Merge tag 'for-linus-5.13-ofs-1' of git://git.kernel.org/pub/scm/linux/kernel/git...
[linux-2.6-microblaze.git] / fs / f2fs / data.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * fs/f2fs/data.c
4  *
5  * Copyright (c) 2012 Samsung Electronics Co., Ltd.
6  *             http://www.samsung.com/
7  */
8 #include <linux/fs.h>
9 #include <linux/f2fs_fs.h>
10 #include <linux/buffer_head.h>
11 #include <linux/mpage.h>
12 #include <linux/writeback.h>
13 #include <linux/backing-dev.h>
14 #include <linux/pagevec.h>
15 #include <linux/blkdev.h>
16 #include <linux/bio.h>
17 #include <linux/blk-crypto.h>
18 #include <linux/swap.h>
19 #include <linux/prefetch.h>
20 #include <linux/uio.h>
21 #include <linux/cleancache.h>
22 #include <linux/sched/signal.h>
23 #include <linux/fiemap.h>
24
25 #include "f2fs.h"
26 #include "node.h"
27 #include "segment.h"
28 #include <trace/events/f2fs.h>
29
30 #define NUM_PREALLOC_POST_READ_CTXS     128
31
32 static struct kmem_cache *bio_post_read_ctx_cache;
33 static struct kmem_cache *bio_entry_slab;
34 static mempool_t *bio_post_read_ctx_pool;
35 static struct bio_set f2fs_bioset;
36
37 #define F2FS_BIO_POOL_SIZE      NR_CURSEG_TYPE
38
39 int __init f2fs_init_bioset(void)
40 {
41         if (bioset_init(&f2fs_bioset, F2FS_BIO_POOL_SIZE,
42                                         0, BIOSET_NEED_BVECS))
43                 return -ENOMEM;
44         return 0;
45 }
46
47 void f2fs_destroy_bioset(void)
48 {
49         bioset_exit(&f2fs_bioset);
50 }
51
52 static bool __is_cp_guaranteed(struct page *page)
53 {
54         struct address_space *mapping = page->mapping;
55         struct inode *inode;
56         struct f2fs_sb_info *sbi;
57
58         if (!mapping)
59                 return false;
60
61         if (f2fs_is_compressed_page(page))
62                 return false;
63
64         inode = mapping->host;
65         sbi = F2FS_I_SB(inode);
66
67         if (inode->i_ino == F2FS_META_INO(sbi) ||
68                         inode->i_ino == F2FS_NODE_INO(sbi) ||
69                         S_ISDIR(inode->i_mode) ||
70                         (S_ISREG(inode->i_mode) &&
71                         (f2fs_is_atomic_file(inode) || IS_NOQUOTA(inode))) ||
72                         is_cold_data(page))
73                 return true;
74         return false;
75 }
76
77 static enum count_type __read_io_type(struct page *page)
78 {
79         struct address_space *mapping = page_file_mapping(page);
80
81         if (mapping) {
82                 struct inode *inode = mapping->host;
83                 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
84
85                 if (inode->i_ino == F2FS_META_INO(sbi))
86                         return F2FS_RD_META;
87
88                 if (inode->i_ino == F2FS_NODE_INO(sbi))
89                         return F2FS_RD_NODE;
90         }
91         return F2FS_RD_DATA;
92 }
93
94 /* postprocessing steps for read bios */
95 enum bio_post_read_step {
96 #ifdef CONFIG_FS_ENCRYPTION
97         STEP_DECRYPT    = 1 << 0,
98 #else
99         STEP_DECRYPT    = 0,    /* compile out the decryption-related code */
100 #endif
101 #ifdef CONFIG_F2FS_FS_COMPRESSION
102         STEP_DECOMPRESS = 1 << 1,
103 #else
104         STEP_DECOMPRESS = 0,    /* compile out the decompression-related code */
105 #endif
106 #ifdef CONFIG_FS_VERITY
107         STEP_VERITY     = 1 << 2,
108 #else
109         STEP_VERITY     = 0,    /* compile out the verity-related code */
110 #endif
111 };
112
113 struct bio_post_read_ctx {
114         struct bio *bio;
115         struct f2fs_sb_info *sbi;
116         struct work_struct work;
117         unsigned int enabled_steps;
118 };
119
120 static void f2fs_finish_read_bio(struct bio *bio)
121 {
122         struct bio_vec *bv;
123         struct bvec_iter_all iter_all;
124
125         /*
126          * Update and unlock the bio's pagecache pages, and put the
127          * decompression context for any compressed pages.
128          */
129         bio_for_each_segment_all(bv, bio, iter_all) {
130                 struct page *page = bv->bv_page;
131
132                 if (f2fs_is_compressed_page(page)) {
133                         if (bio->bi_status)
134                                 f2fs_end_read_compressed_page(page, true);
135                         f2fs_put_page_dic(page);
136                         continue;
137                 }
138
139                 /* PG_error was set if decryption or verity failed. */
140                 if (bio->bi_status || PageError(page)) {
141                         ClearPageUptodate(page);
142                         /* will re-read again later */
143                         ClearPageError(page);
144                 } else {
145                         SetPageUptodate(page);
146                 }
147                 dec_page_count(F2FS_P_SB(page), __read_io_type(page));
148                 unlock_page(page);
149         }
150
151         if (bio->bi_private)
152                 mempool_free(bio->bi_private, bio_post_read_ctx_pool);
153         bio_put(bio);
154 }
155
156 static void f2fs_verify_bio(struct work_struct *work)
157 {
158         struct bio_post_read_ctx *ctx =
159                 container_of(work, struct bio_post_read_ctx, work);
160         struct bio *bio = ctx->bio;
161         bool may_have_compressed_pages = (ctx->enabled_steps & STEP_DECOMPRESS);
162
163         /*
164          * fsverity_verify_bio() may call readpages() again, and while verity
165          * will be disabled for this, decryption and/or decompression may still
166          * be needed, resulting in another bio_post_read_ctx being allocated.
167          * So to prevent deadlocks we need to release the current ctx to the
168          * mempool first.  This assumes that verity is the last post-read step.
169          */
170         mempool_free(ctx, bio_post_read_ctx_pool);
171         bio->bi_private = NULL;
172
173         /*
174          * Verify the bio's pages with fs-verity.  Exclude compressed pages,
175          * as those were handled separately by f2fs_end_read_compressed_page().
176          */
177         if (may_have_compressed_pages) {
178                 struct bio_vec *bv;
179                 struct bvec_iter_all iter_all;
180
181                 bio_for_each_segment_all(bv, bio, iter_all) {
182                         struct page *page = bv->bv_page;
183
184                         if (!f2fs_is_compressed_page(page) &&
185                             !PageError(page) && !fsverity_verify_page(page))
186                                 SetPageError(page);
187                 }
188         } else {
189                 fsverity_verify_bio(bio);
190         }
191
192         f2fs_finish_read_bio(bio);
193 }
194
195 /*
196  * If the bio's data needs to be verified with fs-verity, then enqueue the
197  * verity work for the bio.  Otherwise finish the bio now.
198  *
199  * Note that to avoid deadlocks, the verity work can't be done on the
200  * decryption/decompression workqueue.  This is because verifying the data pages
201  * can involve reading verity metadata pages from the file, and these verity
202  * metadata pages may be encrypted and/or compressed.
203  */
204 static void f2fs_verify_and_finish_bio(struct bio *bio)
205 {
206         struct bio_post_read_ctx *ctx = bio->bi_private;
207
208         if (ctx && (ctx->enabled_steps & STEP_VERITY)) {
209                 INIT_WORK(&ctx->work, f2fs_verify_bio);
210                 fsverity_enqueue_verify_work(&ctx->work);
211         } else {
212                 f2fs_finish_read_bio(bio);
213         }
214 }
215
216 /*
217  * Handle STEP_DECOMPRESS by decompressing any compressed clusters whose last
218  * remaining page was read by @ctx->bio.
219  *
220  * Note that a bio may span clusters (even a mix of compressed and uncompressed
221  * clusters) or be for just part of a cluster.  STEP_DECOMPRESS just indicates
222  * that the bio includes at least one compressed page.  The actual decompression
223  * is done on a per-cluster basis, not a per-bio basis.
224  */
225 static void f2fs_handle_step_decompress(struct bio_post_read_ctx *ctx)
226 {
227         struct bio_vec *bv;
228         struct bvec_iter_all iter_all;
229         bool all_compressed = true;
230
231         bio_for_each_segment_all(bv, ctx->bio, iter_all) {
232                 struct page *page = bv->bv_page;
233
234                 /* PG_error was set if decryption failed. */
235                 if (f2fs_is_compressed_page(page))
236                         f2fs_end_read_compressed_page(page, PageError(page));
237                 else
238                         all_compressed = false;
239         }
240
241         /*
242          * Optimization: if all the bio's pages are compressed, then scheduling
243          * the per-bio verity work is unnecessary, as verity will be fully
244          * handled at the compression cluster level.
245          */
246         if (all_compressed)
247                 ctx->enabled_steps &= ~STEP_VERITY;
248 }
249
250 static void f2fs_post_read_work(struct work_struct *work)
251 {
252         struct bio_post_read_ctx *ctx =
253                 container_of(work, struct bio_post_read_ctx, work);
254
255         if (ctx->enabled_steps & STEP_DECRYPT)
256                 fscrypt_decrypt_bio(ctx->bio);
257
258         if (ctx->enabled_steps & STEP_DECOMPRESS)
259                 f2fs_handle_step_decompress(ctx);
260
261         f2fs_verify_and_finish_bio(ctx->bio);
262 }
263
264 static void f2fs_read_end_io(struct bio *bio)
265 {
266         struct f2fs_sb_info *sbi = F2FS_P_SB(bio_first_page_all(bio));
267         struct bio_post_read_ctx *ctx = bio->bi_private;
268
269         if (time_to_inject(sbi, FAULT_READ_IO)) {
270                 f2fs_show_injection_info(sbi, FAULT_READ_IO);
271                 bio->bi_status = BLK_STS_IOERR;
272         }
273
274         if (bio->bi_status) {
275                 f2fs_finish_read_bio(bio);
276                 return;
277         }
278
279         if (ctx && (ctx->enabled_steps & (STEP_DECRYPT | STEP_DECOMPRESS))) {
280                 INIT_WORK(&ctx->work, f2fs_post_read_work);
281                 queue_work(ctx->sbi->post_read_wq, &ctx->work);
282         } else {
283                 f2fs_verify_and_finish_bio(bio);
284         }
285 }
286
287 static void f2fs_write_end_io(struct bio *bio)
288 {
289         struct f2fs_sb_info *sbi = bio->bi_private;
290         struct bio_vec *bvec;
291         struct bvec_iter_all iter_all;
292
293         if (time_to_inject(sbi, FAULT_WRITE_IO)) {
294                 f2fs_show_injection_info(sbi, FAULT_WRITE_IO);
295                 bio->bi_status = BLK_STS_IOERR;
296         }
297
298         bio_for_each_segment_all(bvec, bio, iter_all) {
299                 struct page *page = bvec->bv_page;
300                 enum count_type type = WB_DATA_TYPE(page);
301
302                 if (IS_DUMMY_WRITTEN_PAGE(page)) {
303                         set_page_private(page, (unsigned long)NULL);
304                         ClearPagePrivate(page);
305                         unlock_page(page);
306                         mempool_free(page, sbi->write_io_dummy);
307
308                         if (unlikely(bio->bi_status))
309                                 f2fs_stop_checkpoint(sbi, true);
310                         continue;
311                 }
312
313                 fscrypt_finalize_bounce_page(&page);
314
315 #ifdef CONFIG_F2FS_FS_COMPRESSION
316                 if (f2fs_is_compressed_page(page)) {
317                         f2fs_compress_write_end_io(bio, page);
318                         continue;
319                 }
320 #endif
321
322                 if (unlikely(bio->bi_status)) {
323                         mapping_set_error(page->mapping, -EIO);
324                         if (type == F2FS_WB_CP_DATA)
325                                 f2fs_stop_checkpoint(sbi, true);
326                 }
327
328                 f2fs_bug_on(sbi, page->mapping == NODE_MAPPING(sbi) &&
329                                         page->index != nid_of_node(page));
330
331                 dec_page_count(sbi, type);
332                 if (f2fs_in_warm_node_list(sbi, page))
333                         f2fs_del_fsync_node_entry(sbi, page);
334                 clear_cold_data(page);
335                 end_page_writeback(page);
336         }
337         if (!get_pages(sbi, F2FS_WB_CP_DATA) &&
338                                 wq_has_sleeper(&sbi->cp_wait))
339                 wake_up(&sbi->cp_wait);
340
341         bio_put(bio);
342 }
343
344 struct block_device *f2fs_target_device(struct f2fs_sb_info *sbi,
345                                 block_t blk_addr, struct bio *bio)
346 {
347         struct block_device *bdev = sbi->sb->s_bdev;
348         int i;
349
350         if (f2fs_is_multi_device(sbi)) {
351                 for (i = 0; i < sbi->s_ndevs; i++) {
352                         if (FDEV(i).start_blk <= blk_addr &&
353                             FDEV(i).end_blk >= blk_addr) {
354                                 blk_addr -= FDEV(i).start_blk;
355                                 bdev = FDEV(i).bdev;
356                                 break;
357                         }
358                 }
359         }
360         if (bio) {
361                 bio_set_dev(bio, bdev);
362                 bio->bi_iter.bi_sector = SECTOR_FROM_BLOCK(blk_addr);
363         }
364         return bdev;
365 }
366
367 int f2fs_target_device_index(struct f2fs_sb_info *sbi, block_t blkaddr)
368 {
369         int i;
370
371         if (!f2fs_is_multi_device(sbi))
372                 return 0;
373
374         for (i = 0; i < sbi->s_ndevs; i++)
375                 if (FDEV(i).start_blk <= blkaddr && FDEV(i).end_blk >= blkaddr)
376                         return i;
377         return 0;
378 }
379
380 static struct bio *__bio_alloc(struct f2fs_io_info *fio, int npages)
381 {
382         struct f2fs_sb_info *sbi = fio->sbi;
383         struct bio *bio;
384
385         bio = bio_alloc_bioset(GFP_NOIO, npages, &f2fs_bioset);
386
387         f2fs_target_device(sbi, fio->new_blkaddr, bio);
388         if (is_read_io(fio->op)) {
389                 bio->bi_end_io = f2fs_read_end_io;
390                 bio->bi_private = NULL;
391         } else {
392                 bio->bi_end_io = f2fs_write_end_io;
393                 bio->bi_private = sbi;
394                 bio->bi_write_hint = f2fs_io_type_to_rw_hint(sbi,
395                                                 fio->type, fio->temp);
396         }
397         if (fio->io_wbc)
398                 wbc_init_bio(fio->io_wbc, bio);
399
400         return bio;
401 }
402
403 static void f2fs_set_bio_crypt_ctx(struct bio *bio, const struct inode *inode,
404                                   pgoff_t first_idx,
405                                   const struct f2fs_io_info *fio,
406                                   gfp_t gfp_mask)
407 {
408         /*
409          * The f2fs garbage collector sets ->encrypted_page when it wants to
410          * read/write raw data without encryption.
411          */
412         if (!fio || !fio->encrypted_page)
413                 fscrypt_set_bio_crypt_ctx(bio, inode, first_idx, gfp_mask);
414 }
415
416 static bool f2fs_crypt_mergeable_bio(struct bio *bio, const struct inode *inode,
417                                      pgoff_t next_idx,
418                                      const struct f2fs_io_info *fio)
419 {
420         /*
421          * The f2fs garbage collector sets ->encrypted_page when it wants to
422          * read/write raw data without encryption.
423          */
424         if (fio && fio->encrypted_page)
425                 return !bio_has_crypt_ctx(bio);
426
427         return fscrypt_mergeable_bio(bio, inode, next_idx);
428 }
429
430 static inline void __submit_bio(struct f2fs_sb_info *sbi,
431                                 struct bio *bio, enum page_type type)
432 {
433         if (!is_read_io(bio_op(bio))) {
434                 unsigned int start;
435
436                 if (type != DATA && type != NODE)
437                         goto submit_io;
438
439                 if (f2fs_lfs_mode(sbi) && current->plug)
440                         blk_finish_plug(current->plug);
441
442                 if (!F2FS_IO_ALIGNED(sbi))
443                         goto submit_io;
444
445                 start = bio->bi_iter.bi_size >> F2FS_BLKSIZE_BITS;
446                 start %= F2FS_IO_SIZE(sbi);
447
448                 if (start == 0)
449                         goto submit_io;
450
451                 /* fill dummy pages */
452                 for (; start < F2FS_IO_SIZE(sbi); start++) {
453                         struct page *page =
454                                 mempool_alloc(sbi->write_io_dummy,
455                                               GFP_NOIO | __GFP_NOFAIL);
456                         f2fs_bug_on(sbi, !page);
457
458                         zero_user_segment(page, 0, PAGE_SIZE);
459                         SetPagePrivate(page);
460                         set_page_private(page, DUMMY_WRITTEN_PAGE);
461                         lock_page(page);
462                         if (bio_add_page(bio, page, PAGE_SIZE, 0) < PAGE_SIZE)
463                                 f2fs_bug_on(sbi, 1);
464                 }
465                 /*
466                  * In the NODE case, we lose next block address chain. So, we
467                  * need to do checkpoint in f2fs_sync_file.
