_page(h));
459                                 i_mmap_unlock_write(mapping);
460                         }
461
462                         lock_page(page);
463                         /*
464                          * We must free the huge page and remove from page
465                          * cache (remove_huge_page) BEFORE removing the
466                          * region/reserve map (hugetlb_unreserve_pages).  In
467                          * rare out of memory conditions, removal of the
468                          * region/reserve map could fail. Correspondingly,
469                          * the subpool and global reserve usage count can need
470                          * to be adjusted.
471                          */
472                         VM_BUG_ON(PagePrivate(page));
473                         remove_huge_page(page);
474                         freed++;
475                         if (!truncate_op) {
476                                 if (unlikely(hugetlb_unreserve_pages(inode,
477                                                         index, index + 1, 1)))
478                                         hugetlb_fix_reserve_counts(inode);
479                         }
480
481                         unlock_page(page);
482                         mutex_unlock(&hugetlb_fault_mutex_table[hash]);
483                 }
484                 huge_pagevec_release(&pvec);
485                 cond_resched();
486         }
487
488         if (truncate_op)
489                 (void)hugetlb_unreserve_pages(inode, start, LONG_MAX, freed);
490 }
491
492 static void hugetlbfs_evict_inode(struct inode *inode)
493 {
494         struct resv_map *resv_map;
495
496         remove_inode_hugepages(inode, 0, LLONG_MAX);
497
498         /*
499          * Get the resv_map from the address space embedded in the inode.
500          * This is the address space which points to any resv_map allocated
501          * at inode creation time.  If this is a device special inode,
502          * i_mapping may not point to the original address space.
503          */
504         resv_map = (struct resv_map *)(&inode->i_data)->private_data;
505         /* Only regular and link inodes have associated reserve maps */
506         if (resv_map)
507                 resv_map_release(&resv_map->refs);
508         clear_inode(inode);
509 }
510
511 static int hugetlb_vmtruncate(struct inode *inode, loff_t offset)
512 {
513         pgoff_t pgoff;
514         struct address_space *mapping = inode->i_mapping;
515         struct hstate *h = hstate_inode(inode);
516
517         BUG_ON(offset & ~huge_page_mask(h));
518         pgoff = offset >> PAGE_SHIFT;
519
520         i_size_write(inode, offset);
521         i_mmap_lock_write(mapping);
522         if (!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root))
523                 hugetlb_vmdelete_list(&mapping->i_mmap, pgoff, 0);
524         i_mmap_unlock_write(mapping);
525         remove_inode_hugepages(inode, offset, LLONG_MAX);
526         return 0;
527 }
528
529 static long hugetlbfs_punch_hole(struct inode *inode, loff_t offset, loff_t len)
530 {
531         struct hstate *h = hstate_inode(inode);
532         loff_t hpage_size = huge_page_size(h);
533         loff_t hole_start, hole_end;
534
535         /*
536          * For hole punch round up the beginning offset of the hole and
537          * round down the end.
538          */
539         hole_start = round_up(offset, hpage_size);
540         hole_end = round_down(offset + len, hpage_size);
541
542         if (hole_end > hole_start) {
543                 struct address_space *mapping = inode->i_mapping;
544                 struct hugetlbfs_inode_info *info = HUGETLBFS_I(inode);
545
546                 inode_lock(inode);
547
548                 /* protected by i_mutex */
549                 if (info->seals & (F_SEAL_WRITE | F_SEAL_FUTURE_WRITE)) {
550                         inode_unlock(inode);
551                         return -EPERM;
552                 }
553
554                 i_mmap_lock_write(mapping);
555                 if (!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root))
556                         hugetlb_vmdelete_list(&mapping->i_mmap,
557                                                 hole_start >> PAGE_SHIFT,
558                                                 hole_end  >> PAGE_SHIFT);
559                 i_mmap_unlock_write(mapping);
560                 remove_inode_hugepages(inode, hole_start, hole_end);
561                 inode_unlock(inode);
562         }
563
564         return 0;
565 }
566
567 static long hugetlbfs_fallocate(struct file *file, int mode, loff_t offset,
568                                 loff_t len)
569 {
570         struct inode *inode = file_inode(file);
571         struct hugetlbfs_inode_info *info = HUGETLBFS_I(inode);
572         struct address_space *mapping = inode->i_mapping;
573         struct hstate *h = hstate_inode(inode);
574         struct vm_area_struct pseudo_vma;
575         struct mm_struct *mm = current->mm;
576         loff_t hpage_size = huge_page_size(h);
577         unsigned long hpage_shift = huge_page_shift(h);
578         pgoff_t start, index, end;
579         int error;
580         u32 hash;
581
582         if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE))
583                 return -EOPNOTSUPP;
584
585         if (mode & FALLOC_FL_PUNCH_HOLE)
586                 return hugetlbfs_punch_hole(inode, offset, len);
587
588         /*
589          * Default preallocate case.
590          * For this range, start is rounded down and end is rounded up
591          * as well as being converted to page offsets.
