1 // SPDX-License-Identifier: GPL-2.0
5 * Copyright (c) 2012 Samsung Electronics Co., Ltd.
6 * http://www.samsung.com/
9 #include <linux/f2fs_fs.h>
10 #include <linux/stat.h>
11 #include <linux/buffer_head.h>
12 #include <linux/writeback.h>
13 #include <linux/blkdev.h>
14 #include <linux/falloc.h>
15 #include <linux/types.h>
16 #include <linux/compat.h>
17 #include <linux/uaccess.h>
18 #include <linux/mount.h>
19 #include <linux/pagevec.h>
20 #include <linux/uio.h>
21 #include <linux/uuid.h>
22 #include <linux/file.h>
23 #include <linux/nls.h>
24 #include <linux/sched/signal.h>
25 #include <linux/fileattr.h>
26 #include <linux/fadvise.h>
35 #include <trace/events/f2fs.h>
36 #include <uapi/linux/f2fs.h>
38 static vm_fault_t f2fs_filemap_fault(struct vm_fault *vmf)
40 struct inode *inode = file_inode(vmf->vma->vm_file);
43 down_read(&F2FS_I(inode)->i_mmap_sem);
44 ret = filemap_fault(vmf);
45 up_read(&F2FS_I(inode)->i_mmap_sem);
48 f2fs_update_iostat(F2FS_I_SB(inode), APP_MAPPED_READ_IO,
51 trace_f2fs_filemap_fault(inode, vmf->pgoff, (unsigned long)ret);
56 static vm_fault_t f2fs_vm_page_mkwrite(struct vm_fault *vmf)
58 struct page *page = vmf->page;
59 struct inode *inode = file_inode(vmf->vma->vm_file);
60 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
61 struct dnode_of_data dn;
62 bool need_alloc = true;
65 if (unlikely(IS_IMMUTABLE(inode)))
66 return VM_FAULT_SIGBUS;
68 if (is_inode_flag_set(inode, FI_COMPRESS_RELEASED))
69 return VM_FAULT_SIGBUS;
71 if (unlikely(f2fs_cp_error(sbi))) {
76 if (!f2fs_is_checkpoint_ready(sbi)) {
81 err = f2fs_convert_inline_inode(inode);
85 #ifdef CONFIG_F2FS_FS_COMPRESSION
86 if (f2fs_compressed_file(inode)) {
87 int ret = f2fs_is_compressed_cluster(inode, page->index);
97 /* should do out of any locked page */
99 f2fs_balance_fs(sbi, true);
101 sb_start_pagefault(inode->i_sb);
103 f2fs_bug_on(sbi, f2fs_has_inline_data(inode));
105 file_update_time(vmf->vma->vm_file);
106 down_read(&F2FS_I(inode)->i_mmap_sem);
108 if (unlikely(page->mapping != inode->i_mapping ||
109 page_offset(page) > i_size_read(inode) ||
110 !PageUptodate(page))) {
117 /* block allocation */
118 f2fs_do_map_lock(sbi, F2FS_GET_BLOCK_PRE_AIO, true);
119 set_new_dnode(&dn, inode, NULL, NULL, 0);
120 err = f2fs_get_block(&dn, page->index);
121 f2fs_do_map_lock(sbi, F2FS_GET_BLOCK_PRE_AIO, false);
124 #ifdef CONFIG_F2FS_FS_COMPRESSION
126 set_new_dnode(&dn, inode, NULL, NULL, 0);
127 err = f2fs_get_dnode_of_data(&dn, page->index, LOOKUP_NODE);
136 f2fs_wait_on_page_writeback(page, DATA, false, true);
138 /* wait for GCed page writeback via META_MAPPING */
139 f2fs_wait_on_block_writeback(inode, dn.data_blkaddr);
142 * check to see if the page is mapped already (no holes)
144 if (PageMappedToDisk(page))
147 /* page is wholly or partially inside EOF */
148 if (((loff_t)(page->index + 1) << PAGE_SHIFT) >
149 i_size_read(inode)) {
152 offset = i_size_read(inode) & ~PAGE_MASK;
153 zero_user_segment(page, offset, PAGE_SIZE);
155 set_page_dirty(page);
156 if (!PageUptodate(page))
157 SetPageUptodate(page);
159 f2fs_update_iostat(sbi, APP_MAPPED_IO, F2FS_BLKSIZE);
160 f2fs_update_time(sbi, REQ_TIME);
162 trace_f2fs_vm_page_mkwrite(page, DATA);
164 up_read(&F2FS_I(inode)->i_mmap_sem);
166 sb_end_pagefault(inode->i_sb);
168 return block_page_mkwrite_return(err);
171 static const struct vm_operations_struct f2fs_file_vm_ops = {
172 .fault = f2fs_filemap_fault,
173 .map_pages = filemap_map_pages,
174 .page_mkwrite = f2fs_vm_page_mkwrite,
177 static int get_parent_ino(struct inode *inode, nid_t *pino)
179 struct dentry *dentry;
182 * Make sure to get the non-deleted alias. The alias associated with
183 * the open file descriptor being fsync()'ed may be deleted already.
185 dentry = d_find_alias(inode);
189 *pino = parent_ino(dentry);
194 static inline enum cp_reason_type need_do_checkpoint(struct inode *inode)
196 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
197 enum cp_reason_type cp_reason = CP_NO_NEEDED;
199 if (!S_ISREG(inode->i_mode))
200 cp_reason = CP_NON_REGULAR;
201 else if (f2fs_compressed_file(inode))
202 cp_reason = CP_COMPRESSED;
203 else if (inode->i_nlink != 1)
204 cp_reason = CP_HARDLINK;
205 else if (is_sbi_flag_set(sbi, SBI_NEED_CP))
206 cp_reason = CP_SB_NEED_CP;
207 else if (file_wrong_pino(inode))
208 cp_reason = CP_WRONG_PINO;
209 else if (!f2fs_space_for_roll_forward(sbi))
210 cp_reason = CP_NO_SPC_ROLL;
211 else if (!f2fs_is_checkpointed_node(sbi, F2FS_I(inode)->i_pino))
212 cp_reason = CP_NODE_NEED_CP;
213 else if (test_opt(sbi, FASTBOOT))
214 cp_reason = CP_FASTBOOT_MODE;
215 else if (F2FS_OPTION(sbi).active_logs == 2)
216 cp_reason = CP_SPEC_LOG_NUM;
217 else if (F2FS_OPTION(sbi).fsync_mode == FSYNC_MODE_STRICT &&
218 f2fs_need_dentry_mark(sbi, inode->i_ino) &&
219 f2fs_exist_written_data(sbi, F2FS_I(inode)->i_pino,
221 cp_reason = CP_RECOVER_DIR;
226 static bool need_inode_page_update(struct f2fs_sb_info *sbi, nid_t ino)
228 struct page *i = find_get_page(NODE_MAPPING(sbi), ino);
230 /* But we need to avoid that there are some inode updates */
231 if ((i && PageDirty(i)) || f2fs_need_inode_block_update(sbi, ino))
237 static void try_to_fix_pino(struct inode *inode)
239 struct f2fs_inode_info *fi = F2FS_I(inode);
242 down_write(&fi->i_sem);
243 if (file_wrong_pino(inode) && inode->i_nlink == 1 &&
244 get_parent_ino(inode, &pino)) {
245 f2fs_i_pino_write(inode, pino);
246 file_got_pino(inode);
248 up_write(&fi->i_sem);
251 static int f2fs_do_sync_file(struct file *file, loff_t start, loff_t end,
252 int datasync, bool atomic)
254 struct inode *inode = file->f_mapping->host;
255 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
256 nid_t ino = inode->i_ino;
258 enum cp_reason_type cp_reason = 0;
259 struct writeback_control wbc = {
260 .sync_mode = WB_SYNC_ALL,
261 .nr_to_write = LONG_MAX,
264 unsigned int seq_id = 0;
266 if (unlikely(f2fs_readonly(inode->i_sb)))
269 trace_f2fs_sync_file_enter(inode);
271 if (S_ISDIR(inode->i_mode))
274 /* if fdatasync is triggered, let's do in-place-update */
275 if (datasync || get_dirty_pages(inode) <= SM_I(sbi)->min_fsync_blocks)
276 set_inode_flag(inode, FI_NEED_IPU);
277 ret = file_write_and_wait_range(file, start, end);
278 clear_inode_flag(inode, FI_NEED_IPU);
280 if (ret || is_sbi_flag_set(sbi, SBI_CP_DISABLED)) {
281 trace_f2fs_sync_file_exit(inode, cp_reason, datasync, ret);
285 /* if the inode is dirty, let's recover all the time */
286 if (!f2fs_skip_inode_update(inode, datasync)) {
287 f2fs_write_inode(inode, NULL);
292 * if there is no written data, don't waste time to write recovery info.
294 if (!is_inode_flag_set(inode, FI_APPEND_WRITE) &&
295 !f2fs_exist_written_data(sbi, ino, APPEND_INO)) {
297 /* it may call write_inode just prior to fsync */
298 if (need_inode_page_update(sbi, ino))
301 if (is_inode_flag_set(inode, FI_UPDATE_WRITE) ||
302 f2fs_exist_written_data(sbi, ino, UPDATE_INO))
307 * for OPU case, during fsync(), node can be persisted before
308 * data when lower device doesn't support write barrier, result
309 * in data corruption after SPO.
310 * So for strict fsync mode, force to use atomic write sematics
311 * to keep write order in between data/node and last node to
312 * avoid potential data corruption.
314 if (F2FS_OPTION(sbi).fsync_mode ==
315 FSYNC_MODE_STRICT && !atomic)
320 * Both of fdatasync() and fsync() are able to be recovered from
323 down_read(&F2FS_I(inode)->i_sem);
324 cp_reason = need_do_checkpoint(inode);
325 up_read(&F2FS_I(inode)->i_sem);
328 /* all the dirty node pages should be flushed for POR */
329 ret = f2fs_sync_fs(inode->i_sb, 1);
332 * We've secured consistency through sync_fs. Following pino
333 * will be used only for fsynced inodes after checkpoint.
