Merge tag 'spi-nor/for-5.14' into mtd/next
[linux-2.6-microblaze.git] / fs / f2fs / file.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * fs/f2fs/file.c
4  *
5  * Copyright (c) 2012 Samsung Electronics Co., Ltd.
6  *             http://www.samsung.com/
7  */
8 #include <linux/fs.h>
9 #include <linux/f2fs_fs.h>
10 #include <linux/stat.h>
11 #include <linux/buffer_head.h>
12 #include <linux/writeback.h>
13 #include <linux/blkdev.h>
14 #include <linux/falloc.h>
15 #include <linux/types.h>
16 #include <linux/compat.h>
17 #include <linux/uaccess.h>
18 #include <linux/mount.h>
19 #include <linux/pagevec.h>
20 #include <linux/uio.h>
21 #include <linux/uuid.h>
22 #include <linux/file.h>
23 #include <linux/nls.h>
24 #include <linux/sched/signal.h>
25 #include <linux/fileattr.h>
26
27 #include "f2fs.h"
28 #include "node.h"
29 #include "segment.h"
30 #include "xattr.h"
31 #include "acl.h"
32 #include "gc.h"
33 #include <trace/events/f2fs.h>
34 #include <uapi/linux/f2fs.h>
35
36 static vm_fault_t f2fs_filemap_fault(struct vm_fault *vmf)
37 {
38         struct inode *inode = file_inode(vmf->vma->vm_file);
39         vm_fault_t ret;
40
41         down_read(&F2FS_I(inode)->i_mmap_sem);
42         ret = filemap_fault(vmf);
43         up_read(&F2FS_I(inode)->i_mmap_sem);
44
45         if (!ret)
46                 f2fs_update_iostat(F2FS_I_SB(inode), APP_MAPPED_READ_IO,
47                                                         F2FS_BLKSIZE);
48
49         trace_f2fs_filemap_fault(inode, vmf->pgoff, (unsigned long)ret);
50
51         return ret;
52 }
53
54 static vm_fault_t f2fs_vm_page_mkwrite(struct vm_fault *vmf)
55 {
56         struct page *page = vmf->page;
57         struct inode *inode = file_inode(vmf->vma->vm_file);
58         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
59         struct dnode_of_data dn;
60         bool need_alloc = true;
61         int err = 0;
62
63         if (unlikely(IS_IMMUTABLE(inode)))
64                 return VM_FAULT_SIGBUS;
65
66         if (unlikely(f2fs_cp_error(sbi))) {
67                 err = -EIO;
68                 goto err;
69         }
70
71         if (!f2fs_is_checkpoint_ready(sbi)) {
72                 err = -ENOSPC;
73                 goto err;
74         }
75
76         err = f2fs_convert_inline_inode(inode);
77         if (err)
78                 goto err;
79
80 #ifdef CONFIG_F2FS_FS_COMPRESSION
81         if (f2fs_compressed_file(inode)) {
82                 int ret = f2fs_is_compressed_cluster(inode, page->index);
83
84                 if (ret < 0) {
85                         err = ret;
86                         goto err;
87                 } else if (ret) {
88                         if (ret < F2FS_I(inode)->i_cluster_size) {
89                                 err = -EAGAIN;
90                                 goto err;
91                         }
92                         need_alloc = false;
93                 }
94         }
95 #endif
96         /* should do out of any locked page */
97         if (need_alloc)
98                 f2fs_balance_fs(sbi, true);
99
100         sb_start_pagefault(inode->i_sb);
101
102         f2fs_bug_on(sbi, f2fs_has_inline_data(inode));
103
104         file_update_time(vmf->vma->vm_file);
105         down_read(&F2FS_I(inode)->i_mmap_sem);
106         lock_page(page);
107         if (unlikely(page->mapping != inode->i_mapping ||
108                         page_offset(page) > i_size_read(inode) ||
109                         !PageUptodate(page))) {
110                 unlock_page(page);
111                 err = -EFAULT;
112                 goto out_sem;
113         }
114
115         if (need_alloc) {
116                 /* block allocation */
117                 f2fs_do_map_lock(sbi, F2FS_GET_BLOCK_PRE_AIO, true);
118                 set_new_dnode(&dn, inode, NULL, NULL, 0);
119                 err = f2fs_get_block(&dn, page->index);
120                 f2fs_put_dnode(&dn);
121                 f2fs_do_map_lock(sbi, F2FS_GET_BLOCK_PRE_AIO, false);
122         }
123
124 #ifdef CONFIG_F2FS_FS_COMPRESSION
125         if (!need_alloc) {
126                 set_new_dnode(&dn, inode, NULL, NULL, 0);
127                 err = f2fs_get_dnode_of_data(&dn, page->index, LOOKUP_NODE);
128                 f2fs_put_dnode(&dn);
129         }
130 #endif
131         if (err) {
132                 unlock_page(page);
133                 goto out_sem;
134         }
135
136         f2fs_wait_on_page_writeback(page, DATA, false, true);
137
138         /* wait for GCed page writeback via META_MAPPING */
139         f2fs_wait_on_block_writeback(inode, dn.data_blkaddr);
140
141         /*
142          * check to see if the page is mapped already (no holes)
143          */
144         if (PageMappedToDisk(page))
145                 goto out_sem;
146
147         /* page is wholly or partially inside EOF */
148         if (((loff_t)(page->index + 1) << PAGE_SHIFT) >
149                                                 i_size_read(inode)) {
150                 loff_t offset;
151
152                 offset = i_size_read(inode) & ~PAGE_MASK;
153                 zero_user_segment(page, offset, PAGE_SIZE);
154         }
155         set_page_dirty(page);
156         if (!PageUptodate(page))
157                 SetPageUptodate(page);
158
159         f2fs_update_iostat(sbi, APP_MAPPED_IO, F2FS_BLKSIZE);
160         f2fs_update_time(sbi, REQ_TIME);
161
162         trace_f2fs_vm_page_mkwrite(page, DATA);
163 out_sem:
164         up_read(&F2FS_I(inode)->i_mmap_sem);
165
166         sb_end_pagefault(inode->i_sb);
167 err:
168         return block_page_mkwrite_return(err);
169 }
170
171 static const struct vm_operations_struct f2fs_file_vm_ops = {
172         .fault          = f2fs_filemap_fault,
173         .map_pages      = filemap_map_pages,
174         .page_mkwrite   = f2fs_vm_page_mkwrite,
175 };
176
177 static int get_parent_ino(struct inode *inode, nid_t *pino)
178 {
179         struct dentry *dentry;
180
181         /*
182          * Make sure to get the non-deleted alias.  The alias associated with
183          * the open file descriptor being fsync()'ed may be deleted already.
184          */
185         dentry = d_find_alias(inode);
186         if (!dentry)
187                 return 0;
188
189         *pino = parent_ino(dentry);
190         dput(dentry);
191         return 1;
192 }
193
194 static inline enum cp_reason_type need_do_checkpoint(struct inode *inode)
195 {
196         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
197         enum cp_reason_type cp_reason = CP_NO_NEEDED;
198
199         if (!S_ISREG(inode->i_mode))
200                 cp_reason = CP_NON_REGULAR;
201         else if (f2fs_compressed_file(inode))
202                 cp_reason = CP_COMPRESSED;
203         else if (inode->i_nlink != 1)
204                 cp_reason = CP_HARDLINK;
205         else if (is_sbi_flag_set(sbi, SBI_NEED_CP))
206                 cp_reason = CP_SB_NEED_CP;
207         else if (file_wrong_pino(inode))
208                 cp_reason = CP_WRONG_PINO;
209         else if (!f2fs_space_for_roll_forward(sbi))
210                 cp_reason = CP_NO_SPC_ROLL;
211         else if (!f2fs_is_checkpointed_node(sbi, F2FS_I(inode)->i_pino))
212                 cp_reason = CP_NODE_NEED_CP;
213         else if (test_opt(sbi, FASTBOOT))
214                 cp_reason = CP_FASTBOOT_MODE;
215         else if (F2FS_OPTION(sbi).active_logs == 2)
216                 cp_reason = CP_SPEC_LOG_NUM;
217         else if (F2FS_OPTION(sbi).fsync_mode == FSYNC_MODE_STRICT &&
218                 f2fs_need_dentry_mark(sbi, inode->i_ino) &&
219                 f2fs_exist_written_data(sbi, F2FS_I(inode)->i_pino,
220                                                         TRANS_DIR_INO))
221                 cp_reason = CP_RECOVER_DIR;
222
223         return cp_reason;
224 }
225
226 static bool need_inode_page_update(struct f2fs_sb_info *sbi, nid_t ino)
227 {
228         struct page *i = find_get_page(NODE_MAPPING(sbi), ino);
229         bool ret = false;
230         /* But we need to avoid that there are some inode updates */
231         if ((i && PageDirty(i)) || f2fs_need_inode_block_update(sbi, ino))
232                 ret = true;
233         f2fs_put_page(i, 0);
234         return ret;
235 }
236
237 static void try_to_fix_pino(struct inode *inode)
238 {
239         struct f2fs_inode_info *fi = F2FS_I(inode);
240         nid_t pino;
241
242         down_write(&fi->i_sem);
243         if (file_wrong_pino(inode) && inode->i_nlink == 1 &&
244                         get_parent_ino(inode, &pino)) {
245                 f2fs_i_pino_write(inode, pino);
246                 file_got_pino(inode);
247         }
248         up_write(&fi->i_sem);
249 }
250
251 static int f2fs_do_sync_file(struct file *file, loff_t start, loff_t end,
252                                                 int datasync, bool atomic)
253 {
254         struct inode *inode = file->f_mapping->host;
255         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
256         nid_t ino = inode->i_ino;
257         int ret = 0;
258         enum cp_reason_type cp_reason = 0;
259         struct writeback_control wbc = {
260                 .sync_mode = WB_SYNC_ALL,
261                 .nr_to_write = LONG_MAX,
262                 .for_reclaim = 0,
263         };
264         unsigned int seq_id = 0;
265
266         if (unlikely(f2fs_readonly(inode->i_sb) ||
267                                 is_sbi_flag_set(sbi, SBI_CP_DISABLED)))
268                 return 0;
269
270         trace_f2fs_sync_file_enter(inode);
271
272         if (S_ISDIR(inode->i_mode))
273                 goto go_write;
274
275         /* if fdatasync is triggered, let's do in-place-update */
276         if (datasync || get_dirty_pages(inode) <= SM_I(sbi)->min_fsync_blocks)
277                 set_inode_flag(inode, FI_NEED_IPU);
278         ret = file_write_and_wait_range(file, start, end);
279         clear_inode_flag(inode, FI_NEED_IPU);
280
281         if (ret) {
282                 trace_f2fs_sync_file_exit(inode, cp_reason, datasync, ret);
283                 return ret;
284         }
285
286         /* if the inode is dirty, let's recover all the time */
287         if (!f2fs_skip_inode_update(inode, datasync)) {
288                 f2fs_write_inode(inode, NULL);
289                 goto go_write;
290         }
291
292         /*
293          * if there is no written data, don't waste time to write recovery info.
294          */
295         if (!is_inode_flag_set(inode, FI_APPEND_WRITE) &&
296                         !f2fs_exist_written_data(sbi, ino, APPEND_INO)) {
297
298                 /* it may call write_inode just prior to fsync */
299                 if (need_inode_page_update(sbi, ino))
300                         goto go_write;
301
302                 if (is_inode_flag_set(inode, FI_UPDATE_WRITE) ||
303                                 f2fs_exist_written_data(sbi, ino, UPDATE_INO))
304                         goto flush_out;
305                 goto out;
306         }
307 go_write:
308         /*
309          * Both of fdatasync() and fsync() are able to be recovered from
310          * sudden-power-off.
311          */
312         down_read(&F2FS_I(inode)->i_sem);
313         cp_reason = need_do_checkpoint(inode);
314         up_read(&F2FS_I(inode)->i_sem);
315
316         if (cp_reason) {
317                 /* all the dirty node pages should be flushed for POR */
318                 ret = f2fs_sync_fs(inode->i_sb, 1);
319
320                 /*
321                  * We've secured consistency through sync_fs. Following pino
322                  * will be used only for fsynced inodes after checkpoint.
323                  */
324                 try_to_fix_pino(inode);
325                 clear_inode_flag(inode, FI_APPEND_WRITE);
326                 clear_inode_flag(inode, FI_UPDATE_WRITE);
327                 goto out;
328         }
329 sync_nodes:
330         atomic_inc(&sbi->wb_sync_req[NODE]);
331         ret = f2fs_fsync_node_pages(sbi, inode, &wbc, atomic, &seq_id);
332         atomic_dec(&sbi->wb_sync_req[NODE]);
333         if (ret)
334                 goto out;
335
336         /* if cp_error was enabled, we should avoid infinite loop */
337         if (unlikely(f2fs_cp_error(sbi))) {
338                 ret = -EIO;
339                 goto out;
340         }
341
342         if (f2fs_need_inode_block_update(sbi, ino)) {
343                 f2fs_mark_inode_dirty_sync(inode, true);
344                 f2fs_write_inode(inode, NULL);
345                 goto sync_nodes;
346         }
347
348         /*
349          * If it's atomic_write, it's just fine to keep write ordering. So
350          * here we don't need to wait for node write completion, since we use
351          * node chain which serializes node blocks. If one of node writes are
352          * reordered, we can see simply broken chain, resulting in stopping
353          * roll-forward recovery. It means we'll recover all or none node blocks
354          * given fsync mark.
355          */
356         if (!atomic) {
357                 ret = f2fs_wait_on_node_pages_writeback(sbi, seq_id);
358                 if (ret)
359                         goto out;
360         }
361
362         /* once recovery info is written, don't need to tack this */
363         f2fs_remove_ino_entry(sbi, ino, APPEND_INO);
364         clear_inode_flag(inode, FI_APPEND_WRITE);
365 flush_out:
366         if (!atomic && F2FS_OPTION(sbi).fsync_mode != FSYNC_MODE_NOBARRIER)
367                 ret = f2fs_issue_flush(sbi, inode->i_ino);
368         if (!ret) {
369                 f2fs_remove_ino_entry(sbi, ino, UPDATE_INO);
370                 clear_inode_flag(inode, FI_UPDATE_WRITE);
371                 f2fs_remove_ino_entry(sbi, ino, FLUSH_INO);
372         }
373         f2fs_update_time(sbi, REQ_TIME);
374 out:
375         trace_f2fs_sync_file_exit(inode, cp_reason, datasync, ret);
376         return ret;
377 }
378
379 int f2fs_sync_file(struct file *file, loff_t start, loff_t end, int datasync)
380 {
381         if (unlikely(f2fs_cp_error(F2FS_I_SB(file_inode(file)))))
382                 return -EIO;
383         return f2fs_do_sync_file(file, start, end, datasync, false);
384 }
385
386 static bool __found_offset(struct address_space *mapping, block_t blkaddr,
387                                 pgoff_t index, int whence)
388 {
389         switch (whence) {
390         case SEEK_DATA:
391                 if (__is_valid_data_blkaddr(blkaddr))
392                         return true;
393                 if (blkaddr == NEW_ADDR &&
394                     xa_get_mark(&mapping->i_pages, index, PAGECACHE_TAG_DIRTY))
395                         return true;
396                 break;
397         case SEEK_HOLE:
398                 if (blkaddr == NULL_ADDR)
399                         return true;
400                 break;
401         }
402         return false;
403 }
404
405 static loff_t f2fs_seek_block(struct file *file, loff_t offset, int whence)
406 {
407         struct inode *inode = file->f_mapping->host;
408         loff_t maxbytes = inode->i_sb->s_maxbytes;
409         struct dnode_of_data dn;
410         pgoff_t pgofs, end_offset;
411         loff_t data_ofs = offset;
412         loff_t isize;
413         int err = 0;
414
415         inode_lock(inode);
416
417         isize = i_size_read(inode);
418         if (offset >= isize)
419                 goto fail;
420
421         /* handle inline data case */
422         if (f2fs_has_inline_data(inode)) {
423                 if (whence == SEEK_HOLE) {
424                         data_ofs = isize;
425                         goto found;
426                 } else if (whence == SEEK_DATA) {
427                         data_ofs = offset;
428                         goto found;
429                 }
430         }
431
432         pgofs = (pgoff_t)(offset >> PAGE_SHIFT);
433
434         for (; data_ofs < isize; data_ofs = (loff_t)pgofs << PAGE_SHIFT) {
435                 set_new_dnode(&dn, inode, NULL, NULL, 0);
436                 err = f2fs_get_dnode_of_data(&dn, pgofs, LOOKUP_NODE);
437                 if (err && err != -ENOENT) {
438                         goto fail;
439                 } else if (err == -ENOENT) {
440                         /* direct node does not exists */
441                         if (whence == SEEK_DATA) {
442                                 pgofs = f2fs_get_next_page_offset(&dn, pgofs);
443                                 continue;
444                         } else {
445                                 goto found;
446                         }
447                 }
448
449                 end_offset = ADDRS_PER_PAGE(dn.node_page, inode);
450
451                 /* find data/hole in dnode block */
452                 for (; dn.ofs_in_node < end_offset;
453                                 dn.ofs_in_node++, pgofs++,
454                                 data_ofs = (loff_t)pgofs << PAGE_SHIFT) {
455                         block_t blkaddr;
456
457                         blkaddr = f2fs_data_blkaddr(&dn);
458
459                         if (__is_valid_data_blkaddr(blkaddr) &&
460                                 !f2fs_is_valid_blkaddr(F2FS_I_SB(inode),
461                                         blkaddr, DATA_GENERIC_ENHANCE)) {
462                                 f2fs_put_dnode(&dn);
463                                 goto fail;
464                         }
465
466                         if (__found_offset(file->f_mapping, blkaddr,
467                                                         pgofs, whence)) {
468                                 f2fs_put_dnode(&dn);
469                                 goto found;
470                         }
471                 }
472                 f2fs_put_dnode(&dn);
473         }
474
475         if (whence == SEEK_DATA)
476                 goto fail;
477 found:
478         if (whence == SEEK_HOLE && data_ofs > isize)
479                 data_ofs = isize;
480         inode_unlock(inode);
481         return vfs_setpos(file, data_ofs, maxbytes);
482 fail:
483         inode_unlock(inode);
484         return -ENXIO;
485 }
486
487 static loff_t f2fs_llseek(struct file *file, loff_t offset, int whence)
488 {
489         struct inode *inode = file->f_mapping->host;
490         loff_t maxbytes = inode->i_sb->s_maxbytes;
491
492         if (f2fs_compressed_file(inode))
493                 maxbytes = max_file_blocks(inode) << F2FS_BLKSIZE_BITS;
494
495         switch (whence) {
496         case SEEK_SET:
497         case SEEK_CUR:
498         case SEEK_END:
499                 return generic_file_llseek_size(file, offset, whence,
500                                                 maxbytes, i_size_read(inode));
501         case SEEK_DATA:
502         case SEEK_HOLE:
503                 if (offset < 0)
504                         return -ENXIO;
505                 return f2fs_seek_block(file, offset, whence);
506         }
507
508         return -EINVAL;
509 }
510
511 static int f2fs_file_mmap(struct file *file, struct vm_area_struct *vma)
512 {
513         struct inode *inode = file_inode(file);
514
515         if (unlikely(f2fs_cp_error(F2FS_I_SB(inode))))
516                 return -EIO;
517
518         if (!f2fs_is_compress_backend_ready(inode))
519                 return -EOPNOTSUPP;
520
521         file_accessed(file);
522         vma->vm_ops = &f2fs_file_vm_ops;
523         set_inode_flag(inode, FI_MMAP_FILE);
524         return 0;
525 }
526
527 static int f2fs_file_open(struct inode *inode, struct file *filp)
528 {
529         int err = fscrypt_file_open(inode, filp);
530
531         if (err)
532                 return err;
533
534         if (!f2fs_is_compress_backend_ready(inode))
535                 return -EOPNOTSUPP;
536
537         err = fsverity_file_open(inode, filp);
538         if (err)
539                 return err;
540
541         filp->f_mode |= FMODE_NOWAIT;
542
543         return dquot_file_open(inode, filp);
544 }
545
546 void f2fs_truncate_data_blocks_range(struct dnode_of_data *dn, int count)
547 {
548         struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
549         struct f2fs_node *raw_node;
550         int nr_free = 0, ofs = dn->ofs_in_node, len = count;
551         __le32 *addr;
552         int base = 0;
553         bool compressed_cluster = false;
554         int cluster_index = 0, valid_blocks = 0;
555         int cluster_size = F2FS_I(dn->inode)->i_cluster_size;
556         bool released = !atomic_read(&F2FS_I(dn->inode)->i_compr_blocks);
557
558         if (IS_INODE(dn->node_page) && f2fs_has_extra_attr(dn->inode))
559                 base = get_extra_isize(dn->inode);
560
561         raw_node = F2FS_NODE(dn->node_page);
562         addr = blkaddr_in_node(raw_node) + base + ofs;
563
564         /* Assumption: truncateion starts with cluster */
565         for (; count > 0; count--, addr++, dn->ofs_in_node++, cluster_index++) {
566                 block_t blkaddr = le32_to_cpu(*addr);
567
568                 if (f2fs_compressed_file(dn->inode) &&
569                                         !(cluster_index & (cluster_size - 1))) {
570                         if (compressed_cluster)
571                                 f2fs_i_compr_blocks_update(dn->inode,
572                                                         valid_blocks, false);
573                         compressed_cluster = (blkaddr == COMPRESS_ADDR);
574                         valid_blocks = 0;
575                 }
576
577                 if (blkaddr == NULL_ADDR)
578                         continue;
579
580                 dn->data_blkaddr = NULL_ADDR;
581                 f2fs_set_data_blkaddr(dn);
582
583                 if (__is_valid_data_blkaddr(blkaddr)) {
584                         if (!f2fs_is_valid_blkaddr(sbi, blkaddr,
585                                         DATA_GENERIC_ENHANCE))
586                                 continue;
587                         if (compressed_cluster)
588                                 valid_blocks++;
589                 }
590
591                 if (dn->ofs_in_node == 0 && IS_INODE(dn->node_page))
592                         clear_inode_flag(dn->inode, FI_FIRST_BLOCK_WRITTEN);
593
594                 f2fs_invalidate_blocks(sbi, blkaddr);
595
596                 if (!released || blkaddr != COMPRESS_ADDR)
597                         nr_free++;
598         }
599
600         if (compressed_cluster)
601                 f2fs_i_compr_blocks_update(dn->inode, valid_blocks, false);
602
603         if (nr_free) {
604                 pgoff_t fofs;
605                 /*
606                  * once we invalidate valid blkaddr in range [ofs, ofs + count],
607                  * we will invalidate all blkaddr in the whole range.
