writeback: track number of inodes under writeback
[linux-2.6-microblaze.git] / fs / fs-writeback.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * fs/fs-writeback.c
4  *
5  * Copyright (C) 2002, Linus Torvalds.
6  *
7  * Contains all the functions related to writing back and waiting
8  * upon dirty inodes against superblocks, and writing back dirty
9  * pages against inodes.  ie: data writeback.  Writeout of the
10  * inode itself is not handled here.
11  *
12  * 10Apr2002    Andrew Morton
13  *              Split out of fs/inode.c
14  *              Additions for address_space-based writeback
15  */
16
17 #include <linux/kernel.h>
18 #include <linux/export.h>
19 #include <linux/spinlock.h>
20 #include <linux/slab.h>
21 #include <linux/sched.h>
22 #include <linux/fs.h>
23 #include <linux/mm.h>
24 #include <linux/pagemap.h>
25 #include <linux/kthread.h>
26 #include <linux/writeback.h>
27 #include <linux/blkdev.h>
28 #include <linux/backing-dev.h>
29 #include <linux/tracepoint.h>
30 #include <linux/device.h>
31 #include <linux/memcontrol.h>
32 #include "internal.h"
33
34 /*
35  * 4MB minimal write chunk size
36  */
37 #define MIN_WRITEBACK_PAGES     (4096UL >> (PAGE_SHIFT - 10))
38
39 /*
40  * Passed into wb_writeback(), essentially a subset of writeback_control
41  */
42 struct wb_writeback_work {
43         long nr_pages;
44         struct super_block *sb;
45         enum writeback_sync_modes sync_mode;
46         unsigned int tagged_writepages:1;
47         unsigned int for_kupdate:1;
48         unsigned int range_cyclic:1;
49         unsigned int for_background:1;
50         unsigned int for_sync:1;        /* sync(2) WB_SYNC_ALL writeback */
51         unsigned int auto_free:1;       /* free on completion */
52         enum wb_reason reason;          /* why was writeback initiated? */
53
54         struct list_head list;          /* pending work list */
55         struct wb_completion *done;     /* set if the caller waits */
56 };
57
58 /*
59  * If an inode is constantly having its pages dirtied, but then the
60  * updates stop dirtytime_expire_interval seconds in the past, it's
61  * possible for the worst case time between when an inode has its
62  * timestamps updated and when they finally get written out to be two
63  * dirtytime_expire_intervals.  We set the default to 12 hours (in
64  * seconds), which means most of the time inodes will have their
65  * timestamps written to disk after 12 hours, but in the worst case a
66  * few inodes might not their timestamps updated for 24 hours.
67  */
68 unsigned int dirtytime_expire_interval = 12 * 60 * 60;
69
70 static inline struct inode *wb_inode(struct list_head *head)
71 {
72         return list_entry(head, struct inode, i_io_list);
73 }
74
75 /*
76  * Include the creation of the trace points after defining the
77  * wb_writeback_work structure and inline functions so that the definition
78  * remains local to this file.
79  */
80 #define CREATE_TRACE_POINTS
81 #include <trace/events/writeback.h>
82
83 EXPORT_TRACEPOINT_SYMBOL_GPL(wbc_writepage);
84
85 static bool wb_io_lists_populated(struct bdi_writeback *wb)
86 {
87         if (wb_has_dirty_io(wb)) {
88                 return false;
89         } else {
90                 set_bit(WB_has_dirty_io, &wb->state);
91                 WARN_ON_ONCE(!wb->avg_write_bandwidth);
92                 atomic_long_add(wb->avg_write_bandwidth,
93                                 &wb->bdi->tot_write_bandwidth);
94                 return true;
95         }
96 }
97
98 static void wb_io_lists_depopulated(struct bdi_writeback *wb)
99 {
100         if (wb_has_dirty_io(wb) && list_empty(&wb->b_dirty) &&
101             list_empty(&wb->b_io) && list_empty(&wb->b_more_io)) {
102                 clear_bit(WB_has_dirty_io, &wb->state);
103                 WARN_ON_ONCE(atomic_long_sub_return(wb->avg_write_bandwidth,
104                                         &wb->bdi->tot_write_bandwidth) < 0);
105         }
106 }
107
108 /**
109  * inode_io_list_move_locked - move an inode onto a bdi_writeback IO list
110  * @inode: inode to be moved
111  * @wb: target bdi_writeback
112  * @head: one of @wb->b_{dirty|io|more_io|dirty_time}
113  *
114  * Move @inode->i_io_list to @list of @wb and set %WB_has_dirty_io.
115  * Returns %true if @inode is the first occupant of the !dirty_time IO
116  * lists; otherwise, %false.
117  */
118 static bool inode_io_list_move_locked(struct inode *inode,
119                                       struct bdi_writeback *wb,
120                                       struct list_head *head)
121 {
122         assert_spin_locked(&wb->list_lock);
123
124         list_move(&inode->i_io_list, head);
125
126         /* dirty_time doesn't count as dirty_io until expiration */
127         if (head != &wb->b_dirty_time)
128                 return wb_io_lists_populated(wb);
129
130         wb_io_lists_depopulated(wb);
131         return false;
132 }
133
134 static void wb_wakeup(struct bdi_writeback *wb)
135 {
136         spin_lock_bh(&wb->work_lock);
137         if (test_bit(WB_registered, &wb->state))
138                 mod_delayed_work(bdi_wq, &wb->dwork, 0);
139         spin_unlock_bh(&wb->work_lock);
140 }
141
142 static void finish_writeback_work(struct bdi_writeback *wb,
143                                   struct wb_writeback_work *work)
144 {
145         struct wb_completion *done = work->done;
146
147         if (work->auto_free)
148                 kfree(work);
149         if (done) {
150                 wait_queue_head_t *waitq = done->waitq;
151
152                 /* @done can't be accessed after the following dec */
153                 if (atomic_dec_and_test(&done->cnt))
154                         wake_up_all(waitq);
155         }
156 }
157
158 static void wb_queue_work(struct bdi_writeback *wb,
159                           struct wb_writeback_work *work)
160 {
161         trace_writeback_queue(wb, work);
162
163         if (work->done)
164                 atomic_inc(&work->done->cnt);
165
166         spin_lock_bh(&wb->work_lock);
167
168         if (test_bit(WB_registered, &wb->state)) {
169                 list_add_tail(&work->list, &wb->work_list);
170                 mod_delayed_work(bdi_wq, &wb->dwork, 0);
171         } else
172                 finish_writeback_work(wb, work);
173
174         spin_unlock_bh(&wb->work_lock);
175 }
176
177 /**
178  * wb_wait_for_completion - wait for completion of bdi_writeback_works
179  * @done: target wb_completion
180  *
181  * Wait for one or more work items issued to @bdi with their ->done field
182  * set to @done, which should have been initialized with
183  * DEFINE_WB_COMPLETION().  This function returns after all such work items
184  * are completed.  Work items which are waited upon aren't freed
185  * automatically on completion.
186  */
187 void wb_wait_for_completion(struct wb_completion *done)
188 {
189         atomic_dec(&done->cnt);         /* put down the initial count */
190         wait_event(*done->waitq, !atomic_read(&done->cnt));
191 }
192
193 #ifdef CONFIG_CGROUP_WRITEBACK
194
195 /*
196  * Parameters for foreign inode detection, see wbc_detach_inode() to see
197  * how they're used.
198  *
199  * These paramters are inherently heuristical as the detection target
200  * itself is fuzzy.  All we want to do is detaching an inode from the
201  * current owner if it's being written to by some other cgroups too much.
202  *
203  * The current cgroup writeback is built on the assumption that multiple
204  * cgroups writing to the same inode concurrently is very rare and a mode
205  * of operation which isn't well supported.  As such, the goal is not
206  * taking too long when a different cgroup takes over an inode while
207  * avoiding too aggressive flip-flops from occasional foreign writes.
208  *
209  * We record, very roughly, 2s worth of IO time history and if more than
210  * half of that is foreign, trigger the switch.  The recording is quantized
211  * to 16 slots.  To avoid tiny writes from swinging the decision too much,
212  * writes smaller than 1/8 of avg size are ignored.
213  */
214 #define WB_FRN_TIME_SHIFT       13      /* 1s = 2^13, upto 8 secs w/ 16bit */
215 #define WB_FRN_TIME_AVG_SHIFT   3       /* avg = avg * 7/8 + new * 1/8 */
216 #define WB_FRN_TIME_CUT_DIV     8       /* ignore rounds < avg / 8 */
217 #define WB_FRN_TIME_PERIOD      (2 * (1 << WB_FRN_TIME_SHIFT))  /* 2s */
218
219 #define WB_FRN_HIST_SLOTS       16      /* inode->i_wb_frn_history is 16bit */
220 #define WB_FRN_HIST_UNIT        (WB_FRN_TIME_PERIOD / WB_FRN_HIST_SLOTS)
221                                         /* each slot's duration is 2s / 16 */
222 #define WB_FRN_HIST_THR_SLOTS   (WB_FRN_HIST_SLOTS / 2)
223                                         /* if foreign slots >= 8, switch */
224 #define WB_FRN_HIST_MAX_SLOTS   (WB_FRN_HIST_THR_SLOTS / 2 + 1)
225                                         /* one round can affect upto 5 slots */
226 #define WB_FRN_MAX_IN_FLIGHT    1024    /* don't queue too many concurrently */
227
228 /*
229  * Maximum inodes per isw.  A specific value has been chosen to make
230  * struct inode_switch_wbs_context fit into 1024 bytes kmalloc.
231  */
232 #define WB_MAX_INODES_PER_ISW  ((1024UL - sizeof(struct inode_switch_wbs_context)) \
233                                 / sizeof(struct inode *))
234
235 static atomic_t isw_nr_in_flight = ATOMIC_INIT(0);
236 static struct workqueue_struct *isw_wq;
237
238 void __inode_attach_wb(struct inode *inode, struct page *page)
239 {
240         struct backing_dev_info *bdi = inode_to_bdi(inode);
241         struct bdi_writeback *wb = NULL;
242
243         if (inode_cgwb_enabled(inode)) {
244                 struct cgroup_subsys_state *memcg_css;
245
246                 if (page) {
247                         memcg_css = mem_cgroup_css_from_page(page);
248                         wb = wb_get_create(bdi, memcg_css, GFP_ATOMIC);
249                 } else {
250                         /* must pin memcg_css, see wb_get_create() */
251                         memcg_css = task_get_css(current, memory_cgrp_id);
252                         wb = wb_get_create(bdi, memcg_css, GFP_ATOMIC);
253                         css_put(memcg_css);
254                 }
255         }
256
257         if (!wb)
258                 wb = &bdi->wb;
259
260         /*
261          * There may be multiple instances of this function racing to
262          * update the same inode.  Use cmpxchg() to tell the winner.
263          */
264         if (unlikely(cmpxchg(&inode->i_wb, NULL, wb)))
265                 wb_put(wb);
266 }
267 EXPORT_SYMBOL_GPL(__inode_attach_wb);
268
269 /**
270  * inode_cgwb_move_to_attached - put the inode onto wb->b_attached list
271  * @inode: inode of interest with i_lock held
272  * @wb: target bdi_writeback
273  *
274  * Remove the inode from wb's io lists and if necessarily put onto b_attached
275  * list.  Only inodes attached to cgwb's are kept on this list.
276  */
277 static void inode_cgwb_move_to_attached(struct inode *inode,
278                                         struct bdi_writeback *wb)
279 {
280         assert_spin_locked(&wb->list_lock);
281         assert_spin_locked(&inode->i_lock);
282
283         inode->i_state &= ~I_SYNC_QUEUED;
284         if (wb != &wb->bdi->wb)
285                 list_move(&inode->i_io_list, &wb->b_attached);
286         else
287                 list_del_init(&inode->i_io_list);
288         wb_io_lists_depopulated(wb);
289 }
290
291 /**
292  * locked_inode_to_wb_and_lock_list - determine a locked inode's wb and lock it
293  * @inode: inode of interest with i_lock held
294  *
295  * Returns @inode's wb with its list_lock held.  @inode->i_lock must be
296  * held on entry and is released on return.  The returned wb is guaranteed
297  * to stay @inode's associated wb until its list_lock is released.
298  */
299 static struct bdi_writeback *
300 locked_inode_to_wb_and_lock_list(struct inode *inode)
301         __releases(&inode->i_lock)
302         __acquires(&wb->list_lock)
303 {
304         while (true) {
305                 struct bdi_writeback *wb = inode_to_wb(inode);
306
307                 /*
308                  * inode_to_wb() association is protected by both
309                  * @inode->i_lock and @wb->list_lock but list_lock nests
310                  * outside i_lock.  Drop i_lock and verify that the
311                  * association hasn't changed after acquiring list_lock.
312                  */
313                 wb_get(wb);
314                 spin_unlock(&inode->i_lock);
315                 spin_lock(&wb->list_lock);
316
317                 /* i_wb may have changed inbetween, can't use inode_to_wb() */
318                 if (likely(wb == inode->i_wb)) {
319                         wb_put(wb);     /* @inode already has ref */
320                         return wb;
321                 }
322
323                 spin_unlock(&wb->list_lock);
324                 wb_put(wb);
325                 cpu_relax();
326                 spin_lock(&inode->i_lock);
327         }
328 }
329
330 /**
331  * inode_to_wb_and_lock_list - determine an inode's wb and lock it
332  * @inode: inode of interest
333  *
334  * Same as locked_inode_to_wb_and_lock_list() but @inode->i_lock isn't held
335  * on entry.