592          */
593         start = offset >> hpage_shift;
594         end = (offset + len + hpage_size - 1) >> hpage_shift;
595
596         inode_lock(inode);
597
598         /* We need to check rlimit even when FALLOC_FL_KEEP_SIZE */
599         error = inode_newsize_ok(inode, offset + len);
600         if (error)
601                 goto out;
602
603         if ((info->seals & F_SEAL_GROW) && offset + len > inode->i_size) {
604                 error = -EPERM;
605                 goto out;
606         }
607
608         /*
609          * Initialize a pseudo vma as this is required by the huge page
610          * allocation routines.  If NUMA is configured, use page index
611          * as input to create an allocation policy.
612          */
613         vma_init(&pseudo_vma, mm);
614         pseudo_vma.vm_flags = (VM_HUGETLB | VM_MAYSHARE | VM_SHARED);
615         pseudo_vma.vm_file = file;
616
617         for (index = start; index < end; index++) {
618                 /*
619                  * This is supposed to be the vaddr where the page is being
620                  * faulted in, but we have no vaddr here.
621                  */
622                 struct page *page;
623                 unsigned long addr;
624                 int avoid_reserve = 0;
625
626                 cond_resched();
627
628                 /*
629                  * fallocate(2) manpage permits EINTR; we may have been
630                  * interrupted because we are using up too much memory.
631                  */
632                 if (signal_pending(current)) {
633                         error = -EINTR;
634                         break;
635                 }
636
637                 /* Set numa allocation policy based on index */
638                 hugetlb_set_vma_policy(&pseudo_vma, inode, index);
639
640                 /* addr is the offset within the file (zero based) */
641                 addr = index * hpage_size;
642
643                 /* mutex taken here, fault path and hole punch */
644                 hash = hugetlb_fault_mutex_hash(mapping, index);
645                 mutex_lock(&hugetlb_fault_mutex_table[hash]);
646
647                 /* See if already present in mapping to avoid alloc/free */
648                 page = find_get_page(mapping, index);
649                 if (page) {
650                         put_page(page);
651                         mutex_unlock(&hugetlb_fault_mutex_table[hash]);
652                         hugetlb_drop_vma_policy(&pseudo_vma);
653                         continue;
654                 }
655
656                 /* Allocate page and add to page cache */
657                 page = alloc_huge_page(&pseudo_vma, addr, avoid_reserve);
658                 hugetlb_drop_vma_policy(&pseudo_vma);
659                 if (IS_ERR(page)) {
660                         mutex_unlock(&hugetlb_fault_mutex_table[hash]);
661                         error = PTR_ERR(page);
662                         goto out;
663                 }
664                 clear_huge_page(page, addr, pages_per_huge_page(h));
665                 __SetPageUptodate(page);
666                 error = huge_add_to_page_cache(page, mapping, index);
667                 if (unlikely(error)) {
668                         put_page(page);
669                         mutex_unlock(&hugetlb_fault_mutex_table[hash]);
670                         goto out;
671                 }
672
673                 mutex_unlock(&hugetlb_fault_mutex_table[hash]);
674
675                 /*
676                  * unlock_page because locked by add_to_page_cache()
677                  * page_put due to reference from alloc_huge_page()
678                  */
679                 unlock_page(page);
680                 put_page(page);
681         }
682
683         if (!(mode & FALLOC_FL_KEEP_SIZE) && offset + len > inode->i_size)
684                 i_size_write(inode, offset + len);
685         inode->i_ctime = current_time(inode);
686 out:
687         inode_unlock(inode);
688         return error;
689 }
690
691 static int hugetlbfs_setattr(struct dentry *dentry, struct iattr *attr)
692 {
693         struct inode *inode = d_inode(dentry);
694         struct hstate *h = hstate_inode(inode);
695         int error;
696         unsigned int ia_valid = attr->ia_valid;
697         struct hugetlbfs_inode_info *info = HUGETLBFS_I(inode);
698
699         BUG_ON(!inode);
700
701         error = setattr_prepare(dentry, attr);
702         if (error)
703                 return error;
704
705         if (ia_valid & ATTR_SIZE) {
706                 loff_t oldsize = inode->i_size;
707                 loff_t newsize = attr->ia_size;
708
709                 if (newsize & ~huge_page_mask(h))
710                         return -EINVAL;
711                 /* protected by i_mutex */
712                 if ((newsize < oldsize && (info->seals & F_SEAL_SHRINK)) ||
713                     (newsize > oldsize && (info->seals & F_SEAL_GROW)))
714                         return -EPERM;
715                 error = hugetlb_vmtruncate(inode, newsize);
716                 if (error)
717                         return error;
718         }
719
720         setattr_copy(inode, attr);
721         mark_inode_dirty(inode);
722         return 0;
723 }
724
725 static struct inode *hugetlbfs_get_root(struct super_block *sb,
726                                         struct hugetlbfs_fs_context *ctx)
727 {
728         struct inode *inode;
729
730         inode = new_inode(sb);
731         if (inode) {
732                 inode->i_ino = get_next_ino();
733                 inode->i_mode = S_IFDIR | ctx->mode;
734                 inode->i_uid = ctx->uid;
735                 inode->i_gid = ctx->gid;
736                 inode->i_atime = inode->i_mtime = inode->i_ctime = current_time(inode);
737                 inode->i_op = &hugetlbfs_dir_inode_operations;
738                 inode->i_fop = &simple_dir_operations;
739                 /* directory inodes start off with i_nlink == 2 (for "." entry) */
740                 inc_nlink(inode);
741                 lockdep_annotate_inode_mutex_key(inode);
742         }
743         return inode;
744 }
745
746 /*
747  * Hugetlbfs is not reclaimable; therefore its i_mmap_rwsem will never
748  * be taken from reclaim -- unlike regular filesystems. This needs an
749  * annotation because huge_pmd_share() does an allocation under hugetlb's
750  * i_mmap_rwsem.
