deeda95688f033e1b10d74e6c5016c7f41b245cb
[linux-2.6-microblaze.git] / fs / f2fs / checkpoint.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * fs/f2fs/checkpoint.c
4  *
5  * Copyright (c) 2012 Samsung Electronics Co., Ltd.
6  *             http://www.samsung.com/
7  */
8 #include <linux/fs.h>
9 #include <linux/bio.h>
10 #include <linux/mpage.h>
11 #include <linux/writeback.h>
12 #include <linux/blkdev.h>
13 #include <linux/f2fs_fs.h>
14 #include <linux/pagevec.h>
15 #include <linux/swap.h>
16 #include <linux/kthread.h>
17
18 #include "f2fs.h"
19 #include "node.h"
20 #include "segment.h"
21 #include "iostat.h"
22 #include <trace/events/f2fs.h>
23
24 #define DEFAULT_CHECKPOINT_IOPRIO (IOPRIO_PRIO_VALUE(IOPRIO_CLASS_BE, 3))
25
26 static struct kmem_cache *ino_entry_slab;
27 struct kmem_cache *f2fs_inode_entry_slab;
28
29 void f2fs_stop_checkpoint(struct f2fs_sb_info *sbi, bool end_io)
30 {
31         f2fs_build_fault_attr(sbi, 0, 0);
32         set_ckpt_flags(sbi, CP_ERROR_FLAG);
33         if (!end_io)
34                 f2fs_flush_merged_writes(sbi);
35 }
36
37 /*
38  * We guarantee no failure on the returned page.
39  */
40 struct page *f2fs_grab_meta_page(struct f2fs_sb_info *sbi, pgoff_t index)
41 {
42         struct address_space *mapping = META_MAPPING(sbi);
43         struct page *page;
44 repeat:
45         page = f2fs_grab_cache_page(mapping, index, false);
46         if (!page) {
47                 cond_resched();
48                 goto repeat;
49         }
50         f2fs_wait_on_page_writeback(page, META, true, true);
51         if (!PageUptodate(page))
52                 SetPageUptodate(page);
53         return page;
54 }
55
56 static struct page *__get_meta_page(struct f2fs_sb_info *sbi, pgoff_t index,
57                                                         bool is_meta)
58 {
59         struct address_space *mapping = META_MAPPING(sbi);
60         struct page *page;
61         struct f2fs_io_info fio = {
62                 .sbi = sbi,
63                 .type = META,
64                 .op = REQ_OP_READ,
65                 .op_flags = REQ_META | REQ_PRIO,
66                 .old_blkaddr = index,
67                 .new_blkaddr = index,
68                 .encrypted_page = NULL,
69                 .is_por = !is_meta,
70         };
71         int err;
72
73         if (unlikely(!is_meta))
74                 fio.op_flags &= ~REQ_META;
75 repeat:
76         page = f2fs_grab_cache_page(mapping, index, false);
77         if (!page) {
78                 cond_resched();
79                 goto repeat;
80         }
81         if (PageUptodate(page))
82                 goto out;
83
84         fio.page = page;
85
86         err = f2fs_submit_page_bio(&fio);
87         if (err) {
88                 f2fs_put_page(page, 1);
89                 return ERR_PTR(err);
90         }
91
92         f2fs_update_iostat(sbi, FS_META_READ_IO, F2FS_BLKSIZE);
93
94         lock_page(page);
95         if (unlikely(page->mapping != mapping)) {
96                 f2fs_put_page(page, 1);
97                 goto repeat;
98         }
99
100         if (unlikely(!PageUptodate(page))) {
101                 f2fs_put_page(page, 1);
102                 return ERR_PTR(-EIO);
103         }
104 out:
105         return page;
106 }
107
108 struct page *f2fs_get_meta_page(struct f2fs_sb_info *sbi, pgoff_t index)
109 {
110         return __get_meta_page(sbi, index, true);
111 }
112
113 struct page *f2fs_get_meta_page_retry(struct f2fs_sb_info *sbi, pgoff_t index)
114 {
115         struct page *page;
116         int count = 0;
117
118 retry:
119         page = __get_meta_page(sbi, index, true);
120         if (IS_ERR(page)) {
121                 if (PTR_ERR(page) == -EIO &&
122                                 ++count <= DEFAULT_RETRY_IO_COUNT)
123                         goto retry;
124                 f2fs_stop_checkpoint(sbi, false);
125         }
126         return page;
127 }
128
129 /* for POR only */
130 struct page *f2fs_get_tmp_page(struct f2fs_sb_info *sbi, pgoff_t index)
131 {
132         return __get_meta_page(sbi, index, false);
133 }
134
135 static bool __is_bitmap_valid(struct f2fs_sb_info *sbi, block_t blkaddr,
