Merge branch 'for-v5.14' of git://git.kernel.org/pub/scm/linux/kernel/git/ebiederm...
[linux-2.6-microblaze.git] / fs / f2fs / node.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * fs/f2fs/node.c
4  *
5  * Copyright (c) 2012 Samsung Electronics Co., Ltd.
6  *             http://www.samsung.com/
7  */
8 #include <linux/fs.h>
9 #include <linux/f2fs_fs.h>
10 #include <linux/mpage.h>
11 #include <linux/backing-dev.h>
12 #include <linux/blkdev.h>
13 #include <linux/pagevec.h>
14 #include <linux/swap.h>
15
16 #include "f2fs.h"
17 #include "node.h"
18 #include "segment.h"
19 #include "xattr.h"
20 #include <trace/events/f2fs.h>
21
22 #define on_f2fs_build_free_nids(nmi) mutex_is_locked(&(nm_i)->build_lock)
23
24 static struct kmem_cache *nat_entry_slab;
25 static struct kmem_cache *free_nid_slab;
26 static struct kmem_cache *nat_entry_set_slab;
27 static struct kmem_cache *fsync_node_entry_slab;
28
29 /*
30  * Check whether the given nid is within node id range.
31  */
32 int f2fs_check_nid_range(struct f2fs_sb_info *sbi, nid_t nid)
33 {
34         if (unlikely(nid < F2FS_ROOT_INO(sbi) || nid >= NM_I(sbi)->max_nid)) {
35                 set_sbi_flag(sbi, SBI_NEED_FSCK);
36                 f2fs_warn(sbi, "%s: out-of-range nid=%x, run fsck to fix.",
37                           __func__, nid);
38                 return -EFSCORRUPTED;
39         }
40         return 0;
41 }
42
43 bool f2fs_available_free_memory(struct f2fs_sb_info *sbi, int type)
44 {
45         struct f2fs_nm_info *nm_i = NM_I(sbi);
46         struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
47         struct sysinfo val;
48         unsigned long avail_ram;
49         unsigned long mem_size = 0;
50         bool res = false;
51
52         if (!nm_i)
53                 return true;
54
55         si_meminfo(&val);
56
57         /* only uses low memory */
58         avail_ram = val.totalram - val.totalhigh;
59
60         /*
61          * give 25%, 25%, 50%, 50%, 50% memory for each components respectively
62          */
63         if (type == FREE_NIDS) {
64                 mem_size = (nm_i->nid_cnt[FREE_NID] *
65                                 sizeof(struct free_nid)) >> PAGE_SHIFT;
66                 res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 2);
67         } else if (type == NAT_ENTRIES) {
68                 mem_size = (nm_i->nat_cnt[TOTAL_NAT] *
69                                 sizeof(struct nat_entry)) >> PAGE_SHIFT;
70                 res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 2);
71                 if (excess_cached_nats(sbi))
72                         res = false;
73         } else if (type == DIRTY_DENTS) {
74                 if (sbi->sb->s_bdi->wb.dirty_exceeded)
75                         return false;
76                 mem_size = get_pages(sbi, F2FS_DIRTY_DENTS);
77                 res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 1);
78         } else if (type == INO_ENTRIES) {
79                 int i;
80
81                 for (i = 0; i < MAX_INO_ENTRY; i++)
82                         mem_size += sbi->im[i].ino_num *
83                                                 sizeof(struct ino_entry);
84                 mem_size >>= PAGE_SHIFT;
85                 res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 1);
86         } else if (type == EXTENT_CACHE) {
87                 mem_size = (atomic_read(&sbi->total_ext_tree) *
88                                 sizeof(struct extent_tree) +
89                                 atomic_read(&sbi->total_ext_node) *
90                                 sizeof(struct extent_node)) >> PAGE_SHIFT;
91                 res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 1);
92         } else if (type == INMEM_PAGES) {
93                 /* it allows 20% / total_ram for inmemory pages */
94                 mem_size = get_pages(sbi, F2FS_INMEM_PAGES);
95                 res = mem_size < (val.totalram / 5);
96         } else if (type == DISCARD_CACHE) {
97                 mem_size = (atomic_read(&dcc->discard_cmd_cnt) *
98                                 sizeof(struct discard_cmd)) >> PAGE_SHIFT;
99                 res = mem_size < (avail_ram * nm_i->ram_thresh / 100);
100         } else if (type == COMPRESS_PAGE) {
101 #ifdef CONFIG_F2FS_FS_COMPRESSION
102                 unsigned long free_ram = val.freeram;
103
104                 /*
105                  * free memory is lower than watermark or cached page count
106                  * exceed threshold, deny caching compress page.
107                  */
108                 res = (free_ram > avail_ram * sbi->compress_watermark / 100) &&
109                         (COMPRESS_MAPPING(sbi)->nrpages <
110                          free_ram * sbi->compress_percent / 100);
111 #else
112                 res = false;
113 #endif
114         } else {
115                 if (!sbi->sb->s_bdi->wb.dirty_exceeded)
116                         return true;
117         }
118         return res;
119 }
120
121 static void clear_node_page_dirty(struct page *page)
122 {
123         if (PageDirty(page)) {
124                 f2fs_clear_page_cache_dirty_tag(page);
125                 clear_page_dirty_for_io(page);
126                 dec_page_count(F2FS_P_SB(page), F2FS_DIRTY_NODES);
127         }
128         ClearPageUptodate(page);
129 }
130
131 static struct page *get_current_nat_page(struct f2fs_sb_info *sbi, nid_t nid)
132 {
133         return f2fs_get_meta_page_retry(sbi, current_nat_addr(sbi, nid));
134 }
135
136 static struct page *get_next_nat_page(struct f2fs_sb_info *sbi, nid_t nid)
137 {
138         struct page *src_page;
139         struct page *dst_page;
140         pgoff_t dst_off;
141         void *src_addr;
142         void *dst_addr;
143         struct f2fs_nm_info *nm_i = NM_I(sbi);
144
145         dst_off = next_nat_addr(sbi, current_nat_addr(sbi, nid));
146
147         /* get current nat block page with lock */
148         src_page = get_current_nat_page(sbi, nid);
149         if (IS_ERR(src_page))
150                 return src_page;
151         dst_page = f2fs_grab_meta_page(sbi, dst_off);
152         f2fs_bug_on(sbi, PageDirty(src_page));
153
154         src_addr = page_address(src_page);
155         dst_addr = page_address(dst_page);
156         memcpy(dst_addr, src_addr, PAGE_SIZE);
157         set_page_dirty(dst_page);
158         f2fs_put_page(src_page, 1);
159
160         set_to_next_nat(nm_i, nid);
161
162         return dst_page;
163 }
164
165 static struct nat_entry *__alloc_nat_entry(nid_t nid, bool no_fail)
166 {
167         struct nat_entry *new;
168
169         if (no_fail)
170                 new = f2fs_kmem_cache_alloc(nat_entry_slab, GFP_F2FS_ZERO);
171         else
172                 new = kmem_cache_alloc(nat_entry_slab, GFP_F2FS_ZERO);
173         if (new) {
174                 nat_set_nid(new, nid);
175                 nat_reset_flag(new);
176         }
177         return new;
178 }
179
180 static void __free_nat_entry(struct nat_entry *e)
181 {
182         kmem_cache_free(nat_entry_slab, e);
183 }
184
185 /* must be locked by nat_tree_lock */
186 static struct nat_entry *__init_nat_entry(struct f2fs_nm_info *nm_i,
187         struct nat_entry *ne, struct f2fs_nat_entry *raw_ne, bool no_fail)
188 {
189         if (no_fail)
190                 f2fs_radix_tree_insert(&nm_i->nat_root, nat_get_nid(ne), ne);
191         else if (radix_tree_insert(&nm_i->nat_root, nat_get_nid(ne), ne))
192                 return NULL;
193
194         if (raw_ne)
195                 node_info_from_raw_nat(&ne->ni, raw_ne);
196
197         spin_lock(&nm_i->nat_list_lock);
198         list_add_tail(&ne->list, &nm_i->nat_entries);
199         spin_unlock(&nm_i->nat_list_lock);
200
201         nm_i->nat_cnt[TOTAL_NAT]++;
202         nm_i->nat_cnt[RECLAIMABLE_NAT]++;
203         return ne;
204 }
205
206 static struct nat_entry *__lookup_nat_cache(struct f2fs_nm_info *nm_i, nid_t n)
207 {
208         struct nat_entry *ne;
209
210         ne = radix_tree_lookup(&nm_i->nat_root, n);
211
212         /* for recent accessed nat entry, move it to tail of lru list */
213         if (ne && !get_nat_flag(ne, IS_DIRTY)) {
214                 spin_lock(&nm_i->nat_list_lock);
215                 if (!list_empty(&ne->list))
216                         list_move_tail(&ne->list, &nm_i->nat_entries);
217                 spin_unlock(&nm_i->nat_list_lock);
218         }
219
220         return ne;
221 }
222
223 static unsigned int __gang_lookup_nat_cache(struct f2fs_nm_info *nm_i,
224                 nid_t start, unsigned int nr, struct nat_entry **ep)
225 {
226         return radix_tree_gang_lookup(&nm_i->nat_root, (void **)ep, start, nr);
227 }
228
229 static void __del_from_nat_cache(struct f2fs_nm_info *nm_i, struct nat_entry *e)
230 {
231         radix_tree_delete(&nm_i->nat_root, nat_get_nid(e));
232         nm_i->nat_cnt[TOTAL_NAT]--;
233         nm_i->nat_cnt[RECLAIMABLE_NAT]--;
234         __free_nat_entry(e);
235 }
236
237 static struct nat_entry_set *__grab_nat_entry_set(struct f2fs_nm_info *nm_i,
238                                                         struct nat_entry *ne)
239 {
240         nid_t set = NAT_BLOCK_OFFSET(ne->ni.nid);
241         struct nat_entry_set *head;
242
243         head = radix_tree_lookup(&nm_i->nat_set_root, set);
244         if (!head) {
245                 head = f2fs_kmem_cache_alloc(nat_entry_set_slab, GFP_NOFS);
246
247                 INIT_LIST_HEAD(&head->entry_list);
248                 INIT_LIST_HEAD(&head->set_list);
249                 head->set = set;
250                 head->entry_cnt = 0;
251                 f2fs_radix_tree_insert(&nm_i->nat_set_root, set, head);
252         }
253         return head;
254 }
255
256 static void __set_nat_cache_dirty(struct f2fs_nm_info *nm_i,
257                                                 struct nat_entry *ne)
258 {
259         struct nat_entry_set *head;
260         bool new_ne = nat_get_blkaddr(ne) == NEW_ADDR;
261
262         if (!new_ne)
263                 head = __grab_nat_entry_set(nm_i, ne);
264
265         /*
266          * update entry_cnt in below condition:
267          * 1. update NEW_ADDR to valid block address;
268          * 2. update old block address to new one;
269          */
270         if (!new_ne && (get_nat_flag(ne, IS_PREALLOC) ||
271                                 !get_nat_flag(ne, IS_DIRTY)))
272                 head->entry_cnt++;
273
274         set_nat_flag(ne, IS_PREALLOC, new_ne);
275
276         if (get_nat_flag(ne, IS_DIRTY))
277                 goto refresh_list;
278
279         nm_i->nat_cnt[DIRTY_NAT]++;
280         nm_i->nat_cnt[RECLAIMABLE_NAT]--;
281         set_nat_flag(ne, IS_DIRTY, true);
282 refresh_list:
283         spin_lock(&nm_i->nat_list_lock);
284         if (new_ne)
285                 list_del_init(&ne->list);
286         else
287                 list_move_tail(&ne->list, &head->entry_list);
288         spin_unlock(&nm_i->nat_list_lock);
289 }
290
291 static void __clear_nat_cache_dirty(struct f2fs_nm_info *nm_i,
292                 struct nat_entry_set *set, struct nat_entry *ne)
293 {
294         spin_lock(&nm_i->nat_list_lock);
295         list_move_tail(&ne->list, &nm_i->nat_entries);
296         spin_unlock(&nm_i->nat_list_lock);
297
298         set_nat_flag(ne, IS_DIRTY, false);
299         set->entry_cnt--;
300         nm_i->nat_cnt[DIRTY_NAT]--;
301         nm_i->nat_cnt[RECLAIMABLE_NAT]++;
302 }
303
304 static unsigned int __gang_lookup_nat_set(struct f2fs_nm_info *nm_i,
305                 nid_t start, unsigned int nr, struct nat_entry_set **ep)
306 {
307         return radix_tree_gang_lookup(&nm_i->nat_set_root, (void **)ep,
308                                                         start, nr);
309 }
310
311 bool f2fs_in_warm_node_list(struct f2fs_sb_info *sbi, struct page *page)
312 {
313         return NODE_MAPPING(sbi) == page->mapping &&
314                         IS_DNODE(page) && is_cold_node(page);
315 }
316
317 void f2fs_init_fsync_node_info(struct f2fs_sb_info *sbi)
318 {
319         spin_lock_init(&sbi->fsync_node_lock);
320         INIT_LIST_HEAD(&sbi->fsync_node_list);
321         sbi->fsync_seg_id = 0;
322         sbi->fsync_node_num = 0;
323 }
324
325 static unsigned int f2fs_add_fsync_node_entry(struct f2fs_sb_info *sbi,
326                                                         struct page *page)
327 {
328         struct fsync_node_entry *fn;
329         unsigned long flags;
330         unsigned int seq_id;
331
332         fn = f2fs_kmem_cache_alloc(fsync_node_entry_slab, GFP_NOFS);
333
334         get_page(page);
335         fn->page = page;
336         INIT_LIST_HEAD(&fn->list);
337
338         spin_lock_irqsave(&sbi->fsync_node_lock, flags);
339         list_add_tail(&fn->list, &sbi->fsync_node_list);
340         fn->seq_id = sbi->fsync_seg_id++;
341         seq_id = fn->seq_id;
342         sbi->fsync_node_num++;
343         spin_unlock_irqrestore(&sbi->fsync_node_lock, flags);
344
345         return seq_id;
346 }
347
348 void f2fs_del_fsync_node_entry(struct f2fs_sb_info *sbi, struct page *page)
349 {
350         struct fsync_node_entry *fn;
351         unsigned long flags;
352
353         spin_lock_irqsave(&sbi->fsync_node_lock, flags);
354         list_for_each_entry(fn, &sbi->fsync_node_list, list) {
355                 if (fn->page == page) {
356                         list_del(&fn->list);
357                         sbi->fsync_node_num--;
358                         spin_unlock_irqrestore(&sbi->fsync_node_lock, flags);
359                         kmem_cache_free(fsync_node_entry_slab, fn);
360                         put_page(page);
361                         return;
362                 }
363         }
364         spin_unlock_irqrestore(&sbi->fsync_node_lock, flags);
365         f2fs_bug_on(sbi, 1);
366 }
367
368 void f2fs_reset_fsync_node_info(struct f2fs_sb_info *sbi)
369 {
370         unsigned long flags;
371
372         spin_lock_irqsave(&sbi->fsync_node_lock, flags);
373         sbi->fsync_seg_id = 0;
374         spin_unlock_irqrestore(&sbi->fsync_node_lock, flags);
375 }
376
377 int f2fs_need_dentry_mark(struct f2fs_sb_info *sbi, nid_t nid)
378 {
379         struct f2fs_nm_info *nm_i = NM_I(sbi);
380         struct nat_entry *e;
381         bool need = false;
382
383         down_read(&nm_i->nat_tree_lock);
384         e = __lookup_nat_cache(nm_i, nid);
385         if (e) {
386                 if (!get_nat_flag(e, IS_CHECKPOINTED) &&
387                                 !get_nat_flag(e, HAS_FSYNCED_INODE))
388                         need = true;
389         }
390         up_read(&nm_i->nat_tree_lock);
391         return need;
392 }
393
394 bool f2fs_is_checkpointed_node(struct f2fs_sb_info *sbi, nid_t nid)
395 {
396         struct f2fs_nm_info *nm_i = NM_I(sbi);
397         struct nat_entry *e;
398         bool is_cp = true;
399
400         down_read(&nm_i->nat_tree_lock);
401         e = __lookup_nat_cache(nm_i, nid);
402         if (e && !get_nat_flag(e, IS_CHECKPOINTED))
403                 is_cp = false;
404         up_read(&nm_i->nat_tree_lock);
405         return is_cp;
406 }
407
408 bool f2fs_need_inode_block_update(struct f2fs_sb_info *sbi, nid_t ino)
409 {
410         struct f2fs_nm_info *nm_i = NM_I(sbi);
411         struct nat_entry *e;
412         bool need_update = true;
413
414         down_read(&nm_i->nat_tree_lock);
415         e = __lookup_nat_cache(nm_i, ino);
416         if (e && get_nat_flag(e, HAS_LAST_FSYNC) &&
417                         (get_nat_flag(e, IS_CHECKPOINTED) ||
418                          get_nat_flag(e, HAS_FSYNCED_INODE)))
419                 need_update = false;
420         up_read(&nm_i->nat_tree_lock);
421         return need_update;
422 }
423
424 /* must be locked by nat_tree_lock */
425 static void cache_nat_entry(struct f2fs_sb_info *sbi, nid_t nid,
426                                                 struct f2fs_nat_entry *ne)
427 {
428         struct f2fs_nm_info *nm_i = NM_I(sbi);
429         struct nat_entry *new, *e;
430
431         new = __alloc_nat_entry(nid, false);
432         if (!new)
433                 return;
434
435         down_write(&nm_i->nat_tree_lock);
436         e = __lookup_nat_cache(nm_i, nid);
437         if (!e)
438                 e = __init_nat_entry(nm_i, new, ne, false);
439         else
440                 f2fs_bug_on(sbi, nat_get_ino(e) != le32_to_cpu(ne->ino) ||
441                                 nat_get_blkaddr(e) !=
442                                         le32_to_cpu(ne->block_addr) ||
443                                 nat_get_version(e) != ne->version);
444         up_write(&nm_i->nat_tree_lock);
445         if (e != new)
446                 __free_nat_entry(new);
447 }
448
449 static void set_node_addr(struct f2fs_sb_info *sbi, struct node_info *ni,
450                         block_t new_blkaddr, bool fsync_done)
451 {
452         struct f2fs_nm_info *nm_i = NM_I(sbi);
453         struct nat_entry *e;
454         struct nat_entry *new = __alloc_nat_entry(ni->nid, true);
455
456         down_write(&nm_i->nat_tree_lock);
457         e = __lookup_nat_cache(nm_i, ni->nid);
458         if (!e) {
459                 e = __init_nat_entry(nm_i, new, NULL, true);
460                 copy_node_info(&e->ni, ni);
461                 f2fs_bug_on(sbi, ni->blk_addr == NEW_ADDR);
462         } else if (new_blkaddr == NEW_ADDR) {
463                 /*
464                  * when nid is reallocated,
465                  * previous nat entry can be remained in nat cache.
