Merge tag 'arm64-fixes' of git://git.kernel.org/pub/scm/linux/kernel/git/arm64/linux
[linux-2.6-microblaze.git] / fs / fs-writeback.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * fs/fs-writeback.c
4  *
5  * Copyright (C) 2002, Linus Torvalds.
6  *
7  * Contains all the functions related to writing back and waiting
8  * upon dirty inodes against superblocks, and writing back dirty
9  * pages against inodes.  ie: data writeback.  Writeout of the
10  * inode itself is not handled here.
11  *
12  * 10Apr2002    Andrew Morton
13  *              Split out of fs/inode.c
14  *              Additions for address_space-based writeback
15  */
16
17 #include <linux/kernel.h>
18 #include <linux/export.h>
19 #include <linux/spinlock.h>
20 #include <linux/slab.h>
21 #include <linux/sched.h>
22 #include <linux/fs.h>
23 #include <linux/mm.h>
24 #include <linux/pagemap.h>
25 #include <linux/kthread.h>
26 #include <linux/writeback.h>
27 #include <linux/blkdev.h>
28 #include <linux/backing-dev.h>
29 #include <linux/tracepoint.h>
30 #include <linux/device.h>
31 #include <linux/memcontrol.h>
32 #include "internal.h"
33
34 /*
35  * 4MB minimal write chunk size
36  */
37 #define MIN_WRITEBACK_PAGES     (4096UL >> (PAGE_SHIFT - 10))
38
39 /*
40  * Passed into wb_writeback(), essentially a subset of writeback_control
41  */
42 struct wb_writeback_work {
43         long nr_pages;
44         struct super_block *sb;
45         enum writeback_sync_modes sync_mode;
46         unsigned int tagged_writepages:1;
47         unsigned int for_kupdate:1;
48         unsigned int range_cyclic:1;
49         unsigned int for_background:1;
50         unsigned int for_sync:1;        /* sync(2) WB_SYNC_ALL writeback */
51         unsigned int auto_free:1;       /* free on completion */
52         enum wb_reason reason;          /* why was writeback initiated? */
53
54         struct list_head list;          /* pending work list */
55         struct wb_completion *done;     /* set if the caller waits */
56 };
57
58 /*
59  * If an inode is constantly having its pages dirtied, but then the
60  * updates stop dirtytime_expire_interval seconds in the past, it's
61  * possible for the worst case time between when an inode has its
62  * timestamps updated and when they finally get written out to be two
63  * dirtytime_expire_intervals.  We set the default to 12 hours (in
64  * seconds), which means most of the time inodes will have their
65  * timestamps written to disk after 12 hours, but in the worst case a
66  * few inodes might not their timestamps updated for 24 hours.
67  */
68 unsigned int dirtytime_expire_interval = 12 * 60 * 60;
69
70 static inline struct inode *wb_inode(struct list_head *head)
71 {
72         return list_entry(head, struct inode, i_io_list);
73 }
74
75 /*
76  * Include the creation of the trace points after defining the
77  * wb_writeback_work structure and inline functions so that the definition
78  * remains local to this file.
79  */
80 #define CREATE_TRACE_POINTS
81 #include <trace/events/writeback.h>
82
83 EXPORT_TRACEPOINT_SYMBOL_GPL(wbc_writepage);
84
85 static bool wb_io_lists_populated(struct bdi_writeback *wb)
86 {
87         if (wb_has_dirty_io(wb)) {
88                 return false;
89         } else {
90                 set_bit(WB_has_dirty_io, &wb->state);
91                 WARN_ON_ONCE(!wb->avg_write_bandwidth);
92                 atomic_long_add(wb->avg_write_bandwidth,
93                                 &wb->bdi->tot_write_bandwidth);
94                 return true;
95         }
96 }
97
98 static void wb_io_lists_depopulated(struct bdi_writeback *wb)
99 {
100         if (wb_has_dirty_io(wb) && list_empty(&wb->b_dirty) &&
101             list_empty(&wb->b_io) && list_empty(&wb->b_more_io)) {
102                 clear_bit(WB_has_dirty_io, &wb->state);
103                 WARN_ON_ONCE(atomic_long_sub_return(wb->avg_write_bandwidth,
104                                         &wb->bdi->tot_write_bandwidth) < 0);
105         }
106 }
107
108 /**
109  * inode_io_list_move_locked - move an inode onto a bdi_writeback IO list
110  * @inode: inode to be moved
111  * @wb: target bdi_writeback
112  * @head: one of @wb->b_{dirty|io|more_io|dirty_time}
113  *
114  * Move @inode->i_io_list to @list of @wb and set %WB_has_dirty_io.
115  * Returns %true if @inode is the first occupant of the !dirty_time IO
116  * lists; otherwise, %false.
117  */
118 static bool inode_io_list_move_locked(struct inode *inode,
119                                       struct bdi_writeback *wb,
120                                       struct list_head *head)
121 {
122         assert_spin_locked(&wb->list_lock);
123         assert_spin_locked(&inode->i_lock);
124         WARN_ON_ONCE(inode->i_state & I_FREEING);
125
126         list_move(&inode->i_io_list, head);
127
128         /* dirty_time doesn't count as dirty_io until expiration */
129         if (head != &wb->b_dirty_time)
130                 return wb_io_lists_populated(wb);
131
132         wb_io_lists_depopulated(wb);
133         return false;
134 }
135
136 static void wb_wakeup(struct bdi_writeback *wb)
137 {
138         spin_lock_irq(&wb->work_lock);
139         if (test_bit(WB_registered, &wb->state))
140                 mod_delayed_work(bdi_wq, &wb->dwork, 0);
141         spin_unlock_irq(&wb->work_lock);
142 }
143
144 /*
145  * This function is used when the first inode for this wb is marked dirty. It
146  * wakes-up the corresponding bdi thread which should then take care of the
147  * periodic background write-out of dirty inodes. Since the write-out would
148  * starts only 'dirty_writeback_interval' centisecs from now anyway, we just
149  * set up a timer which wakes the bdi thread up later.
150  *
151  * Note, we wouldn't bother setting up the timer, but this function is on the
152  * fast-path (used by '__mark_inode_dirty()'), so we save few context switches
153  * by delaying the wake-up.
154  *
155  * We have to be careful not to postpone flush work if it is scheduled for
156  * earlier. Thus we use queue_delayed_work().
157  */
158 static void wb_wakeup_delayed(struct bdi_writeback *wb)
159 {
160         unsigned long timeout;
161
162         timeout = msecs_to_jiffies(dirty_writeback_interval * 10);
163         spin_lock_irq(&wb->work_lock);
164         if (test_bit(WB_registered, &wb->state))
165                 queue_delayed_work(bdi_wq, &wb->dwork, timeout);
166         spin_unlock_irq(&wb->work_lock);
167 }
168
169 static void finish_writeback_work(struct bdi_writeback *wb,
170                                   struct wb_writeback_work *work)
171 {
172         struct wb_completion *done = work->done;
173
174         if (work->auto_free)
175                 kfree(work);
176         if (done) {
177                 wait_queue_head_t *waitq = done->waitq;
178
179                 /* @done can't be accessed after the following dec */
180                 if (atomic_dec_and_test(&done->cnt))
181                         wake_up_all(waitq);
182         }
183 }
184
185 static void wb_queue_work(struct bdi_writeback *wb,
186                           struct wb_writeback_work *work)
187 {
188         trace_writeback_queue(wb, work);
189
190         if (work->done)
191                 atomic_inc(&work->done->cnt);
192
193         spin_lock_irq(&wb->work_lock);
194
195         if (test_bit(WB_registered, &wb->state)) {
196                 list_add_tail(&work->list, &wb->work_list);
197                 mod_delayed_work(bdi_wq, &wb->dwork, 0);
198         } else
199                 finish_writeback_work(wb, work);
200
201         spin_unlock_irq(&wb->work_lock);
202 }
203
204 /**
205  * wb_wait_for_completion - wait for completion of bdi_writeback_works
206  * @done: target wb_completion
207  *
208  * Wait for one or more work items issued to @bdi with their ->done field
209  * set to @done, which should have been initialized with
210  * DEFINE_WB_COMPLETION().  This function returns after all such work items
211  * are completed.  Work items which are waited upon aren't freed
212  * automatically on completion.
213  */
214 void wb_wait_for_completion(struct wb_completion *done)
215 {
216         atomic_dec(&done->cnt);         /* put down the initial count */
217         wait_event(*done->waitq, !atomic_read(&done->cnt));
218 }
219
220 #ifdef CONFIG_CGROUP_WRITEBACK
221
222 /*
223  * Parameters for foreign inode detection, see wbc_detach_inode() to see
224  * how they're used.
225  *
226  * These paramters are inherently heuristical as the detection target
227  * itself is fuzzy.  All we want to do is detaching an inode from the
228  * current owner if it's being written to by some other cgroups too much.
229  *
230  * The current cgroup writeback is built on the assumption that multiple
231  * cgroups writing to the same inode concurrently is very rare and a mode
232  * of operation which isn't well supported.  As such, the goal is not
233  * taking too long when a different cgroup takes over an inode while
234  * avoiding too aggressive flip-flops from occasional foreign writes.
235  *
236  * We record, very roughly, 2s worth of IO time history and if more than
237  * half of that is foreign, trigger the switch.  The recording is quantized
238  * to 16 slots.  To avoid tiny writes from swinging the decision too much,
239  * writes smaller than 1/8 of avg size are ignored.
240  */
241 #define WB_FRN_TIME_SHIFT       13      /* 1s = 2^13, upto 8 secs w/ 16bit */
242 #define WB_FRN_TIME_AVG_SHIFT   3       /* avg = avg * 7/8 + new * 1/8 */
243 #define WB_FRN_TIME_CUT_DIV     8       /* ignore rounds < avg / 8 */
244 #define WB_FRN_TIME_PERIOD      (2 * (1 << WB_FRN_TIME_SHIFT))  /* 2s */
245
246 #define WB_FRN_HIST_SLOTS       16      /* inode->i_wb_frn_history is 16bit */
247 #define WB_FRN_HIST_UNIT        (WB_FRN_TIME_PERIOD / WB_FRN_HIST_SLOTS)
248                                         /* each slot's duration is 2s / 16 */
249 #define WB_FRN_HIST_THR_SLOTS   (WB_FRN_HIST_SLOTS / 2)
250                                         /* if foreign slots >= 8, switch */
251 #define WB_FRN_HIST_MAX_SLOTS   (WB_FRN_HIST_THR_SLOTS / 2 + 1)
252                                         /* one round can affect upto 5 slots */
253 #define WB_FRN_MAX_IN_FLIGHT    1024    /* don't queue too many concurrently */
254
255 /*
256  * Maximum inodes per isw.  A specific value has been chosen to make
257  * struct inode_switch_wbs_context fit into 1024 bytes kmalloc.
258  */
259 #define WB_MAX_INODES_PER_ISW  ((1024UL - sizeof(struct inode_switch_wbs_context)) \
260                                 / sizeof(struct inode *))
261
262 static atomic_t isw_nr_in_flight = ATOMIC_INIT(0);
263 static struct workqueue_struct *isw_wq;
264
265 void __inode_attach_wb(struct inode *inode, struct folio *folio)
266 {
267         struct backing_dev_info *bdi = inode_to_bdi(inode);
268         struct bdi_writeback *wb = NULL;
269
270         if (inode_cgwb_enabled(inode)) {
271                 struct cgroup_subsys_state *memcg_css;
272
273                 if (folio) {
274                         memcg_css = mem_cgroup_css_from_folio(folio);
275                         wb = wb_get_create(bdi, memcg_css, GFP_ATOMIC);
276                 } else {
277                         /* must pin memcg_css, see wb_get_create() */
278                         memcg_css = task_get_css(current, memory_cgrp_id);
279                         wb = wb_get_create(bdi, memcg_css, GFP_ATOMIC);
280                         css_put(memcg_css);
281                 }
282         }
283
284         if (!wb)
285                 wb = &bdi->wb;
286
287         /*
288          * There may be multiple instances of this function racing to
289          * update the same inode.  Use cmpxchg() to tell the winner.
290          */
291         if (unlikely(cmpxchg(&inode->i_wb, NULL, wb)))
292                 wb_put(wb);
293 }
294 EXPORT_SYMBOL_GPL(__inode_attach_wb);
295
296 /**
297  * inode_cgwb_move_to_attached - put the inode onto wb->b_attached list
298  * @inode: inode of interest with i_lock held
299  * @wb: target bdi_writeback
300  *
301  * Remove the inode from wb's io lists and if necessarily put onto b_attached
302  * list.  Only inodes attached to cgwb's are kept on this list.
303  */
304 static void inode_cgwb_move_to_attached(struct inode *inode,
305                                         struct bdi_writeback *wb)
306 {
307         assert_spin_locked(&wb->list_lock);
308         assert_spin_locked(&inode->i_lock);
309         WARN_ON_ONCE(inode->i_state & I_FREEING);
310
311         inode->i_state &= ~I_SYNC_QUEUED;
312         if (wb != &wb->bdi->wb)
313                 list_move(&inode->i_io_list, &wb->b_attached);
314         else
315                 list_del_init(&inode->i_io_list);
316         wb_io_lists_depopulated(wb);
317 }
318
319 /**
320  * locked_inode_to_wb_and_lock_list - determine a locked inode's wb and lock it
321  * @inode: inode of interest with i_lock held
322  *
323  * Returns @inode's wb with its list_lock held.  @inode->i_lock must be
324  * held on entry and is released on return.  The returned wb is guaranteed
325  * to stay @inode's associated wb until its list_lock is released.
326  */
327 static struct bdi_writeback *
328 locked_inode_to_wb_and_lock_list(struct inode *inode)
329         __releases(&inode->i_lock)
330         __acquires(&wb->list_lock)
331 {
332         while (true) {
333                 struct bdi_writeback *wb = inode_to_wb(inode);
334
335                 /*
336                  * inode_to_wb() association is protected by both
337                  * @inode->i_lock and @wb->list_lock but list_lock nests
338                  * outside i_lock.  Drop i_lock and verify that the
339                  * association hasn't changed after acquiring list_lock.