608                  */
609                 fofs = f2fs_start_bidx_of_node(ofs_of_node(dn->node_page),
610                                                         dn->inode) + ofs;
611                 f2fs_update_extent_cache_range(dn, fofs, 0, len);
612                 dec_valid_block_count(sbi, dn->inode, nr_free);
613         }
614         dn->ofs_in_node = ofs;
615
616         f2fs_update_time(sbi, REQ_TIME);
617         trace_f2fs_truncate_data_blocks_range(dn->inode, dn->nid,
618                                          dn->ofs_in_node, nr_free);
619 }
620
621 void f2fs_truncate_data_blocks(struct dnode_of_data *dn)
622 {
623         f2fs_truncate_data_blocks_range(dn, ADDRS_PER_BLOCK(dn->inode));
624 }
625
626 static int truncate_partial_data_page(struct inode *inode, u64 from,
627                                                                 bool cache_only)
628 {
629         loff_t offset = from & (PAGE_SIZE - 1);
630         pgoff_t index = from >> PAGE_SHIFT;
631         struct address_space *mapping = inode->i_mapping;
632         struct page *page;
633
634         if (!offset && !cache_only)
635                 return 0;
636
637         if (cache_only) {
638                 page = find_lock_page(mapping, index);
639                 if (page && PageUptodate(page))
640                         goto truncate_out;
641                 f2fs_put_page(page, 1);
642                 return 0;
643         }
644
645         page = f2fs_get_lock_data_page(inode, index, true);
646         if (IS_ERR(page))
647                 return PTR_ERR(page) == -ENOENT ? 0 : PTR_ERR(page);
648 truncate_out:
649         f2fs_wait_on_page_writeback(page, DATA, true, true);
650         zero_user(page, offset, PAGE_SIZE - offset);
651
652         /* An encrypted inode should have a key and truncate the last page. */
653         f2fs_bug_on(F2FS_I_SB(inode), cache_only && IS_ENCRYPTED(inode));
654         if (!cache_only)
655                 set_page_dirty(page);
656         f2fs_put_page(page, 1);
657         return 0;
658 }
659
660 int f2fs_do_truncate_blocks(struct inode *inode, u64 from, bool lock)
661 {
662         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
663         struct dnode_of_data dn;
664         pgoff_t free_from;
665         int count = 0, err = 0;
666         struct page *ipage;
667         bool truncate_page = false;
668
669         trace_f2fs_truncate_blocks_enter(inode, from);
670
671         free_from = (pgoff_t)F2FS_BLK_ALIGN(from);
672
673         if (free_from >= max_file_blocks(inode))
674                 goto free_partial;
675
676         if (lock)
677                 f2fs_lock_op(sbi);
678
679         ipage = f2fs_get_node_page(sbi, inode->i_ino);
680         if (IS_ERR(ipage)) {
681                 err = PTR_ERR(ipage);
682                 goto out;
683         }
684
685         if (f2fs_has_inline_data(inode)) {
686                 f2fs_truncate_inline_inode(inode, ipage, from);
687                 f2fs_put_page(ipage, 1);
688                 truncate_page = true;
689                 goto out;
690         }
691
692         set_new_dnode(&dn, inode, ipage, NULL, 0);
693         err = f2fs_get_dnode_of_data(&dn, free_from, LOOKUP_NODE_RA);
694         if (err) {
695                 if (err == -ENOENT)
696                         goto free_next;
697                 goto out;
698         }
699
700         count = ADDRS_PER_PAGE(dn.node_page, inode);
701
702         count -= dn.ofs_in_node;
703         f2fs_bug_on(sbi, count < 0);
704
705         if (dn.ofs_in_node || IS_INODE(dn.node_page)) {
706                 f2fs_truncate_data_blocks_range(&dn, count);
707                 free_from += count;
708         }
709
710         f2fs_put_dnode(&dn);
711 free_next:
712         err = f2fs_truncate_inode_blocks(inode, free_from);
713 out:
714         if (lock)
715                 f2fs_unlock_op(sbi);
716 free_partial:
717         /* lastly zero out the first data page */
718         if (!err)
719                 err = truncate_partial_data_page(inode, from, truncate_page);
720
721         trace_f2fs_truncate_blocks_exit(inode, err);
722         return err;
723 }
724
725 int f2fs_truncate_blocks(struct inode *inode, u64 from, bool lock)
726 {
727         u64 free_from = from;
728         int err;
729
730 #ifdef CONFIG_F2FS_FS_COMPRESSION
731         /*
732          * for compressed file, only support cluster size
733          * aligned truncation.
734          */
735         if (f2fs_compressed_file(inode))
736                 free_from = round_up(from,
737                                 F2FS_I(inode)->i_cluster_size << PAGE_SHIFT);
738 #endif
739
740         err = f2fs_do_truncate_blocks(inode, free_from, lock);
741         if (err)
742                 return err;
743
744 #ifdef CONFIG_F2FS_FS_COMPRESSION
745         if (from != free_from) {
746                 err = f2fs_truncate_partial_cluster(inode, from, lock);
747                 if (err)
748                         return err;
749         }
750 #endif
751
752         return 0;
753 }
754
755 int f2fs_truncate(struct inode *inode)
756 {
757         int err;
758
759         if (unlikely(f2fs_cp_error(F2FS_I_SB(inode))))
760                 return -EIO;
761
762         if (!(S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
763                                 S_ISLNK(inode->i_mode)))
764                 return 0;
765
766         trace_f2fs_truncate(inode);
767
768         if (time_to_inject(F2FS_I_SB(inode), FAULT_TRUNCATE)) {
769                 f2fs_show_injection_info(F2FS_I_SB(inode), FAULT_TRUNCATE);
770                 return -EIO;
771         }
772
773         err = dquot_initialize(inode);
774         if (err)
775                 return err;
776
777         /* we should check inline_data size */
778         if (!f2fs_may_inline_data(inode)) {
779                 err = f2fs_convert_inline_inode(inode);
780                 if (err)
781                         return err;
782         }
783
784         err = f2fs_truncate_blocks(inode, i_size_read(inode), true);
785         if (err)
786                 return err;
787
788         inode->i_mtime = inode->i_ctime = current_time(inode);
789         f2fs_mark_inode_dirty_sync(inode, false);
790         return 0;
791 }
792
793 int f2fs_getattr(struct user_namespace *mnt_userns, const struct path *path,
794                  struct kstat *stat, u32 request_mask, unsigned int query_flags)
795 {
796         struct inode *inode = d_inode(path->dentry);
797         struct f2fs_inode_info *fi = F2FS_I(inode);
798         struct f2fs_inode *ri;
799         unsigned int flags;
800
801         if (f2fs_has_extra_attr(inode) &&
802                         f2fs_sb_has_inode_crtime(F2FS_I_SB(inode)) &&
803                         F2FS_FITS_IN_INODE(ri, fi->i_extra_isize, i_crtime)) {
804                 stat->result_mask |= STATX_BTIME;
805                 stat->btime.tv_sec = fi->i_crtime.tv_sec;
806                 stat->btime.tv_nsec = fi->i_crtime.tv_nsec;
807         }
808
809         flags = fi->i_flags;
810         if (flags & F2FS_COMPR_FL)
811                 stat->attributes |= STATX_ATTR_COMPRESSED;
812         if (flags & F2FS_APPEND_FL)
813                 stat->attributes |= STATX_ATTR_APPEND;
814         if (IS_ENCRYPTED(inode))
815                 stat->attributes |= STATX_ATTR_ENCRYPTED;
816         if (flags & F2FS_IMMUTABLE_FL)
817                 stat->attributes |= STATX_ATTR_IMMUTABLE;
818         if (flags & F2FS_NODUMP_FL)
819                 stat->attributes |= STATX_ATTR_NODUMP;
820         if (IS_VERITY(inode))
821                 stat->attributes |= STATX_ATTR_VERITY;
822
823         stat->attributes_mask |= (STATX_ATTR_COMPRESSED |
824                                   STATX_ATTR_APPEND |
825                                   STATX_ATTR_ENCRYPTED |
826                                   STATX_ATTR_IMMUTABLE |
827                                   STATX_ATTR_NODUMP |
828                                   STATX_ATTR_VERITY);
829
830         generic_fillattr(&init_user_ns, inode, stat);
831
832         /* we need to show initial sectors used for inline_data/dentries */
833         if ((S_ISREG(inode->i_mode) && f2fs_has_inline_data(inode)) ||
834                                         f2fs_has_inline_dentry(inode))
835                 stat->blocks += (stat->size + 511) >> 9;
836
837         return 0;
838 }
839
840 #ifdef CONFIG_F2FS_FS_POSIX_ACL
841 static void __setattr_copy(struct user_namespace *mnt_userns,
842                            struct inode *inode, const struct iattr *attr)
843 {
844         unsigned int ia_valid = attr->ia_valid;
845
846         if (ia_valid & ATTR_UID)
847                 inode->i_uid = attr->ia_uid;
848         if (ia_valid & ATTR_GID)
849                 inode->i_gid = attr->ia_gid;
850         if (ia_valid & ATTR_ATIME)
851                 inode->i_atime = attr->ia_atime;
852         if (ia_valid & ATTR_MTIME)
853                 inode->i_mtime = attr->ia_mtime;
854         if (ia_valid & ATTR_CTIME)
855                 inode->i_ctime = attr->ia_ctime;
856         if (ia_valid & ATTR_MODE) {
857                 umode_t mode = attr->ia_mode;
858                 kgid_t kgid = i_gid_into_mnt(mnt_userns, inode);
859
860                 if (!in_group_p(kgid) && !capable_wrt_inode_uidgid(mnt_userns, inode, CAP_FSETID))
861                         mode &= ~S_ISGID;
862                 set_acl_inode(inode, mode);
863         }
864 }
865 #else
866 #define __setattr_copy setattr_copy
867 #endif
868
869 int f2fs_setattr(struct user_namespace *mnt_userns, struct dentry *dentry,
870                  struct iattr *attr)
871 {
872         struct inode *inode = d_inode(dentry);
873         int err;
874
875         if (unlikely(f2fs_cp_error(F2FS_I_SB(inode))))
876                 return -EIO;
877
878         if (unlikely(IS_IMMUTABLE(inode)))
879                 return -EPERM;
880
881         if (unlikely(IS_APPEND(inode) &&
882                         (attr->ia_valid & (ATTR_MODE | ATTR_UID |
883                                   ATTR_GID | ATTR_TIMES_SET))))
884                 return -EPERM;
885
886         if ((attr->ia_valid & ATTR_SIZE) &&
887                 !f2fs_is_compress_backend_ready(inode))
888                 return -EOPNOTSUPP;
889
890         err = setattr_prepare(&init_user_ns, dentry, attr);
891         if (err)
892                 return err;
893
894         err = fscrypt_prepare_setattr(dentry, attr);
895         if (err)
896                 return err;
897
898         err = fsverity_prepare_setattr(dentry, attr);
899         if (err)
900                 return err;
901
902         if (is_quota_modification(inode, attr)) {
903                 err = dquot_initialize(inode);
904                 if (err)
905                         return err;
906         }
907         if ((attr->ia_valid & ATTR_UID &&
908                 !uid_eq(attr->ia_uid, inode->i_uid)) ||
909                 (attr->ia_valid & ATTR_GID &&
910                 !gid_eq(attr->ia_gid, inode->i_gid))) {
911                 f2fs_lock_op(F2FS_I_SB(inode));
912                 err = dquot_transfer(inode, attr);
913                 if (err) {
914                         set_sbi_flag(F2FS_I_SB(inode),
915                                         SBI_QUOTA_NEED_REPAIR);
916                         f2fs_unlock_op(F2FS_I_SB(inode));
917                         return err;
918                 }
919                 /*
920                  * update uid/gid under lock_op(), so that dquot and inode can
921                  * be updated atomically.
922                  */
923                 if (attr->ia_valid & ATTR_UID)
924                         inode->i_uid = attr->ia_uid;
925                 if (attr->ia_valid & ATTR_GID)
926                         inode->i_gid = attr->ia_gid;
927                 f2fs_mark_inode_dirty_sync(inode, true);
928                 f2fs_unlock_op(F2FS_I_SB(inode));
929         }
930
931         if (attr->ia_valid & ATTR_SIZE) {
932                 loff_t old_size = i_size_read(inode);
933
934                 if (attr->ia_size > MAX_INLINE_DATA(inode)) {
935                         /*
936                          * should convert inline inode before i_size_write to
937                          * keep smaller than inline_data size with inline flag.
938                          */
939                         err = f2fs_convert_inline_inode(inode);
940                         if (err)
941                                 return err;
942                 }
943
944                 down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
945                 down_write(&F2FS_I(inode)->i_mmap_sem);
946
947                 truncate_setsize(inode, attr->ia_size);
948
949                 if (attr->ia_size <= old_size)
950                         err = f2fs_truncate(inode);
951                 /*
952                  * do not trim all blocks after i_size if target size is
953                  * larger than i_size.
954                  */
955                 up_write(&F2FS_I(inode)->i_mmap_sem);
956                 up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
957                 if (err)
958                         return err;
959
960                 spin_lock(&F2FS_I(inode)->i_size_lock);
961                 inode->i_mtime = inode->i_ctime = current_time(inode);
962                 F2FS_I(inode)->last_disk_size = i_size_read(inode);
963                 spin_unlock(&F2FS_I(inode)->i_size_lock);
964         }
965
966         __setattr_copy(&init_user_ns, inode, attr);
967
968         if (attr->ia_valid & ATTR_MODE) {
969                 err = posix_acl_chmod(&init_user_ns, inode, f2fs_get_inode_mode(inode));
970
971                 if (is_inode_flag_set(inode, FI_ACL_MODE)) {
972                         if (!err)
973                                 inode->i_mode = F2FS_I(inode)->i_acl_mode;
974                         clear_inode_flag(inode, FI_ACL_MODE);
975                 }
976         }
977
978         /* file size may changed here */
979         f2fs_mark_inode_dirty_sync(inode, true);
980
981         /* inode change will produce dirty node pages flushed by checkpoint */
982         f2fs_balance_fs(F2FS_I_SB(inode), true);
983
984         return err;
985 }
986
987 const struct inode_operations f2fs_file_inode_operations = {
988         .getattr        = f2fs_getattr,
989         .setattr        = f2fs_setattr,
990         .get_acl        = f2fs_get_acl,
991         .set_acl        = f2fs_set_acl,
992         .listxattr      = f2fs_listxattr,
993         .fiemap         = f2fs_fiemap,
994         .fileattr_get   = f2fs_fileattr_get,
995         .fileattr_set   = f2fs_fileattr_set,
996 };
997
998 static int fill_zero(struct inode *inode, pgoff_t index,
999                                         loff_t start, loff_t len)
1000 {
1001         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1002         struct page *page;
1003
1004         if (!len)
1005                 return 0;
1006
1007         f2fs_balance_fs(sbi, true);
1008
1009         f2fs_lock_op(sbi);
1010         page = f2fs_get_new_data_page(inode, NULL, index, false);
1011         f2fs_unlock_op(sbi);
1012
1013         if (IS_ERR(page))
1014                 return PTR_ERR(page);
1015
1016         f2fs_wait_on_page_writeback(page, DATA, true, true);
1017         zero_user(page, start, len);
1018         set_page_dirty(page);
1019         f2fs_put_page(page, 1);
1020         return 0;
1021 }
1022
1023 int f2fs_truncate_hole(struct inode *inode, pgoff_t pg_start, pgoff_t pg_end)
1024 {
1025         int err;
1026
1027         while (pg_start < pg_end) {
1028                 struct dnode_of_data dn;
1029                 pgoff_t end_offset, count;
1030
1031                 set_new_dnode(&dn, inode, NULL, NULL, 0);
1032                 err = f2fs_get_dnode_of_data(&dn, pg_start, LOOKUP_NODE);
1033                 if (err) {
1034                         if (err == -ENOENT) {
1035                                 pg_start = f2fs_get_next_page_offset(&dn,
1036                                                                 pg_start);
1037                                 continue;
1038                         }
1039                         return err;
1040                 }
1041
1042                 end_offset = ADDRS_PER_PAGE(dn.node_page, inode);
1043                 count = min(end_offset - dn.ofs_in_node, pg_end - pg_start);
1044
1045                 f2fs_bug_on(F2FS_I_SB(inode), count == 0 || count > end_offset);
1046
1047                 f2fs_truncate_data_blocks_range(&dn, count);
1048                 f2fs_put_dnode(&dn);
1049
1050                 pg_start += count;
1051         }
1052         return 0;
1053 }
1054
1055 static int punch_hole(struct inode *inode, loff_t offset, loff_t len)
1056 {
1057         pgoff_t pg_start, pg_end;
1058         loff_t off_start, off_end;
1059         int ret;
1060
1061         ret = f2fs_convert_inline_inode(inode);
1062         if (ret)
1063                 return ret;
1064
1065         pg_start = ((unsigned long long) offset) >> PAGE_SHIFT;
1066         pg_end = ((unsigned long long) offset + len) >> PAGE_SHIFT;
1067
1068         off_start = offset & (PAGE_SIZE - 1);
1069         off_end = (offset + len) & (PAGE_SIZE - 1);
1070
1071         if (pg_start == pg_end) {
1072                 ret = fill_zero(inode, pg_start, off_start,
1073                                                 off_end - off_start);
1074                 if (ret)
1075                         return ret;
1076         } else {
1077                 if (off_start) {
1078                         ret = fill_zero(inode, pg_start++, off_start,
1079                                                 PAGE_SIZE - off_start);
1080                         if (ret)
1081                                 return ret;
1082                 }
1083                 if (off_end) {
1084                         ret = fill_zero(inode, pg_end, 0, off_end);
1085                         if (ret)
1086                                 return ret;
1087                 }
1088
1089                 if (pg_start < pg_end) {
1090                         struct address_space *mapping = inode->i_mapping;
1091                         loff_t blk_start, blk_end;
1092                         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1093
1094                         f2fs_balance_fs(sbi, true);
1095
1096                         blk_start = (loff_t)pg_start << PAGE_SHIFT;
1097                         blk_end = (loff_t)pg_end << PAGE_SHIFT;
1098
1099                         down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
1100                         down_write(&F2FS_I(inode)->i_mmap_sem);
1101
1102                         truncate_inode_pages_range(mapping, blk_start,
1103                                         blk_end - 1);
1104
1105                         f2fs_lock_op(sbi);
1106                         ret = f2fs_truncate_hole(inode, pg_start, pg_end);
1107                         f2fs_unlock_op(sbi);
1108
1109                         up_write(&F2FS_I(inode)->i_mmap_sem);
1110                         up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
1111                 }
1112         }
1113
1114         return ret;
1115 }
1116
1117 static int __read_out_blkaddrs(struct inode *inode, block_t *blkaddr,
1118                                 int *do_replace, pgoff_t off, pgoff_t len)
1119 {
1120         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1121         struct dnode_of_data dn;
1122         int ret, done, i;
1123
1124 next_dnode:
1125         set_new_dnode(&dn, inode, NULL, NULL, 0);
1126         ret = f2fs_get_dnode_of_data(&dn, off, LOOKUP_NODE_RA);
1127         if (ret && ret != -ENOENT) {
1128                 return ret;
1129         } else if (ret == -ENOENT) {
1130                 if (dn.max_level == 0)
1131                         return -ENOENT;
1132                 done = min((pgoff_t)ADDRS_PER_BLOCK(inode) -
1133                                                 dn.ofs_in_node, len);
1134                 blkaddr += done;
1135                 do_replace += done;
1136                 goto next;
1137         }
1138
1139         done = min((pgoff_t)ADDRS_PER_PAGE(dn.node_page, inode) -
1140                                                         dn.ofs_in_node, len);
1141         for (i = 0; i < done; i++, blkaddr++, do_replace++, dn.ofs_in_node++) {
1142                 *blkaddr = f2fs_data_blkaddr(&dn);
1143
1144                 if (__is_valid_data_blkaddr(*blkaddr) &&
1145                         !f2fs_is_valid_blkaddr(sbi, *blkaddr,
1146                                         DATA_GENERIC_ENHANCE)) {
1147                         f2fs_put_dnode(&dn);
1148                         return -EFSCORRUPTED;
1149                 }
1150
1151                 if (!f2fs_is_checkpointed_data(sbi, *blkaddr)) {
1152
1153                         if (f2fs_lfs_mode(sbi)) {
1154                                 f2fs_put_dnode(&dn);
1155                                 return -EOPNOTSUPP;
1156                         }
1157
1158                         /* do not invalidate this block address */
1159                         f2fs_update_data_blkaddr(&dn, NULL_ADDR);
1160                         *do_replace = 1;
1161                 }
1162         }
1163         f2fs_put_dnode(&dn);
1164 next:
1165         len -= done;
1166         off += done;
1167         if (len)
1168                 goto next_dnode;
1169         return 0;
1170 }
1171
1172 static int __roll_back_blkaddrs(struct inode *inode, block_t *blkaddr,
1173                                 int *do_replace, pgoff_t off, int len)
1174 {
1175         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1176         struct dnode_of_data dn;
1177         int ret, i;
1178
1179         for (i = 0; i < len; i++, do_replace++, blkaddr++) {
1180                 if (*do_replace == 0)
1181                         continue;
1182
1183                 set_new_dnode(&dn, inode, NULL, NULL, 0);
1184                 ret = f2fs_get_dnode_of_data(&dn, off + i, LOOKUP_NODE_RA);
1185                 if (ret) {
1186                         dec_valid_block_count(sbi, inode, 1);
1187                         f2fs_invalidate_blocks(sbi, *blkaddr);
1188                 } else {
1189                         f2fs_update_data_blkaddr(&dn, *blkaddr);
1190                 }
1191                 f2fs_put_dnode(&dn);
1192         }
1193         return 0;
1194 }
1195
1196 static int __clone_blkaddrs(struct inode *src_inode, struct inode *dst_inode,
1197                         block_t *blkaddr, int *do_replace,
1198                         pgoff_t src, pgoff_t dst, pgoff_t len, bool full)
1199 {
1200         struct f2fs_sb_info *sbi = F2FS_I_SB(src_inode);
1201         pgoff_t i = 0;
1202         int ret;
1203
1204         while (i < len) {
1205                 if (blkaddr[i] == NULL_ADDR && !full) {
1206                         i++;
1207                         continue;
1208                 }
1209
1210                 if (do_replace[i] || blkaddr[i] == NULL_ADDR) {
1211                         struct dnode_of_data dn;
1212                         struct node_info ni;