751  */
752 static struct lock_class_key hugetlbfs_i_mmap_rwsem_key;
753
754 static struct inode *hugetlbfs_get_inode(struct super_block *sb,
755                                         struct inode *dir,
756                                         umode_t mode, dev_t dev)
757 {
758         struct inode *inode;
759         struct resv_map *resv_map = NULL;
760
761         /*
762          * Reserve maps are only needed for inodes that can have associated
763          * page allocations.
764          */
765         if (S_ISREG(mode) || S_ISLNK(mode)) {
766                 resv_map = resv_map_alloc();
767                 if (!resv_map)
768                         return NULL;
769         }
770
771         inode = new_inode(sb);
772         if (inode) {
773                 struct hugetlbfs_inode_info *info = HUGETLBFS_I(inode);
774
775                 inode->i_ino = get_next_ino();
776                 inode_init_owner(inode, dir, mode);
777                 lockdep_set_class(&inode->i_mapping->i_mmap_rwsem,
778                                 &hugetlbfs_i_mmap_rwsem_key);
779                 inode->i_mapping->a_ops = &hugetlbfs_aops;
780                 inode->i_atime = inode->i_mtime = inode->i_ctime = current_time(inode);
781                 inode->i_mapping->private_data = resv_map;
782                 info->seals = F_SEAL_SEAL;
783                 switch (mode & S_IFMT) {
784                 default:
785                         init_special_inode(inode, mode, dev);
786                         break;
787                 case S_IFREG:
788                         inode->i_op = &hugetlbfs_inode_operations;
789                         inode->i_fop = &hugetlbfs_file_operations;
790                         break;
791                 case S_IFDIR:
792                         inode->i_op = &hugetlbfs_dir_inode_operations;
793                         inode->i_fop = &simple_dir_operations;
794
795                         /* directory inodes start off with i_nlink == 2 (for "." entry) */
796                         inc_nlink(inode);
797                         break;
798                 case S_IFLNK:
799                         inode->i_op = &page_symlink_inode_operations;
800                         inode_nohighmem(inode);
801                         break;
802                 }
803                 lockdep_annotate_inode_mutex_key(inode);
804         } else {
805                 if (resv_map)
806                         kref_put(&resv_map->refs, resv_map_release);
807         }
808
809         return inode;
810 }
811
812 /*
813  * File creation. Allocate an inode, and we're done..
814  */
815 static int do_hugetlbfs_mknod(struct inode *dir,
816                         struct dentry *dentry,
817                         umode_t mode,
818                         dev_t dev,
819                         bool tmpfile)
820 {
821         struct inode *inode;
822         int error = -ENOSPC;
823
824         inode = hugetlbfs_get_inode(dir->i_sb, dir, mode, dev);
825         if (inode) {
826                 dir->i_ctime = dir->i_mtime = current_time(dir);
827                 if (tmpfile) {
828                         d_tmpfile(dentry, inode);
829                 } else {
830                         d_instantiate(dentry, inode);
831                         dget(dentry);/* Extra count - pin the dentry in core */
832                 }
833                 error = 0;
834         }
835         return error;
836 }
837
838 static int hugetlbfs_mknod(struct inode *dir,
839                         struct dentry *dentry, umode_t mode, dev_t dev)
840 {
841         return do_hugetlbfs_mknod(dir, dentry, mode, dev, false);
842 }
843
844 static int hugetlbfs_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
845 {
846         int retval = hugetlbfs_mknod(dir, dentry, mode | S_IFDIR, 0);
847         if (!retval)
848                 inc_nlink(dir);
849         return retval;
850 }
851
852 static int hugetlbfs_create(struct inode *dir, struct dentry *dentry, umode_t mode, bool excl)
853 {
854         return hugetlbfs_mknod(dir, dentry, mode | S_IFREG, 0);
855 }
856
857 static int hugetlbfs_tmpfile(struct inode *dir,
858                         struct dentry *dentry, umode_t mode)
859 {
860         return do_hugetlbfs_mknod(dir, dentry, mode | S_IFREG, 0, true);
861 }
862
863 static int hugetlbfs_symlink(struct inode *dir,
864                         struct dentry *dentry, const char *symname)
865 {
866         struct inode *inode;
867         int error = -ENOSPC;
868
869         inode = hugetlbfs_get_inode(dir->i_sb, dir, S_IFLNK|S_IRWXUGO, 0);
870         if (inode) {
871                 int l = strlen(symname)+1;
872                 error = page_symlink(inode, symname, l);
873                 if (!error) {
874                         d_instantiate(dentry, inode);
875                         dget(dentry);
876                 } else
877                         iput(inode);
878         }
879         dir->i_ctime = dir->i_mtime = current_time(dir);
880
881         return error;
882 }
883
884 /*
885  * mark the head page dirty
886  */
887 static int hugetlbfs_set_page_dirty(struct page *page)
888 {
889         struct page *head = compound_head(page);
890
891         SetPageDirty(head);
892         return 0;
893 }
894
895 static int hugetlbfs_migrate_page(struct address_space *mapping,
896                                 struct page *newpage, struct page *page,
897                                 enum migrate_mode mode)
898 {
899         int rc;
900
901         rc = migrate_huge_page_move_mapping(mapping, newpage, page);
902         if (rc != MIGRATEPAGE_SUCCESS)
903                 return rc;
904
905         /*
906          * page_private is subpool pointer in hugetlb pages.  Transfer to
907          * new page.  PagePrivate is not associated with page_private for
908          * hugetlb pages and can not be set here as only page_huge_active
909          * pages can be migrated.