340                  */
341                 wb_get(wb);
342                 spin_unlock(&inode->i_lock);
343                 spin_lock(&wb->list_lock);
344
345                 /* i_wb may have changed inbetween, can't use inode_to_wb() */
346                 if (likely(wb == inode->i_wb)) {
347                         wb_put(wb);     /* @inode already has ref */
348                         return wb;
349                 }
350
351                 spin_unlock(&wb->list_lock);
352                 wb_put(wb);
353                 cpu_relax();
354                 spin_lock(&inode->i_lock);
355         }
356 }
357
358 /**
359  * inode_to_wb_and_lock_list - determine an inode's wb and lock it
360  * @inode: inode of interest
361  *
362  * Same as locked_inode_to_wb_and_lock_list() but @inode->i_lock isn't held
363  * on entry.
364  */
365 static struct bdi_writeback *inode_to_wb_and_lock_list(struct inode *inode)
366         __acquires(&wb->list_lock)
367 {
368         spin_lock(&inode->i_lock);
369         return locked_inode_to_wb_and_lock_list(inode);
370 }
371
372 struct inode_switch_wbs_context {
373         struct rcu_work         work;
374
375         /*
376          * Multiple inodes can be switched at once.  The switching procedure
377          * consists of two parts, separated by a RCU grace period.  To make
378          * sure that the second part is executed for each inode gone through
379          * the first part, all inode pointers are placed into a NULL-terminated
380          * array embedded into struct inode_switch_wbs_context.  Otherwise
381          * an inode could be left in a non-consistent state.
382          */
383         struct bdi_writeback    *new_wb;
384         struct inode            *inodes[];
385 };
386
387 static void bdi_down_write_wb_switch_rwsem(struct backing_dev_info *bdi)
388 {
389         down_write(&bdi->wb_switch_rwsem);
390 }
391
392 static void bdi_up_write_wb_switch_rwsem(struct backing_dev_info *bdi)
393 {
394         up_write(&bdi->wb_switch_rwsem);
395 }
396
397 static bool inode_do_switch_wbs(struct inode *inode,
398                                 struct bdi_writeback *old_wb,
399                                 struct bdi_writeback *new_wb)
400 {
401         struct address_space *mapping = inode->i_mapping;
402         XA_STATE(xas, &mapping->i_pages, 0);
403         struct folio *folio;
404         bool switched = false;
405
406         spin_lock(&inode->i_lock);
407         xa_lock_irq(&mapping->i_pages);
408
409         /*
410          * Once I_FREEING or I_WILL_FREE are visible under i_lock, the eviction
411          * path owns the inode and we shouldn't modify ->i_io_list.
412          */
413         if (unlikely(inode->i_state & (I_FREEING | I_WILL_FREE)))
414                 goto skip_switch;
415
416         trace_inode_switch_wbs(inode, old_wb, new_wb);
417
418         /*
419          * Count and transfer stats.  Note that PAGECACHE_TAG_DIRTY points
420          * to possibly dirty folios while PAGECACHE_TAG_WRITEBACK points to
421          * folios actually under writeback.
422          */
423         xas_for_each_marked(&xas, folio, ULONG_MAX, PAGECACHE_TAG_DIRTY) {
424                 if (folio_test_dirty(folio)) {
425                         long nr = folio_nr_pages(folio);
426                         wb_stat_mod(old_wb, WB_RECLAIMABLE, -nr);
427                         wb_stat_mod(new_wb, WB_RECLAIMABLE, nr);
428                 }
429         }
430
431         xas_set(&xas, 0);
432         xas_for_each_marked(&xas, folio, ULONG_MAX, PAGECACHE_TAG_WRITEBACK) {
433                 long nr = folio_nr_pages(folio);
434                 WARN_ON_ONCE(!folio_test_writeback(folio));
435                 wb_stat_mod(old_wb, WB_WRITEBACK, -nr);
436                 wb_stat_mod(new_wb, WB_WRITEBACK, nr);
437         }
438
439         if (mapping_tagged(mapping, PAGECACHE_TAG_WRITEBACK)) {
440                 atomic_dec(&old_wb->writeback_inodes);
441                 atomic_inc(&new_wb->writeback_inodes);
442         }
443
444         wb_get(new_wb);
445
446         /*
447          * Transfer to @new_wb's IO list if necessary.  If the @inode is dirty,
448          * the specific list @inode was on is ignored and the @inode is put on
449          * ->b_dirty which is always correct including from ->b_dirty_time.
450          * The transfer preserves @inode->dirtied_when ordering.  If the @inode
451          * was clean, it means it was on the b_attached list, so move it onto
452          * the b_attached list of @new_wb.
453          */
454         if (!list_empty(&inode->i_io_list)) {
455                 inode->i_wb = new_wb;
456
457                 if (inode->i_state & I_DIRTY_ALL) {
458                         struct inode *pos;
459
460                         list_for_each_entry(pos, &new_wb->b_dirty, i_io_list)
461                                 if (time_after_eq(inode->dirtied_when,
462                                                   pos->dirtied_when))
463                                         break;
464                         inode_io_list_move_locked(inode, new_wb,
465                                                   pos->i_io_list.prev);
466                 } else {
467                         inode_cgwb_move_to_attached(inode, new_wb);
468                 }
469         } else {
470                 inode->i_wb = new_wb;
471         }
472
473         /* ->i_wb_frn updates may race wbc_detach_inode() but doesn't matter */
474         inode->i_wb_frn_winner = 0;
475         inode->i_wb_frn_avg_time = 0;
476         inode->i_wb_frn_history = 0;
477         switched = true;
478 skip_switch:
479         /*
480          * Paired with load_acquire in unlocked_inode_to_wb_begin() and
481          * ensures that the new wb is visible if they see !I_WB_SWITCH.
482          */
483         smp_store_release(&inode->i_state, inode->i_state & ~I_WB_SWITCH);
484
485         xa_unlock_irq(&mapping->i_pages);
486         spin_unlock(&inode->i_lock);
487
488         return switched;
489 }
490
491 static void inode_switch_wbs_work_fn(struct work_struct *work)
492 {
493         struct inode_switch_wbs_context *isw =
494                 container_of(to_rcu_work(work), struct inode_switch_wbs_context, work);
495         struct backing_dev_info *bdi = inode_to_bdi(isw->inodes[0]);
496         struct bdi_writeback *old_wb = isw->inodes[0]->i_wb;
497         struct bdi_writeback *new_wb = isw->new_wb;
498         unsigned long nr_switched = 0;
499         struct inode **inodep;
500
501         /*
502          * If @inode switches cgwb membership while sync_inodes_sb() is
503          * being issued, sync_inodes_sb() might miss it.  Synchronize.
504          */
505         down_read(&bdi->wb_switch_rwsem);
506
507         /*
508          * By the time control reaches here, RCU grace period has passed
509          * since I_WB_SWITCH assertion and all wb stat update transactions
510          * between unlocked_inode_to_wb_begin/end() are guaranteed to be
511          * synchronizing against the i_pages lock.
512          *
513          * Grabbing old_wb->list_lock, inode->i_lock and the i_pages lock
514          * gives us exclusion against all wb related operations on @inode
515          * including IO list manipulations and stat updates.
516          */
517         if (old_wb < new_wb) {
518                 spin_lock(&old_wb->list_lock);
519                 spin_lock_nested(&new_wb->list_lock, SINGLE_DEPTH_NESTING);
520         } else {
521                 spin_lock(&new_wb->list_lock);
522                 spin_lock_nested(&old_wb->list_lock, SINGLE_DEPTH_NESTING);
523         }
524
525         for (inodep = isw->inodes; *inodep; inodep++) {
526                 WARN_ON_ONCE((*inodep)->i_wb != old_wb);
527                 if (inode_do_switch_wbs(*inodep, old_wb, new_wb))
528                         nr_switched++;
529         }
530
531         spin_unlock(&new_wb->list_lock);
532         spin_unlock(&old_wb->list_lock);
533
534         up_read(&bdi->wb_switch_rwsem);
535
536         if (nr_switched) {
537                 wb_wakeup(new_wb);
538                 wb_put_many(old_wb, nr_switched);
539         }
540
541         for (inodep = isw->inodes; *inodep; inodep++)
542                 iput(*inodep);
543         wb_put(new_wb);
544         kfree(isw);
545         atomic_dec(&isw_nr_in_flight);
546 }
547
548 static bool inode_prepare_wbs_switch(struct inode *inode,
549                                      struct bdi_writeback *new_wb)
550 {
551         /*
552          * Paired with smp_mb() in cgroup_writeback_umount().
553          * isw_nr_in_flight must be increased before checking SB_ACTIVE and
554          * grabbing an inode, otherwise isw_nr_in_flight can be observed as 0
555          * in cgroup_writeback_umount() and the isw_wq will be not flushed.
556          */
557         smp_mb();
558
559         if (IS_DAX(inode))
560                 return false;
561
562         /* while holding I_WB_SWITCH, no one else can update the association */
563         spin_lock(&inode->i_lock);
564         if (!(inode->i_sb->s_flags & SB_ACTIVE) ||
565             inode->i_state & (I_WB_SWITCH | I_FREEING | I_WILL_FREE) ||
566             inode_to_wb(inode) == new_wb) {
567                 spin_unlock(&inode->i_lock);
568                 return false;
569         }
570         inode->i_state |= I_WB_SWITCH;
571         __iget(inode);
572         spin_unlock(&inode->i_lock);
573
574         return true;
575 }
576
577 /**
578  * inode_switch_wbs - change the wb association of an inode
579  * @inode: target inode
580  * @new_wb_id: ID of the new wb
581  *
582  * Switch @inode's wb association to the wb identified by @new_wb_id.  The
583  * switching is performed asynchronously and may fail silently.
584  */
585 static void inode_switch_wbs(struct inode *inode, int new_wb_id)
586 {
587         struct backing_dev_info *bdi = inode_to_bdi(inode);
588         struct cgroup_subsys_state *memcg_css;
589         struct inode_switch_wbs_context *isw;
590
591         /* noop if seems to be already in progress */
592         if (inode->i_state & I_WB_SWITCH)
593                 return;
594
595         /* avoid queueing a new switch if too many are already in flight */
596         if (atomic_read(&isw_nr_in_flight) > WB_FRN_MAX_IN_FLIGHT)
597                 return;
598
599         isw = kzalloc(struct_size(isw, inodes, 2), GFP_ATOMIC);
600         if (!isw)
601                 return;
602
603         atomic_inc(&isw_nr_in_flight);
604
605         /* find and pin the new wb */
606         rcu_read_lock();
607         memcg_css = css_from_id(new_wb_id, &memory_cgrp_subsys);
608         if (memcg_css && !css_tryget(memcg_css))
609                 memcg_css = NULL;
610         rcu_read_unlock();
611         if (!memcg_css)
612                 goto out_free;
613
614         isw->new_wb = wb_get_create(bdi, memcg_css, GFP_ATOMIC);
615         css_put(memcg_css);
616         if (!isw->new_wb)
617                 goto out_free;
618
619         if (!inode_prepare_wbs_switch(inode, isw->new_wb))
620                 goto out_free;
621
622         isw->inodes[0] = inode;
623
624         /*
625          * In addition to synchronizing among switchers, I_WB_SWITCH tells
626          * the RCU protected stat update paths to grab the i_page
627          * lock so that stat transfer can synchronize against them.
628          * Let's continue after I_WB_SWITCH is guaranteed to be visible.
629          */
630         INIT_RCU_WORK(&isw->work, inode_switch_wbs_work_fn);
631         queue_rcu_work(isw_wq, &isw->work);
632         return;
633
634 out_free:
635         atomic_dec(&isw_nr_in_flight);
636         if (isw->new_wb)
637                 wb_put(isw->new_wb);
638         kfree(isw);
639 }
640
641 static bool isw_prepare_wbs_switch(struct inode_switch_wbs_context *isw,
642                                    struct list_head *list, int *nr)
643 {
644         struct inode *inode;
645
646         list_for_each_entry(inode, list, i_io_list) {
647                 if (!inode_prepare_wbs_switch(inode, isw->new_wb))
648                         continue;
649
650                 isw->inodes[*nr] = inode;
651                 (*nr)++;
652
653                 if (*nr >= WB_MAX_INODES_PER_ISW - 1)
654                         return true;
655         }
656         return false;
657 }
658
659 /**
660  * cleanup_offline_cgwb - detach associated inodes
661  * @wb: target wb
662  *
663  * Switch all inodes attached to @wb to a nearest living ancestor's wb in order
664  * to eventually release the dying @wb.  Returns %true if not all inodes were
665  * switched and the function has to be restarted.
666  */
667 bool cleanup_offline_cgwb(struct bdi_writeback *wb)
668 {
669         struct cgroup_subsys_state *memcg_css;
670         struct inode_switch_wbs_context *isw;
671         int nr;
672         bool restart = false;
673
674         isw = kzalloc(struct_size(isw, inodes, WB_MAX_INODES_PER_ISW),
675                       GFP_KERNEL);
676         if (!isw)
677                 return restart;
678
679         atomic_inc(&isw_nr_in_flight);
680
681         for (memcg_css = wb->memcg_css->parent; memcg_css;
682              memcg_css = memcg_css->parent) {
683                 isw->new_wb = wb_get_create(wb->bdi, memcg_css, GFP_KERNEL);
684                 if (isw->new_wb)
685                         break;
686         }
687         if (unlikely(!isw->new_wb))
688                 isw->new_wb = &wb->bdi->wb; /* wb_get() is noop for bdi's wb */
689
690         nr = 0;
691         spin_lock(&wb->list_lock);
692         /*
693          * In addition to the inodes that have completed writeback, also switch
694          * cgwbs for those inodes only with dirty timestamps. Otherwise, those
695          * inodes won't be written back for a long time when lazytime is
696          * enabled, and thus pinning the dying cgwbs. It won't break the
697          * bandwidth restrictions, as writeback of inode metadata is not
698          * accounted for.