466                  * So, reinitialize it with new information.
467                  */
468                 copy_node_info(&e->ni, ni);
469                 f2fs_bug_on(sbi, ni->blk_addr != NULL_ADDR);
470         }
471         /* let's free early to reduce memory consumption */
472         if (e != new)
473                 __free_nat_entry(new);
474
475         /* sanity check */
476         f2fs_bug_on(sbi, nat_get_blkaddr(e) != ni->blk_addr);
477         f2fs_bug_on(sbi, nat_get_blkaddr(e) == NULL_ADDR &&
478                         new_blkaddr == NULL_ADDR);
479         f2fs_bug_on(sbi, nat_get_blkaddr(e) == NEW_ADDR &&
480                         new_blkaddr == NEW_ADDR);
481         f2fs_bug_on(sbi, __is_valid_data_blkaddr(nat_get_blkaddr(e)) &&
482                         new_blkaddr == NEW_ADDR);
483
484         /* increment version no as node is removed */
485         if (nat_get_blkaddr(e) != NEW_ADDR && new_blkaddr == NULL_ADDR) {
486                 unsigned char version = nat_get_version(e);
487
488                 nat_set_version(e, inc_node_version(version));
489         }
490
491         /* change address */
492         nat_set_blkaddr(e, new_blkaddr);
493         if (!__is_valid_data_blkaddr(new_blkaddr))
494                 set_nat_flag(e, IS_CHECKPOINTED, false);
495         __set_nat_cache_dirty(nm_i, e);
496
497         /* update fsync_mark if its inode nat entry is still alive */
498         if (ni->nid != ni->ino)
499                 e = __lookup_nat_cache(nm_i, ni->ino);
500         if (e) {
501                 if (fsync_done && ni->nid == ni->ino)
502                         set_nat_flag(e, HAS_FSYNCED_INODE, true);
503                 set_nat_flag(e, HAS_LAST_FSYNC, fsync_done);
504         }
505         up_write(&nm_i->nat_tree_lock);
506 }
507
508 int f2fs_try_to_free_nats(struct f2fs_sb_info *sbi, int nr_shrink)
509 {
510         struct f2fs_nm_info *nm_i = NM_I(sbi);
511         int nr = nr_shrink;
512
513         if (!down_write_trylock(&nm_i->nat_tree_lock))
514                 return 0;
515
516         spin_lock(&nm_i->nat_list_lock);
517         while (nr_shrink) {
518                 struct nat_entry *ne;
519
520                 if (list_empty(&nm_i->nat_entries))
521                         break;
522
523                 ne = list_first_entry(&nm_i->nat_entries,
524                                         struct nat_entry, list);
525                 list_del(&ne->list);
526                 spin_unlock(&nm_i->nat_list_lock);
527
528                 __del_from_nat_cache(nm_i, ne);
529                 nr_shrink--;
530
531                 spin_lock(&nm_i->nat_list_lock);
532         }
533         spin_unlock(&nm_i->nat_list_lock);
534
535         up_write(&nm_i->nat_tree_lock);
536         return nr - nr_shrink;
537 }
538
539 int f2fs_get_node_info(struct f2fs_sb_info *sbi, nid_t nid,
540                                                 struct node_info *ni)
541 {
542         struct f2fs_nm_info *nm_i = NM_I(sbi);
543         struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
544         struct f2fs_journal *journal = curseg->journal;
545         nid_t start_nid = START_NID(nid);
546         struct f2fs_nat_block *nat_blk;
547         struct page *page = NULL;
548         struct f2fs_nat_entry ne;
549         struct nat_entry *e;
550         pgoff_t index;
551         block_t blkaddr;
552         int i;
553
554         ni->nid = nid;
555
556         /* Check nat cache */
557         down_read(&nm_i->nat_tree_lock);
558         e = __lookup_nat_cache(nm_i, nid);
559         if (e) {
560                 ni->ino = nat_get_ino(e);
561                 ni->blk_addr = nat_get_blkaddr(e);
562                 ni->version = nat_get_version(e);
563                 up_read(&nm_i->nat_tree_lock);
564                 return 0;
565         }
566
567         memset(&ne, 0, sizeof(struct f2fs_nat_entry));
568
569         /* Check current segment summary */
570         down_read(&curseg->journal_rwsem);
571         i = f2fs_lookup_journal_in_cursum(journal, NAT_JOURNAL, nid, 0);
572         if (i >= 0) {
573                 ne = nat_in_journal(journal, i);
574                 node_info_from_raw_nat(ni, &ne);
575         }
576         up_read(&curseg->journal_rwsem);
577         if (i >= 0) {
578                 up_read(&nm_i->nat_tree_lock);
579                 goto cache;
580         }
581
582         /* Fill node_info from nat page */
583         index = current_nat_addr(sbi, nid);
584         up_read(&nm_i->nat_tree_lock);
585
586         page = f2fs_get_meta_page(sbi, index);
587         if (IS_ERR(page))
588                 return PTR_ERR(page);
589
590         nat_blk = (struct f2fs_nat_block *)page_address(page);
591         ne = nat_blk->entries[nid - start_nid];
592         node_info_from_raw_nat(ni, &ne);
593         f2fs_put_page(page, 1);
594 cache:
595         blkaddr = le32_to_cpu(ne.block_addr);
596         if (__is_valid_data_blkaddr(blkaddr) &&
597                 !f2fs_is_valid_blkaddr(sbi, blkaddr, DATA_GENERIC_ENHANCE))
598                 return -EFAULT;
599
600         /* cache nat entry */
601         cache_nat_entry(sbi, nid, &ne);
602         return 0;
603 }
604
605 /*
606  * readahead MAX_RA_NODE number of node pages.
607  */
608 static void f2fs_ra_node_pages(struct page *parent, int start, int n)
609 {
610         struct f2fs_sb_info *sbi = F2FS_P_SB(parent);
611         struct blk_plug plug;
612         int i, end;
613         nid_t nid;
614
615         blk_start_plug(&plug);
616
617         /* Then, try readahead for siblings of the desired node */
618         end = start + n;
619         end = min(end, NIDS_PER_BLOCK);
620         for (i = start; i < end; i++) {
621                 nid = get_nid(parent, i, false);
622                 f2fs_ra_node_page(sbi, nid);
623         }
624
625         blk_finish_plug(&plug);
626 }
627
628 pgoff_t f2fs_get_next_page_offset(struct dnode_of_data *dn, pgoff_t pgofs)
629 {
630         const long direct_index = ADDRS_PER_INODE(dn->inode);
631         const long direct_blks = ADDRS_PER_BLOCK(dn->inode);
632         const long indirect_blks = ADDRS_PER_BLOCK(dn->inode) * NIDS_PER_BLOCK;
633         unsigned int skipped_unit = ADDRS_PER_BLOCK(dn->inode);
634         int cur_level = dn->cur_level;
635         int max_level = dn->max_level;
636         pgoff_t base = 0;
637
638         if (!dn->max_level)
639                 return pgofs + 1;
640
641         while (max_level-- > cur_level)
642                 skipped_unit *= NIDS_PER_BLOCK;
643
644         switch (dn->max_level) {
645         case 3:
646                 base += 2 * indirect_blks;
647                 fallthrough;
648         case 2:
649                 base += 2 * direct_blks;
650                 fallthrough;
651         case 1:
652                 base += direct_index;
653                 break;
654         default:
655                 f2fs_bug_on(F2FS_I_SB(dn->inode), 1);
656         }
657
658         return ((pgofs - base) / skipped_unit + 1) * skipped_unit + base;
659 }
660
661 /*
662  * The maximum depth is four.
663  * Offset[0] will have raw inode offset.
664  */
665 static int get_node_path(struct inode *inode, long block,
666                                 int offset[4], unsigned int noffset[4])
667 {
668         const long direct_index = ADDRS_PER_INODE(inode);
669         const long direct_blks = ADDRS_PER_BLOCK(inode);
670         const long dptrs_per_blk = NIDS_PER_BLOCK;
671         const long indirect_blks = ADDRS_PER_BLOCK(inode) * NIDS_PER_BLOCK;
672         const long dindirect_blks = indirect_blks * NIDS_PER_BLOCK;
673         int n = 0;
674         int level = 0;
675
676         noffset[0] = 0;
677
678         if (block < direct_index) {
679                 offset[n] = block;
680                 goto got;
681         }
682         block -= direct_index;
683         if (block < direct_blks) {
684                 offset[n++] = NODE_DIR1_BLOCK;
685                 noffset[n] = 1;
686                 offset[n] = block;
687                 level = 1;
688                 goto got;
689         }
690         block -= direct_blks;
691         if (block < direct_blks) {
692                 offset[n++] = NODE_DIR2_BLOCK;
693                 noffset[n] = 2;
694                 offset[n] = block;
695                 level = 1;
696                 goto got;
697         }
698         block -= direct_blks;
699         if (block < indirect_blks) {
700                 offset[n++] = NODE_IND1_BLOCK;
701                 noffset[n] = 3;
702                 offset[n++] = block / direct_blks;
703                 noffset[n] = 4 + offset[n - 1];
704                 offset[n] = block % direct_blks;
705                 level = 2;
706                 goto got;
707         }
708         block -= indirect_blks;
709         if (block < indirect_blks) {
710                 offset[n++] = NODE_IND2_BLOCK;
711                 noffset[n] = 4 + dptrs_per_blk;
712                 offset[n++] = block / direct_blks;
713                 noffset[n] = 5 + dptrs_per_blk + offset[n - 1];
714                 offset[n] = block % direct_blks;
715                 level = 2;
716                 goto got;
717         }
718         block -= indirect_blks;
719         if (block < dindirect_blks) {
720                 offset[n++] = NODE_DIND_BLOCK;
721                 noffset[n] = 5 + (dptrs_per_blk * 2);
722                 offset[n++] = block / indirect_blks;
723                 noffset[n] = 6 + (dptrs_per_blk * 2) +
724                               offset[n - 1] * (dptrs_per_blk + 1);
725                 offset[n++] = (block / direct_blks) % dptrs_per_blk;
726                 noffset[n] = 7 + (dptrs_per_blk * 2) +
727                               offset[n - 2] * (dptrs_per_blk + 1) +
728                               offset[n - 1];
729                 offset[n] = block % direct_blks;
730                 level = 3;
731                 goto got;
732         } else {
733                 return -E2BIG;
734         }
735 got:
736         return level;
737 }
738
739 /*
740  * Caller should call f2fs_put_dnode(dn).
741  * Also, it should grab and release a rwsem by calling f2fs_lock_op() and
742  * f2fs_unlock_op() only if mode is set with ALLOC_NODE.