910          */
911         if (page_private(page)) {
912                 set_page_private(newpage, page_private(page));
913                 set_page_private(page, 0);
914         }
915
916         if (mode != MIGRATE_SYNC_NO_COPY)
917                 migrate_page_copy(newpage, page);
918         else
919                 migrate_page_states(newpage, page);
920
921         return MIGRATEPAGE_SUCCESS;
922 }
923
924 static int hugetlbfs_error_remove_page(struct address_space *mapping,
925                                 struct page *page)
926 {
927         struct inode *inode = mapping->host;
928         pgoff_t index = page->index;
929
930         remove_huge_page(page);
931         if (unlikely(hugetlb_unreserve_pages(inode, index, index + 1, 1)))
932                 hugetlb_fix_reserve_counts(inode);
933
934         return 0;
935 }
936
937 /*
938  * Display the mount options in /proc/mounts.
939  */
940 static int hugetlbfs_show_options(struct seq_file *m, struct dentry *root)
941 {
942         struct hugetlbfs_sb_info *sbinfo = HUGETLBFS_SB(root->d_sb);
943         struct hugepage_subpool *spool = sbinfo->spool;
944         unsigned long hpage_size = huge_page_size(sbinfo->hstate);
945         unsigned hpage_shift = huge_page_shift(sbinfo->hstate);
946         char mod;
947
948         if (!uid_eq(sbinfo->uid, GLOBAL_ROOT_UID))
949                 seq_printf(m, ",uid=%u",
950                            from_kuid_munged(&init_user_ns, sbinfo->uid));
951         if (!gid_eq(sbinfo->gid, GLOBAL_ROOT_GID))
952                 seq_printf(m, ",gid=%u",
953                            from_kgid_munged(&init_user_ns, sbinfo->gid));
954         if (sbinfo->mode != 0755)
955                 seq_printf(m, ",mode=%o", sbinfo->mode);
956         if (sbinfo->max_inodes != -1)
957                 seq_printf(m, ",nr_inodes=%lu", sbinfo->max_inodes);
958
959         hpage_size /= 1024;
960         mod = 'K';
961         if (hpage_size >= 1024) {
962                 hpage_size /= 1024;
963                 mod = 'M';
964         }
965         seq_printf(m, ",pagesize=%lu%c", hpage_size, mod);
966         if (spool) {
967                 if (spool->max_hpages != -1)
968                         seq_printf(m, ",size=%llu",
969                                    (unsigned long long)spool->max_hpages << hpage_shift);
970                 if (spool->min_hpages != -1)
971                         seq_printf(m, ",min_size=%llu",
972                                    (unsigned long long)spool->min_hpages << hpage_shift);
973         }
974         return 0;
975 }
976
977 static int hugetlbfs_statfs(struct dentry *dentry, struct kstatfs *buf)
978 {
979         struct hugetlbfs_sb_info *sbinfo = HUGETLBFS_SB(dentry->d_sb);
980         struct hstate *h = hstate_inode(d_inode(dentry));
981
982         buf->f_type = HUGETLBFS_MAGIC;
983         buf->f_bsize = huge_page_size(h);
984         if (sbinfo) {
985                 spin_lock(&sbinfo->stat_lock);
986                 /* If no limits set, just report 0 for max/free/used
987                  * blocks, like simple_statfs() */
988                 if (sbinfo->spool) {
989                         long free_pages;
990
991                         spin_lock(&sbinfo->spool->lock);
992                         buf->f_blocks = sbinfo->spool->max_hpages;
993                         free_pages = sbinfo->spool->max_hpages
994                                 - sbinfo->spool->used_hpages;
995                         buf->f_bavail = buf->f_bfree = free_pages;
996                         spin_unlock(&sbinfo->spool->lock);
997                         buf->f_files = sbinfo->max_inodes;
998                         buf->f_ffree = sbinfo->free_inodes;
999                 }
1000                 spin_unlock(&sbinfo->stat_lock);
1001         }
1002         buf->f_namelen = NAME_MAX;
1003         return 0;
1004 }
1005
1006 static void hugetlbfs_put_super(struct super_block *sb)
1007 {
1008         struct hugetlbfs_sb_info *sbi = HUGETLBFS_SB(sb);
1009
1010         if (sbi) {
1011                 sb->s_fs_info = NULL;
1012
1013                 if (sbi->spool)
1014                         hugepage_put_subpool(sbi->spool);
1015
1016                 kfree(sbi);
1017         }
1018 }
1019
1020 static inline int hugetlbfs_dec_free_inodes(struct hugetlbfs_sb_info *sbinfo)
1021 {
1022         if (sbinfo->free_inodes >= 0) {
1023                 spin_lock(&sbinfo->stat_lock);
1024                 if (unlikely(!sbinfo->free_inodes)) {
