Merge tag 'kvm-s390-next-5.15-1' of git://git.kernel.org/pub/scm/linux/kernel/git...
[linux-2.6-microblaze.git] / fs / fs-writeback.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * fs/fs-writeback.c
4  *
5  * Copyright (C) 2002, Linus Torvalds.
6  *
7  * Contains all the functions related to writing back and waiting
8  * upon dirty inodes against superblocks, and writing back dirty
9  * pages against inodes.  ie: data writeback.  Writeout of the
10  * inode itself is not handled here.
11  *
12  * 10Apr2002    Andrew Morton
13  *              Split out of fs/inode.c
14  *              Additions for address_space-based writeback
15  */
16
17 #include <linux/kernel.h>
18 #include <linux/export.h>
19 #include <linux/spinlock.h>
20 #include <linux/slab.h>
21 #include <linux/sched.h>
22 #include <linux/fs.h>
23 #include <linux/mm.h>
24 #include <linux/pagemap.h>
25 #include <linux/kthread.h>
26 #include <linux/writeback.h>
27 #include <linux/blkdev.h>
28 #include <linux/backing-dev.h>
29 #include <linux/tracepoint.h>
30 #include <linux/device.h>
31 #include <linux/memcontrol.h>
32 #include "internal.h"
33
34 /*
35  * 4MB minimal write chunk size
36  */
37 #define MIN_WRITEBACK_PAGES     (4096UL >> (PAGE_SHIFT - 10))
38
39 /*
40  * Passed into wb_writeback(), essentially a subset of writeback_control
41  */
42 struct wb_writeback_work {
43         long nr_pages;
44         struct super_block *sb;
45         enum writeback_sync_modes sync_mode;
46         unsigned int tagged_writepages:1;
47         unsigned int for_kupdate:1;
48         unsigned int range_cyclic:1;
49         unsigned int for_background:1;
50         unsigned int for_sync:1;        /* sync(2) WB_SYNC_ALL writeback */
51         unsigned int auto_free:1;       /* free on completion */
52         enum wb_reason reason;          /* why was writeback initiated? */
53
54         struct list_head list;          /* pending work list */
55         struct wb_completion *done;     /* set if the caller waits */
56 };
57
58 /*
59  * If an inode is constantly having its pages dirtied, but then the
60  * updates stop dirtytime_expire_interval seconds in the past, it's
61  * possible for the worst case time between when an inode has its
62  * timestamps updated and when they finally get written out to be two
63  * dirtytime_expire_intervals.  We set the default to 12 hours (in
64  * seconds), which means most of the time inodes will have their
65  * timestamps written to disk after 12 hours, but in the worst case a
66  * few inodes might not their timestamps updated for 24 hours.
67  */
68 unsigned int dirtytime_expire_interval = 12 * 60 * 60;
69
70 static inline struct inode *wb_inode(struct list_head *head)
71 {
72         return list_entry(head, struct inode, i_io_list);
73 }
74
75 /*
76  * Include the creation of the trace points after defining the
77  * wb_writeback_work structure and inline functions so that the definition
78  * remains local to this file.
79  */
80 #define CREATE_TRACE_POINTS
81 #include <trace/events/writeback.h>
82
83 EXPORT_TRACEPOINT_SYMBOL_GPL(wbc_writepage);
84
85 static bool wb_io_lists_populated(struct bdi_writeback *wb)
86 {
87         if (wb_has_dirty_io(wb)) {
88                 return false;
89         } else {
90                 set_bit(WB_has_dirty_io, &wb->state);
91                 WARN_ON_ONCE(!wb->avg_write_bandwidth);
92                 atomic_long_add(wb->avg_write_bandwidth,
93                                 &wb->bdi->tot_write_bandwidth);
94                 return true;
95         }
96 }
97
98 static void wb_io_lists_depopulated(struct bdi_writeback *wb)
99 {
100         if (wb_has_dirty_io(wb) && list_empty(&wb->b_dirty) &&
101             list_empty(&wb->b_io) && list_empty(&wb->b_more_io)) {
102                 clear_bit(WB_has_dirty_io, &wb->state);
103                 WARN_ON_ONCE(atomic_long_sub_return(wb->avg_write_bandwidth,
104                                         &wb->bdi->tot_write_bandwidth) < 0);
105         }
106 }
107
108 /**
109  * inode_io_list_move_locked - move an inode onto a bdi_writeback IO list
110  * @inode: inode to be moved
111  * @wb: target bdi_writeback
112  * @head: one of @wb->b_{dirty|io|more_io|dirty_time}
113  *
114  * Move @inode->i_io_list to @list of @wb and set %WB_has_dirty_io.
115  * Returns %true if @inode is the first occupant of the !dirty_time IO
116  * lists; otherwise, %false.
117  */
118 static bool inode_io_list_move_locked(struct inode *inode,
119                                       struct bdi_writeback *wb,
120                                       struct list_head *head)
121 {
122         assert_spin_locked(&wb->list_lock);
123
124         list_move(&inode->i_io_list, head);
125
126         /* dirty_time doesn't count as dirty_io until expiration */
127         if (head != &wb->b_dirty_time)
128                 return wb_io_lists_populated(wb);
129
130         wb_io_lists_depopulated(wb);
131         return false;
132 }
133
134 static void wb_wakeup(struct bdi_writeback *wb)
135 {
136         spin_lock_bh(&wb->work_lock);
137         if (test_bit(WB_registered, &wb->state))
138                 mod_delayed_work(bdi_wq, &wb->dwork, 0);
139         spin_unlock_bh(&wb->work_lock);
140 }
141
142 static void finish_writeback_work(struct bdi_writeback *wb,
143                                   struct wb_writeback_work *work)
144 {
145         struct wb_completion *done = work->done;
146
147         if (work->auto_free)
148                 kfree(work);
149         if (done) {
150                 wait_queue_head_t *waitq = done->waitq;
151
152                 /* @done can't be accessed after the following dec */
153                 if (atomic_dec_and_test(&done->cnt))
154                         wake_up_all(waitq);
155         }
156 }
157
158 static void wb_queue_work(struct bdi_writeback *wb,
159                           struct wb_writeback_work *work)
160 {
161         trace_writeback_queue(wb, work);
162
163         if (work->done)
164                 atomic_inc(&work->done->cnt);
165
166         spin_lock_bh(&wb->work_lock);
167
168         if (test_bit(WB_registered, &wb->state)) {
169                 list_add_tail(&work->list, &wb->work_list);
170                 mod_delayed_work(bdi_wq, &wb->dwork, 0);
171         } else
172                 finish_writeback_work(wb, work);
173
174         spin_unlock_bh(&wb->work_lock);
175 }
176
177 /**
178  * wb_wait_for_completion - wait for completion of bdi_writeback_works
179  * @done: target wb_completion
180  *
181  * Wait for one or more work items issued to @bdi with their ->done field
182  * set to @done, which should have been initialized with
183  * DEFINE_WB_COMPLETION().  This function returns after all such work items
184  * are completed.  Work items which are waited upon aren't freed
185  * automatically on completion.
186  */
187 void wb_wait_for_completion(struct wb_completion *done)
188 {
189         atomic_dec(&done->cnt);         /* put down the initial count */
190         wait_event(*done->waitq, !atomic_read(&done->cnt));
191 }
192
193 #ifdef CONFIG_CGROUP_WRITEBACK
194
195 /*
196  * Parameters for foreign inode detection, see wbc_detach_inode() to see
197  * how they're used.
198  *
199  * These paramters are inherently heuristical as the detection target
200  * itself is fuzzy.  All we want to do is detaching an inode from the
201  * current owner if it's being written to by some other cgroups too much.
202  *
203  * The current cgroup writeback is built on the assumption that multiple
204  * cgroups writing to the same inode concurrently is very rare and a mode
205  * of operation which isn't well supported.  As such, the goal is not
206  * taking too long when a different cgroup takes over an inode while
207  * avoiding too aggressive flip-flops from occasional foreign writes.
208  *
209  * We record, very roughly, 2s worth of IO time history and if more than
210  * half of that is foreign, trigger the switch.  The recording is quantized
211  * to 16 slots.  To avoid tiny writes from swinging the decision too much,
212  * writes smaller than 1/8 of avg size are ignored.
213  */
214 #define WB_FRN_TIME_SHIFT       13      /* 1s = 2^13, upto 8 secs w/ 16bit */
215 #define WB_FRN_TIME_AVG_SHIFT   3       /* avg = avg * 7/8 + new * 1/8 */
216 #define WB_FRN_TIME_CUT_DIV     8       /* ignore rounds < avg / 8 */
217 #define WB_FRN_TIME_PERIOD      (2 * (1 << WB_FRN_TIME_SHIFT))  /* 2s */
218
219 #define WB_FRN_HIST_SLOTS       16      /* inode->i_wb_frn_history is 16bit */
220 #define WB_FRN_HIST_UNIT        (WB_FRN_TIME_PERIOD / WB_FRN_HIST_SLOTS)
221                                         /* each slot's duration is 2s / 16 */
222 #define WB_FRN_HIST_THR_SLOTS   (WB_FRN_HIST_SLOTS / 2)
223                                         /* if foreign slots >= 8, switch */
224 #define WB_FRN_HIST_MAX_SLOTS   (WB_FRN_HIST_THR_SLOTS / 2 + 1)
225                                         /* one round can affect upto 5 slots */
226 #define WB_FRN_MAX_IN_FLIGHT    1024    /* don't queue too many concurrently */
227
228 /*
229  * Maximum inodes per isw.  A specific value has been chosen to make
230  * struct inode_switch_wbs_context fit into 1024 bytes kmalloc.
231  */
232 #define WB_MAX_INODES_PER_ISW  ((1024UL - sizeof(struct inode_switch_wbs_context)) \
233                                 / sizeof(struct inode *))
234
235 static atomic_t isw_nr_in_flight = ATOMIC_INIT(0);
236 static struct workqueue_struct *isw_wq;
237
238 void __inode_attach_wb(struct inode *inode, struct page *page)
239 {
240         struct backing_dev_info *bdi = inode_to_bdi(inode);
241         struct bdi_writeback *wb = NULL;
242
243         if (inode_cgwb_enabled(inode)) {
244                 struct cgroup_subsys_state *memcg_css;
245
246                 if (page) {
247                         memcg_css = mem_cgroup_css_from_page(page);
248                         wb = wb_get_create(bdi, memcg_css, GFP_ATOMIC);
249                 } else {
250                         /* must pin memcg_css, see wb_get_create() */
251                         memcg_css = task_get_css(current, memory_cgrp_id);
252                         wb = wb_get_create(bdi, memcg_css, GFP_ATOMIC);
253                         css_put(memcg_css);
254                 }
255         }
256
257         if (!wb)
258                 wb = &bdi->wb;
259
260         /*
261          * There may be multiple instances of this function racing to
262          * update the same inode.  Use cmpxchg() to tell the winner.
263          */
264         if (unlikely(cmpxchg(&inode->i_wb, NULL, wb)))
265                 wb_put(wb);
266 }
267 EXPORT_SYMBOL_GPL(__inode_attach_wb);
268
269 /**
270  * inode_cgwb_move_to_attached - put the inode onto wb->b_attached list
271  * @inode: inode of interest with i_lock held
272  * @wb: target bdi_writeback
273  *
274  * Remove the inode from wb's io lists and if necessarily put onto b_attached
275  * list.  Only inodes attached to cgwb's are kept on this list.
276  */
277 static void inode_cgwb_move_to_attached(struct inode *inode,
278                                         struct bdi_writeback *wb)
279 {
280         assert_spin_locked(&wb->list_lock);
281         assert_spin_locked(&inode->i_lock);
282
283         inode->i_state &= ~I_SYNC_QUEUED;
284         if (wb != &wb->bdi->wb)
285                 list_move(&inode->i_io_list, &wb->b_attached);
286         else
287                 list_del_init(&inode->i_io_list);
288         wb_io_lists_depopulated(wb);
289 }
290
291 /**
292  * locked_inode_to_wb_and_lock_list - determine a locked inode's wb and lock it
293  * @inode: inode of interest with i_lock held
294  *
295  * Returns @inode's wb with its list_lock held.  @inode->i_lock must be
296  * held on entry and is released on return.  The returned wb is guaranteed
297  * to stay @inode's associated wb until its list_lock is released.
298  */
299 static struct bdi_writeback *
300 locked_inode_to_wb_and_lock_list(struct inode *inode)
301         __releases(&inode->i_lock)
302         __acquires(&wb->list_lock)
303 {
304         while (true) {
305                 struct bdi_writeback *wb = inode_to_wb(inode);
306
307                 /*
308                  * inode_to_wb() association is protected by both
309                  * @inode->i_lock and @wb->list_lock but list_lock nests
310                  * outside i_lock.  Drop i_lock and verify that the
311                  * association hasn't changed after acquiring list_lock.
312                  */
313                 wb_get(wb);
314                 spin_unlock(&inode->i_lock);
315                 spin_lock(&wb->list_lock);
316
317                 /* i_wb may have changed inbetween, can't use inode_to_wb() */
318                 if (likely(wb == inode->i_wb)) {
319                         wb_put(wb);     /* @inode already has ref */
320                         return wb;
321                 }
322
323                 spin_unlock(&wb->list_lock);
324                 wb_put(wb);
325                 cpu_relax();
326                 spin_lock(&inode->i_lock);
327         }
328 }
329
330 /**
331  * inode_to_wb_and_lock_list - determine an inode's wb and lock it
332  * @inode: inode of interest
333  *
334  * Same as locked_inode_to_wb_and_lock_list() but @inode->i_lock isn't held
335  * on entry.