335 try_to_fix_pino(inode);
336 clear_inode_flag(inode, FI_APPEND_WRITE);
337 clear_inode_flag(inode, FI_UPDATE_WRITE);
341 atomic_inc(&sbi->wb_sync_req[NODE]);
342 ret = f2fs_fsync_node_pages(sbi, inode, &wbc, atomic, &seq_id);
343 atomic_dec(&sbi->wb_sync_req[NODE]);
347 /* if cp_error was enabled, we should avoid infinite loop */
348 if (unlikely(f2fs_cp_error(sbi))) {
353 if (f2fs_need_inode_block_update(sbi, ino)) {
354 f2fs_mark_inode_dirty_sync(inode, true);
355 f2fs_write_inode(inode, NULL);
360 * If it's atomic_write, it's just fine to keep write ordering. So
361 * here we don't need to wait for node write completion, since we use
362 * node chain which serializes node blocks. If one of node writes are
363 * reordered, we can see simply broken chain, resulting in stopping
364 * roll-forward recovery. It means we'll recover all or none node blocks
368 ret = f2fs_wait_on_node_pages_writeback(sbi, seq_id);
373 /* once recovery info is written, don't need to tack this */
374 f2fs_remove_ino_entry(sbi, ino, APPEND_INO);
375 clear_inode_flag(inode, FI_APPEND_WRITE);
377 if (!atomic && F2FS_OPTION(sbi).fsync_mode != FSYNC_MODE_NOBARRIER)
378 ret = f2fs_issue_flush(sbi, inode->i_ino);
380 f2fs_remove_ino_entry(sbi, ino, UPDATE_INO);
381 clear_inode_flag(inode, FI_UPDATE_WRITE);
382 f2fs_remove_ino_entry(sbi, ino, FLUSH_INO);
384 f2fs_update_time(sbi, REQ_TIME);
386 trace_f2fs_sync_file_exit(inode, cp_reason, datasync, ret);
390 int f2fs_sync_file(struct file *file, loff_t start, loff_t end, int datasync)
392 if (unlikely(f2fs_cp_error(F2FS_I_SB(file_inode(file)))))
394 return f2fs_do_sync_file(file, start, end, datasync, false);
397 static bool __found_offset(struct address_space *mapping, block_t blkaddr,
398 pgoff_t index, int whence)
402 if (__is_valid_data_blkaddr(blkaddr))
404 if (blkaddr == NEW_ADDR &&
405 xa_get_mark(&mapping->i_pages, index, PAGECACHE_TAG_DIRTY))
409 if (blkaddr == NULL_ADDR)
416 static loff_t f2fs_seek_block(struct file *file, loff_t offset, int whence)
418 struct inode *inode = file->f_mapping->host;
419 loff_t maxbytes = inode->i_sb->s_maxbytes;
420 struct dnode_of_data dn;
421 pgoff_t pgofs, end_offset;
422 loff_t data_ofs = offset;
428 isize = i_size_read(inode);
432 /* handle inline data case */
433 if (f2fs_has_inline_data(inode)) {
434 if (whence == SEEK_HOLE) {
437 } else if (whence == SEEK_DATA) {
443 pgofs = (pgoff_t)(offset >> PAGE_SHIFT);
445 for (; data_ofs < isize; data_ofs = (loff_t)pgofs << PAGE_SHIFT) {
446 set_new_dnode(&dn, inode, NULL, NULL, 0);
447 err = f2fs_get_dnode_of_data(&dn, pgofs, LOOKUP_NODE);
448 if (err && err != -ENOENT) {
450 } else if (err == -ENOENT) {
451 /* direct node does not exists */
452 if (whence == SEEK_DATA) {
453 pgofs = f2fs_get_next_page_offset(&dn, pgofs);
460 end_offset = ADDRS_PER_PAGE(dn.node_page, inode);
462 /* find data/hole in dnode block */
463 for (; dn.ofs_in_node < end_offset;
464 dn.ofs_in_node++, pgofs++,
465 data_ofs = (loff_t)pgofs << PAGE_SHIFT) {
468 blkaddr = f2fs_data_blkaddr(&dn);
470 if (__is_valid_data_blkaddr(blkaddr) &&
471 !f2fs_is_valid_blkaddr(F2FS_I_SB(inode),
472 blkaddr, DATA_GENERIC_ENHANCE)) {
477 if (__found_offset(file->f_mapping, blkaddr,
486 if (whence == SEEK_DATA)
489 if (whence == SEEK_HOLE && data_ofs > isize)
492 return vfs_setpos(file, data_ofs, maxbytes);
498 static loff_t f2fs_llseek(struct file *file, loff_t offset, int whence)
500 struct inode *inode = file->f_mapping->host;
501 loff_t maxbytes = inode->i_sb->s_maxbytes;
503 if (f2fs_compressed_file(inode))
504 maxbytes = max_file_blocks(inode) << F2FS_BLKSIZE_BITS;
510 return generic_file_llseek_size(file, offset, whence,
511 maxbytes, i_size_read(inode));
516 return f2fs_seek_block(file, offset, whence);
522 static int f2fs_file_mmap(struct file *file, struct vm_area_struct *vma)
524 struct inode *inode = file_inode(file);
526 if (unlikely(f2fs_cp_error(F2FS_I_SB(inode))))
529 if (!f2fs_is_compress_backend_ready(inode))
533 vma->vm_ops = &f2fs_file_vm_ops;
534 set_inode_flag(inode, FI_MMAP_FILE);
538 static int f2fs_file_open(struct inode *inode, struct file *filp)
540 int err = fscrypt_file_open(inode, filp);
545 if (!f2fs_is_compress_backend_ready(inode))
548 err = fsverity_file_open(inode, filp);
552 filp->f_mode |= FMODE_NOWAIT;
554 return dquot_file_open(inode, filp);
557 void f2fs_truncate_data_blocks_range(struct dnode_of_data *dn, int count)
559 struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
560 struct f2fs_node *raw_node;
561 int nr_free = 0, ofs = dn->ofs_in_node, len = count;
564 bool compressed_cluster = false;
565 int cluster_index = 0, valid_blocks = 0;
566 int cluster_size = F2FS_I(dn->inode)->i_cluster_size;
567 bool released = !atomic_read(&F2FS_I(dn->inode)->i_compr_blocks);
569 if (IS_INODE(dn->node_page) && f2fs_has_extra_attr(dn->inode))
570 base = get_extra_isize(dn->inode);
572 raw_node = F2FS_NODE(dn->node_page);
573 addr = blkaddr_in_node(raw_node) + base + ofs;
575 /* Assumption: truncateion starts with cluster */
576 for (; count > 0; count--, addr++, dn->ofs_in_node++, cluster_index++) {
577 block_t blkaddr = le32_to_cpu(*addr);
579 if (f2fs_compressed_file(dn->inode) &&
580 !(cluster_index & (cluster_size - 1))) {
581 if (compressed_cluster)
582 f2fs_i_compr_blocks_update(dn->inode,
583 valid_blocks, false);
584 compressed_cluster = (blkaddr == COMPRESS_ADDR);
588 if (blkaddr == NULL_ADDR)
591 dn->data_blkaddr = NULL_ADDR;
592 f2fs_set_data_blkaddr(dn);
594 if (__is_valid_data_blkaddr(blkaddr)) {
595 if (!f2fs_is_valid_blkaddr(sbi, blkaddr,
596 DATA_GENERIC_ENHANCE))
598 if (compressed_cluster)
602 if (dn->ofs_in_node == 0 && IS_INODE(dn->node_page))
603 clear_inode_flag(dn->inode, FI_FIRST_BLOCK_WRITTEN);
605 f2fs_invalidate_blocks(sbi, blkaddr);
607 if (!released || blkaddr != COMPRESS_ADDR)
611 if (compressed_cluster)
612 f2fs_i_compr_blocks_update(dn->inode, valid_blocks, false);
617 * once we invalidate valid blkaddr in range [ofs, ofs + count],
618 * we will invalidate all blkaddr in the whole range.
620 fofs = f2fs_start_bidx_of_node(ofs_of_node(dn->node_page),
622 f2fs_update_extent_cache_range(dn, fofs, 0, len);
623 dec_valid_block_count(sbi, dn->inode, nr_free);
625 dn->ofs_in_node = ofs;
627 f2fs_update_time(sbi, REQ_TIME);
628 trace_f2fs_truncate_data_blocks_range(dn->inode, dn->nid,
629 dn->ofs_in_node, nr_free);
632 void f2fs_truncate_data_blocks(struct dnode_of_data *dn)
634 f2fs_truncate_data_blocks_range(dn, ADDRS_PER_BLOCK(dn->inode));
637 static int truncate_partial_data_page(struct inode *inode, u64 from,
640 loff_t offset = from & (PAGE_SIZE - 1);
641 pgoff_t index = from >> PAGE_SHIFT;
642 struct address_space *mapping = inode->i_mapping;
645 if (!offset && !cache_only)
649 page = find_lock_page(mapping, index);
650 if (page && PageUptodate(page))
652 f2fs_put_page(page, 1);
656 page = f2fs_get_lock_data_page(inode, index, true);
658 return PTR_ERR(page) == -ENOENT ? 0 : PTR_ERR(page);
660 f2fs_wait_on_page_writeback(page, DATA, true, true);
661 zero_user(page, offset, PAGE_SIZE - offset);
663 /* An encrypted inode should have a key and truncate the last page. */
664 f2fs_bug_on(F2FS_I_SB(inode), cache_only && IS_ENCRYPTED(inode));
666 set_page_dirty(page);
667 f2fs_put_page(page, 1);
671 int f2fs_do_truncate_blocks(struct inode *inode, u64 from, bool lock)
673 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
674 struct dnode_of_data dn;
676 int count = 0, err = 0;
678 bool truncate_page = false;
680 trace_f2fs_truncate_blocks_enter(inode, from);
682 free_from = (pgoff_t)F2FS_BLK_ALIGN(from);
684 if (free_from >= max_file_blocks(inode))
690 ipage = f2fs_get_node_page(sbi, inode->i_ino);
692 err = PTR_ERR(ipage);
696 if (f2fs_has_inline_data(inode)) {
697 f2fs_truncate_inline_inode(inode, ipage, from);
698 f2fs_put_page(ipage, 1);
699 truncate_page = true;
703 set_new_dnode(&dn, inode, ipage, NULL, 0);
704 err = f2fs_get_dnode_of_data(&dn, free_from, LOOKUP_NODE_RA);
711 count = ADDRS_PER_PAGE(dn.node_page, inode);
713 count -= dn.ofs_in_node;
714 f2fs_bug_on(sbi, count < 0);
716 if (dn.ofs_in_node || IS_INODE(dn.node_page)) {
717 f2fs_truncate_data_blocks_range(&dn, count);
723 err = f2fs_truncate_inode_blocks(inode, free_from);
728 /* lastly zero out the first data page */
730 err = truncate_partial_data_page(inode, from, truncate_page);
732 trace_f2fs_truncate_blocks_exit(inode, err);
736 int f2fs_truncate_blocks(struct inode *inode, u64 from, bool lock)
738 u64 free_from = from;
741 #ifdef CONFIG_F2FS_FS_COMPRESSION
743 * for compressed file, only support cluster size
744 * aligned truncation.
746 if (f2fs_compressed_file(inode))
747 free_from = round_up(from,
748 F2FS_I(inode)->i_cluster_size << PAGE_SHIFT);
751 err = f2fs_do_truncate_blocks(inode, free_from, lock);
755 #ifdef CONFIG_F2FS_FS_COMPRESSION
757 * For compressed file, after release compress blocks, don't allow write
758 * direct, but we should allow write direct after truncate to zero.