743  */
744 int f2fs_get_dnode_of_data(struct dnode_of_data *dn, pgoff_t index, int mode)
745 {
746         struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
747         struct page *npage[4];
748         struct page *parent = NULL;
749         int offset[4];
750         unsigned int noffset[4];
751         nid_t nids[4];
752         int level, i = 0;
753         int err = 0;
754
755         level = get_node_path(dn->inode, index, offset, noffset);
756         if (level < 0)
757                 return level;
758
759         nids[0] = dn->inode->i_ino;
760         npage[0] = dn->inode_page;
761
762         if (!npage[0]) {
763                 npage[0] = f2fs_get_node_page(sbi, nids[0]);
764                 if (IS_ERR(npage[0]))
765                         return PTR_ERR(npage[0]);
766         }
767
768         /* if inline_data is set, should not report any block indices */
769         if (f2fs_has_inline_data(dn->inode) && index) {
770                 err = -ENOENT;
771                 f2fs_put_page(npage[0], 1);
772                 goto release_out;
773         }
774
775         parent = npage[0];
776         if (level != 0)
777                 nids[1] = get_nid(parent, offset[0], true);
778         dn->inode_page = npage[0];
779         dn->inode_page_locked = true;
780
781         /* get indirect or direct nodes */
782         for (i = 1; i <= level; i++) {
783                 bool done = false;
784
785                 if (!nids[i] && mode == ALLOC_NODE) {
786                         /* alloc new node */
787                         if (!f2fs_alloc_nid(sbi, &(nids[i]))) {
788                                 err = -ENOSPC;
789                                 goto release_pages;
790                         }
791
792                         dn->nid = nids[i];
793                         npage[i] = f2fs_new_node_page(dn, noffset[i]);
794                         if (IS_ERR(npage[i])) {
795                                 f2fs_alloc_nid_failed(sbi, nids[i]);
796                                 err = PTR_ERR(npage[i]);
797                                 goto release_pages;
798                         }
799
800                         set_nid(parent, offset[i - 1], nids[i], i == 1);
801                         f2fs_alloc_nid_done(sbi, nids[i]);
802                         done = true;
803                 } else if (mode == LOOKUP_NODE_RA && i == level && level > 1) {
804                         npage[i] = f2fs_get_node_page_ra(parent, offset[i - 1]);
805                         if (IS_ERR(npage[i])) {
806                                 err = PTR_ERR(npage[i]);
807                                 goto release_pages;
808                         }
809                         done = true;
810                 }
811                 if (i == 1) {
812                         dn->inode_page_locked = false;
813                         unlock_page(parent);
814                 } else {
815                         f2fs_put_page(parent, 1);
816                 }
817
818                 if (!done) {
819                         npage[i] = f2fs_get_node_page(sbi, nids[i]);
820                         if (IS_ERR(npage[i])) {
821                                 err = PTR_ERR(npage[i]);
822                                 f2fs_put_page(npage[0], 0);
823                                 goto release_out;
824                         }
825                 }
826                 if (i < level) {
827                         parent = npage[i];
828                         nids[i + 1] = get_nid(parent, offset[i], false);
829                 }
830         }
831         dn->nid = nids[level];
832         dn->ofs_in_node = offset[level];
833         dn->node_page = npage[level];
834         dn->data_blkaddr = f2fs_data_blkaddr(dn);
835         return 0;
836
837 release_pages:
838         f2fs_put_page(parent, 1);
839         if (i > 1)
840                 f2fs_put_page(npage[0], 0);
841 release_out:
842         dn->inode_page = NULL;
843         dn->node_page = NULL;
844         if (err == -ENOENT) {
845                 dn->cur_level = i;
846                 dn->max_level = level;
847                 dn->ofs_in_node = offset[level];
848         }
849         return err;
850 }
851
852 static int truncate_node(struct dnode_of_data *dn)
853 {
854         struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
855         struct node_info ni;
856         int err;
857         pgoff_t index;
858
859         err = f2fs_get_node_info(sbi, dn->nid, &ni);
860         if (err)
861                 return err;
862
863         /* Deallocate node address */
864         f2fs_invalidate_blocks(sbi, ni.blk_addr);
865         dec_valid_node_count(sbi, dn->inode, dn->nid == dn->inode->i_ino);
866         set_node_addr(sbi, &ni, NULL_ADDR, false);
867
868         if (dn->nid == dn->inode->i_ino) {
869                 f2fs_remove_orphan_inode(sbi, dn->nid);
870                 dec_valid_inode_count(sbi);
871                 f2fs_inode_synced(dn->inode);
872         }
873
874         clear_node_page_dirty(dn->node_page);
875         set_sbi_flag(sbi, SBI_IS_DIRTY);
876
877         index = dn->node_page->index;
878         f2fs_put_page(dn->node_page, 1);
879
880         invalidate_mapping_pages(NODE_MAPPING(sbi),
881                         index, index);
882
883         dn->node_page = NULL;
884         trace_f2fs_truncate_node(dn->inode, dn->nid, ni.blk_addr);
885
886         return 0;
887 }
888
889 static int truncate_dnode(struct dnode_of_data *dn)
890 {
891         struct page *page;
892         int err;
893
894         if (dn->nid == 0)
895                 return 1;
896
897         /* get direct node */
898         page = f2fs_get_node_page(F2FS_I_SB(dn->inode), dn->nid);
899         if (PTR_ERR(page) == -ENOENT)
900                 return 1;
901         else if (IS_ERR(page))
902                 return PTR_ERR(page);
903
904         /* Make dnode_of_data for parameter */
905         dn->node_page = page;
906         dn->ofs_in_node = 0;
907         f2fs_truncate_data_blocks(dn);
908         err = truncate_node(dn);
909         if (err)
910                 return err;
911
912         return 1;
913 }
914
915 static int truncate_nodes(struct dnode_of_data *dn, unsigned int nofs,
916                                                 int ofs, int depth)
917 {
918         struct dnode_of_data rdn = *dn;
919         struct page *page;
920         struct f2fs_node *rn;
921         nid_t child_nid;
922         unsigned int child_nofs;
923         int freed = 0;
924         int i, ret;
925
926         if (dn->nid == 0)
927                 return NIDS_PER_BLOCK + 1;
928
929         trace_f2fs_truncate_nodes_enter(dn->inode, dn->nid, dn->data_blkaddr);
930
931         page = f2fs_get_node_page(F2FS_I_SB(dn->inode), dn->nid);
932         if (IS_ERR(page)) {
933                 trace_f2fs_truncate_nodes_exit(dn->inode, PTR_ERR(page));
934                 return PTR_ERR(page);
935         }
936
937         f2fs_ra_node_pages(page, ofs, NIDS_PER_BLOCK);
938
939         rn = F2FS_NODE(page);
940         if (depth < 3) {
941                 for (i = ofs; i < NIDS_PER_BLOCK; i++, freed++) {
942                         child_nid = le32_to_cpu(rn->in.nid[i]);
943                         if (child_nid == 0)
944                                 continue;
945                         rdn.nid = child_nid;
946                         ret = truncate_dnode(&rdn);
947                         if (ret < 0)
948                                 goto out_err;
949                         if (set_nid(page, i, 0, false))
950                                 dn->node_changed = true;
951                 }
952         } else {
953                 child_nofs = nofs + ofs * (NIDS_PER_BLOCK + 1) + 1;
954                 for (i = ofs; i < NIDS_PER_BLOCK; i++) {
955                         child_nid = le32_to_cpu(rn->in.nid[i]);
956                         if (child_nid == 0) {
957                                 child_nofs += NIDS_PER_BLOCK + 1;
958                                 continue;
959                         }
960                         rdn.nid = child_nid;
961                         ret = truncate_nodes(&rdn, child_nofs, 0, depth - 1);
962                         if (ret == (NIDS_PER_BLOCK + 1)) {
963                                 if (set_nid(page, i, 0, false))
964                                         dn->node_changed = true;
965                                 child_nofs += ret;
966                         } else if (ret < 0 && ret != -ENOENT) {
967                                 goto out_err;
968                         }
969                 }
970                 freed = child_nofs;
971         }
972
973         if (!ofs) {
974                 /* remove current indirect node */
975                 dn->node_page = page;
976                 ret = truncate_node(dn);
977                 if (ret)
978                         goto out_err;
979                 freed++;
980         } else {
981                 f2fs_put_page(page, 1);
982         }
983         trace_f2fs_truncate_nodes_exit(dn->inode, freed);
984         return freed;
985
986 out_err:
987         f2fs_put_page(page, 1);
988         trace_f2fs_truncate_nodes_exit(dn->inode, ret);
989         return ret;
990 }
991
992 static int truncate_partial_nodes(struct dnode_of_data *dn,
993                         struct f2fs_inode *ri, int *offset, int depth)
994 {
995         struct page *pages[2];
996         nid_t nid[3];
997         nid_t child_nid;
998         int err = 0;
999         int i;
1000         int idx = depth - 2;
1001
1002         nid[0] = le32_to_cpu(ri->i_nid[offset[0] - NODE_DIR1_BLOCK]);
1003         if (!nid[0])
1004                 return 0;
1005
1006         /* get indirect nodes in the path */
1007         for (i = 0; i < idx + 1; i++) {
1008                 /* reference count'll be increased */
1009                 pages[i] = f2fs_get_node_page(F2FS_I_SB(dn->inode), nid[i]);
1010                 if (IS_ERR(pages[i])) {
1011                         err = PTR_ERR(pages[i]);
1012                         idx = i - 1;
1013                         goto fail;
1014                 }
1015                 nid[i + 1] = get_nid(pages[i], offset[i + 1], false);
1016         }
1017
1018         f2fs_ra_node_pages(pages[idx], offset[idx + 1], NIDS_PER_BLOCK);
1019
1020         /* free direct nodes linked to a partial indirect node */
1021         for (i = offset[idx + 1]; i < NIDS_PER_BLOCK; i++) {
1022                 child_nid = get_nid(pages[idx], i, false);
1023                 if (!child_nid)
1024                         continue;
1025                 dn->nid = child_nid;
1026                 err = truncate_dnode(dn);
1027                 if (err < 0)
1028                         goto fail;
1029                 if (set_nid(pages[idx], i, 0, false))
1030                         dn->node_changed = true;
1031         }
1032
1033         if (offset[idx + 1] == 0) {
1034                 dn->node_page = pages[idx];
1035                 dn->nid = nid[idx];
1036                 err = truncate_node(dn);
1037                 if (err)
1038                         goto fail;
1039         } else {
1040                 f2fs_put_page(pages[idx], 1);
1041         }
1042         offset[idx]++;
1043         offset[idx + 1] = 0;
1044         idx--;
1045 fail:
1046         for (i = idx; i >= 0; i--)
1047                 f2fs_put_page(pages[i], 1);
1048
1049         trace_f2fs_truncate_partial_nodes(dn->inode, nid, depth, err);
1050
1051         return err;
1052 }
1053
1054 /*
1055  * All the block addresses of data and nodes should be nullified.
1056  */
1057 int f2fs_truncate_inode_blocks(struct inode *inode, pgoff_t from)
1058 {
1059         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1060         int err = 0, cont = 1;
1061         int level, offset[4], noffset[4];
1062         unsigned int nofs = 0;
1063         struct f2fs_inode *ri;
1064         struct dnode_of_data dn;
1065         struct page *page;
1066
1067         trace_f2fs_truncate_inode_blocks_enter(inode, from);
1068
1069         level = get_node_path(inode, from, offset, noffset);
1070         if (level < 0) {
1071                 trace_f2fs_truncate_inode_blocks_exit(inode, level);
1072                 return level;
1073         }
1074
1075         page = f2fs_get_node_page(sbi, inode->i_ino);
1076         if (IS_ERR(page)) {
1077                 trace_f2fs_truncate_inode_blocks_exit(inode, PTR_ERR(page));
1078                 return PTR_ERR(page);
1079         }
1080
1081         set_new_dnode(&dn, inode, page, NULL, 0);
1082         unlock_page(page);
1083
1084         ri = F2FS_INODE(page);
1085         switch (level) {
1086         case 0:
1087         case 1:
1088                 nofs = noffset[1];
1089                 break;
1090         case 2:
1091                 nofs = noffset[1];
1092                 if (!offset[level - 1])
1093                         goto skip_partial;
1094                 err = truncate_partial_nodes(&dn, ri, offset, level);
1095                 if (err < 0 && err != -ENOENT)
1096                         goto fail;
1097                 nofs += 1 + NIDS_PER_BLOCK;
1098                 break;
1099         case 3:
1100                 nofs = 5 + 2 * NIDS_PER_BLOCK;
1101                 if (!offset[level - 1])
1102                         goto skip_partial;
1103                 err = truncate_partial_nodes(&dn, ri, offset, level);
1104                 if (err < 0 && err != -ENOENT)
1105                         goto fail;
1106                 break;
1107         default:
1108                 BUG();
1109         }
1110
1111 skip_partial:
1112         while (cont) {
1113                 dn.nid = le32_to_cpu(ri->i_nid[offset[0] - NODE_DIR1_BLOCK]);
1114                 switch (offset[0]) {
1115                 case NODE_DIR1_BLOCK:
1116                 case NODE_DIR2_BLOCK:
1117                         err = truncate_dnode(&dn);
1118                         break;
1119
1120                 case NODE_IND1_BLOCK:
1121                 case NODE_IND2_BLOCK:
1122                         err = truncate_nodes(&dn, nofs, offset[1], 2);
1123                         break;
1124
1125                 case NODE_DIND_BLOCK:
1126                         err = truncate_nodes(&dn, nofs, offset[1], 3);
1127                         cont = 0;
1128                         break;
1129
1130                 default:
1131                         BUG();
1132                 }
1133                 if (err < 0 && err != -ENOENT)
1134                         goto fail;
1135                 if (offset[1] == 0 &&
1136                                 ri->i_nid[offset[0] - NODE_DIR1_BLOCK]) {
1137                         lock_page(page);
1138                         BUG_ON(page->mapping != NODE_MAPPING(sbi));
1139                         f2fs_wait_on_page_writeback(page, NODE, true, true);
1140                         ri->i_nid[offset[0] - NODE_DIR1_BLOCK] = 0;
1141                         set_page_dirty(page);
1142                         unlock_page(page);
1143                 }
1144                 offset[1] = 0;
1145                 offset[0]++;
1146                 nofs += err;
1147         }
1148 fail:
1149         f2fs_put_page(page, 0);
1150         trace_f2fs_truncate_inode_blocks_exit(inode, err);
1151         return err > 0 ? 0 : err;
1152 }
1153
1154 /* caller must lock inode page */
1155 int f2fs_truncate_xattr_node(struct inode *inode)
1156 {
1157         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1158         nid_t nid = F2FS_I(inode)->i_xattr_nid;
1159         struct dnode_of_data dn;
1160         struct page *npage;
1161         int err;
1162
1163         if (!nid)
1164                 return 0;
1165
1166         npage = f2fs_get_node_page(sbi, nid);
1167         if (IS_ERR(npage))
1168                 return PTR_ERR(npage);
1169
1170         set_new_dnode(&dn, inode, NULL, npage, nid);
1171         err = truncate_node(&dn);
1172         if (err) {
1173                 f2fs_put_page(npage, 1);
1174                 return err;
1175         }
1176
1177         f2fs_i_xnid_write(inode, 0);
1178
1179         return 0;
1180 }
1181
1182 /*
1183  * Caller should grab and release a rwsem by calling f2fs_lock_op() and
1184  * f2fs_unlock_op().
1185  */
1186 int f2fs_remove_inode_page(struct inode *inode)
1187 {
1188         struct dnode_of_data dn;
1189         int err;
1190
1191         set_new_dnode(&dn, inode, NULL, NULL, inode->i_ino);
1192         err = f2fs_get_dnode_of_data(&dn, 0, LOOKUP_NODE);
1193         if (err)
1194                 return err;
1195
1196         err = f2fs_truncate_xattr_node(inode);
1197         if (err) {
1198                 f2fs_put_dnode(&dn);
1199                 return err;
1200         }
1201
1202         /* remove potential inline_data blocks */
1203         if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
1204                                 S_ISLNK(inode->i_mode))
1205                 f2fs_truncate_data_blocks_range(&dn, 1);
1206
1207         /* 0 is possible, after f2fs_new_inode() has failed */
1208         if (unlikely(f2fs_cp_error(F2FS_I_SB(inode)))) {
1209                 f2fs_put_dnode(&dn);
1210                 return -EIO;
1211         }
1212
1213         if (unlikely(inode->i_blocks != 0 && inode->i_blocks != 8)) {
1214                 f2fs_warn(F2FS_I_SB(inode),
1215                         "f2fs_remove_inode_page: inconsistent i_blocks, ino:%lu, iblocks:%llu",
1216                         inode->i_ino, (unsigned long long)inode->i_blocks);
1217                 set_sbi_flag(F2FS_I_SB(inode), SBI_NEED_FSCK);
1218         }
1219
1220         /* will put inode & node pages */
1221         err = truncate_node(&dn);
1222         if (err) {
1223                 f2fs_put_dnode(&dn);
1224                 return err;
1225         }
1226         return 0;
1227 }
1228
1229 struct page *f2fs_new_inode_page(struct inode *inode)
1230 {
1231         struct dnode_of_data dn;
1232
1233         /* allocate inode page for new inode */
1234         set_new_dnode(&dn, inode, NULL, NULL, inode->i_ino);
1235
1236         /* caller should f2fs_put_page(page, 1); */
1237         return f2fs_new_node_page(&dn, 0);
1238 }
1239
1240 struct page *f2fs_new_node_page(struct dnode_of_data *dn, unsigned int ofs)
1241 {
1242         struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
1243         struct node_info new_ni;
1244         struct page *page;
1245         int err;
1246
1247         if (unlikely(is_inode_flag_set(dn->inode, FI_NO_ALLOC)))
1248                 return ERR_PTR(-EPERM);
1249
1250         page = f2fs_grab_cache_page(NODE_MAPPING(sbi), dn->nid, false);
1251         if (!page)
1252                 return ERR_PTR(-ENOMEM);
1253
1254         if (unlikely((err = inc_valid_node_count(sbi, dn->inode, !ofs))))
1255                 goto fail;
1256
1257 #ifdef CONFIG_F2FS_CHECK_FS
1258         err = f2fs_get_node_info(sbi, dn->nid, &new_ni);
1259         if (err) {
1260                 dec_valid_node_count(sbi, dn->inode, !ofs);
1261                 goto fail;
1262         }
1263         f2fs_bug_on(sbi, new_ni.blk_addr != NULL_ADDR);
1264 #endif
1265         new_ni.nid = dn->nid;
1266         new_ni.ino = dn->inode->i_ino;
1267         new_ni.blk_addr = NULL_ADDR;
1268         new_ni.flag = 0;
1269         new_ni.version = 0;
1270         set_node_addr(sbi, &new_ni, NEW_ADDR, false);
1271
1272         f2fs_wait_on_page_writeback(page, NODE, true, true);
1273         fill_node_footer(page, dn->nid, dn->inode->i_ino, ofs, true);
1274         set_cold_node(page, S_ISDIR(dn->inode->i_mode));
1275         if (!PageUptodate(page))
1276                 SetPageUptodate(page);
1277         if (set_page_dirty(page))
1278                 dn->node_changed = true;
1279
1280         if (f2fs_has_xattr_block(ofs))
1281                 f2fs_i_xnid_write(dn->inode, dn->nid);
1282
1283         if (ofs == 0)
1284                 inc_valid_inode_count(sbi);
1285         return page;
1286
1287 fail:
1288         clear_node_page_dirty(page);
1289         f2fs_put_page(page, 1);
1290         return ERR_PTR(err);
1291 }
1292
1293 /*
1294  * Caller should do after getting the following values.