336  */
337 static struct bdi_writeback *inode_to_wb_and_lock_list(struct inode *inode)
338         __acquires(&wb->list_lock)
339 {
340         spin_lock(&inode->i_lock);
341         return locked_inode_to_wb_and_lock_list(inode);
342 }
343
344 struct inode_switch_wbs_context {
345         struct rcu_work         work;
346
347         /*
348          * Multiple inodes can be switched at once.  The switching procedure
349          * consists of two parts, separated by a RCU grace period.  To make
350          * sure that the second part is executed for each inode gone through
351          * the first part, all inode pointers are placed into a NULL-terminated
352          * array embedded into struct inode_switch_wbs_context.  Otherwise
353          * an inode could be left in a non-consistent state.
354          */
355         struct bdi_writeback    *new_wb;
356         struct inode            *inodes[];
357 };
358
359 static void bdi_down_write_wb_switch_rwsem(struct backing_dev_info *bdi)
360 {
361         down_write(&bdi->wb_switch_rwsem);
362 }
363
364 static void bdi_up_write_wb_switch_rwsem(struct backing_dev_info *bdi)
365 {
366         up_write(&bdi->wb_switch_rwsem);
367 }
368
369 static bool inode_do_switch_wbs(struct inode *inode,
370                                 struct bdi_writeback *old_wb,
371                                 struct bdi_writeback *new_wb)
372 {
373         struct address_space *mapping = inode->i_mapping;
374         XA_STATE(xas, &mapping->i_pages, 0);
375         struct page *page;
376         bool switched = false;
377
378         spin_lock(&inode->i_lock);
379         xa_lock_irq(&mapping->i_pages);
380
381         /*
382          * Once I_FREEING or I_WILL_FREE are visible under i_lock, the eviction
383          * path owns the inode and we shouldn't modify ->i_io_list.
384          */
385         if (unlikely(inode->i_state & (I_FREEING | I_WILL_FREE)))
386                 goto skip_switch;
387
388         trace_inode_switch_wbs(inode, old_wb, new_wb);
389
390         /*
391          * Count and transfer stats.  Note that PAGECACHE_TAG_DIRTY points
392          * to possibly dirty pages while PAGECACHE_TAG_WRITEBACK points to
393          * pages actually under writeback.
394          */
395         xas_for_each_marked(&xas, page, ULONG_MAX, PAGECACHE_TAG_DIRTY) {
396                 if (PageDirty(page)) {
397                         dec_wb_stat(old_wb, WB_RECLAIMABLE);
398                         inc_wb_stat(new_wb, WB_RECLAIMABLE);
399                 }
400         }
401
402         xas_set(&xas, 0);
403         xas_for_each_marked(&xas, page, ULONG_MAX, PAGECACHE_TAG_WRITEBACK) {
404                 WARN_ON_ONCE(!PageWriteback(page));
405                 dec_wb_stat(old_wb, WB_WRITEBACK);
406                 inc_wb_stat(new_wb, WB_WRITEBACK);
407         }
408
409         wb_get(new_wb);
410
411         /*
412          * Transfer to @new_wb's IO list if necessary.  If the @inode is dirty,
413          * the specific list @inode was on is ignored and the @inode is put on
414          * ->b_dirty which is always correct including from ->b_dirty_time.
415          * The transfer preserves @inode->dirtied_when ordering.  If the @inode
416          * was clean, it means it was on the b_attached list, so move it onto
417          * the b_attached list of @new_wb.
418          */
419         if (!list_empty(&inode->i_io_list)) {
420                 inode->i_wb = new_wb;
421
422                 if (inode->i_state & I_DIRTY_ALL) {
423                         struct inode *pos;
424
425                         list_for_each_entry(pos, &new_wb->b_dirty, i_io_list)
426                                 if (time_after_eq(inode->dirtied_when,
427                                                   pos->dirtied_when))
428                                         break;
429                         inode_io_list_move_locked(inode, new_wb,
430                                                   pos->i_io_list.prev);
431                 } else {
432                         inode_cgwb_move_to_attached(inode, new_wb);
433                 }
434         } else {
435                 inode->i_wb = new_wb;
436         }
437
438         /* ->i_wb_frn updates may race wbc_detach_inode() but doesn't matter */
439         inode->i_wb_frn_winner = 0;
440         inode->i_wb_frn_avg_time = 0;
441         inode->i_wb_frn_history = 0;
442         switched = true;
443 skip_switch:
444         /*
445          * Paired with load_acquire in unlocked_inode_to_wb_begin() and
446          * ensures that the new wb is visible if they see !I_WB_SWITCH.
447          */
448         smp_store_release(&inode->i_state, inode->i_state & ~I_WB_SWITCH);
449
450         xa_unlock_irq(&mapping->i_pages);
451         spin_unlock(&inode->i_lock);
452
453         return switched;
454 }
455
456 static void inode_switch_wbs_work_fn(struct work_struct *work)
457 {
458         struct inode_switch_wbs_context *isw =
459                 container_of(to_rcu_work(work), struct inode_switch_wbs_context, work);
460         struct backing_dev_info *bdi = inode_to_bdi(isw->inodes[0]);
461         struct bdi_writeback *old_wb = isw->inodes[0]->i_wb;
462         struct bdi_writeback *new_wb = isw->new_wb;
463         unsigned long nr_switched = 0;
464         struct inode **inodep;
465
466         /*
467          * If @inode switches cgwb membership while sync_inodes_sb() is
468          * being issued, sync_inodes_sb() might miss it.  Synchronize.
469          */
470         down_read(&bdi->wb_switch_rwsem);
471
472         /*
473          * By the time control reaches here, RCU grace period has passed
474          * since I_WB_SWITCH assertion and all wb stat update transactions
475          * between unlocked_inode_to_wb_begin/end() are guaranteed to be
476          * synchronizing against the i_pages lock.
477          *
478          * Grabbing old_wb->list_lock, inode->i_lock and the i_pages lock
479          * gives us exclusion against all wb related operations on @inode
480          * including IO list manipulations and stat updates.
481          */
482         if (old_wb < new_wb) {
483                 spin_lock(&old_wb->list_lock);
484                 spin_lock_nested(&new_wb->list_lock, SINGLE_DEPTH_NESTING);
485         } else {
486                 spin_lock(&new_wb->list_lock);
487                 spin_lock_nested(&old_wb->list_lock, SINGLE_DEPTH_NESTING);
488         }
489
490         for (inodep = isw->inodes; *inodep; inodep++) {
491                 WARN_ON_ONCE((*inodep)->i_wb != old_wb);
492                 if (inode_do_switch_wbs(*inodep, old_wb, new_wb))
493                         nr_switched++;
494         }
495
496         spin_unlock(&new_wb->list_lock);
497         spin_unlock(&old_wb->list_lock);
498
499         up_read(&bdi->wb_switch_rwsem);
500
501         if (nr_switched) {
502                 wb_wakeup(new_wb);
503                 wb_put_many(old_wb, nr_switched);
504         }
505
506         for (inodep = isw->inodes; *inodep; inodep++)
507                 iput(*inodep);
508         wb_put(new_wb);
509         kfree(isw);
510         atomic_dec(&isw_nr_in_flight);
511 }
512
513 static bool inode_prepare_wbs_switch(struct inode *inode,
514                                      struct bdi_writeback *new_wb)
515 {
516         /*
517          * Paired with smp_mb() in cgroup_writeback_umount().
518          * isw_nr_in_flight must be increased before checking SB_ACTIVE and
519          * grabbing an inode, otherwise isw_nr_in_flight can be observed as 0
520          * in cgroup_writeback_umount() and the isw_wq will be not flushed.
521          */
522         smp_mb();
523
524         /* while holding I_WB_SWITCH, no one else can update the association */
525         spin_lock(&inode->i_lock);
526         if (!(inode->i_sb->s_flags & SB_ACTIVE) ||
527             inode->i_state & (I_WB_SWITCH | I_FREEING | I_WILL_FREE) ||
528             inode_to_wb(inode) == new_wb) {
529                 spin_unlock(&inode->i_lock);
530                 return false;
531         }
532         inode->i_state |= I_WB_SWITCH;
533         __iget(inode);
534         spin_unlock(&inode->i_lock);
535
536         return true;
537 }
538
539 /**
540  * inode_switch_wbs - change the wb association of an inode
541  * @inode: target inode
542  * @new_wb_id: ID of the new wb
543  *
544  * Switch @inode's wb association to the wb identified by @new_wb_id.  The
545  * switching is performed asynchronously and may fail silently.
546  */
547 static void inode_switch_wbs(struct inode *inode, int new_wb_id)
548 {
549         struct backing_dev_info *bdi = inode_to_bdi(inode);
550         struct cgroup_subsys_state *memcg_css;
551         struct inode_switch_wbs_context *isw;
552
553         /* noop if seems to be already in progress */
554         if (inode->i_state & I_WB_SWITCH)
555                 return;
556
557         /* avoid queueing a new switch if too many are already in flight */
558         if (atomic_read(&isw_nr_in_flight) > WB_FRN_MAX_IN_FLIGHT)
559                 return;
560
561         isw = kzalloc(sizeof(*isw) + 2 * sizeof(struct inode *), GFP_ATOMIC);
562         if (!isw)
563                 return;
564
565         atomic_inc(&isw_nr_in_flight);
566
567         /* find and pin the new wb */
568         rcu_read_lock();
569         memcg_css = css_from_id(new_wb_id, &memory_cgrp_subsys);
570         if (memcg_css && !css_tryget(memcg_css))
571                 memcg_css = NULL;
572         rcu_read_unlock();
573         if (!memcg_css)
574                 goto out_free;
575
576         isw->new_wb = wb_get_create(bdi, memcg_css, GFP_ATOMIC);
577         css_put(memcg_css);
578         if (!isw->new_wb)
579                 goto out_free;
580
581         if (!inode_prepare_wbs_switch(inode, isw->new_wb))
582                 goto out_free;
583
584         isw->inodes[0] = inode;
585
586         /*
587          * In addition to synchronizing among switchers, I_WB_SWITCH tells
588          * the RCU protected stat update paths to grab the i_page
589          * lock so that stat transfer can synchronize against them.
590          * Let's continue after I_WB_SWITCH is guaranteed to be visible.
591          */
592         INIT_RCU_WORK(&isw->work, inode_switch_wbs_work_fn);
593         queue_rcu_work(isw_wq, &isw->work);
594         return;
595
596 out_free:
597         atomic_dec(&isw_nr_in_flight);
598         if (isw->new_wb)
599                 wb_put(isw->new_wb);
600         kfree(isw);
601 }
602
603 /**
604  * cleanup_offline_cgwb - detach associated inodes
605  * @wb: target wb
606  *
607  * Switch all inodes attached to @wb to a nearest living ancestor's wb in order
608  * to eventually release the dying @wb.  Returns %true if not all inodes were
609  * switched and the function has to be restarted.
610  */
611 bool cleanup_offline_cgwb(struct bdi_writeback *wb)
612 {
613         struct cgroup_subsys_state *memcg_css;
614         struct inode_switch_wbs_context *isw;
615         struct inode *inode;
616         int nr;
617         bool restart = false;
618
619         isw = kzalloc(sizeof(*isw) + WB_MAX_INODES_PER_ISW *
620                       sizeof(struct inode *), GFP_KERNEL);
621         if (!isw)
622                 return restart;
623
624         atomic_inc(&isw_nr_in_flight);
625
626         for (memcg_css = wb->memcg_css->parent; memcg_css;
627              memcg_css = memcg_css->parent) {
628                 isw->new_wb = wb_get_create(wb->bdi, memcg_css, GFP_KERNEL);
629                 if (isw->new_wb)
630                         break;
631         }
632         if (unlikely(!isw->new_wb))
633                 isw->new_wb = &wb->bdi->wb; /* wb_get() is noop for bdi's wb */
634
635         nr = 0;
636         spin_lock(&wb->list_lock);
637         list_for_each_entry(inode, &wb->b_attached, i_io_list) {
638                 if (!inode_prepare_wbs_switch(inode, isw->new_wb))
639                         continue;
640
641                 isw->inodes[nr++] = inode;
642
643                 if (nr >= WB_MAX_INODES_PER_ISW - 1) {
644                         restart = true;
645                         break;
646                 }
647         }
648         spin_unlock(&wb->list_lock);
649
650         /* no attached inodes? bail out */
651         if (nr == 0) {
652                 atomic_dec(&isw_nr_in_flight);
653                 wb_put(isw->new_wb);
654                 kfree(isw);
655                 return restart;
656         }
657
658         /*
659          * In addition to synchronizing among switchers, I_WB_SWITCH tells
660          * the RCU protected stat update paths to grab the i_page
661          * lock so that stat transfer can synchronize against them.
662          * Let's continue after I_WB_SWITCH is guaranteed to be visible.
663          */
664         INIT_RCU_WORK(&isw->work, inode_switch_wbs_work_fn);
665         queue_rcu_work(isw_wq, &isw->work);
666
667         return restart;
668 }
669
670 /**
671  * wbc_attach_and_unlock_inode - associate wbc with target inode and unlock it
672  * @wbc: writeback_control of interest
673  * @inode: target inode
674  *
675  * @inode is locked and about to be written back under the control of @wbc.
676  * Record @inode's writeback context into @wbc and unlock the i_lock.  On
677  * writeback completion, wbc_detach_inode() should be called.  This is used
678  * to track the cgroup writeback context.