1213                         size_t new_size;
1214                         pgoff_t ilen;
1215
1216                         set_new_dnode(&dn, dst_inode, NULL, NULL, 0);
1217                         ret = f2fs_get_dnode_of_data(&dn, dst + i, ALLOC_NODE);
1218                         if (ret)
1219                                 return ret;
1220
1221                         ret = f2fs_get_node_info(sbi, dn.nid, &ni);
1222                         if (ret) {
1223                                 f2fs_put_dnode(&dn);
1224                                 return ret;
1225                         }
1226
1227                         ilen = min((pgoff_t)
1228                                 ADDRS_PER_PAGE(dn.node_page, dst_inode) -
1229                                                 dn.ofs_in_node, len - i);
1230                         do {
1231                                 dn.data_blkaddr = f2fs_data_blkaddr(&dn);
1232                                 f2fs_truncate_data_blocks_range(&dn, 1);
1233
1234                                 if (do_replace[i]) {
1235                                         f2fs_i_blocks_write(src_inode,
1236                                                         1, false, false);
1237                                         f2fs_i_blocks_write(dst_inode,
1238                                                         1, true, false);
1239                                         f2fs_replace_block(sbi, &dn, dn.data_blkaddr,
1240                                         blkaddr[i], ni.version, true, false);
1241
1242                                         do_replace[i] = 0;
1243                                 }
1244                                 dn.ofs_in_node++;
1245                                 i++;
1246                                 new_size = (loff_t)(dst + i) << PAGE_SHIFT;
1247                                 if (dst_inode->i_size < new_size)
1248                                         f2fs_i_size_write(dst_inode, new_size);
1249                         } while (--ilen && (do_replace[i] || blkaddr[i] == NULL_ADDR));
1250
1251                         f2fs_put_dnode(&dn);
1252                 } else {
1253                         struct page *psrc, *pdst;
1254
1255                         psrc = f2fs_get_lock_data_page(src_inode,
1256                                                         src + i, true);
1257                         if (IS_ERR(psrc))
1258                                 return PTR_ERR(psrc);
1259                         pdst = f2fs_get_new_data_page(dst_inode, NULL, dst + i,
1260                                                                 true);
1261                         if (IS_ERR(pdst)) {
1262                                 f2fs_put_page(psrc, 1);
1263                                 return PTR_ERR(pdst);
1264                         }
1265                         f2fs_copy_page(psrc, pdst);
1266                         set_page_dirty(pdst);
1267                         f2fs_put_page(pdst, 1);
1268                         f2fs_put_page(psrc, 1);
1269
1270                         ret = f2fs_truncate_hole(src_inode,
1271                                                 src + i, src + i + 1);
1272                         if (ret)
1273                                 return ret;
1274                         i++;
1275                 }
1276         }
1277         return 0;
1278 }
1279
1280 static int __exchange_data_block(struct inode *src_inode,
1281                         struct inode *dst_inode, pgoff_t src, pgoff_t dst,
1282                         pgoff_t len, bool full)
1283 {
1284         block_t *src_blkaddr;
1285         int *do_replace;
1286         pgoff_t olen;
1287         int ret;
1288
1289         while (len) {
1290                 olen = min((pgoff_t)4 * ADDRS_PER_BLOCK(src_inode), len);
1291
1292                 src_blkaddr = f2fs_kvzalloc(F2FS_I_SB(src_inode),
1293                                         array_size(olen, sizeof(block_t)),
1294                                         GFP_NOFS);
1295                 if (!src_blkaddr)
1296                         return -ENOMEM;
1297
1298                 do_replace = f2fs_kvzalloc(F2FS_I_SB(src_inode),
1299                                         array_size(olen, sizeof(int)),
1300                                         GFP_NOFS);
1301                 if (!do_replace) {
1302                         kvfree(src_blkaddr);
1303                         return -ENOMEM;
1304                 }
1305
1306                 ret = __read_out_blkaddrs(src_inode, src_blkaddr,
1307                                         do_replace, src, olen);
1308                 if (ret)
1309                         goto roll_back;
1310
1311                 ret = __clone_blkaddrs(src_inode, dst_inode, src_blkaddr,
1312                                         do_replace, src, dst, olen, full);
1313                 if (ret)
1314                         goto roll_back;
1315
1316                 src += olen;
1317                 dst += olen;
1318                 len -= olen;
1319
1320                 kvfree(src_blkaddr);
1321                 kvfree(do_replace);
1322         }
1323         return 0;
1324
1325 roll_back:
1326         __roll_back_blkaddrs(src_inode, src_blkaddr, do_replace, src, olen);
1327         kvfree(src_blkaddr);
1328         kvfree(do_replace);
1329         return ret;
1330 }
1331
1332 static int f2fs_do_collapse(struct inode *inode, loff_t offset, loff_t len)
1333 {
1334         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1335         pgoff_t nrpages = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
1336         pgoff_t start = offset >> PAGE_SHIFT;
1337         pgoff_t end = (offset + len) >> PAGE_SHIFT;
1338         int ret;
1339
1340         f2fs_balance_fs(sbi, true);
1341
1342         /* avoid gc operation during block exchange */
1343         down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
1344         down_write(&F2FS_I(inode)->i_mmap_sem);
1345
1346         f2fs_lock_op(sbi);
1347         f2fs_drop_extent_tree(inode);
1348         truncate_pagecache(inode, offset);
1349         ret = __exchange_data_block(inode, inode, end, start, nrpages - end, true);
1350         f2fs_unlock_op(sbi);
1351
1352         up_write(&F2FS_I(inode)->i_mmap_sem);
1353         up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
1354         return ret;
1355 }
1356
1357 static int f2fs_collapse_range(struct inode *inode, loff_t offset, loff_t len)
1358 {
1359         loff_t new_size;
1360         int ret;
1361
1362         if (offset + len >= i_size_read(inode))
1363                 return -EINVAL;
1364
1365         /* collapse range should be aligned to block size of f2fs. */
1366         if (offset & (F2FS_BLKSIZE - 1) || len & (F2FS_BLKSIZE - 1))
1367                 return -EINVAL;
1368
1369         ret = f2fs_convert_inline_inode(inode);
1370         if (ret)
1371                 return ret;
1372
1373         /* write out all dirty pages from offset */
1374         ret = filemap_write_and_wait_range(inode->i_mapping, offset, LLONG_MAX);
1375         if (ret)
1376                 return ret;
1377
1378         ret = f2fs_do_collapse(inode, offset, len);
1379         if (ret)
1380                 return ret;
1381
1382         /* write out all moved pages, if possible */
1383         down_write(&F2FS_I(inode)->i_mmap_sem);
1384         filemap_write_and_wait_range(inode->i_mapping, offset, LLONG_MAX);
1385         truncate_pagecache(inode, offset);
1386
1387         new_size = i_size_read(inode) - len;
1388         ret = f2fs_truncate_blocks(inode, new_size, true);
1389         up_write(&F2FS_I(inode)->i_mmap_sem);
1390         if (!ret)
1391                 f2fs_i_size_write(inode, new_size);
1392         return ret;
1393 }
1394
1395 static int f2fs_do_zero_range(struct dnode_of_data *dn, pgoff_t start,
1396                                                                 pgoff_t end)
1397 {
1398         struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
1399         pgoff_t index = start;
1400         unsigned int ofs_in_node = dn->ofs_in_node;
1401         blkcnt_t count = 0;
1402         int ret;
1403
1404         for (; index < end; index++, dn->ofs_in_node++) {
1405                 if (f2fs_data_blkaddr(dn) == NULL_ADDR)
1406                         count++;
1407         }
1408
1409         dn->ofs_in_node = ofs_in_node;
1410         ret = f2fs_reserve_new_blocks(dn, count);
1411         if (ret)
1412                 return ret;
1413
1414         dn->ofs_in_node = ofs_in_node;
1415         for (index = start; index < end; index++, dn->ofs_in_node++) {
1416                 dn->data_blkaddr = f2fs_data_blkaddr(dn);
1417                 /*
1418                  * f2fs_reserve_new_blocks will not guarantee entire block
1419                  * allocation.
1420                  */
1421                 if (dn->data_blkaddr == NULL_ADDR) {
1422                         ret = -ENOSPC;
1423                         break;
1424                 }
1425                 if (dn->data_blkaddr != NEW_ADDR) {
1426                         f2fs_invalidate_blocks(sbi, dn->data_blkaddr);
1427                         dn->data_blkaddr = NEW_ADDR;
1428                         f2fs_set_data_blkaddr(dn);
1429                 }
1430         }
1431
1432         f2fs_update_extent_cache_range(dn, start, 0, index - start);
1433
1434         return ret;
1435 }
1436
1437 static int f2fs_zero_range(struct inode *inode, loff_t offset, loff_t len,
1438                                                                 int mode)
1439 {
1440         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1441         struct address_space *mapping = inode->i_mapping;
1442         pgoff_t index, pg_start, pg_end;
1443         loff_t new_size = i_size_read(inode);
1444         loff_t off_start, off_end;
1445         int ret = 0;
1446
1447         ret = inode_newsize_ok(inode, (len + offset));
1448         if (ret)
1449                 return ret;
1450
1451         ret = f2fs_convert_inline_inode(inode);
1452         if (ret)
1453                 return ret;
1454
1455         ret = filemap_write_and_wait_range(mapping, offset, offset + len - 1);
1456         if (ret)
1457                 return ret;
1458
1459         pg_start = ((unsigned long long) offset) >> PAGE_SHIFT;
1460         pg_end = ((unsigned long long) offset + len) >> PAGE_SHIFT;
1461
1462         off_start = offset & (PAGE_SIZE - 1);
1463         off_end = (offset + len) & (PAGE_SIZE - 1);
1464
1465         if (pg_start == pg_end) {
1466                 ret = fill_zero(inode, pg_start, off_start,
1467                                                 off_end - off_start);
1468                 if (ret)
1469                         return ret;
1470
1471                 new_size = max_t(loff_t, new_size, offset + len);
1472         } else {
1473                 if (off_start) {
1474                         ret = fill_zero(inode, pg_start++, off_start,
1475                                                 PAGE_SIZE - off_start);
1476                         if (ret)
1477                                 return ret;
1478
1479                         new_size = max_t(loff_t, new_size,
1480                                         (loff_t)pg_start << PAGE_SHIFT);
1481                 }
1482
1483                 for (index = pg_start; index < pg_end;) {
1484                         struct dnode_of_data dn;
1485                         unsigned int end_offset;
1486                         pgoff_t end;
1487
1488                         down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
1489                         down_write(&F2FS_I(inode)->i_mmap_sem);
1490
1491                         truncate_pagecache_range(inode,
1492                                 (loff_t)index << PAGE_SHIFT,
1493                                 ((loff_t)pg_end << PAGE_SHIFT) - 1);
1494
1495                         f2fs_lock_op(sbi);
1496
1497                         set_new_dnode(&dn, inode, NULL, NULL, 0);
1498                         ret = f2fs_get_dnode_of_data(&dn, index, ALLOC_NODE);
1499                         if (ret) {
1500                                 f2fs_unlock_op(sbi);
1501                                 up_write(&F2FS_I(inode)->i_mmap_sem);
1502                                 up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
1503                                 goto out;
1504                         }
1505
1506                         end_offset = ADDRS_PER_PAGE(dn.node_page, inode);
1507                         end = min(pg_end, end_offset - dn.ofs_in_node + index);
1508
1509                         ret = f2fs_do_zero_range(&dn, index, end);
1510                         f2fs_put_dnode(&dn);
1511
1512                         f2fs_unlock_op(sbi);
1513                         up_write(&F2FS_I(inode)->i_mmap_sem);
1514                         up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
1515
1516                         f2fs_balance_fs(sbi, dn.node_changed);
1517
1518                         if (ret)
1519                                 goto out;
1520
1521                         index = end;
1522                         new_size = max_t(loff_t, new_size,
1523                                         (loff_t)index << PAGE_SHIFT);
1524                 }
1525
1526                 if (off_end) {
1527                         ret = fill_zero(inode, pg_end, 0, off_end);
1528                         if (ret)
1529                                 goto out;
1530
1531                         new_size = max_t(loff_t, new_size, offset + len);
1532                 }
1533         }
1534
1535 out:
1536         if (new_size > i_size_read(inode)) {
1537                 if (mode & FALLOC_FL_KEEP_SIZE)
1538                         file_set_keep_isize(inode);
1539                 else
1540                         f2fs_i_size_write(inode, new_size);
1541         }
1542         return ret;
1543 }
1544
1545 static int f2fs_insert_range(struct inode *inode, loff_t offset, loff_t len)
1546 {
1547         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1548         pgoff_t nr, pg_start, pg_end, delta, idx;
1549         loff_t new_size;
1550         int ret = 0;
1551
1552         new_size = i_size_read(inode) + len;
1553         ret = inode_newsize_ok(inode, new_size);
1554         if (ret)
1555                 return ret;
1556
1557         if (offset >= i_size_read(inode))
1558                 return -EINVAL;
1559
1560         /* insert range should be aligned to block size of f2fs. */
1561         if (offset & (F2FS_BLKSIZE - 1) || len & (F2FS_BLKSIZE - 1))
1562                 return -EINVAL;
1563
1564         ret = f2fs_convert_inline_inode(inode);
1565         if (ret)
1566                 return ret;
1567
1568         f2fs_balance_fs(sbi, true);
1569
1570         down_write(&F2FS_I(inode)->i_mmap_sem);
1571         ret = f2fs_truncate_blocks(inode, i_size_read(inode), true);
1572         up_write(&F2FS_I(inode)->i_mmap_sem);
1573         if (ret)
1574                 return ret;
1575
1576         /* write out all dirty pages from offset */
1577         ret = filemap_write_and_wait_range(inode->i_mapping, offset, LLONG_MAX);
1578         if (ret)
1579                 return ret;
1580
1581         pg_start = offset >> PAGE_SHIFT;
1582         pg_end = (offset + len) >> PAGE_SHIFT;
1583         delta = pg_end - pg_start;
1584         idx = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
1585
1586         /* avoid gc operation during block exchange */
1587         down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
1588         down_write(&F2FS_I(inode)->i_mmap_sem);
1589         truncate_pagecache(inode, offset);
1590
1591         while (!ret && idx > pg_start) {
1592                 nr = idx - pg_start;
1593                 if (nr > delta)
1594                         nr = delta;
1595                 idx -= nr;
1596
1597                 f2fs_lock_op(sbi);
1598                 f2fs_drop_extent_tree(inode);
1599
1600                 ret = __exchange_data_block(inode, inode, idx,
1601                                         idx + delta, nr, false);
1602                 f2fs_unlock_op(sbi);
1603         }
1604         up_write(&F2FS_I(inode)->i_mmap_sem);
1605         up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
1606
1607         /* write out all moved pages, if possible */
1608         down_write(&F2FS_I(inode)->i_mmap_sem);
1609         filemap_write_and_wait_range(inode->i_mapping, offset, LLONG_MAX);
1610         truncate_pagecache(inode, offset);
1611         up_write(&F2FS_I(inode)->i_mmap_sem);
1612
1613         if (!ret)
1614                 f2fs_i_size_write(inode, new_size);
1615         return ret;
1616 }
1617
1618 static int expand_inode_data(struct inode *inode, loff_t offset,
1619                                         loff_t len, int mode)
1620 {
1621         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1622         struct f2fs_map_blocks map = { .m_next_pgofs = NULL,
1623                         .m_next_extent = NULL, .m_seg_type = NO_CHECK_TYPE,
1624                         .m_may_create = true };
1625         pgoff_t pg_start, pg_end;
1626         loff_t new_size = i_size_read(inode);
1627         loff_t off_end;
1628         block_t expanded = 0;
1629         int err;
1630
1631         err = inode_newsize_ok(inode, (len + offset));
1632         if (err)
1633                 return err;
1634
1635         err = f2fs_convert_inline_inode(inode);
1636         if (err)
1637                 return err;
1638
1639         f2fs_balance_fs(sbi, true);
1640
1641         pg_start = ((unsigned long long)offset) >> PAGE_SHIFT;
1642         pg_end = ((unsigned long long)offset + len) >> PAGE_SHIFT;
1643         off_end = (offset + len) & (PAGE_SIZE - 1);
1644
1645         map.m_lblk = pg_start;
1646         map.m_len = pg_end - pg_start;
1647         if (off_end)
1648                 map.m_len++;
1649
1650         if (!map.m_len)
1651                 return 0;
1652
1653         if (f2fs_is_pinned_file(inode)) {
1654                 block_t sec_blks = BLKS_PER_SEC(sbi);
1655                 block_t sec_len = roundup(map.m_len, sec_blks);
1656
1657                 map.m_len = sec_blks;
1658 next_alloc:
1659                 if (has_not_enough_free_secs(sbi, 0,
1660                         GET_SEC_FROM_SEG(sbi, overprovision_segments(sbi)))) {
1661                         down_write(&sbi->gc_lock);
1662                         err = f2fs_gc(sbi, true, false, false, NULL_SEGNO);
1663                         if (err && err != -ENODATA && err != -EAGAIN)
1664                                 goto out_err;
1665                 }
1666
1667                 down_write(&sbi->pin_sem);
1668
1669                 f2fs_lock_op(sbi);
1670                 f2fs_allocate_new_section(sbi, CURSEG_COLD_DATA_PINNED, false);
1671                 f2fs_unlock_op(sbi);
1672
1673                 map.m_seg_type = CURSEG_COLD_DATA_PINNED;
1674                 err = f2fs_map_blocks(inode, &map, 1, F2FS_GET_BLOCK_PRE_DIO);
1675
1676                 up_write(&sbi->pin_sem);
1677
1678                 expanded += map.m_len;
1679                 sec_len -= map.m_len;
1680                 map.m_lblk += map.m_len;
1681                 if (!err && sec_len)
1682                         goto next_alloc;
1683
1684                 map.m_len = expanded;
1685         } else {
1686                 err = f2fs_map_blocks(inode, &map, 1, F2FS_GET_BLOCK_PRE_AIO);
1687                 expanded = map.m_len;
1688         }
1689 out_err:
1690         if (err) {
1691                 pgoff_t last_off;
1692
1693                 if (!expanded)
1694                         return err;
1695
1696                 last_off = pg_start + expanded - 1;
1697
1698                 /* update new size to the failed position */
1699                 new_size = (last_off == pg_end) ? offset + len :
1700                                         (loff_t)(last_off + 1) << PAGE_SHIFT;
1701         } else {
1702                 new_size = ((loff_t)pg_end << PAGE_SHIFT) + off_end;
1703         }
1704
1705         if (new_size > i_size_read(inode)) {
1706                 if (mode & FALLOC_FL_KEEP_SIZE)
1707                         file_set_keep_isize(inode);
1708                 else
1709                         f2fs_i_size_write(inode, new_size);
1710         }
1711
1712         return err;
1713 }
1714
1715 static long f2fs_fallocate(struct file *file, int mode,
1716                                 loff_t offset, loff_t len)
1717 {
1718         struct inode *inode = file_inode(file);
1719         long ret = 0;
1720
1721         if (unlikely(f2fs_cp_error(F2FS_I_SB(inode))))
1722                 return -EIO;
1723         if (!f2fs_is_checkpoint_ready(F2FS_I_SB(inode)))
1724                 return -ENOSPC;
1725         if (!f2fs_is_compress_backend_ready(inode))
1726                 return -EOPNOTSUPP;
1727
1728         /* f2fs only support ->fallocate for regular file */
1729         if (!S_ISREG(inode->i_mode))
1730                 return -EINVAL;
1731
1732         if (IS_ENCRYPTED(inode) &&
1733                 (mode & (FALLOC_FL_COLLAPSE_RANGE | FALLOC_FL_INSERT_RANGE)))
1734                 return -EOPNOTSUPP;
1735
1736         if (f2fs_compressed_file(inode) &&
1737                 (mode & (FALLOC_FL_PUNCH_HOLE | FALLOC_FL_COLLAPSE_RANGE |
1738                         FALLOC_FL_ZERO_RANGE | FALLOC_FL_INSERT_RANGE)))
1739                 return -EOPNOTSUPP;
1740
1741         if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE |
1742                         FALLOC_FL_COLLAPSE_RANGE | FALLOC_FL_ZERO_RANGE |
1743                         FALLOC_FL_INSERT_RANGE))
1744                 return -EOPNOTSUPP;
1745
1746         inode_lock(inode);
1747
1748         if (mode & FALLOC_FL_PUNCH_HOLE) {
1749                 if (offset >= inode->i_size)
1750                         goto out;
1751
1752                 ret = punch_hole(inode, offset, len);
1753         } else if (mode & FALLOC_FL_COLLAPSE_RANGE) {
1754                 ret = f2fs_collapse_range(inode, offset, len);
1755         } else if (mode & FALLOC_FL_ZERO_RANGE) {
1756                 ret = f2fs_zero_range(inode, offset, len, mode);
1757         } else if (mode & FALLOC_FL_INSERT_RANGE) {
1758                 ret = f2fs_insert_range(inode, offset, len);
1759         } else {
1760                 ret = expand_inode_data(inode, offset, len, mode);
1761         }
1762
1763         if (!ret) {
1764                 inode->i_mtime = inode->i_ctime = current_time(inode);
1765                 f2fs_mark_inode_dirty_sync(inode, false);
1766                 f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
1767         }
1768
1769 out:
1770         inode_unlock(inode);
1771
1772         trace_f2fs_fallocate(inode, mode, offset, len, ret);
1773         return ret;
1774 }
1775
1776 static int f2fs_release_file(struct inode *inode, struct file *filp)
1777 {
1778         /*
1779          * f2fs_relase_file is called at every close calls. So we should
1780          * not drop any inmemory pages by close called by other process.