336  */
337 static struct bdi_writeback *inode_to_wb_and_lock_list(struct inode *inode)
338         __acquires(&wb->list_lock)
339 {
340         spin_lock(&inode->i_lock);
341         return locked_inode_to_wb_and_lock_list(inode);
342 }
343
344 struct inode_switch_wbs_context {
345         struct rcu_work         work;
346
347         /*
348          * Multiple inodes can be switched at once.  The switching procedure
349          * consists of two parts, separated by a RCU grace period.  To make
350          * sure that the second part is executed for each inode gone through
351          * the first part, all inode pointers are placed into a NULL-terminated
352          * array embedded into struct inode_switch_wbs_context.  Otherwise
353          * an inode could be left in a non-consistent state.
354          */
355         struct bdi_writeback    *new_wb;
356         struct inode            *inodes[];
357 };
358
359 static void bdi_down_write_wb_switch_rwsem(struct backing_dev_info *bdi)
360 {
361         down_write(&bdi->wb_switch_rwsem);
362 }
363
364 static void bdi_up_write_wb_switch_rwsem(struct backing_dev_info *bdi)
365 {
366         up_write(&bdi->wb_switch_rwsem);
367 }
368
369 static bool inode_do_switch_wbs(struct inode *inode,
370                                 struct bdi_writeback *old_wb,
371                                 struct bdi_writeback *new_wb)
372 {
373         struct address_space *mapping = inode->i_mapping;
374         XA_STATE(xas, &mapping->i_pages, 0);
375         struct page *page;
376         bool switched = false;
377
378         spin_lock(&inode->i_lock);
379         xa_lock_irq(&mapping->i_pages);
380
381         /*
382          * Once I_FREEING or I_WILL_FREE are visible under i_lock, the eviction
383          * path owns the inode and we shouldn't modify ->i_io_list.
384          */
385         if (unlikely(inode->i_state & (I_FREEING | I_WILL_FREE)))
386                 goto skip_switch;
387
388         trace_inode_switch_wbs(inode, old_wb, new_wb);
389
390         /*
391          * Count and transfer stats.  Note that PAGECACHE_TAG_DIRTY points
392          * to possibly dirty pages while PAGECACHE_TAG_WRITEBACK points to
393          * pages actually under writeback.
394          */
395         xas_for_each_marked(&xas, page, ULONG_MAX, PAGECACHE_TAG_DIRTY) {
396                 if (PageDirty(page)) {
397                         dec_wb_stat(old_wb, WB_RECLAIMABLE);
398                         inc_wb_stat(new_wb, WB_RECLAIMABLE);
399                 }
400         }
401
402         xas_set(&xas, 0);
403         xas_for_each_marked(&xas, page, ULONG_MAX, PAGECACHE_TAG_WRITEBACK) {
404                 WARN_ON_ONCE(!PageWriteback(page));
405                 dec_wb_stat(old_wb, WB_WRITEBACK);
406                 inc_wb_stat(new_wb, WB_WRITEBACK);
407         }
408
409         if (mapping_tagged(mapping, PAGECACHE_TAG_WRITEBACK)) {
410                 atomic_dec(&old_wb->writeback_inodes);
411                 atomic_inc(&new_wb->writeback_inodes);
412         }
413
414         wb_get(new_wb);
415
416         /*
417          * Transfer to @new_wb's IO list if necessary.  If the @inode is dirty,
418          * the specific list @inode was on is ignored and the @inode is put on
419          * ->b_dirty which is always correct including from ->b_dirty_time.
420          * The transfer preserves @inode->dirtied_when ordering.  If the @inode
421          * was clean, it means it was on the b_attached list, so move it onto
422          * the b_attached list of @new_wb.
423          */
424         if (!list_empty(&inode->i_io_list)) {
425                 inode->i_wb = new_wb;
426
427                 if (inode->i_state & I_DIRTY_ALL) {
428                         struct inode *pos;
429
430                         list_for_each_entry(pos, &new_wb->b_dirty, i_io_list)
431                                 if (time_after_eq(inode->dirtied_when,
432                                                   pos->dirtied_when))
433                                         break;
434                         inode_io_list_move_locked(inode, new_wb,
435                                                   pos->i_io_list.prev);
436                 } else {
437                         inode_cgwb_move_to_attached(inode, new_wb);
438                 }
439         } else {
440                 inode->i_wb = new_wb;
441         }
442
443         /* ->i_wb_frn updates may race wbc_detach_inode() but doesn't matter */
444         inode->i_wb_frn_winner = 0;
445         inode->i_wb_frn_avg_time = 0;
446         inode->i_wb_frn_history = 0;
447         switched = true;
448 skip_switch:
449         /*
450          * Paired with load_acquire in unlocked_inode_to_wb_begin() and
451          * ensures that the new wb is visible if they see !I_WB_SWITCH.
452          */
453         smp_store_release(&inode->i_state, inode->i_state & ~I_WB_SWITCH);
454
455         xa_unlock_irq(&mapping->i_pages);
456         spin_unlock(&inode->i_lock);
457
458         return switched;
459 }
460
461 static void inode_switch_wbs_work_fn(struct work_struct *work)
462 {
463         struct inode_switch_wbs_context *isw =
464                 container_of(to_rcu_work(work), struct inode_switch_wbs_context, work);
465         struct backing_dev_info *bdi = inode_to_bdi(isw->inodes[0]);
466         struct bdi_writeback *old_wb = isw->inodes[0]->i_wb;
467         struct bdi_writeback *new_wb = isw->new_wb;
468         unsigned long nr_switched = 0;
469         struct inode **inodep;
470
471         /*
472          * If @inode switches cgwb membership while sync_inodes_sb() is
473          * being issued, sync_inodes_sb() might miss it.  Synchronize.
474          */
475         down_read(&bdi->wb_switch_rwsem);
476
477         /*
478          * By the time control reaches here, RCU grace period has passed
479          * since I_WB_SWITCH assertion and all wb stat update transactions
480          * between unlocked_inode_to_wb_begin/end() are guaranteed to be
481          * synchronizing against the i_pages lock.
482          *
483          * Grabbing old_wb->list_lock, inode->i_lock and the i_pages lock
484          * gives us exclusion against all wb related operations on @inode
485          * including IO list manipulations and stat updates.
486          */
487         if (old_wb < new_wb) {
488                 spin_lock(&old_wb->list_lock);
489                 spin_lock_nested(&new_wb->list_lock, SINGLE_DEPTH_NESTING);
490         } else {
491                 spin_lock(&new_wb->list_lock);
492                 spin_lock_nested(&old_wb->list_lock, SINGLE_DEPTH_NESTING);
493         }
494
495         for (inodep = isw->inodes; *inodep; inodep++) {
496                 WARN_ON_ONCE((*inodep)->i_wb != old_wb);
497                 if (inode_do_switch_wbs(*inodep, old_wb, new_wb))
498                         nr_switched++;
499         }
500
501         spin_unlock(&new_wb->list_lock);
502         spin_unlock(&old_wb->list_lock);
503
504         up_read(&bdi->wb_switch_rwsem);
505
506         if (nr_switched) {
507                 wb_wakeup(new_wb);
508                 wb_put_many(old_wb, nr_switched);
509         }
510
511         for (inodep = isw->inodes; *inodep; inodep++)
512                 iput(*inodep);
513         wb_put(new_wb);
514         kfree(isw);
515         atomic_dec(&isw_nr_in_flight);
516 }
517
518 static bool inode_prepare_wbs_switch(struct inode *inode,
519                                      struct bdi_writeback *new_wb)
520 {
521         /*
522          * Paired with smp_mb() in cgroup_writeback_umount().
523          * isw_nr_in_flight must be increased before checking SB_ACTIVE and
524          * grabbing an inode, otherwise isw_nr_in_flight can be observed as 0
525          * in cgroup_writeback_umount() and the isw_wq will be not flushed.
526          */
527         smp_mb();
528
529         if (IS_DAX(inode))
530                 return false;
531
532         /* while holding I_WB_SWITCH, no one else can update the association */
533         spin_lock(&inode->i_lock);
534         if (!(inode->i_sb->s_flags & SB_ACTIVE) ||
535             inode->i_state & (I_WB_SWITCH | I_FREEING | I_WILL_FREE) ||
536             inode_to_wb(inode) == new_wb) {
537                 spin_unlock(&inode->i_lock);
538                 return false;
539         }
540         inode->i_state |= I_WB_SWITCH;
541         __iget(inode);
542         spin_unlock(&inode->i_lock);
543
544         return true;
545 }
546
547 /**
548  * inode_switch_wbs - change the wb association of an inode
549  * @inode: target inode
550  * @new_wb_id: ID of the new wb
551  *
552  * Switch @inode's wb association to the wb identified by @new_wb_id.  The
553  * switching is performed asynchronously and may fail silently.
554  */
555 static void inode_switch_wbs(struct inode *inode, int new_wb_id)
556 {
557         struct backing_dev_info *bdi = inode_to_bdi(inode);
558         struct cgroup_subsys_state *memcg_css;
559         struct inode_switch_wbs_context *isw;
560
561         /* noop if seems to be already in progress */
562         if (inode->i_state & I_WB_SWITCH)
563                 return;
564
565         /* avoid queueing a new switch if too many are already in flight */
566         if (atomic_read(&isw_nr_in_flight) > WB_FRN_MAX_IN_FLIGHT)
567                 return;
568
569         isw = kzalloc(sizeof(*isw) + 2 * sizeof(struct inode *), GFP_ATOMIC);
570         if (!isw)
571                 return;
572
573         atomic_inc(&isw_nr_in_flight);
574
575         /* find and pin the new wb */
576         rcu_read_lock();
577         memcg_css = css_from_id(new_wb_id, &memory_cgrp_subsys);
578         if (memcg_css && !css_tryget(memcg_css))
579                 memcg_css = NULL;
580         rcu_read_unlock();
581         if (!memcg_css)
582                 goto out_free;
583
584         isw->new_wb = wb_get_create(bdi, memcg_css, GFP_ATOMIC);
585         css_put(memcg_css);
586         if (!isw->new_wb)
587                 goto out_free;
588
589         if (!inode_prepare_wbs_switch(inode, isw->new_wb))
590                 goto out_free;
591
592         isw->inodes[0] = inode;
593
594         /*
595          * In addition to synchronizing among switchers, I_WB_SWITCH tells
596          * the RCU protected stat update paths to grab the i_page
597          * lock so that stat transfer can synchronize against them.
598          * Let's continue after I_WB_SWITCH is guaranteed to be visible.
599          */
600         INIT_RCU_WORK(&isw->work, inode_switch_wbs_work_fn);
601         queue_rcu_work(isw_wq, &isw->work);
602         return;
603
604 out_free:
605         atomic_dec(&isw_nr_in_flight);
606         if (isw->new_wb)
607                 wb_put(isw->new_wb);
608         kfree(isw);
609 }
610
611 /**
612  * cleanup_offline_cgwb - detach associated inodes
613  * @wb: target wb
614  *
615  * Switch all inodes attached to @wb to a nearest living ancestor's wb in order
616  * to eventually release the dying @wb.  Returns %true if not all inodes were
617  * switched and the function has to be restarted.
618  */
619 bool cleanup_offline_cgwb(struct bdi_writeback *wb)
620 {
621         struct cgroup_subsys_state *memcg_css;
622         struct inode_switch_wbs_context *isw;
623         struct inode *inode;
624         int nr;
625         bool restart = false;
626
627         isw = kzalloc(sizeof(*isw) + WB_MAX_INODES_PER_ISW *
628                       sizeof(struct inode *), GFP_KERNEL);
629         if (!isw)
630                 return restart;
631
632         atomic_inc(&isw_nr_in_flight);
633
634         for (memcg_css = wb->memcg_css->parent; memcg_css;
635              memcg_css = memcg_css->parent) {
636                 isw->new_wb = wb_get_create(wb->bdi, memcg_css, GFP_KERNEL);
637                 if (isw->new_wb)
638                         break;
639         }
640         if (unlikely(!isw->new_wb))
641                 isw->new_wb = &wb->bdi->wb; /* wb_get() is noop for bdi's wb */
642
643         nr = 0;
644         spin_lock(&wb->list_lock);
645         list_for_each_entry(inode, &wb->b_attached, i_io_list) {
646                 if (!inode_prepare_wbs_switch(inode, isw->new_wb))
647                         continue;
648
649                 isw->inodes[nr++] = inode;
650
651                 if (nr >= WB_MAX_INODES_PER_ISW - 1) {
652                         restart = true;
653                         break;
654                 }
655         }
656         spin_unlock(&wb->list_lock);
657
658         /* no attached inodes? bail out */
659         if (nr == 0) {
660                 atomic_dec(&isw_nr_in_flight);
661                 wb_put(isw->new_wb);
662                 kfree(isw);
663                 return restart;
664         }
665
666         /*
667          * In addition to synchronizing among switchers, I_WB_SWITCH tells
668          * the RCU protected stat update paths to grab the i_page
669          * lock so that stat transfer can synchronize against them.
670          * Let's continue after I_WB_SWITCH is guaranteed to be visible.
671          */
672         INIT_RCU_WORK(&isw->work, inode_switch_wbs_work_fn);
673         queue_rcu_work(isw_wq, &isw->work);
674
675         return restart;
676 }
677
678 /**
679  * wbc_attach_and_unlock_inode - associate wbc with target inode and unlock it
680  * @wbc: writeback_control of interest
681  * @inode: target inode
682  *
683  * @inode is locked and about to be written back under the control of @wbc.
684  * Record @inode's writeback context into @wbc and unlock the i_lock.  On
685  * writeback completion, wbc_detach_inode() should be called.  This is used
686  * to track the cgroup writeback context.