1295  * 0: f2fs_put_page(page, 0)
1296  * LOCKED_PAGE or error: f2fs_put_page(page, 1)
1297  */
1298 static int read_node_page(struct page *page, int op_flags)
1299 {
1300         struct f2fs_sb_info *sbi = F2FS_P_SB(page);
1301         struct node_info ni;
1302         struct f2fs_io_info fio = {
1303                 .sbi = sbi,
1304                 .type = NODE,
1305                 .op = REQ_OP_READ,
1306                 .op_flags = op_flags,
1307                 .page = page,
1308                 .encrypted_page = NULL,
1309         };
1310         int err;
1311
1312         if (PageUptodate(page)) {
1313                 if (!f2fs_inode_chksum_verify(sbi, page)) {
1314                         ClearPageUptodate(page);
1315                         return -EFSBADCRC;
1316                 }
1317                 return LOCKED_PAGE;
1318         }
1319
1320         err = f2fs_get_node_info(sbi, page->index, &ni);
1321         if (err)
1322                 return err;
1323
1324         if (unlikely(ni.blk_addr == NULL_ADDR) ||
1325                         is_sbi_flag_set(sbi, SBI_IS_SHUTDOWN)) {
1326                 ClearPageUptodate(page);
1327                 return -ENOENT;
1328         }
1329
1330         fio.new_blkaddr = fio.old_blkaddr = ni.blk_addr;
1331
1332         err = f2fs_submit_page_bio(&fio);
1333
1334         if (!err)
1335                 f2fs_update_iostat(sbi, FS_NODE_READ_IO, F2FS_BLKSIZE);
1336
1337         return err;
1338 }
1339
1340 /*
1341  * Readahead a node page
1342  */
1343 void f2fs_ra_node_page(struct f2fs_sb_info *sbi, nid_t nid)
1344 {
1345         struct page *apage;
1346         int err;
1347
1348         if (!nid)
1349                 return;
1350         if (f2fs_check_nid_range(sbi, nid))
1351                 return;
1352
1353         apage = xa_load(&NODE_MAPPING(sbi)->i_pages, nid);
1354         if (apage)
1355                 return;
1356
1357         apage = f2fs_grab_cache_page(NODE_MAPPING(sbi), nid, false);
1358         if (!apage)
1359                 return;
1360
1361         err = read_node_page(apage, REQ_RAHEAD);
1362         f2fs_put_page(apage, err ? 1 : 0);
1363 }
1364
1365 static struct page *__get_node_page(struct f2fs_sb_info *sbi, pgoff_t nid,
1366                                         struct page *parent, int start)
1367 {
1368         struct page *page;
1369         int err;
1370
1371         if (!nid)
1372                 return ERR_PTR(-ENOENT);
1373         if (f2fs_check_nid_range(sbi, nid))
1374                 return ERR_PTR(-EINVAL);
1375 repeat:
1376         page = f2fs_grab_cache_page(NODE_MAPPING(sbi), nid, false);
1377         if (!page)
1378                 return ERR_PTR(-ENOMEM);
1379
1380         err = read_node_page(page, 0);
1381         if (err < 0) {
1382                 f2fs_put_page(page, 1);
1383                 return ERR_PTR(err);
1384         } else if (err == LOCKED_PAGE) {
1385                 err = 0;
1386                 goto page_hit;
1387         }
1388
1389         if (parent)
1390                 f2fs_ra_node_pages(parent, start + 1, MAX_RA_NODE);
1391
1392         lock_page(page);
1393
1394         if (unlikely(page->mapping != NODE_MAPPING(sbi))) {
1395                 f2fs_put_page(page, 1);
1396                 goto repeat;
1397         }
1398
1399         if (unlikely(!PageUptodate(page))) {
1400                 err = -EIO;
1401                 goto out_err;
1402         }
1403
1404         if (!f2fs_inode_chksum_verify(sbi, page)) {
1405                 err = -EFSBADCRC;
1406                 goto out_err;
1407         }
1408 page_hit:
1409         if (unlikely(nid != nid_of_node(page))) {
1410                 f2fs_warn(sbi, "inconsistent node block, nid:%lu, node_footer[nid:%u,ino:%u,ofs:%u,cpver:%llu,blkaddr:%u]",
1411                           nid, nid_of_node(page), ino_of_node(page),
1412                           ofs_of_node(page), cpver_of_node(page),
1413                           next_blkaddr_of_node(page));
1414                 err = -EINVAL;
1415 out_err:
1416                 ClearPageUptodate(page);
1417                 f2fs_put_page(page, 1);
1418                 return ERR_PTR(err);
1419         }
1420         return page;
1421 }
1422
1423 struct page *f2fs_get_node_page(struct f2fs_sb_info *sbi, pgoff_t nid)
1424 {
1425         return __get_node_page(sbi, nid, NULL, 0);
1426 }
1427
1428 struct page *f2fs_get_node_page_ra(struct page *parent, int start)
1429 {
1430         struct f2fs_sb_info *sbi = F2FS_P_SB(parent);
1431         nid_t nid = get_nid(parent, start, false);
1432
1433         return __get_node_page(sbi, nid, parent, start);
1434 }
1435
1436 static void flush_inline_data(struct f2fs_sb_info *sbi, nid_t ino)
1437 {
1438         struct inode *inode;
1439         struct page *page;
1440         int ret;
1441
1442         /* should flush inline_data before evict_inode */
1443         inode = ilookup(sbi->sb, ino);
1444         if (!inode)
1445                 return;
1446
1447         page = f2fs_pagecache_get_page(inode->i_mapping, 0,
1448                                         FGP_LOCK|FGP_NOWAIT, 0);
1449         if (!page)
1450                 goto iput_out;
1451
1452         if (!PageUptodate(page))
1453                 goto page_out;
1454
1455         if (!PageDirty(page))
1456                 goto page_out;
1457
1458         if (!clear_page_dirty_for_io(page))
1459                 goto page_out;
1460
1461         ret = f2fs_write_inline_data(inode, page);
1462         inode_dec_dirty_pages(inode);
1463         f2fs_remove_dirty_inode(inode);
1464         if (ret)
1465                 set_page_dirty(page);
1466 page_out:
1467         f2fs_put_page(page, 1);
1468 iput_out:
1469         iput(inode);
1470 }
1471
1472 static struct page *last_fsync_dnode(struct f2fs_sb_info *sbi, nid_t ino)
1473 {
1474         pgoff_t index;
1475         struct pagevec pvec;
1476         struct page *last_page = NULL;
1477         int nr_pages;
1478
1479         pagevec_init(&pvec);
1480         index = 0;
1481
1482         while ((nr_pages = pagevec_lookup_tag(&pvec, NODE_MAPPING(sbi), &index,
1483                                 PAGECACHE_TAG_DIRTY))) {
1484                 int i;
1485
1486                 for (i = 0; i < nr_pages; i++) {
1487                         struct page *page = pvec.pages[i];
1488
1489                         if (unlikely(f2fs_cp_error(sbi))) {
1490                                 f2fs_put_page(last_page, 0);
1491                                 pagevec_release(&pvec);
1492                                 return ERR_PTR(-EIO);
1493                         }
1494
1495                         if (!IS_DNODE(page) || !is_cold_node(page))
1496                                 continue;
1497                         if (ino_of_node(page) != ino)
1498                                 continue;
1499
1500                         lock_page(page);
1501
1502                         if (unlikely(page->mapping != NODE_MAPPING(sbi))) {
1503 continue_unlock:
1504                                 unlock_page(page);
1505                                 continue;
1506                         }
1507                         if (ino_of_node(page) != ino)
1508                                 goto continue_unlock;
1509
1510                         if (!PageDirty(page)) {
1511                                 /* someone wrote it for us */
1512                                 goto continue_unlock;
1513                         }
1514
1515                         if (last_page)
1516                                 f2fs_put_page(last_page, 0);
1517
1518                         get_page(page);
1519                         last_page = page;
1520                         unlock_page(page);
1521                 }
1522                 pagevec_release(&pvec);
1523                 cond_resched();
1524         }
1525         return last_page;
1526 }
1527
1528 static int __write_node_page(struct page *page, bool atomic, bool *submitted,
1529                                 struct writeback_control *wbc, bool do_balance,
1530                                 enum iostat_type io_type, unsigned int *seq_id)
1531 {
1532         struct f2fs_sb_info *sbi = F2FS_P_SB(page);
1533         nid_t nid;
1534         struct node_info ni;
1535         struct f2fs_io_info fio = {
1536                 .sbi = sbi,
1537                 .ino = ino_of_node(page),
1538                 .type = NODE,
1539                 .op = REQ_OP_WRITE,
1540                 .op_flags = wbc_to_write_flags(wbc),
1541                 .page = page,
1542                 .encrypted_page = NULL,
1543                 .submitted = false,
1544                 .io_type = io_type,
1545                 .io_wbc = wbc,
1546         };
1547         unsigned int seq;
1548
1549         trace_f2fs_writepage(page, NODE);
1550
1551         if (unlikely(f2fs_cp_error(sbi))) {
1552                 ClearPageUptodate(page);
1553                 dec_page_count(sbi, F2FS_DIRTY_NODES);
1554                 unlock_page(page);
1555                 return 0;
1556         }
1557
1558         if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
1559                 goto redirty_out;
1560
1561         if (!is_sbi_flag_set(sbi, SBI_CP_DISABLED) &&
1562                         wbc->sync_mode == WB_SYNC_NONE &&
1563                         IS_DNODE(page) && is_cold_node(page))
1564                 goto redirty_out;
1565
1566         /* get old block addr of this node page */
1567         nid = nid_of_node(page);
1568         f2fs_bug_on(sbi, page->index != nid);
1569
1570         if (f2fs_get_node_info(sbi, nid, &ni))
1571                 goto redirty_out;
1572
1573         if (wbc->for_reclaim) {
1574                 if (!down_read_trylock(&sbi->node_write))
1575                         goto redirty_out;
1576         } else {
1577                 down_read(&sbi->node_write);
1578         }
1579
1580         /* This page is already truncated */
1581         if (unlikely(ni.blk_addr == NULL_ADDR)) {
1582                 ClearPageUptodate(page);
1583                 dec_page_count(sbi, F2FS_DIRTY_NODES);
1584                 up_read(&sbi->node_write);
1585                 unlock_page(page);
1586                 return 0;
1587         }
1588
1589         if (__is_valid_data_blkaddr(ni.blk_addr) &&
1590                 !f2fs_is_valid_blkaddr(sbi, ni.blk_addr,
1591                                         DATA_GENERIC_ENHANCE)) {
1592                 up_read(&sbi->node_write);
1593                 goto redirty_out;
1594         }
1595
1596         if (atomic && !test_opt(sbi, NOBARRIER))
1597                 fio.op_flags |= REQ_PREFLUSH | REQ_FUA;
1598
1599         /* should add to global list before clearing PAGECACHE status */
1600         if (f2fs_in_warm_node_list(sbi, page)) {
1601                 seq = f2fs_add_fsync_node_entry(sbi, page);
1602                 if (seq_id)
1603                         *seq_id = seq;
1604         }
1605
1606         set_page_writeback(page);
1607         ClearPageError(page);
1608
1609         fio.old_blkaddr = ni.blk_addr;
1610         f2fs_do_write_node_page(nid, &fio);
1611         set_node_addr(sbi, &ni, fio.new_blkaddr, is_fsync_dnode(page));
1612         dec_page_count(sbi, F2FS_DIRTY_NODES);
1613         up_read(&sbi->node_write);
1614
1615         if (wbc->for_reclaim) {
1616                 f2fs_submit_merged_write_cond(sbi, NULL, page, 0, NODE);
1617                 submitted = NULL;
1618         }
1619
1620         unlock_page(page);
1621
1622         if (unlikely(f2fs_cp_error(sbi))) {
1623                 f2fs_submit_merged_write(sbi, NODE);
1624                 submitted = NULL;
1625         }
1626         if (submitted)
1627                 *submitted = fio.submitted;
1628
1629         if (do_balance)
1630                 f2fs_balance_fs(sbi, false);
1631         return 0;
1632
1633 redirty_out:
1634         redirty_page_for_writepage(wbc, page);
1635         return AOP_WRITEPAGE_ACTIVATE;
1636 }
1637
1638 int f2fs_move_node_page(struct page *node_page, int gc_type)
1639 {
1640         int err = 0;
1641
1642         if (gc_type == FG_GC) {
1643                 struct writeback_control wbc = {
1644                         .sync_mode = WB_SYNC_ALL,
1645                         .nr_to_write = 1,
1646                         .for_reclaim = 0,
1647                 };
1648
1649                 f2fs_wait_on_page_writeback(node_page, NODE, true, true);
1650
1651                 set_page_dirty(node_page);
1652
1653                 if (!clear_page_dirty_for_io(node_page)) {
1654                         err = -EAGAIN;
1655                         goto out_page;
1656                 }
1657
1658                 if (__write_node_page(node_page, false, NULL,
1659                                         &wbc, false, FS_GC_NODE_IO, NULL)) {
1660                         err = -EAGAIN;
1661                         unlock_page(node_page);
1662                 }
1663                 goto release_page;
1664         } else {
1665                 /* set page dirty and write it */
1666                 if (!PageWriteback(node_page))
1667                         set_page_dirty(node_page);
1668         }
1669 out_page:
1670         unlock_page(node_page);
1671 release_page:
1672         f2fs_put_page(node_page, 0);
1673         return err;
1674 }
1675
1676 static int f2fs_write_node_page(struct page *page,
1677                                 struct writeback_control *wbc)
1678 {
1679         return __write_node_page(page, false, NULL, wbc, false,
1680                                                 FS_NODE_IO, NULL);
1681 }
1682
1683 int f2fs_fsync_node_pages(struct f2fs_sb_info *sbi, struct inode *inode,
1684                         struct writeback_control *wbc, bool atomic,
1685                         unsigned int *seq_id)
1686 {
1687         pgoff_t index;
1688         struct pagevec pvec;
1689         int ret = 0;
1690         struct page *last_page = NULL;
1691         bool marked = false;
1692         nid_t ino = inode->i_ino;
1693         int nr_pages;
1694         int nwritten = 0;
1695
1696         if (atomic) {
1697                 last_page = last_fsync_dnode(sbi, ino);
1698                 if (IS_ERR_OR_NULL(last_page))
1699                         return PTR_ERR_OR_ZERO(last_page);
1700         }
1701 retry:
1702         pagevec_init(&pvec);
1703         index = 0;
1704
1705         while ((nr_pages = pagevec_lookup_tag(&pvec, NODE_MAPPING(sbi), &index,
1706                                 PAGECACHE_TAG_DIRTY))) {
1707                 int i;
1708
1709                 for (i = 0; i < nr_pages; i++) {
1710                         struct page *page = pvec.pages[i];
1711                         bool submitted = false;
1712
1713                         if (unlikely(f2fs_cp_error(sbi))) {
1714                                 f2fs_put_page(last_page, 0);
1715                                 pagevec_release(&pvec);
1716                                 ret = -EIO;
1717                                 goto out;
1718                         }
1719
1720                         if (!IS_DNODE(page) || !is_cold_node(page))
1721                                 continue;
1722                         if (ino_of_node(page) != ino)
1723                                 continue;
1724
1725                         lock_page(page);
1726
1727                         if (unlikely(page->mapping != NODE_MAPPING(sbi))) {
1728 continue_unlock:
1729                                 unlock_page(page);
1730                                 continue;
1731                         }