1781          */
1782         if (!(filp->f_mode & FMODE_WRITE) ||
1783                         atomic_read(&inode->i_writecount) != 1)
1784                 return 0;
1785
1786         /* some remained atomic pages should discarded */
1787         if (f2fs_is_atomic_file(inode))
1788                 f2fs_drop_inmem_pages(inode);
1789         if (f2fs_is_volatile_file(inode)) {
1790                 set_inode_flag(inode, FI_DROP_CACHE);
1791                 filemap_fdatawrite(inode->i_mapping);
1792                 clear_inode_flag(inode, FI_DROP_CACHE);
1793                 clear_inode_flag(inode, FI_VOLATILE_FILE);
1794                 stat_dec_volatile_write(inode);
1795         }
1796         return 0;
1797 }
1798
1799 static int f2fs_file_flush(struct file *file, fl_owner_t id)
1800 {
1801         struct inode *inode = file_inode(file);
1802
1803         /*
1804          * If the process doing a transaction is crashed, we should do
1805          * roll-back. Otherwise, other reader/write can see corrupted database
1806          * until all the writers close its file. Since this should be done
1807          * before dropping file lock, it needs to do in ->flush.
1808          */
1809         if (f2fs_is_atomic_file(inode) &&
1810                         F2FS_I(inode)->inmem_task == current)
1811                 f2fs_drop_inmem_pages(inode);
1812         return 0;
1813 }
1814
1815 static int f2fs_setflags_common(struct inode *inode, u32 iflags, u32 mask)
1816 {
1817         struct f2fs_inode_info *fi = F2FS_I(inode);
1818         u32 masked_flags = fi->i_flags & mask;
1819
1820         /* mask can be shrunk by flags_valid selector */
1821         iflags &= mask;
1822
1823         /* Is it quota file? Do not allow user to mess with it */
1824         if (IS_NOQUOTA(inode))
1825                 return -EPERM;
1826
1827         if ((iflags ^ masked_flags) & F2FS_CASEFOLD_FL) {
1828                 if (!f2fs_sb_has_casefold(F2FS_I_SB(inode)))
1829                         return -EOPNOTSUPP;
1830                 if (!f2fs_empty_dir(inode))
1831                         return -ENOTEMPTY;
1832         }
1833
1834         if (iflags & (F2FS_COMPR_FL | F2FS_NOCOMP_FL)) {
1835                 if (!f2fs_sb_has_compression(F2FS_I_SB(inode)))
1836                         return -EOPNOTSUPP;
1837                 if ((iflags & F2FS_COMPR_FL) && (iflags & F2FS_NOCOMP_FL))
1838                         return -EINVAL;
1839         }
1840
1841         if ((iflags ^ masked_flags) & F2FS_COMPR_FL) {
1842                 if (masked_flags & F2FS_COMPR_FL) {
1843                         if (!f2fs_disable_compressed_file(inode))
1844                                 return -EINVAL;
1845                 }
1846                 if (iflags & F2FS_NOCOMP_FL)
1847                         return -EINVAL;
1848                 if (iflags & F2FS_COMPR_FL) {
1849                         if (!f2fs_may_compress(inode))
1850                                 return -EINVAL;
1851                         if (S_ISREG(inode->i_mode) && inode->i_size)
1852                                 return -EINVAL;
1853
1854                         set_compress_context(inode);
1855                 }
1856         }
1857         if ((iflags ^ masked_flags) & F2FS_NOCOMP_FL) {
1858                 if (masked_flags & F2FS_COMPR_FL)
1859                         return -EINVAL;
1860         }
1861
1862         fi->i_flags = iflags | (fi->i_flags & ~mask);
1863         f2fs_bug_on(F2FS_I_SB(inode), (fi->i_flags & F2FS_COMPR_FL) &&
1864                                         (fi->i_flags & F2FS_NOCOMP_FL));
1865
1866         if (fi->i_flags & F2FS_PROJINHERIT_FL)
1867                 set_inode_flag(inode, FI_PROJ_INHERIT);
1868         else
1869                 clear_inode_flag(inode, FI_PROJ_INHERIT);
1870
1871         inode->i_ctime = current_time(inode);
1872         f2fs_set_inode_flags(inode);
1873         f2fs_mark_inode_dirty_sync(inode, true);
1874         return 0;
1875 }
1876
1877 /* FS_IOC_[GS]ETFLAGS and FS_IOC_FS[GS]ETXATTR support */
1878
1879 /*
1880  * To make a new on-disk f2fs i_flag gettable via FS_IOC_GETFLAGS, add an entry
1881  * for it to f2fs_fsflags_map[], and add its FS_*_FL equivalent to
1882  * F2FS_GETTABLE_FS_FL.  To also make it settable via FS_IOC_SETFLAGS, also add
1883  * its FS_*_FL equivalent to F2FS_SETTABLE_FS_FL.
1884  *
1885  * Translating flags to fsx_flags value used by FS_IOC_FSGETXATTR and
1886  * FS_IOC_FSSETXATTR is done by the VFS.
1887  */
1888
1889 static const struct {
1890         u32 iflag;
1891         u32 fsflag;
1892 } f2fs_fsflags_map[] = {
1893         { F2FS_COMPR_FL,        FS_COMPR_FL },
1894         { F2FS_SYNC_FL,         FS_SYNC_FL },
1895         { F2FS_IMMUTABLE_FL,    FS_IMMUTABLE_FL },
1896         { F2FS_APPEND_FL,       FS_APPEND_FL },
1897         { F2FS_NODUMP_FL,       FS_NODUMP_FL },
1898         { F2FS_NOATIME_FL,      FS_NOATIME_FL },
1899         { F2FS_NOCOMP_FL,       FS_NOCOMP_FL },
1900         { F2FS_INDEX_FL,        FS_INDEX_FL },
1901         { F2FS_DIRSYNC_FL,      FS_DIRSYNC_FL },
1902         { F2FS_PROJINHERIT_FL,  FS_PROJINHERIT_FL },
1903         { F2FS_CASEFOLD_FL,     FS_CASEFOLD_FL },
1904 };
1905
1906 #define F2FS_GETTABLE_FS_FL (           \
1907                 FS_COMPR_FL |           \
1908                 FS_SYNC_FL |            \
1909                 FS_IMMUTABLE_FL |       \
1910                 FS_APPEND_FL |          \
1911                 FS_NODUMP_FL |          \
1912                 FS_NOATIME_FL |         \
1913                 FS_NOCOMP_FL |          \
1914                 FS_INDEX_FL |           \
1915                 FS_DIRSYNC_FL |         \
1916                 FS_PROJINHERIT_FL |     \
1917                 FS_ENCRYPT_FL |         \
1918                 FS_INLINE_DATA_FL |     \
1919                 FS_NOCOW_FL |           \
1920                 FS_VERITY_FL |          \
1921                 FS_CASEFOLD_FL)
1922
1923 #define F2FS_SETTABLE_FS_FL (           \
1924                 FS_COMPR_FL |           \
1925                 FS_SYNC_FL |            \
1926                 FS_IMMUTABLE_FL |       \
1927                 FS_APPEND_FL |          \
1928                 FS_NODUMP_FL |          \
1929                 FS_NOATIME_FL |         \
1930                 FS_NOCOMP_FL |          \
1931                 FS_DIRSYNC_FL |         \
1932                 FS_PROJINHERIT_FL |     \
1933                 FS_CASEFOLD_FL)
1934
1935 /* Convert f2fs on-disk i_flags to FS_IOC_{GET,SET}FLAGS flags */
1936 static inline u32 f2fs_iflags_to_fsflags(u32 iflags)
1937 {
1938         u32 fsflags = 0;
1939         int i;
1940
1941         for (i = 0; i < ARRAY_SIZE(f2fs_fsflags_map); i++)
1942                 if (iflags & f2fs_fsflags_map[i].iflag)
1943                         fsflags |= f2fs_fsflags_map[i].fsflag;
1944
1945         return fsflags;
1946 }
1947
1948 /* Convert FS_IOC_{GET,SET}FLAGS flags to f2fs on-disk i_flags */
1949 static inline u32 f2fs_fsflags_to_iflags(u32 fsflags)
1950 {
1951         u32 iflags = 0;
1952         int i;
1953
1954         for (i = 0; i < ARRAY_SIZE(f2fs_fsflags_map); i++)
1955                 if (fsflags & f2fs_fsflags_map[i].fsflag)
1956                         iflags |= f2fs_fsflags_map[i].iflag;
1957
1958         return iflags;
1959 }
1960
1961 static int f2fs_ioc_getversion(struct file *filp, unsigned long arg)
1962 {
1963         struct inode *inode = file_inode(filp);
1964
1965         return put_user(inode->i_generation, (int __user *)arg);
1966 }
1967
1968 static int f2fs_ioc_start_atomic_write(struct file *filp)
1969 {
1970         struct inode *inode = file_inode(filp);
1971         struct f2fs_inode_info *fi = F2FS_I(inode);
1972         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1973         int ret;
1974
1975         if (!inode_owner_or_capable(&init_user_ns, inode))
1976                 return -EACCES;
1977
1978         if (!S_ISREG(inode->i_mode))
1979                 return -EINVAL;
1980
1981         if (filp->f_flags & O_DIRECT)
1982                 return -EINVAL;
1983
1984         ret = mnt_want_write_file(filp);
1985         if (ret)
1986                 return ret;
1987
1988         inode_lock(inode);
1989
1990         f2fs_disable_compressed_file(inode);
1991
1992         if (f2fs_is_atomic_file(inode)) {
1993                 if (is_inode_flag_set(inode, FI_ATOMIC_REVOKE_REQUEST))
1994                         ret = -EINVAL;
1995                 goto out;
1996         }
1997
1998         ret = f2fs_convert_inline_inode(inode);
1999         if (ret)
2000                 goto out;
2001
2002         down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
2003
2004         /*
2005          * Should wait end_io to count F2FS_WB_CP_DATA correctly by
2006          * f2fs_is_atomic_file.
2007          */
2008         if (get_dirty_pages(inode))
2009                 f2fs_warn(F2FS_I_SB(inode), "Unexpected flush for atomic writes: ino=%lu, npages=%u",
2010                           inode->i_ino, get_dirty_pages(inode));
2011         ret = filemap_write_and_wait_range(inode->i_mapping, 0, LLONG_MAX);
2012         if (ret) {
2013                 up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
2014                 goto out;
2015         }
2016
2017         spin_lock(&sbi->inode_lock[ATOMIC_FILE]);
2018         if (list_empty(&fi->inmem_ilist))
2019                 list_add_tail(&fi->inmem_ilist, &sbi->inode_list[ATOMIC_FILE]);
2020         sbi->atomic_files++;
2021         spin_unlock(&sbi->inode_lock[ATOMIC_FILE]);
2022
2023         /* add inode in inmem_list first and set atomic_file */
2024         set_inode_flag(inode, FI_ATOMIC_FILE);
2025         clear_inode_flag(inode, FI_ATOMIC_REVOKE_REQUEST);
2026         up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
2027
2028         f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
2029         F2FS_I(inode)->inmem_task = current;
2030         stat_update_max_atomic_write(inode);
2031 out:
2032         inode_unlock(inode);
2033         mnt_drop_write_file(filp);
2034         return ret;
2035 }
2036
2037 static int f2fs_ioc_commit_atomic_write(struct file *filp)
2038 {
2039         struct inode *inode = file_inode(filp);
2040         int ret;
2041
2042         if (!inode_owner_or_capable(&init_user_ns, inode))
2043                 return -EACCES;
2044
2045         ret = mnt_want_write_file(filp);
2046         if (ret)
2047                 return ret;
2048
2049         f2fs_balance_fs(F2FS_I_SB(inode), true);
2050
2051         inode_lock(inode);
2052
2053         if (f2fs_is_volatile_file(inode)) {
2054                 ret = -EINVAL;
2055                 goto err_out;
2056         }
2057
2058         if (f2fs_is_atomic_file(inode)) {
2059                 ret = f2fs_commit_inmem_pages(inode);
2060                 if (ret)
2061                         goto err_out;
2062
2063                 ret = f2fs_do_sync_file(filp, 0, LLONG_MAX, 0, true);
2064                 if (!ret)
2065                         f2fs_drop_inmem_pages(inode);
2066         } else {
2067                 ret = f2fs_do_sync_file(filp, 0, LLONG_MAX, 1, false);
2068         }
2069 err_out:
2070         if (is_inode_flag_set(inode, FI_ATOMIC_REVOKE_REQUEST)) {
2071                 clear_inode_flag(inode, FI_ATOMIC_REVOKE_REQUEST);
2072                 ret = -EINVAL;
2073         }
2074         inode_unlock(inode);
2075         mnt_drop_write_file(filp);
2076         return ret;
2077 }
2078
2079 static int f2fs_ioc_start_volatile_write(struct file *filp)
2080 {
2081         struct inode *inode = file_inode(filp);
2082         int ret;
2083
2084         if (!inode_owner_or_capable(&init_user_ns, inode))
2085                 return -EACCES;
2086
2087         if (!S_ISREG(inode->i_mode))
2088                 return -EINVAL;
2089
2090         ret = mnt_want_write_file(filp);
2091         if (ret)
2092                 return ret;
2093
2094         inode_lock(inode);
2095
2096         if (f2fs_is_volatile_file(inode))
2097                 goto out;
2098
2099         ret = f2fs_convert_inline_inode(inode);
2100         if (ret)
2101                 goto out;
2102
2103         stat_inc_volatile_write(inode);
2104         stat_update_max_volatile_write(inode);
2105
2106         set_inode_flag(inode, FI_VOLATILE_FILE);
2107         f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
2108 out:
2109         inode_unlock(inode);
2110         mnt_drop_write_file(filp);
2111         return ret;
2112 }
2113
2114 static int f2fs_ioc_release_volatile_write(struct file *filp)
2115 {
2116         struct inode *inode = file_inode(filp);
2117         int ret;
2118
2119         if (!inode_owner_or_capable(&init_user_ns, inode))
2120                 return -EACCES;
2121
2122         ret = mnt_want_write_file(filp);
2123         if (ret)
2124                 return ret;
2125
2126         inode_lock(inode);
2127
2128         if (!f2fs_is_volatile_file(inode))
2129                 goto out;
2130
2131         if (!f2fs_is_first_block_written(inode)) {
2132                 ret = truncate_partial_data_page(inode, 0, true);
2133                 goto out;
2134         }
2135
2136         ret = punch_hole(inode, 0, F2FS_BLKSIZE);
2137 out:
2138         inode_unlock(inode);
2139         mnt_drop_write_file(filp);
2140         return ret;
2141 }
2142
2143 static int f2fs_ioc_abort_volatile_write(struct file *filp)
2144 {
2145         struct inode *inode = file_inode(filp);
2146         int ret;
2147
2148         if (!inode_owner_or_capable(&init_user_ns, inode))
2149                 return -EACCES;
2150
2151         ret = mnt_want_write_file(filp);
2152         if (ret)
2153                 return ret;
2154
2155         inode_lock(inode);
2156
2157         if (f2fs_is_atomic_file(inode))
2158                 f2fs_drop_inmem_pages(inode);
2159         if (f2fs_is_volatile_file(inode)) {
2160                 clear_inode_flag(inode, FI_VOLATILE_FILE);
2161                 stat_dec_volatile_write(inode);
2162                 ret = f2fs_do_sync_file(filp, 0, LLONG_MAX, 0, true);
2163         }
2164
2165         clear_inode_flag(inode, FI_ATOMIC_REVOKE_REQUEST);
2166
2167         inode_unlock(inode);
2168
2169         mnt_drop_write_file(filp);
2170         f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
2171         return ret;
2172 }
2173
2174 static int f2fs_ioc_shutdown(struct file *filp, unsigned long arg)
2175 {
2176         struct inode *inode = file_inode(filp);
2177         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2178         struct super_block *sb = sbi->sb;
2179         __u32 in;
2180         int ret = 0;
2181
2182         if (!capable(CAP_SYS_ADMIN))
2183                 return -EPERM;
2184
2185         if (get_user(in, (__u32 __user *)arg))
2186                 return -EFAULT;
2187
2188         if (in != F2FS_GOING_DOWN_FULLSYNC) {
2189                 ret = mnt_want_write_file(filp);
2190                 if (ret) {
2191                         if (ret == -EROFS) {
2192                                 ret = 0;
2193                                 f2fs_stop_checkpoint(sbi, false);
2194                                 set_sbi_flag(sbi, SBI_IS_SHUTDOWN);
2195                                 trace_f2fs_shutdown(sbi, in, ret);
2196                         }
2197                         return ret;
2198                 }
2199         }
2200
2201         switch (in) {
2202         case F2FS_GOING_DOWN_FULLSYNC:
2203                 ret = freeze_bdev(sb->s_bdev);
2204                 if (ret)
2205                         goto out;
2206                 f2fs_stop_checkpoint(sbi, false);
2207                 set_sbi_flag(sbi, SBI_IS_SHUTDOWN);
2208                 thaw_bdev(sb->s_bdev);
2209                 break;
2210         case F2FS_GOING_DOWN_METASYNC:
2211                 /* do checkpoint only */
2212                 ret = f2fs_sync_fs(sb, 1);
2213                 if (ret)
2214                         goto out;
2215                 f2fs_stop_checkpoint(sbi, false);
2216                 set_sbi_flag(sbi, SBI_IS_SHUTDOWN);
2217                 break;
2218         case F2FS_GOING_DOWN_NOSYNC:
2219                 f2fs_stop_checkpoint(sbi, false);
2220                 set_sbi_flag(sbi, SBI_IS_SHUTDOWN);
2221                 break;
2222         case F2FS_GOING_DOWN_METAFLUSH:
2223                 f2fs_sync_meta_pages(sbi, META, LONG_MAX, FS_META_IO);
2224                 f2fs_stop_checkpoint(sbi, false);
2225                 set_sbi_flag(sbi, SBI_IS_SHUTDOWN);
2226                 break;
2227         case F2FS_GOING_DOWN_NEED_FSCK:
2228                 set_sbi_flag(sbi, SBI_NEED_FSCK);
2229                 set_sbi_flag(sbi, SBI_CP_DISABLED_QUICK);
2230                 set_sbi_flag(sbi, SBI_IS_DIRTY);
2231                 /* do checkpoint only */
2232                 ret = f2fs_sync_fs(sb, 1);
2233                 goto out;
2234         default:
2235                 ret = -EINVAL;
2236                 goto out;
2237         }
2238
2239         f2fs_stop_gc_thread(sbi);
2240         f2fs_stop_discard_thread(sbi);
2241
2242         f2fs_drop_discard_cmd(sbi);
2243         clear_opt(sbi, DISCARD);
2244
2245         f2fs_update_time(sbi, REQ_TIME);
2246 out:
2247         if (in != F2FS_GOING_DOWN_FULLSYNC)
2248                 mnt_drop_write_file(filp);
2249
2250         trace_f2fs_shutdown(sbi, in, ret);
2251
2252         return ret;
2253 }
2254
2255 static int f2fs_ioc_fitrim(struct file *filp, unsigned long arg)
2256 {
2257         struct inode *inode = file_inode(filp);
2258         struct super_block *sb = inode->i_sb;
2259         struct request_queue *q = bdev_get_queue(sb->s_bdev);
2260         struct fstrim_range range;
2261         int ret;
2262
2263         if (!capable(CAP_SYS_ADMIN))
2264                 return -EPERM;
2265
2266         if (!f2fs_hw_support_discard(F2FS_SB(sb)))
2267                 return -EOPNOTSUPP;
2268
2269         if (copy_from_user(&range, (struct fstrim_range __user *)arg,
2270                                 sizeof(range)))
2271                 return -EFAULT;
2272
2273         ret = mnt_want_write_file(filp);
2274         if (ret)
2275                 return ret;
2276
2277         range.minlen = max((unsigned int)range.minlen,
2278                                 q->limits.discard_granularity);
2279         ret = f2fs_trim_fs(F2FS_SB(sb), &range);
2280         mnt_drop_write_file(filp);
2281         if (ret < 0)
2282                 return ret;
2283
2284         if (copy_to_user((struct fstrim_range __user *)arg, &range,
2285                                 sizeof(range)))
2286                 return -EFAULT;
2287         f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
2288         return 0;
2289 }
2290
2291 static bool uuid_is_nonzero(__u8 u[16])
2292 {
2293         int i;
2294
2295         for (i = 0; i < 16; i++)
2296                 if (u[i])
2297                         return true;
2298         return false;
2299 }
2300
2301 static int f2fs_ioc_set_encryption_policy(struct file *filp, unsigned long arg)
2302 {
2303         struct inode *inode = file_inode(filp);
2304
2305         if (!f2fs_sb_has_encrypt(F2FS_I_SB(inode)))
2306                 return -EOPNOTSUPP;
2307
2308         f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
2309
2310         return fscrypt_ioctl_set_policy(filp, (const void __user *)arg);
2311 }
2312
2313 static int f2fs_ioc_get_encryption_policy(struct file *filp, unsigned long arg)
2314 {
2315         if (!f2fs_sb_has_encrypt(F2FS_I_SB(file_inode(filp))))
2316                 return -EOPNOTSUPP;
2317         return fscrypt_ioctl_get_policy(filp, (void __user *)arg);
2318 }
2319
2320 static int f2fs_ioc_get_encryption_pwsalt(struct file *filp, unsigned long arg)
2321 {
2322         struct inode *inode = file_inode(filp);
2323         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2324         int err;
2325
2326         if (!f2fs_sb_has_encrypt(sbi))
2327                 return -EOPNOTSUPP;
2328
2329         err = mnt_want_write_file(filp);
2330         if (err)
2331                 return err;
