Linux 6.9-rc1
[linux-2.6-microblaze.git] / fs / hfsplus / btree.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  *  linux/fs/hfsplus/btree.c
4  *
5  * Copyright (C) 2001
6  * Brad Boyer (flar@allandria.com)
7  * (C) 2003 Ardis Technologies <roman@ardistech.com>
8  *
9  * Handle opening/closing btree
10  */
11
12 #include <linux/slab.h>
13 #include <linux/pagemap.h>
14 #include <linux/log2.h>
15
16 #include "hfsplus_fs.h"
17 #include "hfsplus_raw.h"
18
19 /*
20  * Initial source code of clump size calculation is gotten
21  * from http://opensource.apple.com/tarballs/diskdev_cmds/
22  */
23 #define CLUMP_ENTRIES   15
24
25 static short clumptbl[CLUMP_ENTRIES * 3] = {
26 /*
27  *          Volume      Attributes       Catalog         Extents
28  *           Size       Clump (MB)      Clump (MB)      Clump (MB)
29  */
30         /*   1GB */       4,              4,             4,
31         /*   2GB */       6,              6,             4,
32         /*   4GB */       8,              8,             4,
33         /*   8GB */      11,             11,             5,
34         /*
35          * For volumes 16GB and larger, we want to make sure that a full OS
36          * install won't require fragmentation of the Catalog or Attributes
37          * B-trees.  We do this by making the clump sizes sufficiently large,
38          * and by leaving a gap after the B-trees for them to grow into.
39          *
40          * For SnowLeopard 10A298, a FullNetInstall with all packages selected
41          * results in:
42          * Catalog B-tree Header
43          *      nodeSize:          8192
44          *      totalNodes:       31616
45          *      freeNodes:         1978
46          * (used = 231.55 MB)
47          * Attributes B-tree Header
48          *      nodeSize:          8192
49          *      totalNodes:       63232
50          *      freeNodes:          958
51          * (used = 486.52 MB)
52          *
53          * We also want Time Machine backup volumes to have a sufficiently
54          * large clump size to reduce fragmentation.
55          *
56          * The series of numbers for Catalog and Attribute form a geometric
57          * series. For Catalog (16GB to 512GB), each term is 8**(1/5) times
58          * the previous term.  For Attributes (16GB to 512GB), each term is
59          * 4**(1/5) times the previous term.  For 1TB to 16TB, each term is
60          * 2**(1/5) times the previous term.
61          */
62         /*  16GB */      64,             32,             5,
63         /*  32GB */      84,             49,             6,
64         /*  64GB */     111,             74,             7,
65         /* 128GB */     147,            111,             8,
66         /* 256GB */     194,            169,             9,
67         /* 512GB */     256,            256,            11,
68         /*   1TB */     294,            294,            14,
69         /*   2TB */     338,            338,            16,
70         /*   4TB */     388,            388,            20,
71         /*   8TB */     446,            446,            25,
72         /*  16TB */     512,            512,            32
73 };
74
75 u32 hfsplus_calc_btree_clump_size(u32 block_size, u32 node_size,
76                                         u64 sectors, int file_id)
77 {
78         u32 mod = max(node_size, block_size);
79         u32 clump_size;
80         int column;
81         int i;
82
83         /* Figure out which column of the above table to use for this file. */
84         switch (file_id) {
85         case HFSPLUS_ATTR_CNID:
86                 column = 0;
87                 break;
88         case HFSPLUS_CAT_CNID:
89                 column = 1;
90                 break;
91         default:
92                 column = 2;
93                 break;
94         }
95
96         /*
97          * The default clump size is 0.8% of the volume size. And
98          * it must also be a multiple of the node and block size.
99          */
100         if (sectors < 0x200000) {
101                 clump_size = sectors << 2;      /*  0.8 %  */
102                 if (clump_size < (8 * node_size))
103                         clump_size = 8 * node_size;
104         } else {
105                 /* turn exponent into table index... */
106                 for (i = 0, sectors = sectors >> 22;
107                      sectors && (i < CLUMP_ENTRIES - 1);
108                      ++i, sectors = sectors >> 1) {
109                         /* empty body */
110                 }
111
112                 clump_size = clumptbl[column + (i) * 3] * 1024 * 1024;
113         }
114
115         /*
116          * Round the clump size to a multiple of node and block size.
117          * NOTE: This rounds down.
118          */
119         clump_size /= mod;
120         clump_size *= mod;
121
122         /*
123          * Rounding down could have rounded down to 0 if the block size was
124          * greater than the clump size.  If so, just use one block or node.