679  */
680 void wbc_attach_and_unlock_inode(struct writeback_control *wbc,
681                                  struct inode *inode)
682 {
683         if (!inode_cgwb_enabled(inode)) {
684                 spin_unlock(&inode->i_lock);
685                 return;
686         }
687
688         wbc->wb = inode_to_wb(inode);
689         wbc->inode = inode;
690
691         wbc->wb_id = wbc->wb->memcg_css->id;
692         wbc->wb_lcand_id = inode->i_wb_frn_winner;
693         wbc->wb_tcand_id = 0;
694         wbc->wb_bytes = 0;
695         wbc->wb_lcand_bytes = 0;
696         wbc->wb_tcand_bytes = 0;
697
698         wb_get(wbc->wb);
699         spin_unlock(&inode->i_lock);
700
701         /*
702          * A dying wb indicates that either the blkcg associated with the
703          * memcg changed or the associated memcg is dying.  In the first
704          * case, a replacement wb should already be available and we should
705          * refresh the wb immediately.  In the second case, trying to
706          * refresh will keep failing.
707          */
708         if (unlikely(wb_dying(wbc->wb) && !css_is_dying(wbc->wb->memcg_css)))
709                 inode_switch_wbs(inode, wbc->wb_id);
710 }
711 EXPORT_SYMBOL_GPL(wbc_attach_and_unlock_inode);
712
713 /**
714  * wbc_detach_inode - disassociate wbc from inode and perform foreign detection
715  * @wbc: writeback_control of the just finished writeback
716  *
717  * To be called after a writeback attempt of an inode finishes and undoes
718  * wbc_attach_and_unlock_inode().  Can be called under any context.
719  *
720  * As concurrent write sharing of an inode is expected to be very rare and
721  * memcg only tracks page ownership on first-use basis severely confining
722  * the usefulness of such sharing, cgroup writeback tracks ownership
723  * per-inode.  While the support for concurrent write sharing of an inode
724  * is deemed unnecessary, an inode being written to by different cgroups at
725  * different points in time is a lot more common, and, more importantly,
726  * charging only by first-use can too readily lead to grossly incorrect
727  * behaviors (single foreign page can lead to gigabytes of writeback to be
728  * incorrectly attributed).
729  *
730  * To resolve this issue, cgroup writeback detects the majority dirtier of
731  * an inode and transfers the ownership to it.  To avoid unnnecessary
732  * oscillation, the detection mechanism keeps track of history and gives
733  * out the switch verdict only if the foreign usage pattern is stable over
734  * a certain amount of time and/or writeback attempts.
735  *
736  * On each writeback attempt, @wbc tries to detect the majority writer
737  * using Boyer-Moore majority vote algorithm.  In addition to the byte
738  * count from the majority voting, it also counts the bytes written for the
739  * current wb and the last round's winner wb (max of last round's current
740  * wb, the winner from two rounds ago, and the last round's majority
741  * candidate).  Keeping track of the historical winner helps the algorithm
742  * to semi-reliably detect the most active writer even when it's not the
743  * absolute majority.
744  *
745  * Once the winner of the round is determined, whether the winner is
746  * foreign or not and how much IO time the round consumed is recorded in
747  * inode->i_wb_frn_history.  If the amount of recorded foreign IO time is
748  * over a certain threshold, the switch verdict is given.
749  */
750 void wbc_detach_inode(struct writeback_control *wbc)
751 {
752         struct bdi_writeback *wb = wbc->wb;
753         struct inode *inode = wbc->inode;
754         unsigned long avg_time, max_bytes, max_time;
755         u16 history;
756         int max_id;
757
758         if (!wb)
759                 return;
760
761         history = inode->i_wb_frn_history;
762         avg_time = inode->i_wb_frn_avg_time;
763
764         /* pick the winner of this round */
765         if (wbc->wb_bytes >= wbc->wb_lcand_bytes &&
766             wbc->wb_bytes >= wbc->wb_tcand_bytes) {
767                 max_id = wbc->wb_id;
768                 max_bytes = wbc->wb_bytes;
769         } else if (wbc->wb_lcand_bytes >= wbc->wb_tcand_bytes) {
770                 max_id = wbc->wb_lcand_id;
771                 max_bytes = wbc->wb_lcand_bytes;
772         } else {
773                 max_id = wbc->wb_tcand_id;
774                 max_bytes = wbc->wb_tcand_bytes;
775         }
776
777         /*
778          * Calculate the amount of IO time the winner consumed and fold it
779          * into the running average kept per inode.  If the consumed IO
780          * time is lower than avag / WB_FRN_TIME_CUT_DIV, ignore it for
781          * deciding whether to switch or not.  This is to prevent one-off
782          * small dirtiers from skewing the verdict.
783          */
784         max_time = DIV_ROUND_UP((max_bytes >> PAGE_SHIFT) << WB_FRN_TIME_SHIFT,
785                                 wb->avg_write_bandwidth);
786         if (avg_time)
787                 avg_time += (max_time >> WB_FRN_TIME_AVG_SHIFT) -
788                             (avg_time >> WB_FRN_TIME_AVG_SHIFT);
789         else
790                 avg_time = max_time;    /* immediate catch up on first run */
791
792         if (max_time >= avg_time / WB_FRN_TIME_CUT_DIV) {
793                 int slots;
794
795                 /*
796                  * The switch verdict is reached if foreign wb's consume
797                  * more than a certain proportion of IO time in a
798                  * WB_FRN_TIME_PERIOD.  This is loosely tracked by 16 slot
799                  * history mask where each bit represents one sixteenth of
800                  * the period.  Determine the number of slots to shift into
801                  * history from @max_time.
802                  */
803                 slots = min(DIV_ROUND_UP(max_time, WB_FRN_HIST_UNIT),
804                             (unsigned long)WB_FRN_HIST_MAX_SLOTS);
805                 history <<= slots;
806                 if (wbc->wb_id != max_id)
807                         history |= (1U << slots) - 1;
808
809                 if (history)
810                         trace_inode_foreign_history(inode, wbc, history);
811
812                 /*
813                  * Switch if the current wb isn't the consistent winner.
814                  * If there are multiple closely competing dirtiers, the
815                  * inode may switch across them repeatedly over time, which
816                  * is okay.  The main goal is avoiding keeping an inode on
817                  * the wrong wb for an extended period of time.
818                  */
819                 if (hweight32(history) > WB_FRN_HIST_THR_SLOTS)
820                         inode_switch_wbs(inode, max_id);
821         }
822
823         /*
824          * Multiple instances of this function may race to update the
825          * following fields but we don't mind occassional inaccuracies.
826          */
827         inode->i_wb_frn_winner = max_id;
828         inode->i_wb_frn_avg_time = min(avg_time, (unsigned long)U16_MAX);
829         inode->i_wb_frn_history = history;
830
831         wb_put(wbc->wb);
832         wbc->wb = NULL;
833 }
834 EXPORT_SYMBOL_GPL(wbc_detach_inode);
835
836 /**
837  * wbc_account_cgroup_owner - account writeback to update inode cgroup ownership
838  * @wbc: writeback_control of the writeback in progress
839  * @page: page being written out
840  * @bytes: number of bytes being written out
841  *
842  * @bytes from @page are about to written out during the writeback
843  * controlled by @wbc.  Keep the book for foreign inode detection.  See
844  * wbc_detach_inode().
845  */
846 void wbc_account_cgroup_owner(struct writeback_control *wbc, struct page *page,
847                               size_t bytes)
848 {
849         struct cgroup_subsys_state *css;
850         int id;
851
852         /*
853          * pageout() path doesn't attach @wbc to the inode being written
854          * out.  This is intentional as we don't want the function to block
855          * behind a slow cgroup.  Ultimately, we want pageout() to kick off
856          * regular writeback instead of writing things out itself.
857          */
858         if (!wbc->wb || wbc->no_cgroup_owner)
859                 return;
860
861         css = mem_cgroup_css_from_page(page);
862         /* dead cgroups shouldn't contribute to inode ownership arbitration */
863         if (!(css->flags & CSS_ONLINE))
864                 return;
865
866         id = css->id;
867
868         if (id == wbc->wb_id) {
869                 wbc->wb_bytes += bytes;
870                 return;
871         }
872
873         if (id == wbc->wb_lcand_id)
874                 wbc->wb_lcand_bytes += bytes;
875
876         /* Boyer-Moore majority vote algorithm */
877         if (!wbc->wb_tcand_bytes)
878                 wbc->wb_tcand_id = id;
879         if (id == wbc->wb_tcand_id)
880                 wbc->wb_tcand_bytes += bytes;
881         else
882                 wbc->wb_tcand_bytes -= min(bytes, wbc->wb_tcand_bytes);
883 }
884 EXPORT_SYMBOL_GPL(wbc_account_cgroup_owner);
885
886 /**
887  * inode_congested - test whether an inode is congested
888  * @inode: inode to test for congestion (may be NULL)
889  * @cong_bits: mask of WB_[a]sync_congested bits to test
890  *
891  * Tests whether @inode is congested.  @cong_bits is the mask of congestion
892  * bits to test and the return value is the mask of set bits.
893  *
894  * If cgroup writeback is enabled for @inode, the congestion state is
895  * determined by whether the cgwb (cgroup bdi_writeback) for the blkcg
896  * associated with @inode is congested; otherwise, the root wb's congestion
897  * state is used.
898  *
899  * @inode is allowed to be NULL as this function is often called on
900  * mapping->host which is NULL for the swapper space.
901  */
902 int inode_congested(struct inode *inode, int cong_bits)
903 {
904         /*
905          * Once set, ->i_wb never becomes NULL while the inode is alive.
906          * Start transaction iff ->i_wb is visible.
907          */
908         if (inode && inode_to_wb_is_valid(inode)) {
909                 struct bdi_writeback *wb;
910                 struct wb_lock_cookie lock_cookie = {};
911                 bool congested;
912
913                 wb = unlocked_inode_to_wb_begin(inode, &lock_cookie);
914                 congested = wb_congested(wb, cong_bits);
915                 unlocked_inode_to_wb_end(inode, &lock_cookie);
916                 return congested;
917         }
918
919         return wb_congested(&inode_to_bdi(inode)->wb, cong_bits);
920 }
921 EXPORT_SYMBOL_GPL(inode_congested);
922
923 /**
924  * wb_split_bdi_pages - split nr_pages to write according to bandwidth
925  * @wb: target bdi_writeback to split @nr_pages to
926  * @nr_pages: number of pages to write for the whole bdi
927  *
928  * Split @wb's portion of @nr_pages according to @wb's write bandwidth in
929  * relation to the total write bandwidth of all wb's w/ dirty inodes on
930  * @wb->bdi.
931  */
932 static long wb_split_bdi_pages(struct bdi_writeback *wb, long nr_pages)
933 {
934         unsigned long this_bw = wb->avg_write_bandwidth;
935         unsigned long tot_bw = atomic_long_read(&wb->bdi->tot_write_bandwidth);
936
937         if (nr_pages == LONG_MAX)
938                 return LONG_MAX;
939
940         /*
941          * This may be called on clean wb's and proportional distribution
942          * may not make sense, just use the original @nr_pages in those
943          * cases.  In general, we wanna err on the side of writing more.
944          */
945         if (!tot_bw || this_bw >= tot_bw)
946                 return nr_pages;
947         else
948                 return DIV_ROUND_UP_ULL((u64)nr_pages * this_bw, tot_bw);
949 }
950
951 /**
952  * bdi_split_work_to_wbs - split a wb_writeback_work to all wb's of a bdi
953  * @bdi: target backing_dev_info
954  * @base_work: wb_writeback_work to issue
955  * @skip_if_busy: skip wb's which already have writeback in progress
956  *
957  * Split and issue @base_work to all wb's (bdi_writeback's) of @bdi which
958  * have dirty inodes.  If @base_work->nr_page isn't %LONG_MAX, it's
959  * distributed to the busy wbs according to each wb's proportion in the
960  * total active write bandwidth of @bdi.
961  */
962 static void bdi_split_work_to_wbs(struct backing_dev_info *bdi,
963                                   struct wb_writeback_work *base_work,
964                                   bool skip_if_busy)
965 {
966         struct bdi_writeback *last_wb = NULL;
967         struct bdi_writeback *wb = list_entry(&bdi->wb_list,
968                                               struct bdi_writeback, bdi_node);
969
970         might_sleep();
971 restart:
972         rcu_read_lock();
973         list_for_each_entry_continue_rcu(wb, &bdi->wb_list, bdi_node) {
974                 DEFINE_WB_COMPLETION(fallback_work_done, bdi);
975                 struct wb_writeback_work fallback_work;
976                 struct wb_writeback_work *work;
977                 long nr_pages;
978
979                 if (last_wb) {
980                         wb_put(last_wb);
981                         last_wb = NULL;
982                 }
983
984                 /* SYNC_ALL writes out I_DIRTY_TIME too */
985                 if (!wb_has_dirty_io(wb) &&
986                     (base_work->sync_mode == WB_SYNC_NONE ||
987                      list_empty(&wb->b_dirty_time)))
988                         continue;
989                 if (skip_if_busy && writeback_in_progress(wb))
990                         continue;
991
992                 nr_pages = wb_split_bdi_pages(wb, base_work->nr_pages);
993
994                 work = kmalloc(sizeof(*work), GFP_ATOMIC);
995                 if (work) {
996                         *work = *base_work;
997                         work->nr_pages = nr_pages;
998                         work->auto_free = 1;
999                         wb_queue_work(wb, work);
1000                         continue;
1001                 }
1002
1003                 /* alloc failed, execute synchronously using on-stack fallback */
1004                 work = &fallback_work;
1005                 *work = *base_work;
1006                 work->nr_pages = nr_pages;
1007                 work->auto_free = 0;
1008                 work->done = &fallback_work_done;
1009
1010                 wb_queue_work(wb, work);
1011
1012                 /*
1013                  * Pin @wb so that it stays on @bdi->wb_list.  This allows
1014                  * continuing iteration from @wb after dropping and
1015                  * regrabbing rcu read lock.