2332
2333         down_write(&sbi->sb_lock);
2334
2335         if (uuid_is_nonzero(sbi->raw_super->encrypt_pw_salt))
2336                 goto got_it;
2337
2338         /* update superblock with uuid */
2339         generate_random_uuid(sbi->raw_super->encrypt_pw_salt);
2340
2341         err = f2fs_commit_super(sbi, false);
2342         if (err) {
2343                 /* undo new data */
2344                 memset(sbi->raw_super->encrypt_pw_salt, 0, 16);
2345                 goto out_err;
2346         }
2347 got_it:
2348         if (copy_to_user((__u8 __user *)arg, sbi->raw_super->encrypt_pw_salt,
2349                                                                         16))
2350                 err = -EFAULT;
2351 out_err:
2352         up_write(&sbi->sb_lock);
2353         mnt_drop_write_file(filp);
2354         return err;
2355 }
2356
2357 static int f2fs_ioc_get_encryption_policy_ex(struct file *filp,
2358                                              unsigned long arg)
2359 {
2360         if (!f2fs_sb_has_encrypt(F2FS_I_SB(file_inode(filp))))
2361                 return -EOPNOTSUPP;
2362
2363         return fscrypt_ioctl_get_policy_ex(filp, (void __user *)arg);
2364 }
2365
2366 static int f2fs_ioc_add_encryption_key(struct file *filp, unsigned long arg)
2367 {
2368         if (!f2fs_sb_has_encrypt(F2FS_I_SB(file_inode(filp))))
2369                 return -EOPNOTSUPP;
2370
2371         return fscrypt_ioctl_add_key(filp, (void __user *)arg);
2372 }
2373
2374 static int f2fs_ioc_remove_encryption_key(struct file *filp, unsigned long arg)
2375 {
2376         if (!f2fs_sb_has_encrypt(F2FS_I_SB(file_inode(filp))))
2377                 return -EOPNOTSUPP;
2378
2379         return fscrypt_ioctl_remove_key(filp, (void __user *)arg);
2380 }
2381
2382 static int f2fs_ioc_remove_encryption_key_all_users(struct file *filp,
2383                                                     unsigned long arg)
2384 {
2385         if (!f2fs_sb_has_encrypt(F2FS_I_SB(file_inode(filp))))
2386                 return -EOPNOTSUPP;
2387
2388         return fscrypt_ioctl_remove_key_all_users(filp, (void __user *)arg);
2389 }
2390
2391 static int f2fs_ioc_get_encryption_key_status(struct file *filp,
2392                                               unsigned long arg)
2393 {
2394         if (!f2fs_sb_has_encrypt(F2FS_I_SB(file_inode(filp))))
2395                 return -EOPNOTSUPP;
2396
2397         return fscrypt_ioctl_get_key_status(filp, (void __user *)arg);
2398 }
2399
2400 static int f2fs_ioc_get_encryption_nonce(struct file *filp, unsigned long arg)
2401 {
2402         if (!f2fs_sb_has_encrypt(F2FS_I_SB(file_inode(filp))))
2403                 return -EOPNOTSUPP;
2404
2405         return fscrypt_ioctl_get_nonce(filp, (void __user *)arg);
2406 }
2407
2408 static int f2fs_ioc_gc(struct file *filp, unsigned long arg)
2409 {
2410         struct inode *inode = file_inode(filp);
2411         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2412         __u32 sync;
2413         int ret;
2414
2415         if (!capable(CAP_SYS_ADMIN))
2416                 return -EPERM;
2417
2418         if (get_user(sync, (__u32 __user *)arg))
2419                 return -EFAULT;
2420
2421         if (f2fs_readonly(sbi->sb))
2422                 return -EROFS;
2423
2424         ret = mnt_want_write_file(filp);
2425         if (ret)
2426                 return ret;
2427
2428         if (!sync) {
2429                 if (!down_write_trylock(&sbi->gc_lock)) {
2430                         ret = -EBUSY;
2431                         goto out;
2432                 }
2433         } else {
2434                 down_write(&sbi->gc_lock);
2435         }
2436
2437         ret = f2fs_gc(sbi, sync, true, false, NULL_SEGNO);
2438 out:
2439         mnt_drop_write_file(filp);
2440         return ret;
2441 }
2442
2443 static int __f2fs_ioc_gc_range(struct file *filp, struct f2fs_gc_range *range)
2444 {
2445         struct f2fs_sb_info *sbi = F2FS_I_SB(file_inode(filp));
2446         u64 end;
2447         int ret;
2448
2449         if (!capable(CAP_SYS_ADMIN))
2450                 return -EPERM;
2451         if (f2fs_readonly(sbi->sb))
2452                 return -EROFS;
2453
2454         end = range->start + range->len;
2455         if (end < range->start || range->start < MAIN_BLKADDR(sbi) ||
2456                                         end >= MAX_BLKADDR(sbi))
2457                 return -EINVAL;
2458
2459         ret = mnt_want_write_file(filp);
2460         if (ret)
2461                 return ret;
2462
2463 do_more:
2464         if (!range->sync) {
2465                 if (!down_write_trylock(&sbi->gc_lock)) {
2466                         ret = -EBUSY;
2467                         goto out;
2468                 }
2469         } else {
2470                 down_write(&sbi->gc_lock);
2471         }
2472
2473         ret = f2fs_gc(sbi, range->sync, true, false,
2474                                 GET_SEGNO(sbi, range->start));
2475         if (ret) {
2476                 if (ret == -EBUSY)
2477                         ret = -EAGAIN;
2478                 goto out;
2479         }
2480         range->start += BLKS_PER_SEC(sbi);
2481         if (range->start <= end)
2482                 goto do_more;
2483 out:
2484         mnt_drop_write_file(filp);
2485         return ret;
2486 }
2487
2488 static int f2fs_ioc_gc_range(struct file *filp, unsigned long arg)
2489 {
2490         struct f2fs_gc_range range;
2491
2492         if (copy_from_user(&range, (struct f2fs_gc_range __user *)arg,
2493                                                         sizeof(range)))
2494                 return -EFAULT;
2495         return __f2fs_ioc_gc_range(filp, &range);
2496 }
2497
2498 static int f2fs_ioc_write_checkpoint(struct file *filp, unsigned long arg)
2499 {
2500         struct inode *inode = file_inode(filp);
2501         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2502         int ret;
2503
2504         if (!capable(CAP_SYS_ADMIN))
2505                 return -EPERM;
2506
2507         if (f2fs_readonly(sbi->sb))
2508                 return -EROFS;
2509
2510         if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED))) {
2511                 f2fs_info(sbi, "Skipping Checkpoint. Checkpoints currently disabled.");
2512                 return -EINVAL;
2513         }
2514
2515         ret = mnt_want_write_file(filp);
2516         if (ret)
2517                 return ret;
2518
2519         ret = f2fs_sync_fs(sbi->sb, 1);
2520
2521         mnt_drop_write_file(filp);
2522         return ret;
2523 }
2524
2525 static int f2fs_defragment_range(struct f2fs_sb_info *sbi,
2526                                         struct file *filp,
2527                                         struct f2fs_defragment *range)
2528 {
2529         struct inode *inode = file_inode(filp);
2530         struct f2fs_map_blocks map = { .m_next_extent = NULL,
2531                                         .m_seg_type = NO_CHECK_TYPE,
2532                                         .m_may_create = false };
2533         struct extent_info ei = {0, 0, 0};
2534         pgoff_t pg_start, pg_end, next_pgofs;
2535         unsigned int blk_per_seg = sbi->blocks_per_seg;
2536         unsigned int total = 0, sec_num;
2537         block_t blk_end = 0;
2538         bool fragmented = false;
2539         int err;
2540
2541         /* if in-place-update policy is enabled, don't waste time here */
2542         if (f2fs_should_update_inplace(inode, NULL))
2543                 return -EINVAL;
2544
2545         pg_start = range->start >> PAGE_SHIFT;
2546         pg_end = (range->start + range->len) >> PAGE_SHIFT;
2547
2548         f2fs_balance_fs(sbi, true);
2549
2550         inode_lock(inode);
2551
2552         /* writeback all dirty pages in the range */
2553         err = filemap_write_and_wait_range(inode->i_mapping, range->start,
2554                                                 range->start + range->len - 1);
2555         if (err)
2556                 goto out;
2557
2558         /*
2559          * lookup mapping info in extent cache, skip defragmenting if physical
2560          * block addresses are continuous.
2561          */
2562         if (f2fs_lookup_extent_cache(inode, pg_start, &ei)) {
2563                 if (ei.fofs + ei.len >= pg_end)
2564                         goto out;
2565         }
2566
2567         map.m_lblk = pg_start;
2568         map.m_next_pgofs = &next_pgofs;
2569
2570         /*
2571          * lookup mapping info in dnode page cache, skip defragmenting if all
2572          * physical block addresses are continuous even if there are hole(s)
2573          * in logical blocks.
2574          */
2575         while (map.m_lblk < pg_end) {
2576                 map.m_len = pg_end - map.m_lblk;
2577                 err = f2fs_map_blocks(inode, &map, 0, F2FS_GET_BLOCK_DEFAULT);
2578                 if (err)
2579                         goto out;
2580
2581                 if (!(map.m_flags & F2FS_MAP_FLAGS)) {
2582                         map.m_lblk = next_pgofs;
2583                         continue;
2584                 }
2585
2586                 if (blk_end && blk_end != map.m_pblk)
2587                         fragmented = true;
2588
2589                 /* record total count of block that we're going to move */
2590                 total += map.m_len;
2591
2592                 blk_end = map.m_pblk + map.m_len;
2593
2594                 map.m_lblk += map.m_len;
2595         }
2596
2597         if (!fragmented) {
2598                 total = 0;
2599                 goto out;
2600         }
2601
2602         sec_num = DIV_ROUND_UP(total, BLKS_PER_SEC(sbi));
2603
2604         /*
2605          * make sure there are enough free section for LFS allocation, this can
2606          * avoid defragment running in SSR mode when free section are allocated
2607          * intensively
2608          */
2609         if (has_not_enough_free_secs(sbi, 0, sec_num)) {
2610                 err = -EAGAIN;
2611                 goto out;
2612         }
2613
2614         map.m_lblk = pg_start;
2615         map.m_len = pg_end - pg_start;
2616         total = 0;
2617
2618         while (map.m_lblk < pg_end) {
2619                 pgoff_t idx;
2620                 int cnt = 0;
2621
2622 do_map:
2623                 map.m_len = pg_end - map.m_lblk;
2624                 err = f2fs_map_blocks(inode, &map, 0, F2FS_GET_BLOCK_DEFAULT);
2625                 if (err)
2626                         goto clear_out;
2627
2628                 if (!(map.m_flags & F2FS_MAP_FLAGS)) {
2629                         map.m_lblk = next_pgofs;
2630                         goto check;
2631                 }
2632
2633                 set_inode_flag(inode, FI_DO_DEFRAG);
2634
2635                 idx = map.m_lblk;
2636                 while (idx < map.m_lblk + map.m_len && cnt < blk_per_seg) {
2637                         struct page *page;
2638
2639                         page = f2fs_get_lock_data_page(inode, idx, true);
2640                         if (IS_ERR(page)) {
2641                                 err = PTR_ERR(page);
2642                                 goto clear_out;
2643                         }
2644
2645                         set_page_dirty(page);
2646                         f2fs_put_page(page, 1);
2647
2648                         idx++;
2649                         cnt++;
2650                         total++;
2651                 }
2652
2653                 map.m_lblk = idx;
2654 check:
2655                 if (map.m_lblk < pg_end && cnt < blk_per_seg)
2656                         goto do_map;
2657
2658                 clear_inode_flag(inode, FI_DO_DEFRAG);
2659
2660                 err = filemap_fdatawrite(inode->i_mapping);
2661                 if (err)
2662                         goto out;
2663         }
2664 clear_out:
2665         clear_inode_flag(inode, FI_DO_DEFRAG);
2666 out:
2667         inode_unlock(inode);
2668         if (!err)
2669                 range->len = (u64)total << PAGE_SHIFT;
2670         return err;
2671 }
2672
2673 static int f2fs_ioc_defragment(struct file *filp, unsigned long arg)
2674 {
2675         struct inode *inode = file_inode(filp);
2676         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2677         struct f2fs_defragment range;
2678         int err;
2679
2680         if (!capable(CAP_SYS_ADMIN))
2681                 return -EPERM;
2682
2683         if (!S_ISREG(inode->i_mode) || f2fs_is_atomic_file(inode))
2684                 return -EINVAL;
2685
2686         if (f2fs_readonly(sbi->sb))
2687                 return -EROFS;
2688
2689         if (copy_from_user(&range, (struct f2fs_defragment __user *)arg,
2690                                                         sizeof(range)))
2691                 return -EFAULT;
2692
2693         /* verify alignment of offset & size */
2694         if (range.start & (F2FS_BLKSIZE - 1) || range.len & (F2FS_BLKSIZE - 1))
2695                 return -EINVAL;
2696
2697         if (unlikely((range.start + range.len) >> PAGE_SHIFT >
2698                                         max_file_blocks(inode)))
2699                 return -EINVAL;
2700
2701         err = mnt_want_write_file(filp);
2702         if (err)
2703                 return err;
2704
2705         err = f2fs_defragment_range(sbi, filp, &range);
2706         mnt_drop_write_file(filp);
2707
2708         f2fs_update_time(sbi, REQ_TIME);
2709         if (err < 0)
2710                 return err;
2711
2712         if (copy_to_user((struct f2fs_defragment __user *)arg, &range,
2713                                                         sizeof(range)))
2714                 return -EFAULT;
2715
2716         return 0;
2717 }
2718
2719 static int f2fs_move_file_range(struct file *file_in, loff_t pos_in,
2720                         struct file *file_out, loff_t pos_out, size_t len)
2721 {
2722         struct inode *src = file_inode(file_in);
2723         struct inode *dst = file_inode(file_out);
2724         struct f2fs_sb_info *sbi = F2FS_I_SB(src);
2725         size_t olen = len, dst_max_i_size = 0;
2726         size_t dst_osize;
2727         int ret;
2728
2729         if (file_in->f_path.mnt != file_out->f_path.mnt ||
2730                                 src->i_sb != dst->i_sb)
2731                 return -EXDEV;
2732
2733         if (unlikely(f2fs_readonly(src->i_sb)))
2734                 return -EROFS;
2735
2736         if (!S_ISREG(src->i_mode) || !S_ISREG(dst->i_mode))
2737                 return -EINVAL;
2738
2739         if (IS_ENCRYPTED(src) || IS_ENCRYPTED(dst))
2740                 return -EOPNOTSUPP;
2741
2742         if (pos_out < 0 || pos_in < 0)
2743                 return -EINVAL;
2744
2745         if (src == dst) {
2746                 if (pos_in == pos_out)
2747                         return 0;
2748                 if (pos_out > pos_in && pos_out < pos_in + len)
2749                         return -EINVAL;
2750         }
2751
2752         inode_lock(src);
2753         if (src != dst) {
2754                 ret = -EBUSY;
2755                 if (!inode_trylock(dst))
2756                         goto out;
2757         }
2758
2759         ret = -EINVAL;
2760         if (pos_in + len > src->i_size || pos_in + len < pos_in)
2761                 goto out_unlock;
2762         if (len == 0)
2763                 olen = len = src->i_size - pos_in;
2764         if (pos_in + len == src->i_size)
2765                 len = ALIGN(src->i_size, F2FS_BLKSIZE) - pos_in;
2766         if (len == 0) {
2767                 ret = 0;
2768                 goto out_unlock;
2769         }
2770
2771         dst_osize = dst->i_size;
2772         if (pos_out + olen > dst->i_size)
2773                 dst_max_i_size = pos_out + olen;
2774
2775         /* verify the end result is block aligned */
2776         if (!IS_ALIGNED(pos_in, F2FS_BLKSIZE) ||
2777                         !IS_ALIGNED(pos_in + len, F2FS_BLKSIZE) ||
2778                         !IS_ALIGNED(pos_out, F2FS_BLKSIZE))
2779                 goto out_unlock;
2780
2781         ret = f2fs_convert_inline_inode(src);
2782         if (ret)
2783                 goto out_unlock;
2784
2785         ret = f2fs_convert_inline_inode(dst);
2786         if (ret)
2787                 goto out_unlock;
2788
2789         /* write out all dirty pages from offset */
2790         ret = filemap_write_and_wait_range(src->i_mapping,
2791                                         pos_in, pos_in + len);
2792         if (ret)
2793                 goto out_unlock;
2794
2795         ret = filemap_write_and_wait_range(dst->i_mapping,
2796                                         pos_out, pos_out + len);
2797         if (ret)
2798                 goto out_unlock;
2799
2800         f2fs_balance_fs(sbi, true);
2801
2802         down_write(&F2FS_I(src)->i_gc_rwsem[WRITE]);
2803         if (src != dst) {
2804                 ret = -EBUSY;
2805                 if (!down_write_trylock(&F2FS_I(dst)->i_gc_rwsem[WRITE]))
2806                         goto out_src;
2807         }
2808
2809         f2fs_lock_op(sbi);
2810         ret = __exchange_data_block(src, dst, pos_in >> F2FS_BLKSIZE_BITS,
2811                                 pos_out >> F2FS_BLKSIZE_BITS,
2812                                 len >> F2FS_BLKSIZE_BITS, false);
2813
2814         if (!ret) {
2815                 if (dst_max_i_size)
2816                         f2fs_i_size_write(dst, dst_max_i_size);
2817                 else if (dst_osize != dst->i_size)
2818                         f2fs_i_size_write(dst, dst_osize);
2819         }
2820         f2fs_unlock_op(sbi);
2821
2822         if (src != dst)
2823                 up_write(&F2FS_I(dst)->i_gc_rwsem[WRITE]);
2824 out_src:
2825         up_write(&F2FS_I(src)->i_gc_rwsem[WRITE]);
2826 out_unlock:
2827         if (src != dst)
2828                 inode_unlock(dst);
2829 out:
2830         inode_unlock(src);
2831         return ret;
2832 }
2833
2834 static int __f2fs_ioc_move_range(struct file *filp,
2835                                 struct f2fs_move_range *range)
2836 {
2837         struct fd dst;
2838         int err;
2839
2840         if (!(filp->f_mode & FMODE_READ) ||
2841                         !(filp->f_mode & FMODE_WRITE))
2842                 return -EBADF;
2843
2844         dst = fdget(range->dst_fd);
2845         if (!dst.file)
2846                 return -EBADF;
2847
2848         if (!(dst.file->f_mode & FMODE_WRITE)) {
2849                 err = -EBADF;
2850                 goto err_out;
2851         }
2852
2853         err = mnt_want_write_file(filp);
2854         if (err)
2855                 goto err_out;
2856
2857         err = f2fs_move_file_range(filp, range->pos_in, dst.file,
2858                                         range->pos_out, range->len);
2859
2860         mnt_drop_write_file(filp);
2861 err_out:
2862         fdput(dst);
2863         return err;
2864 }
2865
2866 static int f2fs_ioc_move_range(struct file *filp, unsigned long arg)
2867 {
2868         struct f2fs_move_range range;
2869
2870         if (copy_from_user(&range, (struct f2fs_move_range __user *)arg,
2871                                                         sizeof(range)))
2872                 return -EFAULT;
2873         return __f2fs_ioc_move_range(filp, &range);
2874 }
2875
2876 static int f2fs_ioc_flush_device(struct file *filp, unsigned long arg)
2877 {
2878         struct inode *inode = file_inode(filp);
2879         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2880         struct sit_info *sm = SIT_I(sbi);
2881         unsigned int start_segno = 0, end_segno = 0;
2882         unsigned int dev_start_segno = 0, dev_end_segno = 0;
2883         struct f2fs_flush_device range;
2884         int ret;
2885
2886         if (!capable(CAP_SYS_ADMIN))
2887                 return -EPERM;
2888
2889         if (f2fs_readonly(sbi->sb))
2890                 return -EROFS;
2891
2892         if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED)))
2893                 return -EINVAL;
2894
2895         if (copy_from_user(&range, (struct f2fs_flush_device __user *)arg,
2896                                                         sizeof(range)))