687  */
688 void wbc_attach_and_unlock_inode(struct writeback_control *wbc,
689                                  struct inode *inode)
690 {
691         if (!inode_cgwb_enabled(inode)) {
692                 spin_unlock(&inode->i_lock);
693                 return;
694         }
695
696         wbc->wb = inode_to_wb(inode);
697         wbc->inode = inode;
698
699         wbc->wb_id = wbc->wb->memcg_css->id;
700         wbc->wb_lcand_id = inode->i_wb_frn_winner;
701         wbc->wb_tcand_id = 0;
702         wbc->wb_bytes = 0;
703         wbc->wb_lcand_bytes = 0;
704         wbc->wb_tcand_bytes = 0;
705
706         wb_get(wbc->wb);
707         spin_unlock(&inode->i_lock);
708
709         /*
710          * A dying wb indicates that either the blkcg associated with the
711          * memcg changed or the associated memcg is dying.  In the first
712          * case, a replacement wb should already be available and we should
713          * refresh the wb immediately.  In the second case, trying to
714          * refresh will keep failing.
715          */
716         if (unlikely(wb_dying(wbc->wb) && !css_is_dying(wbc->wb->memcg_css)))
717                 inode_switch_wbs(inode, wbc->wb_id);
718 }
719 EXPORT_SYMBOL_GPL(wbc_attach_and_unlock_inode);
720
721 /**
722  * wbc_detach_inode - disassociate wbc from inode and perform foreign detection
723  * @wbc: writeback_control of the just finished writeback
724  *
725  * To be called after a writeback attempt of an inode finishes and undoes
726  * wbc_attach_and_unlock_inode().  Can be called under any context.
727  *
728  * As concurrent write sharing of an inode is expected to be very rare and
729  * memcg only tracks page ownership on first-use basis severely confining
730  * the usefulness of such sharing, cgroup writeback tracks ownership
731  * per-inode.  While the support for concurrent write sharing of an inode
732  * is deemed unnecessary, an inode being written to by different cgroups at
733  * different points in time is a lot more common, and, more importantly,
734  * charging only by first-use can too readily lead to grossly incorrect
735  * behaviors (single foreign page can lead to gigabytes of writeback to be
736  * incorrectly attributed).
737  *
738  * To resolve this issue, cgroup writeback detects the majority dirtier of
739  * an inode and transfers the ownership to it.  To avoid unnnecessary
740  * oscillation, the detection mechanism keeps track of history and gives
741  * out the switch verdict only if the foreign usage pattern is stable over
742  * a certain amount of time and/or writeback attempts.
743  *
744  * On each writeback attempt, @wbc tries to detect the majority writer
745  * using Boyer-Moore majority vote algorithm.  In addition to the byte
746  * count from the majority voting, it also counts the bytes written for the
747  * current wb and the last round's winner wb (max of last round's current
748  * wb, the winner from two rounds ago, and the last round's majority
749  * candidate).  Keeping track of the historical winner helps the algorithm
750  * to semi-reliably detect the most active writer even when it's not the
751  * absolute majority.
752  *
753  * Once the winner of the round is determined, whether the winner is
754  * foreign or not and how much IO time the round consumed is recorded in
755  * inode->i_wb_frn_history.  If the amount of recorded foreign IO time is
756  * over a certain threshold, the switch verdict is given.
757  */
758 void wbc_detach_inode(struct writeback_control *wbc)
759 {
760         struct bdi_writeback *wb = wbc->wb;
761         struct inode *inode = wbc->inode;
762         unsigned long avg_time, max_bytes, max_time;
763         u16 history;
764         int max_id;
765
766         if (!wb)
767                 return;
768
769         history = inode->i_wb_frn_history;
770         avg_time = inode->i_wb_frn_avg_time;
771
772         /* pick the winner of this round */
773         if (wbc->wb_bytes >= wbc->wb_lcand_bytes &&
774             wbc->wb_bytes >= wbc->wb_tcand_bytes) {
775                 max_id = wbc->wb_id;
776                 max_bytes = wbc->wb_bytes;
777         } else if (wbc->wb_lcand_bytes >= wbc->wb_tcand_bytes) {
778                 max_id = wbc->wb_lcand_id;
779                 max_bytes = wbc->wb_lcand_bytes;
780         } else {
781                 max_id = wbc->wb_tcand_id;
782                 max_bytes = wbc->wb_tcand_bytes;
783         }
784
785         /*
786          * Calculate the amount of IO time the winner consumed and fold it
787          * into the running average kept per inode.  If the consumed IO
788          * time is lower than avag / WB_FRN_TIME_CUT_DIV, ignore it for
789          * deciding whether to switch or not.  This is to prevent one-off
790          * small dirtiers from skewing the verdict.
791          */
792         max_time = DIV_ROUND_UP((max_bytes >> PAGE_SHIFT) << WB_FRN_TIME_SHIFT,
793                                 wb->avg_write_bandwidth);
794         if (avg_time)
795                 avg_time += (max_time >> WB_FRN_TIME_AVG_SHIFT) -
796                             (avg_time >> WB_FRN_TIME_AVG_SHIFT);
797         else
798                 avg_time = max_time;    /* immediate catch up on first run */
799
800         if (max_time >= avg_time / WB_FRN_TIME_CUT_DIV) {
801                 int slots;
802
803                 /*
804                  * The switch verdict is reached if foreign wb's consume
805                  * more than a certain proportion of IO time in a
806                  * WB_FRN_TIME_PERIOD.  This is loosely tracked by 16 slot
807                  * history mask where each bit represents one sixteenth of
808                  * the period.  Determine the number of slots to shift into
809                  * history from @max_time.
810                  */
811                 slots = min(DIV_ROUND_UP(max_time, WB_FRN_HIST_UNIT),
812                             (unsigned long)WB_FRN_HIST_MAX_SLOTS);
813                 history <<= slots;
814                 if (wbc->wb_id != max_id)
815                         history |= (1U << slots) - 1;
816
817                 if (history)
818                         trace_inode_foreign_history(inode, wbc, history);
819
820                 /*
821                  * Switch if the current wb isn't the consistent winner.
822                  * If there are multiple closely competing dirtiers, the
823                  * inode may switch across them repeatedly over time, which
824                  * is okay.  The main goal is avoiding keeping an inode on
825                  * the wrong wb for an extended period of time.
826                  */
827                 if (hweight32(history) > WB_FRN_HIST_THR_SLOTS)
828                         inode_switch_wbs(inode, max_id);
829         }
830
831         /*
832          * Multiple instances of this function may race to update the
833          * following fields but we don't mind occassional inaccuracies.
834          */
835         inode->i_wb_frn_winner = max_id;
836         inode->i_wb_frn_avg_time = min(avg_time, (unsigned long)U16_MAX);
837         inode->i_wb_frn_history = history;
838
839         wb_put(wbc->wb);
840         wbc->wb = NULL;
841 }
842 EXPORT_SYMBOL_GPL(wbc_detach_inode);
843
844 /**
845  * wbc_account_cgroup_owner - account writeback to update inode cgroup ownership
846  * @wbc: writeback_control of the writeback in progress
847  * @page: page being written out
848  * @bytes: number of bytes being written out
849  *
850  * @bytes from @page are about to written out during the writeback
851  * controlled by @wbc.  Keep the book for foreign inode detection.  See
852  * wbc_detach_inode().
853  */
854 void wbc_account_cgroup_owner(struct writeback_control *wbc, struct page *page,
855                               size_t bytes)
856 {
857         struct cgroup_subsys_state *css;
858         int id;
859
860         /*
861          * pageout() path doesn't attach @wbc to the inode being written
862          * out.  This is intentional as we don't want the function to block
863          * behind a slow cgroup.  Ultimately, we want pageout() to kick off
864          * regular writeback instead of writing things out itself.
865          */
866         if (!wbc->wb || wbc->no_cgroup_owner)
867                 return;
868
869         css = mem_cgroup_css_from_page(page);
870         /* dead cgroups shouldn't contribute to inode ownership arbitration */
871         if (!(css->flags & CSS_ONLINE))
872                 return;
873
874         id = css->id;
875
876         if (id == wbc->wb_id) {
877                 wbc->wb_bytes += bytes;
878                 return;
879         }
880
881         if (id == wbc->wb_lcand_id)
882                 wbc->wb_lcand_bytes += bytes;
883
884         /* Boyer-Moore majority vote algorithm */
885         if (!wbc->wb_tcand_bytes)
886                 wbc->wb_tcand_id = id;
887         if (id == wbc->wb_tcand_id)
888                 wbc->wb_tcand_bytes += bytes;
889         else
890                 wbc->wb_tcand_bytes -= min(bytes, wbc->wb_tcand_bytes);
891 }
892 EXPORT_SYMBOL_GPL(wbc_account_cgroup_owner);
893
894 /**
895  * inode_congested - test whether an inode is congested
896  * @inode: inode to test for congestion (may be NULL)
897  * @cong_bits: mask of WB_[a]sync_congested bits to test
898  *
899  * Tests whether @inode is congested.  @cong_bits is the mask of congestion
900  * bits to test and the return value is the mask of set bits.
901  *
902  * If cgroup writeback is enabled for @inode, the congestion state is
903  * determined by whether the cgwb (cgroup bdi_writeback) for the blkcg
904  * associated with @inode is congested; otherwise, the root wb's congestion
905  * state is used.
906  *
907  * @inode is allowed to be NULL as this function is often called on
908  * mapping->host which is NULL for the swapper space.
909  */
910 int inode_congested(struct inode *inode, int cong_bits)
911 {
912         /*
913          * Once set, ->i_wb never becomes NULL while the inode is alive.
914          * Start transaction iff ->i_wb is visible.
915          */
916         if (inode && inode_to_wb_is_valid(inode)) {
917                 struct bdi_writeback *wb;
918                 struct wb_lock_cookie lock_cookie = {};
919                 bool congested;
920
921                 wb = unlocked_inode_to_wb_begin(inode, &lock_cookie);
922                 congested = wb_congested(wb, cong_bits);
923                 unlocked_inode_to_wb_end(inode, &lock_cookie);
924                 return congested;
925         }
926
927         return wb_congested(&inode_to_bdi(inode)->wb, cong_bits);
928 }
929 EXPORT_SYMBOL_GPL(inode_congested);
930
931 /**
932  * wb_split_bdi_pages - split nr_pages to write according to bandwidth
933  * @wb: target bdi_writeback to split @nr_pages to
934  * @nr_pages: number of pages to write for the whole bdi
935  *
936  * Split @wb's portion of @nr_pages according to @wb's write bandwidth in
937  * relation to the total write bandwidth of all wb's w/ dirty inodes on
938  * @wb->bdi.
939  */
940 static long wb_split_bdi_pages(struct bdi_writeback *wb, long nr_pages)
941 {
942         unsigned long this_bw = wb->avg_write_bandwidth;
943         unsigned long tot_bw = atomic_long_read(&wb->bdi->tot_write_bandwidth);
944
945         if (nr_pages == LONG_MAX)
946                 return LONG_MAX;
947
948         /*
949          * This may be called on clean wb's and proportional distribution
950          * may not make sense, just use the original @nr_pages in those
951          * cases.  In general, we wanna err on the side of writing more.
952          */
953         if (!tot_bw || this_bw >= tot_bw)
954                 return nr_pages;
955         else
956                 return DIV_ROUND_UP_ULL((u64)nr_pages * this_bw, tot_bw);
957 }
958
959 /**
960  * bdi_split_work_to_wbs - split a wb_writeback_work to all wb's of a bdi
961  * @bdi: target backing_dev_info
962  * @base_work: wb_writeback_work to issue
963  * @skip_if_busy: skip wb's which already have writeback in progress
964  *
965  * Split and issue @base_work to all wb's (bdi_writeback's) of @bdi which
966  * have dirty inodes.  If @base_work->nr_page isn't %LONG_MAX, it's
967  * distributed to the busy wbs according to each wb's proportion in the
968  * total active write bandwidth of @bdi.
969  */
970 static void bdi_split_work_to_wbs(struct backing_dev_info *bdi,
971                                   struct wb_writeback_work *base_work,
972                                   bool skip_if_busy)
973 {
974         struct bdi_writeback *last_wb = NULL;
975         struct bdi_writeback *wb = list_entry(&bdi->wb_list,
976                                               struct bdi_writeback, bdi_node);
977
978         might_sleep();
979 restart:
980         rcu_read_lock();
981         list_for_each_entry_continue_rcu(wb, &bdi->wb_list, bdi_node) {
982                 DEFINE_WB_COMPLETION(fallback_work_done, bdi);
983                 struct wb_writeback_work fallback_work;
984                 struct wb_writeback_work *work;
985                 long nr_pages;
986
987                 if (last_wb) {
988                         wb_put(last_wb);
989                         last_wb = NULL;
990                 }
991
992                 /* SYNC_ALL writes out I_DIRTY_TIME too */
993                 if (!wb_has_dirty_io(wb) &&
994                     (base_work->sync_mode == WB_SYNC_NONE ||
995                      list_empty(&wb->b_dirty_time)))
996                         continue;
997                 if (skip_if_busy && writeback_in_progress(wb))
998                         continue;
999
1000                 nr_pages = wb_split_bdi_pages(wb, base_work->nr_pages);
1001
1002                 work = kmalloc(sizeof(*work), GFP_ATOMIC);
1003                 if (work) {
1004                         *work = *base_work;
1005                         work->nr_pages = nr_pages;
1006                         work->auto_free = 1;
1007                         wb_queue_work(wb, work);
1008                         continue;
1009                 }
1010
1011                 /* alloc failed, execute synchronously using on-stack fallback */
1012                 work = &fallback_work;
1013                 *work = *base_work;
1014                 work->nr_pages = nr_pages;
1015                 work->auto_free = 0;
1016                 work->done = &fallback_work_done;
1017
1018                 wb_queue_work(wb, work);
1019
1020                 /*
1021                  * Pin @wb so that it stays on @bdi->wb_list.  This allows
1022                  * continuing iteration from @wb after dropping and
1023                  * regrabbing rcu read lock.