1016                  */
1017                 wb_get(wb);
1018                 last_wb = wb;
1019
1020                 rcu_read_unlock();
1021                 wb_wait_for_completion(&fallback_work_done);
1022                 goto restart;
1023         }
1024         rcu_read_unlock();
1025
1026         if (last_wb)
1027                 wb_put(last_wb);
1028 }
1029
1030 /**
1031  * cgroup_writeback_by_id - initiate cgroup writeback from bdi and memcg IDs
1032  * @bdi_id: target bdi id
1033  * @memcg_id: target memcg css id
1034  * @nr: number of pages to write, 0 for best-effort dirty flushing
1035  * @reason: reason why some writeback work initiated
1036  * @done: target wb_completion
1037  *
1038  * Initiate flush of the bdi_writeback identified by @bdi_id and @memcg_id
1039  * with the specified parameters.
1040  */
1041 int cgroup_writeback_by_id(u64 bdi_id, int memcg_id, unsigned long nr,
1042                            enum wb_reason reason, struct wb_completion *done)
1043 {
1044         struct backing_dev_info *bdi;
1045         struct cgroup_subsys_state *memcg_css;
1046         struct bdi_writeback *wb;
1047         struct wb_writeback_work *work;
1048         int ret;
1049
1050         /* lookup bdi and memcg */
1051         bdi = bdi_get_by_id(bdi_id);
1052         if (!bdi)
1053                 return -ENOENT;
1054
1055         rcu_read_lock();
1056         memcg_css = css_from_id(memcg_id, &memory_cgrp_subsys);
1057         if (memcg_css && !css_tryget(memcg_css))
1058                 memcg_css = NULL;
1059         rcu_read_unlock();
1060         if (!memcg_css) {
1061                 ret = -ENOENT;
1062                 goto out_bdi_put;
1063         }
1064
1065         /*
1066          * And find the associated wb.  If the wb isn't there already
1067          * there's nothing to flush, don't create one.
1068          */
1069         wb = wb_get_lookup(bdi, memcg_css);
1070         if (!wb) {
1071                 ret = -ENOENT;
1072                 goto out_css_put;
1073         }
1074
1075         /*
1076          * If @nr is zero, the caller is attempting to write out most of
1077          * the currently dirty pages.  Let's take the current dirty page
1078          * count and inflate it by 25% which should be large enough to
1079          * flush out most dirty pages while avoiding getting livelocked by
1080          * concurrent dirtiers.
1081          */
1082         if (!nr) {
1083                 unsigned long filepages, headroom, dirty, writeback;
1084
1085                 mem_cgroup_wb_stats(wb, &filepages, &headroom, &dirty,
1086                                       &writeback);
1087                 nr = dirty * 10 / 8;
1088         }
1089
1090         /* issue the writeback work */
1091         work = kzalloc(sizeof(*work), GFP_NOWAIT | __GFP_NOWARN);
1092         if (work) {
1093                 work->nr_pages = nr;
1094                 work->sync_mode = WB_SYNC_NONE;
1095                 work->range_cyclic = 1;
1096                 work->reason = reason;
1097                 work->done = done;
1098                 work->auto_free = 1;
1099                 wb_queue_work(wb, work);
1100                 ret = 0;
1101         } else {
1102                 ret = -ENOMEM;
1103         }
1104
1105         wb_put(wb);
1106 out_css_put:
1107         css_put(memcg_css);
1108 out_bdi_put:
1109         bdi_put(bdi);
1110         return ret;
1111 }
1112
1113 /**
1114  * cgroup_writeback_umount - flush inode wb switches for umount
1115  *
1116  * This function is called when a super_block is about to be destroyed and
1117  * flushes in-flight inode wb switches.  An inode wb switch goes through
1118  * RCU and then workqueue, so the two need to be flushed in order to ensure
1119  * that all previously scheduled switches are finished.  As wb switches are
1120  * rare occurrences and synchronize_rcu() can take a while, perform
1121  * flushing iff wb switches are in flight.
1122  */
1123 void cgroup_writeback_umount(void)
1124 {
1125         /*
1126          * SB_ACTIVE should be reliably cleared before checking
1127          * isw_nr_in_flight, see generic_shutdown_super().
1128          */
1129         smp_mb();
1130
1131         if (atomic_read(&isw_nr_in_flight)) {
1132                 /*
1133                  * Use rcu_barrier() to wait for all pending callbacks to
1134                  * ensure that all in-flight wb switches are in the workqueue.
1135                  */
1136                 rcu_barrier();
1137                 flush_workqueue(isw_wq);
1138         }
1139 }
1140
1141 static int __init cgroup_writeback_init(void)
1142 {
1143         isw_wq = alloc_workqueue("inode_switch_wbs", 0, 0);
1144         if (!isw_wq)
1145                 return -ENOMEM;
1146         return 0;
1147 }
1148 fs_initcall(cgroup_writeback_init);
1149
1150 #else   /* CONFIG_CGROUP_WRITEBACK */
1151
1152 static void bdi_down_write_wb_switch_rwsem(struct backing_dev_info *bdi) { }
1153 static void bdi_up_write_wb_switch_rwsem(struct backing_dev_info *bdi) { }
1154
1155 static void inode_cgwb_move_to_attached(struct inode *inode,
1156                                         struct bdi_writeback *wb)
1157 {
1158         assert_spin_locked(&wb->list_lock);
1159         assert_spin_locked(&inode->i_lock);
1160
1161         inode->i_state &= ~I_SYNC_QUEUED;
1162         list_del_init(&inode->i_io_list);
1163         wb_io_lists_depopulated(wb);
1164 }
1165
1166 static struct bdi_writeback *
1167 locked_inode_to_wb_and_lock_list(struct inode *inode)
1168         __releases(&inode->i_lock)
1169         __acquires(&wb->list_lock)
1170 {
1171         struct bdi_writeback *wb = inode_to_wb(inode);
1172
1173         spin_unlock(&inode->i_lock);
1174         spin_lock(&wb->list_lock);
1175         return wb;
1176 }
1177
1178 static struct bdi_writeback *inode_to_wb_and_lock_list(struct inode *inode)
1179         __acquires(&wb->list_lock)
1180 {
1181         struct bdi_writeback *wb = inode_to_wb(inode);
1182
1183         spin_lock(&wb->list_lock);
1184         return wb;
1185 }
1186
1187 static long wb_split_bdi_pages(struct bdi_writeback *wb, long nr_pages)
1188 {
1189         return nr_pages;
1190 }
1191
1192 static void bdi_split_work_to_wbs(struct backing_dev_info *bdi,
1193                                   struct wb_writeback_work *base_work,
1194                                   bool skip_if_busy)
1195 {
1196         might_sleep();
1197
1198         if (!skip_if_busy || !writeback_in_progress(&bdi->wb)) {
1199                 base_work->auto_free = 0;
1200                 wb_queue_work(&bdi->wb, base_work);
1201         }
1202 }
1203
1204 #endif  /* CONFIG_CGROUP_WRITEBACK */
1205
1206 /*
1207  * Add in the number of potentially dirty inodes, because each inode
1208  * write can dirty pagecache in the underlying blockdev.
1209  */
1210 static unsigned long get_nr_dirty_pages(void)
1211 {
1212         return global_node_page_state(NR_FILE_DIRTY) +
1213                 get_nr_dirty_inodes();
1214 }
1215
1216 static void wb_start_writeback(struct bdi_writeback *wb, enum wb_reason reason)
1217 {
1218         if (!wb_has_dirty_io(wb))
1219                 return;
1220
1221         /*
1222          * All callers of this function want to start writeback of all
1223          * dirty pages. Places like vmscan can call this at a very
1224          * high frequency, causing pointless allocations of tons of
1225          * work items and keeping the flusher threads busy retrieving
1226          * that work. Ensure that we only allow one of them pending and
1227          * inflight at the time.
1228          */
1229         if (test_bit(WB_start_all, &wb->state) ||
1230             test_and_set_bit(WB_start_all, &wb->state))
1231                 return;
1232
1233         wb->start_all_reason = reason;
1234         wb_wakeup(wb);
1235 }
1236
1237 /**
1238  * wb_start_background_writeback - start background writeback
1239  * @wb: bdi_writback to write from
1240  *
1241  * Description:
1242  *   This makes sure WB_SYNC_NONE background writeback happens. When
1243  *   this function returns, it is only guaranteed that for given wb
1244  *   some IO is happening if we are over background dirty threshold.
1245  *   Caller need not hold sb s_umount semaphore.
1246  */
1247 void wb_start_background_writeback(struct bdi_writeback *wb)
1248 {
1249         /*
1250          * We just wake up the flusher thread. It will perform background
1251          * writeback as soon as there is no other work to do.
1252          */
1253         trace_writeback_wake_background(wb);
1254         wb_wakeup(wb);
1255 }
1256
1257 /*
1258  * Remove the inode from the writeback list it is on.
1259  */
1260 void inode_io_list_del(struct inode *inode)
1261 {
1262         struct bdi_writeback *wb;
1263
1264         wb = inode_to_wb_and_lock_list(inode);
1265         spin_lock(&inode->i_lock);
1266
1267         inode->i_state &= ~I_SYNC_QUEUED;
1268         list_del_init(&inode->i_io_list);
1269         wb_io_lists_depopulated(wb);
1270
1271         spin_unlock(&inode->i_lock);
1272         spin_unlock(&wb->list_lock);
1273 }
1274 EXPORT_SYMBOL(inode_io_list_del);
1275
1276 /*
1277  * mark an inode as under writeback on the sb
1278  */
1279 void sb_mark_inode_writeback(struct inode *inode)
1280 {
1281         struct super_block *sb = inode->i_sb;
1282         unsigned long flags;
1283
1284         if (list_empty(&inode->i_wb_list)) {
1285                 spin_lock_irqsave(&sb->s_inode_wblist_lock, flags);
1286                 if (list_empty(&inode->i_wb_list)) {
1287                         list_add_tail(&inode->i_wb_list, &sb->s_inodes_wb);
1288                         trace_sb_mark_inode_writeback(inode);
1289                 }
1290                 spin_unlock_irqrestore(&sb->s_inode_wblist_lock, flags);
1291         }
1292 }
1293
1294 /*
1295  * clear an inode as under writeback on the sb
1296  */
1297 void sb_clear_inode_writeback(struct inode *inode)
1298 {
1299         struct super_block *sb = inode->i_sb;
1300         unsigned long flags;
1301
1302         if (!list_empty(&inode->i_wb_list)) {
1303                 spin_lock_irqsave(&sb->s_inode_wblist_lock, flags);
1304                 if (!list_empty(&inode->i_wb_list)) {
1305                         list_del_init(&inode->i_wb_list);
1306                         trace_sb_clear_inode_writeback(inode);
1307                 }
1308                 spin_unlock_irqrestore(&sb->s_inode_wblist_lock, flags);
1309         }
1310 }
1311
1312 /*
1313  * Redirty an inode: set its when-it-was dirtied timestamp and move it to the
1314  * furthest end of its superblock's dirty-inode list.
1315  *
1316  * Before stamping the inode's ->dirtied_when, we check to see whether it is
1317  * already the most-recently-dirtied inode on the b_dirty list.  If that is
1318  * the case then the inode must have been redirtied while it was being written
1319  * out and we don't reset its dirtied_when.
1320  */
1321 static void redirty_tail_locked(struct inode *inode, struct bdi_writeback *wb)
1322 {
1323         assert_spin_locked(&inode->i_lock);
1324
1325         if (!list_empty(&wb->b_dirty)) {
1326                 struct inode *tail;
1327
1328                 tail = wb_inode(wb->b_dirty.next);
1329                 if (time_before(inode->dirtied_when, tail->dirtied_when))
1330                         inode->dirtied_when = jiffies;
1331         }
1332         inode_io_list_move_locked(inode, wb, &wb->b_dirty);
1333         inode->i_state &= ~I_SYNC_QUEUED;
1334 }
1335
1336 static void redirty_tail(struct inode *inode, struct bdi_writeback *wb)
1337 {
1338         spin_lock(&inode->i_lock);
1339         redirty_tail_locked(inode, wb);
1340         spin_unlock(&inode->i_lock);
1341 }
1342
1343 /*
1344  * requeue inode for re-scanning after bdi->b_io list is exhausted.
1345  */
1346 static void requeue_io(struct inode *inode, struct bdi_writeback *wb)
1347 {
1348         inode_io_list_move_locked(inode, wb, &wb->b_more_io);
1349 }
1350
1351 static void inode_sync_complete(struct inode *inode)
1352 {
1353         inode->i_state &= ~I_SYNC;
1354         /* If inode is clean an unused, put it into LRU now... */
1355         inode_add_lru(inode);
1356         /* Waiters must see I_SYNC cleared before being woken up */
1357         smp_mb();
1358         wake_up_bit(&inode->i_state, __I_SYNC);
1359 }
1360
1361 static bool inode_dirtied_after(struct inode *inode, unsigned long t)
1362 {
1363         bool ret = time_after(inode->dirtied_when, t);
1364 #ifndef CONFIG_64BIT
1365         /*
1366          * For inodes being constantly redirtied, dirtied_when can get stuck.
1367          * It _appears_ to be in the future, but is actually in distant past.
1368          * This test is necessary to prevent such wrapped-around relative times
1369          * from permanently stopping the whole bdi writeback.
1370          */
1371         ret = ret && time_before_eq(inode->dirtied_when, jiffies);
1372 #endif
1373         return ret;
1374 }
1375
1376 #define EXPIRE_DIRTY_ATIME 0x0001
1377
1378 /*
1379  * Move expired (dirtied before dirtied_before) dirty inodes from
1380  * @delaying_queue to @dispatch_queue.