468                  */
469                 if (type == NODE)
470                         set_sbi_flag(sbi, SBI_NEED_CP);
471         }
472 submit_io:
473         if (is_read_io(bio_op(bio)))
474                 trace_f2fs_submit_read_bio(sbi->sb, type, bio);
475         else
476                 trace_f2fs_submit_write_bio(sbi->sb, type, bio);
477         submit_bio(bio);
478 }
479
480 void f2fs_submit_bio(struct f2fs_sb_info *sbi,
481                                 struct bio *bio, enum page_type type)
482 {
483         __submit_bio(sbi, bio, type);
484 }
485
486 static void __attach_io_flag(struct f2fs_io_info *fio)
487 {
488         struct f2fs_sb_info *sbi = fio->sbi;
489         unsigned int temp_mask = (1 << NR_TEMP_TYPE) - 1;
490         unsigned int io_flag, fua_flag, meta_flag;
491
492         if (fio->type == DATA)
493                 io_flag = sbi->data_io_flag;
494         else if (fio->type == NODE)
495                 io_flag = sbi->node_io_flag;
496         else
497                 return;
498
499         fua_flag = io_flag & temp_mask;
500         meta_flag = (io_flag >> NR_TEMP_TYPE) & temp_mask;
501
502         /*
503          * data/node io flag bits per temp:
504          *      REQ_META     |      REQ_FUA      |
505          *    5 |    4 |   3 |    2 |    1 |   0 |
506          * Cold | Warm | Hot | Cold | Warm | Hot |
507          */
508         if ((1 << fio->temp) & meta_flag)
509                 fio->op_flags |= REQ_META;
510         if ((1 << fio->temp) & fua_flag)
511                 fio->op_flags |= REQ_FUA;
512 }
513
514 static void __submit_merged_bio(struct f2fs_bio_info *io)
515 {
516         struct f2fs_io_info *fio = &io->fio;
517
518         if (!io->bio)
519                 return;
520
521         __attach_io_flag(fio);
522         bio_set_op_attrs(io->bio, fio->op, fio->op_flags);
523
524         if (is_read_io(fio->op))
525                 trace_f2fs_prepare_read_bio(io->sbi->sb, fio->type, io->bio);
526         else
527                 trace_f2fs_prepare_write_bio(io->sbi->sb, fio->type, io->bio);
528
529         __submit_bio(io->sbi, io->bio, fio->type);
530         io->bio = NULL;
531 }
532
533 static bool __has_merged_page(struct bio *bio, struct inode *inode,
534                                                 struct page *page, nid_t ino)
535 {
536         struct bio_vec *bvec;
537         struct bvec_iter_all iter_all;
538
539         if (!bio)
540                 return false;
541
542         if (!inode && !page && !ino)
543                 return true;
544
545         bio_for_each_segment_all(bvec, bio, iter_all) {
546                 struct page *target = bvec->bv_page;
547
548                 if (fscrypt_is_bounce_page(target)) {
549                         target = fscrypt_pagecache_page(target);
550                         if (IS_ERR(target))
551                                 continue;
552                 }
553                 if (f2fs_is_compressed_page(target)) {
554                         target = f2fs_compress_control_page(target);
555                         if (IS_ERR(target))
556                                 continue;
557                 }
558
559                 if (inode && inode == target->mapping->host)
560                         return true;
561                 if (page && page == target)
562                         return true;
563                 if (ino && ino == ino_of_node(target))
564                         return true;
565         }
566
567         return false;
568 }
569
570 static void __f2fs_submit_merged_write(struct f2fs_sb_info *sbi,
571                                 enum page_type type, enum temp_type temp)
572 {
573         enum page_type btype = PAGE_TYPE_OF_BIO(type);
574         struct f2fs_bio_info *io = sbi->write_io[btype] + temp;
575
576         down_write(&io->io_rwsem);
577
578         /* change META to META_FLUSH in the checkpoint procedure */
579         if (type >= META_FLUSH) {
580                 io->fio.type = META_FLUSH;
581                 io->fio.op = REQ_OP_WRITE;
582                 io->fio.op_flags = REQ_META | REQ_PRIO | REQ_SYNC;
583                 if (!test_opt(sbi, NOBARRIER))
584                         io->fio.op_flags |= REQ_PREFLUSH | REQ_FUA;
585         }
586         __submit_merged_bio(io);
587         up_write(&io->io_rwsem);
588 }
589
590 static void __submit_merged_write_cond(struct f2fs_sb_info *sbi,
591                                 struct inode *inode, struct page *page,
592                                 nid_t ino, enum page_type type, bool force)
593 {
594         enum temp_type temp;
595         bool ret = true;
596
597         for (temp = HOT; temp < NR_TEMP_TYPE; temp++) {
598                 if (!force)     {
599                         enum page_type btype = PAGE_TYPE_OF_BIO(type);
600                         struct f2fs_bio_info *io = sbi->write_io[btype] + temp;
601
602                         down_read(&io->io_rwsem);
603                         ret = __has_merged_page(io->bio, inode, page, ino);
604                         up_read(&io->io_rwsem);
605                 }
606                 if (ret)
607                         __f2fs_submit_merged_write(sbi, type, temp);
608
609                 /* TODO: use HOT temp only for meta pages now. */
610                 if (type >= META)
611                         break;
612         }
613 }
614
615 void f2fs_submit_merged_write(struct f2fs_sb_info *sbi, enum page_type type)
616 {
617         __submit_merged_write_cond(sbi, NULL, NULL, 0, type, true);
618 }
619
620 void f2fs_submit_merged_write_cond(struct f2fs_sb_info *sbi,
621                                 struct inode *inode, struct page *page,
622                                 nid_t ino, enum page_type type)
623 {
624         __submit_merged_write_cond(sbi, inode, page, ino, type, false);
625 }
626
627 void f2fs_flush_merged_writes(struct f2fs_sb_info *sbi)
628 {
629         f2fs_submit_merged_write(sbi, DATA);
630         f2fs_submit_merged_write(sbi, NODE);
631         f2fs_submit_merged_write(sbi, META);
632 }
633
634 /*
635  * Fill the locked page with data located in the block address.
636  * A caller needs to unlock the page on failure.
637  */
638 int f2fs_submit_page_bio(struct f2fs_io_info *fio)
639 {
640         struct bio *bio;
641         struct page *page = fio->encrypted_page ?
642                         fio->encrypted_page : fio->page;
643
644         if (!f2fs_is_valid_blkaddr(fio->sbi, fio->new_blkaddr,
645                         fio->is_por ? META_POR : (__is_meta_io(fio) ?
646                         META_GENERIC : DATA_GENERIC_ENHANCE)))
647                 return -EFSCORRUPTED;
648
649         trace_f2fs_submit_page_bio(page, fio);
650
651         /* Allocate a new bio */
652         bio = __bio_alloc(fio, 1);
653
654         f2fs_set_bio_crypt_ctx(bio, fio->page->mapping->host,
655                                fio->page->index, fio, GFP_NOIO);
656
657         if (bio_add_page(bio, page, PAGE_SIZE, 0) < PAGE_SIZE) {
658                 bio_put(bio);
659                 return -EFAULT;
660         }
661
662         if (fio->io_wbc && !is_read_io(fio->op))
663                 wbc_account_cgroup_owner(fio->io_wbc, page, PAGE_SIZE);
664
665         __attach_io_flag(fio);
666         bio_set_op_attrs(bio, fio->op, fio->op_flags);
667
668         inc_page_count(fio->sbi, is_read_io(fio->op) ?
669                         __read_io_type(page): WB_DATA_TYPE(fio->page));
670
671         __submit_bio(fio->sbi, bio, fio->type);
672         return 0;
673 }
674
675 static bool page_is_mergeable(struct f2fs_sb_info *sbi, struct bio *bio,
676                                 block_t last_blkaddr, block_t cur_blkaddr)
677 {
678         if (unlikely(sbi->max_io_bytes &&
679                         bio->bi_iter.bi_size >= sbi->max_io_bytes))
680                 return false;
681         if (last_blkaddr + 1 != cur_blkaddr)
682                 return false;
683         return bio->bi_bdev == f2fs_target_device(sbi, cur_blkaddr, NULL);
684 }
685
686 static bool io_type_is_mergeable(struct f2fs_bio_info *io,
687                                                 struct f2fs_io_info *fio)
688 {
689         if (io->fio.op != fio->op)
690                 return false;
691         return io->fio.op_flags == fio->op_flags;
692 }
693
694 static bool io_is_mergeable(struct f2fs_sb_info *sbi, struct bio *bio,
695                                         struct f2fs_bio_info *io,
696                                         struct f2fs_io_info *fio,
697                                         block_t last_blkaddr,
698                                         block_t cur_blkaddr)
699 {
700         if (F2FS_IO_ALIGNED(sbi) && (fio->type == DATA || fio->type == NODE)) {
701                 unsigned int filled_blocks =
702                                 F2FS_BYTES_TO_BLK(bio->bi_iter.bi_size);
703                 unsigned int io_size = F2FS_IO_SIZE(sbi);
704                 unsigned int left_vecs = bio->bi_max_vecs - bio->bi_vcnt;
705
706                 /* IOs in bio is aligned and left space of vectors is not enough */
707                 if (!(filled_blocks % io_size) && left_vecs < io_size)
708                         return false;
709         }
710         if (!page_is_mergeable(sbi, bio, last_blkaddr, cur_blkaddr))
711                 return false;
712         return io_type_is_mergeable(io, fio);
713 }
714
715 static void add_bio_entry(struct f2fs_sb_info *sbi, struct bio *bio,
716                                 struct page *page, enum temp_type temp)
717 {
718         struct f2fs_bio_info *io = sbi->write_io[DATA] + temp;
719         struct bio_entry *be;
720
721         be = f2fs_kmem_cache_alloc(bio_entry_slab, GFP_NOFS);
722         be->bio = bio;
723         bio_get(bio);
724
725         if (bio_add_page(bio, page, PAGE_SIZE, 0) != PAGE_SIZE)
726                 f2fs_bug_on(sbi, 1);
727
728         down_write(&io->bio_list_lock);
729         list_add_tail(&be->list, &io->bio_list);
730         up_write(&io->bio_list_lock);
731 }
732
733 static void del_bio_entry(struct bio_entry *be)
734 {
735         list_del(&be->list);
736         kmem_cache_free(bio_entry_slab, be);
737 }
738
739 static int add_ipu_page(struct f2fs_io_info *fio, struct bio **bio,
740                                                         struct page *page)
741 {
742         struct f2fs_sb_info *sbi = fio->sbi;
743         enum temp_type temp;
744         bool found = false;
745         int ret = -EAGAIN;
746
747         for (temp = HOT; temp < NR_TEMP_TYPE && !found; temp++) {
748                 struct f2fs_bio_info *io = sbi->write_io[DATA] + temp;
749                 struct list_head *head = &io->bio_list;
750                 struct bio_entry *be;
751
752                 down_write(&io->bio_list_lock);
753                 list_for_each_entry(be, head, list) {
754                         if (be->bio != *bio)
755                                 continue;
756
757                         found = true;
758
759                         f2fs_bug_on(sbi, !page_is_mergeable(sbi, *bio,
760                                                             *fio->last_block,
761                                                             fio->new_blkaddr));
762                         if (f2fs_crypt_mergeable_bio(*bio,
763                                         fio->page->mapping->host,
764                                         fio->page->index, fio) &&
765                             bio_add_page(*bio, page, PAGE_SIZE, 0) ==
766                                         PAGE_SIZE) {
767                                 ret = 0;
768                                 break;
769                         }
770
771                         /* page can't be merged into bio; submit the bio */
772                         del_bio_entry(be);
773                         __submit_bio(sbi, *bio, DATA);
774                         break;
775                 }
776                 up_write(&io->bio_list_lock);
777         }
778
779         if (ret) {
780                 bio_put(*bio);
781                 *bio = NULL;
782         }
783
784         return ret;
785 }
786
787 void f2fs_submit_merged_ipu_write(struct f2fs_sb_info *sbi,
788                                         struct bio **bio, struct page *page)
789 {
790         enum temp_type temp;
791         bool found = false;
792         struct bio *target = bio ? *bio : NULL;
793
794         for (temp = HOT; temp < NR_TEMP_TYPE && !found; temp++) {
795                 struct f2fs_bio_info *io = sbi->write_io[DATA] + temp;
796                 struct list_head *head = &io->bio_list;
797                 struct bio_entry *be;
798
799                 if (list_empty(head))
800                         continue;
801
802                 down_read(&io->bio_list_lock);
803                 list_for_each_entry(be, head, list) {
804                         if (target)
805                                 found = (target == be->bio);
806                         else
807                                 found = __has_merged_page(be->bio, NULL,
808                                                                 page, 0);
809                         if (found)
810                                 break;
811                 }
812                 up_read(&io->bio_list_lock);
813
814                 if (!found)
815                         continue;
816
817                 found = false;
818
819                 down_write(&io->bio_list_lock);
820                 list_for_each_entry(be, head, list) {
821                         if (target)
822                                 found = (target == be->bio);
823                         else
824                                 found = __has_merged_page(be->bio, NULL,
825                                                                 page, 0);
826                         if (found) {
827                                 target = be->bio;
828                                 del_bio_entry(be);
829                                 break;
830                         }
831                 }
832                 up_write(&io->bio_list_lock);
833         }
834
835         if (found)
836                 __submit_bio(sbi, target, DATA);
837         if (bio && *bio) {
838                 bio_put(*bio);
839                 *bio = NULL;
840         }
841 }
842
843 int f2fs_merge_page_bio(struct f2fs_io_info *fio)
844 {
845         struct bio *bio = *fio->bio;
846         struct page *page = fio->encrypted_page ?
847                         fio->encrypted_page : fio->page;
848
849         if (!f2fs_is_valid_blkaddr(fio->sbi, fio->new_blkaddr,
850                         __is_meta_io(fio) ? META_GENERIC : DATA_GENERIC))
851                 return -EFSCORRUPTED;
852
853         trace_f2fs_submit_page_bio(page, fio);
854
855         if (bio && !page_is_mergeable(fio->sbi, bio, *fio->last_block,
856                                                 fio->new_blkaddr))
857                 f2fs_submit_merged_ipu_write(fio->sbi, &bio, NULL);
858 alloc_new:
859         if (!bio) {
860                 bio = __bio_alloc(fio, BIO_MAX_VECS);
861                 __attach_io_flag(fio);
862                 f2fs_set_bio_crypt_ctx(bio, fio->page->mapping->host,
863                                        fio->page->index, fio, GFP_NOIO);
864                 bio_set_op_attrs(bio, fio->op, fio->op_flags);
865
866                 add_bio_entry(fio->sbi, bio, page, fio->temp);
867         } else {
868                 if (add_ipu_page(fio, &bio, page))
869                         goto alloc_new;
870         }
871
872         if (fio->io_wbc)
873                 wbc_account_cgroup_owner(fio->io_wbc, page, PAGE_SIZE);
874
875         inc_page_count(fio->sbi, WB_DATA_TYPE(page));
876
877         *fio->last_block = fio->new_blkaddr;
878         *fio->bio = bio;
879
880         return 0;
881 }
882
883 void f2fs_submit_page_write(struct f2fs_io_info *fio)
884 {
885         struct f2fs_sb_info *sbi = fio->sbi;
886         enum page_type btype = PAGE_TYPE_OF_BIO(fio->type);
887         struct f2fs_bio_info *io = sbi->write_io[btype] + fio->temp;
888         struct page *bio_page;
889
890         f2fs_bug_on(sbi, is_read_io(fio->op));
891
892         down_write(&io->io_rwsem);
893 next:
894         if (fio->in_list) {
895                 spin_lock(&io->io_lock);
896                 if (list_empty(&io->io_list)) {
897                         spin_unlock(&io->io_lock);
898                         goto out;
899                 }
900                 fio = list_first_entry(&io->io_list,
901                                                 struct f2fs_io_info, list);
902                 list_del(&fio->list);
903                 spin_unlock(&io->io_lock);
904         }
905
906         verify_fio_blkaddr(fio);
907
908         if (fio->encrypted_page)
909                 bio_page = fio->encrypted_page;
910         else if (fio->compressed_page)
911                 bio_page = fio->compressed_page;
912         else
913                 bio_page = fio->page;
914
915         /* set submitted = true as a return value */
916         fio->submitted = true;
917
918         inc_page_count(sbi, WB_DATA_TYPE(bio_page));
919
920         if (io->bio &&
921             (!io_is_mergeable(sbi, io->bio, io, fio, io->last_block_in_bio,
922                               fio->new_blkaddr) ||
923              !f2fs_crypt_mergeable_bio(io->bio, fio->page->mapping->host,
924                                        bio_page->index, fio)))
925                 __submit_merged_bio(io);
926 alloc_new:
927         if (io->bio == NULL) {
928                 if (F2FS_IO_ALIGNED(sbi) &&
929                                 (fio->type == DATA || fio->type == NODE) &&
930                                 fio->new_blkaddr & F2FS_IO_SIZE_MASK(sbi)) {
931                         dec_page_count(sbi, WB_DATA_TYPE(bio_page));
932                         fio->retry = true;
933                         goto skip;
934                 }
935                 io->bio = __bio_alloc(fio, BIO_MAX_VECS);
936                 f2fs_set_bio_crypt_ctx(io->bio, fio->page->mapping->host,
937                                        bio_page->index, fio, GFP_NOIO);
938                 io->fio = *fio;
939         }
940
941         if (bio_add_page(io->bio, bio_page, PAGE_SIZE, 0) < PAGE_SIZE) {
942                 __submit_merged_bio(io);
943                 goto alloc_new;
944         }
945
946         if (fio->io_wbc)
947                 wbc_account_cgroup_owner(fio->io_wbc, bio_page, PAGE_SIZE);
948
949         io->last_block_in_bio = fio->new_blkaddr;
950
951         trace_f2fs_submit_page_write(fio->page, fio);
952 skip:
953         if (fio->in_list)
954                 goto next;
955 out:
956         if (is_sbi_flag_set(sbi, SBI_IS_SHUTDOWN) ||
957                                 !f2fs_is_checkpoint_ready(sbi))
958                 __submit_merged_bio(io);
959         up_write(&io->io_rwsem);
960 }
961
962 static struct bio *f2fs_grab_read_bio(struct inode *inode, block_t blkaddr,
963                                       unsigned nr_pages, unsigned op_flag,
964                                       pgoff_t first_idx, bool for_write)
965 {
966         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
967         struct bio *bio;
968         struct bio_post_read_ctx *ctx;
969         unsigned int post_read_steps = 0;
970
971         bio = bio_alloc_bioset(for_write ? GFP_NOIO : GFP_KERNEL,
972                                bio_max_segs(nr_pages), &f2fs_bioset);
973         if (!bio)
974                 return ERR_PTR(-ENOMEM);
975
976         f2fs_set_bio_crypt_ctx(bio, inode, first_idx, NULL, GFP_NOFS);
977
978         f2fs_target_device(sbi, blkaddr, bio);
979         bio->bi_end_io = f2fs_read_end_io;
980         bio_set_op_attrs(bio, REQ_OP_READ, op_flag);
981
982         if (fscrypt_inode_uses_fs_layer_crypto(inode))
983                 post_read_steps |= STEP_DECRYPT;
984
985         if (f2fs_need_verity(inode, first_idx))
986                 post_read_steps |= STEP_VERITY;
987
988         /*
989          * STEP_DECOMPRESS is handled specially, since a compressed file might
990          * contain both compressed and uncompressed clusters.  We'll allocate a
991          * bio_post_read_ctx if the file is compressed, but the caller is
992          * responsible for enabling STEP_DECOMPRESS if it's actually needed.