1024                  */
1025                 wb_get(wb);
1026                 last_wb = wb;
1027
1028                 rcu_read_unlock();
1029                 wb_wait_for_completion(&fallback_work_done);
1030                 goto restart;
1031         }
1032         rcu_read_unlock();
1033
1034         if (last_wb)
1035                 wb_put(last_wb);
1036 }
1037
1038 /**
1039  * cgroup_writeback_by_id - initiate cgroup writeback from bdi and memcg IDs
1040  * @bdi_id: target bdi id
1041  * @memcg_id: target memcg css id
1042  * @nr: number of pages to write, 0 for best-effort dirty flushing
1043  * @reason: reason why some writeback work initiated
1044  * @done: target wb_completion
1045  *
1046  * Initiate flush of the bdi_writeback identified by @bdi_id and @memcg_id
1047  * with the specified parameters.
1048  */
1049 int cgroup_writeback_by_id(u64 bdi_id, int memcg_id, unsigned long nr,
1050                            enum wb_reason reason, struct wb_completion *done)
1051 {
1052         struct backing_dev_info *bdi;
1053         struct cgroup_subsys_state *memcg_css;
1054         struct bdi_writeback *wb;
1055         struct wb_writeback_work *work;
1056         int ret;
1057
1058         /* lookup bdi and memcg */
1059         bdi = bdi_get_by_id(bdi_id);
1060         if (!bdi)
1061                 return -ENOENT;
1062
1063         rcu_read_lock();
1064         memcg_css = css_from_id(memcg_id, &memory_cgrp_subsys);
1065         if (memcg_css && !css_tryget(memcg_css))
1066                 memcg_css = NULL;
1067         rcu_read_unlock();
1068         if (!memcg_css) {
1069                 ret = -ENOENT;
1070                 goto out_bdi_put;
1071         }
1072
1073         /*
1074          * And find the associated wb.  If the wb isn't there already
1075          * there's nothing to flush, don't create one.
1076          */
1077         wb = wb_get_lookup(bdi, memcg_css);
1078         if (!wb) {
1079                 ret = -ENOENT;
1080                 goto out_css_put;
1081         }
1082
1083         /*
1084          * If @nr is zero, the caller is attempting to write out most of
1085          * the currently dirty pages.  Let's take the current dirty page
1086          * count and inflate it by 25% which should be large enough to
1087          * flush out most dirty pages while avoiding getting livelocked by
1088          * concurrent dirtiers.
1089          */
1090         if (!nr) {
1091                 unsigned long filepages, headroom, dirty, writeback;
1092
1093                 mem_cgroup_wb_stats(wb, &filepages, &headroom, &dirty,
1094                                       &writeback);
1095                 nr = dirty * 10 / 8;
1096         }
1097
1098         /* issue the writeback work */
1099         work = kzalloc(sizeof(*work), GFP_NOWAIT | __GFP_NOWARN);
1100         if (work) {
1101                 work->nr_pages = nr;
1102                 work->sync_mode = WB_SYNC_NONE;
1103                 work->range_cyclic = 1;
1104                 work->reason = reason;
1105                 work->done = done;
1106                 work->auto_free = 1;
1107                 wb_queue_work(wb, work);
1108                 ret = 0;
1109         } else {
1110                 ret = -ENOMEM;
1111         }
1112
1113         wb_put(wb);
1114 out_css_put:
1115         css_put(memcg_css);
1116 out_bdi_put:
1117         bdi_put(bdi);
1118         return ret;
1119 }
1120
1121 /**
1122  * cgroup_writeback_umount - flush inode wb switches for umount
1123  *
1124  * This function is called when a super_block is about to be destroyed and
1125  * flushes in-flight inode wb switches.  An inode wb switch goes through
1126  * RCU and then workqueue, so the two need to be flushed in order to ensure
1127  * that all previously scheduled switches are finished.  As wb switches are
1128  * rare occurrences and synchronize_rcu() can take a while, perform
1129  * flushing iff wb switches are in flight.
1130  */
1131 void cgroup_writeback_umount(void)
1132 {
1133         /*
1134          * SB_ACTIVE should be reliably cleared before checking
1135          * isw_nr_in_flight, see generic_shutdown_super().
1136          */
1137         smp_mb();
1138
1139         if (atomic_read(&isw_nr_in_flight)) {
1140                 /*
1141                  * Use rcu_barrier() to wait for all pending callbacks to
1142                  * ensure that all in-flight wb switches are in the workqueue.
1143                  */
1144                 rcu_barrier();
1145                 flush_workqueue(isw_wq);
1146         }
1147 }
1148
1149 static int __init cgroup_writeback_init(void)
1150 {
1151         isw_wq = alloc_workqueue("inode_switch_wbs", 0, 0);
1152         if (!isw_wq)
1153                 return -ENOMEM;
1154         return 0;
1155 }
1156 fs_initcall(cgroup_writeback_init);
1157
1158 #else   /* CONFIG_CGROUP_WRITEBACK */
1159
1160 static void bdi_down_write_wb_switch_rwsem(struct backing_dev_info *bdi) { }
1161 static void bdi_up_write_wb_switch_rwsem(struct backing_dev_info *bdi) { }
1162
1163 static void inode_cgwb_move_to_attached(struct inode *inode,
1164                                         struct bdi_writeback *wb)
1165 {
1166         assert_spin_locked(&wb->list_lock);
1167         assert_spin_locked(&inode->i_lock);
1168
1169         inode->i_state &= ~I_SYNC_QUEUED;
1170         list_del_init(&inode->i_io_list);
1171         wb_io_lists_depopulated(wb);
1172 }
1173
1174 static struct bdi_writeback *
1175 locked_inode_to_wb_and_lock_list(struct inode *inode)
1176         __releases(&inode->i_lock)
1177         __acquires(&wb->list_lock)
1178 {
1179         struct bdi_writeback *wb = inode_to_wb(inode);
1180
1181         spin_unlock(&inode->i_lock);
1182         spin_lock(&wb->list_lock);
1183         return wb;
1184 }
1185
1186 static struct bdi_writeback *inode_to_wb_and_lock_list(struct inode *inode)
1187         __acquires(&wb->list_lock)
1188 {
1189         struct bdi_writeback *wb = inode_to_wb(inode);
1190
1191         spin_lock(&wb->list_lock);
1192         return wb;
1193 }
1194
1195 static long wb_split_bdi_pages(struct bdi_writeback *wb, long nr_pages)
1196 {
1197         return nr_pages;
1198 }
1199
1200 static void bdi_split_work_to_wbs(struct backing_dev_info *bdi,
1201                                   struct wb_writeback_work *base_work,
1202                                   bool skip_if_busy)
1203 {
1204         might_sleep();
1205
1206         if (!skip_if_busy || !writeback_in_progress(&bdi->wb)) {
1207                 base_work->auto_free = 0;
1208                 wb_queue_work(&bdi->wb, base_work);
1209         }
1210 }
1211
1212 #endif  /* CONFIG_CGROUP_WRITEBACK */
1213
1214 /*
1215  * Add in the number of potentially dirty inodes, because each inode
1216  * write can dirty pagecache in the underlying blockdev.
1217  */
1218 static unsigned long get_nr_dirty_pages(void)
1219 {
1220         return global_node_page_state(NR_FILE_DIRTY) +
1221                 get_nr_dirty_inodes();
1222 }
1223
1224 static void wb_start_writeback(struct bdi_writeback *wb, enum wb_reason reason)
1225 {
1226         if (!wb_has_dirty_io(wb))
1227                 return;
1228
1229         /*
1230          * All callers of this function want to start writeback of all
1231          * dirty pages. Places like vmscan can call this at a very
1232          * high frequency, causing pointless allocations of tons of
1233          * work items and keeping the flusher threads busy retrieving
1234          * that work. Ensure that we only allow one of them pending and
1235          * inflight at the time.
1236          */
1237         if (test_bit(WB_start_all, &wb->state) ||
1238             test_and_set_bit(WB_start_all, &wb->state))
1239                 return;
1240
1241         wb->start_all_reason = reason;
1242         wb_wakeup(wb);
1243 }
1244
1245 /**
1246  * wb_start_background_writeback - start background writeback
1247  * @wb: bdi_writback to write from
1248  *
1249  * Description:
1250  *   This makes sure WB_SYNC_NONE background writeback happens. When
1251  *   this function returns, it is only guaranteed that for given wb
1252  *   some IO is happening if we are over background dirty threshold.
1253  *   Caller need not hold sb s_umount semaphore.
1254  */
1255 void wb_start_background_writeback(struct bdi_writeback *wb)
1256 {
1257         /*
1258          * We just wake up the flusher thread. It will perform background
1259          * writeback as soon as there is no other work to do.
1260          */
1261         trace_writeback_wake_background(wb);
1262         wb_wakeup(wb);
1263 }
1264
1265 /*
1266  * Remove the inode from the writeback list it is on.
1267  */
1268 void inode_io_list_del(struct inode *inode)
1269 {
1270         struct bdi_writeback *wb;
1271
1272         wb = inode_to_wb_and_lock_list(inode);
1273         spin_lock(&inode->i_lock);
1274
1275         inode->i_state &= ~I_SYNC_QUEUED;
1276         list_del_init(&inode->i_io_list);
1277         wb_io_lists_depopulated(wb);
1278
1279         spin_unlock(&inode->i_lock);
1280         spin_unlock(&wb->list_lock);
1281 }
1282 EXPORT_SYMBOL(inode_io_list_del);
1283
1284 /*
1285  * mark an inode as under writeback on the sb
1286  */
1287 void sb_mark_inode_writeback(struct inode *inode)
1288 {
1289         struct super_block *sb = inode->i_sb;
1290         unsigned long flags;
1291
1292         if (list_empty(&inode->i_wb_list)) {
1293                 spin_lock_irqsave(&sb->s_inode_wblist_lock, flags);
1294                 if (list_empty(&inode->i_wb_list)) {
1295                         list_add_tail(&inode->i_wb_list, &sb->s_inodes_wb);
1296                         trace_sb_mark_inode_writeback(inode);
1297                 }
1298                 spin_unlock_irqrestore(&sb->s_inode_wblist_lock, flags);
1299         }
1300 }
1301
1302 /*
1303  * clear an inode as under writeback on the sb
1304  */
1305 void sb_clear_inode_writeback(struct inode *inode)
1306 {
1307         struct super_block *sb = inode->i_sb;
1308         unsigned long flags;
1309
1310         if (!list_empty(&inode->i_wb_list)) {
1311                 spin_lock_irqsave(&sb->s_inode_wblist_lock, flags);
1312                 if (!list_empty(&inode->i_wb_list)) {
1313                         list_del_init(&inode->i_wb_list);
1314                         trace_sb_clear_inode_writeback(inode);
1315                 }
1316                 spin_unlock_irqrestore(&sb->s_inode_wblist_lock, flags);
1317         }
1318 }
1319
1320 /*
1321  * Redirty an inode: set its when-it-was dirtied timestamp and move it to the
1322  * furthest end of its superblock's dirty-inode list.
1323  *
1324  * Before stamping the inode's ->dirtied_when, we check to see whether it is
1325  * already the most-recently-dirtied inode on the b_dirty list.  If that is
1326  * the case then the inode must have been redirtied while it was being written
1327  * out and we don't reset its dirtied_when.
1328  */
1329 static void redirty_tail_locked(struct inode *inode, struct bdi_writeback *wb)
1330 {
1331         assert_spin_locked(&inode->i_lock);
1332
1333         if (!list_empty(&wb->b_dirty)) {
1334                 struct inode *tail;
1335
1336                 tail = wb_inode(wb->b_dirty.next);
1337                 if (time_before(inode->dirtied_when, tail->dirtied_when))
1338                         inode->dirtied_when = jiffies;
1339         }
1340         inode_io_list_move_locked(inode, wb, &wb->b_dirty);
1341         inode->i_state &= ~I_SYNC_QUEUED;
1342 }
1343
1344 static void redirty_tail(struct inode *inode, struct bdi_writeback *wb)
1345 {
1346         spin_lock(&inode->i_lock);
1347         redirty_tail_locked(inode, wb);
1348         spin_unlock(&inode->i_lock);
1349 }
1350
1351 /*
1352  * requeue inode for re-scanning after bdi->b_io list is exhausted.
1353  */
1354 static void requeue_io(struct inode *inode, struct bdi_writeback *wb)
1355 {
1356         inode_io_list_move_locked(inode, wb, &wb->b_more_io);
1357 }
1358
1359 static void inode_sync_complete(struct inode *inode)
1360 {
1361         inode->i_state &= ~I_SYNC;
1362         /* If inode is clean an unused, put it into LRU now... */
1363         inode_add_lru(inode);
1364         /* Waiters must see I_SYNC cleared before being woken up */
1365         smp_mb();
1366         wake_up_bit(&inode->i_state, __I_SYNC);
1367 }
1368
1369 static bool inode_dirtied_after(struct inode *inode, unsigned long t)
1370 {
1371         bool ret = time_after(inode->dirtied_when, t);
1372 #ifndef CONFIG_64BIT
1373         /*
1374          * For inodes being constantly redirtied, dirtied_when can get stuck.
1375          * It _appears_ to be in the future, but is actually in distant past.
1376          * This test is necessary to prevent such wrapped-around relative times
1377          * from permanently stopping the whole bdi writeback.
1378          */
1379         ret = ret && time_before_eq(inode->dirtied_when, jiffies);
1380 #endif
1381         return ret;
1382 }
1383
1384 #define EXPIRE_DIRTY_ATIME 0x0001
1385
1386 /*
1387  * Move expired (dirtied before dirtied_before) dirty inodes from
1388  * @delaying_queue to @dispatch_queue.