760 if (f2fs_compressed_file(inode) && !free_from
761 && is_inode_flag_set(inode, FI_COMPRESS_RELEASED))
762 clear_inode_flag(inode, FI_COMPRESS_RELEASED);
764 if (from != free_from) {
765 err = f2fs_truncate_partial_cluster(inode, from, lock);
774 int f2fs_truncate(struct inode *inode)
778 if (unlikely(f2fs_cp_error(F2FS_I_SB(inode))))
781 if (!(S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
782 S_ISLNK(inode->i_mode)))
785 trace_f2fs_truncate(inode);
787 if (time_to_inject(F2FS_I_SB(inode), FAULT_TRUNCATE)) {
788 f2fs_show_injection_info(F2FS_I_SB(inode), FAULT_TRUNCATE);
792 err = dquot_initialize(inode);
796 /* we should check inline_data size */
797 if (!f2fs_may_inline_data(inode)) {
798 err = f2fs_convert_inline_inode(inode);
803 err = f2fs_truncate_blocks(inode, i_size_read(inode), true);
807 inode->i_mtime = inode->i_ctime = current_time(inode);
808 f2fs_mark_inode_dirty_sync(inode, false);
812 int f2fs_getattr(struct user_namespace *mnt_userns, const struct path *path,
813 struct kstat *stat, u32 request_mask, unsigned int query_flags)
815 struct inode *inode = d_inode(path->dentry);
816 struct f2fs_inode_info *fi = F2FS_I(inode);
817 struct f2fs_inode *ri;
820 if (f2fs_has_extra_attr(inode) &&
821 f2fs_sb_has_inode_crtime(F2FS_I_SB(inode)) &&
822 F2FS_FITS_IN_INODE(ri, fi->i_extra_isize, i_crtime)) {
823 stat->result_mask |= STATX_BTIME;
824 stat->btime.tv_sec = fi->i_crtime.tv_sec;
825 stat->btime.tv_nsec = fi->i_crtime.tv_nsec;
829 if (flags & F2FS_COMPR_FL)
830 stat->attributes |= STATX_ATTR_COMPRESSED;
831 if (flags & F2FS_APPEND_FL)
832 stat->attributes |= STATX_ATTR_APPEND;
833 if (IS_ENCRYPTED(inode))
834 stat->attributes |= STATX_ATTR_ENCRYPTED;
835 if (flags & F2FS_IMMUTABLE_FL)
836 stat->attributes |= STATX_ATTR_IMMUTABLE;
837 if (flags & F2FS_NODUMP_FL)
838 stat->attributes |= STATX_ATTR_NODUMP;
839 if (IS_VERITY(inode))
840 stat->attributes |= STATX_ATTR_VERITY;
842 stat->attributes_mask |= (STATX_ATTR_COMPRESSED |
844 STATX_ATTR_ENCRYPTED |
845 STATX_ATTR_IMMUTABLE |
849 generic_fillattr(&init_user_ns, inode, stat);
851 /* we need to show initial sectors used for inline_data/dentries */
852 if ((S_ISREG(inode->i_mode) && f2fs_has_inline_data(inode)) ||
853 f2fs_has_inline_dentry(inode))
854 stat->blocks += (stat->size + 511) >> 9;
859 #ifdef CONFIG_F2FS_FS_POSIX_ACL
860 static void __setattr_copy(struct user_namespace *mnt_userns,
861 struct inode *inode, const struct iattr *attr)
863 unsigned int ia_valid = attr->ia_valid;
865 if (ia_valid & ATTR_UID)
866 inode->i_uid = attr->ia_uid;
867 if (ia_valid & ATTR_GID)
868 inode->i_gid = attr->ia_gid;
869 if (ia_valid & ATTR_ATIME)
870 inode->i_atime = attr->ia_atime;
871 if (ia_valid & ATTR_MTIME)
872 inode->i_mtime = attr->ia_mtime;
873 if (ia_valid & ATTR_CTIME)
874 inode->i_ctime = attr->ia_ctime;
875 if (ia_valid & ATTR_MODE) {
876 umode_t mode = attr->ia_mode;
877 kgid_t kgid = i_gid_into_mnt(mnt_userns, inode);
879 if (!in_group_p(kgid) && !capable_wrt_inode_uidgid(mnt_userns, inode, CAP_FSETID))
881 set_acl_inode(inode, mode);
885 #define __setattr_copy setattr_copy
888 int f2fs_setattr(struct user_namespace *mnt_userns, struct dentry *dentry,
891 struct inode *inode = d_inode(dentry);
894 if (unlikely(f2fs_cp_error(F2FS_I_SB(inode))))
897 if (unlikely(IS_IMMUTABLE(inode)))
900 if (unlikely(IS_APPEND(inode) &&
901 (attr->ia_valid & (ATTR_MODE | ATTR_UID |
902 ATTR_GID | ATTR_TIMES_SET))))
905 if ((attr->ia_valid & ATTR_SIZE) &&
906 !f2fs_is_compress_backend_ready(inode))
909 err = setattr_prepare(&init_user_ns, dentry, attr);
913 err = fscrypt_prepare_setattr(dentry, attr);
917 err = fsverity_prepare_setattr(dentry, attr);
921 if (is_quota_modification(inode, attr)) {
922 err = dquot_initialize(inode);
926 if ((attr->ia_valid & ATTR_UID &&
927 !uid_eq(attr->ia_uid, inode->i_uid)) ||
928 (attr->ia_valid & ATTR_GID &&
929 !gid_eq(attr->ia_gid, inode->i_gid))) {
930 f2fs_lock_op(F2FS_I_SB(inode));
931 err = dquot_transfer(inode, attr);
933 set_sbi_flag(F2FS_I_SB(inode),
934 SBI_QUOTA_NEED_REPAIR);
935 f2fs_unlock_op(F2FS_I_SB(inode));
939 * update uid/gid under lock_op(), so that dquot and inode can
940 * be updated atomically.
942 if (attr->ia_valid & ATTR_UID)
943 inode->i_uid = attr->ia_uid;
944 if (attr->ia_valid & ATTR_GID)
945 inode->i_gid = attr->ia_gid;
946 f2fs_mark_inode_dirty_sync(inode, true);
947 f2fs_unlock_op(F2FS_I_SB(inode));
950 if (attr->ia_valid & ATTR_SIZE) {
951 loff_t old_size = i_size_read(inode);
953 if (attr->ia_size > MAX_INLINE_DATA(inode)) {
955 * should convert inline inode before i_size_write to
956 * keep smaller than inline_data size with inline flag.
958 err = f2fs_convert_inline_inode(inode);
963 down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
964 down_write(&F2FS_I(inode)->i_mmap_sem);
966 truncate_setsize(inode, attr->ia_size);
968 if (attr->ia_size <= old_size)
969 err = f2fs_truncate(inode);
971 * do not trim all blocks after i_size if target size is
972 * larger than i_size.
974 up_write(&F2FS_I(inode)->i_mmap_sem);
975 up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
979 spin_lock(&F2FS_I(inode)->i_size_lock);
980 inode->i_mtime = inode->i_ctime = current_time(inode);
981 F2FS_I(inode)->last_disk_size = i_size_read(inode);
982 spin_unlock(&F2FS_I(inode)->i_size_lock);
985 __setattr_copy(&init_user_ns, inode, attr);
987 if (attr->ia_valid & ATTR_MODE) {
988 err = posix_acl_chmod(&init_user_ns, inode, f2fs_get_inode_mode(inode));
990 if (is_inode_flag_set(inode, FI_ACL_MODE)) {
992 inode->i_mode = F2FS_I(inode)->i_acl_mode;
993 clear_inode_flag(inode, FI_ACL_MODE);
997 /* file size may changed here */
998 f2fs_mark_inode_dirty_sync(inode, true);
1000 /* inode change will produce dirty node pages flushed by checkpoint */
1001 f2fs_balance_fs(F2FS_I_SB(inode), true);
1006 const struct inode_operations f2fs_file_inode_operations = {
1007 .getattr = f2fs_getattr,
1008 .setattr = f2fs_setattr,
1009 .get_acl = f2fs_get_acl,
1010 .set_acl = f2fs_set_acl,
1011 .listxattr = f2fs_listxattr,
1012 .fiemap = f2fs_fiemap,
1013 .fileattr_get = f2fs_fileattr_get,
1014 .fileattr_set = f2fs_fileattr_set,
1017 static int fill_zero(struct inode *inode, pgoff_t index,
1018 loff_t start, loff_t len)
1020 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1026 f2fs_balance_fs(sbi, true);
1029 page = f2fs_get_new_data_page(inode, NULL, index, false);
1030 f2fs_unlock_op(sbi);
1033 return PTR_ERR(page);
1035 f2fs_wait_on_page_writeback(page, DATA, true, true);
1036 zero_user(page, start, len);
1037 set_page_dirty(page);
1038 f2fs_put_page(page, 1);
1042 int f2fs_truncate_hole(struct inode *inode, pgoff_t pg_start, pgoff_t pg_end)
1046 while (pg_start < pg_end) {
1047 struct dnode_of_data dn;
1048 pgoff_t end_offset, count;
1050 set_new_dnode(&dn, inode, NULL, NULL, 0);
1051 err = f2fs_get_dnode_of_data(&dn, pg_start, LOOKUP_NODE);
1053 if (err == -ENOENT) {
1054 pg_start = f2fs_get_next_page_offset(&dn,
1061 end_offset = ADDRS_PER_PAGE(dn.node_page, inode);
1062 count = min(end_offset - dn.ofs_in_node, pg_end - pg_start);
1064 f2fs_bug_on(F2FS_I_SB(inode), count == 0 || count > end_offset);
1066 f2fs_truncate_data_blocks_range(&dn, count);
1067 f2fs_put_dnode(&dn);
1074 static int punch_hole(struct inode *inode, loff_t offset, loff_t len)
1076 pgoff_t pg_start, pg_end;
1077 loff_t off_start, off_end;
1080 ret = f2fs_convert_inline_inode(inode);
1084 pg_start = ((unsigned long long) offset) >> PAGE_SHIFT;
1085 pg_end = ((unsigned long long) offset + len) >> PAGE_SHIFT;
1087 off_start = offset & (PAGE_SIZE - 1);
1088 off_end = (offset + len) & (PAGE_SIZE - 1);
1090 if (pg_start == pg_end) {
1091 ret = fill_zero(inode, pg_start, off_start,
1092 off_end - off_start);
1097 ret = fill_zero(inode, pg_start++, off_start,
1098 PAGE_SIZE - off_start);
1103 ret = fill_zero(inode, pg_end, 0, off_end);
1108 if (pg_start < pg_end) {
1109 loff_t blk_start, blk_end;
1110 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1112 f2fs_balance_fs(sbi, true);
1114 blk_start = (loff_t)pg_start << PAGE_SHIFT;
1115 blk_end = (loff_t)pg_end << PAGE_SHIFT;
1117 down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
1118 down_write(&F2FS_I(inode)->i_mmap_sem);
1120 truncate_pagecache_range(inode, blk_start, blk_end - 1);
1123 ret = f2fs_truncate_hole(inode, pg_start, pg_end);
1124 f2fs_unlock_op(sbi);
1126 up_write(&F2FS_I(inode)->i_mmap_sem);
1127 up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
1134 static int __read_out_blkaddrs(struct inode *inode, block_t *blkaddr,
1135 int *do_replace, pgoff_t off, pgoff_t len)
1137 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1138 struct dnode_of_data dn;
1142 set_new_dnode(&dn, inode, NULL, NULL, 0);
1143 ret = f2fs_get_dnode_of_data(&dn, off, LOOKUP_NODE_RA);
1144 if (ret && ret != -ENOENT) {
1146 } else if (ret == -ENOENT) {
1147 if (dn.max_level == 0)
1149 done = min((pgoff_t)ADDRS_PER_BLOCK(inode) -
1150 dn.ofs_in_node, len);
1156 done = min((pgoff_t)ADDRS_PER_PAGE(dn.node_page, inode) -
1157 dn.ofs_in_node, len);
1158 for (i = 0; i < done; i++, blkaddr++, do_replace++, dn.ofs_in_node++) {
1159 *blkaddr = f2fs_data_blkaddr(&dn);
1161 if (__is_valid_data_blkaddr(*blkaddr) &&
1162 !f2fs_is_valid_blkaddr(sbi, *blkaddr,
1163 DATA_GENERIC_ENHANCE)) {
1164 f2fs_put_dnode(&dn);