1732                         if (ino_of_node(page) != ino)
1733                                 goto continue_unlock;
1734
1735                         if (!PageDirty(page) && page != last_page) {
1736                                 /* someone wrote it for us */
1737                                 goto continue_unlock;
1738                         }
1739
1740                         f2fs_wait_on_page_writeback(page, NODE, true, true);
1741
1742                         set_fsync_mark(page, 0);
1743                         set_dentry_mark(page, 0);
1744
1745                         if (!atomic || page == last_page) {
1746                                 set_fsync_mark(page, 1);
1747                                 if (IS_INODE(page)) {
1748                                         if (is_inode_flag_set(inode,
1749                                                                 FI_DIRTY_INODE))
1750                                                 f2fs_update_inode(inode, page);
1751                                         set_dentry_mark(page,
1752                                                 f2fs_need_dentry_mark(sbi, ino));
1753                                 }
1754                                 /* may be written by other thread */
1755                                 if (!PageDirty(page))
1756                                         set_page_dirty(page);
1757                         }
1758
1759                         if (!clear_page_dirty_for_io(page))
1760                                 goto continue_unlock;
1761
1762                         ret = __write_node_page(page, atomic &&
1763                                                 page == last_page,
1764                                                 &submitted, wbc, true,
1765                                                 FS_NODE_IO, seq_id);
1766                         if (ret) {
1767                                 unlock_page(page);
1768                                 f2fs_put_page(last_page, 0);
1769                                 break;
1770                         } else if (submitted) {
1771                                 nwritten++;
1772                         }
1773
1774                         if (page == last_page) {
1775                                 f2fs_put_page(page, 0);
1776                                 marked = true;
1777                                 break;
1778                         }
1779                 }
1780                 pagevec_release(&pvec);
1781                 cond_resched();
1782
1783                 if (ret || marked)
1784                         break;
1785         }
1786         if (!ret && atomic && !marked) {
1787                 f2fs_debug(sbi, "Retry to write fsync mark: ino=%u, idx=%lx",
1788                            ino, last_page->index);
1789                 lock_page(last_page);
1790                 f2fs_wait_on_page_writeback(last_page, NODE, true, true);
1791                 set_page_dirty(last_page);
1792                 unlock_page(last_page);
1793                 goto retry;
1794         }
1795 out:
1796         if (nwritten)
1797                 f2fs_submit_merged_write_cond(sbi, NULL, NULL, ino, NODE);
1798         return ret ? -EIO : 0;
1799 }
1800
1801 static int f2fs_match_ino(struct inode *inode, unsigned long ino, void *data)
1802 {
1803         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1804         bool clean;
1805
1806         if (inode->i_ino != ino)
1807                 return 0;
1808
1809         if (!is_inode_flag_set(inode, FI_DIRTY_INODE))
1810                 return 0;
1811
1812         spin_lock(&sbi->inode_lock[DIRTY_META]);
1813         clean = list_empty(&F2FS_I(inode)->gdirty_list);
1814         spin_unlock(&sbi->inode_lock[DIRTY_META]);
1815
1816         if (clean)
1817                 return 0;
1818
1819         inode = igrab(inode);
1820         if (!inode)
1821                 return 0;
1822         return 1;
1823 }
1824
1825 static bool flush_dirty_inode(struct page *page)
1826 {
1827         struct f2fs_sb_info *sbi = F2FS_P_SB(page);
1828         struct inode *inode;
1829         nid_t ino = ino_of_node(page);
1830
1831         inode = find_inode_nowait(sbi->sb, ino, f2fs_match_ino, NULL);
1832         if (!inode)
1833                 return false;
1834
1835         f2fs_update_inode(inode, page);
1836         unlock_page(page);
1837
1838         iput(inode);
1839         return true;
1840 }
1841
1842 void f2fs_flush_inline_data(struct f2fs_sb_info *sbi)
1843 {
1844         pgoff_t index = 0;
1845         struct pagevec pvec;
1846         int nr_pages;
1847
1848         pagevec_init(&pvec);
1849
1850         while ((nr_pages = pagevec_lookup_tag(&pvec,
1851                         NODE_MAPPING(sbi), &index, PAGECACHE_TAG_DIRTY))) {
1852                 int i;
1853
1854                 for (i = 0; i < nr_pages; i++) {
1855                         struct page *page = pvec.pages[i];
1856
1857                         if (!IS_DNODE(page))
1858                                 continue;
1859
1860                         lock_page(page);
1861
1862                         if (unlikely(page->mapping != NODE_MAPPING(sbi))) {
1863 continue_unlock:
1864                                 unlock_page(page);
1865                                 continue;
1866                         }
1867
1868                         if (!PageDirty(page)) {
1869                                 /* someone wrote it for us */
1870                                 goto continue_unlock;
1871                         }
1872
1873                         /* flush inline_data, if it's async context. */
1874                         if (page_private_inline(page)) {
1875                                 clear_page_private_inline(page);
1876                                 unlock_page(page);
1877                                 flush_inline_data(sbi, ino_of_node(page));
1878                                 continue;
1879                         }
1880                         unlock_page(page);
1881                 }
1882                 pagevec_release(&pvec);
1883                 cond_resched();
1884         }
1885 }
1886
1887 int f2fs_sync_node_pages(struct f2fs_sb_info *sbi,
1888                                 struct writeback_control *wbc,
1889                                 bool do_balance, enum iostat_type io_type)
1890 {
1891         pgoff_t index;
1892         struct pagevec pvec;
1893         int step = 0;
1894         int nwritten = 0;
1895         int ret = 0;
1896         int nr_pages, done = 0;
1897
1898         pagevec_init(&pvec);
1899
1900 next_step:
1901         index = 0;
1902
1903         while (!done && (nr_pages = pagevec_lookup_tag(&pvec,
1904                         NODE_MAPPING(sbi), &index, PAGECACHE_TAG_DIRTY))) {
1905                 int i;
1906
1907                 for (i = 0; i < nr_pages; i++) {
1908                         struct page *page = pvec.pages[i];
1909                         bool submitted = false;
1910                         bool may_dirty = true;
1911
1912                         /* give a priority to WB_SYNC threads */
1913                         if (atomic_read(&sbi->wb_sync_req[NODE]) &&
1914                                         wbc->sync_mode == WB_SYNC_NONE) {
1915                                 done = 1;
1916                                 break;
1917                         }
1918
1919                         /*
1920                          * flushing sequence with step:
1921                          * 0. indirect nodes
1922                          * 1. dentry dnodes
1923                          * 2. file dnodes
1924                          */
1925                         if (step == 0 && IS_DNODE(page))
1926                                 continue;
1927                         if (step == 1 && (!IS_DNODE(page) ||
1928                                                 is_cold_node(page)))
1929                                 continue;
1930                         if (step == 2 && (!IS_DNODE(page) ||
1931                                                 !is_cold_node(page)))
1932                                 continue;
1933 lock_node:
1934                         if (wbc->sync_mode == WB_SYNC_ALL)
1935                                 lock_page(page);
1936                         else if (!trylock_page(page))
1937                                 continue;
1938
1939                         if (unlikely(page->mapping != NODE_MAPPING(sbi))) {
1940 continue_unlock:
1941                                 unlock_page(page);
1942                                 continue;
1943                         }
1944
1945                         if (!PageDirty(page)) {
1946                                 /* someone wrote it for us */
1947                                 goto continue_unlock;
1948                         }
1949
1950                         /* flush inline_data/inode, if it's async context. */
1951                         if (!do_balance)
1952                                 goto write_node;
1953
1954                         /* flush inline_data */
1955                         if (page_private_inline(page)) {
1956                                 clear_page_private_inline(page);
1957                                 unlock_page(page);
1958                                 flush_inline_data(sbi, ino_of_node(page));
1959                                 goto lock_node;
1960                         }
1961
1962                         /* flush dirty inode */
1963                         if (IS_INODE(page) && may_dirty) {
1964                                 may_dirty = false;
1965                                 if (flush_dirty_inode(page))
1966                                         goto lock_node;
1967                         }
1968 write_node:
1969                         f2fs_wait_on_page_writeback(page, NODE, true, true);
1970
1971                         if (!clear_page_dirty_for_io(page))
1972                                 goto continue_unlock;
1973
1974                         set_fsync_mark(page, 0);
1975                         set_dentry_mark(page, 0);
1976
1977                         ret = __write_node_page(page, false, &submitted,
1978                                                 wbc, do_balance, io_type, NULL);
1979                         if (ret)
1980                                 unlock_page(page);
1981                         else if (submitted)
1982                                 nwritten++;
1983
1984                         if (--wbc->nr_to_write == 0)
1985                                 break;
1986                 }
1987                 pagevec_release(&pvec);
1988                 cond_resched();
1989
1990                 if (wbc->nr_to_write == 0) {
1991                         step = 2;
1992                         break;
1993                 }
1994         }
1995
1996         if (step < 2) {
1997                 if (!is_sbi_flag_set(sbi, SBI_CP_DISABLED) &&
1998                                 wbc->sync_mode == WB_SYNC_NONE && step == 1)
1999                         goto out;
2000                 step++;
2001                 goto next_step;
2002         }
2003 out:
2004         if (nwritten)
2005                 f2fs_submit_merged_write(sbi, NODE);
2006
2007         if (unlikely(f2fs_cp_error(sbi)))
2008                 return -EIO;
2009         return ret;
2010 }
2011
2012 int f2fs_wait_on_node_pages_writeback(struct f2fs_sb_info *sbi,
2013                                                 unsigned int seq_id)
2014 {
2015         struct fsync_node_entry *fn;
2016         struct page *page;
2017         struct list_head *head = &sbi->fsync_node_list;
2018         unsigned long flags;
2019         unsigned int cur_seq_id = 0;
2020         int ret2, ret = 0;
2021
2022         while (seq_id && cur_seq_id < seq_id) {
2023                 spin_lock_irqsave(&sbi->fsync_node_lock, flags);
2024                 if (list_empty(head)) {
2025                         spin_unlock_irqrestore(&sbi->fsync_node_lock, flags);
2026                         break;
2027                 }
2028                 fn = list_first_entry(head, struct fsync_node_entry, list);
2029                 if (fn->seq_id > seq_id) {
2030                         spin_unlock_irqrestore(&sbi->fsync_node_lock, flags);
2031                         break;
2032                 }
2033                 cur_seq_id = fn->seq_id;
2034                 page = fn->page;
2035                 get_page(page);
2036                 spin_unlock_irqrestore(&sbi->fsync_node_lock, flags);
2037
2038                 f2fs_wait_on_page_writeback(page, NODE, true, false);
2039                 if (TestClearPageError(page))
2040                         ret = -EIO;
2041
2042                 put_page(page);
2043
2044                 if (ret)
2045                         break;
2046         }
2047
2048         ret2 = filemap_check_errors(NODE_MAPPING(sbi));
2049         if (!ret)
2050                 ret = ret2;
2051
2052         return ret;
2053 }
2054
2055 static int f2fs_write_node_pages(struct address_space *mapping,
2056                             struct writeback_control *wbc)
2057 {
2058         struct f2fs_sb_info *sbi = F2FS_M_SB(mapping);
2059         struct blk_plug plug;
2060         long diff;
2061
2062         if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
2063                 goto skip_write;
2064
2065         /* balancing f2fs's metadata in background */
2066         f2fs_balance_fs_bg(sbi, true);
2067
2068         /* collect a number of dirty node pages and write together */
2069         if (wbc->sync_mode != WB_SYNC_ALL &&
2070                         get_pages(sbi, F2FS_DIRTY_NODES) <
2071                                         nr_pages_to_skip(sbi, NODE))
2072                 goto skip_write;
2073
2074         if (wbc->sync_mode == WB_SYNC_ALL)
2075                 atomic_inc(&sbi->wb_sync_req[NODE]);
2076         else if (atomic_read(&sbi->wb_sync_req[NODE]))
2077                 goto skip_write;
2078
2079         trace_f2fs_writepages(mapping->host, wbc, NODE);
2080
2081         diff = nr_pages_to_write(sbi, NODE, wbc);
2082         blk_start_plug(&plug);
2083         f2fs_sync_node_pages(sbi, wbc, true, FS_NODE_IO);
2084         blk_finish_plug(&plug);
2085         wbc->nr_to_write = max((long)0, wbc->nr_to_write - diff);
2086
2087         if (wbc->sync_mode == WB_SYNC_ALL)
2088                 atomic_dec(&sbi->wb_sync_req[NODE]);
2089         return 0;
2090
2091 skip_write:
2092         wbc->pages_skipped += get_pages(sbi, F2FS_DIRTY_NODES);
2093         trace_f2fs_writepages(mapping->host, wbc, NODE);
2094         return 0;
2095 }
2096
2097 static int f2fs_set_node_page_dirty(struct page *page)
2098 {
2099         trace_f2fs_set_page_dirty(page, NODE);
2100
2101         if (!PageUptodate(page))
2102                 SetPageUptodate(page);
2103 #ifdef CONFIG_F2FS_CHECK_FS
2104         if (IS_INODE(page))
2105                 f2fs_inode_chksum_set(F2FS_P_SB(page), page);
2106 #endif
2107         if (!PageDirty(page)) {
2108                 __set_page_dirty_nobuffers(page);
2109                 inc_page_count(F2FS_P_SB(page), F2FS_DIRTY_NODES);
2110                 set_page_private_reference(page);
2111                 return 1;
2112         }
2113         return 0;
2114 }
2115
2116 /*
2117  * Structure of the f2fs node operations
2118  */
2119 const struct address_space_operations f2fs_node_aops = {
2120         .writepage      = f2fs_write_node_page,
2121         .writepages     = f2fs_write_node_pages,
2122         .set_page_dirty = f2fs_set_node_page_dirty,
2123         .invalidatepage = f2fs_invalidate_page,