699          */
700         restart = isw_prepare_wbs_switch(isw, &wb->b_attached, &nr);
701         if (!restart)
702                 restart = isw_prepare_wbs_switch(isw, &wb->b_dirty_time, &nr);
703         spin_unlock(&wb->list_lock);
704
705         /* no attached inodes? bail out */
706         if (nr == 0) {
707                 atomic_dec(&isw_nr_in_flight);
708                 wb_put(isw->new_wb);
709                 kfree(isw);
710                 return restart;
711         }
712
713         /*
714          * In addition to synchronizing among switchers, I_WB_SWITCH tells
715          * the RCU protected stat update paths to grab the i_page
716          * lock so that stat transfer can synchronize against them.
717          * Let's continue after I_WB_SWITCH is guaranteed to be visible.
718          */
719         INIT_RCU_WORK(&isw->work, inode_switch_wbs_work_fn);
720         queue_rcu_work(isw_wq, &isw->work);
721
722         return restart;
723 }
724
725 /**
726  * wbc_attach_and_unlock_inode - associate wbc with target inode and unlock it
727  * @wbc: writeback_control of interest
728  * @inode: target inode
729  *
730  * @inode is locked and about to be written back under the control of @wbc.
731  * Record @inode's writeback context into @wbc and unlock the i_lock.  On
732  * writeback completion, wbc_detach_inode() should be called.  This is used
733  * to track the cgroup writeback context.
734  */
735 void wbc_attach_and_unlock_inode(struct writeback_control *wbc,
736                                  struct inode *inode)
737 {
738         if (!inode_cgwb_enabled(inode)) {
739                 spin_unlock(&inode->i_lock);
740                 return;
741         }
742
743         wbc->wb = inode_to_wb(inode);
744         wbc->inode = inode;
745
746         wbc->wb_id = wbc->wb->memcg_css->id;
747         wbc->wb_lcand_id = inode->i_wb_frn_winner;
748         wbc->wb_tcand_id = 0;
749         wbc->wb_bytes = 0;
750         wbc->wb_lcand_bytes = 0;
751         wbc->wb_tcand_bytes = 0;
752
753         wb_get(wbc->wb);
754         spin_unlock(&inode->i_lock);
755
756         /*
757          * A dying wb indicates that either the blkcg associated with the
758          * memcg changed or the associated memcg is dying.  In the first
759          * case, a replacement wb should already be available and we should
760          * refresh the wb immediately.  In the second case, trying to
761          * refresh will keep failing.
762          */
763         if (unlikely(wb_dying(wbc->wb) && !css_is_dying(wbc->wb->memcg_css)))
764                 inode_switch_wbs(inode, wbc->wb_id);
765 }
766 EXPORT_SYMBOL_GPL(wbc_attach_and_unlock_inode);
767
768 /**
769  * wbc_detach_inode - disassociate wbc from inode and perform foreign detection
770  * @wbc: writeback_control of the just finished writeback
771  *
772  * To be called after a writeback attempt of an inode finishes and undoes
773  * wbc_attach_and_unlock_inode().  Can be called under any context.
774  *
775  * As concurrent write sharing of an inode is expected to be very rare and
776  * memcg only tracks page ownership on first-use basis severely confining
777  * the usefulness of such sharing, cgroup writeback tracks ownership
778  * per-inode.  While the support for concurrent write sharing of an inode
779  * is deemed unnecessary, an inode being written to by different cgroups at
780  * different points in time is a lot more common, and, more importantly,
781  * charging only by first-use can too readily lead to grossly incorrect
782  * behaviors (single foreign page can lead to gigabytes of writeback to be
783  * incorrectly attributed).
784  *
785  * To resolve this issue, cgroup writeback detects the majority dirtier of
786  * an inode and transfers the ownership to it.  To avoid unnecessary
787  * oscillation, the detection mechanism keeps track of history and gives
788  * out the switch verdict only if the foreign usage pattern is stable over
789  * a certain amount of time and/or writeback attempts.
790  *
791  * On each writeback attempt, @wbc tries to detect the majority writer
792  * using Boyer-Moore majority vote algorithm.  In addition to the byte
793  * count from the majority voting, it also counts the bytes written for the
794  * current wb and the last round's winner wb (max of last round's current
795  * wb, the winner from two rounds ago, and the last round's majority
796  * candidate).  Keeping track of the historical winner helps the algorithm
797  * to semi-reliably detect the most active writer even when it's not the
798  * absolute majority.
799  *
800  * Once the winner of the round is determined, whether the winner is
801  * foreign or not and how much IO time the round consumed is recorded in
802  * inode->i_wb_frn_history.  If the amount of recorded foreign IO time is
803  * over a certain threshold, the switch verdict is given.
804  */
805 void wbc_detach_inode(struct writeback_control *wbc)
806 {
807         struct bdi_writeback *wb = wbc->wb;
808         struct inode *inode = wbc->inode;
809         unsigned long avg_time, max_bytes, max_time;
810         u16 history;
811         int max_id;
812
813         if (!wb)
814                 return;
815
816         history = inode->i_wb_frn_history;
817         avg_time = inode->i_wb_frn_avg_time;
818
819         /* pick the winner of this round */
820         if (wbc->wb_bytes >= wbc->wb_lcand_bytes &&
821             wbc->wb_bytes >= wbc->wb_tcand_bytes) {
822                 max_id = wbc->wb_id;
823                 max_bytes = wbc->wb_bytes;
824         } else if (wbc->wb_lcand_bytes >= wbc->wb_tcand_bytes) {
825                 max_id = wbc->wb_lcand_id;
826                 max_bytes = wbc->wb_lcand_bytes;
827         } else {
828                 max_id = wbc->wb_tcand_id;
829                 max_bytes = wbc->wb_tcand_bytes;
830         }
831
832         /*
833          * Calculate the amount of IO time the winner consumed and fold it
834          * into the running average kept per inode.  If the consumed IO
835          * time is lower than avag / WB_FRN_TIME_CUT_DIV, ignore it for
836          * deciding whether to switch or not.  This is to prevent one-off
837          * small dirtiers from skewing the verdict.
838          */
839         max_time = DIV_ROUND_UP((max_bytes >> PAGE_SHIFT) << WB_FRN_TIME_SHIFT,
840                                 wb->avg_write_bandwidth);
841         if (avg_time)
842                 avg_time += (max_time >> WB_FRN_TIME_AVG_SHIFT) -
843                             (avg_time >> WB_FRN_TIME_AVG_SHIFT);
844         else
845                 avg_time = max_time;    /* immediate catch up on first run */
846
847         if (max_time >= avg_time / WB_FRN_TIME_CUT_DIV) {
848                 int slots;
849
850                 /*
851                  * The switch verdict is reached if foreign wb's consume
852                  * more than a certain proportion of IO time in a
853                  * WB_FRN_TIME_PERIOD.  This is loosely tracked by 16 slot
854                  * history mask where each bit represents one sixteenth of
855                  * the period.  Determine the number of slots to shift into
856                  * history from @max_time.
857                  */
858                 slots = min(DIV_ROUND_UP(max_time, WB_FRN_HIST_UNIT),
859                             (unsigned long)WB_FRN_HIST_MAX_SLOTS);
860                 history <<= slots;
861                 if (wbc->wb_id != max_id)
862                         history |= (1U << slots) - 1;
863
864                 if (history)
865                         trace_inode_foreign_history(inode, wbc, history);
866
867                 /*
868                  * Switch if the current wb isn't the consistent winner.
869                  * If there are multiple closely competing dirtiers, the
870                  * inode may switch across them repeatedly over time, which
871                  * is okay.  The main goal is avoiding keeping an inode on
872                  * the wrong wb for an extended period of time.
873                  */
874                 if (hweight16(history) > WB_FRN_HIST_THR_SLOTS)
875                         inode_switch_wbs(inode, max_id);
876         }
877
878         /*
879          * Multiple instances of this function may race to update the
880          * following fields but we don't mind occassional inaccuracies.
881          */
882         inode->i_wb_frn_winner = max_id;
883         inode->i_wb_frn_avg_time = min(avg_time, (unsigned long)U16_MAX);
884         inode->i_wb_frn_history = history;
885
886         wb_put(wbc->wb);
887         wbc->wb = NULL;
888 }
889 EXPORT_SYMBOL_GPL(wbc_detach_inode);
890
891 /**
892  * wbc_account_cgroup_owner - account writeback to update inode cgroup ownership
893  * @wbc: writeback_control of the writeback in progress
894  * @page: page being written out
895  * @bytes: number of bytes being written out
896  *
897  * @bytes from @page are about to written out during the writeback
898  * controlled by @wbc.  Keep the book for foreign inode detection.  See
899  * wbc_detach_inode().
900  */
901 void wbc_account_cgroup_owner(struct writeback_control *wbc, struct page *page,
902                               size_t bytes)
903 {
904         struct folio *folio;
905         struct cgroup_subsys_state *css;
906         int id;
907
908         /*
909          * pageout() path doesn't attach @wbc to the inode being written
910          * out.  This is intentional as we don't want the function to block
911          * behind a slow cgroup.  Ultimately, we want pageout() to kick off
912          * regular writeback instead of writing things out itself.
913          */
914         if (!wbc->wb || wbc->no_cgroup_owner)
915                 return;
916
917         folio = page_folio(page);
918         css = mem_cgroup_css_from_folio(folio);
919         /* dead cgroups shouldn't contribute to inode ownership arbitration */
920         if (!(css->flags & CSS_ONLINE))
921                 return;
922
923         id = css->id;
924
925         if (id == wbc->wb_id) {
926                 wbc->wb_bytes += bytes;
927                 return;
928         }
929
930         if (id == wbc->wb_lcand_id)
931                 wbc->wb_lcand_bytes += bytes;
932
933         /* Boyer-Moore majority vote algorithm */
934         if (!wbc->wb_tcand_bytes)
935                 wbc->wb_tcand_id = id;
936         if (id == wbc->wb_tcand_id)
937                 wbc->wb_tcand_bytes += bytes;
938         else
939                 wbc->wb_tcand_bytes -= min(bytes, wbc->wb_tcand_bytes);
940 }
941 EXPORT_SYMBOL_GPL(wbc_account_cgroup_owner);
942
943 /**
944  * wb_split_bdi_pages - split nr_pages to write according to bandwidth
945  * @wb: target bdi_writeback to split @nr_pages to
946  * @nr_pages: number of pages to write for the whole bdi
947  *
948  * Split @wb's portion of @nr_pages according to @wb's write bandwidth in
949  * relation to the total write bandwidth of all wb's w/ dirty inodes on
950  * @wb->bdi.
951  */
952 static long wb_split_bdi_pages(struct bdi_writeback *wb, long nr_pages)
953 {
954         unsigned long this_bw = wb->avg_write_bandwidth;
955         unsigned long tot_bw = atomic_long_read(&wb->bdi->tot_write_bandwidth);
956
957         if (nr_pages == LONG_MAX)
958                 return LONG_MAX;
959
960         /*
961          * This may be called on clean wb's and proportional distribution
962          * may not make sense, just use the original @nr_pages in those
963          * cases.  In general, we wanna err on the side of writing more.
964          */
965         if (!tot_bw || this_bw >= tot_bw)
966                 return nr_pages;
967         else
968                 return DIV_ROUND_UP_ULL((u64)nr_pages * this_bw, tot_bw);
969 }
970
971 /**
972  * bdi_split_work_to_wbs - split a wb_writeback_work to all wb's of a bdi
973  * @bdi: target backing_dev_info
974  * @base_work: wb_writeback_work to issue
975  * @skip_if_busy: skip wb's which already have writeback in progress
976  *
977  * Split and issue @base_work to all wb's (bdi_writeback's) of @bdi which
978  * have dirty inodes.  If @base_work->nr_page isn't %LONG_MAX, it's
979  * distributed to the busy wbs according to each wb's proportion in the
980  * total active write bandwidth of @bdi.
981  */
982 static void bdi_split_work_to_wbs(struct backing_dev_info *bdi,
983                                   struct wb_writeback_work *base_work,
984                                   bool skip_if_busy)
985 {
986         struct bdi_writeback *last_wb = NULL;
987         struct bdi_writeback *wb = list_entry(&bdi->wb_list,
988                                               struct bdi_writeback, bdi_node);
989
990         might_sleep();
991 restart:
992         rcu_read_lock();
993         list_for_each_entry_continue_rcu(wb, &bdi->wb_list, bdi_node) {
994                 DEFINE_WB_COMPLETION(fallback_work_done, bdi);
995                 struct wb_writeback_work fallback_work;
996                 struct wb_writeback_work *work;
997                 long nr_pages;
998
999                 if (last_wb) {
1000                         wb_put(last_wb);
1001                         last_wb = NULL;
1002                 }
1003
1004                 /* SYNC_ALL writes out I_DIRTY_TIME too */
1005                 if (!wb_has_dirty_io(wb) &&
1006                     (base_work->sync_mode == WB_SYNC_NONE ||
1007                      list_empty(&wb->b_dirty_time)))
1008                         continue;
1009                 if (skip_if_busy && writeback_in_progress(wb))
1010                         continue;
1011
1012                 nr_pages = wb_split_bdi_pages(wb, base_work->nr_pages);
1013
1014                 work = kmalloc(sizeof(*work), GFP_ATOMIC);
1015                 if (work) {
1016                         *work = *base_work;
1017                         work->nr_pages = nr_pages;
1018                         work->auto_free = 1;
1019                         wb_queue_work(wb, work);
1020                         continue;
1021                 }
1022
1023                 /*
1024                  * If wb_tryget fails, the wb has been shutdown, skip it.
1025                  *
1026                  * Pin @wb so that it stays on @bdi->wb_list.  This allows
1027                  * continuing iteration from @wb after dropping and
1028                  * regrabbing rcu read lock.