1165 return -EFSCORRUPTED;
1168 if (!f2fs_is_checkpointed_data(sbi, *blkaddr)) {
1170 if (f2fs_lfs_mode(sbi)) {
1171 f2fs_put_dnode(&dn);
1175 /* do not invalidate this block address */
1176 f2fs_update_data_blkaddr(&dn, NULL_ADDR);
1180 f2fs_put_dnode(&dn);
1189 static int __roll_back_blkaddrs(struct inode *inode, block_t *blkaddr,
1190 int *do_replace, pgoff_t off, int len)
1192 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1193 struct dnode_of_data dn;
1196 for (i = 0; i < len; i++, do_replace++, blkaddr++) {
1197 if (*do_replace == 0)
1200 set_new_dnode(&dn, inode, NULL, NULL, 0);
1201 ret = f2fs_get_dnode_of_data(&dn, off + i, LOOKUP_NODE_RA);
1203 dec_valid_block_count(sbi, inode, 1);
1204 f2fs_invalidate_blocks(sbi, *blkaddr);
1206 f2fs_update_data_blkaddr(&dn, *blkaddr);
1208 f2fs_put_dnode(&dn);
1213 static int __clone_blkaddrs(struct inode *src_inode, struct inode *dst_inode,
1214 block_t *blkaddr, int *do_replace,
1215 pgoff_t src, pgoff_t dst, pgoff_t len, bool full)
1217 struct f2fs_sb_info *sbi = F2FS_I_SB(src_inode);
1222 if (blkaddr[i] == NULL_ADDR && !full) {
1227 if (do_replace[i] || blkaddr[i] == NULL_ADDR) {
1228 struct dnode_of_data dn;
1229 struct node_info ni;
1233 set_new_dnode(&dn, dst_inode, NULL, NULL, 0);
1234 ret = f2fs_get_dnode_of_data(&dn, dst + i, ALLOC_NODE);
1238 ret = f2fs_get_node_info(sbi, dn.nid, &ni);
1240 f2fs_put_dnode(&dn);
1244 ilen = min((pgoff_t)
1245 ADDRS_PER_PAGE(dn.node_page, dst_inode) -
1246 dn.ofs_in_node, len - i);
1248 dn.data_blkaddr = f2fs_data_blkaddr(&dn);
1249 f2fs_truncate_data_blocks_range(&dn, 1);
1251 if (do_replace[i]) {
1252 f2fs_i_blocks_write(src_inode,
1254 f2fs_i_blocks_write(dst_inode,
1256 f2fs_replace_block(sbi, &dn, dn.data_blkaddr,
1257 blkaddr[i], ni.version, true, false);
1263 new_size = (loff_t)(dst + i) << PAGE_SHIFT;
1264 if (dst_inode->i_size < new_size)
1265 f2fs_i_size_write(dst_inode, new_size);
1266 } while (--ilen && (do_replace[i] || blkaddr[i] == NULL_ADDR));
1268 f2fs_put_dnode(&dn);
1270 struct page *psrc, *pdst;
1272 psrc = f2fs_get_lock_data_page(src_inode,
1275 return PTR_ERR(psrc);
1276 pdst = f2fs_get_new_data_page(dst_inode, NULL, dst + i,
1279 f2fs_put_page(psrc, 1);
1280 return PTR_ERR(pdst);
1282 f2fs_copy_page(psrc, pdst);
1283 set_page_dirty(pdst);
1284 f2fs_put_page(pdst, 1);
1285 f2fs_put_page(psrc, 1);
1287 ret = f2fs_truncate_hole(src_inode,
1288 src + i, src + i + 1);
1297 static int __exchange_data_block(struct inode *src_inode,
1298 struct inode *dst_inode, pgoff_t src, pgoff_t dst,
1299 pgoff_t len, bool full)
1301 block_t *src_blkaddr;
1307 olen = min((pgoff_t)4 * ADDRS_PER_BLOCK(src_inode), len);
1309 src_blkaddr = f2fs_kvzalloc(F2FS_I_SB(src_inode),
1310 array_size(olen, sizeof(block_t)),
1315 do_replace = f2fs_kvzalloc(F2FS_I_SB(src_inode),
1316 array_size(olen, sizeof(int)),
1319 kvfree(src_blkaddr);
1323 ret = __read_out_blkaddrs(src_inode, src_blkaddr,
1324 do_replace, src, olen);
1328 ret = __clone_blkaddrs(src_inode, dst_inode, src_blkaddr,
1329 do_replace, src, dst, olen, full);
1337 kvfree(src_blkaddr);
1343 __roll_back_blkaddrs(src_inode, src_blkaddr, do_replace, src, olen);
1344 kvfree(src_blkaddr);
1349 static int f2fs_do_collapse(struct inode *inode, loff_t offset, loff_t len)
1351 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1352 pgoff_t nrpages = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
1353 pgoff_t start = offset >> PAGE_SHIFT;
1354 pgoff_t end = (offset + len) >> PAGE_SHIFT;
1357 f2fs_balance_fs(sbi, true);
1359 /* avoid gc operation during block exchange */
1360 down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
1361 down_write(&F2FS_I(inode)->i_mmap_sem);
1364 f2fs_drop_extent_tree(inode);
1365 truncate_pagecache(inode, offset);
1366 ret = __exchange_data_block(inode, inode, end, start, nrpages - end, true);
1367 f2fs_unlock_op(sbi);
1369 up_write(&F2FS_I(inode)->i_mmap_sem);
1370 up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
1374 static int f2fs_collapse_range(struct inode *inode, loff_t offset, loff_t len)
1379 if (offset + len >= i_size_read(inode))
1382 /* collapse range should be aligned to block size of f2fs. */
1383 if (offset & (F2FS_BLKSIZE - 1) || len & (F2FS_BLKSIZE - 1))
1386 ret = f2fs_convert_inline_inode(inode);
1390 /* write out all dirty pages from offset */
1391 ret = filemap_write_and_wait_range(inode->i_mapping, offset, LLONG_MAX);
1395 ret = f2fs_do_collapse(inode, offset, len);
1399 /* write out all moved pages, if possible */
1400 down_write(&F2FS_I(inode)->i_mmap_sem);
1401 filemap_write_and_wait_range(inode->i_mapping, offset, LLONG_MAX);
1402 truncate_pagecache(inode, offset);
1404 new_size = i_size_read(inode) - len;
1405 ret = f2fs_truncate_blocks(inode, new_size, true);
1406 up_write(&F2FS_I(inode)->i_mmap_sem);
1408 f2fs_i_size_write(inode, new_size);
1412 static int f2fs_do_zero_range(struct dnode_of_data *dn, pgoff_t start,
1415 struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
1416 pgoff_t index = start;
1417 unsigned int ofs_in_node = dn->ofs_in_node;
1421 for (; index < end; index++, dn->ofs_in_node++) {
1422 if (f2fs_data_blkaddr(dn) == NULL_ADDR)
1426 dn->ofs_in_node = ofs_in_node;
1427 ret = f2fs_reserve_new_blocks(dn, count);
1431 dn->ofs_in_node = ofs_in_node;
1432 for (index = start; index < end; index++, dn->ofs_in_node++) {
1433 dn->data_blkaddr = f2fs_data_blkaddr(dn);
1435 * f2fs_reserve_new_blocks will not guarantee entire block
1438 if (dn->data_blkaddr == NULL_ADDR) {
1442 if (dn->data_blkaddr != NEW_ADDR) {
1443 f2fs_invalidate_blocks(sbi, dn->data_blkaddr);
1444 dn->data_blkaddr = NEW_ADDR;
1445 f2fs_set_data_blkaddr(dn);
1449 f2fs_update_extent_cache_range(dn, start, 0, index - start);
1454 static int f2fs_zero_range(struct inode *inode, loff_t offset, loff_t len,
1457 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1458 struct address_space *mapping = inode->i_mapping;
1459 pgoff_t index, pg_start, pg_end;
1460 loff_t new_size = i_size_read(inode);
1461 loff_t off_start, off_end;
1464 ret = inode_newsize_ok(inode, (len + offset));
1468 ret = f2fs_convert_inline_inode(inode);
1472 ret = filemap_write_and_wait_range(mapping, offset, offset + len - 1);
1476 pg_start = ((unsigned long long) offset) >> PAGE_SHIFT;
1477 pg_end = ((unsigned long long) offset + len) >> PAGE_SHIFT;
1479 off_start = offset & (PAGE_SIZE - 1);
1480 off_end = (offset + len) & (PAGE_SIZE - 1);
1482 if (pg_start == pg_end) {
1483 ret = fill_zero(inode, pg_start, off_start,
1484 off_end - off_start);
1488 new_size = max_t(loff_t, new_size, offset + len);
1491 ret = fill_zero(inode, pg_start++, off_start,
1492 PAGE_SIZE - off_start);
1496 new_size = max_t(loff_t, new_size,
1497 (loff_t)pg_start << PAGE_SHIFT);
1500 for (index = pg_start; index < pg_end;) {
1501 struct dnode_of_data dn;
1502 unsigned int end_offset;
1505 down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
1506 down_write(&F2FS_I(inode)->i_mmap_sem);
1508 truncate_pagecache_range(inode,
1509 (loff_t)index << PAGE_SHIFT,
1510 ((loff_t)pg_end << PAGE_SHIFT) - 1);
1514 set_new_dnode(&dn, inode, NULL, NULL, 0);
1515 ret = f2fs_get_dnode_of_data(&dn, index, ALLOC_NODE);
1517 f2fs_unlock_op(sbi);
1518 up_write(&F2FS_I(inode)->i_mmap_sem);
1519 up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
1523 end_offset = ADDRS_PER_PAGE(dn.node_page, inode);
1524 end = min(pg_end, end_offset - dn.ofs_in_node + index);
1526 ret = f2fs_do_zero_range(&dn, index, end);
1527 f2fs_put_dnode(&dn);
1529 f2fs_unlock_op(sbi);
1530 up_write(&F2FS_I(inode)->i_mmap_sem);
1531 up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
1533 f2fs_balance_fs(sbi, dn.node_changed);
1539 new_size = max_t(loff_t, new_size,
1540 (loff_t)index << PAGE_SHIFT);
1544 ret = fill_zero(inode, pg_end, 0, off_end);
1548 new_size = max_t(loff_t, new_size, offset + len);
1553 if (new_size > i_size_read(inode)) {
1554 if (mode & FALLOC_FL_KEEP_SIZE)
1555 file_set_keep_isize(inode);
1557 f2fs_i_size_write(inode, new_size);
1562 static int f2fs_insert_range(struct inode *inode, loff_t offset, loff_t len)
1564 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1565 pgoff_t nr, pg_start, pg_end, delta, idx;
1569 new_size = i_size_read(inode) + len;
1570 ret = inode_newsize_ok(inode, new_size);
1574 if (offset >= i_size_read(inode))
1577 /* insert range should be aligned to block size of f2fs. */
1578 if (offset & (F2FS_BLKSIZE - 1) || len & (F2FS_BLKSIZE - 1))
1581 ret = f2fs_convert_inline_inode(inode);
1585 f2fs_balance_fs(sbi, true);
1587 down_write(&F2FS_I(inode)->i_mmap_sem);
1588 ret = f2fs_truncate_blocks(inode, i_size_read(inode), true);
1589 up_write(&F2FS_I(inode)->i_mmap_sem);
1593 /* write out all dirty pages from offset */
1594 ret = filemap_write_and_wait_range(inode->i_mapping, offset, LLONG_MAX);
1598 pg_start = offset >> PAGE_SHIFT;
1599 pg_end = (offset + len) >> PAGE_SHIFT;
1600 delta = pg_end - pg_start;
1601 idx = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
1603 /* avoid gc operation during block exchange */
1604 down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
1605 down_write(&F2FS_I(inode)->i_mmap_sem);
1606 truncate_pagecache(inode, offset);
1608 while (!ret && idx > pg_start) {
1609 nr = idx - pg_start;
1615 f2fs_drop_extent_tree(inode);