125          */
126         if (clump_size == 0)
127                 clump_size = mod;
128
129         return clump_size;
130 }
131
132 /* Get a reference to a B*Tree and do some initial checks */
133 struct hfs_btree *hfs_btree_open(struct super_block *sb, u32 id)
134 {
135         struct hfs_btree *tree;
136         struct hfs_btree_header_rec *head;
137         struct address_space *mapping;
138         struct inode *inode;
139         struct page *page;
140         unsigned int size;
141
142         tree = kzalloc(sizeof(*tree), GFP_KERNEL);
143         if (!tree)
144                 return NULL;
145
146         mutex_init(&tree->tree_lock);
147         spin_lock_init(&tree->hash_lock);
148         tree->sb = sb;
149         tree->cnid = id;
150         inode = hfsplus_iget(sb, id);
151         if (IS_ERR(inode))
152                 goto free_tree;
153         tree->inode = inode;
154
155         if (!HFSPLUS_I(tree->inode)->first_blocks) {
156                 pr_err("invalid btree extent records (0 size)\n");
157                 goto free_inode;
158         }
159
160         mapping = tree->inode->i_mapping;
161         page = read_mapping_page(mapping, 0, NULL);
162         if (IS_ERR(page))
163                 goto free_inode;
164
165         /* Load the header */
166         head = (struct hfs_btree_header_rec *)(kmap(page) +
167                 sizeof(struct hfs_bnode_desc));
168         tree->root = be32_to_cpu(head->root);
169         tree->leaf_count = be32_to_cpu(head->leaf_count);
170         tree->leaf_head = be32_to_cpu(head->leaf_head);
171         tree->leaf_tail = be32_to_cpu(head->leaf_tail);
172         tree->node_count = be32_to_cpu(head->node_count);
173         tree->free_nodes = be32_to_cpu(head->free_nodes);
174         tree->attributes = be32_to_cpu(head->attributes);
175         tree->node_size = be16_to_cpu(head->node_size);
176         tree->max_key_len = be16_to_cpu(head->max_key_len);
177         tree->depth = be16_to_cpu(head->depth);
178
179         /* Verify the tree and set the correct compare function */
180         switch (id) {
181         case HFSPLUS_EXT_CNID:
182                 if (tree->max_key_len != HFSPLUS_EXT_KEYLEN - sizeof(u16)) {
183                         pr_err("invalid extent max_key_len %d\n",
184                                 tree->max_key_len);
185                         goto fail_page;
186                 }
187                 if (tree->attributes & HFS_TREE_VARIDXKEYS) {
188                         pr_err("invalid extent btree flag\n");
189                         goto fail_page;
190                 }
191
192                 tree->keycmp = hfsplus_ext_cmp_key;
193                 break;
194         case HFSPLUS_CAT_CNID:
195                 if (tree->max_key_len != HFSPLUS_CAT_KEYLEN - sizeof(u16)) {
196                         pr_err("invalid catalog max_key_len %d\n",
197                                 tree->max_key_len);
198                         goto fail_page;
199                 }
200                 if (!(tree->attributes & HFS_TREE_VARIDXKEYS)) {
201                         pr_err("invalid catalog btree flag\n");
202                         goto fail_page;
203                 }
204
205                 if (test_bit(HFSPLUS_SB_HFSX, &HFSPLUS_SB(sb)->flags) &&
206                     (head->key_type == HFSPLUS_KEY_BINARY))
207                         tree->keycmp = hfsplus_cat_bin_cmp_key;
208                 else {
209                         tree->keycmp = hfsplus_cat_case_cmp_key;
210                         set_bit(HFSPLUS_SB_CASEFOLD, &HFSPLUS_SB(sb)->flags);
211                 }
212                 break;
213         case HFSPLUS_ATTR_CNID:
214                 if (tree->max_key_len != HFSPLUS_ATTR_KEYLEN - sizeof(u16)) {
215                         pr_err("invalid attributes max_key_len %d\n",
216                                 tree->max_key_len);
217                         goto fail_page;
218                 }
219                 tree->keycmp = hfsplus_attr_bin_cmp_key;
220                 break;
221         default:
222                 pr_err("unknown B*Tree requested\n");
223                 goto fail_page;
224         }
225
226         if (!(tree->attributes & HFS_TREE_BIGKEYS)) {
227                 pr_err("invalid btree flag\n");
228                 goto fail_page;
229         }
230
231         size = tree->node_size;
232         if (!is_power_of_2(size))
233                 goto fail_page;
234         if (!tree->node_count)
235                 goto fail_page;
236
237         tree->node_size_shift = ffs(size) - 1;
238
239         tree->pages_per_bnode =
240                 (tree->node_size + PAGE_SIZE - 1) >>
241                 PAGE_SHIFT;
242
243         kunmap(page);
244         put_page(page);
245         return tree;
246
247  fail_page:
248         put_page(page);
249  free_inode:
250         tree->inode->i_mapping->a_ops = &hfsplus_aops;