1025                         spin_unlock(&sbinfo->stat_lock);
1026                         return 0;
1027                 }
1028                 sbinfo->free_inodes--;
1029                 spin_unlock(&sbinfo->stat_lock);
1030         }
1031
1032         return 1;
1033 }
1034
1035 static void hugetlbfs_inc_free_inodes(struct hugetlbfs_sb_info *sbinfo)
1036 {
1037         if (sbinfo->free_inodes >= 0) {
1038                 spin_lock(&sbinfo->stat_lock);
1039                 sbinfo->free_inodes++;
1040                 spin_unlock(&sbinfo->stat_lock);
1041         }
1042 }
1043
1044
1045 static struct kmem_cache *hugetlbfs_inode_cachep;
1046
1047 static struct inode *hugetlbfs_alloc_inode(struct super_block *sb)
1048 {
1049         struct hugetlbfs_sb_info *sbinfo = HUGETLBFS_SB(sb);
1050         struct hugetlbfs_inode_info *p;
1051
1052         if (unlikely(!hugetlbfs_dec_free_inodes(sbinfo)))
1053                 return NULL;
1054         p = kmem_cache_alloc(hugetlbfs_inode_cachep, GFP_KERNEL);
1055         if (unlikely(!p)) {
1056                 hugetlbfs_inc_free_inodes(sbinfo);
1057                 return NULL;
1058         }
1059
1060         /*
1061          * Any time after allocation, hugetlbfs_destroy_inode can be called
1062          * for the inode.  mpol_free_shared_policy is unconditionally called
1063          * as part of hugetlbfs_destroy_inode.  So, initialize policy here
1064          * in case of a quick call to destroy.
1065          *
1066          * Note that the policy is initialized even if we are creating a
1067          * private inode.  This simplifies hugetlbfs_destroy_inode.
1068          */
1069         mpol_shared_policy_init(&p->policy, NULL);
1070
1071         return &p->vfs_inode;
1072 }
1073
1074 static void hugetlbfs_free_inode(struct inode *inode)
1075 {
1076         kmem_cache_free(hugetlbfs_inode_cachep, HUGETLBFS_I(inode));
1077 }
1078
1079 static void hugetlbfs_destroy_inode(struct inode *inode)
1080 {
1081         hugetlbfs_inc_free_inodes(HUGETLBFS_SB(inode->i_sb));
1082         mpol_free_shared_policy(&HUGETLBFS_I(inode)->policy);
1083 }
1084
1085 static const struct address_space_operations hugetlbfs_aops = {
1086         .write_begin    = hugetlbfs_write_begin,
1087         .write_end      = hugetlbfs_write_end,
1088         .set_page_dirty = hugetlbfs_set_page_dirty,
1089         .migratepage    = hugetlbfs_migrate_page,
1090         .error_remove_page      = hugetlbfs_error_remove_page,
1091 };
1092
1093
1094 static void init_once(void *foo)
1095 {
1096         struct hugetlbfs_inode_info *ei = (struct hugetlbfs_inode_info *)foo;
1097
1098         inode_init_once(&ei->vfs_inode);
1099 }
1100
1101 const struct file_operations hugetlbfs_file_operations = {
1102         .read_iter              = hugetlbfs_read_iter,
1103         .mmap                   = hugetlbfs_file_mmap,
1104         .fsync                  = noop_fsync,
1105         .get_unmapped_area      = hugetlb_get_unmapped_area,
1106         .llseek                 = default_llseek,
1107         .fallocate              = hugetlbfs_fallocate,
1108 };
1109
1110 static const struct inode_operations hugetlbfs_dir_inode_operations = {
1111         .create         = hugetlbfs_create,
1112         .lookup         = simple_lookup,
1113         .link           = simple_link,
1114         .unlink         = simple_unlink,
1115         .symlink        = hugetlbfs_symlink,
1116         .mkdir          = hugetlbfs_mkdir,
1117         .rmdir          = simple_rmdir,
1118         .mknod          = hugetlbfs_mknod,
1119         .rename         = simple_rename,
1120         .setattr        = hugetlbfs_setattr,
1121         .tmpfile        = hugetlbfs_tmpfile,
1122 };
1123
1124 static const struct inode_operations hugetlbfs_inode_operations = {
1125         .setattr        = hugetlbfs_setattr,
1126 };
1127
1128 static const struct super_operations hugetlbfs_ops = {
1129         .alloc_inode    = hugetlbfs_alloc_inode,
1130         .free_inode     = hugetlbfs_free_inode,
1131         .destroy_inode  = hugetlbfs_destroy_inode,
1132         .evict_inode    = hugetlbfs_evict_inode,
1133         .statfs         = hugetlbfs_statfs,
1134         .put_super      = hugetlbfs_put_super,
1135         .show_options   = hugetlbfs_show_options,
1136 };
1137
1138 /*
1139  * Convert size option passed from command line to number of huge pages
1140  * in the pool specified by hstate.  Size option could be in bytes
1141  * (val_type == SIZE_STD) or percentage of the pool (val_type == SIZE_PERCENT).