993          */
994
995         if (post_read_steps || f2fs_compressed_file(inode)) {
996                 /* Due to the mempool, this never fails. */
997                 ctx = mempool_alloc(bio_post_read_ctx_pool, GFP_NOFS);
998                 ctx->bio = bio;
999                 ctx->sbi = sbi;
1000                 ctx->enabled_steps = post_read_steps;
1001                 bio->bi_private = ctx;
1002         }
1003
1004         return bio;
1005 }
1006
1007 /* This can handle encryption stuffs */
1008 static int f2fs_submit_page_read(struct inode *inode, struct page *page,
1009                                  block_t blkaddr, int op_flags, bool for_write)
1010 {
1011         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1012         struct bio *bio;
1013
1014         bio = f2fs_grab_read_bio(inode, blkaddr, 1, op_flags,
1015                                         page->index, for_write);
1016         if (IS_ERR(bio))
1017                 return PTR_ERR(bio);
1018
1019         /* wait for GCed page writeback via META_MAPPING */
1020         f2fs_wait_on_block_writeback(inode, blkaddr);
1021
1022         if (bio_add_page(bio, page, PAGE_SIZE, 0) < PAGE_SIZE) {
1023                 bio_put(bio);
1024                 return -EFAULT;
1025         }
1026         ClearPageError(page);
1027         inc_page_count(sbi, F2FS_RD_DATA);
1028         f2fs_update_iostat(sbi, FS_DATA_READ_IO, F2FS_BLKSIZE);
1029         __submit_bio(sbi, bio, DATA);
1030         return 0;
1031 }
1032
1033 static void __set_data_blkaddr(struct dnode_of_data *dn)
1034 {
1035         struct f2fs_node *rn = F2FS_NODE(dn->node_page);
1036         __le32 *addr_array;
1037         int base = 0;
1038
1039         if (IS_INODE(dn->node_page) && f2fs_has_extra_attr(dn->inode))
1040                 base = get_extra_isize(dn->inode);
1041
1042         /* Get physical address of data block */
1043         addr_array = blkaddr_in_node(rn);
1044         addr_array[base + dn->ofs_in_node] = cpu_to_le32(dn->data_blkaddr);
1045 }
1046
1047 /*
1048  * Lock ordering for the change of data block address:
1049  * ->data_page
1050  *  ->node_page
1051  *    update block addresses in the node page
1052  */
1053 void f2fs_set_data_blkaddr(struct dnode_of_data *dn)
1054 {
1055         f2fs_wait_on_page_writeback(dn->node_page, NODE, true, true);
1056         __set_data_blkaddr(dn);
1057         if (set_page_dirty(dn->node_page))
1058                 dn->node_changed = true;
1059 }
1060
1061 void f2fs_update_data_blkaddr(struct dnode_of_data *dn, block_t blkaddr)
1062 {
1063         dn->data_blkaddr = blkaddr;
1064         f2fs_set_data_blkaddr(dn);
1065         f2fs_update_extent_cache(dn);
1066 }
1067
1068 /* dn->ofs_in_node will be returned with up-to-date last block pointer */
1069 int f2fs_reserve_new_blocks(struct dnode_of_data *dn, blkcnt_t count)
1070 {
1071         struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
1072         int err;
1073
1074         if (!count)
1075                 return 0;
1076
1077         if (unlikely(is_inode_flag_set(dn->inode, FI_NO_ALLOC)))
1078                 return -EPERM;
1079         if (unlikely((err = inc_valid_block_count(sbi, dn->inode, &count))))
1080                 return err;
1081
1082         trace_f2fs_reserve_new_blocks(dn->inode, dn->nid,
1083                                                 dn->ofs_in_node, count);
1084
1085         f2fs_wait_on_page_writeback(dn->node_page, NODE, true, true);
1086
1087         for (; count > 0; dn->ofs_in_node++) {
1088                 block_t blkaddr = f2fs_data_blkaddr(dn);
1089                 if (blkaddr == NULL_ADDR) {
1090                         dn->data_blkaddr = NEW_ADDR;
1091                         __set_data_blkaddr(dn);
1092                         count--;
1093                 }
1094         }
1095
1096         if (set_page_dirty(dn->node_page))
1097                 dn->node_changed = true;
1098         return 0;
1099 }
1100
1101 /* Should keep dn->ofs_in_node unchanged */
1102 int f2fs_reserve_new_block(struct dnode_of_data *dn)
1103 {
1104         unsigned int ofs_in_node = dn->ofs_in_node;
1105         int ret;
1106
1107         ret = f2fs_reserve_new_blocks(dn, 1);
1108         dn->ofs_in_node = ofs_in_node;
1109         return ret;
1110 }
1111
1112 int f2fs_reserve_block(struct dnode_of_data *dn, pgoff_t index)
1113 {
1114         bool need_put = dn->inode_page ? false : true;
1115         int err;
1116
1117         err = f2fs_get_dnode_of_data(dn, index, ALLOC_NODE);
1118         if (err)
1119                 return err;
1120
1121         if (dn->data_blkaddr == NULL_ADDR)
1122                 err = f2fs_reserve_new_block(dn);
1123         if (err || need_put)
1124                 f2fs_put_dnode(dn);
1125         return err;
1126 }
1127
1128 int f2fs_get_block(struct dnode_of_data *dn, pgoff_t index)
1129 {
1130         struct extent_info ei = {0, 0, 0};
1131         struct inode *inode = dn->inode;
1132
1133         if (f2fs_lookup_extent_cache(inode, index, &ei)) {
1134                 dn->data_blkaddr = ei.blk + index - ei.fofs;
1135                 return 0;
1136         }
1137
1138         return f2fs_reserve_block(dn, index);
1139 }
1140
1141 struct page *f2fs_get_read_data_page(struct inode *inode, pgoff_t index,
1142                                                 int op_flags, bool for_write)
1143 {
1144         struct address_space *mapping = inode->i_mapping;
1145         struct dnode_of_data dn;
1146         struct page *page;
1147         struct extent_info ei = {0,0,0};
1148         int err;
1149
1150         page = f2fs_grab_cache_page(mapping, index, for_write);
1151         if (!page)
1152                 return ERR_PTR(-ENOMEM);
1153
1154         if (f2fs_lookup_extent_cache(inode, index, &ei)) {
1155                 dn.data_blkaddr = ei.blk + index - ei.fofs;
1156                 if (!f2fs_is_valid_blkaddr(F2FS_I_SB(inode), dn.data_blkaddr,
1157                                                 DATA_GENERIC_ENHANCE_READ)) {
1158                         err = -EFSCORRUPTED;
1159                         goto put_err;
1160                 }
1161                 goto got_it;
1162         }
1163
1164         set_new_dnode(&dn, inode, NULL, NULL, 0);
1165         err = f2fs_get_dnode_of_data(&dn, index, LOOKUP_NODE);
1166         if (err)
1167                 goto put_err;
1168         f2fs_put_dnode(&dn);
1169
1170         if (unlikely(dn.data_blkaddr == NULL_ADDR)) {
1171                 err = -ENOENT;
1172                 goto put_err;
1173         }
1174         if (dn.data_blkaddr != NEW_ADDR &&
1175                         !f2fs_is_valid_blkaddr(F2FS_I_SB(inode),
1176                                                 dn.data_blkaddr,
1177                                                 DATA_GENERIC_ENHANCE)) {
1178                 err = -EFSCORRUPTED;
1179                 goto put_err;
1180         }
1181 got_it:
1182         if (PageUptodate(page)) {
1183                 unlock_page(page);
1184                 return page;
1185         }
1186
1187         /*
1188          * A new dentry page is allocated but not able to be written, since its
1189          * new inode page couldn't be allocated due to -ENOSPC.
1190          * In such the case, its blkaddr can be remained as NEW_ADDR.
1191          * see, f2fs_add_link -> f2fs_get_new_data_page ->
1192          * f2fs_init_inode_metadata.
1193          */
1194         if (dn.data_blkaddr == NEW_ADDR) {
1195                 zero_user_segment(page, 0, PAGE_SIZE);
1196                 if (!PageUptodate(page))
1197                         SetPageUptodate(page);
1198                 unlock_page(page);
1199                 return page;
1200         }
1201
1202         err = f2fs_submit_page_read(inode, page, dn.data_blkaddr,
1203                                                 op_flags, for_write);
1204         if (err)
1205                 goto put_err;
1206         return page;
1207
1208 put_err:
1209         f2fs_put_page(page, 1);
1210         return ERR_PTR(err);
1211 }
1212
1213 struct page *f2fs_find_data_page(struct inode *inode, pgoff_t index)
1214 {
1215         struct address_space *mapping = inode->i_mapping;
1216         struct page *page;
1217
1218         page = find_get_page(mapping, index);
1219         if (page && PageUptodate(page))
1220                 return page;
1221         f2fs_put_page(page, 0);
1222
1223         page = f2fs_get_read_data_page(inode, index, 0, false);
1224         if (IS_ERR(page))
1225                 return page;
1226
1227         if (PageUptodate(page))
1228                 return page;
1229
1230         wait_on_page_locked(page);
1231         if (unlikely(!PageUptodate(page))) {
1232                 f2fs_put_page(page, 0);
1233                 return ERR_PTR(-EIO);
1234         }
1235         return page;
1236 }
1237
1238 /*
1239  * If it tries to access a hole, return an error.
1240  * Because, the callers, functions in dir.c and GC, should be able to know
1241  * whether this page exists or not.
1242  */
1243 struct page *f2fs_get_lock_data_page(struct inode *inode, pgoff_t index,
1244                                                         bool for_write)
1245 {
1246         struct address_space *mapping = inode->i_mapping;
1247         struct page *page;
1248 repeat:
1249         page = f2fs_get_read_data_page(inode, index, 0, for_write);
1250         if (IS_ERR(page))
1251                 return page;
1252
1253         /* wait for read completion */
1254         lock_page(page);
1255         if (unlikely(page->mapping != mapping)) {
1256                 f2fs_put_page(page, 1);
1257                 goto repeat;
1258         }
1259         if (unlikely(!PageUptodate(page))) {
1260                 f2fs_put_page(page, 1);
1261                 return ERR_PTR(-EIO);
1262         }
1263         return page;
1264 }
1265
1266 /*
1267  * Caller ensures that this data page is never allocated.
1268  * A new zero-filled data page is allocated in the page cache.
1269  *
1270  * Also, caller should grab and release a rwsem by calling f2fs_lock_op() and
1271  * f2fs_unlock_op().
1272  * Note that, ipage is set only by make_empty_dir, and if any error occur,
1273  * ipage should be released by this function.
1274  */
1275 struct page *f2fs_get_new_data_page(struct inode *inode,
1276                 struct page *ipage, pgoff_t index, bool new_i_size)
1277 {
1278         struct address_space *mapping = inode->i_mapping;
1279         struct page *page;
1280         struct dnode_of_data dn;
1281         int err;
1282
1283         page = f2fs_grab_cache_page(mapping, index, true);
1284         if (!page) {
1285                 /*
1286                  * before exiting, we should make sure ipage will be released
1287                  * if any error occur.
1288                  */
1289                 f2fs_put_page(ipage, 1);
1290                 return ERR_PTR(-ENOMEM);
1291         }
1292
1293         set_new_dnode(&dn, inode, ipage, NULL, 0);
1294         err = f2fs_reserve_block(&dn, index);
1295         if (err) {
1296                 f2fs_put_page(page, 1);
1297                 return ERR_PTR(err);
1298         }
1299         if (!ipage)
1300                 f2fs_put_dnode(&dn);
1301
1302         if (PageUptodate(page))
1303                 goto got_it;
1304
1305         if (dn.data_blkaddr == NEW_ADDR) {
1306                 zero_user_segment(page, 0, PAGE_SIZE);
1307                 if (!PageUptodate(page))
1308                         SetPageUptodate(page);
1309         } else {
1310                 f2fs_put_page(page, 1);
1311
1312                 /* if ipage exists, blkaddr should be NEW_ADDR */
1313                 f2fs_bug_on(F2FS_I_SB(inode), ipage);
1314                 page = f2fs_get_lock_data_page(inode, index, true);
1315                 if (IS_ERR(page))
1316                         return page;
1317         }
1318 got_it:
1319         if (new_i_size && i_size_read(inode) <
1320                                 ((loff_t)(index + 1) << PAGE_SHIFT))
1321                 f2fs_i_size_write(inode, ((loff_t)(index + 1) << PAGE_SHIFT));
1322         return page;
1323 }
1324
1325 static int __allocate_data_block(struct dnode_of_data *dn, int seg_type)
1326 {
1327         struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
1328         struct f2fs_summary sum;
1329         struct node_info ni;
1330         block_t old_blkaddr;
1331         blkcnt_t count = 1;
1332         int err;
1333
1334         if (unlikely(is_inode_flag_set(dn->inode, FI_NO_ALLOC)))
1335                 return -EPERM;
1336
1337         err = f2fs_get_node_info(sbi, dn->nid, &ni);
1338         if (err)
1339                 return err;
1340
1341         dn->data_blkaddr = f2fs_data_blkaddr(dn);
1342         if (dn->data_blkaddr != NULL_ADDR)
1343                 goto alloc;
1344
1345         if (unlikely((err = inc_valid_block_count(sbi, dn->inode, &count))))
1346                 return err;
1347
1348 alloc:
1349         set_summary(&sum, dn->nid, dn->ofs_in_node, ni.version);
1350         old_blkaddr = dn->data_blkaddr;
1351         f2fs_allocate_data_block(sbi, NULL, old_blkaddr, &dn->data_blkaddr,
1352                                 &sum, seg_type, NULL);
1353         if (GET_SEGNO(sbi, old_blkaddr) != NULL_SEGNO)
1354                 invalidate_mapping_pages(META_MAPPING(sbi),
1355                                         old_blkaddr, old_blkaddr);
1356         f2fs_update_data_blkaddr(dn, dn->data_blkaddr);
1357
1358         /*
1359          * i_size will be updated by direct_IO. Otherwise, we'll get stale
1360          * data from unwritten block via dio_read.
1361          */
1362         return 0;
1363 }
1364
1365 int f2fs_preallocate_blocks(struct kiocb *iocb, struct iov_iter *from)
1366 {
1367         struct inode *inode = file_inode(iocb->ki_filp);
1368         struct f2fs_map_blocks map;
1369         int flag;
1370         int err = 0;
1371         bool direct_io = iocb->ki_flags & IOCB_DIRECT;
1372
1373         map.m_lblk = F2FS_BLK_ALIGN(iocb->ki_pos);
1374         map.m_len = F2FS_BYTES_TO_BLK(iocb->ki_pos + iov_iter_count(from));
1375         if (map.m_len > map.m_lblk)
1376                 map.m_len -= map.m_lblk;
1377         else
1378                 map.m_len = 0;
1379
1380         map.m_next_pgofs = NULL;
1381         map.m_next_extent = NULL;
1382         map.m_seg_type = NO_CHECK_TYPE;
1383         map.m_may_create = true;
1384
1385         if (direct_io) {
1386                 map.m_seg_type = f2fs_rw_hint_to_seg_type(iocb->ki_hint);
1387                 flag = f2fs_force_buffered_io(inode, iocb, from) ?
1388                                         F2FS_GET_BLOCK_PRE_AIO :
1389                                         F2FS_GET_BLOCK_PRE_DIO;
1390                 goto map_blocks;
1391         }
1392         if (iocb->ki_pos + iov_iter_count(from) > MAX_INLINE_DATA(inode)) {
1393                 err = f2fs_convert_inline_inode(inode);
1394                 if (err)
1395                         return err;
1396         }
1397         if (f2fs_has_inline_data(inode))
1398                 return err;
1399
1400         flag = F2FS_GET_BLOCK_PRE_AIO;
1401
1402 map_blocks:
1403         err = f2fs_map_blocks(inode, &map, 1, flag);
1404         if (map.m_len > 0 && err == -ENOSPC) {
1405                 if (!direct_io)
1406                         set_inode_flag(inode, FI_NO_PREALLOC);
1407                 err = 0;
1408         }
1409         return err;
1410 }
1411
1412 void f2fs_do_map_lock(struct f2fs_sb_info *sbi, int flag, bool lock)
1413 {
1414         if (flag == F2FS_GET_BLOCK_PRE_AIO) {
1415                 if (lock)
1416                         down_read(&sbi->node_change);
1417                 else
1418                         up_read(&sbi->node_change);
1419         } else {
1420                 if (lock)
1421                         f2fs_lock_op(sbi);
1422                 else
1423                         f2fs_unlock_op(sbi);
1424         }
1425 }
1426
1427 /*
1428  * f2fs_map_blocks() tries to find or build mapping relationship which
1429  * maps continuous logical blocks to physical blocks, and return such
1430  * info via f2fs_map_blocks structure.