2124         .releasepage    = f2fs_release_page,
2125 #ifdef CONFIG_MIGRATION
2126         .migratepage    = f2fs_migrate_page,
2127 #endif
2128 };
2129
2130 static struct free_nid *__lookup_free_nid_list(struct f2fs_nm_info *nm_i,
2131                                                 nid_t n)
2132 {
2133         return radix_tree_lookup(&nm_i->free_nid_root, n);
2134 }
2135
2136 static int __insert_free_nid(struct f2fs_sb_info *sbi,
2137                                 struct free_nid *i)
2138 {
2139         struct f2fs_nm_info *nm_i = NM_I(sbi);
2140         int err = radix_tree_insert(&nm_i->free_nid_root, i->nid, i);
2141
2142         if (err)
2143                 return err;
2144
2145         nm_i->nid_cnt[FREE_NID]++;
2146         list_add_tail(&i->list, &nm_i->free_nid_list);
2147         return 0;
2148 }
2149
2150 static void __remove_free_nid(struct f2fs_sb_info *sbi,
2151                         struct free_nid *i, enum nid_state state)
2152 {
2153         struct f2fs_nm_info *nm_i = NM_I(sbi);
2154
2155         f2fs_bug_on(sbi, state != i->state);
2156         nm_i->nid_cnt[state]--;
2157         if (state == FREE_NID)
2158                 list_del(&i->list);
2159         radix_tree_delete(&nm_i->free_nid_root, i->nid);
2160 }
2161
2162 static void __move_free_nid(struct f2fs_sb_info *sbi, struct free_nid *i,
2163                         enum nid_state org_state, enum nid_state dst_state)
2164 {
2165         struct f2fs_nm_info *nm_i = NM_I(sbi);
2166
2167         f2fs_bug_on(sbi, org_state != i->state);
2168         i->state = dst_state;
2169         nm_i->nid_cnt[org_state]--;
2170         nm_i->nid_cnt[dst_state]++;
2171
2172         switch (dst_state) {
2173         case PREALLOC_NID:
2174                 list_del(&i->list);
2175                 break;
2176         case FREE_NID:
2177                 list_add_tail(&i->list, &nm_i->free_nid_list);
2178                 break;
2179         default:
2180                 BUG_ON(1);
2181         }
2182 }
2183
2184 static void update_free_nid_bitmap(struct f2fs_sb_info *sbi, nid_t nid,
2185                                                         bool set, bool build)
2186 {
2187         struct f2fs_nm_info *nm_i = NM_I(sbi);
2188         unsigned int nat_ofs = NAT_BLOCK_OFFSET(nid);
2189         unsigned int nid_ofs = nid - START_NID(nid);
2190
2191         if (!test_bit_le(nat_ofs, nm_i->nat_block_bitmap))
2192                 return;
2193
2194         if (set) {
2195                 if (test_bit_le(nid_ofs, nm_i->free_nid_bitmap[nat_ofs]))
2196                         return;
2197                 __set_bit_le(nid_ofs, nm_i->free_nid_bitmap[nat_ofs]);
2198                 nm_i->free_nid_count[nat_ofs]++;
2199         } else {
2200                 if (!test_bit_le(nid_ofs, nm_i->free_nid_bitmap[nat_ofs]))
2201                         return;
2202                 __clear_bit_le(nid_ofs, nm_i->free_nid_bitmap[nat_ofs]);
2203                 if (!build)
2204                         nm_i->free_nid_count[nat_ofs]--;
2205         }
2206 }
2207
2208 /* return if the nid is recognized as free */
2209 static bool add_free_nid(struct f2fs_sb_info *sbi,
2210                                 nid_t nid, bool build, bool update)
2211 {
2212         struct f2fs_nm_info *nm_i = NM_I(sbi);
2213         struct free_nid *i, *e;
2214         struct nat_entry *ne;
2215         int err = -EINVAL;
2216         bool ret = false;
2217
2218         /* 0 nid should not be used */
2219         if (unlikely(nid == 0))
2220                 return false;
2221
2222         if (unlikely(f2fs_check_nid_range(sbi, nid)))
2223                 return false;
2224
2225         i = f2fs_kmem_cache_alloc(free_nid_slab, GFP_NOFS);
2226         i->nid = nid;
2227         i->state = FREE_NID;
2228
2229         radix_tree_preload(GFP_NOFS | __GFP_NOFAIL);
2230
2231         spin_lock(&nm_i->nid_list_lock);
2232
2233         if (build) {
2234                 /*
2235                  *   Thread A             Thread B
2236                  *  - f2fs_create
2237                  *   - f2fs_new_inode
2238                  *    - f2fs_alloc_nid
2239                  *     - __insert_nid_to_list(PREALLOC_NID)
2240                  *                     - f2fs_balance_fs_bg
2241                  *                      - f2fs_build_free_nids
2242                  *                       - __f2fs_build_free_nids
2243                  *                        - scan_nat_page
2244                  *                         - add_free_nid
2245                  *                          - __lookup_nat_cache
2246                  *  - f2fs_add_link
2247                  *   - f2fs_init_inode_metadata
2248                  *    - f2fs_new_inode_page
2249                  *     - f2fs_new_node_page
2250                  *      - set_node_addr
2251                  *  - f2fs_alloc_nid_done
2252                  *   - __remove_nid_from_list(PREALLOC_NID)
2253                  *                         - __insert_nid_to_list(FREE_NID)
2254                  */
2255                 ne = __lookup_nat_cache(nm_i, nid);
2256                 if (ne && (!get_nat_flag(ne, IS_CHECKPOINTED) ||
2257                                 nat_get_blkaddr(ne) != NULL_ADDR))
2258                         goto err_out;
2259
2260                 e = __lookup_free_nid_list(nm_i, nid);
2261                 if (e) {
2262                         if (e->state == FREE_NID)
2263                                 ret = true;
2264                         goto err_out;
2265                 }
2266         }
2267         ret = true;
2268         err = __insert_free_nid(sbi, i);
2269 err_out:
2270         if (update) {
2271                 update_free_nid_bitmap(sbi, nid, ret, build);
2272                 if (!build)
2273                         nm_i->available_nids++;
2274         }
2275         spin_unlock(&nm_i->nid_list_lock);
2276         radix_tree_preload_end();
2277
2278         if (err)
2279                 kmem_cache_free(free_nid_slab, i);
2280         return ret;
2281 }
2282
2283 static void remove_free_nid(struct f2fs_sb_info *sbi, nid_t nid)
2284 {
2285         struct f2fs_nm_info *nm_i = NM_I(sbi);
2286         struct free_nid *i;
2287         bool need_free = false;
2288
2289         spin_lock(&nm_i->nid_list_lock);
2290         i = __lookup_free_nid_list(nm_i, nid);
2291         if (i && i->state == FREE_NID) {
2292                 __remove_free_nid(sbi, i, FREE_NID);
2293                 need_free = true;
2294         }
2295         spin_unlock(&nm_i->nid_list_lock);
2296
2297         if (need_free)
2298                 kmem_cache_free(free_nid_slab, i);
2299 }
2300
2301 static int scan_nat_page(struct f2fs_sb_info *sbi,
2302                         struct page *nat_page, nid_t start_nid)
2303 {
2304         struct f2fs_nm_info *nm_i = NM_I(sbi);
2305         struct f2fs_nat_block *nat_blk = page_address(nat_page);
2306         block_t blk_addr;
2307         unsigned int nat_ofs = NAT_BLOCK_OFFSET(start_nid);
2308         int i;
2309
2310         __set_bit_le(nat_ofs, nm_i->nat_block_bitmap);
2311
2312         i = start_nid % NAT_ENTRY_PER_BLOCK;
2313
2314         for (; i < NAT_ENTRY_PER_BLOCK; i++, start_nid++) {
2315                 if (unlikely(start_nid >= nm_i->max_nid))
2316                         break;
2317
2318                 blk_addr = le32_to_cpu(nat_blk->entries[i].block_addr);
2319
2320                 if (blk_addr == NEW_ADDR)
2321                         return -EINVAL;
2322
2323                 if (blk_addr == NULL_ADDR) {
2324                         add_free_nid(sbi, start_nid, true, true);
2325                 } else {
2326                         spin_lock(&NM_I(sbi)->nid_list_lock);
2327                         update_free_nid_bitmap(sbi, start_nid, false, true);
2328                         spin_unlock(&NM_I(sbi)->nid_list_lock);
2329                 }
2330         }
2331
2332         return 0;
2333 }
2334
2335 static void scan_curseg_cache(struct f2fs_sb_info *sbi)
2336 {
2337         struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
2338         struct f2fs_journal *journal = curseg->journal;
2339         int i;
2340
2341         down_read(&curseg->journal_rwsem);
2342         for (i = 0; i < nats_in_cursum(journal); i++) {
2343                 block_t addr;
2344                 nid_t nid;
2345
2346                 addr = le32_to_cpu(nat_in_journal(journal, i).block_addr);
2347                 nid = le32_to_cpu(nid_in_journal(journal, i));
2348                 if (addr == NULL_ADDR)
2349                         add_free_nid(sbi, nid, true, false);
2350                 else
2351                         remove_free_nid(sbi, nid);
2352         }
2353         up_read(&curseg->journal_rwsem);
2354 }
2355
2356 static void scan_free_nid_bits(struct f2fs_sb_info *sbi)
2357 {
2358         struct f2fs_nm_info *nm_i = NM_I(sbi);
2359         unsigned int i, idx;
2360         nid_t nid;
2361
2362         down_read(&nm_i->nat_tree_lock);
2363
2364         for (i = 0; i < nm_i->nat_blocks; i++) {
2365                 if (!test_bit_le(i, nm_i->nat_block_bitmap))
2366                         continue;
2367                 if (!nm_i->free_nid_count[i])
2368                         continue;
2369                 for (idx = 0; idx < NAT_ENTRY_PER_BLOCK; idx++) {
2370                         idx = find_next_bit_le(nm_i->free_nid_bitmap[i],
2371                                                 NAT_ENTRY_PER_BLOCK, idx);
2372                         if (idx >= NAT_ENTRY_PER_BLOCK)
2373                                 break;
2374
2375                         nid = i * NAT_ENTRY_PER_BLOCK + idx;
2376                         add_free_nid(sbi, nid, true, false);
2377
2378                         if (nm_i->nid_cnt[FREE_NID] >= MAX_FREE_NIDS)
2379                                 goto out;
2380                 }
2381         }
2382 out:
2383         scan_curseg_cache(sbi);
2384
2385         up_read(&nm_i->nat_tree_lock);
2386 }
2387
2388 static int __f2fs_build_free_nids(struct f2fs_sb_info *sbi,
2389                                                 bool sync, bool mount)
2390 {
2391         struct f2fs_nm_info *nm_i = NM_I(sbi);
2392         int i = 0, ret;
2393         nid_t nid = nm_i->next_scan_nid;
2394
2395         if (unlikely(nid >= nm_i->max_nid))
2396                 nid = 0;
2397
2398         if (unlikely(nid % NAT_ENTRY_PER_BLOCK))
2399                 nid = NAT_BLOCK_OFFSET(nid) * NAT_ENTRY_PER_BLOCK;
2400
2401         /* Enough entries */
2402         if (nm_i->nid_cnt[FREE_NID] >= NAT_ENTRY_PER_BLOCK)
2403                 return 0;
2404
2405         if (!sync && !f2fs_available_free_memory(sbi, FREE_NIDS))
2406                 return 0;
2407
2408         if (!mount) {
2409                 /* try to find free nids in free_nid_bitmap */
2410                 scan_free_nid_bits(sbi);
2411
2412                 if (nm_i->nid_cnt[FREE_NID] >= NAT_ENTRY_PER_BLOCK)
2413                         return 0;
2414         }
2415
2416         /* readahead nat pages to be scanned */
2417         f2fs_ra_meta_pages(sbi, NAT_BLOCK_OFFSET(nid), FREE_NID_PAGES,
2418                                                         META_NAT, true);
2419
2420         down_read(&nm_i->nat_tree_lock);
2421
2422         while (1) {
2423                 if (!test_bit_le(NAT_BLOCK_OFFSET(nid),
2424                                                 nm_i->nat_block_bitmap)) {
2425                         struct page *page = get_current_nat_page(sbi, nid);
2426
2427                         if (IS_ERR(page)) {
2428                                 ret = PTR_ERR(page);
2429                         } else {
2430                                 ret = scan_nat_page(sbi, page, nid);
2431                                 f2fs_put_page(page, 1);
2432                         }
2433
2434                         if (ret) {
2435                                 up_read(&nm_i->nat_tree_lock);
2436                                 f2fs_err(sbi, "NAT is corrupt, run fsck to fix it");
2437                                 return ret;
2438                         }
2439                 }
2440
2441                 nid += (NAT_ENTRY_PER_BLOCK - (nid % NAT_ENTRY_PER_BLOCK));
2442                 if (unlikely(nid >= nm_i->max_nid))
2443                         nid = 0;
2444
2445                 if (++i >= FREE_NID_PAGES)
2446                         break;
2447         }
2448
2449         /* go to the next free nat pages to find free nids abundantly */
2450         nm_i->next_scan_nid = nid;
2451
2452         /* find free nids from current sum_pages */
2453         scan_curseg_cache(sbi);
2454
2455         up_read(&nm_i->nat_tree_lock);
2456
2457         f2fs_ra_meta_pages(sbi, NAT_BLOCK_OFFSET(nm_i->next_scan_nid),
2458                                         nm_i->ra_nid_pages, META_NAT, false);
2459
2460         return 0;
2461 }
2462
2463 int f2fs_build_free_nids(struct f2fs_sb_info *sbi, bool sync, bool mount)
2464 {
2465         int ret;
2466
2467         mutex_lock(&NM_I(sbi)->build_lock);
2468         ret = __f2fs_build_free_nids(sbi, sync, mount);
2469         mutex_unlock(&NM_I(sbi)->build_lock);
2470
2471         return ret;
2472 }
2473
2474 /*
2475  * If this function returns success, caller can obtain a new nid
2476  * from second parameter of this function.
2477  * The returned nid could be used ino as well as nid when inode is created.
2478  */
2479 bool f2fs_alloc_nid(struct f2fs_sb_info *sbi, nid_t *nid)
2480 {
2481         struct f2fs_nm_info *nm_i = NM_I(sbi);
2482         struct free_nid *i = NULL;
2483 retry:
2484         if (time_to_inject(sbi, FAULT_ALLOC_NID)) {
2485                 f2fs_show_injection_info(sbi, FAULT_ALLOC_NID);
2486                 return false;
2487         }
2488
2489         spin_lock(&nm_i->nid_list_lock);
2490
2491         if (unlikely(nm_i->available_nids == 0)) {
2492                 spin_unlock(&nm_i->nid_list_lock);
2493                 return false;
2494         }
2495
2496         /* We should not use stale free nids created by f2fs_build_free_nids */
2497         if (nm_i->nid_cnt[FREE_NID] && !on_f2fs_build_free_nids(nm_i)) {
2498                 f2fs_bug_on(sbi, list_empty(&nm_i->free_nid_list));
2499                 i = list_first_entry(&nm_i->free_nid_list,
2500                                         struct free_nid, list);
2501                 *nid = i->nid;
2502
2503                 __move_free_nid(sbi, i, FREE_NID, PREALLOC_NID);
2504                 nm_i->available_nids--;
2505
2506                 update_free_nid_bitmap(sbi, *nid, false, false);
2507
2508                 spin_unlock(&nm_i->nid_list_lock);
2509                 return true;
2510         }
2511         spin_unlock(&nm_i->nid_list_lock);
2512
2513         /* Let's scan nat pages and its caches to get free nids */
2514         if (!f2fs_build_free_nids(sbi, true, false))
2515                 goto retry;
2516         return false;
2517 }
2518
2519 /*
2520  * f2fs_alloc_nid() should be called prior to this function.
2521  */
2522 void f2fs_alloc_nid_done(struct f2fs_sb_info *sbi, nid_t nid)
2523 {
2524         struct f2fs_nm_info *nm_i = NM_I(sbi);
2525         struct free_nid *i;
2526
2527         spin_lock(&nm_i->nid_list_lock);
2528         i = __lookup_free_nid_list(nm_i, nid);
2529         f2fs_bug_on(sbi, !i);
2530         __remove_free_nid(sbi, i, PREALLOC_NID);
2531         spin_unlock(&nm_i->nid_list_lock);
2532
2533         kmem_cache_free(free_nid_slab, i);
2534 }
2535
2536 /*
2537  * f2fs_alloc_nid() should be called prior to this function.