1142  */
1143 static long
1144 hugetlbfs_size_to_hpages(struct hstate *h, unsigned long long size_opt,
1145                          enum hugetlbfs_size_type val_type)
1146 {
1147         if (val_type == NO_SIZE)
1148                 return -1;
1149
1150         if (val_type == SIZE_PERCENT) {
1151                 size_opt <<= huge_page_shift(h);
1152                 size_opt *= h->max_huge_pages;
1153                 do_div(size_opt, 100);
1154         }
1155
1156         size_opt >>= huge_page_shift(h);
1157         return size_opt;
1158 }
1159
1160 /*
1161  * Parse one mount parameter.
1162  */
1163 static int hugetlbfs_parse_param(struct fs_context *fc, struct fs_parameter *param)
1164 {
1165         struct hugetlbfs_fs_context *ctx = fc->fs_private;
1166         struct fs_parse_result result;
1167         char *rest;
1168         unsigned long ps;
1169         int opt;
1170
1171         opt = fs_parse(fc, hugetlb_fs_parameters, param, &result);
1172         if (opt < 0)
1173                 return opt;
1174
1175         switch (opt) {
1176         case Opt_uid:
1177                 ctx->uid = make_kuid(current_user_ns(), result.uint_32);
1178                 if (!uid_valid(ctx->uid))
1179                         goto bad_val;
1180                 return 0;
1181
1182         case Opt_gid:
1183                 ctx->gid = make_kgid(current_user_ns(), result.uint_32);
1184                 if (!gid_valid(ctx->gid))
1185                         goto bad_val;
1186                 return 0;
1187
1188         case Opt_mode:
1189                 ctx->mode = result.uint_32 & 01777U;
1190                 return 0;
1191
1192         case Opt_size:
1193                 /* memparse() will accept a K/M/G without a digit */
1194                 if (!isdigit(param->string[0]))
1195                         goto bad_val;
1196                 ctx->max_size_opt = memparse(param->string, &rest);
1197                 ctx->max_val_type = SIZE_STD;
1198                 if (*rest == '%')
1199                         ctx->max_val_type = SIZE_PERCENT;
1200                 return 0;
1201
1202         case Opt_nr_inodes:
1203                 /* memparse() will accept a K/M/G without a digit */
1204                 if (!isdigit(param->string[0]))
1205                         goto bad_val;
1206                 ctx->nr_inodes = memparse(param->string, &rest);
1207                 return 0;
1208
1209         case Opt_pagesize:
1210                 ps = memparse(param->string, &rest);
1211                 ctx->hstate = size_to_hstate(ps);
1212                 if (!ctx->hstate) {
1213                         pr_err("Unsupported page size %lu MB\n", ps >> 20);
1214                         return -EINVAL;
1215                 }
1216                 return 0;
1217
1218         case Opt_min_size:
1219                 /* memparse() will accept a K/M/G without a digit */
1220                 if (!isdigit(param->string[0]))
1221                         goto bad_val;
1222                 ctx->min_size_opt = memparse(param->string, &rest);
1223                 ctx->min_val_type = SIZE_STD;
1224                 if (*rest == '%')
1225                         ctx->min_val_type = SIZE_PERCENT;
1226                 return 0;
1227
1228         default:
1229                 return -EINVAL;
1230         }
1231
1232 bad_val:
1233         return invalfc(fc, "Bad value '%s' for mount option '%s'\n",
1234                       param->string, param->key);
1235 }
1236
1237 /*
1238  * Validate the parsed options.
1239  */
1240 static int hugetlbfs_validate(struct fs_context *fc)
1241 {
1242         struct hugetlbfs_fs_context *ctx = fc->fs_private;
1243
1244         /*
1245          * Use huge page pool size (in hstate) to convert the size
1246          * options to number of huge pages.  If NO_SIZE, -1 is returned.