136                                                         int type)
137 {
138         struct seg_entry *se;
139         unsigned int segno, offset;
140         bool exist;
141
142         if (type != DATA_GENERIC_ENHANCE && type != DATA_GENERIC_ENHANCE_READ)
143                 return true;
144
145         segno = GET_SEGNO(sbi, blkaddr);
146         offset = GET_BLKOFF_FROM_SEG0(sbi, blkaddr);
147         se = get_seg_entry(sbi, segno);
148
149         exist = f2fs_test_bit(offset, se->cur_valid_map);
150         if (!exist && type == DATA_GENERIC_ENHANCE) {
151                 f2fs_err(sbi, "Inconsistent error blkaddr:%u, sit bitmap:%d",
152                          blkaddr, exist);
153                 set_sbi_flag(sbi, SBI_NEED_FSCK);
154                 WARN_ON(1);
155         }
156         return exist;
157 }
158
159 bool f2fs_is_valid_blkaddr(struct f2fs_sb_info *sbi,
160                                         block_t blkaddr, int type)
161 {
162         switch (type) {
163         case META_NAT:
164                 break;
165         case META_SIT:
166                 if (unlikely(blkaddr >= SIT_BLK_CNT(sbi)))
167                         return false;
168                 break;
169         case META_SSA:
170                 if (unlikely(blkaddr >= MAIN_BLKADDR(sbi) ||
171                         blkaddr < SM_I(sbi)->ssa_blkaddr))
172                         return false;
173                 break;
174         case META_CP:
175                 if (unlikely(blkaddr >= SIT_I(sbi)->sit_base_addr ||
176                         blkaddr < __start_cp_addr(sbi)))
177                         return false;
178                 break;
179         case META_POR:
180                 if (unlikely(blkaddr >= MAX_BLKADDR(sbi) ||
181                         blkaddr < MAIN_BLKADDR(sbi)))
182                         return false;
183                 break;
184         case DATA_GENERIC:
185         case DATA_GENERIC_ENHANCE:
186         case DATA_GENERIC_ENHANCE_READ:
187                 if (unlikely(blkaddr >= MAX_BLKADDR(sbi) ||
188                                 blkaddr < MAIN_BLKADDR(sbi))) {
189                         f2fs_warn(sbi, "access invalid blkaddr:%u",
190                                   blkaddr);
191                         set_sbi_flag(sbi, SBI_NEED_FSCK);
192                         WARN_ON(1);
193                         return false;
194                 } else {
195                         return __is_bitmap_valid(sbi, blkaddr, type);
196                 }
197                 break;
198         case META_GENERIC:
199                 if (unlikely(blkaddr < SEG0_BLKADDR(sbi) ||
200                         blkaddr >= MAIN_BLKADDR(sbi)))
201                         return false;
202                 break;
203         default:
204                 BUG();
205         }
206
207         return true;
208 }
209
210 /*
211  * Readahead CP/NAT/SIT/SSA/POR pages
212  */
213 int f2fs_ra_meta_pages(struct f2fs_sb_info *sbi, block_t start, int nrpages,
214                                                         int type, bool sync)
215 {
216         struct page *page;
217         block_t blkno = start;
218         struct f2fs_io_info fio = {
219                 .sbi = sbi,
220                 .type = META,
221                 .op = REQ_OP_READ,
222                 .op_flags = sync ? (REQ_META | REQ_PRIO) : REQ_RAHEAD,
223                 .encrypted_page = NULL,
224                 .in_list = false,
225                 .is_por = (type == META_POR),
226         };
227         struct blk_plug plug;
228         int err;
229
230         if (unlikely(type == META_POR))
231                 fio.op_flags &= ~REQ_META;
232
233         blk_start_plug(&plug);
234         for (; nrpages-- > 0; blkno++) {
235
236                 if (!f2fs_is_valid_blkaddr(sbi, blkno, type))
237                         goto out;
238
239                 switch (type) {
240                 case META_NAT:
241                         if (unlikely(blkno >=
242                                         NAT_BLOCK_OFFSET(NM_I(sbi)->max_nid)))
243                                 blkno = 0;