1029                  */
1030                 if (!wb_tryget(wb))
1031                         continue;
1032
1033                 /* alloc failed, execute synchronously using on-stack fallback */
1034                 work = &fallback_work;
1035                 *work = *base_work;
1036                 work->nr_pages = nr_pages;
1037                 work->auto_free = 0;
1038                 work->done = &fallback_work_done;
1039
1040                 wb_queue_work(wb, work);
1041                 last_wb = wb;
1042
1043                 rcu_read_unlock();
1044                 wb_wait_for_completion(&fallback_work_done);
1045                 goto restart;
1046         }
1047         rcu_read_unlock();
1048
1049         if (last_wb)
1050                 wb_put(last_wb);
1051 }
1052
1053 /**
1054  * cgroup_writeback_by_id - initiate cgroup writeback from bdi and memcg IDs
1055  * @bdi_id: target bdi id
1056  * @memcg_id: target memcg css id
1057  * @reason: reason why some writeback work initiated
1058  * @done: target wb_completion
1059  *
1060  * Initiate flush of the bdi_writeback identified by @bdi_id and @memcg_id
1061  * with the specified parameters.
1062  */
1063 int cgroup_writeback_by_id(u64 bdi_id, int memcg_id,
1064                            enum wb_reason reason, struct wb_completion *done)
1065 {
1066         struct backing_dev_info *bdi;
1067         struct cgroup_subsys_state *memcg_css;
1068         struct bdi_writeback *wb;
1069         struct wb_writeback_work *work;
1070         unsigned long dirty;
1071         int ret;
1072
1073         /* lookup bdi and memcg */
1074         bdi = bdi_get_by_id(bdi_id);
1075         if (!bdi)
1076                 return -ENOENT;
1077
1078         rcu_read_lock();
1079         memcg_css = css_from_id(memcg_id, &memory_cgrp_subsys);
1080         if (memcg_css && !css_tryget(memcg_css))
1081                 memcg_css = NULL;
1082         rcu_read_unlock();
1083         if (!memcg_css) {
1084                 ret = -ENOENT;
1085                 goto out_bdi_put;
1086         }
1087
1088         /*
1089          * And find the associated wb.  If the wb isn't there already
1090          * there's nothing to flush, don't create one.
1091          */
1092         wb = wb_get_lookup(bdi, memcg_css);
1093         if (!wb) {
1094                 ret = -ENOENT;
1095                 goto out_css_put;
1096         }
1097
1098         /*
1099          * The caller is attempting to write out most of
1100          * the currently dirty pages.  Let's take the current dirty page
1101          * count and inflate it by 25% which should be large enough to
1102          * flush out most dirty pages while avoiding getting livelocked by
1103          * concurrent dirtiers.
1104          *
1105          * BTW the memcg stats are flushed periodically and this is best-effort
1106          * estimation, so some potential error is ok.
1107          */
1108         dirty = memcg_page_state(mem_cgroup_from_css(memcg_css), NR_FILE_DIRTY);
1109         dirty = dirty * 10 / 8;
1110
1111         /* issue the writeback work */
1112         work = kzalloc(sizeof(*work), GFP_NOWAIT | __GFP_NOWARN);
1113         if (work) {
1114                 work->nr_pages = dirty;
1115                 work->sync_mode = WB_SYNC_NONE;
1116                 work->range_cyclic = 1;
1117                 work->reason = reason;
1118                 work->done = done;
1119                 work->auto_free = 1;
1120                 wb_queue_work(wb, work);
1121                 ret = 0;
1122         } else {
1123                 ret = -ENOMEM;
1124         }
1125
1126         wb_put(wb);
1127 out_css_put:
1128         css_put(memcg_css);
1129 out_bdi_put:
1130         bdi_put(bdi);
1131         return ret;
1132 }
1133
1134 /**
1135  * cgroup_writeback_umount - flush inode wb switches for umount
1136  *
1137  * This function is called when a super_block is about to be destroyed and
1138  * flushes in-flight inode wb switches.  An inode wb switch goes through
1139  * RCU and then workqueue, so the two need to be flushed in order to ensure
1140  * that all previously scheduled switches are finished.  As wb switches are
1141  * rare occurrences and synchronize_rcu() can take a while, perform
1142  * flushing iff wb switches are in flight.
1143  */
1144 void cgroup_writeback_umount(void)
1145 {
1146         /*
1147          * SB_ACTIVE should be reliably cleared before checking
1148          * isw_nr_in_flight, see generic_shutdown_super().
1149          */
1150         smp_mb();
1151
1152         if (atomic_read(&isw_nr_in_flight)) {
1153                 /*
1154                  * Use rcu_barrier() to wait for all pending callbacks to
1155                  * ensure that all in-flight wb switches are in the workqueue.
1156                  */
1157                 rcu_barrier();
1158                 flush_workqueue(isw_wq);
1159         }
1160 }
1161
1162 static int __init cgroup_writeback_init(void)
1163 {
1164         isw_wq = alloc_workqueue("inode_switch_wbs", 0, 0);
1165         if (!isw_wq)
1166                 return -ENOMEM;
1167         return 0;
1168 }
1169 fs_initcall(cgroup_writeback_init);
1170
1171 #else   /* CONFIG_CGROUP_WRITEBACK */
1172
1173 static void bdi_down_write_wb_switch_rwsem(struct backing_dev_info *bdi) { }
1174 static void bdi_up_write_wb_switch_rwsem(struct backing_dev_info *bdi) { }
1175
1176 static void inode_cgwb_move_to_attached(struct inode *inode,
1177                                         struct bdi_writeback *wb)
1178 {
1179         assert_spin_locked(&wb->list_lock);
1180         assert_spin_locked(&inode->i_lock);
1181         WARN_ON_ONCE(inode->i_state & I_FREEING);
1182
1183         inode->i_state &= ~I_SYNC_QUEUED;
1184         list_del_init(&inode->i_io_list);
1185         wb_io_lists_depopulated(wb);
1186 }
1187
1188 static struct bdi_writeback *
1189 locked_inode_to_wb_and_lock_list(struct inode *inode)
1190         __releases(&inode->i_lock)
1191         __acquires(&wb->list_lock)
1192 {
1193         struct bdi_writeback *wb = inode_to_wb(inode);
1194
1195         spin_unlock(&inode->i_lock);
1196         spin_lock(&wb->list_lock);
1197         return wb;
1198 }
1199
1200 static struct bdi_writeback *inode_to_wb_and_lock_list(struct inode *inode)
1201         __acquires(&wb->list_lock)
1202 {
1203         struct bdi_writeback *wb = inode_to_wb(inode);
1204
1205         spin_lock(&wb->list_lock);
1206         return wb;
1207 }
1208
1209 static long wb_split_bdi_pages(struct bdi_writeback *wb, long nr_pages)
1210 {
1211         return nr_pages;
1212 }
1213
1214 static void bdi_split_work_to_wbs(struct backing_dev_info *bdi,
1215                                   struct wb_writeback_work *base_work,
1216                                   bool skip_if_busy)
1217 {
1218         might_sleep();
1219
1220         if (!skip_if_busy || !writeback_in_progress(&bdi->wb)) {
1221                 base_work->auto_free = 0;
1222                 wb_queue_work(&bdi->wb, base_work);
1223         }
1224 }
1225
1226 #endif  /* CONFIG_CGROUP_WRITEBACK */
1227
1228 /*
1229  * Add in the number of potentially dirty inodes, because each inode
1230  * write can dirty pagecache in the underlying blockdev.
1231  */
1232 static unsigned long get_nr_dirty_pages(void)
1233 {
1234         return global_node_page_state(NR_FILE_DIRTY) +
1235                 get_nr_dirty_inodes();
1236 }
1237
1238 static void wb_start_writeback(struct bdi_writeback *wb, enum wb_reason reason)
1239 {
1240         if (!wb_has_dirty_io(wb))
1241                 return;
1242
1243         /*
1244          * All callers of this function want to start writeback of all
1245          * dirty pages. Places like vmscan can call this at a very
1246          * high frequency, causing pointless allocations of tons of
1247          * work items and keeping the flusher threads busy retrieving
1248          * that work. Ensure that we only allow one of them pending and
1249          * inflight at the time.
1250          */
1251         if (test_bit(WB_start_all, &wb->state) ||
1252             test_and_set_bit(WB_start_all, &wb->state))
1253                 return;
1254
1255         wb->start_all_reason = reason;
1256         wb_wakeup(wb);
1257 }
1258
1259 /**
1260  * wb_start_background_writeback - start background writeback
1261  * @wb: bdi_writback to write from
1262  *
1263  * Description:
1264  *   This makes sure WB_SYNC_NONE background writeback happens. When
1265  *   this function returns, it is only guaranteed that for given wb
1266  *   some IO is happening if we are over background dirty threshold.
1267  *   Caller need not hold sb s_umount semaphore.
1268  */
1269 void wb_start_background_writeback(struct bdi_writeback *wb)
1270 {
1271         /*
1272          * We just wake up the flusher thread. It will perform background
1273          * writeback as soon as there is no other work to do.
1274          */
1275         trace_writeback_wake_background(wb);
1276         wb_wakeup(wb);
1277 }
1278
1279 /*
1280  * Remove the inode from the writeback list it is on.
1281  */
1282 void inode_io_list_del(struct inode *inode)
1283 {
1284         struct bdi_writeback *wb;
1285
1286         wb = inode_to_wb_and_lock_list(inode);
1287         spin_lock(&inode->i_lock);
1288
1289         inode->i_state &= ~I_SYNC_QUEUED;
1290         list_del_init(&inode->i_io_list);
1291         wb_io_lists_depopulated(wb);
1292
1293         spin_unlock(&inode->i_lock);
1294         spin_unlock(&wb->list_lock);
1295 }
1296 EXPORT_SYMBOL(inode_io_list_del);
1297
1298 /*
1299  * mark an inode as under writeback on the sb
1300  */
1301 void sb_mark_inode_writeback(struct inode *inode)
1302 {
1303         struct super_block *sb = inode->i_sb;
1304         unsigned long flags;
1305
1306         if (list_empty(&inode->i_wb_list)) {
1307                 spin_lock_irqsave(&sb->s_inode_wblist_lock, flags);
1308                 if (list_empty(&inode->i_wb_list)) {
1309                         list_add_tail(&inode->i_wb_list, &sb->s_inodes_wb);
1310                         trace_sb_mark_inode_writeback(inode);
1311                 }
1312                 spin_unlock_irqrestore(&sb->s_inode_wblist_lock, flags);
1313         }
1314 }
1315
1316 /*
1317  * clear an inode as under writeback on the sb
1318  */
1319 void sb_clear_inode_writeback(struct inode *inode)
1320 {
1321         struct super_block *sb = inode->i_sb;
1322         unsigned long flags;
1323
1324         if (!list_empty(&inode->i_wb_list)) {
1325                 spin_lock_irqsave(&sb->s_inode_wblist_lock, flags);
1326                 if (!list_empty(&inode->i_wb_list)) {
1327                         list_del_init(&inode->i_wb_list);
1328                         trace_sb_clear_inode_writeback(inode);
1329                 }
1330                 spin_unlock_irqrestore(&sb->s_inode_wblist_lock, flags);
1331         }
1332 }
1333
1334 /*
1335  * Redirty an inode: set its when-it-was dirtied timestamp and move it to the
1336  * furthest end of its superblock's dirty-inode list.
1337  *
1338  * Before stamping the inode's ->dirtied_when, we check to see whether it is
1339  * already the most-recently-dirtied inode on the b_dirty list.  If that is
1340  * the case then the inode must have been redirtied while it was being written
1341  * out and we don't reset its dirtied_when.
1342  */
1343 static void redirty_tail_locked(struct inode *inode, struct bdi_writeback *wb)
1344 {
1345         assert_spin_locked(&inode->i_lock);
1346
1347         inode->i_state &= ~I_SYNC_QUEUED;
1348         /*
1349          * When the inode is being freed just don't bother with dirty list
1350          * tracking. Flush worker will ignore this inode anyway and it will
1351          * trigger assertions in inode_io_list_move_locked().
1352          */
1353         if (inode->i_state & I_FREEING) {
1354                 list_del_init(&inode->i_io_list);
1355                 wb_io_lists_depopulated(wb);
1356                 return;
1357         }
1358         if (!list_empty(&wb->b_dirty)) {
1359                 struct inode *tail;
1360
1361                 tail = wb_inode(wb->b_dirty.next);
1362                 if (time_before(inode->dirtied_when, tail->dirtied_when))
1363                         inode->dirtied_when = jiffies;
1364         }
1365         inode_io_list_move_locked(inode, wb, &wb->b_dirty);
1366 }
1367
1368 static void redirty_tail(struct inode *inode, struct bdi_writeback *wb)
1369 {
1370         spin_lock(&inode->i_lock);
1371         redirty_tail_locked(inode, wb);
1372         spin_unlock(&inode->i_lock);
1373 }
1374
1375 /*
1376  * requeue inode for re-scanning after bdi->b_io list is exhausted.
1377  */
1378 static void requeue_io(struct inode *inode, struct bdi_writeback *wb)
1379 {
1380         inode_io_list_move_locked(inode, wb, &wb->b_more_io);
1381 }
1382
1383 static void inode_sync_complete(struct inode *inode)
1384 {
1385         inode->i_state &= ~I_SYNC;
1386         /* If inode is clean an unused, put it into LRU now... */
1387         inode_add_lru(inode);
1388         /* Waiters must see I_SYNC cleared before being woken up */
1389         smp_mb();
1390         wake_up_bit(&inode->i_state, __I_SYNC);
1391 }
1392
1393 static bool inode_dirtied_after(struct inode *inode, unsigned long t)
1394 {
1395         bool ret = time_after(inode->dirtied_when, t);
1396 #ifndef CONFIG_64BIT
1397         /*
1398          * For inodes being constantly redirtied, dirtied_when can get stuck.
1399          * It _appears_ to be in the future, but is actually in distant past.
1400          * This test is necessary to prevent such wrapped-around relative times
1401          * from permanently stopping the whole bdi writeback.
1402          */
1403         ret = ret && time_before_eq(inode->dirtied_when, jiffies);
1404 #endif
1405         return ret;
1406 }
1407
1408 /*
1409  * Move expired (dirtied before dirtied_before) dirty inodes from
1410  * @delaying_queue to @dispatch_queue.