2538  */
2539 void f2fs_alloc_nid_failed(struct f2fs_sb_info *sbi, nid_t nid)
2540 {
2541         struct f2fs_nm_info *nm_i = NM_I(sbi);
2542         struct free_nid *i;
2543         bool need_free = false;
2544
2545         if (!nid)
2546                 return;
2547
2548         spin_lock(&nm_i->nid_list_lock);
2549         i = __lookup_free_nid_list(nm_i, nid);
2550         f2fs_bug_on(sbi, !i);
2551
2552         if (!f2fs_available_free_memory(sbi, FREE_NIDS)) {
2553                 __remove_free_nid(sbi, i, PREALLOC_NID);
2554                 need_free = true;
2555         } else {
2556                 __move_free_nid(sbi, i, PREALLOC_NID, FREE_NID);
2557         }
2558
2559         nm_i->available_nids++;
2560
2561         update_free_nid_bitmap(sbi, nid, true, false);
2562
2563         spin_unlock(&nm_i->nid_list_lock);
2564
2565         if (need_free)
2566                 kmem_cache_free(free_nid_slab, i);
2567 }
2568
2569 int f2fs_try_to_free_nids(struct f2fs_sb_info *sbi, int nr_shrink)
2570 {
2571         struct f2fs_nm_info *nm_i = NM_I(sbi);
2572         int nr = nr_shrink;
2573
2574         if (nm_i->nid_cnt[FREE_NID] <= MAX_FREE_NIDS)
2575                 return 0;
2576
2577         if (!mutex_trylock(&nm_i->build_lock))
2578                 return 0;
2579
2580         while (nr_shrink && nm_i->nid_cnt[FREE_NID] > MAX_FREE_NIDS) {
2581                 struct free_nid *i, *next;
2582                 unsigned int batch = SHRINK_NID_BATCH_SIZE;
2583
2584                 spin_lock(&nm_i->nid_list_lock);
2585                 list_for_each_entry_safe(i, next, &nm_i->free_nid_list, list) {
2586                         if (!nr_shrink || !batch ||
2587                                 nm_i->nid_cnt[FREE_NID] <= MAX_FREE_NIDS)
2588                                 break;
2589                         __remove_free_nid(sbi, i, FREE_NID);
2590                         kmem_cache_free(free_nid_slab, i);
2591                         nr_shrink--;
2592                         batch--;
2593                 }
2594                 spin_unlock(&nm_i->nid_list_lock);
2595         }
2596
2597         mutex_unlock(&nm_i->build_lock);
2598
2599         return nr - nr_shrink;
2600 }
2601
2602 int f2fs_recover_inline_xattr(struct inode *inode, struct page *page)
2603 {
2604         void *src_addr, *dst_addr;
2605         size_t inline_size;
2606         struct page *ipage;
2607         struct f2fs_inode *ri;
2608
2609         ipage = f2fs_get_node_page(F2FS_I_SB(inode), inode->i_ino);
2610         if (IS_ERR(ipage))
2611                 return PTR_ERR(ipage);
2612
2613         ri = F2FS_INODE(page);
2614         if (ri->i_inline & F2FS_INLINE_XATTR) {
2615                 if (!f2fs_has_inline_xattr(inode)) {
2616                         set_inode_flag(inode, FI_INLINE_XATTR);
2617                         stat_inc_inline_xattr(inode);
2618                 }
2619         } else {
2620                 if (f2fs_has_inline_xattr(inode)) {
2621                         stat_dec_inline_xattr(inode);
2622                         clear_inode_flag(inode, FI_INLINE_XATTR);
2623                 }
2624                 goto update_inode;
2625         }
2626
2627         dst_addr = inline_xattr_addr(inode, ipage);
2628         src_addr = inline_xattr_addr(inode, page);
2629         inline_size = inline_xattr_size(inode);
2630
2631         f2fs_wait_on_page_writeback(ipage, NODE, true, true);
2632         memcpy(dst_addr, src_addr, inline_size);
2633 update_inode:
2634         f2fs_update_inode(inode, ipage);
2635         f2fs_put_page(ipage, 1);
2636         return 0;
2637 }
2638
2639 int f2fs_recover_xattr_data(struct inode *inode, struct page *page)
2640 {
2641         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2642         nid_t prev_xnid = F2FS_I(inode)->i_xattr_nid;
2643         nid_t new_xnid;
2644         struct dnode_of_data dn;
2645         struct node_info ni;
2646         struct page *xpage;
2647         int err;
2648
2649         if (!prev_xnid)
2650                 goto recover_xnid;
2651
2652         /* 1: invalidate the previous xattr nid */
2653         err = f2fs_get_node_info(sbi, prev_xnid, &ni);
2654         if (err)
2655                 return err;
2656
2657         f2fs_invalidate_blocks(sbi, ni.blk_addr);
2658         dec_valid_node_count(sbi, inode, false);
2659         set_node_addr(sbi, &ni, NULL_ADDR, false);
2660
2661 recover_xnid:
2662         /* 2: update xattr nid in inode */
2663         if (!f2fs_alloc_nid(sbi, &new_xnid))
2664                 return -ENOSPC;
2665
2666         set_new_dnode(&dn, inode, NULL, NULL, new_xnid);
2667         xpage = f2fs_new_node_page(&dn, XATTR_NODE_OFFSET);
2668         if (IS_ERR(xpage)) {
2669                 f2fs_alloc_nid_failed(sbi, new_xnid);
2670                 return PTR_ERR(xpage);
2671         }
2672
2673         f2fs_alloc_nid_done(sbi, new_xnid);
2674         f2fs_update_inode_page(inode);
2675
2676         /* 3: update and set xattr node page dirty */
2677         memcpy(F2FS_NODE(xpage), F2FS_NODE(page), VALID_XATTR_BLOCK_SIZE);
2678
2679         set_page_dirty(xpage);
2680         f2fs_put_page(xpage, 1);
2681
2682         return 0;
2683 }
2684
2685 int f2fs_recover_inode_page(struct f2fs_sb_info *sbi, struct page *page)
2686 {
2687         struct f2fs_inode *src, *dst;
2688         nid_t ino = ino_of_node(page);
2689         struct node_info old_ni, new_ni;
2690         struct page *ipage;
2691         int err;
2692
2693         err = f2fs_get_node_info(sbi, ino, &old_ni);
2694         if (err)
2695                 return err;
2696
2697         if (unlikely(old_ni.blk_addr != NULL_ADDR))
2698                 return -EINVAL;
2699 retry:
2700         ipage = f2fs_grab_cache_page(NODE_MAPPING(sbi), ino, false);
2701         if (!ipage) {
2702                 congestion_wait(BLK_RW_ASYNC, DEFAULT_IO_TIMEOUT);
2703                 goto retry;
2704         }
2705
2706         /* Should not use this inode from free nid list */
2707         remove_free_nid(sbi, ino);
2708
2709         if (!PageUptodate(ipage))
2710                 SetPageUptodate(ipage);
2711         fill_node_footer(ipage, ino, ino, 0, true);
2712         set_cold_node(ipage, false);
2713
2714         src = F2FS_INODE(page);
2715         dst = F2FS_INODE(ipage);
2716
2717         memcpy(dst, src, offsetof(struct f2fs_inode, i_ext));
2718         dst->i_size = 0;
2719         dst->i_blocks = cpu_to_le64(1);
2720         dst->i_links = cpu_to_le32(1);
2721         dst->i_xattr_nid = 0;
2722         dst->i_inline = src->i_inline & (F2FS_INLINE_XATTR | F2FS_EXTRA_ATTR);
2723         if (dst->i_inline & F2FS_EXTRA_ATTR) {
2724                 dst->i_extra_isize = src->i_extra_isize;
2725
2726                 if (f2fs_sb_has_flexible_inline_xattr(sbi) &&
2727                         F2FS_FITS_IN_INODE(src, le16_to_cpu(src->i_extra_isize),
2728                                                         i_inline_xattr_size))
2729                         dst->i_inline_xattr_size = src->i_inline_xattr_size;
2730
2731                 if (f2fs_sb_has_project_quota(sbi) &&
2732                         F2FS_FITS_IN_INODE(src, le16_to_cpu(src->i_extra_isize),
2733                                                                 i_projid))
2734                         dst->i_projid = src->i_projid;
2735
2736                 if (f2fs_sb_has_inode_crtime(sbi) &&
2737                         F2FS_FITS_IN_INODE(src, le16_to_cpu(src->i_extra_isize),
2738                                                         i_crtime_nsec)) {
2739                         dst->i_crtime = src->i_crtime;
2740                         dst->i_crtime_nsec = src->i_crtime_nsec;
2741                 }
2742         }
2743
2744         new_ni = old_ni;
2745         new_ni.ino = ino;
2746
2747         if (unlikely(inc_valid_node_count(sbi, NULL, true)))
2748                 WARN_ON(1);
2749         set_node_addr(sbi, &new_ni, NEW_ADDR, false);
2750         inc_valid_inode_count(sbi);
2751         set_page_dirty(ipage);
2752         f2fs_put_page(ipage, 1);
2753         return 0;
2754 }
2755
2756 int f2fs_restore_node_summary(struct f2fs_sb_info *sbi,
2757                         unsigned int segno, struct f2fs_summary_block *sum)
2758 {
2759         struct f2fs_node *rn;
2760         struct f2fs_summary *sum_entry;
2761         block_t addr;
2762         int i, idx, last_offset, nrpages;
2763
2764         /* scan the node segment */
2765         last_offset = sbi->blocks_per_seg;
2766         addr = START_BLOCK(sbi, segno);
2767         sum_entry = &sum->entries[0];
2768
2769         for (i = 0; i < last_offset; i += nrpages, addr += nrpages) {
2770                 nrpages = bio_max_segs(last_offset - i);
2771
2772                 /* readahead node pages */
2773                 f2fs_ra_meta_pages(sbi, addr, nrpages, META_POR, true);
2774
2775                 for (idx = addr; idx < addr + nrpages; idx++) {
2776                         struct page *page = f2fs_get_tmp_page(sbi, idx);
2777
2778                         if (IS_ERR(page))
2779                                 return PTR_ERR(page);
2780
2781                         rn = F2FS_NODE(page);
2782                         sum_entry->nid = rn->footer.nid;
2783                         sum_entry->version = 0;
2784                         sum_entry->ofs_in_node = 0;
2785                         sum_entry++;
2786                         f2fs_put_page(page, 1);
2787                 }
2788
2789                 invalidate_mapping_pages(META_MAPPING(sbi), addr,
2790                                                         addr + nrpages);
2791         }
2792         return 0;
2793 }
2794
2795 static void remove_nats_in_journal(struct f2fs_sb_info *sbi)
2796 {
2797         struct f2fs_nm_info *nm_i = NM_I(sbi);
2798         struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
2799         struct f2fs_journal *journal = curseg->journal;
2800         int i;
2801
2802         down_write(&curseg->journal_rwsem);
2803         for (i = 0; i < nats_in_cursum(journal); i++) {
2804                 struct nat_entry *ne;
2805                 struct f2fs_nat_entry raw_ne;
2806                 nid_t nid = le32_to_cpu(nid_in_journal(journal, i));
2807
2808                 if (f2fs_check_nid_range(sbi, nid))
2809                         continue;
2810
2811                 raw_ne = nat_in_journal(journal, i);
2812
2813                 ne = __lookup_nat_cache(nm_i, nid);
2814                 if (!ne) {
2815                         ne = __alloc_nat_entry(nid, true);
2816                         __init_nat_entry(nm_i, ne, &raw_ne, true);
2817                 }
2818
2819                 /*
2820                  * if a free nat in journal has not been used after last
2821                  * checkpoint, we should remove it from available nids,
2822                  * since later we will add it again.
2823                  */
2824                 if (!get_nat_flag(ne, IS_DIRTY) &&
2825                                 le32_to_cpu(raw_ne.block_addr) == NULL_ADDR) {
2826                         spin_lock(&nm_i->nid_list_lock);
2827                         nm_i->available_nids--;
2828                         spin_unlock(&nm_i->nid_list_lock);
2829                 }
2830
2831                 __set_nat_cache_dirty(nm_i, ne);
2832         }
2833         update_nats_in_cursum(journal, -i);
2834         up_write(&curseg->journal_rwsem);
2835 }
2836
2837 static void __adjust_nat_entry_set(struct nat_entry_set *nes,
2838                                                 struct list_head *head, int max)
2839 {
2840         struct nat_entry_set *cur;
2841
2842         if (nes->entry_cnt >= max)
2843                 goto add_out;
2844
2845         list_for_each_entry(cur, head, set_list) {
2846                 if (cur->entry_cnt >= nes->entry_cnt) {
2847                         list_add(&nes->set_list, cur->set_list.prev);
2848                         return;
2849                 }
2850         }
2851 add_out:
2852         list_add_tail(&nes->set_list, head);
2853 }
2854
2855 static void __update_nat_bits(struct f2fs_sb_info *sbi, nid_t start_nid,
2856                                                 struct page *page)
2857 {
2858         struct f2fs_nm_info *nm_i = NM_I(sbi);
2859         unsigned int nat_index = start_nid / NAT_ENTRY_PER_BLOCK;
2860         struct f2fs_nat_block *nat_blk = page_address(page);
2861         int valid = 0;
2862         int i = 0;
2863
2864         if (!enabled_nat_bits(sbi, NULL))
2865                 return;
2866
2867         if (nat_index == 0) {
2868                 valid = 1;
2869                 i = 1;
2870         }
2871         for (; i < NAT_ENTRY_PER_BLOCK; i++) {
2872                 if (le32_to_cpu(nat_blk->entries[i].block_addr) != NULL_ADDR)
2873                         valid++;
2874         }
2875         if (valid == 0) {
2876                 __set_bit_le(nat_index, nm_i->empty_nat_bits);
2877                 __clear_bit_le(nat_index, nm_i->full_nat_bits);
2878                 return;
2879         }
2880
2881         __clear_bit_le(nat_index, nm_i->empty_nat_bits);
2882         if (valid == NAT_ENTRY_PER_BLOCK)
2883                 __set_bit_le(nat_index, nm_i->full_nat_bits);
2884         else
2885                 __clear_bit_le(nat_index, nm_i->full_nat_bits);
2886 }
2887
2888 static int __flush_nat_entry_set(struct f2fs_sb_info *sbi,
2889                 struct nat_entry_set *set, struct cp_control *cpc)
2890 {
2891         struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
2892         struct f2fs_journal *journal = curseg->journal;
2893         nid_t start_nid = set->set * NAT_ENTRY_PER_BLOCK;
2894         bool to_journal = true;
2895         struct f2fs_nat_block *nat_blk;
2896         struct nat_entry *ne, *cur;
2897         struct page *page = NULL;
2898
2899         /*
2900          * there are two steps to flush nat entries:
2901          * #1, flush nat entries to journal in current hot data summary block.
2902          * #2, flush nat entries to nat page.
2903          */
2904         if (enabled_nat_bits(sbi, cpc) ||
2905                 !__has_cursum_space(journal, set->entry_cnt, NAT_JOURNAL))
2906                 to_journal = false;
2907
2908         if (to_journal) {
2909                 down_write(&curseg->journal_rwsem);
2910         } else {
2911                 page = get_next_nat_page(sbi, start_nid);
2912                 if (IS_ERR(page))
2913                         return PTR_ERR(page);
2914
2915                 nat_blk = page_address(page);
2916                 f2fs_bug_on(sbi, !nat_blk);
2917         }
2918
2919         /* flush dirty nats in nat entry set */
2920         list_for_each_entry_safe(ne, cur, &set->entry_list, list) {
2921                 struct f2fs_nat_entry *raw_ne;
2922                 nid_t nid = nat_get_nid(ne);
2923                 int offset;
2924
2925                 f2fs_bug_on(sbi, nat_get_blkaddr(ne) == NEW_ADDR);
2926
2927                 if (to_journal) {
2928                         offset = f2fs_lookup_journal_in_cursum(journal,
2929                                                         NAT_JOURNAL, nid, 1);
2930                         f2fs_bug_on(sbi, offset < 0);
2931                         raw_ne = &nat_in_journal(journal, offset);
2932                         nid_in_journal(journal, offset) = cpu_to_le32(nid);
2933                 } else {
2934                         raw_ne = &nat_blk->entries[nid - start_nid];
2935                 }
2936                 raw_nat_from_node_info(raw_ne, &ne->ni);
2937                 nat_reset_flag(ne);
2938                 __clear_nat_cache_dirty(NM_I(sbi), set, ne);
2939                 if (nat_get_blkaddr(ne) == NULL_ADDR) {
2940                         add_free_nid(sbi, nid, false, true);
2941                 } else {
2942                         spin_lock(&NM_I(sbi)->nid_list_lock);
2943                         update_free_nid_bitmap(sbi, nid, false, false);
2944                         spin_unlock(&NM_I(sbi)->nid_list_lock);
2945                 }
2946         }
2947
2948         if (to_journal) {
2949                 up_write(&curseg->journal_rwsem);
2950         } else {
2951                 __update_nat_bits(sbi, start_nid, page);
2952                 f2fs_put_page(page, 1);
2953         }
2954
2955         /* Allow dirty nats by node block allocation in write_begin */
2956         if (!set->entry_cnt) {
2957                 radix_tree_delete(&NM_I(sbi)->nat_set_root, set->set);
2958                 kmem_cache_free(nat_entry_set_slab, set);
2959         }
2960         return 0;
2961 }
2962
2963 /*
2964  * This function is called during the checkpointing process.
2965  */
2966 int f2fs_flush_nat_entries(struct f2fs_sb_info *sbi, struct cp_control *cpc)
2967 {
2968         struct f2fs_nm_info *nm_i = NM_I(sbi);
2969         struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
2970         struct f2fs_journal *journal = curseg->journal;
2971         struct nat_entry_set *setvec[SETVEC_SIZE];
2972         struct nat_entry_set *set, *tmp;
2973         unsigned int found;
2974         nid_t set_idx = 0;
2975         LIST_HEAD(sets);
2976         int err = 0;
2977
2978         /*
2979          * during unmount, let's flush nat_bits before checking
2980          * nat_cnt[DIRTY_NAT].