1381  */
1382 static int move_expired_inodes(struct list_head *delaying_queue,
1383                                struct list_head *dispatch_queue,
1384                                unsigned long dirtied_before)
1385 {
1386         LIST_HEAD(tmp);
1387         struct list_head *pos, *node;
1388         struct super_block *sb = NULL;
1389         struct inode *inode;
1390         int do_sb_sort = 0;
1391         int moved = 0;
1392
1393         while (!list_empty(delaying_queue)) {
1394                 inode = wb_inode(delaying_queue->prev);
1395                 if (inode_dirtied_after(inode, dirtied_before))
1396                         break;
1397                 list_move(&inode->i_io_list, &tmp);
1398                 moved++;
1399                 spin_lock(&inode->i_lock);
1400                 inode->i_state |= I_SYNC_QUEUED;
1401                 spin_unlock(&inode->i_lock);
1402                 if (sb_is_blkdev_sb(inode->i_sb))
1403                         continue;
1404                 if (sb && sb != inode->i_sb)
1405                         do_sb_sort = 1;
1406                 sb = inode->i_sb;
1407         }
1408
1409         /* just one sb in list, splice to dispatch_queue and we're done */
1410         if (!do_sb_sort) {
1411                 list_splice(&tmp, dispatch_queue);
1412                 goto out;
1413         }
1414
1415         /* Move inodes from one superblock together */
1416         while (!list_empty(&tmp)) {
1417                 sb = wb_inode(tmp.prev)->i_sb;
1418                 list_for_each_prev_safe(pos, node, &tmp) {
1419                         inode = wb_inode(pos);
1420                         if (inode->i_sb == sb)
1421                                 list_move(&inode->i_io_list, dispatch_queue);
1422                 }
1423         }
1424 out:
1425         return moved;
1426 }
1427
1428 /*
1429  * Queue all expired dirty inodes for io, eldest first.
1430  * Before
1431  *         newly dirtied     b_dirty    b_io    b_more_io
1432  *         =============>    gf         edc     BA
1433  * After
1434  *         newly dirtied     b_dirty    b_io    b_more_io
1435  *         =============>    g          fBAedc
1436  *                                           |
1437  *                                           +--> dequeue for IO
1438  */
1439 static void queue_io(struct bdi_writeback *wb, struct wb_writeback_work *work,
1440                      unsigned long dirtied_before)
1441 {
1442         int moved;
1443         unsigned long time_expire_jif = dirtied_before;
1444
1445         assert_spin_locked(&wb->list_lock);
1446         list_splice_init(&wb->b_more_io, &wb->b_io);
1447         moved = move_expired_inodes(&wb->b_dirty, &wb->b_io, dirtied_before);
1448         if (!work->for_sync)
1449                 time_expire_jif = jiffies - dirtytime_expire_interval * HZ;
1450         moved += move_expired_inodes(&wb->b_dirty_time, &wb->b_io,
1451                                      time_expire_jif);
1452         if (moved)
1453                 wb_io_lists_populated(wb);
1454         trace_writeback_queue_io(wb, work, dirtied_before, moved);
1455 }
1456
1457 static int write_inode(struct inode *inode, struct writeback_control *wbc)
1458 {
1459         int ret;
1460
1461         if (inode->i_sb->s_op->write_inode && !is_bad_inode(inode)) {
1462                 trace_writeback_write_inode_start(inode, wbc);
1463                 ret = inode->i_sb->s_op->write_inode(inode, wbc);
1464                 trace_writeback_write_inode(inode, wbc);
1465                 return ret;
1466         }
1467         return 0;
1468 }
1469
1470 /*
1471  * Wait for writeback on an inode to complete. Called with i_lock held.
1472  * Caller must make sure inode cannot go away when we drop i_lock.
1473  */
1474 static void __inode_wait_for_writeback(struct inode *inode)
1475         __releases(inode->i_lock)
1476         __acquires(inode->i_lock)
1477 {
1478         DEFINE_WAIT_BIT(wq, &inode->i_state, __I_SYNC);
1479         wait_queue_head_t *wqh;
1480
1481         wqh = bit_waitqueue(&inode->i_state, __I_SYNC);
1482         while (inode->i_state & I_SYNC) {
1483                 spin_unlock(&inode->i_lock);
1484                 __wait_on_bit(wqh, &wq, bit_wait,
1485                               TASK_UNINTERRUPTIBLE);
1486                 spin_lock(&inode->i_lock);
1487         }
1488 }
1489
1490 /*
1491  * Wait for writeback on an inode to complete. Caller must have inode pinned.
1492  */
1493 void inode_wait_for_writeback(struct inode *inode)
1494 {
1495         spin_lock(&inode->i_lock);
1496         __inode_wait_for_writeback(inode);
1497         spin_unlock(&inode->i_lock);
1498 }
1499
1500 /*
1501  * Sleep until I_SYNC is cleared. This function must be called with i_lock
1502  * held and drops it. It is aimed for callers not holding any inode reference
1503  * so once i_lock is dropped, inode can go away.
1504  */
1505 static void inode_sleep_on_writeback(struct inode *inode)
1506         __releases(inode->i_lock)
1507 {
1508         DEFINE_WAIT(wait);
1509         wait_queue_head_t *wqh = bit_waitqueue(&inode->i_state, __I_SYNC);
1510         int sleep;
1511
1512         prepare_to_wait(wqh, &wait, TASK_UNINTERRUPTIBLE);
1513         sleep = inode->i_state & I_SYNC;
1514         spin_unlock(&inode->i_lock);
1515         if (sleep)
1516                 schedule();
1517         finish_wait(wqh, &wait);
1518 }
1519
1520 /*
1521  * Find proper writeback list for the inode depending on its current state and
1522  * possibly also change of its state while we were doing writeback.  Here we
1523  * handle things such as livelock prevention or fairness of writeback among
1524  * inodes. This function can be called only by flusher thread - noone else
1525  * processes all inodes in writeback lists and requeueing inodes behind flusher
1526  * thread's back can have unexpected consequences.
1527  */
1528 static void requeue_inode(struct inode *inode, struct bdi_writeback *wb,
1529                           struct writeback_control *wbc)
1530 {
1531         if (inode->i_state & I_FREEING)
1532                 return;
1533
1534         /*
1535          * Sync livelock prevention. Each inode is tagged and synced in one
1536          * shot. If still dirty, it will be redirty_tail()'ed below.  Update
1537          * the dirty time to prevent enqueue and sync it again.
1538          */
1539         if ((inode->i_state & I_DIRTY) &&
1540             (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages))
1541                 inode->dirtied_when = jiffies;
1542
1543         if (wbc->pages_skipped) {
1544                 /*
1545                  * writeback is not making progress due to locked
1546                  * buffers. Skip this inode for now.
1547                  */
1548                 redirty_tail_locked(inode, wb);
1549                 return;
1550         }
1551
1552         if (mapping_tagged(inode->i_mapping, PAGECACHE_TAG_DIRTY)) {
1553                 /*
1554                  * We didn't write back all the pages.  nfs_writepages()
1555                  * sometimes bales out without doing anything.
1556                  */
1557                 if (wbc->nr_to_write <= 0) {
1558                         /* Slice used up. Queue for next turn. */
1559                         requeue_io(inode, wb);
1560                 } else {
1561                         /*
1562                          * Writeback blocked by something other than
1563                          * congestion. Delay the inode for some time to
1564                          * avoid spinning on the CPU (100% iowait)
1565                          * retrying writeback of the dirty page/inode
1566                          * that cannot be performed immediately.
1567                          */
1568                         redirty_tail_locked(inode, wb);
1569                 }
1570         } else if (inode->i_state & I_DIRTY) {
1571                 /*
1572                  * Filesystems can dirty the inode during writeback operations,
1573                  * such as delayed allocation during submission or metadata
1574                  * updates after data IO completion.
1575                  */
1576                 redirty_tail_locked(inode, wb);
1577         } else if (inode->i_state & I_DIRTY_TIME) {
1578                 inode->dirtied_when = jiffies;
1579                 inode_io_list_move_locked(inode, wb, &wb->b_dirty_time);
1580                 inode->i_state &= ~I_SYNC_QUEUED;
1581         } else {
1582                 /* The inode is clean. Remove from writeback lists. */
1583                 inode_cgwb_move_to_attached(inode, wb);
1584         }
1585 }
1586
1587 /*
1588  * Write out an inode and its dirty pages (or some of its dirty pages, depending
1589  * on @wbc->nr_to_write), and clear the relevant dirty flags from i_state.
1590  *
1591  * This doesn't remove the inode from the writeback list it is on, except
1592  * potentially to move it from b_dirty_time to b_dirty due to timestamp
1593  * expiration.  The caller is otherwise responsible for writeback list handling.
1594  *
1595  * The caller is also responsible for setting the I_SYNC flag beforehand and
1596  * calling inode_sync_complete() to clear it afterwards.
1597  */
1598 static int
1599 __writeback_single_inode(struct inode *inode, struct writeback_control *wbc)
1600 {
1601         struct address_space *mapping = inode->i_mapping;
1602         long nr_to_write = wbc->nr_to_write;
1603         unsigned dirty;
1604         int ret;
1605
1606         WARN_ON(!(inode->i_state & I_SYNC));
1607
1608         trace_writeback_single_inode_start(inode, wbc, nr_to_write);
1609
1610         ret = do_writepages(mapping, wbc);
1611
1612         /*
1613          * Make sure to wait on the data before writing out the metadata.
1614          * This is important for filesystems that modify metadata on data
1615          * I/O completion. We don't do it for sync(2) writeback because it has a
1616          * separate, external IO completion path and ->sync_fs for guaranteeing
1617          * inode metadata is written back correctly.
1618          */
1619         if (wbc->sync_mode == WB_SYNC_ALL && !wbc->for_sync) {
1620                 int err = filemap_fdatawait(mapping);
1621                 if (ret == 0)
1622                         ret = err;
1623         }
1624
1625         /*
1626          * If the inode has dirty timestamps and we need to write them, call
1627          * mark_inode_dirty_sync() to notify the filesystem about it and to
1628          * change I_DIRTY_TIME into I_DIRTY_SYNC.
1629          */
1630         if ((inode->i_state & I_DIRTY_TIME) &&
1631             (wbc->sync_mode == WB_SYNC_ALL ||
1632              time_after(jiffies, inode->dirtied_time_when +
1633                         dirtytime_expire_interval * HZ))) {
1634                 trace_writeback_lazytime(inode);
1635                 mark_inode_dirty_sync(inode);
1636         }
1637
1638         /*
1639          * Get and clear the dirty flags from i_state.  This needs to be done
1640          * after calling writepages because some filesystems may redirty the
1641          * inode during writepages due to delalloc.  It also needs to be done
1642          * after handling timestamp expiration, as that may dirty the inode too.
1643          */
1644         spin_lock(&inode->i_lock);
1645         dirty = inode->i_state & I_DIRTY;
1646         inode->i_state &= ~dirty;
1647
1648         /*
1649          * Paired with smp_mb() in __mark_inode_dirty().  This allows
1650          * __mark_inode_dirty() to test i_state without grabbing i_lock -
1651          * either they see the I_DIRTY bits cleared or we see the dirtied
1652          * inode.
1653          *
1654          * I_DIRTY_PAGES is always cleared together above even if @mapping
1655          * still has dirty pages.  The flag is reinstated after smp_mb() if
1656          * necessary.  This guarantees that either __mark_inode_dirty()
1657          * sees clear I_DIRTY_PAGES or we see PAGECACHE_TAG_DIRTY.
1658          */
1659         smp_mb();
1660
1661         if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
1662                 inode->i_state |= I_DIRTY_PAGES;
1663
1664         spin_unlock(&inode->i_lock);
1665
1666         /* Don't write the inode if only I_DIRTY_PAGES was set */
1667         if (dirty & ~I_DIRTY_PAGES) {
1668                 int err = write_inode(inode, wbc);
1669                 if (ret == 0)
1670                         ret = err;
1671         }
1672         trace_writeback_single_inode(inode, wbc, nr_to_write);
1673         return ret;
1674 }
1675
1676 /*
1677  * Write out an inode's dirty data and metadata on-demand, i.e. separately from
1678  * the regular batched writeback done by the flusher threads in
1679  * writeback_sb_inodes().  @wbc controls various aspects of the write, such as
1680  * whether it is a data-integrity sync (%WB_SYNC_ALL) or not (%WB_SYNC_NONE).
1681  *
1682  * To prevent the inode from going away, either the caller must have a reference
1683  * to the inode, or the inode must have I_WILL_FREE or I_FREEING set.
1684  */
1685 static int writeback_single_inode(struct inode *inode,
1686                                   struct writeback_control *wbc)
1687 {
1688         struct bdi_writeback *wb;
1689         int ret = 0;
1690
1691         spin_lock(&inode->i_lock);
1692         if (!atomic_read(&inode->i_count))
1693                 WARN_ON(!(inode->i_state & (I_WILL_FREE|I_FREEING)));
1694         else
1695                 WARN_ON(inode->i_state & I_WILL_FREE);
1696
1697         if (inode->i_state & I_SYNC) {
1698                 /*
1699                  * Writeback is already running on the inode.  For WB_SYNC_NONE,
1700                  * that's enough and we can just return.  For WB_SYNC_ALL, we
1701                  * must wait for the existing writeback to complete, then do
1702                  * writeback again if there's anything left.
1703                  */
1704                 if (wbc->sync_mode != WB_SYNC_ALL)
1705                         goto out;
1706                 __inode_wait_for_writeback(inode);
1707         }
1708         WARN_ON(inode->i_state & I_SYNC);
1709         /*
1710          * If the inode is already fully clean, then there's nothing to do.