244                         /* get nat block addr */
245                         fio.new_blkaddr = current_nat_addr(sbi,
246                                         blkno * NAT_ENTRY_PER_BLOCK);
247                         break;
248                 case META_SIT:
249                         if (unlikely(blkno >= TOTAL_SEGS(sbi)))
250                                 goto out;
251                         /* get sit block addr */
252                         fio.new_blkaddr = current_sit_addr(sbi,
253                                         blkno * SIT_ENTRY_PER_BLOCK);
254                         break;
255                 case META_SSA:
256                 case META_CP:
257                 case META_POR:
258                         fio.new_blkaddr = blkno;
259                         break;
260                 default:
261                         BUG();
262                 }
263
264                 page = f2fs_grab_cache_page(META_MAPPING(sbi),
265                                                 fio.new_blkaddr, false);
266                 if (!page)
267                         continue;
268                 if (PageUptodate(page)) {
269                         f2fs_put_page(page, 1);
270                         continue;
271                 }
272
273                 fio.page = page;
274                 err = f2fs_submit_page_bio(&fio);
275                 f2fs_put_page(page, err ? 1 : 0);
276
277                 if (!err)
278                         f2fs_update_iostat(sbi, FS_META_READ_IO, F2FS_BLKSIZE);
279         }
280 out:
281         blk_finish_plug(&plug);
282         return blkno - start;
283 }
284
285 void f2fs_ra_meta_pages_cond(struct f2fs_sb_info *sbi, pgoff_t index)
286 {
287         struct page *page;
288         bool readahead = false;
289
290         page = find_get_page(META_MAPPING(sbi), index);
291         if (!page || !PageUptodate(page))
292                 readahead = true;
293         f2fs_put_page(page, 0);
294
295         if (readahead)
296                 f2fs_ra_meta_pages(sbi, index, BIO_MAX_VECS, META_POR, true);
297 }
298
299 static int __f2fs_write_meta_page(struct page *page,
300                                 struct writeback_control *wbc,
301                                 enum iostat_type io_type)
302 {
303         struct f2fs_sb_info *sbi = F2FS_P_SB(page);
304
305         trace_f2fs_writepage(page, META);
306
307         if (unlikely(f2fs_cp_error(sbi)))
308                 goto redirty_out;
309         if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
310                 goto redirty_out;
311         if (wbc->for_reclaim && page->index < GET_SUM_BLOCK(sbi, 0))
312                 goto redirty_out;
313
314         f2fs_do_write_meta_page(sbi, page, io_type);
315         dec_page_count(sbi, F2FS_DIRTY_META);
316
317         if (wbc->for_reclaim)
318                 f2fs_submit_merged_write_cond(sbi, NULL, page, 0, META);
319
320         unlock_page(page);
321
322         if (unlikely(f2fs_cp_error(sbi)))
323                 f2fs_submit_merged_write(sbi, META);
324
325         return 0;
326
327 redirty_out:
328         redirty_page_for_writepage(wbc, page);
329         return AOP_WRITEPAGE_ACTIVATE;
330 }
331
332 static int f2fs_write_meta_page(struct page *page,
333                                 struct writeback_control *wbc)
334 {
335         return __f2fs_write_meta_page(page, wbc, FS_META_IO);
336 }
337
338 static int f2fs_write_meta_pages(struct address_space *mapping,
339                                 struct writeback_control *wbc)
340 {
341         struct f2fs_sb_info *sbi = F2FS_M_SB(mapping);
342         long diff, written;
343
344         if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
345                 goto skip_write;
346
347         /* collect a number of dirty meta pages and write together */
348         if (wbc->sync_mode != WB_SYNC_ALL &&
349                         get_pages(sbi, F2FS_DIRTY_META) <
350                                         nr_pages_to_skip(sbi, META))
351                 goto skip_write;
352
353         /* if locked failed, cp will flush dirty pages instead */