1389  */
1390 static int move_expired_inodes(struct list_head *delaying_queue,
1391                                struct list_head *dispatch_queue,
1392                                unsigned long dirtied_before)
1393 {
1394         LIST_HEAD(tmp);
1395         struct list_head *pos, *node;
1396         struct super_block *sb = NULL;
1397         struct inode *inode;
1398         int do_sb_sort = 0;
1399         int moved = 0;
1400
1401         while (!list_empty(delaying_queue)) {
1402                 inode = wb_inode(delaying_queue->prev);
1403                 if (inode_dirtied_after(inode, dirtied_before))
1404                         break;
1405                 list_move(&inode->i_io_list, &tmp);
1406                 moved++;
1407                 spin_lock(&inode->i_lock);
1408                 inode->i_state |= I_SYNC_QUEUED;
1409                 spin_unlock(&inode->i_lock);
1410                 if (sb_is_blkdev_sb(inode->i_sb))
1411                         continue;
1412                 if (sb && sb != inode->i_sb)
1413                         do_sb_sort = 1;
1414                 sb = inode->i_sb;
1415         }
1416
1417         /* just one sb in list, splice to dispatch_queue and we're done */
1418         if (!do_sb_sort) {
1419                 list_splice(&tmp, dispatch_queue);
1420                 goto out;
1421         }
1422
1423         /* Move inodes from one superblock together */
1424         while (!list_empty(&tmp)) {
1425                 sb = wb_inode(tmp.prev)->i_sb;
1426                 list_for_each_prev_safe(pos, node, &tmp) {
1427                         inode = wb_inode(pos);
1428                         if (inode->i_sb == sb)
1429                                 list_move(&inode->i_io_list, dispatch_queue);
1430                 }
1431         }
1432 out:
1433         return moved;
1434 }
1435
1436 /*
1437  * Queue all expired dirty inodes for io, eldest first.
1438  * Before
1439  *         newly dirtied     b_dirty    b_io    b_more_io
1440  *         =============>    gf         edc     BA
1441  * After
1442  *         newly dirtied     b_dirty    b_io    b_more_io
1443  *         =============>    g          fBAedc
1444  *                                           |
1445  *                                           +--> dequeue for IO
1446  */
1447 static void queue_io(struct bdi_writeback *wb, struct wb_writeback_work *work,
1448                      unsigned long dirtied_before)
1449 {
1450         int moved;
1451         unsigned long time_expire_jif = dirtied_before;
1452
1453         assert_spin_locked(&wb->list_lock);
1454         list_splice_init(&wb->b_more_io, &wb->b_io);
1455         moved = move_expired_inodes(&wb->b_dirty, &wb->b_io, dirtied_before);
1456         if (!work->for_sync)
1457                 time_expire_jif = jiffies - dirtytime_expire_interval * HZ;
1458         moved += move_expired_inodes(&wb->b_dirty_time, &wb->b_io,
1459                                      time_expire_jif);
1460         if (moved)
1461                 wb_io_lists_populated(wb);
1462         trace_writeback_queue_io(wb, work, dirtied_before, moved);
1463 }
1464
1465 static int write_inode(struct inode *inode, struct writeback_control *wbc)
1466 {
1467         int ret;
1468
1469         if (inode->i_sb->s_op->write_inode && !is_bad_inode(inode)) {
1470                 trace_writeback_write_inode_start(inode, wbc);
1471                 ret = inode->i_sb->s_op->write_inode(inode, wbc);
1472                 trace_writeback_write_inode(inode, wbc);
1473                 return ret;
1474         }
1475         return 0;
1476 }
1477
1478 /*
1479  * Wait for writeback on an inode to complete. Called with i_lock held.
1480  * Caller must make sure inode cannot go away when we drop i_lock.
1481  */
1482 static void __inode_wait_for_writeback(struct inode *inode)
1483         __releases(inode->i_lock)
1484         __acquires(inode->i_lock)
1485 {
1486         DEFINE_WAIT_BIT(wq, &inode->i_state, __I_SYNC);
1487         wait_queue_head_t *wqh;
1488
1489         wqh = bit_waitqueue(&inode->i_state, __I_SYNC);
1490         while (inode->i_state & I_SYNC) {
1491                 spin_unlock(&inode->i_lock);
1492                 __wait_on_bit(wqh, &wq, bit_wait,
1493                               TASK_UNINTERRUPTIBLE);
1494                 spin_lock(&inode->i_lock);
1495         }
1496 }
1497
1498 /*
1499  * Wait for writeback on an inode to complete. Caller must have inode pinned.
1500  */
1501 void inode_wait_for_writeback(struct inode *inode)
1502 {
1503         spin_lock(&inode->i_lock);
1504         __inode_wait_for_writeback(inode);
1505         spin_unlock(&inode->i_lock);
1506 }
1507
1508 /*
1509  * Sleep until I_SYNC is cleared. This function must be called with i_lock
1510  * held and drops it. It is aimed for callers not holding any inode reference
1511  * so once i_lock is dropped, inode can go away.
1512  */
1513 static void inode_sleep_on_writeback(struct inode *inode)
1514         __releases(inode->i_lock)
1515 {
1516         DEFINE_WAIT(wait);
1517         wait_queue_head_t *wqh = bit_waitqueue(&inode->i_state, __I_SYNC);
1518         int sleep;
1519
1520         prepare_to_wait(wqh, &wait, TASK_UNINTERRUPTIBLE);
1521         sleep = inode->i_state & I_SYNC;
1522         spin_unlock(&inode->i_lock);
1523         if (sleep)
1524                 schedule();
1525         finish_wait(wqh, &wait);
1526 }
1527
1528 /*
1529  * Find proper writeback list for the inode depending on its current state and
1530  * possibly also change of its state while we were doing writeback.  Here we
1531  * handle things such as livelock prevention or fairness of writeback among
1532  * inodes. This function can be called only by flusher thread - noone else
1533  * processes all inodes in writeback lists and requeueing inodes behind flusher
1534  * thread's back can have unexpected consequences.
1535  */
1536 static void requeue_inode(struct inode *inode, struct bdi_writeback *wb,
1537                           struct writeback_control *wbc)
1538 {
1539         if (inode->i_state & I_FREEING)
1540                 return;
1541
1542         /*
1543          * Sync livelock prevention. Each inode is tagged and synced in one
1544          * shot. If still dirty, it will be redirty_tail()'ed below.  Update
1545          * the dirty time to prevent enqueue and sync it again.
1546          */
1547         if ((inode->i_state & I_DIRTY) &&
1548             (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages))
1549                 inode->dirtied_when = jiffies;
1550
1551         if (wbc->pages_skipped) {
1552                 /*
1553                  * writeback is not making progress due to locked
1554                  * buffers. Skip this inode for now.
1555                  */
1556                 redirty_tail_locked(inode, wb);
1557                 return;
1558         }
1559
1560         if (mapping_tagged(inode->i_mapping, PAGECACHE_TAG_DIRTY)) {
1561                 /*
1562                  * We didn't write back all the pages.  nfs_writepages()
1563                  * sometimes bales out without doing anything.
1564                  */
1565                 if (wbc->nr_to_write <= 0) {
1566                         /* Slice used up. Queue for next turn. */
1567                         requeue_io(inode, wb);
1568                 } else {
1569                         /*
1570                          * Writeback blocked by something other than
1571                          * congestion. Delay the inode for some time to
1572                          * avoid spinning on the CPU (100% iowait)
1573                          * retrying writeback of the dirty page/inode
1574                          * that cannot be performed immediately.
1575                          */
1576                         redirty_tail_locked(inode, wb);
1577                 }
1578         } else if (inode->i_state & I_DIRTY) {
1579                 /*
1580                  * Filesystems can dirty the inode during writeback operations,
1581                  * such as delayed allocation during submission or metadata
1582                  * updates after data IO completion.
1583                  */
1584                 redirty_tail_locked(inode, wb);
1585         } else if (inode->i_state & I_DIRTY_TIME) {
1586                 inode->dirtied_when = jiffies;
1587                 inode_io_list_move_locked(inode, wb, &wb->b_dirty_time);
1588                 inode->i_state &= ~I_SYNC_QUEUED;
1589         } else {
1590                 /* The inode is clean. Remove from writeback lists. */
1591                 inode_cgwb_move_to_attached(inode, wb);
1592         }
1593 }
1594
1595 /*
1596  * Write out an inode and its dirty pages (or some of its dirty pages, depending
1597  * on @wbc->nr_to_write), and clear the relevant dirty flags from i_state.
1598  *
1599  * This doesn't remove the inode from the writeback list it is on, except
1600  * potentially to move it from b_dirty_time to b_dirty due to timestamp
1601  * expiration.  The caller is otherwise responsible for writeback list handling.
1602  *
1603  * The caller is also responsible for setting the I_SYNC flag beforehand and
1604  * calling inode_sync_complete() to clear it afterwards.
1605  */
1606 static int
1607 __writeback_single_inode(struct inode *inode, struct writeback_control *wbc)
1608 {
1609         struct address_space *mapping = inode->i_mapping;
1610         long nr_to_write = wbc->nr_to_write;
1611         unsigned dirty;
1612         int ret;
1613
1614         WARN_ON(!(inode->i_state & I_SYNC));
1615
1616         trace_writeback_single_inode_start(inode, wbc, nr_to_write);
1617
1618         ret = do_writepages(mapping, wbc);
1619
1620         /*
1621          * Make sure to wait on the data before writing out the metadata.
1622          * This is important for filesystems that modify metadata on data
1623          * I/O completion. We don't do it for sync(2) writeback because it has a
1624          * separate, external IO completion path and ->sync_fs for guaranteeing
1625          * inode metadata is written back correctly.
1626          */
1627         if (wbc->sync_mode == WB_SYNC_ALL && !wbc->for_sync) {
1628                 int err = filemap_fdatawait(mapping);
1629                 if (ret == 0)
1630                         ret = err;
1631         }
1632
1633         /*
1634          * If the inode has dirty timestamps and we need to write them, call
1635          * mark_inode_dirty_sync() to notify the filesystem about it and to
1636          * change I_DIRTY_TIME into I_DIRTY_SYNC.
1637          */
1638         if ((inode->i_state & I_DIRTY_TIME) &&
1639             (wbc->sync_mode == WB_SYNC_ALL ||
1640              time_after(jiffies, inode->dirtied_time_when +
1641                         dirtytime_expire_interval * HZ))) {
1642                 trace_writeback_lazytime(inode);
1643                 mark_inode_dirty_sync(inode);
1644         }
1645
1646         /*
1647          * Get and clear the dirty flags from i_state.  This needs to be done
1648          * after calling writepages because some filesystems may redirty the
1649          * inode during writepages due to delalloc.  It also needs to be done
1650          * after handling timestamp expiration, as that may dirty the inode too.
1651          */
1652         spin_lock(&inode->i_lock);
1653         dirty = inode->i_state & I_DIRTY;
1654         inode->i_state &= ~dirty;
1655
1656         /*
1657          * Paired with smp_mb() in __mark_inode_dirty().  This allows
1658          * __mark_inode_dirty() to test i_state without grabbing i_lock -
1659          * either they see the I_DIRTY bits cleared or we see the dirtied
1660          * inode.
1661          *
1662          * I_DIRTY_PAGES is always cleared together above even if @mapping
1663          * still has dirty pages.  The flag is reinstated after smp_mb() if
1664          * necessary.  This guarantees that either __mark_inode_dirty()
1665          * sees clear I_DIRTY_PAGES or we see PAGECACHE_TAG_DIRTY.
1666          */
1667         smp_mb();
1668
1669         if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
1670                 inode->i_state |= I_DIRTY_PAGES;
1671
1672         spin_unlock(&inode->i_lock);
1673
1674         /* Don't write the inode if only I_DIRTY_PAGES was set */
1675         if (dirty & ~I_DIRTY_PAGES) {
1676                 int err = write_inode(inode, wbc);
1677                 if (ret == 0)
1678                         ret = err;
1679         }
1680         trace_writeback_single_inode(inode, wbc, nr_to_write);
1681         return ret;
1682 }
1683
1684 /*
1685  * Write out an inode's dirty data and metadata on-demand, i.e. separately from
1686  * the regular batched writeback done by the flusher threads in
1687  * writeback_sb_inodes().  @wbc controls various aspects of the write, such as
1688  * whether it is a data-integrity sync (%WB_SYNC_ALL) or not (%WB_SYNC_NONE).
1689  *
1690  * To prevent the inode from going away, either the caller must have a reference
1691  * to the inode, or the inode must have I_WILL_FREE or I_FREEING set.
1692  */
1693 static int writeback_single_inode(struct inode *inode,
1694                                   struct writeback_control *wbc)
1695 {
1696         struct bdi_writeback *wb;
1697         int ret = 0;
1698
1699         spin_lock(&inode->i_lock);
1700         if (!atomic_read(&inode->i_count))
1701                 WARN_ON(!(inode->i_state & (I_WILL_FREE|I_FREEING)));
1702         else
1703                 WARN_ON(inode->i_state & I_WILL_FREE);
1704
1705         if (inode->i_state & I_SYNC) {
1706                 /*
1707                  * Writeback is already running on the inode.  For WB_SYNC_NONE,
1708                  * that's enough and we can just return.  For WB_SYNC_ALL, we
1709                  * must wait for the existing writeback to complete, then do
1710                  * writeback again if there's anything left.
1711                  */
1712                 if (wbc->sync_mode != WB_SYNC_ALL)
1713                         goto out;
1714                 __inode_wait_for_writeback(inode);
1715         }
1716         WARN_ON(inode->i_state & I_SYNC);
1717         /*
1718          * If the inode is already fully clean, then there's nothing to do.