1431  */
1432 int f2fs_map_blocks(struct inode *inode, struct f2fs_map_blocks *map,
1433                                                 int create, int flag)
1434 {
1435         unsigned int maxblocks = map->m_len;
1436         struct dnode_of_data dn;
1437         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1438         int mode = map->m_may_create ? ALLOC_NODE : LOOKUP_NODE;
1439         pgoff_t pgofs, end_offset, end;
1440         int err = 0, ofs = 1;
1441         unsigned int ofs_in_node, last_ofs_in_node;
1442         blkcnt_t prealloc;
1443         struct extent_info ei = {0,0,0};
1444         block_t blkaddr;
1445         unsigned int start_pgofs;
1446
1447         if (!maxblocks)
1448                 return 0;
1449
1450         map->m_len = 0;
1451         map->m_flags = 0;
1452
1453         /* it only supports block size == page size */
1454         pgofs = (pgoff_t)map->m_lblk;
1455         end = pgofs + maxblocks;
1456
1457         if (!create && f2fs_lookup_extent_cache(inode, pgofs, &ei)) {
1458                 if (f2fs_lfs_mode(sbi) && flag == F2FS_GET_BLOCK_DIO &&
1459                                                         map->m_may_create)
1460                         goto next_dnode;
1461
1462                 map->m_pblk = ei.blk + pgofs - ei.fofs;
1463                 map->m_len = min((pgoff_t)maxblocks, ei.fofs + ei.len - pgofs);
1464                 map->m_flags = F2FS_MAP_MAPPED;
1465                 if (map->m_next_extent)
1466                         *map->m_next_extent = pgofs + map->m_len;
1467
1468                 /* for hardware encryption, but to avoid potential issue in future */
1469                 if (flag == F2FS_GET_BLOCK_DIO)
1470                         f2fs_wait_on_block_writeback_range(inode,
1471                                                 map->m_pblk, map->m_len);
1472                 goto out;
1473         }
1474
1475 next_dnode:
1476         if (map->m_may_create)
1477                 f2fs_do_map_lock(sbi, flag, true);
1478
1479         /* When reading holes, we need its node page */
1480         set_new_dnode(&dn, inode, NULL, NULL, 0);
1481         err = f2fs_get_dnode_of_data(&dn, pgofs, mode);
1482         if (err) {
1483                 if (flag == F2FS_GET_BLOCK_BMAP)
1484                         map->m_pblk = 0;
1485                 if (err == -ENOENT) {
1486                         err = 0;
1487                         if (map->m_next_pgofs)
1488                                 *map->m_next_pgofs =
1489                                         f2fs_get_next_page_offset(&dn, pgofs);
1490                         if (map->m_next_extent)
1491                                 *map->m_next_extent =
1492                                         f2fs_get_next_page_offset(&dn, pgofs);
1493                 }
1494                 goto unlock_out;
1495         }
1496
1497         start_pgofs = pgofs;
1498         prealloc = 0;
1499         last_ofs_in_node = ofs_in_node = dn.ofs_in_node;
1500         end_offset = ADDRS_PER_PAGE(dn.node_page, inode);
1501
1502 next_block:
1503         blkaddr = f2fs_data_blkaddr(&dn);
1504
1505         if (__is_valid_data_blkaddr(blkaddr) &&
1506                 !f2fs_is_valid_blkaddr(sbi, blkaddr, DATA_GENERIC_ENHANCE)) {
1507                 err = -EFSCORRUPTED;
1508                 goto sync_out;
1509         }
1510
1511         if (__is_valid_data_blkaddr(blkaddr)) {
1512                 /* use out-place-update for driect IO under LFS mode */
1513                 if (f2fs_lfs_mode(sbi) && flag == F2FS_GET_BLOCK_DIO &&
1514                                                         map->m_may_create) {
1515                         err = __allocate_data_block(&dn, map->m_seg_type);
1516                         if (err)
1517                                 goto sync_out;
1518                         blkaddr = dn.data_blkaddr;
1519                         set_inode_flag(inode, FI_APPEND_WRITE);
1520                 }
1521         } else {
1522                 if (create) {
1523                         if (unlikely(f2fs_cp_error(sbi))) {
1524                                 err = -EIO;
1525                                 goto sync_out;
1526                         }
1527                         if (flag == F2FS_GET_BLOCK_PRE_AIO) {
1528                                 if (blkaddr == NULL_ADDR) {
1529                                         prealloc++;
1530                                         last_ofs_in_node = dn.ofs_in_node;
1531                                 }
1532                         } else {
1533                                 WARN_ON(flag != F2FS_GET_BLOCK_PRE_DIO &&
1534                                         flag != F2FS_GET_BLOCK_DIO);
1535                                 err = __allocate_data_block(&dn,
1536                                                         map->m_seg_type);
1537                                 if (!err)
1538                                         set_inode_flag(inode, FI_APPEND_WRITE);
1539                         }
1540                         if (err)
1541                                 goto sync_out;
1542                         map->m_flags |= F2FS_MAP_NEW;
1543                         blkaddr = dn.data_blkaddr;
1544                 } else {
1545                         if (flag == F2FS_GET_BLOCK_BMAP) {
1546                                 map->m_pblk = 0;
1547                                 goto sync_out;
1548                         }
1549                         if (flag == F2FS_GET_BLOCK_PRECACHE)
1550                                 goto sync_out;
1551                         if (flag == F2FS_GET_BLOCK_FIEMAP &&
1552                                                 blkaddr == NULL_ADDR) {
1553                                 if (map->m_next_pgofs)
1554                                         *map->m_next_pgofs = pgofs + 1;
1555                                 goto sync_out;
1556                         }
1557                         if (flag != F2FS_GET_BLOCK_FIEMAP) {
1558                                 /* for defragment case */
1559                                 if (map->m_next_pgofs)
1560                                         *map->m_next_pgofs = pgofs + 1;
1561                                 goto sync_out;
1562                         }
1563                 }
1564         }
1565
1566         if (flag == F2FS_GET_BLOCK_PRE_AIO)
1567                 goto skip;
1568
1569         if (map->m_len == 0) {
1570                 /* preallocated unwritten block should be mapped for fiemap. */
1571                 if (blkaddr == NEW_ADDR)
1572                         map->m_flags |= F2FS_MAP_UNWRITTEN;
1573                 map->m_flags |= F2FS_MAP_MAPPED;
1574
1575                 map->m_pblk = blkaddr;
1576                 map->m_len = 1;
1577         } else if ((map->m_pblk != NEW_ADDR &&
1578                         blkaddr == (map->m_pblk + ofs)) ||
1579                         (map->m_pblk == NEW_ADDR && blkaddr == NEW_ADDR) ||
1580                         flag == F2FS_GET_BLOCK_PRE_DIO) {
1581                 ofs++;
1582                 map->m_len++;
1583         } else {
1584                 goto sync_out;
1585         }
1586
1587 skip:
1588         dn.ofs_in_node++;
1589         pgofs++;
1590
1591         /* preallocate blocks in batch for one dnode page */
1592         if (flag == F2FS_GET_BLOCK_PRE_AIO &&
1593                         (pgofs == end || dn.ofs_in_node == end_offset)) {
1594
1595                 dn.ofs_in_node = ofs_in_node;
1596                 err = f2fs_reserve_new_blocks(&dn, prealloc);
1597                 if (err)
1598                         goto sync_out;
1599
1600                 map->m_len += dn.ofs_in_node - ofs_in_node;
1601                 if (prealloc && dn.ofs_in_node != last_ofs_in_node + 1) {
1602                         err = -ENOSPC;
1603                         goto sync_out;
1604                 }
1605                 dn.ofs_in_node = end_offset;
1606         }
1607
1608         if (pgofs >= end)
1609                 goto sync_out;
1610         else if (dn.ofs_in_node < end_offset)
1611                 goto next_block;
1612
1613         if (flag == F2FS_GET_BLOCK_PRECACHE) {
1614                 if (map->m_flags & F2FS_MAP_MAPPED) {
1615                         unsigned int ofs = start_pgofs - map->m_lblk;
1616
1617                         f2fs_update_extent_cache_range(&dn,
1618                                 start_pgofs, map->m_pblk + ofs,
1619                                 map->m_len - ofs);
1620                 }
1621         }
1622
1623         f2fs_put_dnode(&dn);
1624
1625         if (map->m_may_create) {
1626                 f2fs_do_map_lock(sbi, flag, false);
1627                 f2fs_balance_fs(sbi, dn.node_changed);
1628         }
1629         goto next_dnode;
1630
1631 sync_out:
1632
1633         /* for hardware encryption, but to avoid potential issue in future */
1634         if (flag == F2FS_GET_BLOCK_DIO && map->m_flags & F2FS_MAP_MAPPED)
1635                 f2fs_wait_on_block_writeback_range(inode,
1636                                                 map->m_pblk, map->m_len);
1637
1638         if (flag == F2FS_GET_BLOCK_PRECACHE) {
1639                 if (map->m_flags & F2FS_MAP_MAPPED) {
1640                         unsigned int ofs = start_pgofs - map->m_lblk;
1641
1642                         f2fs_update_extent_cache_range(&dn,
1643                                 start_pgofs, map->m_pblk + ofs,
1644                                 map->m_len - ofs);
1645                 }
1646                 if (map->m_next_extent)
1647                         *map->m_next_extent = pgofs + 1;
1648         }
1649         f2fs_put_dnode(&dn);
1650 unlock_out:
1651         if (map->m_may_create) {
1652                 f2fs_do_map_lock(sbi, flag, false);
1653                 f2fs_balance_fs(sbi, dn.node_changed);
1654         }
1655 out:
1656         trace_f2fs_map_blocks(inode, map, err);
1657         return err;
1658 }
1659
1660 bool f2fs_overwrite_io(struct inode *inode, loff_t pos, size_t len)
1661 {
1662         struct f2fs_map_blocks map;
1663         block_t last_lblk;
1664         int err;
1665
1666         if (pos + len > i_size_read(inode))
1667                 return false;
1668
1669         map.m_lblk = F2FS_BYTES_TO_BLK(pos);
1670         map.m_next_pgofs = NULL;
1671         map.m_next_extent = NULL;
1672         map.m_seg_type = NO_CHECK_TYPE;
1673         map.m_may_create = false;
1674         last_lblk = F2FS_BLK_ALIGN(pos + len);
1675
1676         while (map.m_lblk < last_lblk) {
1677                 map.m_len = last_lblk - map.m_lblk;
1678                 err = f2fs_map_blocks(inode, &map, 0, F2FS_GET_BLOCK_DEFAULT);
1679                 if (err || map.m_len == 0)
1680                         return false;
1681                 map.m_lblk += map.m_len;
1682         }
1683         return true;
1684 }
1685
1686 static inline u64 bytes_to_blks(struct inode *inode, u64 bytes)
1687 {
1688         return (bytes >> inode->i_blkbits);
1689 }
1690
1691 static inline u64 blks_to_bytes(struct inode *inode, u64 blks)
1692 {
1693         return (blks << inode->i_blkbits);
1694 }
1695
1696 static int __get_data_block(struct inode *inode, sector_t iblock,
1697                         struct buffer_head *bh, int create, int flag,
1698                         pgoff_t *next_pgofs, int seg_type, bool may_write)
1699 {
1700         struct f2fs_map_blocks map;
1701         int err;
1702
1703         map.m_lblk = iblock;
1704         map.m_len = bytes_to_blks(inode, bh->b_size);
1705         map.m_next_pgofs = next_pgofs;
1706         map.m_next_extent = NULL;
1707         map.m_seg_type = seg_type;
1708         map.m_may_create = may_write;
1709
1710         err = f2fs_map_blocks(inode, &map, create, flag);
1711         if (!err) {
1712                 map_bh(bh, inode->i_sb, map.m_pblk);
1713                 bh->b_state = (bh->b_state & ~F2FS_MAP_FLAGS) | map.m_flags;
1714                 bh->b_size = blks_to_bytes(inode, map.m_len);
1715         }
1716         return err;
1717 }
1718
1719 static int get_data_block_dio_write(struct inode *inode, sector_t iblock,
1720                         struct buffer_head *bh_result, int create)
1721 {
1722         return __get_data_block(inode, iblock, bh_result, create,
1723                                 F2FS_GET_BLOCK_DIO, NULL,
1724                                 f2fs_rw_hint_to_seg_type(inode->i_write_hint),
1725                                 IS_SWAPFILE(inode) ? false : true);
1726 }
1727
1728 static int get_data_block_dio(struct inode *inode, sector_t iblock,
1729                         struct buffer_head *bh_result, int create)
1730 {
1731         return __get_data_block(inode, iblock, bh_result, create,
1732                                 F2FS_GET_BLOCK_DIO, NULL,
1733                                 f2fs_rw_hint_to_seg_type(inode->i_write_hint),
1734                                 false);
1735 }
1736
1737 static int f2fs_xattr_fiemap(struct inode *inode,
1738                                 struct fiemap_extent_info *fieinfo)
1739 {
1740         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1741         struct page *page;
1742         struct node_info ni;
1743         __u64 phys = 0, len;
1744         __u32 flags;
1745         nid_t xnid = F2FS_I(inode)->i_xattr_nid;
1746         int err = 0;
1747
1748         if (f2fs_has_inline_xattr(inode)) {
1749                 int offset;
1750
1751                 page = f2fs_grab_cache_page(NODE_MAPPING(sbi),
1752                                                 inode->i_ino, false);
1753                 if (!page)
1754                         return -ENOMEM;
1755
1756                 err = f2fs_get_node_info(sbi, inode->i_ino, &ni);
1757                 if (err) {
1758                         f2fs_put_page(page, 1);
1759                         return err;
1760                 }
1761
1762                 phys = blks_to_bytes(inode, ni.blk_addr);
1763                 offset = offsetof(struct f2fs_inode, i_addr) +
1764                                         sizeof(__le32) * (DEF_ADDRS_PER_INODE -
1765                                         get_inline_xattr_addrs(inode));
1766
1767                 phys += offset;
1768                 len = inline_xattr_size(inode);
1769
1770                 f2fs_put_page(page, 1);
1771
1772                 flags = FIEMAP_EXTENT_DATA_INLINE | FIEMAP_EXTENT_NOT_ALIGNED;
1773
1774                 if (!xnid)
1775                         flags |= FIEMAP_EXTENT_LAST;
1776
1777                 err = fiemap_fill_next_extent(fieinfo, 0, phys, len, flags);
1778                 trace_f2fs_fiemap(inode, 0, phys, len, flags, err);
1779                 if (err || err == 1)
1780                         return err;
1781         }
1782
1783         if (xnid) {
1784                 page = f2fs_grab_cache_page(NODE_MAPPING(sbi), xnid, false);
1785                 if (!page)
1786                         return -ENOMEM;
1787
1788                 err = f2fs_get_node_info(sbi, xnid, &ni);
1789                 if (err) {
1790                         f2fs_put_page(page, 1);
1791                         return err;
1792                 }
1793
1794                 phys = blks_to_bytes(inode, ni.blk_addr);
1795                 len = inode->i_sb->s_blocksize;
1796
1797                 f2fs_put_page(page, 1);
1798
1799                 flags = FIEMAP_EXTENT_LAST;
1800         }
1801
1802         if (phys) {
1803                 err = fiemap_fill_next_extent(fieinfo, 0, phys, len, flags);
1804                 trace_f2fs_fiemap(inode, 0, phys, len, flags, err);
1805         }
1806
1807         return (err < 0 ? err : 0);
1808 }
1809
1810 static loff_t max_inode_blocks(struct inode *inode)
1811 {
1812         loff_t result = ADDRS_PER_INODE(inode);
1813         loff_t leaf_count = ADDRS_PER_BLOCK(inode);
1814
1815         /* two direct node blocks */
1816         result += (leaf_count * 2);
1817
1818         /* two indirect node blocks */
1819         leaf_count *= NIDS_PER_BLOCK;
1820         result += (leaf_count * 2);
1821
1822         /* one double indirect node block */
1823         leaf_count *= NIDS_PER_BLOCK;
1824         result += leaf_count;
1825
1826         return result;
1827 }
1828
1829 int f2fs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
1830                 u64 start, u64 len)
1831 {
1832         struct f2fs_map_blocks map;
1833         sector_t start_blk, last_blk;
1834         pgoff_t next_pgofs;
1835         u64 logical = 0, phys = 0, size = 0;
1836         u32 flags = 0;
1837         int ret = 0;
1838         bool compr_cluster = false;
1839         unsigned int cluster_size = F2FS_I(inode)->i_cluster_size;
1840
1841         if (fieinfo->fi_flags & FIEMAP_FLAG_CACHE) {
1842                 ret = f2fs_precache_extents(inode);
1843                 if (ret)
1844                         return ret;
1845         }
1846
1847         ret = fiemap_prep(inode, fieinfo, start, &len, FIEMAP_FLAG_XATTR);
1848         if (ret)
1849                 return ret;
1850
1851         inode_lock(inode);
1852
1853         if (fieinfo->fi_flags & FIEMAP_FLAG_XATTR) {
1854                 ret = f2fs_xattr_fiemap(inode, fieinfo);
1855                 goto out;
1856         }
1857
1858         if (f2fs_has_inline_data(inode) || f2fs_has_inline_dentry(inode)) {
1859                 ret = f2fs_inline_data_fiemap(inode, fieinfo, start, len);
1860                 if (ret != -EAGAIN)
1861                         goto out;
1862         }
1863
1864         if (bytes_to_blks(inode, len) == 0)
1865                 len = blks_to_bytes(inode, 1);
1866
1867         start_blk = bytes_to_blks(inode, start);
1868         last_blk = bytes_to_blks(inode, start + len - 1);
1869
1870 next:
1871         memset(&map, 0, sizeof(map));
1872         map.m_lblk = start_blk;
1873         map.m_len = bytes_to_blks(inode, len);
1874         map.m_next_pgofs = &next_pgofs;
1875         map.m_seg_type = NO_CHECK_TYPE;
1876
1877         if (compr_cluster)
1878                 map.m_len = cluster_size - 1;
1879
1880         ret = f2fs_map_blocks(inode, &map, 0, F2FS_GET_BLOCK_FIEMAP);
1881         if (ret)
1882                 goto out;
1883
1884         /* HOLE */
1885         if (!(map.m_flags & F2FS_MAP_FLAGS)) {
1886                 start_blk = next_pgofs;
1887
1888                 if (blks_to_bytes(inode, start_blk) < blks_to_bytes(inode,
1889                                                 max_inode_blocks(inode)))
1890                         goto prep_next;
1891
1892                 flags |= FIEMAP_EXTENT_LAST;
1893         }
1894
1895         if (size) {
1896                 flags |= FIEMAP_EXTENT_MERGED;
1897                 if (IS_ENCRYPTED(inode))
1898                         flags |= FIEMAP_EXTENT_DATA_ENCRYPTED;
1899
1900                 ret = fiemap_fill_next_extent(fieinfo, logical,
1901                                 phys, size, flags);
1902                 trace_f2fs_fiemap(inode, logical, phys, size, flags, ret);
1903                 if (ret)
1904                         goto out;
1905                 size = 0;
1906         }
1907
1908         if (start_blk > last_blk)
1909                 goto out;
1910
1911         if (compr_cluster) {
1912                 compr_cluster = false;
1913
1914
1915                 logical = blks_to_bytes(inode, start_blk - 1);
1916                 phys = blks_to_bytes(inode, map.m_pblk);
1917                 size = blks_to_bytes(inode, cluster_size);
1918
1919                 flags |= FIEMAP_EXTENT_ENCODED;
1920
1921                 start_blk += cluster_size - 1;
1922
1923                 if (start_blk > last_blk)
1924                         goto out;
1925
1926                 goto prep_next;
1927         }
1928
1929         if (map.m_pblk == COMPRESS_ADDR) {
1930                 compr_cluster = true;
1931                 start_blk++;
1932                 goto prep_next;
1933         }
1934
1935         logical = blks_to_bytes(inode, start_blk);
1936         phys = blks_to_bytes(inode, map.m_pblk);
1937         size = blks_to_bytes(inode, map.m_len);
1938         flags = 0;
1939         if (map.m_flags & F2FS_MAP_UNWRITTEN)
1940                 flags = FIEMAP_EXTENT_UNWRITTEN;
1941
1942         start_blk += bytes_to_blks(inode, size);
1943
1944 prep_next:
1945         cond_resched();
1946         if (fatal_signal_pending(current))
1947                 ret = -EINTR;
1948         else
1949                 goto next;
1950 out:
1951         if (ret == 1)
1952                 ret = 0;
1953
1954         inode_unlock(inode);
1955         return ret;
1956 }
1957
1958 static inline loff_t f2fs_readpage_limit(struct inode *inode)
1959 {
1960         if (IS_ENABLED(CONFIG_FS_VERITY) &&
1961             (IS_VERITY(inode) || f2fs_verity_in_progress(inode)))
1962                 return inode->i_sb->s_maxbytes;
1963
1964         return i_size_read(inode);
1965 }
1966
1967 static int f2fs_read_single_page(struct inode *inode, struct page *page,
1968                                         unsigned nr_pages,
1969                                         struct f2fs_map_blocks *map,
1970                                         struct bio **bio_ret,
1971                                         sector_t *last_block_in_bio,
1972                                         bool is_readahead)
1973 {
1974         struct bio *bio = *bio_ret;
1975         const unsigned blocksize = blks_to_bytes(inode, 1);
1976         sector_t block_in_file;
1977         sector_t last_block;
1978         sector_t last_block_in_file;
1979         sector_t block_nr;
1980         int ret = 0;
1981
1982         block_in_file = (sector_t)page_index(page);
1983         last_block = block_in_file + nr_pages;
1984         last_block_in_file = bytes_to_blks(inode,
1985                         f2fs_readpage_limit(inode) + blocksize - 1);
1986         if (last_block > last_block_in_file)
1987                 last_block = last_block_in_file;
1988
1989         /* just zeroing out page which is beyond EOF */
1990         if (block_in_file >= last_block)
1991                 goto zero_out;
1992         /*
1993          * Map blocks using the previous result first.
1994          */
1995         if ((map->m_flags & F2FS_MAP_MAPPED) &&
1996                         block_in_file > map->m_lblk &&
1997                         block_in_file < (map->m_lblk + map->m_len))
1998                 goto got_it;
1999
2000         /*
2001          * Then do more f2fs_map_blocks() calls until we are
2002          * done with this page.
2003          */
2004         map->m_lblk = block_in_file;
2005         map->m_len = last_block - block_in_file;
2006
2007         ret = f2fs_map_blocks(inode, map, 0, F2FS_GET_BLOCK_DEFAULT);
2008         if (ret)
2009                 goto out;
2010 got_it:
2011         if ((map->m_flags & F2FS_MAP_MAPPED)) {
2012                 block_nr = map->m_pblk + block_in_file - map->m_lblk;
2013                 SetPageMappedToDisk(page);
2014
2015                 if (!PageUptodate(page) && (!PageSwapCache(page) &&
2016                                         !cleancache_get_page(page))) {
2017                         SetPageUptodate(page);
2018                         goto confused;
2019                 }
2020
2021                 if (!f2fs_is_valid_blkaddr(F2FS_I_SB(inode), block_nr,
2022                                                 DATA_GENERIC_ENHANCE_READ)) {
2023                         ret = -EFSCORRUPTED;
2024                         goto out;
2025                 }
2026         } else {
2027 zero_out:
2028                 zero_user_segment(page, 0, PAGE_SIZE);
2029                 if (f2fs_need_verity(inode, page->index) &&
2030                     !fsverity_verify_page(page)) {
2031                         ret = -EIO;
2032                         goto out;
2033                 }
2034                 if (!PageUptodate(page))
2035                         SetPageUptodate(page);
2036                 unlock_page(page);
2037                 goto out;
2038         }
2039
2040         /*
2041          * This page will go to BIO.  Do we need to send this
2042          * BIO off first?