251         iput(tree->inode);
252  free_tree:
253         kfree(tree);
254         return NULL;
255 }
256
257 /* Release resources used by a btree */
258 void hfs_btree_close(struct hfs_btree *tree)
259 {
260         struct hfs_bnode *node;
261         int i;
262
263         if (!tree)
264                 return;
265
266         for (i = 0; i < NODE_HASH_SIZE; i++) {
267                 while ((node = tree->node_hash[i])) {
268                         tree->node_hash[i] = node->next_hash;
269                         if (atomic_read(&node->refcnt))
270                                 pr_crit("node %d:%d "
271                                                 "still has %d user(s)!\n",
272                                         node->tree->cnid, node->this,
273                                         atomic_read(&node->refcnt));
274                         hfs_bnode_free(node);
275                         tree->node_hash_cnt--;
276                 }
277         }
278         iput(tree->inode);
279         kfree(tree);
280 }
281
282 int hfs_btree_write(struct hfs_btree *tree)
283 {
284         struct hfs_btree_header_rec *head;
285         struct hfs_bnode *node;
286         struct page *page;
287
288         node = hfs_bnode_find(tree, 0);
289         if (IS_ERR(node))
290                 /* panic? */
291                 return -EIO;
292         /* Load the header */
293         page = node->page[0];
294         head = (struct hfs_btree_header_rec *)(kmap(page) +
295                 sizeof(struct hfs_bnode_desc));
296
297         head->root = cpu_to_be32(tree->root);
298         head->leaf_count = cpu_to_be32(tree->leaf_count);
299         head->leaf_head = cpu_to_be32(tree->leaf_head);
300         head->leaf_tail = cpu_to_be32(tree->leaf_tail);
301         head->node_count = cpu_to_be32(tree->node_count);
302         head->free_nodes = cpu_to_be32(tree->free_nodes);
303         head->attributes = cpu_to_be32(tree->attributes);
304         head->depth = cpu_to_be16(tree->depth);
305
306         kunmap(page);
307         set_page_dirty(page);
308         hfs_bnode_put(node);
309         return 0;
310 }
311
312 static struct hfs_bnode *hfs_bmap_new_bmap(struct hfs_bnode *prev, u32 idx)
313 {
314         struct hfs_btree *tree = prev->tree;
315         struct hfs_bnode *node;
316         struct hfs_bnode_desc desc;
317         __be32 cnid;
318
319         node = hfs_bnode_create(tree, idx);
320         if (IS_ERR(node))
321                 return node;
322
323         tree->free_nodes--;
324         prev->next = idx;
325         cnid = cpu_to_be32(idx);
326         hfs_bnode_write(prev, &cnid, offsetof(struct hfs_bnode_desc, next), 4);
327
328         node->type = HFS_NODE_MAP;
329         node->num_recs = 1;
330         hfs_bnode_clear(node, 0, tree->node_size);
331         desc.next = 0;
332         desc.prev = 0;
333         desc.type = HFS_NODE_MAP;
334         desc.height = 0;
335         desc.num_recs = cpu_to_be16(1);
336         desc.reserved = 0;
337         hfs_bnode_write(node, &desc, 0, sizeof(desc));
338         hfs_bnode_write_u16(node, 14, 0x8000);
339         hfs_bnode_write_u16(node, tree->node_size - 2, 14);
340         hfs_bnode_write_u16(node, tree->node_size - 4, tree->node_size - 6);
341
342         return node;
343 }
344
345 /* Make sure @tree has enough space for the @rsvd_nodes */
346 int hfs_bmap_reserve(struct hfs_btree *tree, int rsvd_nodes)
347 {
348         struct inode *inode = tree->inode;
349         struct hfsplus_inode_info *hip = HFSPLUS_I(inode);
350         u32 count;
351         int res;
352
353         if (rsvd_nodes <= 0)
354                 return 0;
355
356         while (tree->free_nodes < rsvd_nodes) {
357                 res = hfsplus_file_extend(inode, hfs_bnode_need_zeroout(tree));
358                 if (res)
359                         return res;
360                 hip->phys_size = inode->i_size =
361                         (loff_t)hip->alloc_blocks <<
362                                 HFSPLUS_SB(tree->sb)->alloc_blksz_shift;
363                 hip->fs_blocks =
364                         hip->alloc_blocks << HFSPLUS_SB(tree->sb)->fs_shift;
365                 inode_set_bytes(inode, inode->i_size);
366                 count = inode->i_size >> tree->node_size_shift;
367                 tree->free_nodes += count - tree->node_count;
368                 tree->node_count = count;
369         }
370         return 0;
371 }
372
373 struct hfs_bnode *hfs_bmap_alloc(struct hfs_btree *tree)
374 {
375         struct hfs_bnode *node, *next_node;
376         struct page **pagep;
377         u32 nidx, idx;
378         unsigned off;
379         u16 off16;
380         u16 len;
381         u8 *data, byte, m;
382         int i, res;
383
384         res = hfs_bmap_reserve(tree, 1);
385         if (res)
386                 return ERR_PTR(res);
387
388         nidx = 0;
389         node = hfs_bnode_find(tree, nidx);