354         if (!f2fs_down_write_trylock(&sbi->cp_global_sem))
355                 goto skip_write;
356
357         trace_f2fs_writepages(mapping->host, wbc, META);
358         diff = nr_pages_to_write(sbi, META, wbc);
359         written = f2fs_sync_meta_pages(sbi, META, wbc->nr_to_write, FS_META_IO);
360         f2fs_up_write(&sbi->cp_global_sem);
361         wbc->nr_to_write = max((long)0, wbc->nr_to_write - written - diff);
362         return 0;
363
364 skip_write:
365         wbc->pages_skipped += get_pages(sbi, F2FS_DIRTY_META);
366         trace_f2fs_writepages(mapping->host, wbc, META);
367         return 0;
368 }
369
370 long f2fs_sync_meta_pages(struct f2fs_sb_info *sbi, enum page_type type,
371                                 long nr_to_write, enum iostat_type io_type)
372 {
373         struct address_space *mapping = META_MAPPING(sbi);
374         pgoff_t index = 0, prev = ULONG_MAX;
375         struct pagevec pvec;
376         long nwritten = 0;
377         int nr_pages;
378         struct writeback_control wbc = {
379                 .for_reclaim = 0,
380         };
381         struct blk_plug plug;
382
383         pagevec_init(&pvec);
384
385         blk_start_plug(&plug);
386
387         while ((nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
388                                 PAGECACHE_TAG_DIRTY))) {
389                 int i;
390
391                 for (i = 0; i < nr_pages; i++) {
392                         struct page *page = pvec.pages[i];
393
394                         if (prev == ULONG_MAX)
395                                 prev = page->index - 1;
396                         if (nr_to_write != LONG_MAX && page->index != prev + 1) {
397                                 pagevec_release(&pvec);
398                                 goto stop;
399                         }
400
401                         lock_page(page);
402
403                         if (unlikely(page->mapping != mapping)) {
404 continue_unlock:
405                                 unlock_page(page);
406                                 continue;
407                         }
408                         if (!PageDirty(page)) {
409                                 /* someone wrote it for us */
410                                 goto continue_unlock;
411                         }
412
413                         f2fs_wait_on_page_writeback(page, META, true, true);
414
415                         if (!clear_page_dirty_for_io(page))
416                                 goto continue_unlock;
417
418                         if (__f2fs_write_meta_page(page, &wbc, io_type)) {
419                                 unlock_page(page);
420                                 break;
421                         }
422                         nwritten++;
423                         prev = page->index;
424                         if (unlikely(nwritten >= nr_to_write))
425                                 break;
426                 }
427                 pagevec_release(&pvec);
428                 cond_resched();
429         }
430 stop:
431         if (nwritten)
432                 f2fs_submit_merged_write(sbi, type);
433
434         blk_finish_plug(&plug);
435
436         return nwritten;
437 }
438
439 static int f2fs_set_meta_page_dirty(struct page *page)
440 {
441         trace_f2fs_set_page_dirty(page, META);
442
443         if (!PageUptodate(page))
444                 SetPageUptodate(page);
445         if (!PageDirty(page)) {
446                 __set_page_dirty_nobuffers(page);
447                 inc_page_count(F2FS_P_SB(page), F2FS_DIRTY_META);
448                 set_page_private_reference(page);
449                 return 1;
450         }
451         return 0;
452 }
453
454 const struct address_space_operations f2fs_meta_aops = {
455         .writepage      = f2fs_write_meta_page,
456         .writepages     = f2fs_write_meta_pages,
457         .set_page_dirty = f2fs_set_meta_page_dirty,
458         .invalidatepage = f2fs_invalidate_page,
459         .releasepage    = f2fs_release_page,
460 #ifdef CONFIG_MIGRATION
461         .migratepage    = f2fs_migrate_page,
462 #endif
463 };