2043          */
2044         if (bio && (!page_is_mergeable(F2FS_I_SB(inode), bio,
2045                                        *last_block_in_bio, block_nr) ||
2046                     !f2fs_crypt_mergeable_bio(bio, inode, page->index, NULL))) {
2047 submit_and_realloc:
2048                 __submit_bio(F2FS_I_SB(inode), bio, DATA);
2049                 bio = NULL;
2050         }
2051         if (bio == NULL) {
2052                 bio = f2fs_grab_read_bio(inode, block_nr, nr_pages,
2053                                 is_readahead ? REQ_RAHEAD : 0, page->index,
2054                                 false);
2055                 if (IS_ERR(bio)) {
2056                         ret = PTR_ERR(bio);
2057                         bio = NULL;
2058                         goto out;
2059                 }
2060         }
2061
2062         /*
2063          * If the page is under writeback, we need to wait for
2064          * its completion to see the correct decrypted data.
2065          */
2066         f2fs_wait_on_block_writeback(inode, block_nr);
2067
2068         if (bio_add_page(bio, page, blocksize, 0) < blocksize)
2069                 goto submit_and_realloc;
2070
2071         inc_page_count(F2FS_I_SB(inode), F2FS_RD_DATA);
2072         f2fs_update_iostat(F2FS_I_SB(inode), FS_DATA_READ_IO, F2FS_BLKSIZE);
2073         ClearPageError(page);
2074         *last_block_in_bio = block_nr;
2075         goto out;
2076 confused:
2077         if (bio) {
2078                 __submit_bio(F2FS_I_SB(inode), bio, DATA);
2079                 bio = NULL;
2080         }
2081         unlock_page(page);
2082 out:
2083         *bio_ret = bio;
2084         return ret;
2085 }
2086
2087 #ifdef CONFIG_F2FS_FS_COMPRESSION
2088 int f2fs_read_multi_pages(struct compress_ctx *cc, struct bio **bio_ret,
2089                                 unsigned nr_pages, sector_t *last_block_in_bio,
2090                                 bool is_readahead, bool for_write)
2091 {
2092         struct dnode_of_data dn;
2093         struct inode *inode = cc->inode;
2094         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2095         struct bio *bio = *bio_ret;
2096         unsigned int start_idx = cc->cluster_idx << cc->log_cluster_size;
2097         sector_t last_block_in_file;
2098         const unsigned blocksize = blks_to_bytes(inode, 1);
2099         struct decompress_io_ctx *dic = NULL;
2100         int i;
2101         int ret = 0;
2102
2103         f2fs_bug_on(sbi, f2fs_cluster_is_empty(cc));
2104
2105         last_block_in_file = bytes_to_blks(inode,
2106                         f2fs_readpage_limit(inode) + blocksize - 1);
2107
2108         /* get rid of pages beyond EOF */
2109         for (i = 0; i < cc->cluster_size; i++) {
2110                 struct page *page = cc->rpages[i];
2111
2112                 if (!page)
2113                         continue;
2114                 if ((sector_t)page->index >= last_block_in_file) {
2115                         zero_user_segment(page, 0, PAGE_SIZE);
2116                         if (!PageUptodate(page))
2117                                 SetPageUptodate(page);
2118                 } else if (!PageUptodate(page)) {
2119                         continue;
2120                 }
2121                 unlock_page(page);
2122                 cc->rpages[i] = NULL;
2123                 cc->nr_rpages--;
2124         }
2125
2126         /* we are done since all pages are beyond EOF */
2127         if (f2fs_cluster_is_empty(cc))
2128                 goto out;
2129
2130         set_new_dnode(&dn, inode, NULL, NULL, 0);
2131         ret = f2fs_get_dnode_of_data(&dn, start_idx, LOOKUP_NODE);
2132         if (ret)
2133                 goto out;
2134
2135         f2fs_bug_on(sbi, dn.data_blkaddr != COMPRESS_ADDR);
2136
2137         for (i = 1; i < cc->cluster_size; i++) {
2138                 block_t blkaddr;
2139
2140                 blkaddr = data_blkaddr(dn.inode, dn.node_page,
2141                                                 dn.ofs_in_node + i);
2142
2143                 if (!__is_valid_data_blkaddr(blkaddr))
2144                         break;
2145
2146                 if (!f2fs_is_valid_blkaddr(sbi, blkaddr, DATA_GENERIC)) {
2147                         ret = -EFAULT;
2148                         goto out_put_dnode;
2149                 }
2150                 cc->nr_cpages++;
2151         }
2152
2153         /* nothing to decompress */
2154         if (cc->nr_cpages == 0) {
2155                 ret = 0;
2156                 goto out_put_dnode;
2157         }
2158
2159         dic = f2fs_alloc_dic(cc);
2160         if (IS_ERR(dic)) {
2161                 ret = PTR_ERR(dic);
2162                 goto out_put_dnode;
2163         }
2164
2165         for (i = 0; i < dic->nr_cpages; i++) {
2166                 struct page *page = dic->cpages[i];
2167                 block_t blkaddr;
2168                 struct bio_post_read_ctx *ctx;
2169
2170                 blkaddr = data_blkaddr(dn.inode, dn.node_page,
2171                                                 dn.ofs_in_node + i + 1);
2172
2173                 if (bio && (!page_is_mergeable(sbi, bio,
2174                                         *last_block_in_bio, blkaddr) ||
2175                     !f2fs_crypt_mergeable_bio(bio, inode, page->index, NULL))) {
2176 submit_and_realloc:
2177                         __submit_bio(sbi, bio, DATA);
2178                         bio = NULL;
2179                 }
2180
2181                 if (!bio) {
2182                         bio = f2fs_grab_read_bio(inode, blkaddr, nr_pages,
2183                                         is_readahead ? REQ_RAHEAD : 0,
2184                                         page->index, for_write);
2185                         if (IS_ERR(bio)) {
2186                                 ret = PTR_ERR(bio);
2187                                 f2fs_decompress_end_io(dic, ret);
2188                                 f2fs_put_dnode(&dn);
2189                                 *bio_ret = NULL;
2190                                 return ret;
2191                         }
2192                 }
2193
2194                 f2fs_wait_on_block_writeback(inode, blkaddr);
2195
2196                 if (bio_add_page(bio, page, blocksize, 0) < blocksize)
2197                         goto submit_and_realloc;
2198
2199                 ctx = bio->bi_private;
2200                 ctx->enabled_steps |= STEP_DECOMPRESS;
2201                 refcount_inc(&dic->refcnt);
2202
2203                 inc_page_count(sbi, F2FS_RD_DATA);
2204                 f2fs_update_iostat(sbi, FS_DATA_READ_IO, F2FS_BLKSIZE);
2205                 f2fs_update_iostat(sbi, FS_CDATA_READ_IO, F2FS_BLKSIZE);
2206                 ClearPageError(page);
2207                 *last_block_in_bio = blkaddr;
2208         }
2209
2210         f2fs_put_dnode(&dn);
2211
2212         *bio_ret = bio;
2213         return 0;
2214
2215 out_put_dnode:
2216         f2fs_put_dnode(&dn);
2217 out:
2218         for (i = 0; i < cc->cluster_size; i++) {
2219                 if (cc->rpages[i]) {
2220                         ClearPageUptodate(cc->rpages[i]);
2221                         ClearPageError(cc->rpages[i]);
2222                         unlock_page(cc->rpages[i]);
2223                 }
2224         }
2225         *bio_ret = bio;
2226         return ret;
2227 }
2228 #endif
2229
2230 /*
2231  * This function was originally taken from fs/mpage.c, and customized for f2fs.
2232  * Major change was from block_size == page_size in f2fs by default.
2233  */
2234 static int f2fs_mpage_readpages(struct inode *inode,
2235                 struct readahead_control *rac, struct page *page)
2236 {
2237         struct bio *bio = NULL;
2238         sector_t last_block_in_bio = 0;
2239         struct f2fs_map_blocks map;
2240 #ifdef CONFIG_F2FS_FS_COMPRESSION
2241         struct compress_ctx cc = {
2242                 .inode = inode,
2243                 .log_cluster_size = F2FS_I(inode)->i_log_cluster_size,
2244                 .cluster_size = F2FS_I(inode)->i_cluster_size,
2245                 .cluster_idx = NULL_CLUSTER,
2246                 .rpages = NULL,
2247                 .cpages = NULL,
2248                 .nr_rpages = 0,
2249                 .nr_cpages = 0,
2250         };
2251 #endif
2252         unsigned nr_pages = rac ? readahead_count(rac) : 1;
2253         unsigned max_nr_pages = nr_pages;
2254         int ret = 0;
2255
2256         map.m_pblk = 0;
2257         map.m_lblk = 0;
2258         map.m_len = 0;
2259         map.m_flags = 0;
2260         map.m_next_pgofs = NULL;
2261         map.m_next_extent = NULL;
2262         map.m_seg_type = NO_CHECK_TYPE;
2263         map.m_may_create = false;
2264
2265         for (; nr_pages; nr_pages--) {
2266                 if (rac) {
2267                         page = readahead_page(rac);
2268                         prefetchw(&page->flags);
2269                 }
2270
2271 #ifdef CONFIG_F2FS_FS_COMPRESSION
2272                 if (f2fs_compressed_file(inode)) {
2273                         /* there are remained comressed pages, submit them */
2274                         if (!f2fs_cluster_can_merge_page(&cc, page->index)) {
2275                                 ret = f2fs_read_multi_pages(&cc, &bio,
2276                                                         max_nr_pages,
2277                                                         &last_block_in_bio,
2278                                                         rac != NULL, false);
2279                                 f2fs_destroy_compress_ctx(&cc);
2280                                 if (ret)
2281                                         goto set_error_page;
2282                         }
2283                         ret = f2fs_is_compressed_cluster(inode, page->index);
2284                         if (ret < 0)
2285                                 goto set_error_page;
2286                         else if (!ret)
2287                                 goto read_single_page;
2288
2289                         ret = f2fs_init_compress_ctx(&cc);
2290                         if (ret)
2291                                 goto set_error_page;
2292
2293                         f2fs_compress_ctx_add_page(&cc, page);
2294
2295                         goto next_page;
2296                 }
2297 read_single_page:
2298 #endif
2299
2300                 ret = f2fs_read_single_page(inode, page, max_nr_pages, &map,
2301                                         &bio, &last_block_in_bio, rac);
2302                 if (ret) {
2303 #ifdef CONFIG_F2FS_FS_COMPRESSION
2304 set_error_page:
2305 #endif
2306                         SetPageError(page);
2307                         zero_user_segment(page, 0, PAGE_SIZE);
2308                         unlock_page(page);
2309                 }
2310 #ifdef CONFIG_F2FS_FS_COMPRESSION
2311 next_page:
2312 #endif
2313                 if (rac)
2314                         put_page(page);
2315
2316 #ifdef CONFIG_F2FS_FS_COMPRESSION
2317                 if (f2fs_compressed_file(inode)) {
2318                         /* last page */
2319                         if (nr_pages == 1 && !f2fs_cluster_is_empty(&cc)) {
2320                                 ret = f2fs_read_multi_pages(&cc, &bio,
2321                                                         max_nr_pages,
2322                                                         &last_block_in_bio,
2323                                                         rac != NULL, false);
2324                                 f2fs_destroy_compress_ctx(&cc);
2325                         }
2326                 }
2327 #endif
2328         }
2329         if (bio)
2330                 __submit_bio(F2FS_I_SB(inode), bio, DATA);
2331         return ret;
2332 }
2333
2334 static int f2fs_read_data_page(struct file *file, struct page *page)
2335 {
2336         struct inode *inode = page_file_mapping(page)->host;
2337         int ret = -EAGAIN;
2338
2339         trace_f2fs_readpage(page, DATA);
2340
2341         if (!f2fs_is_compress_backend_ready(inode)) {
2342                 unlock_page(page);
2343                 return -EOPNOTSUPP;
2344         }
2345
2346         /* If the file has inline data, try to read it directly */
2347         if (f2fs_has_inline_data(inode))
2348                 ret = f2fs_read_inline_data(inode, page);
2349         if (ret == -EAGAIN)
2350                 ret = f2fs_mpage_readpages(inode, NULL, page);
2351         return ret;
2352 }
2353
2354 static void f2fs_readahead(struct readahead_control *rac)
2355 {
2356         struct inode *inode = rac->mapping->host;
2357
2358         trace_f2fs_readpages(inode, readahead_index(rac), readahead_count(rac));
2359
2360         if (!f2fs_is_compress_backend_ready(inode))
2361                 return;
2362
2363         /* If the file has inline data, skip readpages */
2364         if (f2fs_has_inline_data(inode))
2365                 return;
2366
2367         f2fs_mpage_readpages(inode, rac, NULL);
2368 }
2369
2370 int f2fs_encrypt_one_page(struct f2fs_io_info *fio)
2371 {
2372         struct inode *inode = fio->page->mapping->host;
2373         struct page *mpage, *page;
2374         gfp_t gfp_flags = GFP_NOFS;
2375
2376         if (!f2fs_encrypted_file(inode))
2377                 return 0;
2378
2379         page = fio->compressed_page ? fio->compressed_page : fio->page;
2380
2381         /* wait for GCed page writeback via META_MAPPING */
2382         f2fs_wait_on_block_writeback(inode, fio->old_blkaddr);
2383
2384         if (fscrypt_inode_uses_inline_crypto(inode))
2385                 return 0;
2386
2387 retry_encrypt:
2388         fio->encrypted_page = fscrypt_encrypt_pagecache_blocks(page,
2389                                         PAGE_SIZE, 0, gfp_flags);
2390         if (IS_ERR(fio->encrypted_page)) {
2391                 /* flush pending IOs and wait for a while in the ENOMEM case */
2392                 if (PTR_ERR(fio->encrypted_page) == -ENOMEM) {
2393                         f2fs_flush_merged_writes(fio->sbi);
2394                         congestion_wait(BLK_RW_ASYNC, DEFAULT_IO_TIMEOUT);
2395                         gfp_flags |= __GFP_NOFAIL;
2396                         goto retry_encrypt;
2397                 }
2398                 return PTR_ERR(fio->encrypted_page);
2399         }
2400
2401         mpage = find_lock_page(META_MAPPING(fio->sbi), fio->old_blkaddr);
2402         if (mpage) {
2403                 if (PageUptodate(mpage))
2404                         memcpy(page_address(mpage),
2405                                 page_address(fio->encrypted_page), PAGE_SIZE);
2406                 f2fs_put_page(mpage, 1);
2407         }
2408         return 0;
2409 }
2410
2411 static inline bool check_inplace_update_policy(struct inode *inode,
2412                                 struct f2fs_io_info *fio)
2413 {
2414         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2415         unsigned int policy = SM_I(sbi)->ipu_policy;
2416
2417         if (policy & (0x1 << F2FS_IPU_FORCE))
2418                 return true;
2419         if (policy & (0x1 << F2FS_IPU_SSR) && f2fs_need_SSR(sbi))
2420                 return true;
2421         if (policy & (0x1 << F2FS_IPU_UTIL) &&
2422                         utilization(sbi) > SM_I(sbi)->min_ipu_util)
2423                 return true;
2424         if (policy & (0x1 << F2FS_IPU_SSR_UTIL) && f2fs_need_SSR(sbi) &&
2425                         utilization(sbi) > SM_I(sbi)->min_ipu_util)
2426                 return true;
2427
2428         /*
2429          * IPU for rewrite async pages
2430          */
2431         if (policy & (0x1 << F2FS_IPU_ASYNC) &&
2432                         fio && fio->op == REQ_OP_WRITE &&
2433                         !(fio->op_flags & REQ_SYNC) &&
2434                         !IS_ENCRYPTED(inode))
2435                 return true;
2436
2437         /* this is only set during fdatasync */
2438         if (policy & (0x1 << F2FS_IPU_FSYNC) &&
2439                         is_inode_flag_set(inode, FI_NEED_IPU))
2440                 return true;
2441
2442         if (unlikely(fio && is_sbi_flag_set(sbi, SBI_CP_DISABLED) &&
2443                         !f2fs_is_checkpointed_data(sbi, fio->old_blkaddr)))
2444                 return true;
2445
2446         return false;
2447 }
2448
2449 bool f2fs_should_update_inplace(struct inode *inode, struct f2fs_io_info *fio)
2450 {
2451         if (f2fs_is_pinned_file(inode))
2452                 return true;
2453
2454         /* if this is cold file, we should overwrite to avoid fragmentation */
2455         if (file_is_cold(inode))
2456                 return true;
2457
2458         return check_inplace_update_policy(inode, fio);
2459 }
2460
2461 bool f2fs_should_update_outplace(struct inode *inode, struct f2fs_io_info *fio)
2462 {
2463         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2464
2465         if (f2fs_lfs_mode(sbi))
2466                 return true;
2467         if (S_ISDIR(inode->i_mode))
2468                 return true;
2469         if (IS_NOQUOTA(inode))
2470                 return true;
2471         if (f2fs_is_atomic_file(inode))
2472                 return true;
2473         if (fio) {
2474                 if (is_cold_data(fio->page))
2475                         return true;
2476                 if (IS_ATOMIC_WRITTEN_PAGE(fio->page))
2477                         return true;
2478                 if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED) &&
2479                         f2fs_is_checkpointed_data(sbi, fio->old_blkaddr)))
2480                         return true;
2481         }
2482         return false;
2483 }
2484
2485 static inline bool need_inplace_update(struct f2fs_io_info *fio)
2486 {
2487         struct inode *inode = fio->page->mapping->host;
2488
2489         if (f2fs_should_update_outplace(inode, fio))
2490                 return false;
2491
2492         return f2fs_should_update_inplace(inode, fio);
2493 }
2494
2495 int f2fs_do_write_data_page(struct f2fs_io_info *fio)
2496 {
2497         struct page *page = fio->page;
2498         struct inode *inode = page->mapping->host;
2499         struct dnode_of_data dn;
2500         struct extent_info ei = {0,0,0};
2501         struct node_info ni;
2502         bool ipu_force = false;
2503         int err = 0;
2504
2505         set_new_dnode(&dn, inode, NULL, NULL, 0);
2506         if (need_inplace_update(fio) &&
2507                         f2fs_lookup_extent_cache(inode, page->index, &ei)) {
2508                 fio->old_blkaddr = ei.blk + page->index - ei.fofs;
2509
2510                 if (!f2fs_is_valid_blkaddr(fio->sbi, fio->old_blkaddr,
2511                                                 DATA_GENERIC_ENHANCE))
2512                         return -EFSCORRUPTED;
2513
2514                 ipu_force = true;
2515                 fio->need_lock = LOCK_DONE;
2516                 goto got_it;
2517         }
2518
2519         /* Deadlock due to between page->lock and f2fs_lock_op */
2520         if (fio->need_lock == LOCK_REQ && !f2fs_trylock_op(fio->sbi))
2521                 return -EAGAIN;
2522
2523         err = f2fs_get_dnode_of_data(&dn, page->index, LOOKUP_NODE);
2524         if (err)
2525                 goto out;
2526
2527         fio->old_blkaddr = dn.data_blkaddr;
2528
2529         /* This page is already truncated */
2530         if (fio->old_blkaddr == NULL_ADDR) {
2531                 ClearPageUptodate(page);
2532                 clear_cold_data(page);
2533                 goto out_writepage;
2534         }
2535 got_it:
2536         if (__is_valid_data_blkaddr(fio->old_blkaddr) &&
2537                 !f2fs_is_valid_blkaddr(fio->sbi, fio->old_blkaddr,
2538                                                 DATA_GENERIC_ENHANCE)) {
2539                 err = -EFSCORRUPTED;
2540                 goto out_writepage;
2541         }
2542         /*
2543          * If current allocation needs SSR,
2544          * it had better in-place writes for updated data.