1617 ret = __exchange_data_block(inode, inode, idx,
1618 idx + delta, nr, false);
1619 f2fs_unlock_op(sbi);
1621 up_write(&F2FS_I(inode)->i_mmap_sem);
1622 up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
1624 /* write out all moved pages, if possible */
1625 down_write(&F2FS_I(inode)->i_mmap_sem);
1626 filemap_write_and_wait_range(inode->i_mapping, offset, LLONG_MAX);
1627 truncate_pagecache(inode, offset);
1628 up_write(&F2FS_I(inode)->i_mmap_sem);
1631 f2fs_i_size_write(inode, new_size);
1635 static int expand_inode_data(struct inode *inode, loff_t offset,
1636 loff_t len, int mode)
1638 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1639 struct f2fs_map_blocks map = { .m_next_pgofs = NULL,
1640 .m_next_extent = NULL, .m_seg_type = NO_CHECK_TYPE,
1641 .m_may_create = true };
1642 pgoff_t pg_start, pg_end;
1643 loff_t new_size = i_size_read(inode);
1645 block_t expanded = 0;
1648 err = inode_newsize_ok(inode, (len + offset));
1652 err = f2fs_convert_inline_inode(inode);
1656 f2fs_balance_fs(sbi, true);
1658 pg_start = ((unsigned long long)offset) >> PAGE_SHIFT;
1659 pg_end = ((unsigned long long)offset + len) >> PAGE_SHIFT;
1660 off_end = (offset + len) & (PAGE_SIZE - 1);
1662 map.m_lblk = pg_start;
1663 map.m_len = pg_end - pg_start;
1670 if (f2fs_is_pinned_file(inode)) {
1671 block_t sec_blks = BLKS_PER_SEC(sbi);
1672 block_t sec_len = roundup(map.m_len, sec_blks);
1674 map.m_len = sec_blks;
1676 if (has_not_enough_free_secs(sbi, 0,
1677 GET_SEC_FROM_SEG(sbi, overprovision_segments(sbi)))) {
1678 down_write(&sbi->gc_lock);
1679 err = f2fs_gc(sbi, true, false, false, NULL_SEGNO);
1680 if (err && err != -ENODATA && err != -EAGAIN)
1684 down_write(&sbi->pin_sem);
1687 f2fs_allocate_new_section(sbi, CURSEG_COLD_DATA_PINNED, false);
1688 f2fs_unlock_op(sbi);
1690 map.m_seg_type = CURSEG_COLD_DATA_PINNED;
1691 err = f2fs_map_blocks(inode, &map, 1, F2FS_GET_BLOCK_PRE_DIO);
1693 up_write(&sbi->pin_sem);
1695 expanded += map.m_len;
1696 sec_len -= map.m_len;
1697 map.m_lblk += map.m_len;
1698 if (!err && sec_len)
1701 map.m_len = expanded;
1703 err = f2fs_map_blocks(inode, &map, 1, F2FS_GET_BLOCK_PRE_AIO);
1704 expanded = map.m_len;
1713 last_off = pg_start + expanded - 1;
1715 /* update new size to the failed position */
1716 new_size = (last_off == pg_end) ? offset + len :
1717 (loff_t)(last_off + 1) << PAGE_SHIFT;
1719 new_size = ((loff_t)pg_end << PAGE_SHIFT) + off_end;
1722 if (new_size > i_size_read(inode)) {
1723 if (mode & FALLOC_FL_KEEP_SIZE)
1724 file_set_keep_isize(inode);
1726 f2fs_i_size_write(inode, new_size);
1732 static long f2fs_fallocate(struct file *file, int mode,
1733 loff_t offset, loff_t len)
1735 struct inode *inode = file_inode(file);
1738 if (unlikely(f2fs_cp_error(F2FS_I_SB(inode))))
1740 if (!f2fs_is_checkpoint_ready(F2FS_I_SB(inode)))
1742 if (!f2fs_is_compress_backend_ready(inode))
1745 /* f2fs only support ->fallocate for regular file */
1746 if (!S_ISREG(inode->i_mode))
1749 if (IS_ENCRYPTED(inode) &&
1750 (mode & (FALLOC_FL_COLLAPSE_RANGE | FALLOC_FL_INSERT_RANGE)))
1753 if (f2fs_compressed_file(inode) &&
1754 (mode & (FALLOC_FL_PUNCH_HOLE | FALLOC_FL_COLLAPSE_RANGE |
1755 FALLOC_FL_ZERO_RANGE | FALLOC_FL_INSERT_RANGE)))
1758 if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE |
1759 FALLOC_FL_COLLAPSE_RANGE | FALLOC_FL_ZERO_RANGE |
1760 FALLOC_FL_INSERT_RANGE))
1765 if (mode & FALLOC_FL_PUNCH_HOLE) {
1766 if (offset >= inode->i_size)
1769 ret = punch_hole(inode, offset, len);
1770 } else if (mode & FALLOC_FL_COLLAPSE_RANGE) {
1771 ret = f2fs_collapse_range(inode, offset, len);
1772 } else if (mode & FALLOC_FL_ZERO_RANGE) {
1773 ret = f2fs_zero_range(inode, offset, len, mode);
1774 } else if (mode & FALLOC_FL_INSERT_RANGE) {
1775 ret = f2fs_insert_range(inode, offset, len);
1777 ret = expand_inode_data(inode, offset, len, mode);
1781 inode->i_mtime = inode->i_ctime = current_time(inode);
1782 f2fs_mark_inode_dirty_sync(inode, false);
1783 f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
1787 inode_unlock(inode);
1789 trace_f2fs_fallocate(inode, mode, offset, len, ret);
1793 static int f2fs_release_file(struct inode *inode, struct file *filp)
1796 * f2fs_relase_file is called at every close calls. So we should
1797 * not drop any inmemory pages by close called by other process.
1799 if (!(filp->f_mode & FMODE_WRITE) ||
1800 atomic_read(&inode->i_writecount) != 1)
1803 /* some remained atomic pages should discarded */
1804 if (f2fs_is_atomic_file(inode))
1805 f2fs_drop_inmem_pages(inode);
1806 if (f2fs_is_volatile_file(inode)) {
1807 set_inode_flag(inode, FI_DROP_CACHE);
1808 filemap_fdatawrite(inode->i_mapping);
1809 clear_inode_flag(inode, FI_DROP_CACHE);
1810 clear_inode_flag(inode, FI_VOLATILE_FILE);
1811 stat_dec_volatile_write(inode);
1816 static int f2fs_file_flush(struct file *file, fl_owner_t id)
1818 struct inode *inode = file_inode(file);
1821 * If the process doing a transaction is crashed, we should do
1822 * roll-back. Otherwise, other reader/write can see corrupted database
1823 * until all the writers close its file. Since this should be done
1824 * before dropping file lock, it needs to do in ->flush.
1826 if (f2fs_is_atomic_file(inode) &&
1827 F2FS_I(inode)->inmem_task == current)
1828 f2fs_drop_inmem_pages(inode);
1832 static int f2fs_setflags_common(struct inode *inode, u32 iflags, u32 mask)
1834 struct f2fs_inode_info *fi = F2FS_I(inode);
1835 u32 masked_flags = fi->i_flags & mask;
1837 /* mask can be shrunk by flags_valid selector */
1840 /* Is it quota file? Do not allow user to mess with it */
1841 if (IS_NOQUOTA(inode))
1844 if ((iflags ^ masked_flags) & F2FS_CASEFOLD_FL) {
1845 if (!f2fs_sb_has_casefold(F2FS_I_SB(inode)))
1847 if (!f2fs_empty_dir(inode))
1851 if (iflags & (F2FS_COMPR_FL | F2FS_NOCOMP_FL)) {
1852 if (!f2fs_sb_has_compression(F2FS_I_SB(inode)))
1854 if ((iflags & F2FS_COMPR_FL) && (iflags & F2FS_NOCOMP_FL))
1858 if ((iflags ^ masked_flags) & F2FS_COMPR_FL) {
1859 if (masked_flags & F2FS_COMPR_FL) {
1860 if (!f2fs_disable_compressed_file(inode))
1863 if (iflags & F2FS_NOCOMP_FL)
1865 if (iflags & F2FS_COMPR_FL) {
1866 if (!f2fs_may_compress(inode))
1868 if (S_ISREG(inode->i_mode) && inode->i_size)
1871 set_compress_context(inode);
1874 if ((iflags ^ masked_flags) & F2FS_NOCOMP_FL) {
1875 if (masked_flags & F2FS_COMPR_FL)
1879 fi->i_flags = iflags | (fi->i_flags & ~mask);
1880 f2fs_bug_on(F2FS_I_SB(inode), (fi->i_flags & F2FS_COMPR_FL) &&
1881 (fi->i_flags & F2FS_NOCOMP_FL));
1883 if (fi->i_flags & F2FS_PROJINHERIT_FL)
1884 set_inode_flag(inode, FI_PROJ_INHERIT);
1886 clear_inode_flag(inode, FI_PROJ_INHERIT);
1888 inode->i_ctime = current_time(inode);
1889 f2fs_set_inode_flags(inode);
1890 f2fs_mark_inode_dirty_sync(inode, true);
1894 /* FS_IOC_[GS]ETFLAGS and FS_IOC_FS[GS]ETXATTR support */
1897 * To make a new on-disk f2fs i_flag gettable via FS_IOC_GETFLAGS, add an entry
1898 * for it to f2fs_fsflags_map[], and add its FS_*_FL equivalent to
1899 * F2FS_GETTABLE_FS_FL. To also make it settable via FS_IOC_SETFLAGS, also add
1900 * its FS_*_FL equivalent to F2FS_SETTABLE_FS_FL.
1902 * Translating flags to fsx_flags value used by FS_IOC_FSGETXATTR and
1903 * FS_IOC_FSSETXATTR is done by the VFS.
1906 static const struct {
1909 } f2fs_fsflags_map[] = {
1910 { F2FS_COMPR_FL, FS_COMPR_FL },
1911 { F2FS_SYNC_FL, FS_SYNC_FL },
1912 { F2FS_IMMUTABLE_FL, FS_IMMUTABLE_FL },
1913 { F2FS_APPEND_FL, FS_APPEND_FL },
1914 { F2FS_NODUMP_FL, FS_NODUMP_FL },
1915 { F2FS_NOATIME_FL, FS_NOATIME_FL },
1916 { F2FS_NOCOMP_FL, FS_NOCOMP_FL },
1917 { F2FS_INDEX_FL, FS_INDEX_FL },
1918 { F2FS_DIRSYNC_FL, FS_DIRSYNC_FL },
1919 { F2FS_PROJINHERIT_FL, FS_PROJINHERIT_FL },
1920 { F2FS_CASEFOLD_FL, FS_CASEFOLD_FL },
1923 #define F2FS_GETTABLE_FS_FL ( \
1933 FS_PROJINHERIT_FL | \
1935 FS_INLINE_DATA_FL | \
1940 #define F2FS_SETTABLE_FS_FL ( \
1949 FS_PROJINHERIT_FL | \
1952 /* Convert f2fs on-disk i_flags to FS_IOC_{GET,SET}FLAGS flags */
1953 static inline u32 f2fs_iflags_to_fsflags(u32 iflags)
1958 for (i = 0; i < ARRAY_SIZE(f2fs_fsflags_map); i++)
1959 if (iflags & f2fs_fsflags_map[i].iflag)
1960 fsflags |= f2fs_fsflags_map[i].fsflag;
1965 /* Convert FS_IOC_{GET,SET}FLAGS flags to f2fs on-disk i_flags */
1966 static inline u32 f2fs_fsflags_to_iflags(u32 fsflags)
1971 for (i = 0; i < ARRAY_SIZE(f2fs_fsflags_map); i++)
1972 if (fsflags & f2fs_fsflags_map[i].fsflag)
1973 iflags |= f2fs_fsflags_map[i].iflag;
1978 static int f2fs_ioc_getversion(struct file *filp, unsigned long arg)
1980 struct inode *inode = file_inode(filp);
1982 return put_user(inode->i_generation, (int __user *)arg);
1985 static int f2fs_ioc_start_atomic_write(struct file *filp)
1987 struct inode *inode = file_inode(filp);
1988 struct f2fs_inode_info *fi = F2FS_I(inode);
1989 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1992 if (!inode_owner_or_capable(&init_user_ns, inode))
1995 if (!S_ISREG(inode->i_mode))
1998 if (filp->f_flags & O_DIRECT)
2001 ret = mnt_want_write_file(filp);
2007 f2fs_disable_compressed_file(inode);
2009 if (f2fs_is_atomic_file(inode)) {
2010 if (is_inode_flag_set(inode, FI_ATOMIC_REVOKE_REQUEST))
2015 ret = f2fs_convert_inline_inode(inode);
2019 down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
2022 * Should wait end_io to count F2FS_WB_CP_DATA correctly by
2023 * f2fs_is_atomic_file.