1411  */
1412 static int move_expired_inodes(struct list_head *delaying_queue,
1413                                struct list_head *dispatch_queue,
1414                                unsigned long dirtied_before)
1415 {
1416         LIST_HEAD(tmp);
1417         struct list_head *pos, *node;
1418         struct super_block *sb = NULL;
1419         struct inode *inode;
1420         int do_sb_sort = 0;
1421         int moved = 0;
1422
1423         while (!list_empty(delaying_queue)) {
1424                 inode = wb_inode(delaying_queue->prev);
1425                 if (inode_dirtied_after(inode, dirtied_before))
1426                         break;
1427                 spin_lock(&inode->i_lock);
1428                 list_move(&inode->i_io_list, &tmp);
1429                 moved++;
1430                 inode->i_state |= I_SYNC_QUEUED;
1431                 spin_unlock(&inode->i_lock);
1432                 if (sb_is_blkdev_sb(inode->i_sb))
1433                         continue;
1434                 if (sb && sb != inode->i_sb)
1435                         do_sb_sort = 1;
1436                 sb = inode->i_sb;
1437         }
1438
1439         /* just one sb in list, splice to dispatch_queue and we're done */
1440         if (!do_sb_sort) {
1441                 list_splice(&tmp, dispatch_queue);
1442                 goto out;
1443         }
1444
1445         /*
1446          * Although inode's i_io_list is moved from 'tmp' to 'dispatch_queue',
1447          * we don't take inode->i_lock here because it is just a pointless overhead.
1448          * Inode is already marked as I_SYNC_QUEUED so writeback list handling is
1449          * fully under our control.
1450          */
1451         while (!list_empty(&tmp)) {
1452                 sb = wb_inode(tmp.prev)->i_sb;
1453                 list_for_each_prev_safe(pos, node, &tmp) {
1454                         inode = wb_inode(pos);
1455                         if (inode->i_sb == sb)
1456                                 list_move(&inode->i_io_list, dispatch_queue);
1457                 }
1458         }
1459 out:
1460         return moved;
1461 }
1462
1463 /*
1464  * Queue all expired dirty inodes for io, eldest first.
1465  * Before
1466  *         newly dirtied     b_dirty    b_io    b_more_io
1467  *         =============>    gf         edc     BA
1468  * After
1469  *         newly dirtied     b_dirty    b_io    b_more_io
1470  *         =============>    g          fBAedc
1471  *                                           |
1472  *                                           +--> dequeue for IO
1473  */
1474 static void queue_io(struct bdi_writeback *wb, struct wb_writeback_work *work,
1475                      unsigned long dirtied_before)
1476 {
1477         int moved;
1478         unsigned long time_expire_jif = dirtied_before;
1479
1480         assert_spin_locked(&wb->list_lock);
1481         list_splice_init(&wb->b_more_io, &wb->b_io);
1482         moved = move_expired_inodes(&wb->b_dirty, &wb->b_io, dirtied_before);
1483         if (!work->for_sync)
1484                 time_expire_jif = jiffies - dirtytime_expire_interval * HZ;
1485         moved += move_expired_inodes(&wb->b_dirty_time, &wb->b_io,
1486                                      time_expire_jif);
1487         if (moved)
1488                 wb_io_lists_populated(wb);
1489         trace_writeback_queue_io(wb, work, dirtied_before, moved);
1490 }
1491
1492 static int write_inode(struct inode *inode, struct writeback_control *wbc)
1493 {
1494         int ret;
1495
1496         if (inode->i_sb->s_op->write_inode && !is_bad_inode(inode)) {
1497                 trace_writeback_write_inode_start(inode, wbc);
1498                 ret = inode->i_sb->s_op->write_inode(inode, wbc);
1499                 trace_writeback_write_inode(inode, wbc);
1500                 return ret;
1501         }
1502         return 0;
1503 }
1504
1505 /*
1506  * Wait for writeback on an inode to complete. Called with i_lock held.
1507  * Caller must make sure inode cannot go away when we drop i_lock.
1508  */
1509 static void __inode_wait_for_writeback(struct inode *inode)
1510         __releases(inode->i_lock)
1511         __acquires(inode->i_lock)
1512 {
1513         DEFINE_WAIT_BIT(wq, &inode->i_state, __I_SYNC);
1514         wait_queue_head_t *wqh;
1515
1516         wqh = bit_waitqueue(&inode->i_state, __I_SYNC);
1517         while (inode->i_state & I_SYNC) {
1518                 spin_unlock(&inode->i_lock);
1519                 __wait_on_bit(wqh, &wq, bit_wait,
1520                               TASK_UNINTERRUPTIBLE);
1521                 spin_lock(&inode->i_lock);
1522         }
1523 }
1524
1525 /*
1526  * Wait for writeback on an inode to complete. Caller must have inode pinned.
1527  */
1528 void inode_wait_for_writeback(struct inode *inode)
1529 {
1530         spin_lock(&inode->i_lock);
1531         __inode_wait_for_writeback(inode);
1532         spin_unlock(&inode->i_lock);
1533 }
1534
1535 /*
1536  * Sleep until I_SYNC is cleared. This function must be called with i_lock
1537  * held and drops it. It is aimed for callers not holding any inode reference
1538  * so once i_lock is dropped, inode can go away.
1539  */
1540 static void inode_sleep_on_writeback(struct inode *inode)
1541         __releases(inode->i_lock)
1542 {
1543         DEFINE_WAIT(wait);
1544         wait_queue_head_t *wqh = bit_waitqueue(&inode->i_state, __I_SYNC);
1545         int sleep;
1546
1547         prepare_to_wait(wqh, &wait, TASK_UNINTERRUPTIBLE);
1548         sleep = inode->i_state & I_SYNC;
1549         spin_unlock(&inode->i_lock);
1550         if (sleep)
1551                 schedule();
1552         finish_wait(wqh, &wait);
1553 }
1554
1555 /*
1556  * Find proper writeback list for the inode depending on its current state and
1557  * possibly also change of its state while we were doing writeback.  Here we
1558  * handle things such as livelock prevention or fairness of writeback among
1559  * inodes. This function can be called only by flusher thread - noone else
1560  * processes all inodes in writeback lists and requeueing inodes behind flusher
1561  * thread's back can have unexpected consequences.
1562  */
1563 static void requeue_inode(struct inode *inode, struct bdi_writeback *wb,
1564                           struct writeback_control *wbc)
1565 {
1566         if (inode->i_state & I_FREEING)
1567                 return;
1568
1569         /*
1570          * Sync livelock prevention. Each inode is tagged and synced in one
1571          * shot. If still dirty, it will be redirty_tail()'ed below.  Update
1572          * the dirty time to prevent enqueue and sync it again.
1573          */
1574         if ((inode->i_state & I_DIRTY) &&
1575             (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages))
1576                 inode->dirtied_when = jiffies;
1577
1578         if (wbc->pages_skipped) {
1579                 /*
1580                  * Writeback is not making progress due to locked buffers.
1581                  * Skip this inode for now. Although having skipped pages
1582                  * is odd for clean inodes, it can happen for some
1583                  * filesystems so handle that gracefully.
1584                  */
1585                 if (inode->i_state & I_DIRTY_ALL)
1586                         redirty_tail_locked(inode, wb);
1587                 else
1588                         inode_cgwb_move_to_attached(inode, wb);
1589                 return;
1590         }
1591
1592         if (mapping_tagged(inode->i_mapping, PAGECACHE_TAG_DIRTY)) {
1593                 /*
1594                  * We didn't write back all the pages.  nfs_writepages()
1595                  * sometimes bales out without doing anything.
1596                  */
1597                 if (wbc->nr_to_write <= 0) {
1598                         /* Slice used up. Queue for next turn. */
1599                         requeue_io(inode, wb);
1600                 } else {
1601                         /*
1602                          * Writeback blocked by something other than
1603                          * congestion. Delay the inode for some time to
1604                          * avoid spinning on the CPU (100% iowait)
1605                          * retrying writeback of the dirty page/inode
1606                          * that cannot be performed immediately.
1607                          */
1608                         redirty_tail_locked(inode, wb);
1609                 }
1610         } else if (inode->i_state & I_DIRTY) {
1611                 /*
1612                  * Filesystems can dirty the inode during writeback operations,
1613                  * such as delayed allocation during submission or metadata
1614                  * updates after data IO completion.
1615                  */
1616                 redirty_tail_locked(inode, wb);
1617         } else if (inode->i_state & I_DIRTY_TIME) {
1618                 inode->dirtied_when = jiffies;
1619                 inode_io_list_move_locked(inode, wb, &wb->b_dirty_time);
1620                 inode->i_state &= ~I_SYNC_QUEUED;
1621         } else {
1622                 /* The inode is clean. Remove from writeback lists. */
1623                 inode_cgwb_move_to_attached(inode, wb);
1624         }
1625 }
1626
1627 /*
1628  * Write out an inode and its dirty pages (or some of its dirty pages, depending
1629  * on @wbc->nr_to_write), and clear the relevant dirty flags from i_state.
1630  *
1631  * This doesn't remove the inode from the writeback list it is on, except
1632  * potentially to move it from b_dirty_time to b_dirty due to timestamp
1633  * expiration.  The caller is otherwise responsible for writeback list handling.
1634  *
1635  * The caller is also responsible for setting the I_SYNC flag beforehand and
1636  * calling inode_sync_complete() to clear it afterwards.
1637  */
1638 static int
1639 __writeback_single_inode(struct inode *inode, struct writeback_control *wbc)
1640 {
1641         struct address_space *mapping = inode->i_mapping;
1642         long nr_to_write = wbc->nr_to_write;
1643         unsigned dirty;
1644         int ret;
1645
1646         WARN_ON(!(inode->i_state & I_SYNC));
1647
1648         trace_writeback_single_inode_start(inode, wbc, nr_to_write);
1649
1650         ret = do_writepages(mapping, wbc);
1651
1652         /*
1653          * Make sure to wait on the data before writing out the metadata.
1654          * This is important for filesystems that modify metadata on data
1655          * I/O completion. We don't do it for sync(2) writeback because it has a
1656          * separate, external IO completion path and ->sync_fs for guaranteeing
1657          * inode metadata is written back correctly.
1658          */
1659         if (wbc->sync_mode == WB_SYNC_ALL && !wbc->for_sync) {
1660                 int err = filemap_fdatawait(mapping);
1661                 if (ret == 0)
1662                         ret = err;
1663         }
1664
1665         /*
1666          * If the inode has dirty timestamps and we need to write them, call
1667          * mark_inode_dirty_sync() to notify the filesystem about it and to
1668          * change I_DIRTY_TIME into I_DIRTY_SYNC.
1669          */
1670         if ((inode->i_state & I_DIRTY_TIME) &&
1671             (wbc->sync_mode == WB_SYNC_ALL ||
1672              time_after(jiffies, inode->dirtied_time_when +
1673                         dirtytime_expire_interval * HZ))) {
1674                 trace_writeback_lazytime(inode);
1675                 mark_inode_dirty_sync(inode);
1676         }
1677
1678         /*
1679          * Get and clear the dirty flags from i_state.  This needs to be done
1680          * after calling writepages because some filesystems may redirty the
1681          * inode during writepages due to delalloc.  It also needs to be done
1682          * after handling timestamp expiration, as that may dirty the inode too.
1683          */
1684         spin_lock(&inode->i_lock);
1685         dirty = inode->i_state & I_DIRTY;
1686         inode->i_state &= ~dirty;
1687
1688         /*
1689          * Paired with smp_mb() in __mark_inode_dirty().  This allows
1690          * __mark_inode_dirty() to test i_state without grabbing i_lock -
1691          * either they see the I_DIRTY bits cleared or we see the dirtied
1692          * inode.
1693          *
1694          * I_DIRTY_PAGES is always cleared together above even if @mapping
1695          * still has dirty pages.  The flag is reinstated after smp_mb() if
1696          * necessary.  This guarantees that either __mark_inode_dirty()
1697          * sees clear I_DIRTY_PAGES or we see PAGECACHE_TAG_DIRTY.
1698          */
1699         smp_mb();
1700
1701         if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
1702                 inode->i_state |= I_DIRTY_PAGES;
1703         else if (unlikely(inode->i_state & I_PINNING_NETFS_WB)) {
1704                 if (!(inode->i_state & I_DIRTY_PAGES)) {
1705                         inode->i_state &= ~I_PINNING_NETFS_WB;
1706                         wbc->unpinned_netfs_wb = true;
1707                         dirty |= I_PINNING_NETFS_WB; /* Cause write_inode */
1708                 }
1709         }
1710
1711         spin_unlock(&inode->i_lock);
1712
1713         /* Don't write the inode if only I_DIRTY_PAGES was set */
1714         if (dirty & ~I_DIRTY_PAGES) {
1715                 int err = write_inode(inode, wbc);
1716                 if (ret == 0)
1717                         ret = err;
1718         }
1719         wbc->unpinned_netfs_wb = false;
1720         trace_writeback_single_inode(inode, wbc, nr_to_write);
1721         return ret;
1722 }
1723
1724 /*
1725  * Write out an inode's dirty data and metadata on-demand, i.e. separately from
1726  * the regular batched writeback done by the flusher threads in
1727  * writeback_sb_inodes().  @wbc controls various aspects of the write, such as
1728  * whether it is a data-integrity sync (%WB_SYNC_ALL) or not (%WB_SYNC_NONE).
1729  *
1730  * To prevent the inode from going away, either the caller must have a reference
1731  * to the inode, or the inode must have I_WILL_FREE or I_FREEING set.
1732  */
1733 static int writeback_single_inode(struct inode *inode,
1734                                   struct writeback_control *wbc)
1735 {
1736         struct bdi_writeback *wb;
1737         int ret = 0;
1738
1739         spin_lock(&inode->i_lock);
1740         if (!atomic_read(&inode->i_count))
1741                 WARN_ON(!(inode->i_state & (I_WILL_FREE|I_FREEING)));
1742         else
1743                 WARN_ON(inode->i_state & I_WILL_FREE);
1744
1745         if (inode->i_state & I_SYNC) {
1746                 /*
1747                  * Writeback is already running on the inode.  For WB_SYNC_NONE,
1748                  * that's enough and we can just return.  For WB_SYNC_ALL, we
1749                  * must wait for the existing writeback to complete, then do
1750                  * writeback again if there's anything left.