1719          *
1720          * For data-integrity syncs we also need to check whether any pages are
1721          * still under writeback, e.g. due to prior WB_SYNC_NONE writeback.  If
1722          * there are any such pages, we'll need to wait for them.
1723          */
1724         if (!(inode->i_state & I_DIRTY_ALL) &&
1725             (wbc->sync_mode != WB_SYNC_ALL ||
1726              !mapping_tagged(inode->i_mapping, PAGECACHE_TAG_WRITEBACK)))
1727                 goto out;
1728         inode->i_state |= I_SYNC;
1729         wbc_attach_and_unlock_inode(wbc, inode);
1730
1731         ret = __writeback_single_inode(inode, wbc);
1732
1733         wbc_detach_inode(wbc);
1734
1735         wb = inode_to_wb_and_lock_list(inode);
1736         spin_lock(&inode->i_lock);
1737         /*
1738          * If the inode is now fully clean, then it can be safely removed from
1739          * its writeback list (if any).  Otherwise the flusher threads are
1740          * responsible for the writeback lists.
1741          */
1742         if (!(inode->i_state & I_DIRTY_ALL))
1743                 inode_cgwb_move_to_attached(inode, wb);
1744         spin_unlock(&wb->list_lock);
1745         inode_sync_complete(inode);
1746 out:
1747         spin_unlock(&inode->i_lock);
1748         return ret;
1749 }
1750
1751 static long writeback_chunk_size(struct bdi_writeback *wb,
1752                                  struct wb_writeback_work *work)
1753 {
1754         long pages;
1755
1756         /*
1757          * WB_SYNC_ALL mode does livelock avoidance by syncing dirty
1758          * inodes/pages in one big loop. Setting wbc.nr_to_write=LONG_MAX
1759          * here avoids calling into writeback_inodes_wb() more than once.
1760          *
1761          * The intended call sequence for WB_SYNC_ALL writeback is:
1762          *
1763          *      wb_writeback()
1764          *          writeback_sb_inodes()       <== called only once
1765          *              write_cache_pages()     <== called once for each inode
1766          *                   (quickly) tag currently dirty pages
1767          *                   (maybe slowly) sync all tagged pages
1768          */
1769         if (work->sync_mode == WB_SYNC_ALL || work->tagged_writepages)
1770                 pages = LONG_MAX;
1771         else {
1772                 pages = min(wb->avg_write_bandwidth / 2,
1773                             global_wb_domain.dirty_limit / DIRTY_SCOPE);
1774                 pages = min(pages, work->nr_pages);
1775                 pages = round_down(pages + MIN_WRITEBACK_PAGES,
1776                                    MIN_WRITEBACK_PAGES);
1777         }
1778
1779         return pages;
1780 }
1781
1782 /*
1783  * Write a portion of b_io inodes which belong to @sb.
1784  *
1785  * Return the number of pages and/or inodes written.
1786  *
1787  * NOTE! This is called with wb->list_lock held, and will
1788  * unlock and relock that for each inode it ends up doing
1789  * IO for.
1790  */
1791 static long writeback_sb_inodes(struct super_block *sb,
1792                                 struct bdi_writeback *wb,
1793                                 struct wb_writeback_work *work)
1794 {
1795         struct writeback_control wbc = {
1796                 .sync_mode              = work->sync_mode,
1797                 .tagged_writepages      = work->tagged_writepages,
1798                 .for_kupdate            = work->for_kupdate,
1799                 .for_background         = work->for_background,
1800                 .for_sync               = work->for_sync,
1801                 .range_cyclic           = work->range_cyclic,
1802                 .range_start            = 0,
1803                 .range_end              = LLONG_MAX,
1804         };
1805         unsigned long start_time = jiffies;
1806         long write_chunk;
1807         long wrote = 0;  /* count both pages and inodes */
1808
1809         while (!list_empty(&wb->b_io)) {
1810                 struct inode *inode = wb_inode(wb->b_io.prev);
1811                 struct bdi_writeback *tmp_wb;
1812
1813                 if (inode->i_sb != sb) {
1814                         if (work->sb) {
1815                                 /*
1816                                  * We only want to write back data for this
1817                                  * superblock, move all inodes not belonging
1818                                  * to it back onto the dirty list.
1819                                  */
1820                                 redirty_tail(inode, wb);
1821                                 continue;
1822                         }
1823
1824                         /*
1825                          * The inode belongs to a different superblock.
1826                          * Bounce back to the caller to unpin this and
1827                          * pin the next superblock.
1828                          */
1829                         break;
1830                 }
1831
1832                 /*
1833                  * Don't bother with new inodes or inodes being freed, first
1834                  * kind does not need periodic writeout yet, and for the latter
1835                  * kind writeout is handled by the freer.
1836                  */
1837                 spin_lock(&inode->i_lock);
1838                 if (inode->i_state & (I_NEW | I_FREEING | I_WILL_FREE)) {
1839                         redirty_tail_locked(inode, wb);
1840                         spin_unlock(&inode->i_lock);
1841                         continue;
1842                 }
1843                 if ((inode->i_state & I_SYNC) && wbc.sync_mode != WB_SYNC_ALL) {
1844                         /*
1845                          * If this inode is locked for writeback and we are not
1846                          * doing writeback-for-data-integrity, move it to
1847                          * b_more_io so that writeback can proceed with the
1848                          * other inodes on s_io.
1849                          *
1850                          * We'll have another go at writing back this inode
1851                          * when we completed a full scan of b_io.
1852                          */
1853                         spin_unlock(&inode->i_lock);
1854                         requeue_io(inode, wb);
1855                         trace_writeback_sb_inodes_requeue(inode);
1856                         continue;
1857                 }
1858                 spin_unlock(&wb->list_lock);
1859
1860                 /*
1861                  * We already requeued the inode if it had I_SYNC set and we
1862                  * are doing WB_SYNC_NONE writeback. So this catches only the
1863                  * WB_SYNC_ALL case.
1864                  */
1865                 if (inode->i_state & I_SYNC) {
1866                         /* Wait for I_SYNC. This function drops i_lock... */
1867                         inode_sleep_on_writeback(inode);
1868                         /* Inode may be gone, start again */
1869                         spin_lock(&wb->list_lock);
1870                         continue;
1871                 }
1872                 inode->i_state |= I_SYNC;
1873                 wbc_attach_and_unlock_inode(&wbc, inode);
1874
1875                 write_chunk = writeback_chunk_size(wb, work);
1876                 wbc.nr_to_write = write_chunk;
1877                 wbc.pages_skipped = 0;
1878
1879                 /*
1880                  * We use I_SYNC to pin the inode in memory. While it is set
1881                  * evict_inode() will wait so the inode cannot be freed.
1882                  */
1883                 __writeback_single_inode(inode, &wbc);
1884
1885                 wbc_detach_inode(&wbc);
1886                 work->nr_pages -= write_chunk - wbc.nr_to_write;
1887                 wrote += write_chunk - wbc.nr_to_write;
1888
1889                 if (need_resched()) {
1890                         /*
1891                          * We're trying to balance between building up a nice
1892                          * long list of IOs to improve our merge rate, and
1893                          * getting those IOs out quickly for anyone throttling
1894                          * in balance_dirty_pages().  cond_resched() doesn't
1895                          * unplug, so get our IOs out the door before we
1896                          * give up the CPU.
1897                          */
1898                         blk_flush_plug(current);
1899                         cond_resched();
1900                 }
1901
1902                 /*
1903                  * Requeue @inode if still dirty.  Be careful as @inode may
1904                  * have been switched to another wb in the meantime.
1905                  */
1906                 tmp_wb = inode_to_wb_and_lock_list(inode);
1907                 spin_lock(&inode->i_lock);
1908                 if (!(inode->i_state & I_DIRTY_ALL))
1909                         wrote++;
1910                 requeue_inode(inode, tmp_wb, &wbc);
1911                 inode_sync_complete(inode);
1912                 spin_unlock(&inode->i_lock);
1913
1914                 if (unlikely(tmp_wb != wb)) {
1915                         spin_unlock(&tmp_wb->list_lock);
1916                         spin_lock(&wb->list_lock);
1917                 }
1918
1919                 /*
1920                  * bail out to wb_writeback() often enough to check
1921                  * background threshold and other termination conditions.
1922                  */
1923                 if (wrote) {
1924                         if (time_is_before_jiffies(start_time + HZ / 10UL))
1925                                 break;
1926                         if (work->nr_pages <= 0)
1927                                 break;
1928                 }
1929         }
1930         return wrote;
1931 }
1932
1933 static long __writeback_inodes_wb(struct bdi_writeback *wb,
1934                                   struct wb_writeback_work *work)
1935 {
1936         unsigned long start_time = jiffies;
1937         long wrote = 0;
1938
1939         while (!list_empty(&wb->b_io)) {
1940                 struct inode *inode = wb_inode(wb->b_io.prev);
1941                 struct super_block *sb = inode->i_sb;
1942
1943                 if (!trylock_super(sb)) {
1944                         /*
1945                          * trylock_super() may fail consistently due to
1946                          * s_umount being grabbed by someone else. Don't use
1947                          * requeue_io() to avoid busy retrying the inode/sb.
1948                          */
1949                         redirty_tail(inode, wb);
1950                         continue;
1951                 }
1952                 wrote += writeback_sb_inodes(sb, wb, work);
1953                 up_read(&sb->s_umount);
1954
1955                 /* refer to the same tests at the end of writeback_sb_inodes */
1956                 if (wrote) {
1957                         if (time_is_before_jiffies(start_time + HZ / 10UL))
1958                                 break;
1959                         if (work->nr_pages <= 0)
1960                                 break;
1961                 }
1962         }
1963         /* Leave any unwritten inodes on b_io */
1964         return wrote;
1965 }
1966
1967 static long writeback_inodes_wb(struct bdi_writeback *wb, long nr_pages,
1968                                 enum wb_reason reason)
1969 {
1970         struct wb_writeback_work work = {
1971                 .nr_pages       = nr_pages,
1972                 .sync_mode      = WB_SYNC_NONE,
1973                 .range_cyclic   = 1,
1974                 .reason         = reason,
1975         };
1976         struct blk_plug plug;
1977
1978         blk_start_plug(&plug);
1979         spin_lock(&wb->list_lock);
1980         if (list_empty(&wb->b_io))
1981                 queue_io(wb, &work, jiffies);
1982         __writeback_inodes_wb(wb, &work);
1983         spin_unlock(&wb->list_lock);
1984         blk_finish_plug(&plug);
1985
1986         return nr_pages - work.nr_pages;
1987 }
1988
1989 /*
1990  * Explicit flushing or periodic writeback of "old" data.
1991  *
1992  * Define "old": the first time one of an inode's pages is dirtied, we mark the
1993  * dirtying-time in the inode's address_space.  So this periodic writeback code
1994  * just walks the superblock inode list, writing back any inodes which are
1995  * older than a specific point in time.
1996  *
1997  * Try to run once per dirty_writeback_interval.  But if a writeback event
1998  * takes longer than a dirty_writeback_interval interval, then leave a
1999  * one-second gap.
2000  *
2001  * dirtied_before takes precedence over nr_to_write.  So we'll only write back
2002  * all dirty pages if they are all attached to "old" mappings.
2003  */
2004 static long wb_writeback(struct bdi_writeback *wb,
2005                          struct wb_writeback_work *work)
2006 {
2007         unsigned long wb_start = jiffies;
2008         long nr_pages = work->nr_pages;
2009         unsigned long dirtied_before = jiffies;
2010         struct inode *inode;
2011         long progress;
2012         struct blk_plug plug;
2013
2014         blk_start_plug(&plug);
2015         spin_lock(&wb->list_lock);
2016         for (;;) {
2017                 /*
2018                  * Stop writeback when nr_pages has been consumed
2019                  */
2020                 if (work->nr_pages <= 0)
2021                         break;
2022
2023                 /*
2024                  * Background writeout and kupdate-style writeback may
2025                  * run forever. Stop them if there is other work to do
2026                  * so that e.g. sync can proceed. They'll be restarted
2027                  * after the other works are all done.
2028                  */
2029                 if ((work->for_background || work->for_kupdate) &&
2030                     !list_empty(&wb->work_list))
2031                         break;
2032
2033                 /*
2034                  * For background writeout, stop when we are below the
2035                  * background dirty threshold
2036                  */
2037                 if (work->for_background && !wb_over_bg_thresh(wb))
2038                         break;
2039
2040                 /*
2041                  * Kupdate and background works are special and we want to
2042                  * include all inodes that need writing. Livelock avoidance is
2043                  * handled by these works yielding to any other work so we are
2044                  * safe.
2045                  */
2046                 if (work->for_kupdate) {
2047                         dirtied_before = jiffies -
2048                                 msecs_to_jiffies(dirty_expire_interval * 10);
2049                 } else if (work->for_background)
2050                         dirtied_before = jiffies;
2051
2052                 trace_writeback_start(wb, work);
2053                 if (list_empty(&wb->b_io))
2054                         queue_io(wb, work, dirtied_before);
2055                 if (work->sb)
2056                         progress = writeback_sb_inodes(work->sb, wb, work);
2057                 else
2058                         progress = __writeback_inodes_wb(wb, work);
2059                 trace_writeback_written(wb, work);
2060
2061                 wb_update_bandwidth(wb, wb_start);
2062
2063                 /*
2064                  * Did we write something? Try for more
2065                  *
2066                  * Dirty inodes are moved to b_io for writeback in batches.
2067                  * The completion of the current batch does not necessarily
2068                  * mean the overall work is done. So we keep looping as long
2069                  * as made some progress on cleaning pages or inodes.