390         if (IS_ERR(node))
391                 return node;
392         len = hfs_brec_lenoff(node, 2, &off16);
393         off = off16;
394
395         off += node->page_offset;
396         pagep = node->page + (off >> PAGE_SHIFT);
397         data = kmap(*pagep);
398         off &= ~PAGE_MASK;
399         idx = 0;
400
401         for (;;) {
402                 while (len) {
403                         byte = data[off];
404                         if (byte != 0xff) {
405                                 for (m = 0x80, i = 0; i < 8; m >>= 1, i++) {
406                                         if (!(byte & m)) {
407                                                 idx += i;
408                                                 data[off] |= m;
409                                                 set_page_dirty(*pagep);
410                                                 kunmap(*pagep);
411                                                 tree->free_nodes--;
412                                                 mark_inode_dirty(tree->inode);
413                                                 hfs_bnode_put(node);
414                                                 return hfs_bnode_create(tree,
415                                                         idx);
416                                         }
417                                 }
418                         }
419                         if (++off >= PAGE_SIZE) {
420                                 kunmap(*pagep);
421                                 data = kmap(*++pagep);
422                                 off = 0;
423                         }
424                         idx += 8;
425                         len--;
426                 }
427                 kunmap(*pagep);
428                 nidx = node->next;
429                 if (!nidx) {
430                         hfs_dbg(BNODE_MOD, "create new bmap node\n");
431                         next_node = hfs_bmap_new_bmap(node, idx);
432                 } else
433                         next_node = hfs_bnode_find(tree, nidx);
434                 hfs_bnode_put(node);
435                 if (IS_ERR(next_node))
436                         return next_node;
437                 node = next_node;
438
439                 len = hfs_brec_lenoff(node, 0, &off16);
440                 off = off16;
441                 off += node->page_offset;
442                 pagep = node->page + (off >> PAGE_SHIFT);
443                 data = kmap(*pagep);
444                 off &= ~PAGE_MASK;
445         }
446 }
447
448 void hfs_bmap_free(struct hfs_bnode *node)
449 {
450         struct hfs_btree *tree;
451         struct page *page;
452         u16 off, len;
453         u32 nidx;
454         u8 *data, byte, m;
455
456         hfs_dbg(BNODE_MOD, "btree_free_node: %u\n", node->this);
457         BUG_ON(!node->this);
458         tree = node->tree;
459         nidx = node->this;
460         node = hfs_bnode_find(tree, 0);
461         if (IS_ERR(node))
462                 return;
463         len = hfs_brec_lenoff(node, 2, &off);
464         while (nidx >= len * 8) {
465                 u32 i;
466
467                 nidx -= len * 8;
468                 i = node->next;
469                 if (!i) {
470                         /* panic */;
471                         pr_crit("unable to free bnode %u. "
472                                         "bmap not found!\n",
473                                 node->this);
474                         hfs_bnode_put(node);
475                         return;
476                 }
477                 hfs_bnode_put(node);
478                 node = hfs_bnode_find(tree, i);
479                 if (IS_ERR(node))
480                         return;
481                 if (node->type != HFS_NODE_MAP) {
482                         /* panic */;
483                         pr_crit("invalid bmap found! "
484                                         "(%u,%d)\n",
485                                 node->this, node->type);
486                         hfs_bnode_put(node);
487                         return;
488                 }
489                 len = hfs_brec_lenoff(node, 0, &off);
490         }
491         off += node->page_offset + nidx / 8;
492         page = node->page[off >> PAGE_SHIFT];
493         data = kmap(page);
494         off &= ~PAGE_MASK;
495         m = 1 << (~nidx & 7);
496         byte = data[off];
497         if (!(byte & m)) {
498                 pr_crit("trying to free free bnode "
499                                 "%u(%d)\n",
500                         node->this, node->type);
501                 kunmap(page);
502                 hfs_bnode_put(node);
503                 return;
504         }
505         data[off] = byte & ~m;
506         set_page_dirty(page);
507         kunmap(page);
508         hfs_bnode_put(node);
509         tree->free_nodes++;
510         mark_inode_dirty(tree->inode);
511 }