2545          */
2546         if (ipu_force ||
2547                 (__is_valid_data_blkaddr(fio->old_blkaddr) &&
2548                                         need_inplace_update(fio))) {
2549                 err = f2fs_encrypt_one_page(fio);
2550                 if (err)
2551                         goto out_writepage;
2552
2553                 set_page_writeback(page);
2554                 ClearPageError(page);
2555                 f2fs_put_dnode(&dn);
2556                 if (fio->need_lock == LOCK_REQ)
2557                         f2fs_unlock_op(fio->sbi);
2558                 err = f2fs_inplace_write_data(fio);
2559                 if (err) {
2560                         if (fscrypt_inode_uses_fs_layer_crypto(inode))
2561                                 fscrypt_finalize_bounce_page(&fio->encrypted_page);
2562                         if (PageWriteback(page))
2563                                 end_page_writeback(page);
2564                 } else {
2565                         set_inode_flag(inode, FI_UPDATE_WRITE);
2566                 }
2567                 trace_f2fs_do_write_data_page(fio->page, IPU);
2568                 return err;
2569         }
2570
2571         if (fio->need_lock == LOCK_RETRY) {
2572                 if (!f2fs_trylock_op(fio->sbi)) {
2573                         err = -EAGAIN;
2574                         goto out_writepage;
2575                 }
2576                 fio->need_lock = LOCK_REQ;
2577         }
2578
2579         err = f2fs_get_node_info(fio->sbi, dn.nid, &ni);
2580         if (err)
2581                 goto out_writepage;
2582
2583         fio->version = ni.version;
2584
2585         err = f2fs_encrypt_one_page(fio);
2586         if (err)
2587                 goto out_writepage;
2588
2589         set_page_writeback(page);
2590         ClearPageError(page);
2591
2592         if (fio->compr_blocks && fio->old_blkaddr == COMPRESS_ADDR)
2593                 f2fs_i_compr_blocks_update(inode, fio->compr_blocks - 1, false);
2594
2595         /* LFS mode write path */
2596         f2fs_outplace_write_data(&dn, fio);
2597         trace_f2fs_do_write_data_page(page, OPU);
2598         set_inode_flag(inode, FI_APPEND_WRITE);
2599         if (page->index == 0)
2600                 set_inode_flag(inode, FI_FIRST_BLOCK_WRITTEN);
2601 out_writepage:
2602         f2fs_put_dnode(&dn);
2603 out:
2604         if (fio->need_lock == LOCK_REQ)
2605                 f2fs_unlock_op(fio->sbi);
2606         return err;
2607 }
2608
2609 int f2fs_write_single_data_page(struct page *page, int *submitted,
2610                                 struct bio **bio,
2611                                 sector_t *last_block,
2612                                 struct writeback_control *wbc,
2613                                 enum iostat_type io_type,
2614                                 int compr_blocks,
2615                                 bool allow_balance)
2616 {
2617         struct inode *inode = page->mapping->host;
2618         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2619         loff_t i_size = i_size_read(inode);
2620         const pgoff_t end_index = ((unsigned long long)i_size)
2621                                                         >> PAGE_SHIFT;
2622         loff_t psize = (loff_t)(page->index + 1) << PAGE_SHIFT;
2623         unsigned offset = 0;
2624         bool need_balance_fs = false;
2625         int err = 0;
2626         struct f2fs_io_info fio = {
2627                 .sbi = sbi,
2628                 .ino = inode->i_ino,
2629                 .type = DATA,
2630                 .op = REQ_OP_WRITE,
2631                 .op_flags = wbc_to_write_flags(wbc),
2632                 .old_blkaddr = NULL_ADDR,
2633                 .page = page,
2634                 .encrypted_page = NULL,
2635                 .submitted = false,
2636                 .compr_blocks = compr_blocks,
2637                 .need_lock = LOCK_RETRY,
2638                 .io_type = io_type,
2639                 .io_wbc = wbc,
2640                 .bio = bio,
2641                 .last_block = last_block,
2642         };
2643
2644         trace_f2fs_writepage(page, DATA);
2645
2646         /* we should bypass data pages to proceed the kworkder jobs */
2647         if (unlikely(f2fs_cp_error(sbi))) {
2648                 mapping_set_error(page->mapping, -EIO);
2649                 /*
2650                  * don't drop any dirty dentry pages for keeping lastest
2651                  * directory structure.
2652                  */
2653                 if (S_ISDIR(inode->i_mode))
2654                         goto redirty_out;
2655                 goto out;
2656         }
2657
2658         if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
2659                 goto redirty_out;
2660
2661         if (page->index < end_index ||
2662                         f2fs_verity_in_progress(inode) ||
2663                         compr_blocks)
2664                 goto write;
2665
2666         /*
2667          * If the offset is out-of-range of file size,
2668          * this page does not have to be written to disk.
2669          */
2670         offset = i_size & (PAGE_SIZE - 1);
2671         if ((page->index >= end_index + 1) || !offset)
2672                 goto out;
2673
2674         zero_user_segment(page, offset, PAGE_SIZE);
2675 write:
2676         if (f2fs_is_drop_cache(inode))
2677                 goto out;
2678         /* we should not write 0'th page having journal header */
2679         if (f2fs_is_volatile_file(inode) && (!page->index ||
2680                         (!wbc->for_reclaim &&
2681                         f2fs_available_free_memory(sbi, BASE_CHECK))))
2682                 goto redirty_out;
2683
2684         /* Dentry/quota blocks are controlled by checkpoint */
2685         if (S_ISDIR(inode->i_mode) || IS_NOQUOTA(inode)) {
2686                 /*
2687                  * We need to wait for node_write to avoid block allocation during
2688                  * checkpoint. This can only happen to quota writes which can cause
2689                  * the below discard race condition.
2690                  */
2691                 if (IS_NOQUOTA(inode))
2692                         down_read(&sbi->node_write);
2693
2694                 fio.need_lock = LOCK_DONE;
2695                 err = f2fs_do_write_data_page(&fio);
2696
2697                 if (IS_NOQUOTA(inode))
2698                         up_read(&sbi->node_write);
2699
2700                 goto done;
2701         }
2702
2703         if (!wbc->for_reclaim)
2704                 need_balance_fs = true;
2705         else if (has_not_enough_free_secs(sbi, 0, 0))
2706                 goto redirty_out;
2707         else
2708                 set_inode_flag(inode, FI_HOT_DATA);
2709
2710         err = -EAGAIN;
2711         if (f2fs_has_inline_data(inode)) {
2712                 err = f2fs_write_inline_data(inode, page);
2713                 if (!err)
2714                         goto out;
2715         }
2716
2717         if (err == -EAGAIN) {
2718                 err = f2fs_do_write_data_page(&fio);
2719                 if (err == -EAGAIN) {
2720                         fio.need_lock = LOCK_REQ;
2721                         err = f2fs_do_write_data_page(&fio);
2722                 }
2723         }
2724
2725         if (err) {
2726                 file_set_keep_isize(inode);
2727         } else {
2728                 spin_lock(&F2FS_I(inode)->i_size_lock);
2729                 if (F2FS_I(inode)->last_disk_size < psize)
2730                         F2FS_I(inode)->last_disk_size = psize;
2731                 spin_unlock(&F2FS_I(inode)->i_size_lock);
2732         }
2733
2734 done:
2735         if (err && err != -ENOENT)
2736                 goto redirty_out;
2737
2738 out:
2739         inode_dec_dirty_pages(inode);
2740         if (err) {
2741                 ClearPageUptodate(page);
2742                 clear_cold_data(page);
2743         }
2744
2745         if (wbc->for_reclaim) {
2746                 f2fs_submit_merged_write_cond(sbi, NULL, page, 0, DATA);
2747                 clear_inode_flag(inode, FI_HOT_DATA);
2748                 f2fs_remove_dirty_inode(inode);
2749                 submitted = NULL;
2750         }
2751         unlock_page(page);
2752         if (!S_ISDIR(inode->i_mode) && !IS_NOQUOTA(inode) &&
2753                         !F2FS_I(inode)->cp_task && allow_balance)
2754                 f2fs_balance_fs(sbi, need_balance_fs);
2755
2756         if (unlikely(f2fs_cp_error(sbi))) {
2757                 f2fs_submit_merged_write(sbi, DATA);
2758                 f2fs_submit_merged_ipu_write(sbi, bio, NULL);
2759                 submitted = NULL;
2760         }
2761
2762         if (submitted)
2763                 *submitted = fio.submitted ? 1 : 0;
2764
2765         return 0;
2766
2767 redirty_out:
2768         redirty_page_for_writepage(wbc, page);
2769         /*
2770          * pageout() in MM traslates EAGAIN, so calls handle_write_error()
2771          * -> mapping_set_error() -> set_bit(AS_EIO, ...).
2772          * file_write_and_wait_range() will see EIO error, which is critical
2773          * to return value of fsync() followed by atomic_write failure to user.
2774          */
2775         if (!err || wbc->for_reclaim)
2776                 return AOP_WRITEPAGE_ACTIVATE;
2777         unlock_page(page);
2778         return err;
2779 }
2780
2781 static int f2fs_write_data_page(struct page *page,
2782                                         struct writeback_control *wbc)
2783 {
2784 #ifdef CONFIG_F2FS_FS_COMPRESSION
2785         struct inode *inode = page->mapping->host;
2786
2787         if (unlikely(f2fs_cp_error(F2FS_I_SB(inode))))
2788                 goto out;
2789
2790         if (f2fs_compressed_file(inode)) {
2791                 if (f2fs_is_compressed_cluster(inode, page->index)) {
2792                         redirty_page_for_writepage(wbc, page);
2793                         return AOP_WRITEPAGE_ACTIVATE;
2794                 }
2795         }
2796 out:
2797 #endif
2798
2799         return f2fs_write_single_data_page(page, NULL, NULL, NULL,
2800                                                 wbc, FS_DATA_IO, 0, true);
2801 }
2802
2803 /*
2804  * This function was copied from write_cche_pages from mm/page-writeback.c.
2805  * The major change is making write step of cold data page separately from
2806  * warm/hot data page.
2807  */
2808 static int f2fs_write_cache_pages(struct address_space *mapping,
2809                                         struct writeback_control *wbc,
2810                                         enum iostat_type io_type)
2811 {
2812         int ret = 0;
2813         int done = 0, retry = 0;
2814         struct pagevec pvec;
2815         struct f2fs_sb_info *sbi = F2FS_M_SB(mapping);
2816         struct bio *bio = NULL;
2817         sector_t last_block;
2818 #ifdef CONFIG_F2FS_FS_COMPRESSION
2819         struct inode *inode = mapping->host;
2820         struct compress_ctx cc = {
2821                 .inode = inode,
2822                 .log_cluster_size = F2FS_I(inode)->i_log_cluster_size,
2823                 .cluster_size = F2FS_I(inode)->i_cluster_size,
2824                 .cluster_idx = NULL_CLUSTER,
2825                 .rpages = NULL,
2826                 .nr_rpages = 0,
2827                 .cpages = NULL,
2828                 .rbuf = NULL,
2829                 .cbuf = NULL,
2830                 .rlen = PAGE_SIZE * F2FS_I(inode)->i_cluster_size,
2831                 .private = NULL,
2832         };
2833 #endif
2834         int nr_pages;
2835         pgoff_t index;
2836         pgoff_t end;            /* Inclusive */
2837         pgoff_t done_index;
2838         int range_whole = 0;
2839         xa_mark_t tag;
2840         int nwritten = 0;
2841         int submitted = 0;
2842         int i;
2843
2844         pagevec_init(&pvec);
2845
2846         if (get_dirty_pages(mapping->host) <=
2847                                 SM_I(F2FS_M_SB(mapping))->min_hot_blocks)
2848                 set_inode_flag(mapping->host, FI_HOT_DATA);
2849         else
2850                 clear_inode_flag(mapping->host, FI_HOT_DATA);
2851
2852         if (wbc->range_cyclic) {
2853                 index = mapping->writeback_index; /* prev offset */
2854                 end = -1;
2855         } else {
2856                 index = wbc->range_start >> PAGE_SHIFT;
2857                 end = wbc->range_end >> PAGE_SHIFT;
2858                 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
2859                         range_whole = 1;
2860         }
2861         if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
2862                 tag = PAGECACHE_TAG_TOWRITE;
2863         else
2864                 tag = PAGECACHE_TAG_DIRTY;
2865 retry:
2866         retry = 0;
2867         if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
2868                 tag_pages_for_writeback(mapping, index, end);
2869         done_index = index;
2870         while (!done && !retry && (index <= end)) {
2871                 nr_pages = pagevec_lookup_range_tag(&pvec, mapping, &index, end,
2872                                 tag);
2873                 if (nr_pages == 0)
2874                         break;
2875
2876                 for (i = 0; i < nr_pages; i++) {
2877                         struct page *page = pvec.pages[i];
2878                         bool need_readd;
2879 readd:
2880                         need_readd = false;
2881 #ifdef CONFIG_F2FS_FS_COMPRESSION
2882                         if (f2fs_compressed_file(inode)) {
2883                                 ret = f2fs_init_compress_ctx(&cc);
2884                                 if (ret) {
2885                                         done = 1;
2886                                         break;
2887                                 }
2888
2889                                 if (!f2fs_cluster_can_merge_page(&cc,
2890                                                                 page->index)) {
2891                                         ret = f2fs_write_multi_pages(&cc,
2892                                                 &submitted, wbc, io_type);
2893                                         if (!ret)
2894                                                 need_readd = true;
2895                                         goto result;
2896                                 }
2897
2898                                 if (unlikely(f2fs_cp_error(sbi)))
2899                                         goto lock_page;
2900
2901                                 if (f2fs_cluster_is_empty(&cc)) {
2902                                         void *fsdata = NULL;
2903                                         struct page *pagep;
2904                                         int ret2;
2905
2906                                         ret2 = f2fs_prepare_compress_overwrite(
2907                                                         inode, &pagep,
2908                                                         page->index, &fsdata);
2909                                         if (ret2 < 0) {
2910                                                 ret = ret2;
2911                                                 done = 1;
2912                                                 break;
2913                                         } else if (ret2 &&
2914                                                 !f2fs_compress_write_end(inode,
2915                                                                 fsdata, page->index,
2916                                                                 1)) {
2917                                                 retry = 1;
2918                                                 break;
2919                                         }
2920                                 } else {
2921                                         goto lock_page;
2922                                 }
2923                         }
2924 #endif
2925                         /* give a priority to WB_SYNC threads */
2926                         if (atomic_read(&sbi->wb_sync_req[DATA]) &&
2927                                         wbc->sync_mode == WB_SYNC_NONE) {
2928                                 done = 1;
2929                                 break;
2930                         }
2931 #ifdef CONFIG_F2FS_FS_COMPRESSION
2932 lock_page:
2933 #endif
2934                         done_index = page->index;
2935 retry_write:
2936                         lock_page(page);
2937
2938                         if (unlikely(page->mapping != mapping)) {
2939 continue_unlock:
2940                                 unlock_page(page);
2941                                 continue;
2942                         }
2943
2944                         if (!PageDirty(page)) {
2945                                 /* someone wrote it for us */
2946                                 goto continue_unlock;
2947                         }
2948
2949                         if (PageWriteback(page)) {
2950                                 if (wbc->sync_mode != WB_SYNC_NONE)
2951                                         f2fs_wait_on_page_writeback(page,
2952                                                         DATA, true, true);
2953                                 else
2954                                         goto continue_unlock;
2955                         }
2956
2957                         if (!clear_page_dirty_for_io(page))
2958                                 goto continue_unlock;
2959
2960 #ifdef CONFIG_F2FS_FS_COMPRESSION
2961                         if (f2fs_compressed_file(inode)) {
2962                                 get_page(page);
2963                                 f2fs_compress_ctx_add_page(&cc, page);
2964                                 continue;
2965                         }
2966 #endif
2967                         ret = f2fs_write_single_data_page(page, &submitted,
2968                                         &bio, &last_block, wbc, io_type,
2969                                         0, true);
2970                         if (ret == AOP_WRITEPAGE_ACTIVATE)
2971                                 unlock_page(page);
2972 #ifdef CONFIG_F2FS_FS_COMPRESSION
2973 result:
2974 #endif
2975                         nwritten += submitted;
2976                         wbc->nr_to_write -= submitted;
2977
2978                         if (unlikely(ret)) {
2979                                 /*
2980                                  * keep nr_to_write, since vfs uses this to
2981                                  * get # of written pages.
2982                                  */
2983                                 if (ret == AOP_WRITEPAGE_ACTIVATE) {
2984                                         ret = 0;
2985                                         goto next;
2986                                 } else if (ret == -EAGAIN) {
2987                                         ret = 0;
2988                                         if (wbc->sync_mode == WB_SYNC_ALL) {
2989                                                 cond_resched();
2990                                                 congestion_wait(BLK_RW_ASYNC,
2991                                                         DEFAULT_IO_TIMEOUT);
2992                                                 goto retry_write;
2993                                         }
2994                                         goto next;
2995                                 }
2996                                 done_index = page->index + 1;
2997                                 done = 1;
2998                                 break;
2999                         }
3000
3001                         if (wbc->nr_to_write <= 0 &&
3002                                         wbc->sync_mode == WB_SYNC_NONE) {
3003                                 done = 1;
3004                                 break;
3005                         }
3006 next:
3007                         if (need_readd)
3008                                 goto readd;
3009                 }
3010                 pagevec_release(&pvec);
3011                 cond_resched();
3012         }
3013 #ifdef CONFIG_F2FS_FS_COMPRESSION
3014         /* flush remained pages in compress cluster */
3015         if (f2fs_compressed_file(inode) && !f2fs_cluster_is_empty(&cc)) {
3016                 ret = f2fs_write_multi_pages(&cc, &submitted, wbc, io_type);
3017                 nwritten += submitted;
3018                 wbc->nr_to_write -= submitted;
3019                 if (ret) {
3020                         done = 1;
3021                         retry = 0;
3022                 }
3023         }
3024         if (f2fs_compressed_file(inode))
3025                 f2fs_destroy_compress_ctx(&cc);
3026 #endif
3027         if (retry) {
3028                 index = 0;
3029                 end = -1;
3030                 goto retry;
3031         }
3032         if (wbc->range_cyclic && !done)
3033                 done_index = 0;
3034         if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
3035                 mapping->writeback_index = done_index;
3036
3037         if (nwritten)
3038                 f2fs_submit_merged_write_cond(F2FS_M_SB(mapping), mapping->host,
3039                                                                 NULL, 0, DATA);
3040         /* submit cached bio of IPU write */
3041         if (bio)
3042                 f2fs_submit_merged_ipu_write(sbi, &bio, NULL);
3043
3044         return ret;
3045 }
3046
3047 static inline bool __should_serialize_io(struct inode *inode,
3048                                         struct writeback_control *wbc)
3049 {
3050         /* to avoid deadlock in path of data flush */
3051         if (F2FS_I(inode)->cp_task)
3052                 return false;
3053
3054         if (!S_ISREG(inode->i_mode))
3055                 return false;
3056         if (IS_NOQUOTA(inode))
3057                 return false;
3058
3059         if (f2fs_need_compress_data(inode))
3060                 return true;
3061         if (wbc->sync_mode != WB_SYNC_ALL)
3062                 return true;
3063         if (get_dirty_pages(inode) >= SM_I(F2FS_I_SB(inode))->min_seq_blocks)
3064                 return true;
3065         return false;
3066 }
3067
3068 static int __f2fs_write_data_pages(struct address_space *mapping,
3069                                                 struct writeback_control *wbc,
3070                                                 enum iostat_type io_type)
3071 {
3072         struct inode *inode = mapping->host;
3073         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3074         struct blk_plug plug;
3075         int ret;
3076         bool locked = false;
3077
3078         /* deal with chardevs and other special file */
3079         if (!mapping->a_ops->writepage)
3080                 return 0;
3081
3082         /* skip writing if there is no dirty page in this inode */
3083         if (!get_dirty_pages(inode) && wbc->sync_mode == WB_SYNC_NONE)
3084                 return 0;
3085
3086         /* during POR, we don't need to trigger writepage at all. */
3087         if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
3088                 goto skip_write;
3089
3090         if ((S_ISDIR(inode->i_mode) || IS_NOQUOTA(inode)) &&
3091                         wbc->sync_mode == WB_SYNC_NONE &&
3092                         get_dirty_pages(inode) < nr_pages_to_skip(sbi, DATA) &&
3093                         f2fs_available_free_memory(sbi, DIRTY_DENTS))
3094                 goto skip_write;
3095
3096         /* skip writing during file defragment */
3097         if (is_inode_flag_set(inode, FI_DO_DEFRAG))
3098                 goto skip_write;
3099
3100         trace_f2fs_writepages(mapping->host, wbc, DATA);
3101
3102         /* to avoid spliting IOs due to mixed WB_SYNC_ALL and WB_SYNC_NONE */
3103         if (wbc->sync_mode == WB_SYNC_ALL)
3104                 atomic_inc(&sbi->wb_sync_req[DATA]);
3105         else if (atomic_read(&sbi->wb_sync_req[DATA]))
3106                 goto skip_write;
3107
3108         if (__should_serialize_io(inode, wbc)) {
3109                 mutex_lock(&sbi->writepages);
3110                 locked = true;
3111         }
3112
3113         blk_start_plug(&plug);
3114         ret = f2fs_write_cache_pages(mapping, wbc, io_type);
3115         blk_finish_plug(&plug);
3116
3117         if (locked)
3118                 mutex_unlock(&sbi->writepages);
3119
3120         if (wbc->sync_mode == WB_SYNC_ALL)
3121                 atomic_dec(&sbi->wb_sync_req[DATA]);
3122         /*
3123          * if some pages were truncated, we cannot guarantee its mapping->host
3124          * to detect pending bios.