464
465 static void __add_ino_entry(struct f2fs_sb_info *sbi, nid_t ino,
466                                                 unsigned int devidx, int type)
467 {
468         struct inode_management *im = &sbi->im[type];
469         struct ino_entry *e = NULL, *new = NULL;
470
471         if (type == FLUSH_INO) {
472                 rcu_read_lock();
473                 e = radix_tree_lookup(&im->ino_root, ino);
474                 rcu_read_unlock();
475         }
476
477 retry:
478         if (!e)
479                 new = f2fs_kmem_cache_alloc(ino_entry_slab,
480                                                 GFP_NOFS, true, NULL);
481
482         radix_tree_preload(GFP_NOFS | __GFP_NOFAIL);
483
484         spin_lock(&im->ino_lock);
485         e = radix_tree_lookup(&im->ino_root, ino);
486         if (!e) {
487                 if (!new) {
488                         spin_unlock(&im->ino_lock);
489                         goto retry;
490                 }
491                 e = new;
492                 if (unlikely(radix_tree_insert(&im->ino_root, ino, e)))
493                         f2fs_bug_on(sbi, 1);
494
495                 memset(e, 0, sizeof(struct ino_entry));
496                 e->ino = ino;
497
498                 list_add_tail(&e->list, &im->ino_list);
499                 if (type != ORPHAN_INO)
500                         im->ino_num++;
501         }
502
503         if (type == FLUSH_INO)
504                 f2fs_set_bit(devidx, (char *)&e->dirty_device);
505
506         spin_unlock(&im->ino_lock);
507         radix_tree_preload_end();
508
509         if (new && e != new)
510                 kmem_cache_free(ino_entry_slab, new);
511 }
512
513 static void __remove_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type)
514 {
515         struct inode_management *im = &sbi->im[type];
516         struct ino_entry *e;
517
518         spin_lock(&im->ino_lock);
519         e = radix_tree_lookup(&im->ino_root, ino);
520         if (e) {
521                 list_del(&e->list);
522                 radix_tree_delete(&im->ino_root, ino);
523                 im->ino_num--;
524                 spin_unlock(&im->ino_lock);
525                 kmem_cache_free(ino_entry_slab, e);
526                 return;
527         }
528         spin_unlock(&im->ino_lock);
529 }
530
531 void f2fs_add_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type)
532 {
533         /* add new dirty ino entry into list */
534         __add_ino_entry(sbi, ino, 0, type);
535 }
536
537 void f2fs_remove_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type)
538 {
539         /* remove dirty ino entry from list */
540         __remove_ino_entry(sbi, ino, type);
541 }
542
543 /* mode should be APPEND_INO, UPDATE_INO or TRANS_DIR_INO */
544 bool f2fs_exist_written_data(struct f2fs_sb_info *sbi, nid_t ino, int mode)
545 {
546         struct inode_management *im = &sbi->im[mode];
547         struct ino_entry *e;
548
549         spin_lock(&im->ino_lock);
550         e = radix_tree_lookup(&im->ino_root, ino);
551         spin_unlock(&im->ino_lock);
552         return e ? true : false;
553 }
554
555 void f2fs_release_ino_entry(struct f2fs_sb_info *sbi, bool all)
556 {
557         struct ino_entry *e, *tmp;
558         int i;
559
560         for (i = all ? ORPHAN_INO : APPEND_INO; i < MAX_INO_ENTRY; i++) {
561                 struct inode_management *im = &sbi->im[i];
562
563                 spin_lock(&im->ino_lock);
564                 list_for_each_entry_safe(e, tmp, &im->ino_list, list) {
565                         list_del(&e->list);
566                         radix_tree_delete(&im->ino_root, e->ino);
567                         kmem_cache_free(ino_entry_slab, e);
568                         im->ino_num--;
569                 }
570                 spin_unlock(&im->ino_lock);
571         }
572 }
573
574 void f2fs_set_dirty_device(struct f2fs_sb_info *sbi, nid_t ino,
575                                         unsigned int devidx, int type)
576 {
577         __add_ino_entry(sbi, ino, devidx, type);
578 }
579
580 bool f2fs_is_dirty_device(struct f2fs_sb_info *sbi, nid_t ino,