2025 if (get_dirty_pages(inode))
2026 f2fs_warn(F2FS_I_SB(inode), "Unexpected flush for atomic writes: ino=%lu, npages=%u",
2027 inode->i_ino, get_dirty_pages(inode));
2028 ret = filemap_write_and_wait_range(inode->i_mapping, 0, LLONG_MAX);
2030 up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
2034 spin_lock(&sbi->inode_lock[ATOMIC_FILE]);
2035 if (list_empty(&fi->inmem_ilist))
2036 list_add_tail(&fi->inmem_ilist, &sbi->inode_list[ATOMIC_FILE]);
2037 sbi->atomic_files++;
2038 spin_unlock(&sbi->inode_lock[ATOMIC_FILE]);
2040 /* add inode in inmem_list first and set atomic_file */
2041 set_inode_flag(inode, FI_ATOMIC_FILE);
2042 clear_inode_flag(inode, FI_ATOMIC_REVOKE_REQUEST);
2043 up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
2045 f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
2046 F2FS_I(inode)->inmem_task = current;
2047 stat_update_max_atomic_write(inode);
2049 inode_unlock(inode);
2050 mnt_drop_write_file(filp);
2054 static int f2fs_ioc_commit_atomic_write(struct file *filp)
2056 struct inode *inode = file_inode(filp);
2059 if (!inode_owner_or_capable(&init_user_ns, inode))
2062 ret = mnt_want_write_file(filp);
2066 f2fs_balance_fs(F2FS_I_SB(inode), true);
2070 if (f2fs_is_volatile_file(inode)) {
2075 if (f2fs_is_atomic_file(inode)) {
2076 ret = f2fs_commit_inmem_pages(inode);
2080 ret = f2fs_do_sync_file(filp, 0, LLONG_MAX, 0, true);
2082 f2fs_drop_inmem_pages(inode);
2084 ret = f2fs_do_sync_file(filp, 0, LLONG_MAX, 1, false);
2087 if (is_inode_flag_set(inode, FI_ATOMIC_REVOKE_REQUEST)) {
2088 clear_inode_flag(inode, FI_ATOMIC_REVOKE_REQUEST);
2091 inode_unlock(inode);
2092 mnt_drop_write_file(filp);
2096 static int f2fs_ioc_start_volatile_write(struct file *filp)
2098 struct inode *inode = file_inode(filp);
2101 if (!inode_owner_or_capable(&init_user_ns, inode))
2104 if (!S_ISREG(inode->i_mode))
2107 ret = mnt_want_write_file(filp);
2113 if (f2fs_is_volatile_file(inode))
2116 ret = f2fs_convert_inline_inode(inode);
2120 stat_inc_volatile_write(inode);
2121 stat_update_max_volatile_write(inode);
2123 set_inode_flag(inode, FI_VOLATILE_FILE);
2124 f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
2126 inode_unlock(inode);
2127 mnt_drop_write_file(filp);
2131 static int f2fs_ioc_release_volatile_write(struct file *filp)
2133 struct inode *inode = file_inode(filp);
2136 if (!inode_owner_or_capable(&init_user_ns, inode))
2139 ret = mnt_want_write_file(filp);
2145 if (!f2fs_is_volatile_file(inode))
2148 if (!f2fs_is_first_block_written(inode)) {
2149 ret = truncate_partial_data_page(inode, 0, true);
2153 ret = punch_hole(inode, 0, F2FS_BLKSIZE);
2155 inode_unlock(inode);
2156 mnt_drop_write_file(filp);
2160 static int f2fs_ioc_abort_volatile_write(struct file *filp)
2162 struct inode *inode = file_inode(filp);
2165 if (!inode_owner_or_capable(&init_user_ns, inode))
2168 ret = mnt_want_write_file(filp);
2174 if (f2fs_is_atomic_file(inode))
2175 f2fs_drop_inmem_pages(inode);
2176 if (f2fs_is_volatile_file(inode)) {
2177 clear_inode_flag(inode, FI_VOLATILE_FILE);
2178 stat_dec_volatile_write(inode);
2179 ret = f2fs_do_sync_file(filp, 0, LLONG_MAX, 0, true);
2182 clear_inode_flag(inode, FI_ATOMIC_REVOKE_REQUEST);
2184 inode_unlock(inode);
2186 mnt_drop_write_file(filp);
2187 f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
2191 static int f2fs_ioc_shutdown(struct file *filp, unsigned long arg)
2193 struct inode *inode = file_inode(filp);
2194 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2195 struct super_block *sb = sbi->sb;
2199 if (!capable(CAP_SYS_ADMIN))
2202 if (get_user(in, (__u32 __user *)arg))
2205 if (in != F2FS_GOING_DOWN_FULLSYNC) {
2206 ret = mnt_want_write_file(filp);
2208 if (ret == -EROFS) {
2210 f2fs_stop_checkpoint(sbi, false);
2211 set_sbi_flag(sbi, SBI_IS_SHUTDOWN);
2212 trace_f2fs_shutdown(sbi, in, ret);
2219 case F2FS_GOING_DOWN_FULLSYNC:
2220 ret = freeze_bdev(sb->s_bdev);
2223 f2fs_stop_checkpoint(sbi, false);
2224 set_sbi_flag(sbi, SBI_IS_SHUTDOWN);
2225 thaw_bdev(sb->s_bdev);
2227 case F2FS_GOING_DOWN_METASYNC:
2228 /* do checkpoint only */
2229 ret = f2fs_sync_fs(sb, 1);
2232 f2fs_stop_checkpoint(sbi, false);
2233 set_sbi_flag(sbi, SBI_IS_SHUTDOWN);
2235 case F2FS_GOING_DOWN_NOSYNC:
2236 f2fs_stop_checkpoint(sbi, false);
2237 set_sbi_flag(sbi, SBI_IS_SHUTDOWN);
2239 case F2FS_GOING_DOWN_METAFLUSH:
2240 f2fs_sync_meta_pages(sbi, META, LONG_MAX, FS_META_IO);
2241 f2fs_stop_checkpoint(sbi, false);
2242 set_sbi_flag(sbi, SBI_IS_SHUTDOWN);
2244 case F2FS_GOING_DOWN_NEED_FSCK:
2245 set_sbi_flag(sbi, SBI_NEED_FSCK);
2246 set_sbi_flag(sbi, SBI_CP_DISABLED_QUICK);
2247 set_sbi_flag(sbi, SBI_IS_DIRTY);
2248 /* do checkpoint only */
2249 ret = f2fs_sync_fs(sb, 1);
2256 f2fs_stop_gc_thread(sbi);
2257 f2fs_stop_discard_thread(sbi);
2259 f2fs_drop_discard_cmd(sbi);
2260 clear_opt(sbi, DISCARD);
2262 f2fs_update_time(sbi, REQ_TIME);
2264 if (in != F2FS_GOING_DOWN_FULLSYNC)
2265 mnt_drop_write_file(filp);
2267 trace_f2fs_shutdown(sbi, in, ret);
2272 static int f2fs_ioc_fitrim(struct file *filp, unsigned long arg)
2274 struct inode *inode = file_inode(filp);
2275 struct super_block *sb = inode->i_sb;
2276 struct request_queue *q = bdev_get_queue(sb->s_bdev);
2277 struct fstrim_range range;
2280 if (!capable(CAP_SYS_ADMIN))
2283 if (!f2fs_hw_support_discard(F2FS_SB(sb)))
2286 if (copy_from_user(&range, (struct fstrim_range __user *)arg,
2290 ret = mnt_want_write_file(filp);
2294 range.minlen = max((unsigned int)range.minlen,
2295 q->limits.discard_granularity);
2296 ret = f2fs_trim_fs(F2FS_SB(sb), &range);
2297 mnt_drop_write_file(filp);
2301 if (copy_to_user((struct fstrim_range __user *)arg, &range,
2304 f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
2308 static bool uuid_is_nonzero(__u8 u[16])
2312 for (i = 0; i < 16; i++)
2318 static int f2fs_ioc_set_encryption_policy(struct file *filp, unsigned long arg)
2320 struct inode *inode = file_inode(filp);
2322 if (!f2fs_sb_has_encrypt(F2FS_I_SB(inode)))
2325 f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
2327 return fscrypt_ioctl_set_policy(filp, (const void __user *)arg);
2330 static int f2fs_ioc_get_encryption_policy(struct file *filp, unsigned long arg)
2332 if (!f2fs_sb_has_encrypt(F2FS_I_SB(file_inode(filp))))
2334 return fscrypt_ioctl_get_policy(filp, (void __user *)arg);
2337 static int f2fs_ioc_get_encryption_pwsalt(struct file *filp, unsigned long arg)
2339 struct inode *inode = file_inode(filp);
2340 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2343 if (!f2fs_sb_has_encrypt(sbi))
2346 err = mnt_want_write_file(filp);
2350 down_write(&sbi->sb_lock);
2352 if (uuid_is_nonzero(sbi->raw_super->encrypt_pw_salt))
2355 /* update superblock with uuid */
2356 generate_random_uuid(sbi->raw_super->encrypt_pw_salt);
2358 err = f2fs_commit_super(sbi, false);
2361 memset(sbi->raw_super->encrypt_pw_salt, 0, 16);
2365 if (copy_to_user((__u8 __user *)arg, sbi->raw_super->encrypt_pw_salt,
2369 up_write(&sbi->sb_lock);
2370 mnt_drop_write_file(filp);
2374 static int f2fs_ioc_get_encryption_policy_ex(struct file *filp,
2377 if (!f2fs_sb_has_encrypt(F2FS_I_SB(file_inode(filp))))
2380 return fscrypt_ioctl_get_policy_ex(filp, (void __user *)arg);
2383 static int f2fs_ioc_add_encryption_key(struct file *filp, unsigned long arg)
2385 if (!f2fs_sb_has_encrypt(F2FS_I_SB(file_inode(filp))))
2388 return fscrypt_ioctl_add_key(filp, (void __user *)arg);
2391 static int f2fs_ioc_remove_encryption_key(struct file *filp, unsigned long arg)
2393 if (!f2fs_sb_has_encrypt(F2FS_I_SB(file_inode(filp))))
2396 return fscrypt_ioctl_remove_key(filp, (void __user *)arg);
2399 static int f2fs_ioc_remove_encryption_key_all_users(struct file *filp,
2402 if (!f2fs_sb_has_encrypt(F2FS_I_SB(file_inode(filp))))
2405 return fscrypt_ioctl_remove_key_all_users(filp, (void __user *)arg);
2408 static int f2fs_ioc_get_encryption_key_status(struct file *filp,
2411 if (!f2fs_sb_has_encrypt(F2FS_I_SB(file_inode(filp))))
2414 return fscrypt_ioctl_get_key_status(filp, (void __user *)arg);
2417 static int f2fs_ioc_get_encryption_nonce(struct file *filp, unsigned long arg)
2419 if (!f2fs_sb_has_encrypt(F2FS_I_SB(file_inode(filp))))
2422 return fscrypt_ioctl_get_nonce(filp, (void __user *)arg);
2425 static int f2fs_ioc_gc(struct file *filp, unsigned long arg)
2427 struct inode *inode = file_inode(filp);
2428 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2432 if (!capable(CAP_SYS_ADMIN))
2435 if (get_user(sync, (__u32 __user *)arg))
2438 if (f2fs_readonly(sbi->sb))
2441 ret = mnt_want_write_file(filp);
2446 if (!down_write_trylock(&sbi->gc_lock)) {
2451 down_write(&sbi->gc_lock);
2454 ret = f2fs_gc(sbi, sync, true, false, NULL_SEGNO);
2456 mnt_drop_write_file(filp);
2460 static int __f2fs_ioc_gc_range(struct file *filp, struct f2fs_gc_range *range)
2462 struct f2fs_sb_info *sbi = F2FS_I_SB(file_inode(filp));
2466 if (!capable(CAP_SYS_ADMIN))
2468 if (f2fs_readonly(sbi->sb))
2471 end = range->start + range->len;
2472 if (end < range->start || range->start < MAIN_BLKADDR(sbi) ||
2473 end >= MAX_BLKADDR(sbi))
2476 ret = mnt_want_write_file(filp);
2482 if (!down_write_trylock(&sbi->gc_lock)) {
2487 down_write(&sbi->gc_lock);
2490 ret = f2fs_gc(sbi, range->sync, true, false,
2491 GET_SEGNO(sbi, range->start));
2497 range->start += BLKS_PER_SEC(sbi);
2498 if (range->start <= end)
2501 mnt_drop_write_file(filp);
2505 static int f2fs_ioc_gc_range(struct file *filp, unsigned long arg)
2507 struct f2fs_gc_range range;
2509 if (copy_from_user(&range, (struct f2fs_gc_range __user *)arg,
2512 return __f2fs_ioc_gc_range(filp, &range);
2515 static int f2fs_ioc_write_checkpoint(struct file *filp, unsigned long arg)
2517 struct inode *inode = file_inode(filp);
2518 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2521 if (!capable(CAP_SYS_ADMIN))
2524 if (f2fs_readonly(sbi->sb))
2527 if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED))) {
2528 f2fs_info(sbi, "Skipping Checkpoint. Checkpoints currently disabled.");
2532 ret = mnt_want_write_file(filp);
2536 ret = f2fs_sync_fs(sbi->sb, 1);
2538 mnt_drop_write_file(filp);
2542 static int f2fs_defragment_range(struct f2fs_sb_info *sbi,
2544 struct f2fs_defragment *range)
2546 struct inode *inode = file_inode(filp);
2547 struct f2fs_map_blocks map = { .m_next_extent = NULL,
2548 .m_seg_type = NO_CHECK_TYPE,
2549 .m_may_create = false };
2550 struct extent_info ei = {0, 0, 0};
2551 pgoff_t pg_start, pg_end, next_pgofs;
2552 unsigned int blk_per_seg = sbi->blocks_per_seg;
2553 unsigned int total = 0, sec_num;
2554 block_t blk_end = 0;
2555 bool fragmented = false;
2558 /* if in-place-update policy is enabled, don't waste time here */
2559 if (f2fs_should_update_inplace(inode, NULL))
2562 pg_start = range->start >> PAGE_SHIFT;
2563 pg_end = (range->start + range->len) >> PAGE_SHIFT;
2565 f2fs_balance_fs(sbi, true);
2569 /* writeback all dirty pages in the range */
2570 err = filemap_write_and_wait_range(inode->i_mapping, range->start,
2571 range->start + range->len - 1);
2576 * lookup mapping info in extent cache, skip defragmenting if physical
2577 * block addresses are continuous.