3125          */
3126
3127         f2fs_remove_dirty_inode(inode);
3128         return ret;
3129
3130 skip_write:
3131         wbc->pages_skipped += get_dirty_pages(inode);
3132         trace_f2fs_writepages(mapping->host, wbc, DATA);
3133         return 0;
3134 }
3135
3136 static int f2fs_write_data_pages(struct address_space *mapping,
3137                             struct writeback_control *wbc)
3138 {
3139         struct inode *inode = mapping->host;
3140
3141         return __f2fs_write_data_pages(mapping, wbc,
3142                         F2FS_I(inode)->cp_task == current ?
3143                         FS_CP_DATA_IO : FS_DATA_IO);
3144 }
3145
3146 static void f2fs_write_failed(struct address_space *mapping, loff_t to)
3147 {
3148         struct inode *inode = mapping->host;
3149         loff_t i_size = i_size_read(inode);
3150
3151         if (IS_NOQUOTA(inode))
3152                 return;
3153
3154         /* In the fs-verity case, f2fs_end_enable_verity() does the truncate */
3155         if (to > i_size && !f2fs_verity_in_progress(inode)) {
3156                 down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
3157                 down_write(&F2FS_I(inode)->i_mmap_sem);
3158
3159                 truncate_pagecache(inode, i_size);
3160                 f2fs_truncate_blocks(inode, i_size, true);
3161
3162                 up_write(&F2FS_I(inode)->i_mmap_sem);
3163                 up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
3164         }
3165 }
3166
3167 static int prepare_write_begin(struct f2fs_sb_info *sbi,
3168                         struct page *page, loff_t pos, unsigned len,
3169                         block_t *blk_addr, bool *node_changed)
3170 {
3171         struct inode *inode = page->mapping->host;
3172         pgoff_t index = page->index;
3173         struct dnode_of_data dn;
3174         struct page *ipage;
3175         bool locked = false;
3176         struct extent_info ei = {0,0,0};
3177         int err = 0;
3178         int flag;
3179
3180         /*
3181          * we already allocated all the blocks, so we don't need to get
3182          * the block addresses when there is no need to fill the page.
3183          */
3184         if (!f2fs_has_inline_data(inode) && len == PAGE_SIZE &&
3185             !is_inode_flag_set(inode, FI_NO_PREALLOC) &&
3186             !f2fs_verity_in_progress(inode))
3187                 return 0;
3188
3189         /* f2fs_lock_op avoids race between write CP and convert_inline_page */
3190         if (f2fs_has_inline_data(inode) && pos + len > MAX_INLINE_DATA(inode))
3191                 flag = F2FS_GET_BLOCK_DEFAULT;
3192         else
3193                 flag = F2FS_GET_BLOCK_PRE_AIO;
3194
3195         if (f2fs_has_inline_data(inode) ||
3196                         (pos & PAGE_MASK) >= i_size_read(inode)) {
3197                 f2fs_do_map_lock(sbi, flag, true);
3198                 locked = true;
3199         }
3200
3201 restart:
3202         /* check inline_data */
3203         ipage = f2fs_get_node_page(sbi, inode->i_ino);
3204         if (IS_ERR(ipage)) {
3205                 err = PTR_ERR(ipage);
3206                 goto unlock_out;
3207         }
3208
3209         set_new_dnode(&dn, inode, ipage, ipage, 0);
3210
3211         if (f2fs_has_inline_data(inode)) {
3212                 if (pos + len <= MAX_INLINE_DATA(inode)) {
3213                         f2fs_do_read_inline_data(page, ipage);
3214                         set_inode_flag(inode, FI_DATA_EXIST);
3215                         if (inode->i_nlink)
3216                                 set_inline_node(ipage);
3217                 } else {
3218                         err = f2fs_convert_inline_page(&dn, page);
3219                         if (err)
3220                                 goto out;
3221                         if (dn.data_blkaddr == NULL_ADDR)
3222                                 err = f2fs_get_block(&dn, index);
3223                 }
3224         } else if (locked) {
3225                 err = f2fs_get_block(&dn, index);
3226         } else {
3227                 if (f2fs_lookup_extent_cache(inode, index, &ei)) {
3228                         dn.data_blkaddr = ei.blk + index - ei.fofs;
3229                 } else {
3230                         /* hole case */
3231                         err = f2fs_get_dnode_of_data(&dn, index, LOOKUP_NODE);
3232                         if (err || dn.data_blkaddr == NULL_ADDR) {
3233                                 f2fs_put_dnode(&dn);
3234                                 f2fs_do_map_lock(sbi, F2FS_GET_BLOCK_PRE_AIO,
3235                                                                 true);
3236                                 WARN_ON(flag != F2FS_GET_BLOCK_PRE_AIO);
3237                                 locked = true;
3238                                 goto restart;
3239                         }
3240                 }
3241         }
3242
3243         /* convert_inline_page can make node_changed */
3244         *blk_addr = dn.data_blkaddr;
3245         *node_changed = dn.node_changed;
3246 out:
3247         f2fs_put_dnode(&dn);
3248 unlock_out:
3249         if (locked)
3250                 f2fs_do_map_lock(sbi, flag, false);
3251         return err;
3252 }
3253
3254 static int f2fs_write_begin(struct file *file, struct address_space *mapping,
3255                 loff_t pos, unsigned len, unsigned flags,
3256                 struct page **pagep, void **fsdata)
3257 {
3258         struct inode *inode = mapping->host;
3259         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3260         struct page *page = NULL;
3261         pgoff_t index = ((unsigned long long) pos) >> PAGE_SHIFT;
3262         bool need_balance = false, drop_atomic = false;
3263         block_t blkaddr = NULL_ADDR;
3264         int err = 0;
3265
3266         trace_f2fs_write_begin(inode, pos, len, flags);
3267
3268         if (!f2fs_is_checkpoint_ready(sbi)) {
3269                 err = -ENOSPC;
3270                 goto fail;
3271         }
3272
3273         if ((f2fs_is_atomic_file(inode) &&
3274                         !f2fs_available_free_memory(sbi, INMEM_PAGES)) ||
3275                         is_inode_flag_set(inode, FI_ATOMIC_REVOKE_REQUEST)) {
3276                 err = -ENOMEM;
3277                 drop_atomic = true;
3278                 goto fail;
3279         }
3280
3281         /*
3282          * We should check this at this moment to avoid deadlock on inode page
3283          * and #0 page. The locking rule for inline_data conversion should be:
3284          * lock_page(page #0) -> lock_page(inode_page)
3285          */
3286         if (index != 0) {
3287                 err = f2fs_convert_inline_inode(inode);
3288                 if (err)
3289                         goto fail;
3290         }
3291
3292 #ifdef CONFIG_F2FS_FS_COMPRESSION
3293         if (f2fs_compressed_file(inode)) {
3294                 int ret;
3295
3296                 *fsdata = NULL;
3297
3298                 ret = f2fs_prepare_compress_overwrite(inode, pagep,
3299                                                         index, fsdata);
3300                 if (ret < 0) {
3301                         err = ret;
3302                         goto fail;
3303                 } else if (ret) {
3304                         return 0;
3305                 }
3306         }
3307 #endif
3308
3309 repeat:
3310         /*
3311          * Do not use grab_cache_page_write_begin() to avoid deadlock due to
3312          * wait_for_stable_page. Will wait that below with our IO control.
3313          */
3314         page = f2fs_pagecache_get_page(mapping, index,
3315                                 FGP_LOCK | FGP_WRITE | FGP_CREAT, GFP_NOFS);
3316         if (!page) {
3317                 err = -ENOMEM;
3318                 goto fail;
3319         }
3320
3321         /* TODO: cluster can be compressed due to race with .writepage */
3322
3323         *pagep = page;
3324
3325         err = prepare_write_begin(sbi, page, pos, len,
3326                                         &blkaddr, &need_balance);
3327         if (err)
3328                 goto fail;
3329
3330         if (need_balance && !IS_NOQUOTA(inode) &&
3331                         has_not_enough_free_secs(sbi, 0, 0)) {
3332                 unlock_page(page);
3333                 f2fs_balance_fs(sbi, true);
3334                 lock_page(page);
3335                 if (page->mapping != mapping) {
3336                         /* The page got truncated from under us */
3337                         f2fs_put_page(page, 1);
3338                         goto repeat;
3339                 }
3340         }
3341
3342         f2fs_wait_on_page_writeback(page, DATA, false, true);
3343
3344         if (len == PAGE_SIZE || PageUptodate(page))
3345                 return 0;
3346
3347         if (!(pos & (PAGE_SIZE - 1)) && (pos + len) >= i_size_read(inode) &&
3348             !f2fs_verity_in_progress(inode)) {
3349                 zero_user_segment(page, len, PAGE_SIZE);
3350                 return 0;
3351         }
3352
3353         if (blkaddr == NEW_ADDR) {
3354                 zero_user_segment(page, 0, PAGE_SIZE);
3355                 SetPageUptodate(page);
3356         } else {
3357                 if (!f2fs_is_valid_blkaddr(sbi, blkaddr,
3358                                 DATA_GENERIC_ENHANCE_READ)) {
3359                         err = -EFSCORRUPTED;
3360                         goto fail;
3361                 }
3362                 err = f2fs_submit_page_read(inode, page, blkaddr, 0, true);
3363                 if (err)
3364                         goto fail;
3365
3366                 lock_page(page);
3367                 if (unlikely(page->mapping != mapping)) {
3368                         f2fs_put_page(page, 1);
3369                         goto repeat;
3370                 }
3371                 if (unlikely(!PageUptodate(page))) {
3372                         err = -EIO;
3373                         goto fail;
3374                 }
3375         }
3376         return 0;
3377
3378 fail:
3379         f2fs_put_page(page, 1);
3380         f2fs_write_failed(mapping, pos + len);
3381         if (drop_atomic)
3382                 f2fs_drop_inmem_pages_all(sbi, false);
3383         return err;
3384 }
3385
3386 static int f2fs_write_end(struct file *file,
3387                         struct address_space *mapping,
3388                         loff_t pos, unsigned len, unsigned copied,
3389                         struct page *page, void *fsdata)
3390 {
3391         struct inode *inode = page->mapping->host;
3392
3393         trace_f2fs_write_end(inode, pos, len, copied);
3394
3395         /*
3396          * This should be come from len == PAGE_SIZE, and we expect copied
3397          * should be PAGE_SIZE. Otherwise, we treat it with zero copied and
3398          * let generic_perform_write() try to copy data again through copied=0.
3399          */
3400         if (!PageUptodate(page)) {
3401                 if (unlikely(copied != len))
3402                         copied = 0;
3403                 else
3404                         SetPageUptodate(page);
3405         }
3406
3407 #ifdef CONFIG_F2FS_FS_COMPRESSION
3408         /* overwrite compressed file */
3409         if (f2fs_compressed_file(inode) && fsdata) {
3410                 f2fs_compress_write_end(inode, fsdata, page->index, copied);
3411                 f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
3412
3413                 if (pos + copied > i_size_read(inode) &&
3414                                 !f2fs_verity_in_progress(inode))
3415                         f2fs_i_size_write(inode, pos + copied);
3416                 return copied;
3417         }
3418 #endif
3419
3420         if (!copied)
3421                 goto unlock_out;
3422
3423         set_page_dirty(page);
3424
3425         if (pos + copied > i_size_read(inode) &&
3426             !f2fs_verity_in_progress(inode))
3427                 f2fs_i_size_write(inode, pos + copied);
3428 unlock_out:
3429         f2fs_put_page(page, 1);
3430         f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
3431         return copied;
3432 }
3433
3434 static int check_direct_IO(struct inode *inode, struct iov_iter *iter,
3435                            loff_t offset)
3436 {
3437         unsigned i_blkbits = READ_ONCE(inode->i_blkbits);
3438         unsigned blkbits = i_blkbits;
3439         unsigned blocksize_mask = (1 << blkbits) - 1;
3440         unsigned long align = offset | iov_iter_alignment(iter);
3441         struct block_device *bdev = inode->i_sb->s_bdev;
3442
3443         if (iov_iter_rw(iter) == READ && offset >= i_size_read(inode))
3444                 return 1;
3445
3446         if (align & blocksize_mask) {
3447                 if (bdev)
3448                         blkbits = blksize_bits(bdev_logical_block_size(bdev));
3449                 blocksize_mask = (1 << blkbits) - 1;
3450                 if (align & blocksize_mask)
3451                         return -EINVAL;
3452                 return 1;
3453         }
3454         return 0;
3455 }
3456
3457 static void f2fs_dio_end_io(struct bio *bio)
3458 {
3459         struct f2fs_private_dio *dio = bio->bi_private;
3460
3461         dec_page_count(F2FS_I_SB(dio->inode),
3462                         dio->write ? F2FS_DIO_WRITE : F2FS_DIO_READ);
3463
3464         bio->bi_private = dio->orig_private;
3465         bio->bi_end_io = dio->orig_end_io;
3466
3467         kfree(dio);
3468
3469         bio_endio(bio);
3470 }
3471
3472 static void f2fs_dio_submit_bio(struct bio *bio, struct inode *inode,
3473                                                         loff_t file_offset)
3474 {
3475         struct f2fs_private_dio *dio;
3476         bool write = (bio_op(bio) == REQ_OP_WRITE);
3477
3478         dio = f2fs_kzalloc(F2FS_I_SB(inode),
3479                         sizeof(struct f2fs_private_dio), GFP_NOFS);
3480         if (!dio)
3481                 goto out;
3482
3483         dio->inode = inode;
3484         dio->orig_end_io = bio->bi_end_io;
3485         dio->orig_private = bio->bi_private;
3486         dio->write = write;
3487
3488         bio->bi_end_io = f2fs_dio_end_io;
3489         bio->bi_private = dio;
3490
3491         inc_page_count(F2FS_I_SB(inode),
3492                         write ? F2FS_DIO_WRITE : F2FS_DIO_READ);
3493
3494         submit_bio(bio);
3495         return;
3496 out:
3497         bio->bi_status = BLK_STS_IOERR;
3498         bio_endio(bio);
3499 }
3500
3501 static ssize_t f2fs_direct_IO(struct kiocb *iocb, struct iov_iter *iter)
3502 {
3503         struct address_space *mapping = iocb->ki_filp->f_mapping;
3504         struct inode *inode = mapping->host;
3505         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3506         struct f2fs_inode_info *fi = F2FS_I(inode);
3507         size_t count = iov_iter_count(iter);
3508         loff_t offset = iocb->ki_pos;
3509         int rw = iov_iter_rw(iter);
3510         int err;
3511         enum rw_hint hint = iocb->ki_hint;
3512         int whint_mode = F2FS_OPTION(sbi).whint_mode;
3513         bool do_opu;
3514
3515         err = check_direct_IO(inode, iter, offset);
3516         if (err)
3517                 return err < 0 ? err : 0;
3518
3519         if (f2fs_force_buffered_io(inode, iocb, iter))
3520                 return 0;
3521
3522         do_opu = allow_outplace_dio(inode, iocb, iter);
3523
3524         trace_f2fs_direct_IO_enter(inode, offset, count, rw);
3525
3526         if (rw == WRITE && whint_mode == WHINT_MODE_OFF)
3527                 iocb->ki_hint = WRITE_LIFE_NOT_SET;
3528
3529         if (iocb->ki_flags & IOCB_NOWAIT) {
3530                 if (!down_read_trylock(&fi->i_gc_rwsem[rw])) {
3531                         iocb->ki_hint = hint;
3532                         err = -EAGAIN;
3533                         goto out;
3534                 }
3535                 if (do_opu && !down_read_trylock(&fi->i_gc_rwsem[READ])) {
3536                         up_read(&fi->i_gc_rwsem[rw]);
3537                         iocb->ki_hint = hint;
3538                         err = -EAGAIN;
3539                         goto out;
3540                 }
3541         } else {
3542                 down_read(&fi->i_gc_rwsem[rw]);
3543                 if (do_opu)
3544                         down_read(&fi->i_gc_rwsem[READ]);
3545         }
3546
3547         err = __blockdev_direct_IO(iocb, inode, inode->i_sb->s_bdev,
3548                         iter, rw == WRITE ? get_data_block_dio_write :
3549                         get_data_block_dio, NULL, f2fs_dio_submit_bio,
3550                         rw == WRITE ? DIO_LOCKING | DIO_SKIP_HOLES :
3551                         DIO_SKIP_HOLES);
3552
3553         if (do_opu)
3554                 up_read(&fi->i_gc_rwsem[READ]);
3555
3556         up_read(&fi->i_gc_rwsem[rw]);
3557
3558         if (rw == WRITE) {
3559                 if (whint_mode == WHINT_MODE_OFF)
3560                         iocb->ki_hint = hint;
3561                 if (err > 0) {
3562                         f2fs_update_iostat(F2FS_I_SB(inode), APP_DIRECT_IO,
3563                                                                         err);
3564                         if (!do_opu)
3565                                 set_inode_flag(inode, FI_UPDATE_WRITE);
3566                 } else if (err == -EIOCBQUEUED) {
3567                         f2fs_update_iostat(F2FS_I_SB(inode), APP_DIRECT_IO,
3568                                                 count - iov_iter_count(iter));
3569                 } else if (err < 0) {
3570                         f2fs_write_failed(mapping, offset + count);
3571                 }
3572         } else {
3573                 if (err > 0)
3574                         f2fs_update_iostat(sbi, APP_DIRECT_READ_IO, err);
3575                 else if (err == -EIOCBQUEUED)
3576                         f2fs_update_iostat(F2FS_I_SB(inode), APP_DIRECT_READ_IO,
3577                                                 count - iov_iter_count(iter));
3578         }
3579
3580 out:
3581         trace_f2fs_direct_IO_exit(inode, offset, count, rw, err);
3582
3583         return err;
3584 }
3585
3586 void f2fs_invalidate_page(struct page *page, unsigned int offset,
3587                                                         unsigned int length)
3588 {
3589         struct inode *inode = page->mapping->host;
3590         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3591
3592         if (inode->i_ino >= F2FS_ROOT_INO(sbi) &&
3593                 (offset % PAGE_SIZE || length != PAGE_SIZE))
3594                 return;
3595
3596         if (PageDirty(page)) {
3597                 if (inode->i_ino == F2FS_META_INO(sbi)) {
3598                         dec_page_count(sbi, F2FS_DIRTY_META);
3599                 } else if (inode->i_ino == F2FS_NODE_INO(sbi)) {
3600                         dec_page_count(sbi, F2FS_DIRTY_NODES);
3601                 } else {
3602                         inode_dec_dirty_pages(inode);
3603                         f2fs_remove_dirty_inode(inode);
3604                 }
3605         }
3606
3607         clear_cold_data(page);
3608
3609         if (IS_ATOMIC_WRITTEN_PAGE(page))
3610                 return f2fs_drop_inmem_page(inode, page);
3611
3612         f2fs_clear_page_private(page);
3613 }
3614
3615 int f2fs_release_page(struct page *page, gfp_t wait)
3616 {
3617         /* If this is dirty page, keep PagePrivate */
3618         if (PageDirty(page))
3619                 return 0;
3620
3621         /* This is atomic written page, keep Private */
3622         if (IS_ATOMIC_WRITTEN_PAGE(page))
3623                 return 0;
3624
3625         clear_cold_data(page);
3626         f2fs_clear_page_private(page);
3627         return 1;
3628 }
3629
3630 static int f2fs_set_data_page_dirty(struct page *page)
3631 {
3632         struct inode *inode = page_file_mapping(page)->host;
3633
3634         trace_f2fs_set_page_dirty(page, DATA);
3635
3636         if (!PageUptodate(page))
3637                 SetPageUptodate(page);
3638         if (PageSwapCache(page))
3639                 return __set_page_dirty_nobuffers(page);
3640
3641         if (f2fs_is_atomic_file(inode) && !f2fs_is_commit_atomic_write(inode)) {
3642                 if (!IS_ATOMIC_WRITTEN_PAGE(page)) {
3643                         f2fs_register_inmem_page(inode, page);
3644                         return 1;
3645                 }
3646                 /*
3647                  * Previously, this page has been registered, we just
3648                  * return here.