1751                  */
1752                 if (wbc->sync_mode != WB_SYNC_ALL)
1753                         goto out;
1754                 __inode_wait_for_writeback(inode);
1755         }
1756         WARN_ON(inode->i_state & I_SYNC);
1757         /*
1758          * If the inode is already fully clean, then there's nothing to do.
1759          *
1760          * For data-integrity syncs we also need to check whether any pages are
1761          * still under writeback, e.g. due to prior WB_SYNC_NONE writeback.  If
1762          * there are any such pages, we'll need to wait for them.
1763          */
1764         if (!(inode->i_state & I_DIRTY_ALL) &&
1765             (wbc->sync_mode != WB_SYNC_ALL ||
1766              !mapping_tagged(inode->i_mapping, PAGECACHE_TAG_WRITEBACK)))
1767                 goto out;
1768         inode->i_state |= I_SYNC;
1769         wbc_attach_and_unlock_inode(wbc, inode);
1770
1771         ret = __writeback_single_inode(inode, wbc);
1772
1773         wbc_detach_inode(wbc);
1774
1775         wb = inode_to_wb_and_lock_list(inode);
1776         spin_lock(&inode->i_lock);
1777         /*
1778          * If the inode is freeing, its i_io_list shoudn't be updated
1779          * as it can be finally deleted at this moment.
1780          */
1781         if (!(inode->i_state & I_FREEING)) {
1782                 /*
1783                  * If the inode is now fully clean, then it can be safely
1784                  * removed from its writeback list (if any). Otherwise the
1785                  * flusher threads are responsible for the writeback lists.
1786                  */
1787                 if (!(inode->i_state & I_DIRTY_ALL))
1788                         inode_cgwb_move_to_attached(inode, wb);
1789                 else if (!(inode->i_state & I_SYNC_QUEUED)) {
1790                         if ((inode->i_state & I_DIRTY))
1791                                 redirty_tail_locked(inode, wb);
1792                         else if (inode->i_state & I_DIRTY_TIME) {
1793                                 inode->dirtied_when = jiffies;
1794                                 inode_io_list_move_locked(inode,
1795                                                           wb,
1796                                                           &wb->b_dirty_time);
1797                         }
1798                 }
1799         }
1800
1801         spin_unlock(&wb->list_lock);
1802         inode_sync_complete(inode);
1803 out:
1804         spin_unlock(&inode->i_lock);
1805         return ret;
1806 }
1807
1808 static long writeback_chunk_size(struct bdi_writeback *wb,
1809                                  struct wb_writeback_work *work)
1810 {
1811         long pages;
1812
1813         /*
1814          * WB_SYNC_ALL mode does livelock avoidance by syncing dirty
1815          * inodes/pages in one big loop. Setting wbc.nr_to_write=LONG_MAX
1816          * here avoids calling into writeback_inodes_wb() more than once.
1817          *
1818          * The intended call sequence for WB_SYNC_ALL writeback is:
1819          *
1820          *      wb_writeback()
1821          *          writeback_sb_inodes()       <== called only once
1822          *              write_cache_pages()     <== called once for each inode
1823          *                   (quickly) tag currently dirty pages
1824          *                   (maybe slowly) sync all tagged pages
1825          */
1826         if (work->sync_mode == WB_SYNC_ALL || work->tagged_writepages)
1827                 pages = LONG_MAX;
1828         else {
1829                 pages = min(wb->avg_write_bandwidth / 2,
1830                             global_wb_domain.dirty_limit / DIRTY_SCOPE);
1831                 pages = min(pages, work->nr_pages);
1832                 pages = round_down(pages + MIN_WRITEBACK_PAGES,
1833                                    MIN_WRITEBACK_PAGES);
1834         }
1835
1836         return pages;
1837 }
1838
1839 /*
1840  * Write a portion of b_io inodes which belong to @sb.
1841  *
1842  * Return the number of pages and/or inodes written.
1843  *
1844  * NOTE! This is called with wb->list_lock held, and will
1845  * unlock and relock that for each inode it ends up doing
1846  * IO for.
1847  */
1848 static long writeback_sb_inodes(struct super_block *sb,
1849                                 struct bdi_writeback *wb,
1850                                 struct wb_writeback_work *work)
1851 {
1852         struct writeback_control wbc = {
1853                 .sync_mode              = work->sync_mode,
1854                 .tagged_writepages      = work->tagged_writepages,
1855                 .for_kupdate            = work->for_kupdate,
1856                 .for_background         = work->for_background,
1857                 .for_sync               = work->for_sync,
1858                 .range_cyclic           = work->range_cyclic,
1859                 .range_start            = 0,
1860                 .range_end              = LLONG_MAX,
1861         };
1862         unsigned long start_time = jiffies;
1863         long write_chunk;
1864         long total_wrote = 0;  /* count both pages and inodes */
1865
1866         while (!list_empty(&wb->b_io)) {
1867                 struct inode *inode = wb_inode(wb->b_io.prev);
1868                 struct bdi_writeback *tmp_wb;
1869                 long wrote;
1870
1871                 if (inode->i_sb != sb) {
1872                         if (work->sb) {
1873                                 /*
1874                                  * We only want to write back data for this
1875                                  * superblock, move all inodes not belonging
1876                                  * to it back onto the dirty list.
1877                                  */
1878                                 redirty_tail(inode, wb);
1879                                 continue;
1880                         }
1881
1882                         /*
1883                          * The inode belongs to a different superblock.
1884                          * Bounce back to the caller to unpin this and
1885                          * pin the next superblock.
1886                          */
1887                         break;
1888                 }
1889
1890                 /*
1891                  * Don't bother with new inodes or inodes being freed, first
1892                  * kind does not need periodic writeout yet, and for the latter
1893                  * kind writeout is handled by the freer.
1894                  */
1895                 spin_lock(&inode->i_lock);
1896                 if (inode->i_state & (I_NEW | I_FREEING | I_WILL_FREE)) {
1897                         redirty_tail_locked(inode, wb);
1898                         spin_unlock(&inode->i_lock);
1899                         continue;
1900                 }
1901                 if ((inode->i_state & I_SYNC) && wbc.sync_mode != WB_SYNC_ALL) {
1902                         /*
1903                          * If this inode is locked for writeback and we are not
1904                          * doing writeback-for-data-integrity, move it to
1905                          * b_more_io so that writeback can proceed with the
1906                          * other inodes on s_io.
1907                          *
1908                          * We'll have another go at writing back this inode
1909                          * when we completed a full scan of b_io.
1910                          */
1911                         requeue_io(inode, wb);
1912                         spin_unlock(&inode->i_lock);
1913                         trace_writeback_sb_inodes_requeue(inode);
1914                         continue;
1915                 }
1916                 spin_unlock(&wb->list_lock);
1917
1918                 /*
1919                  * We already requeued the inode if it had I_SYNC set and we
1920                  * are doing WB_SYNC_NONE writeback. So this catches only the
1921                  * WB_SYNC_ALL case.
1922                  */
1923                 if (inode->i_state & I_SYNC) {
1924                         /* Wait for I_SYNC. This function drops i_lock... */
1925                         inode_sleep_on_writeback(inode);
1926                         /* Inode may be gone, start again */
1927                         spin_lock(&wb->list_lock);
1928                         continue;
1929                 }
1930                 inode->i_state |= I_SYNC;
1931                 wbc_attach_and_unlock_inode(&wbc, inode);
1932
1933                 write_chunk = writeback_chunk_size(wb, work);
1934                 wbc.nr_to_write = write_chunk;
1935                 wbc.pages_skipped = 0;
1936
1937                 /*
1938                  * We use I_SYNC to pin the inode in memory. While it is set
1939                  * evict_inode() will wait so the inode cannot be freed.
1940                  */
1941                 __writeback_single_inode(inode, &wbc);
1942
1943                 wbc_detach_inode(&wbc);
1944                 work->nr_pages -= write_chunk - wbc.nr_to_write;
1945                 wrote = write_chunk - wbc.nr_to_write - wbc.pages_skipped;
1946                 wrote = wrote < 0 ? 0 : wrote;
1947                 total_wrote += wrote;
1948
1949                 if (need_resched()) {
1950                         /*
1951                          * We're trying to balance between building up a nice
1952                          * long list of IOs to improve our merge rate, and
1953                          * getting those IOs out quickly for anyone throttling
1954                          * in balance_dirty_pages().  cond_resched() doesn't
1955                          * unplug, so get our IOs out the door before we
1956                          * give up the CPU.
1957                          */
1958                         blk_flush_plug(current->plug, false);
1959                         cond_resched();
1960                 }
1961
1962                 /*
1963                  * Requeue @inode if still dirty.  Be careful as @inode may
1964                  * have been switched to another wb in the meantime.
1965                  */
1966                 tmp_wb = inode_to_wb_and_lock_list(inode);
1967                 spin_lock(&inode->i_lock);
1968                 if (!(inode->i_state & I_DIRTY_ALL))
1969                         total_wrote++;
1970                 requeue_inode(inode, tmp_wb, &wbc);
1971                 inode_sync_complete(inode);
1972                 spin_unlock(&inode->i_lock);
1973
1974                 if (unlikely(tmp_wb != wb)) {
1975                         spin_unlock(&tmp_wb->list_lock);
1976                         spin_lock(&wb->list_lock);
1977                 }
1978
1979                 /*
1980                  * bail out to wb_writeback() often enough to check
1981                  * background threshold and other termination conditions.
1982                  */
1983                 if (total_wrote) {
1984                         if (time_is_before_jiffies(start_time + HZ / 10UL))
1985                                 break;
1986                         if (work->nr_pages <= 0)
1987                                 break;
1988                 }
1989         }
1990         return total_wrote;
1991 }
1992
1993 static long __writeback_inodes_wb(struct bdi_writeback *wb,
1994                                   struct wb_writeback_work *work)
1995 {
1996         unsigned long start_time = jiffies;
1997         long wrote = 0;
1998
1999         while (!list_empty(&wb->b_io)) {
2000                 struct inode *inode = wb_inode(wb->b_io.prev);
2001                 struct super_block *sb = inode->i_sb;
2002
2003                 if (!super_trylock_shared(sb)) {
2004                         /*
2005                          * super_trylock_shared() may fail consistently due to
2006                          * s_umount being grabbed by someone else. Don't use
2007                          * requeue_io() to avoid busy retrying the inode/sb.
2008                          */
2009                         redirty_tail(inode, wb);
2010                         continue;
2011                 }
2012                 wrote += writeback_sb_inodes(sb, wb, work);
2013                 up_read(&sb->s_umount);
2014
2015                 /* refer to the same tests at the end of writeback_sb_inodes */
2016                 if (wrote) {
2017                         if (time_is_before_jiffies(start_time + HZ / 10UL))
2018                                 break;
2019                         if (work->nr_pages <= 0)
2020                                 break;
2021                 }
2022         }
2023         /* Leave any unwritten inodes on b_io */
2024         return wrote;
2025 }
2026
2027 static long writeback_inodes_wb(struct bdi_writeback *wb, long nr_pages,
2028                                 enum wb_reason reason)
2029 {
2030         struct wb_writeback_work work = {
2031                 .nr_pages       = nr_pages,
2032                 .sync_mode      = WB_SYNC_NONE,
2033                 .range_cyclic   = 1,
2034                 .reason         = reason,
2035         };
2036         struct blk_plug plug;
2037
2038         blk_start_plug(&plug);
2039         spin_lock(&wb->list_lock);
2040         if (list_empty(&wb->b_io))
2041                 queue_io(wb, &work, jiffies);
2042         __writeback_inodes_wb(wb, &work);
2043         spin_unlock(&wb->list_lock);
2044         blk_finish_plug(&plug);
2045
2046         return nr_pages - work.nr_pages;
2047 }
2048
2049 /*
2050  * Explicit flushing or periodic writeback of "old" data.
2051  *
2052  * Define "old": the first time one of an inode's pages is dirtied, we mark the
2053  * dirtying-time in the inode's address_space.  So this periodic writeback code
2054  * just walks the superblock inode list, writing back any inodes which are
2055  * older than a specific point in time.
2056  *
2057  * Try to run once per dirty_writeback_interval.  But if a writeback event
2058  * takes longer than a dirty_writeback_interval interval, then leave a
2059  * one-second gap.
2060  *
2061  * dirtied_before takes precedence over nr_to_write.  So we'll only write back
2062  * all dirty pages if they are all attached to "old" mappings.
2063  */
2064 static long wb_writeback(struct bdi_writeback *wb,
2065                          struct wb_writeback_work *work)
2066 {
2067         long nr_pages = work->nr_pages;
2068         unsigned long dirtied_before = jiffies;
2069         struct inode *inode;
2070         long progress;
2071         struct blk_plug plug;
2072
2073         blk_start_plug(&plug);
2074         for (;;) {
2075                 /*
2076                  * Stop writeback when nr_pages has been consumed
2077                  */
2078                 if (work->nr_pages <= 0)
2079                         break;
2080
2081                 /*
2082                  * Background writeout and kupdate-style writeback may
2083                  * run forever. Stop them if there is other work to do
2084                  * so that e.g. sync can proceed. They'll be restarted
2085                  * after the other works are all done.
2086                  */
2087                 if ((work->for_background || work->for_kupdate) &&
2088                     !list_empty(&wb->work_list))
2089                         break;
2090
2091                 /*
2092                  * For background writeout, stop when we are below the
2093                  * background dirty threshold
2094                  */
2095                 if (work->for_background && !wb_over_bg_thresh(wb))
2096                         break;
2097
2098
2099                 spin_lock(&wb->list_lock);
2100
2101                 /*
2102                  * Kupdate and background works are special and we want to
2103                  * include all inodes that need writing. Livelock avoidance is
2104                  * handled by these works yielding to any other work so we are
2105                  * safe.