581                                         unsigned int devidx, int type)
582 {
583         struct inode_management *im = &sbi->im[type];
584         struct ino_entry *e;
585         bool is_dirty = false;
586
587         spin_lock(&im->ino_lock);
588         e = radix_tree_lookup(&im->ino_root, ino);
589         if (e && f2fs_test_bit(devidx, (char *)&e->dirty_device))
590                 is_dirty = true;
591         spin_unlock(&im->ino_lock);
592         return is_dirty;
593 }
594
595 int f2fs_acquire_orphan_inode(struct f2fs_sb_info *sbi)
596 {
597         struct inode_management *im = &sbi->im[ORPHAN_INO];
598         int err = 0;
599
600         spin_lock(&im->ino_lock);
601
602         if (time_to_inject(sbi, FAULT_ORPHAN)) {
603                 spin_unlock(&im->ino_lock);
604                 f2fs_show_injection_info(sbi, FAULT_ORPHAN);
605                 return -ENOSPC;
606         }
607
608         if (unlikely(im->ino_num >= sbi->max_orphans))
609                 err = -ENOSPC;
610         else
611                 im->ino_num++;
612         spin_unlock(&im->ino_lock);
613
614         return err;
615 }
616
617 void f2fs_release_orphan_inode(struct f2fs_sb_info *sbi)
618 {
619         struct inode_management *im = &sbi->im[ORPHAN_INO];
620
621         spin_lock(&im->ino_lock);
622         f2fs_bug_on(sbi, im->ino_num == 0);
623         im->ino_num--;
624         spin_unlock(&im->ino_lock);
625 }
626
627 void f2fs_add_orphan_inode(struct inode *inode)
628 {
629         /* add new orphan ino entry into list */
630         __add_ino_entry(F2FS_I_SB(inode), inode->i_ino, 0, ORPHAN_INO);
631         f2fs_update_inode_page(inode);
632 }
633
634 void f2fs_remove_orphan_inode(struct f2fs_sb_info *sbi, nid_t ino)
635 {
636         /* remove orphan entry from orphan list */
637         __remove_ino_entry(sbi, ino, ORPHAN_INO);
638 }
639
640 static int recover_orphan_inode(struct f2fs_sb_info *sbi, nid_t ino)
641 {
642         struct inode *inode;
643         struct node_info ni;
644         int err;
645
646         inode = f2fs_iget_retry(sbi->sb, ino);
647         if (IS_ERR(inode)) {
648                 /*
649                  * there should be a bug that we can't find the entry
650                  * to orphan inode.
651                  */
652                 f2fs_bug_on(sbi, PTR_ERR(inode) == -ENOENT);
653                 return PTR_ERR(inode);
654         }
655
656         err = f2fs_dquot_initialize(inode);
657         if (err) {
658                 iput(inode);
659                 goto err_out;
660         }
661
662         clear_nlink(inode);
663
664         /* truncate all the data during iput */
665         iput(inode);
666
667         err = f2fs_get_node_info(sbi, ino, &ni, false);
668         if (err)
669                 goto err_out;
670
671         /* ENOMEM was fully retried in f2fs_evict_inode. */
672         if (ni.blk_addr != NULL_ADDR) {
673                 err = -EIO;
674                 goto err_out;
675         }
676         return 0;
677
678 err_out:
679         set_sbi_flag(sbi, SBI_NEED_FSCK);
680         f2fs_warn(sbi, "%s: orphan failed (ino=%x), run fsck to fix.",
681                   __func__, ino);
682         return err;
683 }
684
685 int f2fs_recover_orphan_inodes(struct f2fs_sb_info *sbi)
686 {
687         block_t start_blk, orphan_blocks, i, j;
688         unsigned int s_flags = sbi->sb->s_flags;
689         int err = 0;
690 #ifdef CONFIG_QUOTA
691         int quota_enabled;
692 #endif
693
694         if (!is_set_ckpt_flags(sbi, CP_ORPHAN_PRESENT_FLAG))
695                 return 0;
696
697         if (bdev_read_only(sbi->sb->s_bdev)) {
698                 f2fs_info(sbi, "write access unavailable, skipping orphan cleanup");
699                 return 0;
700         }
701
702         if (s_flags & SB_RDONLY) {
703                 f2fs_info(sbi, "orphan cleanup on readonly fs");
704                 sbi->sb->s_flags &= ~SB_RDONLY;
705         }
706
707 #ifdef CONFIG_QUOTA
708         /*
709          * Turn on quotas which were not enabled for read-only mounts if
710          * filesystem has quota feature, so that they are updated correctly.