3649                  */
3650                 return 0;
3651         }
3652
3653         if (!PageDirty(page)) {
3654                 __set_page_dirty_nobuffers(page);
3655                 f2fs_update_dirty_page(inode, page);
3656                 return 1;
3657         }
3658         return 0;
3659 }
3660
3661
3662 static sector_t f2fs_bmap_compress(struct inode *inode, sector_t block)
3663 {
3664 #ifdef CONFIG_F2FS_FS_COMPRESSION
3665         struct dnode_of_data dn;
3666         sector_t start_idx, blknr = 0;
3667         int ret;
3668
3669         start_idx = round_down(block, F2FS_I(inode)->i_cluster_size);
3670
3671         set_new_dnode(&dn, inode, NULL, NULL, 0);
3672         ret = f2fs_get_dnode_of_data(&dn, start_idx, LOOKUP_NODE);
3673         if (ret)
3674                 return 0;
3675
3676         if (dn.data_blkaddr != COMPRESS_ADDR) {
3677                 dn.ofs_in_node += block - start_idx;
3678                 blknr = f2fs_data_blkaddr(&dn);
3679                 if (!__is_valid_data_blkaddr(blknr))
3680                         blknr = 0;
3681         }
3682
3683         f2fs_put_dnode(&dn);
3684         return blknr;
3685 #else
3686         return 0;
3687 #endif
3688 }
3689
3690
3691 static sector_t f2fs_bmap(struct address_space *mapping, sector_t block)
3692 {
3693         struct inode *inode = mapping->host;
3694         sector_t blknr = 0;
3695
3696         if (f2fs_has_inline_data(inode))
3697                 goto out;
3698
3699         /* make sure allocating whole blocks */
3700         if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
3701                 filemap_write_and_wait(mapping);
3702
3703         /* Block number less than F2FS MAX BLOCKS */
3704         if (unlikely(block >= max_file_blocks(inode)))
3705                 goto out;
3706
3707         if (f2fs_compressed_file(inode)) {
3708                 blknr = f2fs_bmap_compress(inode, block);
3709         } else {
3710                 struct f2fs_map_blocks map;
3711
3712                 memset(&map, 0, sizeof(map));
3713                 map.m_lblk = block;
3714                 map.m_len = 1;
3715                 map.m_next_pgofs = NULL;
3716                 map.m_seg_type = NO_CHECK_TYPE;
3717
3718                 if (!f2fs_map_blocks(inode, &map, 0, F2FS_GET_BLOCK_BMAP))
3719                         blknr = map.m_pblk;
3720         }
3721 out:
3722         trace_f2fs_bmap(inode, block, blknr);
3723         return blknr;
3724 }
3725
3726 #ifdef CONFIG_MIGRATION
3727 #include <linux/migrate.h>
3728
3729 int f2fs_migrate_page(struct address_space *mapping,
3730                 struct page *newpage, struct page *page, enum migrate_mode mode)
3731 {
3732         int rc, extra_count;
3733         struct f2fs_inode_info *fi = F2FS_I(mapping->host);
3734         bool atomic_written = IS_ATOMIC_WRITTEN_PAGE(page);
3735
3736         BUG_ON(PageWriteback(page));
3737
3738         /* migrating an atomic written page is safe with the inmem_lock hold */
3739         if (atomic_written) {
3740                 if (mode != MIGRATE_SYNC)
3741                         return -EBUSY;
3742                 if (!mutex_trylock(&fi->inmem_lock))
3743                         return -EAGAIN;
3744         }
3745
3746         /* one extra reference was held for atomic_write page */
3747         extra_count = atomic_written ? 1 : 0;
3748         rc = migrate_page_move_mapping(mapping, newpage,
3749                                 page, extra_count);
3750         if (rc != MIGRATEPAGE_SUCCESS) {
3751                 if (atomic_written)
3752                         mutex_unlock(&fi->inmem_lock);
3753                 return rc;
3754         }
3755
3756         if (atomic_written) {
3757                 struct inmem_pages *cur;
3758                 list_for_each_entry(cur, &fi->inmem_pages, list)
3759                         if (cur->page == page) {
3760                                 cur->page = newpage;
3761                                 break;
3762                         }
3763                 mutex_unlock(&fi->inmem_lock);
3764                 put_page(page);
3765                 get_page(newpage);
3766         }
3767
3768         if (PagePrivate(page)) {
3769                 f2fs_set_page_private(newpage, page_private(page));
3770                 f2fs_clear_page_private(page);
3771         }
3772
3773         if (mode != MIGRATE_SYNC_NO_COPY)
3774                 migrate_page_copy(newpage, page);
3775         else
3776                 migrate_page_states(newpage, page);
3777
3778         return MIGRATEPAGE_SUCCESS;
3779 }
3780 #endif
3781
3782 #ifdef CONFIG_SWAP
3783 static int check_swap_activate_fast(struct swap_info_struct *sis,
3784                                 struct file *swap_file, sector_t *span)
3785 {
3786         struct address_space *mapping = swap_file->f_mapping;
3787         struct inode *inode = mapping->host;
3788         sector_t cur_lblock;
3789         sector_t last_lblock;
3790         sector_t pblock;
3791         sector_t lowest_pblock = -1;
3792         sector_t highest_pblock = 0;
3793         int nr_extents = 0;
3794         unsigned long nr_pblocks;
3795         u64 len;
3796         int ret;
3797
3798         /*
3799          * Map all the blocks into the extent list.  This code doesn't try
3800          * to be very smart.
3801          */
3802         cur_lblock = 0;
3803         last_lblock = bytes_to_blks(inode, i_size_read(inode));
3804         len = i_size_read(inode);
3805
3806         while (cur_lblock <= last_lblock && cur_lblock < sis->max) {
3807                 struct f2fs_map_blocks map;
3808                 pgoff_t next_pgofs;
3809
3810                 cond_resched();
3811
3812                 memset(&map, 0, sizeof(map));
3813                 map.m_lblk = cur_lblock;
3814                 map.m_len = bytes_to_blks(inode, len) - cur_lblock;
3815                 map.m_next_pgofs = &next_pgofs;
3816                 map.m_seg_type = NO_CHECK_TYPE;
3817
3818                 ret = f2fs_map_blocks(inode, &map, 0, F2FS_GET_BLOCK_FIEMAP);
3819                 if (ret)
3820                         goto err_out;
3821
3822                 /* hole */
3823                 if (!(map.m_flags & F2FS_MAP_FLAGS))
3824                         goto err_out;
3825
3826                 pblock = map.m_pblk;
3827                 nr_pblocks = map.m_len;
3828
3829                 if (cur_lblock + nr_pblocks >= sis->max)
3830                         nr_pblocks = sis->max - cur_lblock;
3831
3832                 if (cur_lblock) {       /* exclude the header page */
3833                         if (pblock < lowest_pblock)
3834                                 lowest_pblock = pblock;
3835                         if (pblock + nr_pblocks - 1 > highest_pblock)
3836                                 highest_pblock = pblock + nr_pblocks - 1;
3837                 }
3838
3839                 /*
3840                  * We found a PAGE_SIZE-length, PAGE_SIZE-aligned run of blocks
3841                  */
3842                 ret = add_swap_extent(sis, cur_lblock, nr_pblocks, pblock);
3843                 if (ret < 0)
3844                         goto out;
3845                 nr_extents += ret;
3846                 cur_lblock += nr_pblocks;
3847         }
3848         ret = nr_extents;
3849         *span = 1 + highest_pblock - lowest_pblock;
3850         if (cur_lblock == 0)
3851                 cur_lblock = 1; /* force Empty message */
3852         sis->max = cur_lblock;
3853         sis->pages = cur_lblock - 1;
3854         sis->highest_bit = cur_lblock - 1;
3855 out:
3856         return ret;
3857 err_out:
3858         pr_err("swapon: swapfile has holes\n");
3859         return -EINVAL;
3860 }
3861
3862 /* Copied from generic_swapfile_activate() to check any holes */
3863 static int check_swap_activate(struct swap_info_struct *sis,
3864                                 struct file *swap_file, sector_t *span)
3865 {
3866         struct address_space *mapping = swap_file->f_mapping;
3867         struct inode *inode = mapping->host;
3868         unsigned blocks_per_page;
3869         unsigned long page_no;
3870         sector_t probe_block;
3871         sector_t last_block;
3872         sector_t lowest_block = -1;
3873         sector_t highest_block = 0;
3874         int nr_extents = 0;
3875         int ret;
3876
3877         if (PAGE_SIZE == F2FS_BLKSIZE)
3878                 return check_swap_activate_fast(sis, swap_file, span);
3879
3880         blocks_per_page = bytes_to_blks(inode, PAGE_SIZE);
3881
3882         /*
3883          * Map all the blocks into the extent list.  This code doesn't try
3884          * to be very smart.
3885          */
3886         probe_block = 0;
3887         page_no = 0;
3888         last_block = bytes_to_blks(inode, i_size_read(inode));
3889         while ((probe_block + blocks_per_page) <= last_block &&
3890                         page_no < sis->max) {
3891                 unsigned block_in_page;
3892                 sector_t first_block;
3893                 sector_t block = 0;
3894                 int      err = 0;
3895
3896                 cond_resched();
3897
3898                 block = probe_block;
3899                 err = bmap(inode, &block);
3900                 if (err || !block)
3901                         goto bad_bmap;
3902                 first_block = block;
3903
3904                 /*
3905                  * It must be PAGE_SIZE aligned on-disk
3906                  */
3907                 if (first_block & (blocks_per_page - 1)) {
3908                         probe_block++;
3909                         goto reprobe;
3910                 }
3911
3912                 for (block_in_page = 1; block_in_page < blocks_per_page;
3913                                         block_in_page++) {
3914
3915                         block = probe_block + block_in_page;
3916                         err = bmap(inode, &block);
3917
3918                         if (err || !block)
3919                                 goto bad_bmap;
3920
3921                         if (block != first_block + block_in_page) {
3922                                 /* Discontiguity */
3923                                 probe_block++;
3924                                 goto reprobe;
3925                         }
3926                 }
3927
3928                 first_block >>= (PAGE_SHIFT - inode->i_blkbits);
3929                 if (page_no) {  /* exclude the header page */
3930                         if (first_block < lowest_block)
3931                                 lowest_block = first_block;
3932                         if (first_block > highest_block)
3933                                 highest_block = first_block;
3934                 }
3935
3936                 /*
3937                  * We found a PAGE_SIZE-length, PAGE_SIZE-aligned run of blocks
3938                  */
3939                 ret = add_swap_extent(sis, page_no, 1, first_block);
3940                 if (ret < 0)
3941                         goto out;
3942                 nr_extents += ret;
3943                 page_no++;
3944                 probe_block += blocks_per_page;
3945 reprobe:
3946                 continue;
3947         }
3948         ret = nr_extents;
3949         *span = 1 + highest_block - lowest_block;
3950         if (page_no == 0)
3951                 page_no = 1;    /* force Empty message */
3952         sis->max = page_no;
3953         sis->pages = page_no - 1;
3954         sis->highest_bit = page_no - 1;
3955 out:
3956         return ret;
3957 bad_bmap:
3958         pr_err("swapon: swapfile has holes\n");
3959         return -EINVAL;
3960 }
3961
3962 static int f2fs_swap_activate(struct swap_info_struct *sis, struct file *file,
3963                                 sector_t *span)
3964 {
3965         struct inode *inode = file_inode(file);
3966         int ret;
3967
3968         if (!S_ISREG(inode->i_mode))
3969                 return -EINVAL;
3970
3971         if (f2fs_readonly(F2FS_I_SB(inode)->sb))
3972                 return -EROFS;
3973
3974         ret = f2fs_convert_inline_inode(inode);
3975         if (ret)
3976                 return ret;
3977
3978         if (!f2fs_disable_compressed_file(inode))
3979                 return -EINVAL;
3980
3981         f2fs_precache_extents(inode);
3982
3983         ret = check_swap_activate(sis, file, span);
3984         if (ret < 0)
3985                 return ret;
3986
3987         set_inode_flag(inode, FI_PIN_FILE);
3988         f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
3989         return ret;
3990 }
3991
3992 static void f2fs_swap_deactivate(struct file *file)
3993 {
3994         struct inode *inode = file_inode(file);
3995
3996         clear_inode_flag(inode, FI_PIN_FILE);
3997 }
3998 #else
3999 static int f2fs_swap_activate(struct swap_info_struct *sis, struct file *file,
4000                                 sector_t *span)
4001 {
4002         return -EOPNOTSUPP;
4003 }
4004
4005 static void f2fs_swap_deactivate(struct file *file)
4006 {
4007 }
4008 #endif
4009
4010 const struct address_space_operations f2fs_dblock_aops = {
4011         .readpage       = f2fs_read_data_page,
4012         .readahead      = f2fs_readahead,
4013         .writepage      = f2fs_write_data_page,
4014         .writepages     = f2fs_write_data_pages,
4015         .write_begin    = f2fs_write_begin,
4016         .write_end      = f2fs_write_end,
4017         .set_page_dirty = f2fs_set_data_page_dirty,
4018         .invalidatepage = f2fs_invalidate_page,
4019         .releasepage    = f2fs_release_page,
4020         .direct_IO      = f2fs_direct_IO,
4021         .bmap           = f2fs_bmap,
4022         .swap_activate  = f2fs_swap_activate,
4023         .swap_deactivate = f2fs_swap_deactivate,
4024 #ifdef CONFIG_MIGRATION
4025         .migratepage    = f2fs_migrate_page,
4026 #endif
4027 };
4028
4029 void f2fs_clear_page_cache_dirty_tag(struct page *page)
4030 {
4031         struct address_space *mapping = page_mapping(page);
4032         unsigned long flags;
4033
4034         xa_lock_irqsave(&mapping->i_pages, flags);
4035         __xa_clear_mark(&mapping->i_pages, page_index(page),
4036                                                 PAGECACHE_TAG_DIRTY);
4037         xa_unlock_irqrestore(&mapping->i_pages, flags);
4038 }
4039
4040 int __init f2fs_init_post_read_processing(void)
4041 {
4042         bio_post_read_ctx_cache =
4043                 kmem_cache_create("f2fs_bio_post_read_ctx",
4044                                   sizeof(struct bio_post_read_ctx), 0, 0, NULL);
4045         if (!bio_post_read_ctx_cache)
4046                 goto fail;
4047         bio_post_read_ctx_pool =
4048                 mempool_create_slab_pool(NUM_PREALLOC_POST_READ_CTXS,
4049                                          bio_post_read_ctx_cache);
4050         if (!bio_post_read_ctx_pool)
4051                 goto fail_free_cache;
4052         return 0;
4053
4054 fail_free_cache:
4055         kmem_cache_destroy(bio_post_read_ctx_cache);
4056 fail:
4057         return -ENOMEM;
4058 }
4059
4060 void f2fs_destroy_post_read_processing(void)
4061 {
4062         mempool_destroy(bio_post_read_ctx_pool);
4063         kmem_cache_destroy(bio_post_read_ctx_cache);
4064 }
4065
4066 int f2fs_init_post_read_wq(struct f2fs_sb_info *sbi)
4067 {
4068         if (!f2fs_sb_has_encrypt(sbi) &&
4069                 !f2fs_sb_has_verity(sbi) &&
4070                 !f2fs_sb_has_compression(sbi))
4071                 return 0;
4072
4073         sbi->post_read_wq = alloc_workqueue("f2fs_post_read_wq",
4074                                                  WQ_UNBOUND | WQ_HIGHPRI,
4075                                                  num_online_cpus());
4076         if (!sbi->post_read_wq)
4077                 return -ENOMEM;
4078         return 0;
4079 }
4080
4081 void f2fs_destroy_post_read_wq(struct f2fs_sb_info *sbi)
4082 {
4083         if (sbi->post_read_wq)
4084                 destroy_workqueue(sbi->post_read_wq);
4085 }
4086
4087 int __init f2fs_init_bio_entry_cache(void)
4088 {
4089         bio_entry_slab = f2fs_kmem_cache_create("f2fs_bio_entry_slab",
4090                         sizeof(struct bio_entry));
4091         if (!bio_entry_slab)
4092                 return -ENOMEM;
4093         return 0;
4094 }
4095
4096 void f2fs_destroy_bio_entry_cache(void)
4097 {
4098         kmem_cache_destroy(bio_entry_slab);
4099 }