2106                  */
2107                 if (work->for_kupdate) {
2108                         dirtied_before = jiffies -
2109                                 msecs_to_jiffies(dirty_expire_interval * 10);
2110                 } else if (work->for_background)
2111                         dirtied_before = jiffies;
2112
2113                 trace_writeback_start(wb, work);
2114                 if (list_empty(&wb->b_io))
2115                         queue_io(wb, work, dirtied_before);
2116                 if (work->sb)
2117                         progress = writeback_sb_inodes(work->sb, wb, work);
2118                 else
2119                         progress = __writeback_inodes_wb(wb, work);
2120                 trace_writeback_written(wb, work);
2121
2122                 /*
2123                  * Did we write something? Try for more
2124                  *
2125                  * Dirty inodes are moved to b_io for writeback in batches.
2126                  * The completion of the current batch does not necessarily
2127                  * mean the overall work is done. So we keep looping as long
2128                  * as made some progress on cleaning pages or inodes.
2129                  */
2130                 if (progress) {
2131                         spin_unlock(&wb->list_lock);
2132                         continue;
2133                 }
2134
2135                 /*
2136                  * No more inodes for IO, bail
2137                  */
2138                 if (list_empty(&wb->b_more_io)) {
2139                         spin_unlock(&wb->list_lock);
2140                         break;
2141                 }
2142
2143                 /*
2144                  * Nothing written. Wait for some inode to
2145                  * become available for writeback. Otherwise
2146                  * we'll just busyloop.
2147                  */
2148                 trace_writeback_wait(wb, work);
2149                 inode = wb_inode(wb->b_more_io.prev);
2150                 spin_lock(&inode->i_lock);
2151                 spin_unlock(&wb->list_lock);
2152                 /* This function drops i_lock... */
2153                 inode_sleep_on_writeback(inode);
2154         }
2155         blk_finish_plug(&plug);
2156
2157         return nr_pages - work->nr_pages;
2158 }
2159
2160 /*
2161  * Return the next wb_writeback_work struct that hasn't been processed yet.
2162  */
2163 static struct wb_writeback_work *get_next_work_item(struct bdi_writeback *wb)
2164 {
2165         struct wb_writeback_work *work = NULL;
2166
2167         spin_lock_irq(&wb->work_lock);
2168         if (!list_empty(&wb->work_list)) {
2169                 work = list_entry(wb->work_list.next,
2170                                   struct wb_writeback_work, list);
2171                 list_del_init(&work->list);
2172         }
2173         spin_unlock_irq(&wb->work_lock);
2174         return work;
2175 }
2176
2177 static long wb_check_background_flush(struct bdi_writeback *wb)
2178 {
2179         if (wb_over_bg_thresh(wb)) {
2180
2181                 struct wb_writeback_work work = {
2182                         .nr_pages       = LONG_MAX,
2183                         .sync_mode      = WB_SYNC_NONE,
2184                         .for_background = 1,
2185                         .range_cyclic   = 1,
2186                         .reason         = WB_REASON_BACKGROUND,
2187                 };
2188
2189                 return wb_writeback(wb, &work);
2190         }
2191
2192         return 0;
2193 }
2194
2195 static long wb_check_old_data_flush(struct bdi_writeback *wb)
2196 {
2197         unsigned long expired;
2198         long nr_pages;
2199
2200         /*
2201          * When set to zero, disable periodic writeback
2202          */
2203         if (!dirty_writeback_interval)
2204                 return 0;
2205
2206         expired = wb->last_old_flush +
2207                         msecs_to_jiffies(dirty_writeback_interval * 10);
2208         if (time_before(jiffies, expired))
2209                 return 0;
2210
2211         wb->last_old_flush = jiffies;
2212         nr_pages = get_nr_dirty_pages();
2213
2214         if (nr_pages) {
2215                 struct wb_writeback_work work = {
2216                         .nr_pages       = nr_pages,
2217                         .sync_mode      = WB_SYNC_NONE,
2218                         .for_kupdate    = 1,
2219                         .range_cyclic   = 1,
2220                         .reason         = WB_REASON_PERIODIC,
2221                 };
2222
2223                 return wb_writeback(wb, &work);
2224         }
2225
2226         return 0;
2227 }
2228
2229 static long wb_check_start_all(struct bdi_writeback *wb)
2230 {
2231         long nr_pages;
2232
2233         if (!test_bit(WB_start_all, &wb->state))
2234                 return 0;
2235
2236         nr_pages = get_nr_dirty_pages();
2237         if (nr_pages) {
2238                 struct wb_writeback_work work = {
2239                         .nr_pages       = wb_split_bdi_pages(wb, nr_pages),
2240                         .sync_mode      = WB_SYNC_NONE,
2241                         .range_cyclic   = 1,
2242                         .reason         = wb->start_all_reason,
2243                 };
2244
2245                 nr_pages = wb_writeback(wb, &work);
2246         }
2247
2248         clear_bit(WB_start_all, &wb->state);
2249         return nr_pages;
2250 }
2251
2252
2253 /*
2254  * Retrieve work items and do the writeback they describe
2255  */
2256 static long wb_do_writeback(struct bdi_writeback *wb)
2257 {
2258         struct wb_writeback_work *work;
2259         long wrote = 0;
2260
2261         set_bit(WB_writeback_running, &wb->state);
2262         while ((work = get_next_work_item(wb)) != NULL) {
2263                 trace_writeback_exec(wb, work);
2264                 wrote += wb_writeback(wb, work);
2265                 finish_writeback_work(wb, work);
2266         }
2267
2268         /*
2269          * Check for a flush-everything request
2270          */
2271         wrote += wb_check_start_all(wb);
2272
2273         /*
2274          * Check for periodic writeback, kupdated() style
2275          */
2276         wrote += wb_check_old_data_flush(wb);
2277         wrote += wb_check_background_flush(wb);
2278         clear_bit(WB_writeback_running, &wb->state);
2279
2280         return wrote;
2281 }
2282
2283 /*
2284  * Handle writeback of dirty data for the device backed by this bdi. Also
2285  * reschedules periodically and does kupdated style flushing.
2286  */
2287 void wb_workfn(struct work_struct *work)
2288 {
2289         struct bdi_writeback *wb = container_of(to_delayed_work(work),
2290                                                 struct bdi_writeback, dwork);
2291         long pages_written;
2292
2293         set_worker_desc("flush-%s", bdi_dev_name(wb->bdi));
2294
2295         if (likely(!current_is_workqueue_rescuer() ||
2296                    !test_bit(WB_registered, &wb->state))) {
2297                 /*
2298                  * The normal path.  Keep writing back @wb until its
2299                  * work_list is empty.  Note that this path is also taken
2300                  * if @wb is shutting down even when we're running off the
2301                  * rescuer as work_list needs to be drained.
2302                  */
2303                 do {
2304                         pages_written = wb_do_writeback(wb);
2305                         trace_writeback_pages_written(pages_written);
2306                 } while (!list_empty(&wb->work_list));
2307         } else {
2308                 /*
2309                  * bdi_wq can't get enough workers and we're running off
2310                  * the emergency worker.  Don't hog it.  Hopefully, 1024 is
2311                  * enough for efficient IO.
2312                  */
2313                 pages_written = writeback_inodes_wb(wb, 1024,
2314                                                     WB_REASON_FORKER_THREAD);
2315                 trace_writeback_pages_written(pages_written);
2316         }
2317
2318         if (!list_empty(&wb->work_list))
2319                 wb_wakeup(wb);
2320         else if (wb_has_dirty_io(wb) && dirty_writeback_interval)
2321                 wb_wakeup_delayed(wb);
2322 }
2323
2324 /*
2325  * Start writeback of `nr_pages' pages on this bdi. If `nr_pages' is zero,
2326  * write back the whole world.
2327  */
2328 static void __wakeup_flusher_threads_bdi(struct backing_dev_info *bdi,
2329                                          enum wb_reason reason)
2330 {
2331         struct bdi_writeback *wb;
2332
2333         if (!bdi_has_dirty_io(bdi))
2334                 return;
2335
2336         list_for_each_entry_rcu(wb, &bdi->wb_list, bdi_node)
2337                 wb_start_writeback(wb, reason);
2338 }
2339
2340 void wakeup_flusher_threads_bdi(struct backing_dev_info *bdi,
2341                                 enum wb_reason reason)
2342 {
2343         rcu_read_lock();
2344         __wakeup_flusher_threads_bdi(bdi, reason);
2345         rcu_read_unlock();
2346 }
2347
2348 /*
2349  * Wakeup the flusher threads to start writeback of all currently dirty pages
2350  */
2351 void wakeup_flusher_threads(enum wb_reason reason)
2352 {
2353         struct backing_dev_info *bdi;
2354
2355         /*
2356          * If we are expecting writeback progress we must submit plugged IO.
2357          */
2358         blk_flush_plug(current->plug, true);
2359
2360         rcu_read_lock();
2361         list_for_each_entry_rcu(bdi, &bdi_list, bdi_list)
2362                 __wakeup_flusher_threads_bdi(bdi, reason);
2363         rcu_read_unlock();
2364 }
2365
2366 /*
2367  * Wake up bdi's periodically to make sure dirtytime inodes gets
2368  * written back periodically.  We deliberately do *not* check the
2369  * b_dirtytime list in wb_has_dirty_io(), since this would cause the
2370  * kernel to be constantly waking up once there are any dirtytime
2371  * inodes on the system.  So instead we define a separate delayed work
2372  * function which gets called much more rarely.  (By default, only
2373  * once every 12 hours.)
2374  *
2375  * If there is any other write activity going on in the file system,
2376  * this function won't be necessary.  But if the only thing that has
2377  * happened on the file system is a dirtytime inode caused by an atime
2378  * update, we need this infrastructure below to make sure that inode
2379  * eventually gets pushed out to disk.
2380  */
2381 static void wakeup_dirtytime_writeback(struct work_struct *w);
2382 static DECLARE_DELAYED_WORK(dirtytime_work, wakeup_dirtytime_writeback);
2383
2384 static void wakeup_dirtytime_writeback(struct work_struct *w)
2385 {
2386         struct backing_dev_info *bdi;
2387
2388         rcu_read_lock();
2389         list_for_each_entry_rcu(bdi, &bdi_list, bdi_list) {
2390                 struct bdi_writeback *wb;
2391
2392                 list_for_each_entry_rcu(wb, &bdi->wb_list, bdi_node)
2393                         if (!list_empty(&wb->b_dirty_time))
2394                                 wb_wakeup(wb);
2395         }
2396         rcu_read_unlock();
2397         schedule_delayed_work(&dirtytime_work, dirtytime_expire_interval * HZ);
2398 }
2399
2400 static int __init start_dirtytime_writeback(void)
2401 {
2402         schedule_delayed_work(&dirtytime_work, dirtytime_expire_interval * HZ);
2403         return 0;
2404 }
2405 __initcall(start_dirtytime_writeback);
2406
2407 int dirtytime_interval_handler(struct ctl_table *table, int write,
2408                                void *buffer, size_t *lenp, loff_t *ppos)
2409 {
2410         int ret;
2411
2412         ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
2413         if (ret == 0 && write)
2414                 mod_delayed_work(system_wq, &dirtytime_work, 0);
2415         return ret;
2416 }
2417
2418 /**
2419  * __mark_inode_dirty - internal function to mark an inode dirty
2420  *
2421  * @inode: inode to mark
2422  * @flags: what kind of dirty, e.g. I_DIRTY_SYNC.  This can be a combination of
2423  *         multiple I_DIRTY_* flags, except that I_DIRTY_TIME can't be combined
2424  *         with I_DIRTY_PAGES.
2425  *
2426  * Mark an inode as dirty.  We notify the filesystem, then update the inode's
2427  * dirty flags.  Then, if needed we add the inode to the appropriate dirty list.
2428  *
2429  * Most callers should use mark_inode_dirty() or mark_inode_dirty_sync()
2430  * instead of calling this directly.
2431  *
2432  * CAREFUL!  We only add the inode to the dirty list if it is hashed or if it
2433  * refers to a blockdev.  Unhashed inodes will never be added to the dirty list
2434  * even if they are later hashed, as they will have been marked dirty already.
2435  *
2436  * In short, ensure you hash any inodes _before_ you start marking them dirty.
2437  *
2438  * Note that for blockdevs, inode->dirtied_when represents the dirtying time of
2439  * the block-special inode (/dev/hda1) itself.  And the ->dirtied_when field of
2440  * the kernel-internal blockdev inode represents the dirtying time of the
2441  * blockdev's pages.  This is why for I_DIRTY_PAGES we always use
2442  * page->mapping->host, so the page-dirtying time is recorded in the internal
2443  * blockdev inode.
2444  */
2445 void __mark_inode_dirty(struct inode *inode, int flags)
2446 {
2447         struct super_block *sb = inode->i_sb;
2448         int dirtytime = 0;
2449         struct bdi_writeback *wb = NULL;
2450
2451         trace_writeback_mark_inode_dirty(inode, flags);
2452
2453         if (flags & I_DIRTY_INODE) {
2454                 /*
2455                  * Inode timestamp update will piggback on this dirtying.
2456                  * We tell ->dirty_inode callback that timestamps need to
2457                  * be updated by setting I_DIRTY_TIME in flags.
2458                  */
2459                 if (inode->i_state & I_DIRTY_TIME) {
2460                         spin_lock(&inode->i_lock);
2461                         if (inode->i_state & I_DIRTY_TIME) {
2462                                 inode->i_state &= ~I_DIRTY_TIME;
2463                                 flags |= I_DIRTY_TIME;
2464                         }
2465                         spin_unlock(&inode->i_lock);
2466                 }
2467
2468                 /*
2469                  * Notify the filesystem about the inode being dirtied, so that
2470                  * (if needed) it can update on-disk fields and journal the
2471                  * inode.  This is only needed when the inode itself is being
2472                  * dirtied now.  I.e. it's only needed for I_DIRTY_INODE, not
2473                  * for just I_DIRTY_PAGES or I_DIRTY_TIME.
2474                  */
2475                 trace_writeback_dirty_inode_start(inode, flags);
2476                 if (sb->s_op->dirty_inode)
2477                         sb->s_op->dirty_inode(inode,
2478                                 flags & (I_DIRTY_INODE | I_DIRTY_TIME));
2479                 trace_writeback_dirty_inode(inode, flags);
2480
2481                 /* I_DIRTY_INODE supersedes I_DIRTY_TIME. */
2482                 flags &= ~I_DIRTY_TIME;
2483         } else {
2484                 /*
2485                  * Else it's either I_DIRTY_PAGES, I_DIRTY_TIME, or nothing.