1247          */
1248         ctx->max_hpages = hugetlbfs_size_to_hpages(ctx->hstate,
1249                                                    ctx->max_size_opt,
1250                                                    ctx->max_val_type);
1251         ctx->min_hpages = hugetlbfs_size_to_hpages(ctx->hstate,
1252                                                    ctx->min_size_opt,
1253                                                    ctx->min_val_type);
1254
1255         /*
1256          * If max_size was specified, then min_size must be smaller
1257          */
1258         if (ctx->max_val_type > NO_SIZE &&
1259             ctx->min_hpages > ctx->max_hpages) {
1260                 pr_err("Minimum size can not be greater than maximum size\n");
1261                 return -EINVAL;
1262         }
1263
1264         return 0;
1265 }
1266
1267 static int
1268 hugetlbfs_fill_super(struct super_block *sb, struct fs_context *fc)
1269 {
1270         struct hugetlbfs_fs_context *ctx = fc->fs_private;
1271         struct hugetlbfs_sb_info *sbinfo;
1272
1273         sbinfo = kmalloc(sizeof(struct hugetlbfs_sb_info), GFP_KERNEL);
1274         if (!sbinfo)
1275                 return -ENOMEM;
1276         sb->s_fs_info = sbinfo;
1277         spin_lock_init(&sbinfo->stat_lock);
1278         sbinfo->hstate          = ctx->hstate;
1279         sbinfo->max_inodes      = ctx->nr_inodes;
1280         sbinfo->free_inodes     = ctx->nr_inodes;
1281         sbinfo->spool           = NULL;
1282         sbinfo->uid             = ctx->uid;
1283         sbinfo->gid             = ctx->gid;
1284         sbinfo->mode            = ctx->mode;
1285
1286         /*
1287          * Allocate and initialize subpool if maximum or minimum size is
1288          * specified.  Any needed reservations (for minimim size) are taken
1289          * taken when the subpool is created.
1290          */
1291         if (ctx->max_hpages != -1 || ctx->min_hpages != -1) {
1292                 sbinfo->spool = hugepage_new_subpool(ctx->hstate,
1293                                                      ctx->max_hpages,
1294                                                      ctx->min_hpages);
1295                 if (!sbinfo->spool)
1296                         goto out_free;
1297         }
1298         sb->s_maxbytes = MAX_LFS_FILESIZE;
1299         sb->s_blocksize = huge_page_size(ctx->hstate);
1300         sb->s_blocksize_bits = huge_page_shift(ctx->hstate);
1301         sb->s_magic = HUGETLBFS_MAGIC;
1302         sb->s_op = &hugetlbfs_ops;
1303         sb->s_time_gran = 1;
1304         sb->s_root = d_make_root(hugetlbfs_get_root(sb, ctx));
1305         if (!sb->s_root)
1306                 goto out_free;
1307         return 0;
1308 out_free:
1309         kfree(sbinfo->spool);
1310         kfree(sbinfo);
1311         return -ENOMEM;
1312 }
1313
1314 static int hugetlbfs_get_tree(struct fs_context *fc)
1315 {
1316         int err = hugetlbfs_validate(fc);
1317         if (err)
1318                 return err;
1319         return get_tree_nodev(fc, hugetlbfs_fill_super);
1320 }
1321
1322 static void hugetlbfs_fs_context_free(struct fs_context *fc)
1323 {
1324         kfree(fc->fs_private);
1325 }
1326
1327 static const struct fs_context_operations hugetlbfs_fs_context_ops = {
1328         .free           = hugetlbfs_fs_context_free,
1329         .parse_param    = hugetlbfs_parse_param,
1330         .get_tree       = hugetlbfs_get_tree,
1331 };
1332
1333 static int hugetlbfs_init_fs_context(struct fs_context *fc)
1334 {
1335         struct hugetlbfs_fs_context *ctx;
1336
1337         ctx = kzalloc(sizeof(struct hugetlbfs_fs_context), GFP_KERNEL);
1338         if (!ctx)
1339                 return -ENOMEM;
1340
1341         ctx->max_hpages = -1; /* No limit on size by default */
1342         ctx->nr_inodes  = -1; /* No limit on number of inodes by default */
1343         ctx->uid        = current_fsuid();
1344         ctx->gid        = current_fsgid();
1345         ctx->mode       = 0755;
1346         ctx->hstate     = &default_hstate;
1347         ctx->min_hpages = -1; /* No default minimum size */
1348         ctx->max_val_type = NO_SIZE;
1349         ctx->min_val_type = NO_SIZE;
1350         fc->fs_private = ctx;
1351         fc->ops = &hugetlbfs_fs_context_ops;
1352         return 0;
1353 }
1354
1355 static struct file_system_type hugetlbfs_fs_type = {
1356         .name                   = "hugetlbfs",
1357         .init_fs_context        = hugetlbfs_init_fs_context,
1358         .parameters             = hugetlb_fs_parameters,
1359         .kill_sb                = kill_litter_super,
1360 };
1361
1362 static struct vfsmount *hugetlbfs_vfsmount[HUGE_MAX_HSTATE];
1363
1364 static int can_do_hugetlb_shm(void)
1365 {
1366         kgid_t shm_group;
1367         shm_group = make_kgid(&init_user_ns, sysctl_hugetlb_shm_group);
1368         return capable(CAP_IPC_LOCK) || in_group_p(shm_group);
1369 }
1370
1371 static int get_hstate_idx(int page_size_log)
1372 {
1373         struct hstate *h = hstate_sizelog(page_size_log);
1374
1375         if (!h)
1376                 return -1;
1377         return h - hstates;
1378 }
1379
1380 /*
1381  * Note that size should be aligned to proper hugepage size in caller side,
1382  * otherwise hugetlb_reserve_pages reserves one less hugepages than intended.