2579 if (f2fs_lookup_extent_cache(inode, pg_start, &ei)) {
2580 if (ei.fofs + ei.len >= pg_end)
2584 map.m_lblk = pg_start;
2585 map.m_next_pgofs = &next_pgofs;
2588 * lookup mapping info in dnode page cache, skip defragmenting if all
2589 * physical block addresses are continuous even if there are hole(s)
2590 * in logical blocks.
2592 while (map.m_lblk < pg_end) {
2593 map.m_len = pg_end - map.m_lblk;
2594 err = f2fs_map_blocks(inode, &map, 0, F2FS_GET_BLOCK_DEFAULT);
2598 if (!(map.m_flags & F2FS_MAP_FLAGS)) {
2599 map.m_lblk = next_pgofs;
2603 if (blk_end && blk_end != map.m_pblk)
2606 /* record total count of block that we're going to move */
2609 blk_end = map.m_pblk + map.m_len;
2611 map.m_lblk += map.m_len;
2619 sec_num = DIV_ROUND_UP(total, BLKS_PER_SEC(sbi));
2622 * make sure there are enough free section for LFS allocation, this can
2623 * avoid defragment running in SSR mode when free section are allocated
2626 if (has_not_enough_free_secs(sbi, 0, sec_num)) {
2631 map.m_lblk = pg_start;
2632 map.m_len = pg_end - pg_start;
2635 while (map.m_lblk < pg_end) {
2640 map.m_len = pg_end - map.m_lblk;
2641 err = f2fs_map_blocks(inode, &map, 0, F2FS_GET_BLOCK_DEFAULT);
2645 if (!(map.m_flags & F2FS_MAP_FLAGS)) {
2646 map.m_lblk = next_pgofs;
2650 set_inode_flag(inode, FI_DO_DEFRAG);
2653 while (idx < map.m_lblk + map.m_len && cnt < blk_per_seg) {
2656 page = f2fs_get_lock_data_page(inode, idx, true);
2658 err = PTR_ERR(page);
2662 set_page_dirty(page);
2663 f2fs_put_page(page, 1);
2672 if (map.m_lblk < pg_end && cnt < blk_per_seg)
2675 clear_inode_flag(inode, FI_DO_DEFRAG);
2677 err = filemap_fdatawrite(inode->i_mapping);
2682 clear_inode_flag(inode, FI_DO_DEFRAG);
2684 inode_unlock(inode);
2686 range->len = (u64)total << PAGE_SHIFT;
2690 static int f2fs_ioc_defragment(struct file *filp, unsigned long arg)
2692 struct inode *inode = file_inode(filp);
2693 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2694 struct f2fs_defragment range;
2697 if (!capable(CAP_SYS_ADMIN))
2700 if (!S_ISREG(inode->i_mode) || f2fs_is_atomic_file(inode))
2703 if (f2fs_readonly(sbi->sb))
2706 if (copy_from_user(&range, (struct f2fs_defragment __user *)arg,
2710 /* verify alignment of offset & size */
2711 if (range.start & (F2FS_BLKSIZE - 1) || range.len & (F2FS_BLKSIZE - 1))
2714 if (unlikely((range.start + range.len) >> PAGE_SHIFT >
2715 max_file_blocks(inode)))
2718 err = mnt_want_write_file(filp);
2722 err = f2fs_defragment_range(sbi, filp, &range);
2723 mnt_drop_write_file(filp);
2725 f2fs_update_time(sbi, REQ_TIME);
2729 if (copy_to_user((struct f2fs_defragment __user *)arg, &range,
2736 static int f2fs_move_file_range(struct file *file_in, loff_t pos_in,
2737 struct file *file_out, loff_t pos_out, size_t len)
2739 struct inode *src = file_inode(file_in);
2740 struct inode *dst = file_inode(file_out);
2741 struct f2fs_sb_info *sbi = F2FS_I_SB(src);
2742 size_t olen = len, dst_max_i_size = 0;
2746 if (file_in->f_path.mnt != file_out->f_path.mnt ||
2747 src->i_sb != dst->i_sb)
2750 if (unlikely(f2fs_readonly(src->i_sb)))
2753 if (!S_ISREG(src->i_mode) || !S_ISREG(dst->i_mode))
2756 if (IS_ENCRYPTED(src) || IS_ENCRYPTED(dst))
2759 if (pos_out < 0 || pos_in < 0)
2763 if (pos_in == pos_out)
2765 if (pos_out > pos_in && pos_out < pos_in + len)
2772 if (!inode_trylock(dst))
2777 if (pos_in + len > src->i_size || pos_in + len < pos_in)
2780 olen = len = src->i_size - pos_in;
2781 if (pos_in + len == src->i_size)
2782 len = ALIGN(src->i_size, F2FS_BLKSIZE) - pos_in;
2788 dst_osize = dst->i_size;
2789 if (pos_out + olen > dst->i_size)
2790 dst_max_i_size = pos_out + olen;
2792 /* verify the end result is block aligned */
2793 if (!IS_ALIGNED(pos_in, F2FS_BLKSIZE) ||
2794 !IS_ALIGNED(pos_in + len, F2FS_BLKSIZE) ||
2795 !IS_ALIGNED(pos_out, F2FS_BLKSIZE))
2798 ret = f2fs_convert_inline_inode(src);
2802 ret = f2fs_convert_inline_inode(dst);
2806 /* write out all dirty pages from offset */
2807 ret = filemap_write_and_wait_range(src->i_mapping,
2808 pos_in, pos_in + len);
2812 ret = filemap_write_and_wait_range(dst->i_mapping,
2813 pos_out, pos_out + len);
2817 f2fs_balance_fs(sbi, true);
2819 down_write(&F2FS_I(src)->i_gc_rwsem[WRITE]);
2822 if (!down_write_trylock(&F2FS_I(dst)->i_gc_rwsem[WRITE]))
2827 ret = __exchange_data_block(src, dst, pos_in >> F2FS_BLKSIZE_BITS,
2828 pos_out >> F2FS_BLKSIZE_BITS,
2829 len >> F2FS_BLKSIZE_BITS, false);
2833 f2fs_i_size_write(dst, dst_max_i_size);
2834 else if (dst_osize != dst->i_size)
2835 f2fs_i_size_write(dst, dst_osize);
2837 f2fs_unlock_op(sbi);
2840 up_write(&F2FS_I(dst)->i_gc_rwsem[WRITE]);
2842 up_write(&F2FS_I(src)->i_gc_rwsem[WRITE]);
2851 static int __f2fs_ioc_move_range(struct file *filp,
2852 struct f2fs_move_range *range)
2857 if (!(filp->f_mode & FMODE_READ) ||
2858 !(filp->f_mode & FMODE_WRITE))
2861 dst = fdget(range->dst_fd);
2865 if (!(dst.file->f_mode & FMODE_WRITE)) {
2870 err = mnt_want_write_file(filp);
2874 err = f2fs_move_file_range(filp, range->pos_in, dst.file,
2875 range->pos_out, range->len);
2877 mnt_drop_write_file(filp);
2883 static int f2fs_ioc_move_range(struct file *filp, unsigned long arg)
2885 struct f2fs_move_range range;
2887 if (copy_from_user(&range, (struct f2fs_move_range __user *)arg,
2890 return __f2fs_ioc_move_range(filp, &range);
2893 static int f2fs_ioc_flush_device(struct file *filp, unsigned long arg)
2895 struct inode *inode = file_inode(filp);
2896 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2897 struct sit_info *sm = SIT_I(sbi);
2898 unsigned int start_segno = 0, end_segno = 0;
2899 unsigned int dev_start_segno = 0, dev_end_segno = 0;
2900 struct f2fs_flush_device range;
2903 if (!capable(CAP_SYS_ADMIN))
2906 if (f2fs_readonly(sbi->sb))
2909 if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED)))
2912 if (copy_from_user(&range, (struct f2fs_flush_device __user *)arg,
2916 if (!f2fs_is_multi_device(sbi) || sbi->s_ndevs - 1 <= range.dev_num ||
2917 __is_large_section(sbi)) {
2918 f2fs_warn(sbi, "Can't flush %u in %d for segs_per_sec %u != 1",
2919 range.dev_num, sbi->s_ndevs, sbi->segs_per_sec);
2923 ret = mnt_want_write_file(filp);
2927 if (range.dev_num != 0)
2928 dev_start_segno = GET_SEGNO(sbi, FDEV(range.dev_num).start_blk);
2929 dev_end_segno = GET_SEGNO(sbi, FDEV(range.dev_num).end_blk);
2931 start_segno = sm->last_victim[FLUSH_DEVICE];
2932 if (start_segno < dev_start_segno || start_segno >= dev_end_segno)
2933 start_segno = dev_start_segno;
2934 end_segno = min(start_segno + range.segments, dev_end_segno);
2936 while (start_segno < end_segno) {
2937 if (!down_write_trylock(&sbi->gc_lock)) {
2941 sm->last_victim[GC_CB] = end_segno + 1;
2942 sm->last_victim[GC_GREEDY] = end_segno + 1;
2943 sm->last_victim[ALLOC_NEXT] = end_segno + 1;
2944 ret = f2fs_gc(sbi, true, true, true, start_segno);
2952 mnt_drop_write_file(filp);
2956 static int f2fs_ioc_get_features(struct file *filp, unsigned long arg)
2958 struct inode *inode = file_inode(filp);
2959 u32 sb_feature = le32_to_cpu(F2FS_I_SB(inode)->raw_super->feature);
2961 /* Must validate to set it with SQLite behavior in Android. */
2962 sb_feature |= F2FS_FEATURE_ATOMIC_WRITE;
2964 return put_user(sb_feature, (u32 __user *)arg);
2968 int f2fs_transfer_project_quota(struct inode *inode, kprojid_t kprojid)
2970 struct dquot *transfer_to[MAXQUOTAS] = {};
2971 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2972 struct super_block *sb = sbi->sb;
2975 transfer_to[PRJQUOTA] = dqget(sb, make_kqid_projid(kprojid));
2976 if (!IS_ERR(transfer_to[PRJQUOTA])) {
2977 err = __dquot_transfer(inode, transfer_to);
2979 set_sbi_flag(sbi, SBI_QUOTA_NEED_REPAIR);
2980 dqput(transfer_to[PRJQUOTA]);
2985 static int f2fs_ioc_setproject(struct inode *inode, __u32 projid)
2987 struct f2fs_inode_info *fi = F2FS_I(inode);
2988 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2993 if (!f2fs_sb_has_project_quota(sbi)) {
2994 if (projid != F2FS_DEF_PROJID)
3000 if (!f2fs_has_extra_attr(inode))
3003 kprojid = make_kprojid(&init_user_ns, (projid_t)projid);
3005 if (projid_eq(kprojid, F2FS_I(inode)->i_projid))