1711          *
1712          * For data-integrity syncs we also need to check whether any pages are
1713          * still under writeback, e.g. due to prior WB_SYNC_NONE writeback.  If
1714          * there are any such pages, we'll need to wait for them.
1715          */
1716         if (!(inode->i_state & I_DIRTY_ALL) &&
1717             (wbc->sync_mode != WB_SYNC_ALL ||
1718              !mapping_tagged(inode->i_mapping, PAGECACHE_TAG_WRITEBACK)))
1719                 goto out;
1720         inode->i_state |= I_SYNC;
1721         wbc_attach_and_unlock_inode(wbc, inode);
1722
1723         ret = __writeback_single_inode(inode, wbc);
1724
1725         wbc_detach_inode(wbc);
1726
1727         wb = inode_to_wb_and_lock_list(inode);
1728         spin_lock(&inode->i_lock);
1729         /*
1730          * If the inode is now fully clean, then it can be safely removed from
1731          * its writeback list (if any).  Otherwise the flusher threads are
1732          * responsible for the writeback lists.
1733          */
1734         if (!(inode->i_state & I_DIRTY_ALL))
1735                 inode_cgwb_move_to_attached(inode, wb);
1736         spin_unlock(&wb->list_lock);
1737         inode_sync_complete(inode);
1738 out:
1739         spin_unlock(&inode->i_lock);
1740         return ret;
1741 }
1742
1743 static long writeback_chunk_size(struct bdi_writeback *wb,
1744                                  struct wb_writeback_work *work)
1745 {
1746         long pages;
1747
1748         /*
1749          * WB_SYNC_ALL mode does livelock avoidance by syncing dirty
1750          * inodes/pages in one big loop. Setting wbc.nr_to_write=LONG_MAX
1751          * here avoids calling into writeback_inodes_wb() more than once.
1752          *
1753          * The intended call sequence for WB_SYNC_ALL writeback is:
1754          *
1755          *      wb_writeback()
1756          *          writeback_sb_inodes()       <== called only once
1757          *              write_cache_pages()     <== called once for each inode
1758          *                   (quickly) tag currently dirty pages
1759          *                   (maybe slowly) sync all tagged pages
1760          */
1761         if (work->sync_mode == WB_SYNC_ALL || work->tagged_writepages)
1762                 pages = LONG_MAX;
1763         else {
1764                 pages = min(wb->avg_write_bandwidth / 2,
1765                             global_wb_domain.dirty_limit / DIRTY_SCOPE);
1766                 pages = min(pages, work->nr_pages);
1767                 pages = round_down(pages + MIN_WRITEBACK_PAGES,
1768                                    MIN_WRITEBACK_PAGES);
1769         }
1770
1771         return pages;
1772 }
1773
1774 /*
1775  * Write a portion of b_io inodes which belong to @sb.
1776  *
1777  * Return the number of pages and/or inodes written.
1778  *
1779  * NOTE! This is called with wb->list_lock held, and will
1780  * unlock and relock that for each inode it ends up doing
1781  * IO for.
1782  */
1783 static long writeback_sb_inodes(struct super_block *sb,
1784                                 struct bdi_writeback *wb,
1785                                 struct wb_writeback_work *work)
1786 {
1787         struct writeback_control wbc = {
1788                 .sync_mode              = work->sync_mode,
1789                 .tagged_writepages      = work->tagged_writepages,
1790                 .for_kupdate            = work->for_kupdate,
1791                 .for_background         = work->for_background,
1792                 .for_sync               = work->for_sync,
1793                 .range_cyclic           = work->range_cyclic,
1794                 .range_start            = 0,
1795                 .range_end              = LLONG_MAX,
1796         };
1797         unsigned long start_time = jiffies;
1798         long write_chunk;
1799         long wrote = 0;  /* count both pages and inodes */
1800
1801         while (!list_empty(&wb->b_io)) {
1802                 struct inode *inode = wb_inode(wb->b_io.prev);
1803                 struct bdi_writeback *tmp_wb;
1804
1805                 if (inode->i_sb != sb) {
1806                         if (work->sb) {
1807                                 /*
1808                                  * We only want to write back data for this
1809                                  * superblock, move all inodes not belonging
1810                                  * to it back onto the dirty list.
1811                                  */
1812                                 redirty_tail(inode, wb);
1813                                 continue;
1814                         }
1815
1816                         /*
1817                          * The inode belongs to a different superblock.
1818                          * Bounce back to the caller to unpin this and
1819                          * pin the next superblock.
1820                          */
1821                         break;
1822                 }
1823
1824                 /*
1825                  * Don't bother with new inodes or inodes being freed, first
1826                  * kind does not need periodic writeout yet, and for the latter
1827                  * kind writeout is handled by the freer.
1828                  */
1829                 spin_lock(&inode->i_lock);
1830                 if (inode->i_state & (I_NEW | I_FREEING | I_WILL_FREE)) {
1831                         redirty_tail_locked(inode, wb);
1832                         spin_unlock(&inode->i_lock);
1833                         continue;
1834                 }
1835                 if ((inode->i_state & I_SYNC) && wbc.sync_mode != WB_SYNC_ALL) {
1836                         /*
1837                          * If this inode is locked for writeback and we are not
1838                          * doing writeback-for-data-integrity, move it to
1839                          * b_more_io so that writeback can proceed with the
1840                          * other inodes on s_io.
1841                          *
1842                          * We'll have another go at writing back this inode
1843                          * when we completed a full scan of b_io.
1844                          */
1845                         spin_unlock(&inode->i_lock);
1846                         requeue_io(inode, wb);
1847                         trace_writeback_sb_inodes_requeue(inode);
1848                         continue;
1849                 }
1850                 spin_unlock(&wb->list_lock);
1851
1852                 /*
1853                  * We already requeued the inode if it had I_SYNC set and we
1854                  * are doing WB_SYNC_NONE writeback. So this catches only the
1855                  * WB_SYNC_ALL case.
1856                  */
1857                 if (inode->i_state & I_SYNC) {
1858                         /* Wait for I_SYNC. This function drops i_lock... */
1859                         inode_sleep_on_writeback(inode);
1860                         /* Inode may be gone, start again */
1861                         spin_lock(&wb->list_lock);
1862                         continue;
1863                 }
1864                 inode->i_state |= I_SYNC;
1865                 wbc_attach_and_unlock_inode(&wbc, inode);
1866
1867                 write_chunk = writeback_chunk_size(wb, work);
1868                 wbc.nr_to_write = write_chunk;
1869                 wbc.pages_skipped = 0;
1870
1871                 /*
1872                  * We use I_SYNC to pin the inode in memory. While it is set
1873                  * evict_inode() will wait so the inode cannot be freed.
1874                  */
1875                 __writeback_single_inode(inode, &wbc);
1876
1877                 wbc_detach_inode(&wbc);
1878                 work->nr_pages -= write_chunk - wbc.nr_to_write;
1879                 wrote += write_chunk - wbc.nr_to_write;
1880
1881                 if (need_resched()) {
1882                         /*
1883                          * We're trying to balance between building up a nice
1884                          * long list of IOs to improve our merge rate, and
1885                          * getting those IOs out quickly for anyone throttling
1886                          * in balance_dirty_pages().  cond_resched() doesn't
1887                          * unplug, so get our IOs out the door before we
1888                          * give up the CPU.
1889                          */
1890                         blk_flush_plug(current);
1891                         cond_resched();
1892                 }
1893
1894                 /*
1895                  * Requeue @inode if still dirty.  Be careful as @inode may
1896                  * have been switched to another wb in the meantime.
1897                  */
1898                 tmp_wb = inode_to_wb_and_lock_list(inode);
1899                 spin_lock(&inode->i_lock);
1900                 if (!(inode->i_state & I_DIRTY_ALL))
1901                         wrote++;
1902                 requeue_inode(inode, tmp_wb, &wbc);
1903                 inode_sync_complete(inode);
1904                 spin_unlock(&inode->i_lock);
1905
1906                 if (unlikely(tmp_wb != wb)) {
1907                         spin_unlock(&tmp_wb->list_lock);
1908                         spin_lock(&wb->list_lock);
1909                 }
1910
1911                 /*
1912                  * bail out to wb_writeback() often enough to check
1913                  * background threshold and other termination conditions.
1914                  */
1915                 if (wrote) {
1916                         if (time_is_before_jiffies(start_time + HZ / 10UL))
1917                                 break;
1918                         if (work->nr_pages <= 0)
1919                                 break;
1920                 }
1921         }
1922         return wrote;
1923 }
1924
1925 static long __writeback_inodes_wb(struct bdi_writeback *wb,
1926                                   struct wb_writeback_work *work)
1927 {
1928         unsigned long start_time = jiffies;
1929         long wrote = 0;
1930
1931         while (!list_empty(&wb->b_io)) {
1932                 struct inode *inode = wb_inode(wb->b_io.prev);
1933                 struct super_block *sb = inode->i_sb;
1934
1935                 if (!trylock_super(sb)) {
1936                         /*
1937                          * trylock_super() may fail consistently due to
1938                          * s_umount being grabbed by someone else. Don't use
1939                          * requeue_io() to avoid busy retrying the inode/sb.
1940                          */
1941                         redirty_tail(inode, wb);
1942                         continue;
1943                 }
1944                 wrote += writeback_sb_inodes(sb, wb, work);
1945                 up_read(&sb->s_umount);
1946
1947                 /* refer to the same tests at the end of writeback_sb_inodes */
1948                 if (wrote) {
1949                         if (time_is_before_jiffies(start_time + HZ / 10UL))
1950                                 break;
1951                         if (work->nr_pages <= 0)
1952                                 break;
1953                 }
1954         }
1955         /* Leave any unwritten inodes on b_io */
1956         return wrote;
1957 }
1958
1959 static long writeback_inodes_wb(struct bdi_writeback *wb, long nr_pages,
1960                                 enum wb_reason reason)
1961 {
1962         struct wb_writeback_work work = {
1963                 .nr_pages       = nr_pages,
1964                 .sync_mode      = WB_SYNC_NONE,
1965                 .range_cyclic   = 1,
1966                 .reason         = reason,
1967         };
1968         struct blk_plug plug;
1969
1970         blk_start_plug(&plug);
1971         spin_lock(&wb->list_lock);
1972         if (list_empty(&wb->b_io))
1973                 queue_io(wb, &work, jiffies);
1974         __writeback_inodes_wb(wb, &work);
1975         spin_unlock(&wb->list_lock);
1976         blk_finish_plug(&plug);
1977
1978         return nr_pages - work.nr_pages;
1979 }
1980
1981 /*
1982  * Explicit flushing or periodic writeback of "old" data.
1983  *
1984  * Define "old": the first time one of an inode's pages is dirtied, we mark the
1985  * dirtying-time in the inode's address_space.  So this periodic writeback code
1986  * just walks the superblock inode list, writing back any inodes which are
1987  * older than a specific point in time.
1988  *
1989  * Try to run once per dirty_writeback_interval.  But if a writeback event
1990  * takes longer than a dirty_writeback_interval interval, then leave a
1991  * one-second gap.
1992  *
1993  * dirtied_before takes precedence over nr_to_write.  So we'll only write back
1994  * all dirty pages if they are all attached to "old" mappings.
1995  */
1996 static long wb_writeback(struct bdi_writeback *wb,
1997                          struct wb_writeback_work *work)
1998 {
1999         unsigned long wb_start = jiffies;
2000         long nr_pages = work->nr_pages;
2001         unsigned long dirtied_before = jiffies;
2002         struct inode *inode;
2003         long progress;
2004         struct blk_plug plug;
2005
2006         blk_start_plug(&plug);
2007         spin_lock(&wb->list_lock);
2008         for (;;) {
2009                 /*
2010                  * Stop writeback when nr_pages has been consumed
2011                  */
2012                 if (work->nr_pages <= 0)
2013                         break;
2014
2015                 /*
2016                  * Background writeout and kupdate-style writeback may
2017                  * run forever. Stop them if there is other work to do
2018                  * so that e.g. sync can proceed. They'll be restarted
2019                  * after the other works are all done.
2020                  */
2021                 if ((work->for_background || work->for_kupdate) &&
2022                     !list_empty(&wb->work_list))
2023                         break;
2024
2025                 /*
2026                  * For background writeout, stop when we are below the
2027                  * background dirty threshold
2028                  */
2029                 if (work->for_background && !wb_over_bg_thresh(wb))
2030                         break;
2031
2032                 /*
2033                  * Kupdate and background works are special and we want to
2034                  * include all inodes that need writing. Livelock avoidance is
2035                  * handled by these works yielding to any other work so we are
2036                  * safe.
2037                  */
2038                 if (work->for_kupdate) {
2039                         dirtied_before = jiffies -
2040                                 msecs_to_jiffies(dirty_expire_interval * 10);
2041                 } else if (work->for_background)
2042                         dirtied_before = jiffies;
2043
2044                 trace_writeback_start(wb, work);
2045                 if (list_empty(&wb->b_io))
2046                         queue_io(wb, work, dirtied_before);
2047                 if (work->sb)
2048                         progress = writeback_sb_inodes(work->sb, wb, work);
2049                 else
2050                         progress = __writeback_inodes_wb(wb, work);
2051                 trace_writeback_written(wb, work);
2052
2053                 wb_update_bandwidth(wb, wb_start);
2054
2055                 /*
2056                  * Did we write something? Try for more
2057                  *
2058                  * Dirty inodes are moved to b_io for writeback in batches.
2059                  * The completion of the current batch does not necessarily
2060                  * mean the overall work is done. So we keep looping as long
2061                  * as made some progress on cleaning pages or inodes.
2062                  */
2063                 if (progress)
2064                         continue;
2065                 /*
2066                  * No more inodes for IO, bail
2067                  */
2068                 if (list_empty(&wb->b_more_io))
2069                         break;
2070                 /*
2071                  * Nothing written. Wait for some inode to
2072                  * become available for writeback. Otherwise
2073                  * we'll just busyloop.