711          */
712         quota_enabled = f2fs_enable_quota_files(sbi, s_flags & SB_RDONLY);
713 #endif
714
715         start_blk = __start_cp_addr(sbi) + 1 + __cp_payload(sbi);
716         orphan_blocks = __start_sum_addr(sbi) - 1 - __cp_payload(sbi);
717
718         f2fs_ra_meta_pages(sbi, start_blk, orphan_blocks, META_CP, true);
719
720         for (i = 0; i < orphan_blocks; i++) {
721                 struct page *page;
722                 struct f2fs_orphan_block *orphan_blk;
723
724                 page = f2fs_get_meta_page(sbi, start_blk + i);
725                 if (IS_ERR(page)) {
726                         err = PTR_ERR(page);
727                         goto out;
728                 }
729
730                 orphan_blk = (struct f2fs_orphan_block *)page_address(page);
731                 for (j = 0; j < le32_to_cpu(orphan_blk->entry_count); j++) {
732                         nid_t ino = le32_to_cpu(orphan_blk->ino[j]);
733
734                         err = recover_orphan_inode(sbi, ino);
735                         if (err) {
736                                 f2fs_put_page(page, 1);
737                                 goto out;
738                         }
739                 }
740                 f2fs_put_page(page, 1);
741         }
742         /* clear Orphan Flag */
743         clear_ckpt_flags(sbi, CP_ORPHAN_PRESENT_FLAG);
744 out:
745         set_sbi_flag(sbi, SBI_IS_RECOVERED);
746
747 #ifdef CONFIG_QUOTA
748         /* Turn quotas off */
749         if (quota_enabled)
750                 f2fs_quota_off_umount(sbi->sb);
751 #endif
752         sbi->sb->s_flags = s_flags; /* Restore SB_RDONLY status */
753
754         return err;
755 }
756
757 static void write_orphan_inodes(struct f2fs_sb_info *sbi, block_t start_blk)
758 {
759         struct list_head *head;
760         struct f2fs_orphan_block *orphan_blk = NULL;
761         unsigned int nentries = 0;
762         unsigned short index = 1;
763         unsigned short orphan_blocks;
764         struct page *page = NULL;
765         struct ino_entry *orphan = NULL;
766         struct inode_management *im = &sbi->im[ORPHAN_INO];
767
768         orphan_blocks = GET_ORPHAN_BLOCKS(im->ino_num);
769
770         /*
771          * we don't need to do spin_lock(&im->ino_lock) here, since all the
772          * orphan inode operations are covered under f2fs_lock_op().
773          * And, spin_lock should be avoided due to page operations below.