2981          */
2982         if (enabled_nat_bits(sbi, cpc)) {
2983                 down_write(&nm_i->nat_tree_lock);
2984                 remove_nats_in_journal(sbi);
2985                 up_write(&nm_i->nat_tree_lock);
2986         }
2987
2988         if (!nm_i->nat_cnt[DIRTY_NAT])
2989                 return 0;
2990
2991         down_write(&nm_i->nat_tree_lock);
2992
2993         /*
2994          * if there are no enough space in journal to store dirty nat
2995          * entries, remove all entries from journal and merge them
2996          * into nat entry set.
2997          */
2998         if (enabled_nat_bits(sbi, cpc) ||
2999                 !__has_cursum_space(journal,
3000                         nm_i->nat_cnt[DIRTY_NAT], NAT_JOURNAL))
3001                 remove_nats_in_journal(sbi);
3002
3003         while ((found = __gang_lookup_nat_set(nm_i,
3004                                         set_idx, SETVEC_SIZE, setvec))) {
3005                 unsigned idx;
3006
3007                 set_idx = setvec[found - 1]->set + 1;
3008                 for (idx = 0; idx < found; idx++)
3009                         __adjust_nat_entry_set(setvec[idx], &sets,
3010                                                 MAX_NAT_JENTRIES(journal));
3011         }
3012
3013         /* flush dirty nats in nat entry set */
3014         list_for_each_entry_safe(set, tmp, &sets, set_list) {
3015                 err = __flush_nat_entry_set(sbi, set, cpc);
3016                 if (err)
3017                         break;
3018         }
3019
3020         up_write(&nm_i->nat_tree_lock);
3021         /* Allow dirty nats by node block allocation in write_begin */
3022
3023         return err;
3024 }
3025
3026 static int __get_nat_bitmaps(struct f2fs_sb_info *sbi)
3027 {
3028         struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
3029         struct f2fs_nm_info *nm_i = NM_I(sbi);
3030         unsigned int nat_bits_bytes = nm_i->nat_blocks / BITS_PER_BYTE;
3031         unsigned int i;
3032         __u64 cp_ver = cur_cp_version(ckpt);
3033         block_t nat_bits_addr;
3034
3035         if (!enabled_nat_bits(sbi, NULL))
3036                 return 0;
3037
3038         nm_i->nat_bits_blocks = F2FS_BLK_ALIGN((nat_bits_bytes << 1) + 8);
3039         nm_i->nat_bits = f2fs_kvzalloc(sbi,
3040                         nm_i->nat_bits_blocks << F2FS_BLKSIZE_BITS, GFP_KERNEL);
3041         if (!nm_i->nat_bits)
3042                 return -ENOMEM;
3043
3044         nat_bits_addr = __start_cp_addr(sbi) + sbi->blocks_per_seg -
3045                                                 nm_i->nat_bits_blocks;
3046         for (i = 0; i < nm_i->nat_bits_blocks; i++) {
3047                 struct page *page;
3048
3049                 page = f2fs_get_meta_page(sbi, nat_bits_addr++);
3050                 if (IS_ERR(page))
3051                         return PTR_ERR(page);
3052
3053                 memcpy(nm_i->nat_bits + (i << F2FS_BLKSIZE_BITS),
3054                                         page_address(page), F2FS_BLKSIZE);
3055                 f2fs_put_page(page, 1);
3056         }
3057
3058         cp_ver |= (cur_cp_crc(ckpt) << 32);
3059         if (cpu_to_le64(cp_ver) != *(__le64 *)nm_i->nat_bits) {
3060                 disable_nat_bits(sbi, true);
3061                 return 0;
3062         }
3063
3064         nm_i->full_nat_bits = nm_i->nat_bits + 8;
3065         nm_i->empty_nat_bits = nm_i->full_nat_bits + nat_bits_bytes;
3066
3067         f2fs_notice(sbi, "Found nat_bits in checkpoint");
3068         return 0;
3069 }
3070
3071 static inline void load_free_nid_bitmap(struct f2fs_sb_info *sbi)
3072 {
3073         struct f2fs_nm_info *nm_i = NM_I(sbi);
3074         unsigned int i = 0;
3075         nid_t nid, last_nid;
3076
3077         if (!enabled_nat_bits(sbi, NULL))
3078                 return;
3079
3080         for (i = 0; i < nm_i->nat_blocks; i++) {
3081                 i = find_next_bit_le(nm_i->empty_nat_bits, nm_i->nat_blocks, i);
3082                 if (i >= nm_i->nat_blocks)
3083                         break;
3084
3085                 __set_bit_le(i, nm_i->nat_block_bitmap);
3086
3087                 nid = i * NAT_ENTRY_PER_BLOCK;
3088                 last_nid = nid + NAT_ENTRY_PER_BLOCK;
3089
3090                 spin_lock(&NM_I(sbi)->nid_list_lock);
3091                 for (; nid < last_nid; nid++)
3092                         update_free_nid_bitmap(sbi, nid, true, true);
3093                 spin_unlock(&NM_I(sbi)->nid_list_lock);
3094         }
3095
3096         for (i = 0; i < nm_i->nat_blocks; i++) {
3097                 i = find_next_bit_le(nm_i->full_nat_bits, nm_i->nat_blocks, i);
3098                 if (i >= nm_i->nat_blocks)
3099                         break;
3100
3101                 __set_bit_le(i, nm_i->nat_block_bitmap);
3102         }
3103 }
3104
3105 static int init_node_manager(struct f2fs_sb_info *sbi)
3106 {
3107         struct f2fs_super_block *sb_raw = F2FS_RAW_SUPER(sbi);
3108         struct f2fs_nm_info *nm_i = NM_I(sbi);
3109         unsigned char *version_bitmap;
3110         unsigned int nat_segs;
3111         int err;
3112
3113         nm_i->nat_blkaddr = le32_to_cpu(sb_raw->nat_blkaddr);
3114
3115         /* segment_count_nat includes pair segment so divide to 2. */
3116         nat_segs = le32_to_cpu(sb_raw->segment_count_nat) >> 1;
3117         nm_i->nat_blocks = nat_segs << le32_to_cpu(sb_raw->log_blocks_per_seg);
3118         nm_i->max_nid = NAT_ENTRY_PER_BLOCK * nm_i->nat_blocks;
3119
3120         /* not used nids: 0, node, meta, (and root counted as valid node) */
3121         nm_i->available_nids = nm_i->max_nid - sbi->total_valid_node_count -
3122                                                 F2FS_RESERVED_NODE_NUM;
3123         nm_i->nid_cnt[FREE_NID] = 0;
3124         nm_i->nid_cnt[PREALLOC_NID] = 0;
3125         nm_i->ram_thresh = DEF_RAM_THRESHOLD;
3126         nm_i->ra_nid_pages = DEF_RA_NID_PAGES;
3127         nm_i->dirty_nats_ratio = DEF_DIRTY_NAT_RATIO_THRESHOLD;
3128
3129         INIT_RADIX_TREE(&nm_i->free_nid_root, GFP_ATOMIC);
3130         INIT_LIST_HEAD(&nm_i->free_nid_list);
3131         INIT_RADIX_TREE(&nm_i->nat_root, GFP_NOIO);
3132         INIT_RADIX_TREE(&nm_i->nat_set_root, GFP_NOIO);
3133         INIT_LIST_HEAD(&nm_i->nat_entries);
3134         spin_lock_init(&nm_i->nat_list_lock);
3135
3136         mutex_init(&nm_i->build_lock);
3137         spin_lock_init(&nm_i->nid_list_lock);
3138         init_rwsem(&nm_i->nat_tree_lock);
3139
3140         nm_i->next_scan_nid = le32_to_cpu(sbi->ckpt->next_free_nid);
3141         nm_i->bitmap_size = __bitmap_size(sbi, NAT_BITMAP);
3142         version_bitmap = __bitmap_ptr(sbi, NAT_BITMAP);
3143         nm_i->nat_bitmap = kmemdup(version_bitmap, nm_i->bitmap_size,
3144                                         GFP_KERNEL);
3145         if (!nm_i->nat_bitmap)
3146                 return -ENOMEM;
3147
3148         err = __get_nat_bitmaps(sbi);
3149         if (err)
3150                 return err;
3151
3152 #ifdef CONFIG_F2FS_CHECK_FS
3153         nm_i->nat_bitmap_mir = kmemdup(version_bitmap, nm_i->bitmap_size,
3154                                         GFP_KERNEL);
3155         if (!nm_i->nat_bitmap_mir)
3156                 return -ENOMEM;
3157 #endif
3158
3159         return 0;
3160 }
3161
3162 static int init_free_nid_cache(struct f2fs_sb_info *sbi)
3163 {
3164         struct f2fs_nm_info *nm_i = NM_I(sbi);
3165         int i;
3166
3167         nm_i->free_nid_bitmap =
3168                 f2fs_kvzalloc(sbi, array_size(sizeof(unsigned char *),
3169                                               nm_i->nat_blocks),
3170                               GFP_KERNEL);
3171         if (!nm_i->free_nid_bitmap)
3172                 return -ENOMEM;
3173
3174         for (i = 0; i < nm_i->nat_blocks; i++) {
3175                 nm_i->free_nid_bitmap[i] = f2fs_kvzalloc(sbi,
3176                         f2fs_bitmap_size(NAT_ENTRY_PER_BLOCK), GFP_KERNEL);
3177                 if (!nm_i->free_nid_bitmap[i])
3178                         return -ENOMEM;
3179         }
3180
3181         nm_i->nat_block_bitmap = f2fs_kvzalloc(sbi, nm_i->nat_blocks / 8,
3182                                                                 GFP_KERNEL);
3183         if (!nm_i->nat_block_bitmap)
3184                 return -ENOMEM;
3185
3186         nm_i->free_nid_count =
3187                 f2fs_kvzalloc(sbi, array_size(sizeof(unsigned short),
3188                                               nm_i->nat_blocks),
3189                               GFP_KERNEL);
3190         if (!nm_i->free_nid_count)
3191                 return -ENOMEM;
3192         return 0;
3193 }
3194
3195 int f2fs_build_node_manager(struct f2fs_sb_info *sbi)
3196 {
3197         int err;
3198
3199         sbi->nm_info = f2fs_kzalloc(sbi, sizeof(struct f2fs_nm_info),
3200                                                         GFP_KERNEL);
3201         if (!sbi->nm_info)
3202                 return -ENOMEM;
3203
3204         err = init_node_manager(sbi);
3205         if (err)
3206                 return err;
3207
3208         err = init_free_nid_cache(sbi);
3209         if (err)
3210                 return err;
3211
3212         /* load free nid status from nat_bits table */
3213         load_free_nid_bitmap(sbi);
3214
3215         return f2fs_build_free_nids(sbi, true, true);
3216 }
3217
3218 void f2fs_destroy_node_manager(struct f2fs_sb_info *sbi)
3219 {
3220         struct f2fs_nm_info *nm_i = NM_I(sbi);
3221         struct free_nid *i, *next_i;
3222         struct nat_entry *natvec[NATVEC_SIZE];
3223         struct nat_entry_set *setvec[SETVEC_SIZE];
3224         nid_t nid = 0;
3225         unsigned int found;
3226
3227         if (!nm_i)
3228                 return;
3229
3230         /* destroy free nid list */
3231         spin_lock(&nm_i->nid_list_lock);
3232         list_for_each_entry_safe(i, next_i, &nm_i->free_nid_list, list) {
3233                 __remove_free_nid(sbi, i, FREE_NID);
3234                 spin_unlock(&nm_i->nid_list_lock);
3235                 kmem_cache_free(free_nid_slab, i);
3236                 spin_lock(&nm_i->nid_list_lock);
3237         }
3238         f2fs_bug_on(sbi, nm_i->nid_cnt[FREE_NID]);
3239         f2fs_bug_on(sbi, nm_i->nid_cnt[PREALLOC_NID]);
3240         f2fs_bug_on(sbi, !list_empty(&nm_i->free_nid_list));
3241         spin_unlock(&nm_i->nid_list_lock);
3242
3243         /* destroy nat cache */
3244         down_write(&nm_i->nat_tree_lock);
3245         while ((found = __gang_lookup_nat_cache(nm_i,
3246                                         nid, NATVEC_SIZE, natvec))) {
3247                 unsigned idx;
3248
3249                 nid = nat_get_nid(natvec[found - 1]) + 1;
3250                 for (idx = 0; idx < found; idx++) {
3251                         spin_lock(&nm_i->nat_list_lock);
3252                         list_del(&natvec[idx]->list);
3253                         spin_unlock(&nm_i->nat_list_lock);
3254
3255                         __del_from_nat_cache(nm_i, natvec[idx]);
3256                 }
3257         }
3258         f2fs_bug_on(sbi, nm_i->nat_cnt[TOTAL_NAT]);
3259
3260         /* destroy nat set cache */
3261         nid = 0;
3262         while ((found = __gang_lookup_nat_set(nm_i,
3263                                         nid, SETVEC_SIZE, setvec))) {
3264                 unsigned idx;
3265
3266                 nid = setvec[found - 1]->set + 1;
3267                 for (idx = 0; idx < found; idx++) {
3268                         /* entry_cnt is not zero, when cp_error was occurred */
3269                         f2fs_bug_on(sbi, !list_empty(&setvec[idx]->entry_list));
3270                         radix_tree_delete(&nm_i->nat_set_root, setvec[idx]->set);
3271                         kmem_cache_free(nat_entry_set_slab, setvec[idx]);
3272                 }
3273         }
3274         up_write(&nm_i->nat_tree_lock);
3275
3276         kvfree(nm_i->nat_block_bitmap);
3277         if (nm_i->free_nid_bitmap) {
3278                 int i;
3279
3280                 for (i = 0; i < nm_i->nat_blocks; i++)
3281                         kvfree(nm_i->free_nid_bitmap[i]);
3282                 kvfree(nm_i->free_nid_bitmap);
3283         }
3284         kvfree(nm_i->free_nid_count);
3285
3286         kvfree(nm_i->nat_bitmap);
3287         kvfree(nm_i->nat_bits);
3288 #ifdef CONFIG_F2FS_CHECK_FS
3289         kvfree(nm_i->nat_bitmap_mir);
3290 #endif
3291         sbi->nm_info = NULL;
3292         kfree(nm_i);
3293 }
3294
3295 int __init f2fs_create_node_manager_caches(void)
3296 {
3297         nat_entry_slab = f2fs_kmem_cache_create("f2fs_nat_entry",
3298                         sizeof(struct nat_entry));
3299         if (!nat_entry_slab)
3300                 goto fail;
3301
3302         free_nid_slab = f2fs_kmem_cache_create("f2fs_free_nid",
3303                         sizeof(struct free_nid));
3304         if (!free_nid_slab)
3305                 goto destroy_nat_entry;
3306
3307         nat_entry_set_slab = f2fs_kmem_cache_create("f2fs_nat_entry_set",
3308                         sizeof(struct nat_entry_set));
3309         if (!nat_entry_set_slab)
3310                 goto destroy_free_nid;
3311
3312         fsync_node_entry_slab = f2fs_kmem_cache_create("f2fs_fsync_node_entry",
3313                         sizeof(struct fsync_node_entry));
3314         if (!fsync_node_entry_slab)
3315                 goto destroy_nat_entry_set;
3316         return 0;
3317
3318 destroy_nat_entry_set:
3319         kmem_cache_destroy(nat_entry_set_slab);
3320 destroy_free_nid:
3321         kmem_cache_destroy(free_nid_slab);
3322 destroy_nat_entry:
3323         kmem_cache_destroy(nat_entry_slab);
3324 fail:
3325         return -ENOMEM;
3326 }
3327
3328 void f2fs_destroy_node_manager_caches(void)
3329 {
3330         kmem_cache_destroy(fsync_node_entry_slab);
3331         kmem_cache_destroy(nat_entry_set_slab);
3332         kmem_cache_destroy(free_nid_slab);
3333         kmem_cache_destroy(nat_entry_slab);
3334 }