1383  */
1384 struct file *hugetlb_file_setup(const char *name, size_t size,
1385                                 vm_flags_t acctflag, struct user_struct **user,
1386                                 int creat_flags, int page_size_log)
1387 {
1388         struct inode *inode;
1389         struct vfsmount *mnt;
1390         int hstate_idx;
1391         struct file *file;
1392
1393         hstate_idx = get_hstate_idx(page_size_log);
1394         if (hstate_idx < 0)
1395                 return ERR_PTR(-ENODEV);
1396
1397         *user = NULL;
1398         mnt = hugetlbfs_vfsmount[hstate_idx];
1399         if (!mnt)
1400                 return ERR_PTR(-ENOENT);
1401
1402         if (creat_flags == HUGETLB_SHMFS_INODE && !can_do_hugetlb_shm()) {
1403                 *user = current_user();
1404                 if (user_shm_lock(size, *user)) {
1405                         task_lock(current);
1406                         pr_warn_once("%s (%d): Using mlock ulimits for SHM_HUGETLB is deprecated\n",
1407                                 current->comm, current->pid);
1408                         task_unlock(current);
1409                 } else {
1410                         *user = NULL;
1411                         return ERR_PTR(-EPERM);
1412                 }
1413         }
1414
1415         file = ERR_PTR(-ENOSPC);
1416         inode = hugetlbfs_get_inode(mnt->mnt_sb, NULL, S_IFREG | S_IRWXUGO, 0);
1417         if (!inode)
1418                 goto out;
1419         if (creat_flags == HUGETLB_SHMFS_INODE)
1420                 inode->i_flags |= S_PRIVATE;
1421
1422         inode->i_size = size;
1423         clear_nlink(inode);
1424
1425         if (hugetlb_reserve_pages(inode, 0,
1426                         size >> huge_page_shift(hstate_inode(inode)), NULL,
1427                         acctflag))
1428                 file = ERR_PTR(-ENOMEM);
1429         else
1430                 file = alloc_file_pseudo(inode, mnt, name, O_RDWR,
1431                                         &hugetlbfs_file_operations);
1432         if (!IS_ERR(file))
1433                 return file;
1434
1435         iput(inode);
1436 out:
1437         if (*user) {
1438                 user_shm_unlock(size, *user);
1439                 *user = NULL;
1440         }
1441         return file;
1442 }
1443
1444 static struct vfsmount *__init mount_one_hugetlbfs(struct hstate *h)
1445 {
1446         struct fs_context *fc;
1447         struct vfsmount *mnt;
1448
1449         fc = fs_context_for_mount(&hugetlbfs_fs_type, SB_KERNMOUNT);
1450         if (IS_ERR(fc)) {
1451                 mnt = ERR_CAST(fc);
1452         } else {
1453                 struct hugetlbfs_fs_context *ctx = fc->fs_private;
1454                 ctx->hstate = h;
1455                 mnt = fc_mount(fc);
1456                 put_fs_context(fc);
1457         }
1458         if (IS_ERR(mnt))
1459                 pr_err("Cannot mount internal hugetlbfs for page size %uK",
1460                        1U << (h->order + PAGE_SHIFT - 10));
1461         return mnt;
1462 }
1463
1464 static int __init init_hugetlbfs_fs(void)
1465 {
1466         struct vfsmount *mnt;
1467         struct hstate *h;
1468         int error;
1469         int i;
1470
1471         if (!hugepages_supported()) {
1472                 pr_info("disabling because there are no supported hugepage sizes\n");
1473                 return -ENOTSUPP;
1474         }
1475
1476         error = -ENOMEM;
1477         hugetlbfs_inode_cachep = kmem_cache_create("hugetlbfs_inode_cache",
1478                                         sizeof(struct hugetlbfs_inode_info),
1479                                         0, SLAB_ACCOUNT, init_once);
1480         if (hugetlbfs_inode_cachep == NULL)
1481                 goto out;
1482
1483         error = register_filesystem(&hugetlbfs_fs_type);
1484         if (error)
1485                 goto out_free;
1486
1487         /* default hstate mount is required */
1488         mnt = mount_one_hugetlbfs(&hstates[default_hstate_idx]);
1489         if (IS_ERR(mnt)) {
1490                 error = PTR_ERR(mnt);
1491                 goto out_unreg;
1492         }
1493         hugetlbfs_vfsmount[default_hstate_idx] = mnt;
1494
1495         /* other hstates are optional */
1496         i = 0;
1497         for_each_hstate(h) {
1498                 if (i == default_hstate_idx) {
1499                         i++;
1500                         continue;
1501                 }
1502
1503                 mnt = mount_one_hugetlbfs(h);
1504                 if (IS_ERR(mnt))
1505                         hugetlbfs_vfsmount[i] = NULL;
1506                 else
1507                         hugetlbfs_vfsmount[i] = mnt;
1508                 i++;
1509         }
1510
1511         return 0;
1512
1513  out_unreg:
1514         (void)unregister_filesystem(&hugetlbfs_fs_type);
1515  out_free:
1516         kmem_cache_destroy(hugetlbfs_inode_cachep);
1517  out:
1518         return error;
1519 }
1520 fs_initcall(init_hugetlbfs_fs)