2070                  */
2071                 if (progress)
2072                         continue;
2073                 /*
2074                  * No more inodes for IO, bail
2075                  */
2076                 if (list_empty(&wb->b_more_io))
2077                         break;
2078                 /*
2079                  * Nothing written. Wait for some inode to
2080                  * become available for writeback. Otherwise
2081                  * we'll just busyloop.
2082                  */
2083                 trace_writeback_wait(wb, work);
2084                 inode = wb_inode(wb->b_more_io.prev);
2085                 spin_lock(&inode->i_lock);
2086                 spin_unlock(&wb->list_lock);
2087                 /* This function drops i_lock... */
2088                 inode_sleep_on_writeback(inode);
2089                 spin_lock(&wb->list_lock);
2090         }
2091         spin_unlock(&wb->list_lock);
2092         blk_finish_plug(&plug);
2093
2094         return nr_pages - work->nr_pages;
2095 }
2096
2097 /*
2098  * Return the next wb_writeback_work struct that hasn't been processed yet.
2099  */
2100 static struct wb_writeback_work *get_next_work_item(struct bdi_writeback *wb)
2101 {
2102         struct wb_writeback_work *work = NULL;
2103
2104         spin_lock_bh(&wb->work_lock);
2105         if (!list_empty(&wb->work_list)) {
2106                 work = list_entry(wb->work_list.next,
2107                                   struct wb_writeback_work, list);
2108                 list_del_init(&work->list);
2109         }
2110         spin_unlock_bh(&wb->work_lock);
2111         return work;
2112 }
2113
2114 static long wb_check_background_flush(struct bdi_writeback *wb)
2115 {
2116         if (wb_over_bg_thresh(wb)) {
2117
2118                 struct wb_writeback_work work = {
2119                         .nr_pages       = LONG_MAX,
2120                         .sync_mode      = WB_SYNC_NONE,
2121                         .for_background = 1,
2122                         .range_cyclic   = 1,
2123                         .reason         = WB_REASON_BACKGROUND,
2124                 };
2125
2126                 return wb_writeback(wb, &work);
2127         }
2128
2129         return 0;
2130 }
2131
2132 static long wb_check_old_data_flush(struct bdi_writeback *wb)
2133 {
2134         unsigned long expired;
2135         long nr_pages;
2136
2137         /*
2138          * When set to zero, disable periodic writeback
2139          */
2140         if (!dirty_writeback_interval)
2141                 return 0;
2142
2143         expired = wb->last_old_flush +
2144                         msecs_to_jiffies(dirty_writeback_interval * 10);
2145         if (time_before(jiffies, expired))
2146                 return 0;
2147
2148         wb->last_old_flush = jiffies;
2149         nr_pages = get_nr_dirty_pages();
2150
2151         if (nr_pages) {
2152                 struct wb_writeback_work work = {
2153                         .nr_pages       = nr_pages,
2154                         .sync_mode      = WB_SYNC_NONE,
2155                         .for_kupdate    = 1,
2156                         .range_cyclic   = 1,
2157                         .reason         = WB_REASON_PERIODIC,
2158                 };
2159
2160                 return wb_writeback(wb, &work);
2161         }
2162
2163         return 0;
2164 }
2165
2166 static long wb_check_start_all(struct bdi_writeback *wb)
2167 {
2168         long nr_pages;
2169
2170         if (!test_bit(WB_start_all, &wb->state))
2171                 return 0;
2172
2173         nr_pages = get_nr_dirty_pages();
2174         if (nr_pages) {
2175                 struct wb_writeback_work work = {
2176                         .nr_pages       = wb_split_bdi_pages(wb, nr_pages),
2177                         .sync_mode      = WB_SYNC_NONE,
2178                         .range_cyclic   = 1,
2179                         .reason         = wb->start_all_reason,
2180                 };
2181
2182                 nr_pages = wb_writeback(wb, &work);
2183         }
2184
2185         clear_bit(WB_start_all, &wb->state);
2186         return nr_pages;
2187 }
2188
2189
2190 /*
2191  * Retrieve work items and do the writeback they describe
2192  */
2193 static long wb_do_writeback(struct bdi_writeback *wb)
2194 {
2195         struct wb_writeback_work *work;
2196         long wrote = 0;
2197
2198         set_bit(WB_writeback_running, &wb->state);
2199         while ((work = get_next_work_item(wb)) != NULL) {
2200                 trace_writeback_exec(wb, work);
2201                 wrote += wb_writeback(wb, work);
2202                 finish_writeback_work(wb, work);
2203         }
2204
2205         /*
2206          * Check for a flush-everything request
2207          */
2208         wrote += wb_check_start_all(wb);
2209
2210         /*
2211          * Check for periodic writeback, kupdated() style
2212          */
2213         wrote += wb_check_old_data_flush(wb);
2214         wrote += wb_check_background_flush(wb);
2215         clear_bit(WB_writeback_running, &wb->state);
2216
2217         return wrote;
2218 }
2219
2220 /*
2221  * Handle writeback of dirty data for the device backed by this bdi. Also
2222  * reschedules periodically and does kupdated style flushing.
2223  */
2224 void wb_workfn(struct work_struct *work)
2225 {
2226         struct bdi_writeback *wb = container_of(to_delayed_work(work),
2227                                                 struct bdi_writeback, dwork);
2228         long pages_written;
2229
2230         set_worker_desc("flush-%s", bdi_dev_name(wb->bdi));
2231         current->flags |= PF_SWAPWRITE;
2232
2233         if (likely(!current_is_workqueue_rescuer() ||
2234                    !test_bit(WB_registered, &wb->state))) {
2235                 /*
2236                  * The normal path.  Keep writing back @wb until its
2237                  * work_list is empty.  Note that this path is also taken
2238                  * if @wb is shutting down even when we're running off the
2239                  * rescuer as work_list needs to be drained.
2240                  */
2241                 do {
2242                         pages_written = wb_do_writeback(wb);
2243                         trace_writeback_pages_written(pages_written);
2244                 } while (!list_empty(&wb->work_list));
2245         } else {
2246                 /*
2247                  * bdi_wq can't get enough workers and we're running off
2248                  * the emergency worker.  Don't hog it.  Hopefully, 1024 is
2249                  * enough for efficient IO.
2250                  */
2251                 pages_written = writeback_inodes_wb(wb, 1024,
2252                                                     WB_REASON_FORKER_THREAD);
2253                 trace_writeback_pages_written(pages_written);
2254         }
2255
2256         if (!list_empty(&wb->work_list))
2257                 wb_wakeup(wb);
2258         else if (wb_has_dirty_io(wb) && dirty_writeback_interval)
2259                 wb_wakeup_delayed(wb);
2260
2261         current->flags &= ~PF_SWAPWRITE;
2262 }
2263
2264 /*
2265  * Start writeback of `nr_pages' pages on this bdi. If `nr_pages' is zero,
2266  * write back the whole world.
2267  */
2268 static void __wakeup_flusher_threads_bdi(struct backing_dev_info *bdi,
2269                                          enum wb_reason reason)
2270 {
2271         struct bdi_writeback *wb;
2272
2273         if (!bdi_has_dirty_io(bdi))
2274                 return;
2275
2276         list_for_each_entry_rcu(wb, &bdi->wb_list, bdi_node)
2277                 wb_start_writeback(wb, reason);
2278 }
2279
2280 void wakeup_flusher_threads_bdi(struct backing_dev_info *bdi,
2281                                 enum wb_reason reason)
2282 {
2283         rcu_read_lock();
2284         __wakeup_flusher_threads_bdi(bdi, reason);
2285         rcu_read_unlock();
2286 }
2287
2288 /*
2289  * Wakeup the flusher threads to start writeback of all currently dirty pages
2290  */
2291 void wakeup_flusher_threads(enum wb_reason reason)
2292 {
2293         struct backing_dev_info *bdi;
2294
2295         /*
2296          * If we are expecting writeback progress we must submit plugged IO.
2297          */
2298         if (blk_needs_flush_plug(current))
2299                 blk_schedule_flush_plug(current);
2300
2301         rcu_read_lock();
2302         list_for_each_entry_rcu(bdi, &bdi_list, bdi_list)
2303                 __wakeup_flusher_threads_bdi(bdi, reason);
2304         rcu_read_unlock();
2305 }
2306
2307 /*
2308  * Wake up bdi's periodically to make sure dirtytime inodes gets
2309  * written back periodically.  We deliberately do *not* check the
2310  * b_dirtytime list in wb_has_dirty_io(), since this would cause the
2311  * kernel to be constantly waking up once there are any dirtytime
2312  * inodes on the system.  So instead we define a separate delayed work
2313  * function which gets called much more rarely.  (By default, only
2314  * once every 12 hours.)
2315  *
2316  * If there is any other write activity going on in the file system,
2317  * this function won't be necessary.  But if the only thing that has
2318  * happened on the file system is a dirtytime inode caused by an atime
2319  * update, we need this infrastructure below to make sure that inode
2320  * eventually gets pushed out to disk.
2321  */
2322 static void wakeup_dirtytime_writeback(struct work_struct *w);
2323 static DECLARE_DELAYED_WORK(dirtytime_work, wakeup_dirtytime_writeback);
2324
2325 static void wakeup_dirtytime_writeback(struct work_struct *w)
2326 {
2327         struct backing_dev_info *bdi;
2328
2329         rcu_read_lock();
2330         list_for_each_entry_rcu(bdi, &bdi_list, bdi_list) {
2331                 struct bdi_writeback *wb;
2332
2333                 list_for_each_entry_rcu(wb, &bdi->wb_list, bdi_node)
2334                         if (!list_empty(&wb->b_dirty_time))
2335                                 wb_wakeup(wb);
2336         }
2337         rcu_read_unlock();
2338         schedule_delayed_work(&dirtytime_work, dirtytime_expire_interval * HZ);
2339 }
2340
2341 static int __init start_dirtytime_writeback(void)
2342 {
2343         schedule_delayed_work(&dirtytime_work, dirtytime_expire_interval * HZ);
2344         return 0;
2345 }
2346 __initcall(start_dirtytime_writeback);
2347
2348 int dirtytime_interval_handler(struct ctl_table *table, int write,
2349                                void *buffer, size_t *lenp, loff_t *ppos)
2350 {
2351         int ret;
2352
2353         ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
2354         if (ret == 0 && write)
2355                 mod_delayed_work(system_wq, &dirtytime_work, 0);
2356         return ret;
2357 }
2358
2359 /**
2360  * __mark_inode_dirty - internal function to mark an inode dirty
2361  *
2362  * @inode: inode to mark
2363  * @flags: what kind of dirty, e.g. I_DIRTY_SYNC.  This can be a combination of
2364  *         multiple I_DIRTY_* flags, except that I_DIRTY_TIME can't be combined
2365  *         with I_DIRTY_PAGES.
2366  *
2367  * Mark an inode as dirty.  We notify the filesystem, then update the inode's
2368  * dirty flags.  Then, if needed we add the inode to the appropriate dirty list.
2369  *
2370  * Most callers should use mark_inode_dirty() or mark_inode_dirty_sync()
2371  * instead of calling this directly.
2372  *
2373  * CAREFUL!  We only add the inode to the dirty list if it is hashed or if it
2374  * refers to a blockdev.  Unhashed inodes will never be added to the dirty list
2375  * even if they are later hashed, as they will have been marked dirty already.
2376  *
2377  * In short, ensure you hash any inodes _before_ you start marking them dirty.
2378  *
2379  * Note that for blockdevs, inode->dirtied_when represents the dirtying time of
2380  * the block-special inode (/dev/hda1) itself.  And the ->dirtied_when field of
2381  * the kernel-internal blockdev inode represents the dirtying time of the
2382  * blockdev's pages.  This is why for I_DIRTY_PAGES we always use
2383  * page->mapping->host, so the page-dirtying time is recorded in the internal
2384  * blockdev inode.
2385  */
2386 void __mark_inode_dirty(struct inode *inode, int flags)
2387 {
2388         struct super_block *sb = inode->i_sb;
2389         int dirtytime = 0;
2390
2391         trace_writeback_mark_inode_dirty(inode, flags);
2392
2393         if (flags & I_DIRTY_INODE) {
2394                 /*
2395                  * Notify the filesystem about the inode being dirtied, so that
2396                  * (if needed) it can update on-disk fields and journal the
2397                  * inode.  This is only needed when the inode itself is being
2398                  * dirtied now.  I.e. it's only needed for I_DIRTY_INODE, not
2399                  * for just I_DIRTY_PAGES or I_DIRTY_TIME.
2400                  */
2401                 trace_writeback_dirty_inode_start(inode, flags);
2402                 if (sb->s_op->dirty_inode)
2403                         sb->s_op->dirty_inode(inode, flags & I_DIRTY_INODE);
2404                 trace_writeback_dirty_inode(inode, flags);
2405
2406                 /* I_DIRTY_INODE supersedes I_DIRTY_TIME. */
2407                 flags &= ~I_DIRTY_TIME;
2408         } else {
2409                 /*
2410                  * Else it's either I_DIRTY_PAGES, I_DIRTY_TIME, or nothing.
2411                  * (We don't support setting both I_DIRTY_PAGES and I_DIRTY_TIME
2412                  * in one call to __mark_inode_dirty().)
2413                  */
2414                 dirtytime = flags & I_DIRTY_TIME;
2415                 WARN_ON_ONCE(dirtytime && flags != I_DIRTY_TIME);
2416         }
2417
2418         /*
2419          * Paired with smp_mb() in __writeback_single_inode() for the
2420          * following lockless i_state test.  See there for details.