2897                 return -EFAULT;
2898
2899         if (!f2fs_is_multi_device(sbi) || sbi->s_ndevs - 1 <= range.dev_num ||
2900                         __is_large_section(sbi)) {
2901                 f2fs_warn(sbi, "Can't flush %u in %d for segs_per_sec %u != 1",
2902                           range.dev_num, sbi->s_ndevs, sbi->segs_per_sec);
2903                 return -EINVAL;
2904         }
2905
2906         ret = mnt_want_write_file(filp);
2907         if (ret)
2908                 return ret;
2909
2910         if (range.dev_num != 0)
2911                 dev_start_segno = GET_SEGNO(sbi, FDEV(range.dev_num).start_blk);
2912         dev_end_segno = GET_SEGNO(sbi, FDEV(range.dev_num).end_blk);
2913
2914         start_segno = sm->last_victim[FLUSH_DEVICE];
2915         if (start_segno < dev_start_segno || start_segno >= dev_end_segno)
2916                 start_segno = dev_start_segno;
2917         end_segno = min(start_segno + range.segments, dev_end_segno);
2918
2919         while (start_segno < end_segno) {
2920                 if (!down_write_trylock(&sbi->gc_lock)) {
2921                         ret = -EBUSY;
2922                         goto out;
2923                 }
2924                 sm->last_victim[GC_CB] = end_segno + 1;
2925                 sm->last_victim[GC_GREEDY] = end_segno + 1;
2926                 sm->last_victim[ALLOC_NEXT] = end_segno + 1;
2927                 ret = f2fs_gc(sbi, true, true, true, start_segno);
2928                 if (ret == -EAGAIN)
2929                         ret = 0;
2930                 else if (ret < 0)
2931                         break;
2932                 start_segno++;
2933         }
2934 out:
2935         mnt_drop_write_file(filp);
2936         return ret;
2937 }
2938
2939 static int f2fs_ioc_get_features(struct file *filp, unsigned long arg)
2940 {
2941         struct inode *inode = file_inode(filp);
2942         u32 sb_feature = le32_to_cpu(F2FS_I_SB(inode)->raw_super->feature);
2943
2944         /* Must validate to set it with SQLite behavior in Android. */
2945         sb_feature |= F2FS_FEATURE_ATOMIC_WRITE;
2946
2947         return put_user(sb_feature, (u32 __user *)arg);
2948 }
2949
2950 #ifdef CONFIG_QUOTA
2951 int f2fs_transfer_project_quota(struct inode *inode, kprojid_t kprojid)
2952 {
2953         struct dquot *transfer_to[MAXQUOTAS] = {};
2954         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2955         struct super_block *sb = sbi->sb;
2956         int err = 0;
2957
2958         transfer_to[PRJQUOTA] = dqget(sb, make_kqid_projid(kprojid));
2959         if (!IS_ERR(transfer_to[PRJQUOTA])) {
2960                 err = __dquot_transfer(inode, transfer_to);
2961                 if (err)
2962                         set_sbi_flag(sbi, SBI_QUOTA_NEED_REPAIR);
2963                 dqput(transfer_to[PRJQUOTA]);
2964         }
2965         return err;
2966 }
2967
2968 static int f2fs_ioc_setproject(struct inode *inode, __u32 projid)
2969 {
2970         struct f2fs_inode_info *fi = F2FS_I(inode);
2971         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2972         struct page *ipage;
2973         kprojid_t kprojid;
2974         int err;
2975
2976         if (!f2fs_sb_has_project_quota(sbi)) {
2977                 if (projid != F2FS_DEF_PROJID)
2978                         return -EOPNOTSUPP;
2979                 else
2980                         return 0;
2981         }
2982
2983         if (!f2fs_has_extra_attr(inode))
2984                 return -EOPNOTSUPP;
2985
2986         kprojid = make_kprojid(&init_user_ns, (projid_t)projid);
2987
2988         if (projid_eq(kprojid, F2FS_I(inode)->i_projid))
2989                 return 0;
2990
2991         err = -EPERM;
2992         /* Is it quota file? Do not allow user to mess with it */
2993         if (IS_NOQUOTA(inode))
2994                 return err;
2995
2996         ipage = f2fs_get_node_page(sbi, inode->i_ino);
2997         if (IS_ERR(ipage))
2998                 return PTR_ERR(ipage);
2999
3000         if (!F2FS_FITS_IN_INODE(F2FS_INODE(ipage), fi->i_extra_isize,
3001                                                                 i_projid)) {
3002                 err = -EOVERFLOW;
3003                 f2fs_put_page(ipage, 1);
3004                 return err;
3005         }
3006         f2fs_put_page(ipage, 1);
3007
3008         err = dquot_initialize(inode);
3009         if (err)
3010                 return err;
3011
3012         f2fs_lock_op(sbi);
3013         err = f2fs_transfer_project_quota(inode, kprojid);
3014         if (err)
3015                 goto out_unlock;
3016
3017         F2FS_I(inode)->i_projid = kprojid;
3018         inode->i_ctime = current_time(inode);
3019         f2fs_mark_inode_dirty_sync(inode, true);
3020 out_unlock:
3021         f2fs_unlock_op(sbi);
3022         return err;
3023 }
3024 #else
3025 int f2fs_transfer_project_quota(struct inode *inode, kprojid_t kprojid)
3026 {
3027         return 0;
3028 }
3029
3030 static int f2fs_ioc_setproject(struct inode *inode, __u32 projid)
3031 {
3032         if (projid != F2FS_DEF_PROJID)
3033                 return -EOPNOTSUPP;
3034         return 0;
3035 }
3036 #endif
3037
3038 int f2fs_fileattr_get(struct dentry *dentry, struct fileattr *fa)
3039 {
3040         struct inode *inode = d_inode(dentry);
3041         struct f2fs_inode_info *fi = F2FS_I(inode);
3042         u32 fsflags = f2fs_iflags_to_fsflags(fi->i_flags);
3043
3044         if (IS_ENCRYPTED(inode))
3045                 fsflags |= FS_ENCRYPT_FL;
3046         if (IS_VERITY(inode))
3047                 fsflags |= FS_VERITY_FL;
3048         if (f2fs_has_inline_data(inode) || f2fs_has_inline_dentry(inode))
3049                 fsflags |= FS_INLINE_DATA_FL;
3050         if (is_inode_flag_set(inode, FI_PIN_FILE))
3051                 fsflags |= FS_NOCOW_FL;
3052
3053         fileattr_fill_flags(fa, fsflags & F2FS_GETTABLE_FS_FL);
3054
3055         if (f2fs_sb_has_project_quota(F2FS_I_SB(inode)))
3056                 fa->fsx_projid = from_kprojid(&init_user_ns, fi->i_projid);
3057
3058         return 0;
3059 }
3060
3061 int f2fs_fileattr_set(struct user_namespace *mnt_userns,
3062                       struct dentry *dentry, struct fileattr *fa)
3063 {
3064         struct inode *inode = d_inode(dentry);
3065         u32 fsflags = fa->flags, mask = F2FS_SETTABLE_FS_FL;
3066         u32 iflags;
3067         int err;
3068
3069         if (unlikely(f2fs_cp_error(F2FS_I_SB(inode))))
3070                 return -EIO;
3071         if (!f2fs_is_checkpoint_ready(F2FS_I_SB(inode)))
3072                 return -ENOSPC;
3073         if (fsflags & ~F2FS_GETTABLE_FS_FL)
3074                 return -EOPNOTSUPP;
3075         fsflags &= F2FS_SETTABLE_FS_FL;
3076         if (!fa->flags_valid)
3077                 mask &= FS_COMMON_FL;
3078
3079         iflags = f2fs_fsflags_to_iflags(fsflags);
3080         if (f2fs_mask_flags(inode->i_mode, iflags) != iflags)
3081                 return -EOPNOTSUPP;
3082
3083         err = f2fs_setflags_common(inode, iflags, f2fs_fsflags_to_iflags(mask));
3084         if (!err)
3085                 err = f2fs_ioc_setproject(inode, fa->fsx_projid);
3086
3087         return err;
3088 }
3089
3090 int f2fs_pin_file_control(struct inode *inode, bool inc)
3091 {
3092         struct f2fs_inode_info *fi = F2FS_I(inode);
3093         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3094
3095         /* Use i_gc_failures for normal file as a risk signal. */
3096         if (inc)
3097                 f2fs_i_gc_failures_write(inode,
3098                                 fi->i_gc_failures[GC_FAILURE_PIN] + 1);
3099
3100         if (fi->i_gc_failures[GC_FAILURE_PIN] > sbi->gc_pin_file_threshold) {
3101                 f2fs_warn(sbi, "%s: Enable GC = ino %lx after %x GC trials",
3102                           __func__, inode->i_ino,
3103                           fi->i_gc_failures[GC_FAILURE_PIN]);
3104                 clear_inode_flag(inode, FI_PIN_FILE);
3105                 return -EAGAIN;
3106         }
3107         return 0;
3108 }
3109
3110 static int f2fs_ioc_set_pin_file(struct file *filp, unsigned long arg)
3111 {
3112         struct inode *inode = file_inode(filp);
3113         __u32 pin;
3114         int ret = 0;
3115
3116         if (get_user(pin, (__u32 __user *)arg))
3117                 return -EFAULT;
3118
3119         if (!S_ISREG(inode->i_mode))
3120                 return -EINVAL;
3121
3122         if (f2fs_readonly(F2FS_I_SB(inode)->sb))
3123                 return -EROFS;
3124
3125         ret = mnt_want_write_file(filp);
3126         if (ret)
3127                 return ret;
3128
3129         inode_lock(inode);
3130
3131         if (f2fs_should_update_outplace(inode, NULL)) {
3132                 ret = -EINVAL;
3133                 goto out;
3134         }
3135
3136         if (!pin) {
3137                 clear_inode_flag(inode, FI_PIN_FILE);
3138                 f2fs_i_gc_failures_write(inode, 0);
3139                 goto done;
3140         }
3141
3142         if (f2fs_pin_file_control(inode, false)) {
3143                 ret = -EAGAIN;
3144                 goto out;
3145         }
3146
3147         ret = f2fs_convert_inline_inode(inode);
3148         if (ret)
3149                 goto out;
3150
3151         if (!f2fs_disable_compressed_file(inode)) {
3152                 ret = -EOPNOTSUPP;
3153                 goto out;
3154         }
3155
3156         set_inode_flag(inode, FI_PIN_FILE);
3157         ret = F2FS_I(inode)->i_gc_failures[GC_FAILURE_PIN];
3158 done:
3159         f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
3160 out:
3161         inode_unlock(inode);
3162         mnt_drop_write_file(filp);
3163         return ret;
3164 }
3165
3166 static int f2fs_ioc_get_pin_file(struct file *filp, unsigned long arg)
3167 {
3168         struct inode *inode = file_inode(filp);
3169         __u32 pin = 0;
3170
3171         if (is_inode_flag_set(inode, FI_PIN_FILE))
3172                 pin = F2FS_I(inode)->i_gc_failures[GC_FAILURE_PIN];
3173         return put_user(pin, (u32 __user *)arg);
3174 }
3175
3176 int f2fs_precache_extents(struct inode *inode)
3177 {
3178         struct f2fs_inode_info *fi = F2FS_I(inode);
3179         struct f2fs_map_blocks map;
3180         pgoff_t m_next_extent;
3181         loff_t end;
3182         int err;
3183
3184         if (is_inode_flag_set(inode, FI_NO_EXTENT))
3185                 return -EOPNOTSUPP;
3186
3187         map.m_lblk = 0;
3188         map.m_next_pgofs = NULL;
3189         map.m_next_extent = &m_next_extent;
3190         map.m_seg_type = NO_CHECK_TYPE;
3191         map.m_may_create = false;
3192         end = max_file_blocks(inode);
3193
3194         while (map.m_lblk < end) {
3195                 map.m_len = end - map.m_lblk;
3196
3197                 down_write(&fi->i_gc_rwsem[WRITE]);
3198                 err = f2fs_map_blocks(inode, &map, 0, F2FS_GET_BLOCK_PRECACHE);
3199                 up_write(&fi->i_gc_rwsem[WRITE]);
3200                 if (err)
3201                         return err;
3202
3203                 map.m_lblk = m_next_extent;
3204         }
3205
3206         return err;
3207 }
3208
3209 static int f2fs_ioc_precache_extents(struct file *filp, unsigned long arg)
3210 {
3211         return f2fs_precache_extents(file_inode(filp));
3212 }
3213
3214 static int f2fs_ioc_resize_fs(struct file *filp, unsigned long arg)
3215 {
3216         struct f2fs_sb_info *sbi = F2FS_I_SB(file_inode(filp));
3217         __u64 block_count;
3218
3219         if (!capable(CAP_SYS_ADMIN))
3220                 return -EPERM;
3221
3222         if (f2fs_readonly(sbi->sb))
3223                 return -EROFS;
3224
3225         if (copy_from_user(&block_count, (void __user *)arg,
3226                            sizeof(block_count)))
3227                 return -EFAULT;
3228
3229         return f2fs_resize_fs(sbi, block_count);
3230 }
3231
3232 static int f2fs_ioc_enable_verity(struct file *filp, unsigned long arg)
3233 {
3234         struct inode *inode = file_inode(filp);
3235
3236         f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
3237
3238         if (!f2fs_sb_has_verity(F2FS_I_SB(inode))) {
3239                 f2fs_warn(F2FS_I_SB(inode),
3240                           "Can't enable fs-verity on inode %lu: the verity feature is not enabled on this filesystem.\n",
3241                           inode->i_ino);
3242                 return -EOPNOTSUPP;
3243         }
3244
3245         return fsverity_ioctl_enable(filp, (const void __user *)arg);
3246 }
3247
3248 static int f2fs_ioc_measure_verity(struct file *filp, unsigned long arg)
3249 {
3250         if (!f2fs_sb_has_verity(F2FS_I_SB(file_inode(filp))))
3251                 return -EOPNOTSUPP;
3252
3253         return fsverity_ioctl_measure(filp, (void __user *)arg);
3254 }
3255
3256 static int f2fs_ioc_read_verity_metadata(struct file *filp, unsigned long arg)
3257 {
3258         if (!f2fs_sb_has_verity(F2FS_I_SB(file_inode(filp))))
3259                 return -EOPNOTSUPP;
3260
3261         return fsverity_ioctl_read_metadata(filp, (const void __user *)arg);
3262 }
3263
3264 static int f2fs_ioc_getfslabel(struct file *filp, unsigned long arg)
3265 {
3266         struct inode *inode = file_inode(filp);
3267         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3268         char *vbuf;
3269         int count;
3270         int err = 0;
3271
3272         vbuf = f2fs_kzalloc(sbi, MAX_VOLUME_NAME, GFP_KERNEL);
3273         if (!vbuf)
3274                 return -ENOMEM;
3275
3276         down_read(&sbi->sb_lock);
3277         count = utf16s_to_utf8s(sbi->raw_super->volume_name,
3278                         ARRAY_SIZE(sbi->raw_super->volume_name),
3279                         UTF16_LITTLE_ENDIAN, vbuf, MAX_VOLUME_NAME);
3280         up_read(&sbi->sb_lock);
3281
3282         if (copy_to_user((char __user *)arg, vbuf,
3283                                 min(FSLABEL_MAX, count)))
3284                 err = -EFAULT;
3285
3286         kfree(vbuf);
3287         return err;
3288 }
3289
3290 static int f2fs_ioc_setfslabel(struct file *filp, unsigned long arg)
3291 {
3292         struct inode *inode = file_inode(filp);
3293         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3294         char *vbuf;
3295         int err = 0;
3296
3297         if (!capable(CAP_SYS_ADMIN))
3298                 return -EPERM;
3299
3300         vbuf = strndup_user((const char __user *)arg, FSLABEL_MAX);
3301         if (IS_ERR(vbuf))
3302                 return PTR_ERR(vbuf);
3303
3304         err = mnt_want_write_file(filp);
3305         if (err)
3306                 goto out;
3307
3308         down_write(&sbi->sb_lock);
3309
3310         memset(sbi->raw_super->volume_name, 0,
3311                         sizeof(sbi->raw_super->volume_name));
3312         utf8s_to_utf16s(vbuf, strlen(vbuf), UTF16_LITTLE_ENDIAN,
3313                         sbi->raw_super->volume_name,
3314                         ARRAY_SIZE(sbi->raw_super->volume_name));
3315
3316         err = f2fs_commit_super(sbi, false);
3317
3318         up_write(&sbi->sb_lock);
3319
3320         mnt_drop_write_file(filp);
3321 out:
3322         kfree(vbuf);
3323         return err;
3324 }
3325
3326 static int f2fs_get_compress_blocks(struct file *filp, unsigned long arg)
3327 {
3328         struct inode *inode = file_inode(filp);
3329         __u64 blocks;
3330
3331         if (!f2fs_sb_has_compression(F2FS_I_SB(inode)))
3332                 return -EOPNOTSUPP;
3333
3334         if (!f2fs_compressed_file(inode))
3335                 return -EINVAL;
3336
3337         blocks = atomic_read(&F2FS_I(inode)->i_compr_blocks);
3338         return put_user(blocks, (u64 __user *)arg);
3339 }
3340
3341 static int release_compress_blocks(struct dnode_of_data *dn, pgoff_t count)
3342 {
3343         struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
3344         unsigned int released_blocks = 0;
3345         int cluster_size = F2FS_I(dn->inode)->i_cluster_size;
3346         block_t blkaddr;
3347         int i;
3348
3349         for (i = 0; i < count; i++) {
3350                 blkaddr = data_blkaddr(dn->inode, dn->node_page,
3351                                                 dn->ofs_in_node + i);
3352
3353                 if (!__is_valid_data_blkaddr(blkaddr))
3354                         continue;
3355                 if (unlikely(!f2fs_is_valid_blkaddr(sbi, blkaddr,
3356                                         DATA_GENERIC_ENHANCE)))
3357                         return -EFSCORRUPTED;
3358         }
3359
3360         while (count) {
3361                 int compr_blocks = 0;
3362
3363                 for (i = 0; i < cluster_size; i++, dn->ofs_in_node++) {
3364                         blkaddr = f2fs_data_blkaddr(dn);
3365
3366                         if (i == 0) {
3367                                 if (blkaddr == COMPRESS_ADDR)
3368                                         continue;
3369                                 dn->ofs_in_node += cluster_size;
3370                                 goto next;
3371                         }
3372
3373                         if (__is_valid_data_blkaddr(blkaddr))
3374                                 compr_blocks++;
3375
3376                         if (blkaddr != NEW_ADDR)
3377                                 continue;
3378
3379                         dn->data_blkaddr = NULL_ADDR;
3380                         f2fs_set_data_blkaddr(dn);
3381                 }
3382
3383                 f2fs_i_compr_blocks_update(dn->inode, compr_blocks, false);
3384                 dec_valid_block_count(sbi, dn->inode,
3385                                         cluster_size - compr_blocks);
3386
3387                 released_blocks += cluster_size - compr_blocks;
3388 next:
3389                 count -= cluster_size;
3390         }
3391
3392         return released_blocks;
3393 }
3394
3395 static int f2fs_release_compress_blocks(struct file *filp, unsigned long arg)
3396 {
3397         struct inode *inode = file_inode(filp);
3398         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3399         pgoff_t page_idx = 0, last_idx;
3400         unsigned int released_blocks = 0;
3401         int ret;
3402         int writecount;
3403
3404         if (!f2fs_sb_has_compression(F2FS_I_SB(inode)))
3405                 return -EOPNOTSUPP;
3406
3407         if (!f2fs_compressed_file(inode))
3408                 return -EINVAL;
3409
3410         if (f2fs_readonly(sbi->sb))
3411                 return -EROFS;
3412
3413         ret = mnt_want_write_file(filp);
3414         if (ret)
3415                 return ret;
3416
3417         f2fs_balance_fs(F2FS_I_SB(inode), true);
3418
3419         inode_lock(inode);
3420
3421         writecount = atomic_read(&inode->i_writecount);
3422         if ((filp->f_mode & FMODE_WRITE && writecount != 1) ||
3423                         (!(filp->f_mode & FMODE_WRITE) && writecount)) {
3424                 ret = -EBUSY;
3425                 goto out;
3426         }
3427
3428         if (IS_IMMUTABLE(inode)) {
3429                 ret = -EINVAL;
3430                 goto out;
3431         }
3432
3433         ret = filemap_write_and_wait_range(inode->i_mapping, 0, LLONG_MAX);
3434         if (ret)
3435                 goto out;
3436
3437         F2FS_I(inode)->i_flags |= F2FS_IMMUTABLE_FL;
3438         f2fs_set_inode_flags(inode);
3439         inode->i_ctime = current_time(inode);
3440         f2fs_mark_inode_dirty_sync(inode, true);
3441
3442         if (!atomic_read(&F2FS_I(inode)->i_compr_blocks))
3443                 goto out;
3444
3445         down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
3446         down_write(&F2FS_I(inode)->i_mmap_sem);
3447
3448         last_idx = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
3449
3450         while (page_idx < last_idx) {
3451                 struct dnode_of_data dn;
3452                 pgoff_t end_offset, count;
3453
3454                 set_new_dnode(&dn, inode, NULL, NULL, 0);
3455                 ret = f2fs_get_dnode_of_data(&dn, page_idx, LOOKUP_NODE);
3456                 if (ret) {
3457                         if (ret == -ENOENT) {