2074                  */
2075                 trace_writeback_wait(wb, work);
2076                 inode = wb_inode(wb->b_more_io.prev);
2077                 spin_lock(&inode->i_lock);
2078                 spin_unlock(&wb->list_lock);
2079                 /* This function drops i_lock... */
2080                 inode_sleep_on_writeback(inode);
2081                 spin_lock(&wb->list_lock);
2082         }
2083         spin_unlock(&wb->list_lock);
2084         blk_finish_plug(&plug);
2085
2086         return nr_pages - work->nr_pages;
2087 }
2088
2089 /*
2090  * Return the next wb_writeback_work struct that hasn't been processed yet.
2091  */
2092 static struct wb_writeback_work *get_next_work_item(struct bdi_writeback *wb)
2093 {
2094         struct wb_writeback_work *work = NULL;
2095
2096         spin_lock_bh(&wb->work_lock);
2097         if (!list_empty(&wb->work_list)) {
2098                 work = list_entry(wb->work_list.next,
2099                                   struct wb_writeback_work, list);
2100                 list_del_init(&work->list);
2101         }
2102         spin_unlock_bh(&wb->work_lock);
2103         return work;
2104 }
2105
2106 static long wb_check_background_flush(struct bdi_writeback *wb)
2107 {
2108         if (wb_over_bg_thresh(wb)) {
2109
2110                 struct wb_writeback_work work = {
2111                         .nr_pages       = LONG_MAX,
2112                         .sync_mode      = WB_SYNC_NONE,
2113                         .for_background = 1,
2114                         .range_cyclic   = 1,
2115                         .reason         = WB_REASON_BACKGROUND,
2116                 };
2117
2118                 return wb_writeback(wb, &work);
2119         }
2120
2121         return 0;
2122 }
2123
2124 static long wb_check_old_data_flush(struct bdi_writeback *wb)
2125 {
2126         unsigned long expired;
2127         long nr_pages;
2128
2129         /*
2130          * When set to zero, disable periodic writeback
2131          */
2132         if (!dirty_writeback_interval)
2133                 return 0;
2134
2135         expired = wb->last_old_flush +
2136                         msecs_to_jiffies(dirty_writeback_interval * 10);
2137         if (time_before(jiffies, expired))
2138                 return 0;
2139
2140         wb->last_old_flush = jiffies;
2141         nr_pages = get_nr_dirty_pages();
2142
2143         if (nr_pages) {
2144                 struct wb_writeback_work work = {
2145                         .nr_pages       = nr_pages,
2146                         .sync_mode      = WB_SYNC_NONE,
2147                         .for_kupdate    = 1,
2148                         .range_cyclic   = 1,
2149                         .reason         = WB_REASON_PERIODIC,
2150                 };
2151
2152                 return wb_writeback(wb, &work);
2153         }
2154
2155         return 0;
2156 }
2157
2158 static long wb_check_start_all(struct bdi_writeback *wb)
2159 {
2160         long nr_pages;
2161
2162         if (!test_bit(WB_start_all, &wb->state))
2163                 return 0;
2164
2165         nr_pages = get_nr_dirty_pages();
2166         if (nr_pages) {
2167                 struct wb_writeback_work work = {
2168                         .nr_pages       = wb_split_bdi_pages(wb, nr_pages),
2169                         .sync_mode      = WB_SYNC_NONE,
2170                         .range_cyclic   = 1,
2171                         .reason         = wb->start_all_reason,
2172                 };
2173
2174                 nr_pages = wb_writeback(wb, &work);
2175         }
2176
2177         clear_bit(WB_start_all, &wb->state);
2178         return nr_pages;
2179 }
2180
2181
2182 /*
2183  * Retrieve work items and do the writeback they describe
2184  */
2185 static long wb_do_writeback(struct bdi_writeback *wb)
2186 {
2187         struct wb_writeback_work *work;
2188         long wrote = 0;
2189
2190         set_bit(WB_writeback_running, &wb->state);
2191         while ((work = get_next_work_item(wb)) != NULL) {
2192                 trace_writeback_exec(wb, work);
2193                 wrote += wb_writeback(wb, work);
2194                 finish_writeback_work(wb, work);
2195         }
2196
2197         /*
2198          * Check for a flush-everything request
2199          */
2200         wrote += wb_check_start_all(wb);
2201
2202         /*
2203          * Check for periodic writeback, kupdated() style
2204          */
2205         wrote += wb_check_old_data_flush(wb);
2206         wrote += wb_check_background_flush(wb);
2207         clear_bit(WB_writeback_running, &wb->state);
2208
2209         return wrote;
2210 }
2211
2212 /*
2213  * Handle writeback of dirty data for the device backed by this bdi. Also
2214  * reschedules periodically and does kupdated style flushing.
2215  */
2216 void wb_workfn(struct work_struct *work)
2217 {
2218         struct bdi_writeback *wb = container_of(to_delayed_work(work),
2219                                                 struct bdi_writeback, dwork);
2220         long pages_written;
2221
2222         set_worker_desc("flush-%s", bdi_dev_name(wb->bdi));
2223         current->flags |= PF_SWAPWRITE;
2224
2225         if (likely(!current_is_workqueue_rescuer() ||
2226                    !test_bit(WB_registered, &wb->state))) {
2227                 /*
2228                  * The normal path.  Keep writing back @wb until its
2229                  * work_list is empty.  Note that this path is also taken
2230                  * if @wb is shutting down even when we're running off the
2231                  * rescuer as work_list needs to be drained.
2232                  */
2233                 do {
2234                         pages_written = wb_do_writeback(wb);
2235                         trace_writeback_pages_written(pages_written);
2236                 } while (!list_empty(&wb->work_list));
2237         } else {
2238                 /*
2239                  * bdi_wq can't get enough workers and we're running off
2240                  * the emergency worker.  Don't hog it.  Hopefully, 1024 is
2241                  * enough for efficient IO.
2242                  */
2243                 pages_written = writeback_inodes_wb(wb, 1024,
2244                                                     WB_REASON_FORKER_THREAD);
2245                 trace_writeback_pages_written(pages_written);
2246         }
2247
2248         if (!list_empty(&wb->work_list))
2249                 wb_wakeup(wb);
2250         else if (wb_has_dirty_io(wb) && dirty_writeback_interval)
2251                 wb_wakeup_delayed(wb);
2252
2253         current->flags &= ~PF_SWAPWRITE;
2254 }
2255
2256 /*
2257  * Start writeback of `nr_pages' pages on this bdi. If `nr_pages' is zero,
2258  * write back the whole world.
2259  */
2260 static void __wakeup_flusher_threads_bdi(struct backing_dev_info *bdi,
2261                                          enum wb_reason reason)
2262 {
2263         struct bdi_writeback *wb;
2264
2265         if (!bdi_has_dirty_io(bdi))
2266                 return;
2267
2268         list_for_each_entry_rcu(wb, &bdi->wb_list, bdi_node)
2269                 wb_start_writeback(wb, reason);
2270 }
2271
2272 void wakeup_flusher_threads_bdi(struct backing_dev_info *bdi,
2273                                 enum wb_reason reason)
2274 {
2275         rcu_read_lock();
2276         __wakeup_flusher_threads_bdi(bdi, reason);
2277         rcu_read_unlock();
2278 }
2279
2280 /*
2281  * Wakeup the flusher threads to start writeback of all currently dirty pages
2282  */
2283 void wakeup_flusher_threads(enum wb_reason reason)
2284 {
2285         struct backing_dev_info *bdi;
2286
2287         /*
2288          * If we are expecting writeback progress we must submit plugged IO.
2289          */
2290         if (blk_needs_flush_plug(current))
2291                 blk_schedule_flush_plug(current);
2292
2293         rcu_read_lock();
2294         list_for_each_entry_rcu(bdi, &bdi_list, bdi_list)
2295                 __wakeup_flusher_threads_bdi(bdi, reason);
2296         rcu_read_unlock();
2297 }
2298
2299 /*
2300  * Wake up bdi's periodically to make sure dirtytime inodes gets
2301  * written back periodically.  We deliberately do *not* check the
2302  * b_dirtytime list in wb_has_dirty_io(), since this would cause the
2303  * kernel to be constantly waking up once there are any dirtytime
2304  * inodes on the system.  So instead we define a separate delayed work
2305  * function which gets called much more rarely.  (By default, only
2306  * once every 12 hours.)
2307  *
2308  * If there is any other write activity going on in the file system,
2309  * this function won't be necessary.  But if the only thing that has
2310  * happened on the file system is a dirtytime inode caused by an atime
2311  * update, we need this infrastructure below to make sure that inode
2312  * eventually gets pushed out to disk.
2313  */
2314 static void wakeup_dirtytime_writeback(struct work_struct *w);
2315 static DECLARE_DELAYED_WORK(dirtytime_work, wakeup_dirtytime_writeback);
2316
2317 static void wakeup_dirtytime_writeback(struct work_struct *w)
2318 {
2319         struct backing_dev_info *bdi;
2320
2321         rcu_read_lock();
2322         list_for_each_entry_rcu(bdi, &bdi_list, bdi_list) {
2323                 struct bdi_writeback *wb;
2324
2325                 list_for_each_entry_rcu(wb, &bdi->wb_list, bdi_node)
2326                         if (!list_empty(&wb->b_dirty_time))
2327                                 wb_wakeup(wb);
2328         }
2329         rcu_read_unlock();
2330         schedule_delayed_work(&dirtytime_work, dirtytime_expire_interval * HZ);
2331 }
2332
2333 static int __init start_dirtytime_writeback(void)
2334 {
2335         schedule_delayed_work(&dirtytime_work, dirtytime_expire_interval * HZ);
2336         return 0;
2337 }
2338 __initcall(start_dirtytime_writeback);
2339
2340 int dirtytime_interval_handler(struct ctl_table *table, int write,
2341                                void *buffer, size_t *lenp, loff_t *ppos)
2342 {
2343         int ret;
2344
2345         ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
2346         if (ret == 0 && write)
2347                 mod_delayed_work(system_wq, &dirtytime_work, 0);
2348         return ret;
2349 }
2350
2351 /**
2352  * __mark_inode_dirty - internal function to mark an inode dirty
2353  *
2354  * @inode: inode to mark
2355  * @flags: what kind of dirty, e.g. I_DIRTY_SYNC.  This can be a combination of
2356  *         multiple I_DIRTY_* flags, except that I_DIRTY_TIME can't be combined
2357  *         with I_DIRTY_PAGES.
2358  *
2359  * Mark an inode as dirty.  We notify the filesystem, then update the inode's
2360  * dirty flags.  Then, if needed we add the inode to the appropriate dirty list.
2361  *
2362  * Most callers should use mark_inode_dirty() or mark_inode_dirty_sync()
2363  * instead of calling this directly.
2364  *
2365  * CAREFUL!  We only add the inode to the dirty list if it is hashed or if it
2366  * refers to a blockdev.  Unhashed inodes will never be added to the dirty list
2367  * even if they are later hashed, as they will have been marked dirty already.
2368  *
2369  * In short, ensure you hash any inodes _before_ you start marking them dirty.
2370  *
2371  * Note that for blockdevs, inode->dirtied_when represents the dirtying time of
2372  * the block-special inode (/dev/hda1) itself.  And the ->dirtied_when field of
2373  * the kernel-internal blockdev inode represents the dirtying time of the
2374  * blockdev's pages.  This is why for I_DIRTY_PAGES we always use
2375  * page->mapping->host, so the page-dirtying time is recorded in the internal
2376  * blockdev inode.
2377  */
2378 void __mark_inode_dirty(struct inode *inode, int flags)
2379 {
2380         struct super_block *sb = inode->i_sb;
2381         int dirtytime = 0;
2382
2383         trace_writeback_mark_inode_dirty(inode, flags);
2384
2385         if (flags & I_DIRTY_INODE) {
2386                 /*
2387                  * Notify the filesystem about the inode being dirtied, so that
2388                  * (if needed) it can update on-disk fields and journal the
2389                  * inode.  This is only needed when the inode itself is being
2390                  * dirtied now.  I.e. it's only needed for I_DIRTY_INODE, not
2391                  * for just I_DIRTY_PAGES or I_DIRTY_TIME.
2392                  */
2393                 trace_writeback_dirty_inode_start(inode, flags);
2394                 if (sb->s_op->dirty_inode)
2395                         sb->s_op->dirty_inode(inode, flags & I_DIRTY_INODE);
2396                 trace_writeback_dirty_inode(inode, flags);
2397
2398                 /* I_DIRTY_INODE supersedes I_DIRTY_TIME. */
2399                 flags &= ~I_DIRTY_TIME;
2400         } else {
2401                 /*
2402                  * Else it's either I_DIRTY_PAGES, I_DIRTY_TIME, or nothing.
2403                  * (We don't support setting both I_DIRTY_PAGES and I_DIRTY_TIME
2404                  * in one call to __mark_inode_dirty().)
2405                  */
2406                 dirtytime = flags & I_DIRTY_TIME;
2407                 WARN_ON_ONCE(dirtytime && flags != I_DIRTY_TIME);
2408         }
2409
2410         /*
2411          * Paired with smp_mb() in __writeback_single_inode() for the
2412          * following lockless i_state test.  See there for details.