2421          */
2422         smp_mb();
2423
2424         if (((inode->i_state & flags) == flags) ||
2425             (dirtytime && (inode->i_state & I_DIRTY_INODE)))
2426                 return;
2427
2428         spin_lock(&inode->i_lock);
2429         if (dirtytime && (inode->i_state & I_DIRTY_INODE))
2430                 goto out_unlock_inode;
2431         if ((inode->i_state & flags) != flags) {
2432                 const int was_dirty = inode->i_state & I_DIRTY;
2433
2434                 inode_attach_wb(inode, NULL);
2435
2436                 /* I_DIRTY_INODE supersedes I_DIRTY_TIME. */
2437                 if (flags & I_DIRTY_INODE)
2438                         inode->i_state &= ~I_DIRTY_TIME;
2439                 inode->i_state |= flags;
2440
2441                 /*
2442                  * If the inode is queued for writeback by flush worker, just
2443                  * update its dirty state. Once the flush worker is done with
2444                  * the inode it will place it on the appropriate superblock
2445                  * list, based upon its state.
2446                  */
2447                 if (inode->i_state & I_SYNC_QUEUED)
2448                         goto out_unlock_inode;
2449
2450                 /*
2451                  * Only add valid (hashed) inodes to the superblock's
2452                  * dirty list.  Add blockdev inodes as well.
2453                  */
2454                 if (!S_ISBLK(inode->i_mode)) {
2455                         if (inode_unhashed(inode))
2456                                 goto out_unlock_inode;
2457                 }
2458                 if (inode->i_state & I_FREEING)
2459                         goto out_unlock_inode;
2460
2461                 /*
2462                  * If the inode was already on b_dirty/b_io/b_more_io, don't
2463                  * reposition it (that would break b_dirty time-ordering).
2464                  */
2465                 if (!was_dirty) {
2466                         struct bdi_writeback *wb;
2467                         struct list_head *dirty_list;
2468                         bool wakeup_bdi = false;
2469
2470                         wb = locked_inode_to_wb_and_lock_list(inode);
2471
2472                         inode->dirtied_when = jiffies;
2473                         if (dirtytime)
2474                                 inode->dirtied_time_when = jiffies;
2475
2476                         if (inode->i_state & I_DIRTY)
2477                                 dirty_list = &wb->b_dirty;
2478                         else
2479                                 dirty_list = &wb->b_dirty_time;
2480
2481                         wakeup_bdi = inode_io_list_move_locked(inode, wb,
2482                                                                dirty_list);
2483
2484                         spin_unlock(&wb->list_lock);
2485                         trace_writeback_dirty_inode_enqueue(inode);
2486
2487                         /*
2488                          * If this is the first dirty inode for this bdi,
2489                          * we have to wake-up the corresponding bdi thread
2490                          * to make sure background write-back happens
2491                          * later.
2492                          */
2493                         if (wakeup_bdi &&
2494                             (wb->bdi->capabilities & BDI_CAP_WRITEBACK))
2495                                 wb_wakeup_delayed(wb);
2496                         return;
2497                 }
2498         }
2499 out_unlock_inode:
2500         spin_unlock(&inode->i_lock);
2501 }
2502 EXPORT_SYMBOL(__mark_inode_dirty);
2503
2504 /*
2505  * The @s_sync_lock is used to serialise concurrent sync operations
2506  * to avoid lock contention problems with concurrent wait_sb_inodes() calls.
2507  * Concurrent callers will block on the s_sync_lock rather than doing contending
2508  * walks. The queueing maintains sync(2) required behaviour as all the IO that
2509  * has been issued up to the time this function is enter is guaranteed to be
2510  * completed by the time we have gained the lock and waited for all IO that is
2511  * in progress regardless of the order callers are granted the lock.
2512  */
2513 static void wait_sb_inodes(struct super_block *sb)
2514 {
2515         LIST_HEAD(sync_list);
2516
2517         /*
2518          * We need to be protected against the filesystem going from
2519          * r/o to r/w or vice versa.
2520          */
2521         WARN_ON(!rwsem_is_locked(&sb->s_umount));
2522
2523         mutex_lock(&sb->s_sync_lock);
2524
2525         /*
2526          * Splice the writeback list onto a temporary list to avoid waiting on
2527          * inodes that have started writeback after this point.
2528          *
2529          * Use rcu_read_lock() to keep the inodes around until we have a
2530          * reference. s_inode_wblist_lock protects sb->s_inodes_wb as well as
2531          * the local list because inodes can be dropped from either by writeback
2532          * completion.
2533          */
2534         rcu_read_lock();
2535         spin_lock_irq(&sb->s_inode_wblist_lock);
2536         list_splice_init(&sb->s_inodes_wb, &sync_list);
2537
2538         /*
2539          * Data integrity sync. Must wait for all pages under writeback, because
2540          * there may have been pages dirtied before our sync call, but which had
2541          * writeout started before we write it out.  In which case, the inode
2542          * may not be on the dirty list, but we still have to wait for that
2543          * writeout.
2544          */
2545         while (!list_empty(&sync_list)) {
2546                 struct inode *inode = list_first_entry(&sync_list, struct inode,
2547                                                        i_wb_list);
2548                 struct address_space *mapping = inode->i_mapping;
2549
2550                 /*
2551                  * Move each inode back to the wb list before we drop the lock
2552                  * to preserve consistency between i_wb_list and the mapping
2553                  * writeback tag. Writeback completion is responsible to remove
2554                  * the inode from either list once the writeback tag is cleared.
2555                  */
2556                 list_move_tail(&inode->i_wb_list, &sb->s_inodes_wb);
2557
2558                 /*
2559                  * The mapping can appear untagged while still on-list since we
2560                  * do not have the mapping lock. Skip it here, wb completion
2561                  * will remove it.
2562                  */
2563                 if (!mapping_tagged(mapping, PAGECACHE_TAG_WRITEBACK))
2564                         continue;
2565
2566                 spin_unlock_irq(&sb->s_inode_wblist_lock);
2567
2568                 spin_lock(&inode->i_lock);
2569                 if (inode->i_state & (I_FREEING|I_WILL_FREE|I_NEW)) {
2570                         spin_unlock(&inode->i_lock);
2571
2572                         spin_lock_irq(&sb->s_inode_wblist_lock);
2573                         continue;
2574                 }
2575                 __iget(inode);
2576                 spin_unlock(&inode->i_lock);
2577                 rcu_read_unlock();
2578
2579                 /*
2580                  * We keep the error status of individual mapping so that
2581                  * applications can catch the writeback error using fsync(2).
2582                  * See filemap_fdatawait_keep_errors() for details.
2583                  */
2584                 filemap_fdatawait_keep_errors(mapping);
2585
2586                 cond_resched();
2587
2588                 iput(inode);
2589
2590                 rcu_read_lock();
2591                 spin_lock_irq(&sb->s_inode_wblist_lock);
2592         }
2593         spin_unlock_irq(&sb->s_inode_wblist_lock);
2594         rcu_read_unlock();
2595         mutex_unlock(&sb->s_sync_lock);
2596 }
2597
2598 static void __writeback_inodes_sb_nr(struct super_block *sb, unsigned long nr,
2599                                      enum wb_reason reason, bool skip_if_busy)
2600 {
2601         struct backing_dev_info *bdi = sb->s_bdi;
2602         DEFINE_WB_COMPLETION(done, bdi);
2603         struct wb_writeback_work work = {
2604                 .sb                     = sb,
2605                 .sync_mode              = WB_SYNC_NONE,
2606                 .tagged_writepages      = 1,
2607                 .done                   = &done,
2608                 .nr_pages               = nr,
2609                 .reason                 = reason,
2610         };
2611
2612         if (!bdi_has_dirty_io(bdi) || bdi == &noop_backing_dev_info)
2613                 return;
2614         WARN_ON(!rwsem_is_locked(&sb->s_umount));
2615
2616         bdi_split_work_to_wbs(sb->s_bdi, &work, skip_if_busy);
2617         wb_wait_for_completion(&done);
2618 }
2619
2620 /**
2621  * writeback_inodes_sb_nr -     writeback dirty inodes from given super_block
2622  * @sb: the superblock
2623  * @nr: the number of pages to write
2624  * @reason: reason why some writeback work initiated
2625  *
2626  * Start writeback on some inodes on this super_block. No guarantees are made
2627  * on how many (if any) will be written, and this function does not wait
2628  * for IO completion of submitted IO.
2629  */
2630 void writeback_inodes_sb_nr(struct super_block *sb,
2631                             unsigned long nr,
2632                             enum wb_reason reason)
2633 {
2634         __writeback_inodes_sb_nr(sb, nr, reason, false);
2635 }
2636 EXPORT_SYMBOL(writeback_inodes_sb_nr);
2637
2638 /**
2639  * writeback_inodes_sb  -       writeback dirty inodes from given super_block
2640  * @sb: the superblock
2641  * @reason: reason why some writeback work was initiated
2642  *
2643  * Start writeback on some inodes on this super_block. No guarantees are made
2644  * on how many (if any) will be written, and this function does not wait
2645  * for IO completion of submitted IO.
2646  */
2647 void writeback_inodes_sb(struct super_block *sb, enum wb_reason reason)
2648 {
2649         return writeback_inodes_sb_nr(sb, get_nr_dirty_pages(), reason);
2650 }
2651 EXPORT_SYMBOL(writeback_inodes_sb);
2652
2653 /**
2654  * try_to_writeback_inodes_sb - try to start writeback if none underway
2655  * @sb: the superblock
2656  * @reason: reason why some writeback work was initiated
2657  *
2658  * Invoke __writeback_inodes_sb_nr if no writeback is currently underway.
2659  */
2660 void try_to_writeback_inodes_sb(struct super_block *sb, enum wb_reason reason)
2661 {
2662         if (!down_read_trylock(&sb->s_umount))
2663                 return;
2664
2665         __writeback_inodes_sb_nr(sb, get_nr_dirty_pages(), reason, true);
2666         up_read(&sb->s_umount);
2667 }
2668 EXPORT_SYMBOL(try_to_writeback_inodes_sb);
2669
2670 /**
2671  * sync_inodes_sb       -       sync sb inode pages
2672  * @sb: the superblock
2673  *
2674  * This function writes and waits on any dirty inode belonging to this
2675  * super_block.
2676  */
2677 void sync_inodes_sb(struct super_block *sb)
2678 {
2679         struct backing_dev_info *bdi = sb->s_bdi;
2680         DEFINE_WB_COMPLETION(done, bdi);
2681         struct wb_writeback_work work = {
2682                 .sb             = sb,
2683                 .sync_mode      = WB_SYNC_ALL,
2684                 .nr_pages       = LONG_MAX,
2685                 .range_cyclic   = 0,
2686                 .done           = &done,
2687                 .reason         = WB_REASON_SYNC,
2688                 .for_sync       = 1,
2689         };
2690
2691         /*
2692          * Can't skip on !bdi_has_dirty() because we should wait for !dirty
2693          * inodes under writeback and I_DIRTY_TIME inodes ignored by
2694          * bdi_has_dirty() need to be written out too.
2695          */
2696         if (bdi == &noop_backing_dev_info)
2697                 return;
2698         WARN_ON(!rwsem_is_locked(&sb->s_umount));
2699
2700         /* protect against inode wb switch, see inode_switch_wbs_work_fn() */
2701         bdi_down_write_wb_switch_rwsem(bdi);
2702         bdi_split_work_to_wbs(bdi, &work, false);
2703         wb_wait_for_completion(&done);
2704         bdi_up_write_wb_switch_rwsem(bdi);
2705
2706         wait_sb_inodes(sb);
2707 }
2708 EXPORT_SYMBOL(sync_inodes_sb);
2709
2710 /**
2711  * write_inode_now      -       write an inode to disk
2712  * @inode: inode to write to disk
2713  * @sync: whether the write should be synchronous or not
2714  *
2715  * This function commits an inode to disk immediately if it is dirty. This is
2716  * primarily needed by knfsd.
2717  *
2718  * The caller must either have a ref on the inode or must have set I_WILL_FREE.
2719  */
2720 int write_inode_now(struct inode *inode, int sync)
2721 {
2722         struct writeback_control wbc = {
2723                 .nr_to_write = LONG_MAX,
2724                 .sync_mode = sync ? WB_SYNC_ALL : WB_SYNC_NONE,
2725                 .range_start = 0,
2726                 .range_end = LLONG_MAX,
2727         };
2728
2729         if (!mapping_can_writeback(inode->i_mapping))
2730                 wbc.nr_to_write = 0;
2731
2732         might_sleep();
2733         return writeback_single_inode(inode, &wbc);
2734 }
2735 EXPORT_SYMBOL(write_inode_now);
2736
2737 /**
2738  * sync_inode - write an inode and its pages to disk.
2739  * @inode: the inode to sync
2740  * @wbc: controls the writeback mode
2741  *
2742  * sync_inode() will write an inode and its pages to disk.  It will also
2743  * correctly update the inode on its superblock's dirty inode lists and will
2744  * update inode->i_state.
2745  *
2746  * The caller must have a ref on the inode.
2747  */
2748 int sync_inode(struct inode *inode, struct writeback_control *wbc)
2749 {
2750         return writeback_single_inode(inode, wbc);
2751 }
2752 EXPORT_SYMBOL(sync_inode);
2753
2754 /**
2755  * sync_inode_metadata - write an inode to disk
2756  * @inode: the inode to sync
2757  * @wait: wait for I/O to complete.
2758  *
2759  * Write an inode to disk and adjust its dirty state after completion.
2760  *
2761  * Note: only writes the actual inode, no associated data or other metadata.
2762  */
2763 int sync_inode_metadata(struct inode *inode, int wait)
2764 {
2765         struct writeback_control wbc = {
2766                 .sync_mode = wait ? WB_SYNC_ALL : WB_SYNC_NONE,
2767                 .nr_to_write = 0, /* metadata-only */
2768         };
2769
2770         return sync_inode(inode, &wbc);
2771 }
2772 EXPORT_SYMBOL(sync_inode_metadata);