3458                                 page_idx = f2fs_get_next_page_offset(&dn,
3459                                                                 page_idx);
3460                                 ret = 0;
3461                                 continue;
3462                         }
3463                         break;
3464                 }
3465
3466                 end_offset = ADDRS_PER_PAGE(dn.node_page, inode);
3467                 count = min(end_offset - dn.ofs_in_node, last_idx - page_idx);
3468                 count = round_up(count, F2FS_I(inode)->i_cluster_size);
3469
3470                 ret = release_compress_blocks(&dn, count);
3471
3472                 f2fs_put_dnode(&dn);
3473
3474                 if (ret < 0)
3475                         break;
3476
3477                 page_idx += count;
3478                 released_blocks += ret;
3479         }
3480
3481         up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
3482         up_write(&F2FS_I(inode)->i_mmap_sem);
3483 out:
3484         inode_unlock(inode);
3485
3486         mnt_drop_write_file(filp);
3487
3488         if (ret >= 0) {
3489                 ret = put_user(released_blocks, (u64 __user *)arg);
3490         } else if (released_blocks &&
3491                         atomic_read(&F2FS_I(inode)->i_compr_blocks)) {
3492                 set_sbi_flag(sbi, SBI_NEED_FSCK);
3493                 f2fs_warn(sbi, "%s: partial blocks were released i_ino=%lx "
3494                         "iblocks=%llu, released=%u, compr_blocks=%u, "
3495                         "run fsck to fix.",
3496                         __func__, inode->i_ino, inode->i_blocks,
3497                         released_blocks,
3498                         atomic_read(&F2FS_I(inode)->i_compr_blocks));
3499         }
3500
3501         return ret;
3502 }
3503
3504 static int reserve_compress_blocks(struct dnode_of_data *dn, pgoff_t count)
3505 {
3506         struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
3507         unsigned int reserved_blocks = 0;
3508         int cluster_size = F2FS_I(dn->inode)->i_cluster_size;
3509         block_t blkaddr;
3510         int i;
3511
3512         for (i = 0; i < count; i++) {
3513                 blkaddr = data_blkaddr(dn->inode, dn->node_page,
3514                                                 dn->ofs_in_node + i);
3515
3516                 if (!__is_valid_data_blkaddr(blkaddr))
3517                         continue;
3518                 if (unlikely(!f2fs_is_valid_blkaddr(sbi, blkaddr,
3519                                         DATA_GENERIC_ENHANCE)))
3520                         return -EFSCORRUPTED;
3521         }
3522
3523         while (count) {
3524                 int compr_blocks = 0;
3525                 blkcnt_t reserved;
3526                 int ret;
3527
3528                 for (i = 0; i < cluster_size; i++, dn->ofs_in_node++) {
3529                         blkaddr = f2fs_data_blkaddr(dn);
3530
3531                         if (i == 0) {
3532                                 if (blkaddr == COMPRESS_ADDR)
3533                                         continue;
3534                                 dn->ofs_in_node += cluster_size;
3535                                 goto next;
3536                         }
3537
3538                         if (__is_valid_data_blkaddr(blkaddr)) {
3539                                 compr_blocks++;
3540                                 continue;
3541                         }
3542
3543                         dn->data_blkaddr = NEW_ADDR;
3544                         f2fs_set_data_blkaddr(dn);
3545                 }
3546
3547                 reserved = cluster_size - compr_blocks;
3548                 ret = inc_valid_block_count(sbi, dn->inode, &reserved);
3549                 if (ret)
3550                         return ret;
3551
3552                 if (reserved != cluster_size - compr_blocks)
3553                         return -ENOSPC;
3554
3555                 f2fs_i_compr_blocks_update(dn->inode, compr_blocks, true);
3556
3557                 reserved_blocks += reserved;
3558 next:
3559                 count -= cluster_size;
3560         }
3561
3562         return reserved_blocks;
3563 }
3564
3565 static int f2fs_reserve_compress_blocks(struct file *filp, unsigned long arg)
3566 {
3567         struct inode *inode = file_inode(filp);
3568         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3569         pgoff_t page_idx = 0, last_idx;
3570         unsigned int reserved_blocks = 0;
3571         int ret;
3572
3573         if (!f2fs_sb_has_compression(F2FS_I_SB(inode)))
3574                 return -EOPNOTSUPP;
3575
3576         if (!f2fs_compressed_file(inode))
3577                 return -EINVAL;
3578
3579         if (f2fs_readonly(sbi->sb))
3580                 return -EROFS;
3581
3582         ret = mnt_want_write_file(filp);
3583         if (ret)
3584                 return ret;
3585
3586         if (atomic_read(&F2FS_I(inode)->i_compr_blocks))
3587                 goto out;
3588
3589         f2fs_balance_fs(F2FS_I_SB(inode), true);
3590
3591         inode_lock(inode);
3592
3593         if (!IS_IMMUTABLE(inode)) {
3594                 ret = -EINVAL;
3595                 goto unlock_inode;
3596         }
3597
3598         down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
3599         down_write(&F2FS_I(inode)->i_mmap_sem);
3600
3601         last_idx = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
3602
3603         while (page_idx < last_idx) {
3604                 struct dnode_of_data dn;
3605                 pgoff_t end_offset, count;
3606
3607                 set_new_dnode(&dn, inode, NULL, NULL, 0);
3608                 ret = f2fs_get_dnode_of_data(&dn, page_idx, LOOKUP_NODE);
3609                 if (ret) {
3610                         if (ret == -ENOENT) {
3611                                 page_idx = f2fs_get_next_page_offset(&dn,
3612                                                                 page_idx);
3613                                 ret = 0;
3614                                 continue;
3615                         }
3616                         break;
3617                 }
3618
3619                 end_offset = ADDRS_PER_PAGE(dn.node_page, inode);
3620                 count = min(end_offset - dn.ofs_in_node, last_idx - page_idx);
3621                 count = round_up(count, F2FS_I(inode)->i_cluster_size);
3622
3623                 ret = reserve_compress_blocks(&dn, count);
3624
3625                 f2fs_put_dnode(&dn);
3626
3627                 if (ret < 0)
3628                         break;
3629
3630                 page_idx += count;
3631                 reserved_blocks += ret;
3632         }
3633
3634         up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
3635         up_write(&F2FS_I(inode)->i_mmap_sem);
3636
3637         if (ret >= 0) {
3638                 F2FS_I(inode)->i_flags &= ~F2FS_IMMUTABLE_FL;
3639                 f2fs_set_inode_flags(inode);
3640                 inode->i_ctime = current_time(inode);
3641                 f2fs_mark_inode_dirty_sync(inode, true);
3642         }
3643 unlock_inode:
3644         inode_unlock(inode);
3645 out:
3646         mnt_drop_write_file(filp);
3647
3648         if (ret >= 0) {
3649                 ret = put_user(reserved_blocks, (u64 __user *)arg);
3650         } else if (reserved_blocks &&
3651                         atomic_read(&F2FS_I(inode)->i_compr_blocks)) {
3652                 set_sbi_flag(sbi, SBI_NEED_FSCK);
3653                 f2fs_warn(sbi, "%s: partial blocks were released i_ino=%lx "
3654                         "iblocks=%llu, reserved=%u, compr_blocks=%u, "
3655                         "run fsck to fix.",
3656                         __func__, inode->i_ino, inode->i_blocks,
3657                         reserved_blocks,
3658                         atomic_read(&F2FS_I(inode)->i_compr_blocks));
3659         }
3660
3661         return ret;
3662 }
3663
3664 static int f2fs_secure_erase(struct block_device *bdev, struct inode *inode,
3665                 pgoff_t off, block_t block, block_t len, u32 flags)
3666 {
3667         struct request_queue *q = bdev_get_queue(bdev);
3668         sector_t sector = SECTOR_FROM_BLOCK(block);
3669         sector_t nr_sects = SECTOR_FROM_BLOCK(len);
3670         int ret = 0;
3671
3672         if (!q)
3673                 return -ENXIO;
3674
3675         if (flags & F2FS_TRIM_FILE_DISCARD)
3676                 ret = blkdev_issue_discard(bdev, sector, nr_sects, GFP_NOFS,
3677                                                 blk_queue_secure_erase(q) ?
3678                                                 BLKDEV_DISCARD_SECURE : 0);
3679
3680         if (!ret && (flags & F2FS_TRIM_FILE_ZEROOUT)) {
3681                 if (IS_ENCRYPTED(inode))
3682                         ret = fscrypt_zeroout_range(inode, off, block, len);
3683                 else
3684                         ret = blkdev_issue_zeroout(bdev, sector, nr_sects,
3685                                         GFP_NOFS, 0);
3686         }
3687
3688         return ret;
3689 }
3690
3691 static int f2fs_sec_trim_file(struct file *filp, unsigned long arg)
3692 {
3693         struct inode *inode = file_inode(filp);
3694         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3695         struct address_space *mapping = inode->i_mapping;
3696         struct block_device *prev_bdev = NULL;
3697         struct f2fs_sectrim_range range;
3698         pgoff_t index, pg_end, prev_index = 0;
3699         block_t prev_block = 0, len = 0;
3700         loff_t end_addr;
3701         bool to_end = false;
3702         int ret = 0;
3703
3704         if (!(filp->f_mode & FMODE_WRITE))
3705                 return -EBADF;
3706
3707         if (copy_from_user(&range, (struct f2fs_sectrim_range __user *)arg,
3708                                 sizeof(range)))
3709                 return -EFAULT;
3710
3711         if (range.flags == 0 || (range.flags & ~F2FS_TRIM_FILE_MASK) ||
3712                         !S_ISREG(inode->i_mode))
3713                 return -EINVAL;
3714
3715         if (((range.flags & F2FS_TRIM_FILE_DISCARD) &&
3716                         !f2fs_hw_support_discard(sbi)) ||
3717                         ((range.flags & F2FS_TRIM_FILE_ZEROOUT) &&
3718                          IS_ENCRYPTED(inode) && f2fs_is_multi_device(sbi)))
3719                 return -EOPNOTSUPP;
3720
3721         file_start_write(filp);
3722         inode_lock(inode);
3723
3724         if (f2fs_is_atomic_file(inode) || f2fs_compressed_file(inode) ||
3725                         range.start >= inode->i_size) {
3726                 ret = -EINVAL;
3727                 goto err;
3728         }
3729
3730         if (range.len == 0)
3731                 goto err;
3732
3733         if (inode->i_size - range.start > range.len) {
3734                 end_addr = range.start + range.len;
3735         } else {
3736                 end_addr = range.len == (u64)-1 ?
3737                         sbi->sb->s_maxbytes : inode->i_size;
3738                 to_end = true;
3739         }
3740
3741         if (!IS_ALIGNED(range.start, F2FS_BLKSIZE) ||
3742                         (!to_end && !IS_ALIGNED(end_addr, F2FS_BLKSIZE))) {
3743                 ret = -EINVAL;
3744                 goto err;
3745         }
3746
3747         index = F2FS_BYTES_TO_BLK(range.start);
3748         pg_end = DIV_ROUND_UP(end_addr, F2FS_BLKSIZE);
3749
3750         ret = f2fs_convert_inline_inode(inode);
3751         if (ret)
3752                 goto err;
3753
3754         down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
3755         down_write(&F2FS_I(inode)->i_mmap_sem);
3756
3757         ret = filemap_write_and_wait_range(mapping, range.start,
3758                         to_end ? LLONG_MAX : end_addr - 1);
3759         if (ret)
3760                 goto out;
3761
3762         truncate_inode_pages_range(mapping, range.start,
3763                         to_end ? -1 : end_addr - 1);
3764
3765         while (index < pg_end) {
3766                 struct dnode_of_data dn;
3767                 pgoff_t end_offset, count;
3768                 int i;
3769
3770                 set_new_dnode(&dn, inode, NULL, NULL, 0);
3771                 ret = f2fs_get_dnode_of_data(&dn, index, LOOKUP_NODE);
3772                 if (ret) {
3773                         if (ret == -ENOENT) {
3774                                 index = f2fs_get_next_page_offset(&dn, index);
3775                                 continue;
3776                         }
3777                         goto out;
3778                 }
3779
3780                 end_offset = ADDRS_PER_PAGE(dn.node_page, inode);
3781                 count = min(end_offset - dn.ofs_in_node, pg_end - index);
3782                 for (i = 0; i < count; i++, index++, dn.ofs_in_node++) {
3783                         struct block_device *cur_bdev;
3784                         block_t blkaddr = f2fs_data_blkaddr(&dn);
3785
3786                         if (!__is_valid_data_blkaddr(blkaddr))
3787                                 continue;
3788
3789                         if (!f2fs_is_valid_blkaddr(sbi, blkaddr,
3790                                                 DATA_GENERIC_ENHANCE)) {
3791                                 ret = -EFSCORRUPTED;
3792                                 f2fs_put_dnode(&dn);
3793                                 goto out;
3794                         }
3795
3796                         cur_bdev = f2fs_target_device(sbi, blkaddr, NULL);
3797                         if (f2fs_is_multi_device(sbi)) {
3798                                 int di = f2fs_target_device_index(sbi, blkaddr);
3799
3800                                 blkaddr -= FDEV(di).start_blk;
3801                         }
3802
3803                         if (len) {
3804                                 if (prev_bdev == cur_bdev &&
3805                                                 index == prev_index + len &&
3806                                                 blkaddr == prev_block + len) {
3807                                         len++;
3808                                 } else {
3809                                         ret = f2fs_secure_erase(prev_bdev,
3810                                                 inode, prev_index, prev_block,
3811                                                 len, range.flags);
3812                                         if (ret) {
3813                                                 f2fs_put_dnode(&dn);
3814                                                 goto out;
3815                                         }
3816
3817                                         len = 0;
3818                                 }
3819                         }
3820
3821                         if (!len) {
3822                                 prev_bdev = cur_bdev;
3823                                 prev_index = index;
3824                                 prev_block = blkaddr;
3825                                 len = 1;
3826                         }
3827                 }
3828
3829                 f2fs_put_dnode(&dn);
3830
3831                 if (fatal_signal_pending(current)) {
3832                         ret = -EINTR;
3833                         goto out;
3834                 }
3835                 cond_resched();
3836         }
3837
3838         if (len)
3839                 ret = f2fs_secure_erase(prev_bdev, inode, prev_index,
3840                                 prev_block, len, range.flags);
3841 out:
3842         up_write(&F2FS_I(inode)->i_mmap_sem);
3843         up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
3844 err:
3845         inode_unlock(inode);
3846         file_end_write(filp);
3847
3848         return ret;
3849 }
3850
3851 static int f2fs_ioc_get_compress_option(struct file *filp, unsigned long arg)
3852 {
3853         struct inode *inode = file_inode(filp);
3854         struct f2fs_comp_option option;
3855
3856         if (!f2fs_sb_has_compression(F2FS_I_SB(inode)))
3857                 return -EOPNOTSUPP;
3858
3859         inode_lock_shared(inode);
3860
3861         if (!f2fs_compressed_file(inode)) {
3862                 inode_unlock_shared(inode);
3863                 return -ENODATA;
3864         }
3865
3866         option.algorithm = F2FS_I(inode)->i_compress_algorithm;
3867         option.log_cluster_size = F2FS_I(inode)->i_log_cluster_size;
3868
3869         inode_unlock_shared(inode);
3870
3871         if (copy_to_user((struct f2fs_comp_option __user *)arg, &option,
3872                                 sizeof(option)))
3873                 return -EFAULT;
3874
3875         return 0;
3876 }
3877
3878 static int f2fs_ioc_set_compress_option(struct file *filp, unsigned long arg)
3879 {
3880         struct inode *inode = file_inode(filp);
3881         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3882         struct f2fs_comp_option option;
3883         int ret = 0;
3884
3885         if (!f2fs_sb_has_compression(sbi))
3886                 return -EOPNOTSUPP;
3887
3888         if (!(filp->f_mode & FMODE_WRITE))
3889                 return -EBADF;
3890
3891         if (copy_from_user(&option, (struct f2fs_comp_option __user *)arg,
3892                                 sizeof(option)))
3893                 return -EFAULT;
3894
3895         if (!f2fs_compressed_file(inode) ||
3896                         option.log_cluster_size < MIN_COMPRESS_LOG_SIZE ||
3897                         option.log_cluster_size > MAX_COMPRESS_LOG_SIZE ||
3898                         option.algorithm >= COMPRESS_MAX)
3899                 return -EINVAL;
3900
3901         file_start_write(filp);
3902         inode_lock(inode);
3903
3904         if (f2fs_is_mmap_file(inode) || get_dirty_pages(inode)) {
3905                 ret = -EBUSY;
3906                 goto out;
3907         }
3908
3909         if (inode->i_size != 0) {
3910                 ret = -EFBIG;
3911                 goto out;
3912         }
3913
3914         F2FS_I(inode)->i_compress_algorithm = option.algorithm;
3915         F2FS_I(inode)->i_log_cluster_size = option.log_cluster_size;
3916         F2FS_I(inode)->i_cluster_size = 1 << option.log_cluster_size;
3917         f2fs_mark_inode_dirty_sync(inode, true);
3918
3919         if (!f2fs_is_compress_backend_ready(inode))
3920                 f2fs_warn(sbi, "compression algorithm is successfully set, "
3921                         "but current kernel doesn't support this algorithm.");
3922 out:
3923         inode_unlock(inode);
3924         file_end_write(filp);
3925
3926         return ret;
3927 }
3928
3929 static int redirty_blocks(struct inode *inode, pgoff_t page_idx, int len)
3930 {
3931         DEFINE_READAHEAD(ractl, NULL, NULL, inode->i_mapping, page_idx);
3932         struct address_space *mapping = inode->i_mapping;
3933         struct page *page;
3934         pgoff_t redirty_idx = page_idx;
3935         int i, page_len = 0, ret = 0;
3936
3937         page_cache_ra_unbounded(&ractl, len, 0);
3938
3939         for (i = 0; i < len; i++, page_idx++) {
3940                 page = read_cache_page(mapping, page_idx, NULL, NULL);
3941                 if (IS_ERR(page)) {
3942                         ret = PTR_ERR(page);
3943                         break;
3944                 }
3945                 page_len++;
3946         }
3947
3948         for (i = 0; i < page_len; i++, redirty_idx++) {
3949                 page = find_lock_page(mapping, redirty_idx);
3950                 if (!page) {
3951                         ret = -ENOMEM;
3952                         break;
3953                 }
3954                 set_page_dirty(page);
3955                 f2fs_put_page(page, 1);
3956                 f2fs_put_page(page, 0);
3957         }
3958
3959         return ret;
3960 }
3961
3962 static int f2fs_ioc_decompress_file(struct file *filp, unsigned long arg)
3963 {
3964         struct inode *inode = file_inode(filp);
3965         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3966         struct f2fs_inode_info *fi = F2FS_I(inode);
3967         pgoff_t page_idx = 0, last_idx;
3968         unsigned int blk_per_seg = sbi->blocks_per_seg;