2413          */
2414         smp_mb();
2415
2416         if (((inode->i_state & flags) == flags) ||
2417             (dirtytime && (inode->i_state & I_DIRTY_INODE)))
2418                 return;
2419
2420         spin_lock(&inode->i_lock);
2421         if (dirtytime && (inode->i_state & I_DIRTY_INODE))
2422                 goto out_unlock_inode;
2423         if ((inode->i_state & flags) != flags) {
2424                 const int was_dirty = inode->i_state & I_DIRTY;
2425
2426                 inode_attach_wb(inode, NULL);
2427
2428                 /* I_DIRTY_INODE supersedes I_DIRTY_TIME. */
2429                 if (flags & I_DIRTY_INODE)
2430                         inode->i_state &= ~I_DIRTY_TIME;
2431                 inode->i_state |= flags;
2432
2433                 /*
2434                  * If the inode is queued for writeback by flush worker, just
2435                  * update its dirty state. Once the flush worker is done with
2436                  * the inode it will place it on the appropriate superblock
2437                  * list, based upon its state.
2438                  */
2439                 if (inode->i_state & I_SYNC_QUEUED)
2440                         goto out_unlock_inode;
2441
2442                 /*
2443                  * Only add valid (hashed) inodes to the superblock's
2444                  * dirty list.  Add blockdev inodes as well.
2445                  */
2446                 if (!S_ISBLK(inode->i_mode)) {
2447                         if (inode_unhashed(inode))
2448                                 goto out_unlock_inode;
2449                 }
2450                 if (inode->i_state & I_FREEING)
2451                         goto out_unlock_inode;
2452
2453                 /*
2454                  * If the inode was already on b_dirty/b_io/b_more_io, don't
2455                  * reposition it (that would break b_dirty time-ordering).
2456                  */
2457                 if (!was_dirty) {
2458                         struct bdi_writeback *wb;
2459                         struct list_head *dirty_list;
2460                         bool wakeup_bdi = false;
2461
2462                         wb = locked_inode_to_wb_and_lock_list(inode);
2463
2464                         inode->dirtied_when = jiffies;
2465                         if (dirtytime)
2466                                 inode->dirtied_time_when = jiffies;
2467
2468                         if (inode->i_state & I_DIRTY)
2469                                 dirty_list = &wb->b_dirty;
2470                         else
2471                                 dirty_list = &wb->b_dirty_time;
2472
2473                         wakeup_bdi = inode_io_list_move_locked(inode, wb,
2474                                                                dirty_list);
2475
2476                         spin_unlock(&wb->list_lock);
2477                         trace_writeback_dirty_inode_enqueue(inode);
2478
2479                         /*
2480                          * If this is the first dirty inode for this bdi,
2481                          * we have to wake-up the corresponding bdi thread
2482                          * to make sure background write-back happens
2483                          * later.
2484                          */
2485                         if (wakeup_bdi &&
2486                             (wb->bdi->capabilities & BDI_CAP_WRITEBACK))
2487                                 wb_wakeup_delayed(wb);
2488                         return;
2489                 }
2490         }
2491 out_unlock_inode:
2492         spin_unlock(&inode->i_lock);
2493 }
2494 EXPORT_SYMBOL(__mark_inode_dirty);
2495
2496 /*
2497  * The @s_sync_lock is used to serialise concurrent sync operations
2498  * to avoid lock contention problems with concurrent wait_sb_inodes() calls.
2499  * Concurrent callers will block on the s_sync_lock rather than doing contending
2500  * walks. The queueing maintains sync(2) required behaviour as all the IO that
2501  * has been issued up to the time this function is enter is guaranteed to be
2502  * completed by the time we have gained the lock and waited for all IO that is
2503  * in progress regardless of the order callers are granted the lock.
2504  */
2505 static void wait_sb_inodes(struct super_block *sb)
2506 {
2507         LIST_HEAD(sync_list);
2508
2509         /*
2510          * We need to be protected against the filesystem going from
2511          * r/o to r/w or vice versa.
2512          */
2513         WARN_ON(!rwsem_is_locked(&sb->s_umount));
2514
2515         mutex_lock(&sb->s_sync_lock);
2516
2517         /*
2518          * Splice the writeback list onto a temporary list to avoid waiting on
2519          * inodes that have started writeback after this point.
2520          *
2521          * Use rcu_read_lock() to keep the inodes around until we have a
2522          * reference. s_inode_wblist_lock protects sb->s_inodes_wb as well as
2523          * the local list because inodes can be dropped from either by writeback
2524          * completion.
2525          */
2526         rcu_read_lock();
2527         spin_lock_irq(&sb->s_inode_wblist_lock);
2528         list_splice_init(&sb->s_inodes_wb, &sync_list);
2529
2530         /*
2531          * Data integrity sync. Must wait for all pages under writeback, because
2532          * there may have been pages dirtied before our sync call, but which had
2533          * writeout started before we write it out.  In which case, the inode
2534          * may not be on the dirty list, but we still have to wait for that
2535          * writeout.
2536          */
2537         while (!list_empty(&sync_list)) {
2538                 struct inode *inode = list_first_entry(&sync_list, struct inode,
2539                                                        i_wb_list);
2540                 struct address_space *mapping = inode->i_mapping;
2541
2542                 /*
2543                  * Move each inode back to the wb list before we drop the lock
2544                  * to preserve consistency between i_wb_list and the mapping
2545                  * writeback tag. Writeback completion is responsible to remove
2546                  * the inode from either list once the writeback tag is cleared.
2547                  */
2548                 list_move_tail(&inode->i_wb_list, &sb->s_inodes_wb);
2549
2550                 /*
2551                  * The mapping can appear untagged while still on-list since we
2552                  * do not have the mapping lock. Skip it here, wb completion
2553                  * will remove it.
2554                  */
2555                 if (!mapping_tagged(mapping, PAGECACHE_TAG_WRITEBACK))
2556                         continue;
2557
2558                 spin_unlock_irq(&sb->s_inode_wblist_lock);
2559
2560                 spin_lock(&inode->i_lock);
2561                 if (inode->i_state & (I_FREEING|I_WILL_FREE|I_NEW)) {
2562                         spin_unlock(&inode->i_lock);
2563
2564                         spin_lock_irq(&sb->s_inode_wblist_lock);
2565                         continue;
2566                 }
2567                 __iget(inode);
2568                 spin_unlock(&inode->i_lock);
2569                 rcu_read_unlock();
2570
2571                 /*
2572                  * We keep the error status of individual mapping so that
2573                  * applications can catch the writeback error using fsync(2).
2574                  * See filemap_fdatawait_keep_errors() for details.
2575                  */
2576                 filemap_fdatawait_keep_errors(mapping);
2577
2578                 cond_resched();
2579
2580                 iput(inode);
2581
2582                 rcu_read_lock();
2583                 spin_lock_irq(&sb->s_inode_wblist_lock);
2584         }
2585         spin_unlock_irq(&sb->s_inode_wblist_lock);
2586         rcu_read_unlock();
2587         mutex_unlock(&sb->s_sync_lock);
2588 }
2589
2590 static void __writeback_inodes_sb_nr(struct super_block *sb, unsigned long nr,
2591                                      enum wb_reason reason, bool skip_if_busy)
2592 {
2593         struct backing_dev_info *bdi = sb->s_bdi;
2594         DEFINE_WB_COMPLETION(done, bdi);
2595         struct wb_writeback_work work = {
2596                 .sb                     = sb,
2597                 .sync_mode              = WB_SYNC_NONE,
2598                 .tagged_writepages      = 1,
2599                 .done                   = &done,
2600                 .nr_pages               = nr,
2601                 .reason                 = reason,
2602         };
2603
2604         if (!bdi_has_dirty_io(bdi) || bdi == &noop_backing_dev_info)
2605                 return;
2606         WARN_ON(!rwsem_is_locked(&sb->s_umount));
2607
2608         bdi_split_work_to_wbs(sb->s_bdi, &work, skip_if_busy);
2609         wb_wait_for_completion(&done);
2610 }
2611
2612 /**
2613  * writeback_inodes_sb_nr -     writeback dirty inodes from given super_block
2614  * @sb: the superblock
2615  * @nr: the number of pages to write
2616  * @reason: reason why some writeback work initiated
2617  *
2618  * Start writeback on some inodes on this super_block. No guarantees are made
2619  * on how many (if any) will be written, and this function does not wait
2620  * for IO completion of submitted IO.
2621  */
2622 void writeback_inodes_sb_nr(struct super_block *sb,
2623                             unsigned long nr,
2624                             enum wb_reason reason)
2625 {
2626         __writeback_inodes_sb_nr(sb, nr, reason, false);
2627 }
2628 EXPORT_SYMBOL(writeback_inodes_sb_nr);
2629
2630 /**
2631  * writeback_inodes_sb  -       writeback dirty inodes from given super_block
2632  * @sb: the superblock
2633  * @reason: reason why some writeback work was initiated
2634  *
2635  * Start writeback on some inodes on this super_block. No guarantees are made
2636  * on how many (if any) will be written, and this function does not wait
2637  * for IO completion of submitted IO.
2638  */
2639 void writeback_inodes_sb(struct super_block *sb, enum wb_reason reason)
2640 {
2641         return writeback_inodes_sb_nr(sb, get_nr_dirty_pages(), reason);
2642 }
2643 EXPORT_SYMBOL(writeback_inodes_sb);
2644
2645 /**
2646  * try_to_writeback_inodes_sb - try to start writeback if none underway
2647  * @sb: the superblock
2648  * @reason: reason why some writeback work was initiated
2649  *
2650  * Invoke __writeback_inodes_sb_nr if no writeback is currently underway.
2651  */
2652 void try_to_writeback_inodes_sb(struct super_block *sb, enum wb_reason reason)
2653 {
2654         if (!down_read_trylock(&sb->s_umount))
2655                 return;
2656
2657         __writeback_inodes_sb_nr(sb, get_nr_dirty_pages(), reason, true);
2658         up_read(&sb->s_umount);
2659 }
2660 EXPORT_SYMBOL(try_to_writeback_inodes_sb);
2661
2662 /**
2663  * sync_inodes_sb       -       sync sb inode pages
2664  * @sb: the superblock
2665  *
2666  * This function writes and waits on any dirty inode belonging to this
2667  * super_block.
2668  */
2669 void sync_inodes_sb(struct super_block *sb)
2670 {
2671         struct backing_dev_info *bdi = sb->s_bdi;
2672         DEFINE_WB_COMPLETION(done, bdi);
2673         struct wb_writeback_work work = {
2674                 .sb             = sb,
2675                 .sync_mode      = WB_SYNC_ALL,
2676                 .nr_pages       = LONG_MAX,
2677                 .range_cyclic   = 0,
2678                 .done           = &done,
2679                 .reason         = WB_REASON_SYNC,
2680                 .for_sync       = 1,
2681         };
2682
2683         /*
2684          * Can't skip on !bdi_has_dirty() because we should wait for !dirty
2685          * inodes under writeback and I_DIRTY_TIME inodes ignored by
2686          * bdi_has_dirty() need to be written out too.
2687          */
2688         if (bdi == &noop_backing_dev_info)
2689                 return;
2690         WARN_ON(!rwsem_is_locked(&sb->s_umount));
2691
2692         /* protect against inode wb switch, see inode_switch_wbs_work_fn() */
2693         bdi_down_write_wb_switch_rwsem(bdi);
2694         bdi_split_work_to_wbs(bdi, &work, false);
2695         wb_wait_for_completion(&done);
2696         bdi_up_write_wb_switch_rwsem(bdi);
2697
2698         wait_sb_inodes(sb);
2699 }
2700 EXPORT_SYMBOL(sync_inodes_sb);
2701
2702 /**
2703  * write_inode_now      -       write an inode to disk
2704  * @inode: inode to write to disk
2705  * @sync: whether the write should be synchronous or not
2706  *
2707  * This function commits an inode to disk immediately if it is dirty. This is
2708  * primarily needed by knfsd.
2709  *
2710  * The caller must either have a ref on the inode or must have set I_WILL_FREE.
2711  */
2712 int write_inode_now(struct inode *inode, int sync)
2713 {
2714         struct writeback_control wbc = {
2715                 .nr_to_write = LONG_MAX,
2716                 .sync_mode = sync ? WB_SYNC_ALL : WB_SYNC_NONE,
2717                 .range_start = 0,
2718                 .range_end = LLONG_MAX,
2719         };
2720
2721         if (!mapping_can_writeback(inode->i_mapping))
2722                 wbc.nr_to_write = 0;
2723
2724         might_sleep();
2725         return writeback_single_inode(inode, &wbc);
2726 }
2727 EXPORT_SYMBOL(write_inode_now);
2728
2729 /**
2730  * sync_inode - write an inode and its pages to disk.
2731  * @inode: the inode to sync
2732  * @wbc: controls the writeback mode
2733  *
2734  * sync_inode() will write an inode and its pages to disk.  It will also
2735  * correctly update the inode on its superblock's dirty inode lists and will
2736  * update inode->i_state.
2737  *
2738  * The caller must have a ref on the inode.
2739  */
2740 int sync_inode(struct inode *inode, struct writeback_control *wbc)
2741 {
2742         return writeback_single_inode(inode, wbc);
2743 }
2744 EXPORT_SYMBOL(sync_inode);
2745
2746 /**
2747  * sync_inode_metadata - write an inode to disk
2748  * @inode: the inode to sync
2749  * @wait: wait for I/O to complete.
2750  *
2751  * Write an inode to disk and adjust its dirty state after completion.
2752  *
2753  * Note: only writes the actual inode, no associated data or other metadata.
2754  */
2755 int sync_inode_metadata(struct inode *inode, int wait)
2756 {
2757         struct writeback_control wbc = {
2758                 .sync_mode = wait ? WB_SYNC_ALL : WB_SYNC_NONE,
2759                 .nr_to_write = 0, /* metadata-only */
2760         };
2761
2762         return sync_inode(inode, &wbc);
2763 }
2764 EXPORT_SYMBOL(sync_inode_metadata);