2486                  * (We don't support setting both I_DIRTY_PAGES and I_DIRTY_TIME
2487                  * in one call to __mark_inode_dirty().)
2488                  */
2489                 dirtytime = flags & I_DIRTY_TIME;
2490                 WARN_ON_ONCE(dirtytime && flags != I_DIRTY_TIME);
2491         }
2492
2493         /*
2494          * Paired with smp_mb() in __writeback_single_inode() for the
2495          * following lockless i_state test.  See there for details.
2496          */
2497         smp_mb();
2498
2499         if ((inode->i_state & flags) == flags)
2500                 return;
2501
2502         spin_lock(&inode->i_lock);
2503         if ((inode->i_state & flags) != flags) {
2504                 const int was_dirty = inode->i_state & I_DIRTY;
2505
2506                 inode_attach_wb(inode, NULL);
2507
2508                 inode->i_state |= flags;
2509
2510                 /*
2511                  * Grab inode's wb early because it requires dropping i_lock and we
2512                  * need to make sure following checks happen atomically with dirty
2513                  * list handling so that we don't move inodes under flush worker's
2514                  * hands.
2515                  */
2516                 if (!was_dirty) {
2517                         wb = locked_inode_to_wb_and_lock_list(inode);
2518                         spin_lock(&inode->i_lock);
2519                 }
2520
2521                 /*
2522                  * If the inode is queued for writeback by flush worker, just
2523                  * update its dirty state. Once the flush worker is done with
2524                  * the inode it will place it on the appropriate superblock
2525                  * list, based upon its state.
2526                  */
2527                 if (inode->i_state & I_SYNC_QUEUED)
2528                         goto out_unlock;
2529
2530                 /*
2531                  * Only add valid (hashed) inodes to the superblock's
2532                  * dirty list.  Add blockdev inodes as well.
2533                  */
2534                 if (!S_ISBLK(inode->i_mode)) {
2535                         if (inode_unhashed(inode))
2536                                 goto out_unlock;
2537                 }
2538                 if (inode->i_state & I_FREEING)
2539                         goto out_unlock;
2540
2541                 /*
2542                  * If the inode was already on b_dirty/b_io/b_more_io, don't
2543                  * reposition it (that would break b_dirty time-ordering).
2544                  */
2545                 if (!was_dirty) {
2546                         struct list_head *dirty_list;
2547                         bool wakeup_bdi = false;
2548
2549                         inode->dirtied_when = jiffies;
2550                         if (dirtytime)
2551                                 inode->dirtied_time_when = jiffies;
2552
2553                         if (inode->i_state & I_DIRTY)
2554                                 dirty_list = &wb->b_dirty;
2555                         else
2556                                 dirty_list = &wb->b_dirty_time;
2557
2558                         wakeup_bdi = inode_io_list_move_locked(inode, wb,
2559                                                                dirty_list);
2560
2561                         spin_unlock(&wb->list_lock);
2562                         spin_unlock(&inode->i_lock);
2563                         trace_writeback_dirty_inode_enqueue(inode);
2564
2565                         /*
2566                          * If this is the first dirty inode for this bdi,
2567                          * we have to wake-up the corresponding bdi thread
2568                          * to make sure background write-back happens
2569                          * later.
2570                          */
2571                         if (wakeup_bdi &&
2572                             (wb->bdi->capabilities & BDI_CAP_WRITEBACK))
2573                                 wb_wakeup_delayed(wb);
2574                         return;
2575                 }
2576         }
2577 out_unlock:
2578         if (wb)
2579                 spin_unlock(&wb->list_lock);
2580         spin_unlock(&inode->i_lock);
2581 }
2582 EXPORT_SYMBOL(__mark_inode_dirty);
2583
2584 /*
2585  * The @s_sync_lock is used to serialise concurrent sync operations
2586  * to avoid lock contention problems with concurrent wait_sb_inodes() calls.
2587  * Concurrent callers will block on the s_sync_lock rather than doing contending
2588  * walks. The queueing maintains sync(2) required behaviour as all the IO that
2589  * has been issued up to the time this function is enter is guaranteed to be
2590  * completed by the time we have gained the lock and waited for all IO that is
2591  * in progress regardless of the order callers are granted the lock.
2592  */
2593 static void wait_sb_inodes(struct super_block *sb)
2594 {
2595         LIST_HEAD(sync_list);
2596
2597         /*
2598          * We need to be protected against the filesystem going from
2599          * r/o to r/w or vice versa.
2600          */
2601         WARN_ON(!rwsem_is_locked(&sb->s_umount));
2602
2603         mutex_lock(&sb->s_sync_lock);
2604
2605         /*
2606          * Splice the writeback list onto a temporary list to avoid waiting on
2607          * inodes that have started writeback after this point.
2608          *
2609          * Use rcu_read_lock() to keep the inodes around until we have a
2610          * reference. s_inode_wblist_lock protects sb->s_inodes_wb as well as
2611          * the local list because inodes can be dropped from either by writeback
2612          * completion.
2613          */
2614         rcu_read_lock();
2615         spin_lock_irq(&sb->s_inode_wblist_lock);
2616         list_splice_init(&sb->s_inodes_wb, &sync_list);
2617
2618         /*
2619          * Data integrity sync. Must wait for all pages under writeback, because
2620          * there may have been pages dirtied before our sync call, but which had
2621          * writeout started before we write it out.  In which case, the inode
2622          * may not be on the dirty list, but we still have to wait for that
2623          * writeout.
2624          */
2625         while (!list_empty(&sync_list)) {
2626                 struct inode *inode = list_first_entry(&sync_list, struct inode,
2627                                                        i_wb_list);
2628                 struct address_space *mapping = inode->i_mapping;
2629
2630                 /*
2631                  * Move each inode back to the wb list before we drop the lock
2632                  * to preserve consistency between i_wb_list and the mapping
2633                  * writeback tag. Writeback completion is responsible to remove
2634                  * the inode from either list once the writeback tag is cleared.
2635                  */
2636                 list_move_tail(&inode->i_wb_list, &sb->s_inodes_wb);
2637
2638                 /*
2639                  * The mapping can appear untagged while still on-list since we
2640                  * do not have the mapping lock. Skip it here, wb completion
2641                  * will remove it.
2642                  */
2643                 if (!mapping_tagged(mapping, PAGECACHE_TAG_WRITEBACK))
2644                         continue;
2645
2646                 spin_unlock_irq(&sb->s_inode_wblist_lock);
2647
2648                 spin_lock(&inode->i_lock);
2649                 if (inode->i_state & (I_FREEING|I_WILL_FREE|I_NEW)) {
2650                         spin_unlock(&inode->i_lock);
2651
2652                         spin_lock_irq(&sb->s_inode_wblist_lock);
2653                         continue;
2654                 }
2655                 __iget(inode);
2656                 spin_unlock(&inode->i_lock);
2657                 rcu_read_unlock();
2658
2659                 /*
2660                  * We keep the error status of individual mapping so that
2661                  * applications can catch the writeback error using fsync(2).
2662                  * See filemap_fdatawait_keep_errors() for details.
2663                  */
2664                 filemap_fdatawait_keep_errors(mapping);
2665
2666                 cond_resched();
2667
2668                 iput(inode);
2669
2670                 rcu_read_lock();
2671                 spin_lock_irq(&sb->s_inode_wblist_lock);
2672         }
2673         spin_unlock_irq(&sb->s_inode_wblist_lock);
2674         rcu_read_unlock();
2675         mutex_unlock(&sb->s_sync_lock);
2676 }
2677
2678 static void __writeback_inodes_sb_nr(struct super_block *sb, unsigned long nr,
2679                                      enum wb_reason reason, bool skip_if_busy)
2680 {
2681         struct backing_dev_info *bdi = sb->s_bdi;
2682         DEFINE_WB_COMPLETION(done, bdi);
2683         struct wb_writeback_work work = {
2684                 .sb                     = sb,
2685                 .sync_mode              = WB_SYNC_NONE,
2686                 .tagged_writepages      = 1,
2687                 .done                   = &done,
2688                 .nr_pages               = nr,
2689                 .reason                 = reason,
2690         };
2691
2692         if (!bdi_has_dirty_io(bdi) || bdi == &noop_backing_dev_info)
2693                 return;
2694         WARN_ON(!rwsem_is_locked(&sb->s_umount));
2695
2696         bdi_split_work_to_wbs(sb->s_bdi, &work, skip_if_busy);
2697         wb_wait_for_completion(&done);
2698 }
2699
2700 /**
2701  * writeback_inodes_sb_nr -     writeback dirty inodes from given super_block
2702  * @sb: the superblock
2703  * @nr: the number of pages to write
2704  * @reason: reason why some writeback work initiated
2705  *
2706  * Start writeback on some inodes on this super_block. No guarantees are made
2707  * on how many (if any) will be written, and this function does not wait
2708  * for IO completion of submitted IO.
2709  */
2710 void writeback_inodes_sb_nr(struct super_block *sb,
2711                             unsigned long nr,
2712                             enum wb_reason reason)
2713 {
2714         __writeback_inodes_sb_nr(sb, nr, reason, false);
2715 }
2716 EXPORT_SYMBOL(writeback_inodes_sb_nr);
2717
2718 /**
2719  * writeback_inodes_sb  -       writeback dirty inodes from given super_block
2720  * @sb: the superblock
2721  * @reason: reason why some writeback work was initiated
2722  *
2723  * Start writeback on some inodes on this super_block. No guarantees are made
2724  * on how many (if any) will be written, and this function does not wait
2725  * for IO completion of submitted IO.
2726  */
2727 void writeback_inodes_sb(struct super_block *sb, enum wb_reason reason)
2728 {
2729         return writeback_inodes_sb_nr(sb, get_nr_dirty_pages(), reason);
2730 }
2731 EXPORT_SYMBOL(writeback_inodes_sb);
2732
2733 /**
2734  * try_to_writeback_inodes_sb - try to start writeback if none underway
2735  * @sb: the superblock
2736  * @reason: reason why some writeback work was initiated
2737  *
2738  * Invoke __writeback_inodes_sb_nr if no writeback is currently underway.
2739  */
2740 void try_to_writeback_inodes_sb(struct super_block *sb, enum wb_reason reason)
2741 {
2742         if (!down_read_trylock(&sb->s_umount))
2743                 return;
2744
2745         __writeback_inodes_sb_nr(sb, get_nr_dirty_pages(), reason, true);
2746         up_read(&sb->s_umount);
2747 }
2748 EXPORT_SYMBOL(try_to_writeback_inodes_sb);
2749
2750 /**
2751  * sync_inodes_sb       -       sync sb inode pages
2752  * @sb: the superblock
2753  *
2754  * This function writes and waits on any dirty inode belonging to this
2755  * super_block.
2756  */
2757 void sync_inodes_sb(struct super_block *sb)
2758 {
2759         struct backing_dev_info *bdi = sb->s_bdi;
2760         DEFINE_WB_COMPLETION(done, bdi);
2761         struct wb_writeback_work work = {
2762                 .sb             = sb,
2763                 .sync_mode      = WB_SYNC_ALL,
2764                 .nr_pages       = LONG_MAX,
2765                 .range_cyclic   = 0,
2766                 .done           = &done,
2767                 .reason         = WB_REASON_SYNC,
2768                 .for_sync       = 1,
2769         };
2770
2771         /*
2772          * Can't skip on !bdi_has_dirty() because we should wait for !dirty
2773          * inodes under writeback and I_DIRTY_TIME inodes ignored by
2774          * bdi_has_dirty() need to be written out too.
2775          */
2776         if (bdi == &noop_backing_dev_info)
2777                 return;
2778         WARN_ON(!rwsem_is_locked(&sb->s_umount));
2779
2780         /* protect against inode wb switch, see inode_switch_wbs_work_fn() */
2781         bdi_down_write_wb_switch_rwsem(bdi);
2782         bdi_split_work_to_wbs(bdi, &work, false);
2783         wb_wait_for_completion(&done);
2784         bdi_up_write_wb_switch_rwsem(bdi);
2785
2786         wait_sb_inodes(sb);
2787 }
2788 EXPORT_SYMBOL(sync_inodes_sb);
2789
2790 /**
2791  * write_inode_now      -       write an inode to disk
2792  * @inode: inode to write to disk
2793  * @sync: whether the write should be synchronous or not
2794  *
2795  * This function commits an inode to disk immediately if it is dirty. This is
2796  * primarily needed by knfsd.
2797  *
2798  * The caller must either have a ref on the inode or must have set I_WILL_FREE.
2799  */
2800 int write_inode_now(struct inode *inode, int sync)
2801 {
2802         struct writeback_control wbc = {
2803                 .nr_to_write = LONG_MAX,
2804                 .sync_mode = sync ? WB_SYNC_ALL : WB_SYNC_NONE,
2805                 .range_start = 0,
2806                 .range_end = LLONG_MAX,
2807         };
2808
2809         if (!mapping_can_writeback(inode->i_mapping))
2810                 wbc.nr_to_write = 0;
2811
2812         might_sleep();
2813         return writeback_single_inode(inode, &wbc);
2814 }
2815 EXPORT_SYMBOL(write_inode_now);
2816
2817 /**
2818  * sync_inode_metadata - write an inode to disk
2819  * @inode: the inode to sync
2820  * @wait: wait for I/O to complete.
2821  *
2822  * Write an inode to disk and adjust its dirty state after completion.
2823  *
2824  * Note: only writes the actual inode, no associated data or other metadata.
2825  */
2826 int sync_inode_metadata(struct inode *inode, int wait)
2827 {
2828         struct writeback_control wbc = {
2829                 .sync_mode = wait ? WB_SYNC_ALL : WB_SYNC_NONE,
2830                 .nr_to_write = 0, /* metadata-only */
2831         };
2832
2833         return writeback_single_inode(inode, &wbc);
2834 }
2835 EXPORT_SYMBOL(sync_inode_metadata);