3969         int cluster_size = F2FS_I(inode)->i_cluster_size;
3970         int count, ret;
3971
3972         if (!f2fs_sb_has_compression(sbi) ||
3973                         F2FS_OPTION(sbi).compress_mode != COMPR_MODE_USER)
3974                 return -EOPNOTSUPP;
3975
3976         if (!(filp->f_mode & FMODE_WRITE))
3977                 return -EBADF;
3978
3979         if (!f2fs_compressed_file(inode))
3980                 return -EINVAL;
3981
3982         f2fs_balance_fs(F2FS_I_SB(inode), true);
3983
3984         file_start_write(filp);
3985         inode_lock(inode);
3986
3987         if (!f2fs_is_compress_backend_ready(inode)) {
3988                 ret = -EOPNOTSUPP;
3989                 goto out;
3990         }
3991
3992         if (f2fs_is_mmap_file(inode)) {
3993                 ret = -EBUSY;
3994                 goto out;
3995         }
3996
3997         ret = filemap_write_and_wait_range(inode->i_mapping, 0, LLONG_MAX);
3998         if (ret)
3999                 goto out;
4000
4001         if (!atomic_read(&fi->i_compr_blocks))
4002                 goto out;
4003
4004         last_idx = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
4005
4006         count = last_idx - page_idx;
4007         while (count) {
4008                 int len = min(cluster_size, count);
4009
4010                 ret = redirty_blocks(inode, page_idx, len);
4011                 if (ret < 0)
4012                         break;
4013
4014                 if (get_dirty_pages(inode) >= blk_per_seg)
4015                         filemap_fdatawrite(inode->i_mapping);
4016
4017                 count -= len;
4018                 page_idx += len;
4019         }
4020
4021         if (!ret)
4022                 ret = filemap_write_and_wait_range(inode->i_mapping, 0,
4023                                                         LLONG_MAX);
4024
4025         if (ret)
4026                 f2fs_warn(sbi, "%s: The file might be partially decompressed "
4027                                 "(errno=%d). Please delete the file.\n",
4028                                 __func__, ret);
4029 out:
4030         inode_unlock(inode);
4031         file_end_write(filp);
4032
4033         return ret;
4034 }
4035
4036 static int f2fs_ioc_compress_file(struct file *filp, unsigned long arg)
4037 {
4038         struct inode *inode = file_inode(filp);
4039         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
4040         pgoff_t page_idx = 0, last_idx;
4041         unsigned int blk_per_seg = sbi->blocks_per_seg;
4042         int cluster_size = F2FS_I(inode)->i_cluster_size;
4043         int count, ret;
4044
4045         if (!f2fs_sb_has_compression(sbi) ||
4046                         F2FS_OPTION(sbi).compress_mode != COMPR_MODE_USER)
4047                 return -EOPNOTSUPP;
4048
4049         if (!(filp->f_mode & FMODE_WRITE))
4050                 return -EBADF;
4051
4052         if (!f2fs_compressed_file(inode))
4053                 return -EINVAL;
4054
4055         f2fs_balance_fs(F2FS_I_SB(inode), true);
4056
4057         file_start_write(filp);
4058         inode_lock(inode);
4059
4060         if (!f2fs_is_compress_backend_ready(inode)) {
4061                 ret = -EOPNOTSUPP;
4062                 goto out;
4063         }
4064
4065         if (f2fs_is_mmap_file(inode)) {
4066                 ret = -EBUSY;
4067                 goto out;
4068         }
4069
4070         ret = filemap_write_and_wait_range(inode->i_mapping, 0, LLONG_MAX);
4071         if (ret)
4072                 goto out;
4073
4074         set_inode_flag(inode, FI_ENABLE_COMPRESS);
4075
4076         last_idx = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
4077
4078         count = last_idx - page_idx;
4079         while (count) {
4080                 int len = min(cluster_size, count);
4081
4082                 ret = redirty_blocks(inode, page_idx, len);
4083                 if (ret < 0)
4084                         break;
4085
4086                 if (get_dirty_pages(inode) >= blk_per_seg)
4087                         filemap_fdatawrite(inode->i_mapping);
4088
4089                 count -= len;
4090                 page_idx += len;
4091         }
4092
4093         if (!ret)
4094                 ret = filemap_write_and_wait_range(inode->i_mapping, 0,
4095                                                         LLONG_MAX);
4096
4097         clear_inode_flag(inode, FI_ENABLE_COMPRESS);
4098
4099         if (ret)
4100                 f2fs_warn(sbi, "%s: The file might be partially compressed "
4101                                 "(errno=%d). Please delete the file.\n",
4102                                 __func__, ret);
4103 out:
4104         inode_unlock(inode);
4105         file_end_write(filp);
4106
4107         return ret;
4108 }
4109
4110 static long __f2fs_ioctl(struct file *filp, unsigned int cmd, unsigned long arg)
4111 {
4112         switch (cmd) {
4113         case FS_IOC_GETVERSION:
4114                 return f2fs_ioc_getversion(filp, arg);
4115         case F2FS_IOC_START_ATOMIC_WRITE:
4116                 return f2fs_ioc_start_atomic_write(filp);
4117         case F2FS_IOC_COMMIT_ATOMIC_WRITE:
4118                 return f2fs_ioc_commit_atomic_write(filp);
4119         case F2FS_IOC_START_VOLATILE_WRITE:
4120                 return f2fs_ioc_start_volatile_write(filp);
4121         case F2FS_IOC_RELEASE_VOLATILE_WRITE:
4122                 return f2fs_ioc_release_volatile_write(filp);
4123         case F2FS_IOC_ABORT_VOLATILE_WRITE:
4124                 return f2fs_ioc_abort_volatile_write(filp);
4125         case F2FS_IOC_SHUTDOWN:
4126                 return f2fs_ioc_shutdown(filp, arg);
4127         case FITRIM:
4128                 return f2fs_ioc_fitrim(filp, arg);
4129         case FS_IOC_SET_ENCRYPTION_POLICY:
4130                 return f2fs_ioc_set_encryption_policy(filp, arg);
4131         case FS_IOC_GET_ENCRYPTION_POLICY:
4132                 return f2fs_ioc_get_encryption_policy(filp, arg);
4133         case FS_IOC_GET_ENCRYPTION_PWSALT:
4134                 return f2fs_ioc_get_encryption_pwsalt(filp, arg);
4135         case FS_IOC_GET_ENCRYPTION_POLICY_EX:
4136                 return f2fs_ioc_get_encryption_policy_ex(filp, arg);
4137         case FS_IOC_ADD_ENCRYPTION_KEY:
4138                 return f2fs_ioc_add_encryption_key(filp, arg);
4139         case FS_IOC_REMOVE_ENCRYPTION_KEY:
4140                 return f2fs_ioc_remove_encryption_key(filp, arg);
4141         case FS_IOC_REMOVE_ENCRYPTION_KEY_ALL_USERS:
4142                 return f2fs_ioc_remove_encryption_key_all_users(filp, arg);
4143         case FS_IOC_GET_ENCRYPTION_KEY_STATUS:
4144                 return f2fs_ioc_get_encryption_key_status(filp, arg);
4145         case FS_IOC_GET_ENCRYPTION_NONCE:
4146                 return f2fs_ioc_get_encryption_nonce(filp, arg);
4147         case F2FS_IOC_GARBAGE_COLLECT:
4148                 return f2fs_ioc_gc(filp, arg);
4149         case F2FS_IOC_GARBAGE_COLLECT_RANGE:
4150                 return f2fs_ioc_gc_range(filp, arg);
4151         case F2FS_IOC_WRITE_CHECKPOINT:
4152                 return f2fs_ioc_write_checkpoint(filp, arg);
4153         case F2FS_IOC_DEFRAGMENT:
4154                 return f2fs_ioc_defragment(filp, arg);
4155         case F2FS_IOC_MOVE_RANGE:
4156                 return f2fs_ioc_move_range(filp, arg);
4157         case F2FS_IOC_FLUSH_DEVICE:
4158                 return f2fs_ioc_flush_device(filp, arg);
4159         case F2FS_IOC_GET_FEATURES:
4160                 return f2fs_ioc_get_features(filp, arg);
4161         case F2FS_IOC_GET_PIN_FILE:
4162                 return f2fs_ioc_get_pin_file(filp, arg);
4163         case F2FS_IOC_SET_PIN_FILE:
4164                 return f2fs_ioc_set_pin_file(filp, arg);
4165         case F2FS_IOC_PRECACHE_EXTENTS:
4166                 return f2fs_ioc_precache_extents(filp, arg);
4167         case F2FS_IOC_RESIZE_FS:
4168                 return f2fs_ioc_resize_fs(filp, arg);
4169         case FS_IOC_ENABLE_VERITY:
4170                 return f2fs_ioc_enable_verity(filp, arg);
4171         case FS_IOC_MEASURE_VERITY:
4172                 return f2fs_ioc_measure_verity(filp, arg);
4173         case FS_IOC_READ_VERITY_METADATA:
4174                 return f2fs_ioc_read_verity_metadata(filp, arg);
4175         case FS_IOC_GETFSLABEL:
4176                 return f2fs_ioc_getfslabel(filp, arg);
4177         case FS_IOC_SETFSLABEL:
4178                 return f2fs_ioc_setfslabel(filp, arg);
4179         case F2FS_IOC_GET_COMPRESS_BLOCKS:
4180                 return f2fs_get_compress_blocks(filp, arg);
4181         case F2FS_IOC_RELEASE_COMPRESS_BLOCKS:
4182                 return f2fs_release_compress_blocks(filp, arg);
4183         case F2FS_IOC_RESERVE_COMPRESS_BLOCKS:
4184                 return f2fs_reserve_compress_blocks(filp, arg);
4185         case F2FS_IOC_SEC_TRIM_FILE:
4186                 return f2fs_sec_trim_file(filp, arg);
4187         case F2FS_IOC_GET_COMPRESS_OPTION:
4188                 return f2fs_ioc_get_compress_option(filp, arg);
4189         case F2FS_IOC_SET_COMPRESS_OPTION:
4190                 return f2fs_ioc_set_compress_option(filp, arg);
4191         case F2FS_IOC_DECOMPRESS_FILE:
4192                 return f2fs_ioc_decompress_file(filp, arg);
4193         case F2FS_IOC_COMPRESS_FILE:
4194                 return f2fs_ioc_compress_file(filp, arg);
4195         default:
4196                 return -ENOTTY;
4197         }
4198 }
4199
4200 long f2fs_ioctl(struct file *filp, unsigned int cmd, unsigned long arg)
4201 {
4202         if (unlikely(f2fs_cp_error(F2FS_I_SB(file_inode(filp)))))
4203                 return -EIO;
4204         if (!f2fs_is_checkpoint_ready(F2FS_I_SB(file_inode(filp))))
4205                 return -ENOSPC;
4206
4207         return __f2fs_ioctl(filp, cmd, arg);
4208 }
4209
4210 static ssize_t f2fs_file_read_iter(struct kiocb *iocb, struct iov_iter *iter)
4211 {
4212         struct file *file = iocb->ki_filp;
4213         struct inode *inode = file_inode(file);
4214         int ret;
4215
4216         if (!f2fs_is_compress_backend_ready(inode))
4217                 return -EOPNOTSUPP;
4218
4219         ret = generic_file_read_iter(iocb, iter);
4220
4221         if (ret > 0)
4222                 f2fs_update_iostat(F2FS_I_SB(inode), APP_READ_IO, ret);
4223
4224         return ret;
4225 }
4226
4227 static ssize_t f2fs_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
4228 {
4229         struct file *file = iocb->ki_filp;
4230         struct inode *inode = file_inode(file);
4231         ssize_t ret;
4232
4233         if (unlikely(f2fs_cp_error(F2FS_I_SB(inode)))) {
4234                 ret = -EIO;
4235                 goto out;
4236         }
4237
4238         if (!f2fs_is_compress_backend_ready(inode)) {
4239                 ret = -EOPNOTSUPP;
4240                 goto out;
4241         }
4242
4243         if (iocb->ki_flags & IOCB_NOWAIT) {
4244                 if (!inode_trylock(inode)) {
4245                         ret = -EAGAIN;
4246                         goto out;
4247                 }
4248         } else {
4249                 inode_lock(inode);
4250         }
4251
4252         if (unlikely(IS_IMMUTABLE(inode))) {
4253                 ret = -EPERM;
4254                 goto unlock;
4255         }
4256
4257         ret = generic_write_checks(iocb, from);
4258         if (ret > 0) {
4259                 bool preallocated = false;
4260                 size_t target_size = 0;
4261                 int err;
4262
4263                 if (iov_iter_fault_in_readable(from, iov_iter_count(from)))
4264                         set_inode_flag(inode, FI_NO_PREALLOC);
4265
4266                 if ((iocb->ki_flags & IOCB_NOWAIT)) {
4267                         if (!f2fs_overwrite_io(inode, iocb->ki_pos,
4268                                                 iov_iter_count(from)) ||
4269                                 f2fs_has_inline_data(inode) ||
4270                                 f2fs_force_buffered_io(inode, iocb, from)) {
4271                                 clear_inode_flag(inode, FI_NO_PREALLOC);
4272                                 inode_unlock(inode);
4273                                 ret = -EAGAIN;
4274                                 goto out;
4275                         }
4276                         goto write;
4277                 }
4278
4279                 if (is_inode_flag_set(inode, FI_NO_PREALLOC))
4280                         goto write;
4281
4282                 if (iocb->ki_flags & IOCB_DIRECT) {
4283                         /*
4284                          * Convert inline data for Direct I/O before entering
4285                          * f2fs_direct_IO().
4286                          */
4287                         err = f2fs_convert_inline_inode(inode);
4288                         if (err)
4289                                 goto out_err;
4290                         /*
4291                          * If force_buffere_io() is true, we have to allocate
4292                          * blocks all the time, since f2fs_direct_IO will fall
4293                          * back to buffered IO.
4294                          */
4295                         if (!f2fs_force_buffered_io(inode, iocb, from) &&
4296                                         allow_outplace_dio(inode, iocb, from))
4297                                 goto write;
4298                 }
4299                 preallocated = true;
4300                 target_size = iocb->ki_pos + iov_iter_count(from);
4301
4302                 err = f2fs_preallocate_blocks(iocb, from);
4303                 if (err) {
4304 out_err:
4305                         clear_inode_flag(inode, FI_NO_PREALLOC);
4306                         inode_unlock(inode);
4307                         ret = err;
4308                         goto out;
4309                 }
4310 write:
4311                 ret = __generic_file_write_iter(iocb, from);
4312                 clear_inode_flag(inode, FI_NO_PREALLOC);
4313
4314                 /* if we couldn't write data, we should deallocate blocks. */
4315                 if (preallocated && i_size_read(inode) < target_size) {
4316                         down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
4317                         down_write(&F2FS_I(inode)->i_mmap_sem);
4318                         f2fs_truncate(inode);
4319                         up_write(&F2FS_I(inode)->i_mmap_sem);
4320                         up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
4321                 }
4322
4323                 if (ret > 0)
4324                         f2fs_update_iostat(F2FS_I_SB(inode), APP_WRITE_IO, ret);
4325         }
4326 unlock:
4327         inode_unlock(inode);
4328 out:
4329         trace_f2fs_file_write_iter(inode, iocb->ki_pos,
4330                                         iov_iter_count(from), ret);
4331         if (ret > 0)
4332                 ret = generic_write_sync(iocb, ret);
4333         return ret;
4334 }
4335
4336 #ifdef CONFIG_COMPAT
4337 struct compat_f2fs_gc_range {
4338         u32 sync;
4339         compat_u64 start;
4340         compat_u64 len;
4341 };
4342 #define F2FS_IOC32_GARBAGE_COLLECT_RANGE        _IOW(F2FS_IOCTL_MAGIC, 11,\
4343                                                 struct compat_f2fs_gc_range)
4344
4345 static int f2fs_compat_ioc_gc_range(struct file *file, unsigned long arg)
4346 {
4347         struct compat_f2fs_gc_range __user *urange;
4348         struct f2fs_gc_range range;
4349         int err;
4350
4351         urange = compat_ptr(arg);
4352         err = get_user(range.sync, &urange->sync);
4353         err |= get_user(range.start, &urange->start);
4354         err |= get_user(range.len, &urange->len);
4355         if (err)
4356                 return -EFAULT;
4357
4358         return __f2fs_ioc_gc_range(file, &range);
4359 }
4360
4361 struct compat_f2fs_move_range {
4362         u32 dst_fd;
4363         compat_u64 pos_in;
4364         compat_u64 pos_out;
4365         compat_u64 len;
4366 };
4367 #define F2FS_IOC32_MOVE_RANGE           _IOWR(F2FS_IOCTL_MAGIC, 9,      \
4368                                         struct compat_f2fs_move_range)
4369
4370 static int f2fs_compat_ioc_move_range(struct file *file, unsigned long arg)
4371 {
4372         struct compat_f2fs_move_range __user *urange;
4373         struct f2fs_move_range range;
4374         int err;
4375
4376         urange = compat_ptr(arg);
4377         err = get_user(range.dst_fd, &urange->dst_fd);
4378         err |= get_user(range.pos_in, &urange->pos_in);
4379         err |= get_user(range.pos_out, &urange->pos_out);
4380         err |= get_user(range.len, &urange->len);
4381         if (err)
4382                 return -EFAULT;
4383
4384         return __f2fs_ioc_move_range(file, &range);
4385 }
4386
4387 long f2fs_compat_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
4388 {
4389         if (unlikely(f2fs_cp_error(F2FS_I_SB(file_inode(file)))))
4390                 return -EIO;
4391         if (!f2fs_is_checkpoint_ready(F2FS_I_SB(file_inode(file))))
4392                 return -ENOSPC;
4393
4394         switch (cmd) {
4395         case FS_IOC32_GETVERSION:
4396                 cmd = FS_IOC_GETVERSION;
4397                 break;
4398         case F2FS_IOC32_GARBAGE_COLLECT_RANGE:
4399                 return f2fs_compat_ioc_gc_range(file, arg);
4400         case F2FS_IOC32_MOVE_RANGE:
4401                 return f2fs_compat_ioc_move_range(file, arg);
4402         case F2FS_IOC_START_ATOMIC_WRITE:
4403         case F2FS_IOC_COMMIT_ATOMIC_WRITE:
4404         case F2FS_IOC_START_VOLATILE_WRITE:
4405         case F2FS_IOC_RELEASE_VOLATILE_WRITE:
4406         case F2FS_IOC_ABORT_VOLATILE_WRITE:
4407         case F2FS_IOC_SHUTDOWN:
4408         case FITRIM:
4409         case FS_IOC_SET_ENCRYPTION_POLICY:
4410         case FS_IOC_GET_ENCRYPTION_PWSALT:
4411         case FS_IOC_GET_ENCRYPTION_POLICY:
4412         case FS_IOC_GET_ENCRYPTION_POLICY_EX:
4413         case FS_IOC_ADD_ENCRYPTION_KEY:
4414         case FS_IOC_REMOVE_ENCRYPTION_KEY:
4415         case FS_IOC_REMOVE_ENCRYPTION_KEY_ALL_USERS:
4416         case FS_IOC_GET_ENCRYPTION_KEY_STATUS:
4417         case FS_IOC_GET_ENCRYPTION_NONCE:
4418         case F2FS_IOC_GARBAGE_COLLECT:
4419         case F2FS_IOC_WRITE_CHECKPOINT:
4420         case F2FS_IOC_DEFRAGMENT:
4421         case F2FS_IOC_FLUSH_DEVICE:
4422         case F2FS_IOC_GET_FEATURES:
4423         case F2FS_IOC_GET_PIN_FILE:
4424         case F2FS_IOC_SET_PIN_FILE:
4425         case F2FS_IOC_PRECACHE_EXTENTS:
4426         case F2FS_IOC_RESIZE_FS:
4427         case FS_IOC_ENABLE_VERITY:
4428         case FS_IOC_MEASURE_VERITY:
4429         case FS_IOC_READ_VERITY_METADATA:
4430         case FS_IOC_GETFSLABEL:
4431         case FS_IOC_SETFSLABEL:
4432         case F2FS_IOC_GET_COMPRESS_BLOCKS:
4433         case F2FS_IOC_RELEASE_COMPRESS_BLOCKS:
4434         case F2FS_IOC_RESERVE_COMPRESS_BLOCKS:
4435         case F2FS_IOC_SEC_TRIM_FILE:
4436         case F2FS_IOC_GET_COMPRESS_OPTION:
4437         case F2FS_IOC_SET_COMPRESS_OPTION:
4438         case F2FS_IOC_DECOMPRESS_FILE:
4439         case F2FS_IOC_COMPRESS_FILE:
4440                 break;
4441         default:
4442                 return -ENOIOCTLCMD;
4443         }
4444         return __f2fs_ioctl(file, cmd, (unsigned long) compat_ptr(arg));
4445 }
4446 #endif
4447
4448 const struct file_operations f2fs_file_operations = {
4449         .llseek         = f2fs_llseek,
4450         .read_iter      = f2fs_file_read_iter,
4451         .write_iter     = f2fs_file_write_iter,
4452         .open           = f2fs_file_open,
4453         .release        = f2fs_release_file,
4454         .mmap           = f2fs_file_mmap,
4455         .flush          = f2fs_file_flush,
4456         .fsync          = f2fs_sync_file,
4457         .fallocate      = f2fs_fallocate,
4458         .unlocked_ioctl = f2fs_ioctl,
4459 #ifdef CONFIG_COMPAT
4460         .compat_ioctl   = f2fs_compat_ioctl,
4461 #endif
4462         .splice_read    = generic_file_splice_read,
4463         .splice_write   = iter_file_splice_write,
4464 };