3009 /* Is it quota file? Do not allow user to mess with it */
3010 if (IS_NOQUOTA(inode))
3013 ipage = f2fs_get_node_page(sbi, inode->i_ino);
3015 return PTR_ERR(ipage);
3017 if (!F2FS_FITS_IN_INODE(F2FS_INODE(ipage), fi->i_extra_isize,
3020 f2fs_put_page(ipage, 1);
3023 f2fs_put_page(ipage, 1);
3025 err = dquot_initialize(inode);
3030 err = f2fs_transfer_project_quota(inode, kprojid);
3034 F2FS_I(inode)->i_projid = kprojid;
3035 inode->i_ctime = current_time(inode);
3036 f2fs_mark_inode_dirty_sync(inode, true);
3038 f2fs_unlock_op(sbi);
3042 int f2fs_transfer_project_quota(struct inode *inode, kprojid_t kprojid)
3047 static int f2fs_ioc_setproject(struct inode *inode, __u32 projid)
3049 if (projid != F2FS_DEF_PROJID)
3055 int f2fs_fileattr_get(struct dentry *dentry, struct fileattr *fa)
3057 struct inode *inode = d_inode(dentry);
3058 struct f2fs_inode_info *fi = F2FS_I(inode);
3059 u32 fsflags = f2fs_iflags_to_fsflags(fi->i_flags);
3061 if (IS_ENCRYPTED(inode))
3062 fsflags |= FS_ENCRYPT_FL;
3063 if (IS_VERITY(inode))
3064 fsflags |= FS_VERITY_FL;
3065 if (f2fs_has_inline_data(inode) || f2fs_has_inline_dentry(inode))
3066 fsflags |= FS_INLINE_DATA_FL;
3067 if (is_inode_flag_set(inode, FI_PIN_FILE))
3068 fsflags |= FS_NOCOW_FL;
3070 fileattr_fill_flags(fa, fsflags & F2FS_GETTABLE_FS_FL);
3072 if (f2fs_sb_has_project_quota(F2FS_I_SB(inode)))
3073 fa->fsx_projid = from_kprojid(&init_user_ns, fi->i_projid);
3078 int f2fs_fileattr_set(struct user_namespace *mnt_userns,
3079 struct dentry *dentry, struct fileattr *fa)
3081 struct inode *inode = d_inode(dentry);
3082 u32 fsflags = fa->flags, mask = F2FS_SETTABLE_FS_FL;
3086 if (unlikely(f2fs_cp_error(F2FS_I_SB(inode))))
3088 if (!f2fs_is_checkpoint_ready(F2FS_I_SB(inode)))
3090 if (fsflags & ~F2FS_GETTABLE_FS_FL)
3092 fsflags &= F2FS_SETTABLE_FS_FL;
3093 if (!fa->flags_valid)
3094 mask &= FS_COMMON_FL;
3096 iflags = f2fs_fsflags_to_iflags(fsflags);
3097 if (f2fs_mask_flags(inode->i_mode, iflags) != iflags)
3100 err = f2fs_setflags_common(inode, iflags, f2fs_fsflags_to_iflags(mask));
3102 err = f2fs_ioc_setproject(inode, fa->fsx_projid);
3107 int f2fs_pin_file_control(struct inode *inode, bool inc)
3109 struct f2fs_inode_info *fi = F2FS_I(inode);
3110 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3112 /* Use i_gc_failures for normal file as a risk signal. */
3114 f2fs_i_gc_failures_write(inode,
3115 fi->i_gc_failures[GC_FAILURE_PIN] + 1);
3117 if (fi->i_gc_failures[GC_FAILURE_PIN] > sbi->gc_pin_file_threshold) {
3118 f2fs_warn(sbi, "%s: Enable GC = ino %lx after %x GC trials",
3119 __func__, inode->i_ino,
3120 fi->i_gc_failures[GC_FAILURE_PIN]);
3121 clear_inode_flag(inode, FI_PIN_FILE);
3127 static int f2fs_ioc_set_pin_file(struct file *filp, unsigned long arg)
3129 struct inode *inode = file_inode(filp);
3133 if (get_user(pin, (__u32 __user *)arg))
3136 if (!S_ISREG(inode->i_mode))
3139 if (f2fs_readonly(F2FS_I_SB(inode)->sb))
3142 ret = mnt_want_write_file(filp);
3148 if (f2fs_should_update_outplace(inode, NULL)) {
3154 clear_inode_flag(inode, FI_PIN_FILE);
3155 f2fs_i_gc_failures_write(inode, 0);
3159 if (f2fs_pin_file_control(inode, false)) {
3164 ret = f2fs_convert_inline_inode(inode);
3168 if (!f2fs_disable_compressed_file(inode)) {
3173 set_inode_flag(inode, FI_PIN_FILE);
3174 ret = F2FS_I(inode)->i_gc_failures[GC_FAILURE_PIN];
3176 f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
3178 inode_unlock(inode);
3179 mnt_drop_write_file(filp);
3183 static int f2fs_ioc_get_pin_file(struct file *filp, unsigned long arg)
3185 struct inode *inode = file_inode(filp);
3188 if (is_inode_flag_set(inode, FI_PIN_FILE))
3189 pin = F2FS_I(inode)->i_gc_failures[GC_FAILURE_PIN];
3190 return put_user(pin, (u32 __user *)arg);
3193 int f2fs_precache_extents(struct inode *inode)
3195 struct f2fs_inode_info *fi = F2FS_I(inode);
3196 struct f2fs_map_blocks map;
3197 pgoff_t m_next_extent;
3201 if (is_inode_flag_set(inode, FI_NO_EXTENT))
3205 map.m_next_pgofs = NULL;
3206 map.m_next_extent = &m_next_extent;
3207 map.m_seg_type = NO_CHECK_TYPE;
3208 map.m_may_create = false;
3209 end = max_file_blocks(inode);
3211 while (map.m_lblk < end) {
3212 map.m_len = end - map.m_lblk;
3214 down_write(&fi->i_gc_rwsem[WRITE]);
3215 err = f2fs_map_blocks(inode, &map, 0, F2FS_GET_BLOCK_PRECACHE);
3216 up_write(&fi->i_gc_rwsem[WRITE]);
3220 map.m_lblk = m_next_extent;
3226 static int f2fs_ioc_precache_extents(struct file *filp, unsigned long arg)
3228 return f2fs_precache_extents(file_inode(filp));
3231 static int f2fs_ioc_resize_fs(struct file *filp, unsigned long arg)
3233 struct f2fs_sb_info *sbi = F2FS_I_SB(file_inode(filp));
3236 if (!capable(CAP_SYS_ADMIN))
3239 if (f2fs_readonly(sbi->sb))
3242 if (copy_from_user(&block_count, (void __user *)arg,
3243 sizeof(block_count)))
3246 return f2fs_resize_fs(sbi, block_count);
3249 static int f2fs_ioc_enable_verity(struct file *filp, unsigned long arg)
3251 struct inode *inode = file_inode(filp);
3253 f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
3255 if (!f2fs_sb_has_verity(F2FS_I_SB(inode))) {
3256 f2fs_warn(F2FS_I_SB(inode),
3257 "Can't enable fs-verity on inode %lu: the verity feature is not enabled on this filesystem",
3262 return fsverity_ioctl_enable(filp, (const void __user *)arg);
3265 static int f2fs_ioc_measure_verity(struct file *filp, unsigned long arg)
3267 if (!f2fs_sb_has_verity(F2FS_I_SB(file_inode(filp))))
3270 return fsverity_ioctl_measure(filp, (void __user *)arg);
3273 static int f2fs_ioc_read_verity_metadata(struct file *filp, unsigned long arg)
3275 if (!f2fs_sb_has_verity(F2FS_I_SB(file_inode(filp))))
3278 return fsverity_ioctl_read_metadata(filp, (const void __user *)arg);
3281 static int f2fs_ioc_getfslabel(struct file *filp, unsigned long arg)
3283 struct inode *inode = file_inode(filp);
3284 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3289 vbuf = f2fs_kzalloc(sbi, MAX_VOLUME_NAME, GFP_KERNEL);
3293 down_read(&sbi->sb_lock);
3294 count = utf16s_to_utf8s(sbi->raw_super->volume_name,
3295 ARRAY_SIZE(sbi->raw_super->volume_name),
3296 UTF16_LITTLE_ENDIAN, vbuf, MAX_VOLUME_NAME);
3297 up_read(&sbi->sb_lock);
3299 if (copy_to_user((char __user *)arg, vbuf,
3300 min(FSLABEL_MAX, count)))
3307 static int f2fs_ioc_setfslabel(struct file *filp, unsigned long arg)
3309 struct inode *inode = file_inode(filp);
3310 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3314 if (!capable(CAP_SYS_ADMIN))
3317 vbuf = strndup_user((const char __user *)arg, FSLABEL_MAX);
3319 return PTR_ERR(vbuf);
3321 err = mnt_want_write_file(filp);
3325 down_write(&sbi->sb_lock);
3327 memset(sbi->raw_super->volume_name, 0,
3328 sizeof(sbi->raw_super->volume_name));
3329 utf8s_to_utf16s(vbuf, strlen(vbuf), UTF16_LITTLE_ENDIAN,
3330 sbi->raw_super->volume_name,
3331 ARRAY_SIZE(sbi->raw_super->volume_name));
3333 err = f2fs_commit_super(sbi, false);
3335 up_write(&sbi->sb_lock);
3337 mnt_drop_write_file(filp);
3343 static int f2fs_get_compress_blocks(struct file *filp, unsigned long arg)
3345 struct inode *inode = file_inode(filp);
3348 if (!f2fs_sb_has_compression(F2FS_I_SB(inode)))
3351 if (!f2fs_compressed_file(inode))
3354 blocks = atomic_read(&F2FS_I(inode)->i_compr_blocks);
3355 return put_user(blocks, (u64 __user *)arg);
3358 static int release_compress_blocks(struct dnode_of_data *dn, pgoff_t count)
3360 struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
3361 unsigned int released_blocks = 0;
3362 int cluster_size = F2FS_I(dn->inode)->i_cluster_size;
3366 for (i = 0; i < count; i++) {
3367 blkaddr = data_blkaddr(dn->inode, dn->node_page,
3368 dn->ofs_in_node + i);
3370 if (!__is_valid_data_blkaddr(blkaddr))
3372 if (unlikely(!f2fs_is_valid_blkaddr(sbi, blkaddr,
3373 DATA_GENERIC_ENHANCE)))
3374 return -EFSCORRUPTED;
3378 int compr_blocks = 0;
3380 for (i = 0; i < cluster_size; i++, dn->ofs_in_node++) {
3381 blkaddr = f2fs_data_blkaddr(dn);
3384 if (blkaddr == COMPRESS_ADDR)
3386 dn->ofs_in_node += cluster_size;
3390 if (__is_valid_data_blkaddr(blkaddr))
3393 if (blkaddr != NEW_ADDR)
3396 dn->data_blkaddr = NULL_ADDR;
3397 f2fs_set_data_blkaddr(dn);