774          */
775         head = &im->ino_list;
776
777         /* loop for each orphan inode entry and write them in Jornal block */
778         list_for_each_entry(orphan, head, list) {
779                 if (!page) {
780                         page = f2fs_grab_meta_page(sbi, start_blk++);
781                         orphan_blk =
782                                 (struct f2fs_orphan_block *)page_address(page);
783                         memset(orphan_blk, 0, sizeof(*orphan_blk));
784                 }
785
786                 orphan_blk->ino[nentries++] = cpu_to_le32(orphan->ino);
787
788                 if (nentries == F2FS_ORPHANS_PER_BLOCK) {
789                         /*
790                          * an orphan block is full of 1020 entries,
791                          * then we need to flush current orphan blocks
792                          * and bring another one in memory
793                          */
794                         orphan_blk->blk_addr = cpu_to_le16(index);
795                         orphan_blk->blk_count = cpu_to_le16(orphan_blocks);
796                         orphan_blk->entry_count = cpu_to_le32(nentries);
797                         set_page_dirty(page);
798                         f2fs_put_page(page, 1);
799                         index++;
800                         nentries = 0;
801                         page = NULL;
802                 }
803         }
804
805         if (page) {
806                 orphan_blk->blk_addr = cpu_to_le16(index);
807                 orphan_blk->blk_count = cpu_to_le16(orphan_blocks);
808                 orphan_blk->entry_count = cpu_to_le32(nentries);
809                 set_page_dirty(page);
810                 f2fs_put_page(page, 1);
811         }
812 }
813
814 static __u32 f2fs_checkpoint_chksum(struct f2fs_sb_info *sbi,
815                                                 struct f2fs_checkpoint *ckpt)
816 {
817         unsigned int chksum_ofs = le32_to_cpu(ckpt->checksum_offset);
818         __u32 chksum;
819
820         chksum = f2fs_crc32(sbi, ckpt, chksum_ofs);
821         if (chksum_ofs < CP_CHKSUM_OFFSET) {
822                 chksum_ofs += sizeof(chksum);
823                 chksum = f2fs_chksum(sbi, chksum, (__u8 *)ckpt + chksum_ofs,
824                                                 F2FS_BLKSIZE - chksum_ofs);
825         }
826         return chksum;
827 }
828
829 static int get_checkpoint_version(struct f2fs_sb_info *sbi, block_t cp_addr,
830                 struct f2fs_checkpoint **cp_block, struct page **cp_page,
831                 unsigned long long *version)
832 {
833         size_t crc_offset = 0;
834         __u32 crc;
835
836         *cp_page = f2fs_get_meta_page(sbi, cp_addr);
837         if (IS_ERR(*cp_page))
838                 return PTR_ERR(*cp_page);
839
840         *cp_block = (struct f2fs_checkpoint *)page_address(*cp_page);
841
842         crc_offset = le32_to_cpu((*cp_block)->checksum_offset);
843         if (crc_offset < CP_MIN_CHKSUM_OFFSET ||
844                         crc_offset > CP_CHKSUM_OFFSET) {
845                 f2fs_put_page(*cp_page, 1);
846                 f2fs_warn(sbi, "invalid crc_offset: %zu", crc_offset);
847                 return -EINVAL;
848         }
849
850         crc = f2fs_checkpoint_chksum(sbi, *cp_block);
851         if (crc != cur_cp_crc(*cp_block)) {
852                 f2fs_put_page(*cp_page, 1);
853                 f2fs_warn(sbi, "invalid crc value");
854                 return -EINVAL;
855         }
856
857         *version = cur_cp_version(*cp_block);
858         return 0;
859 }
860
861 static struct page *validate_checkpoint(struct f2fs_sb_info *sbi,
862                                 block_t cp_addr, unsigned long long *version)
863 {
864         struct page *cp_page_1 = NULL, *cp_page_2 = NULL;
865         struct f2fs_checkpoint *cp_block = NULL;
866         unsigned long long cur_version = 0, pre_version = 0;
867         int err;
868
869         err = get_checkpoint_version(sbi, cp_addr, &cp_block,
870                                         &cp_page_1, version);
871         if (err)
872                 return NULL;
873
874         if (le32_to_cpu(cp_block->cp_pack_total_block_count) >
875                                         sbi->blocks_per_seg) {
876                 f2fs_warn(sbi, "invalid cp_pack_total_block_count:%u",
877                           le32_to_cpu(cp_block->cp_pack_total_block_count));
878                 goto invalid_cp;
879         }
880         pre_version = *version;
881
882         cp_addr += le32_to_cpu(cp_block->cp_pack_total_block_count) - 1;
883         err = get_checkpoint_version(sbi, cp_addr, &cp_block,
884                                         &cp_page_2, version);
885         if (err)
886                 goto invalid_cp;
887         cur_version = *version;
888
889         if (cur_version == pre_version) {
890                 *version = cur_version;
891                 f2fs_put_page(cp_page_2, 1);
892                 return cp_page_1;
893         }
894         f2fs_put_page(cp_page_2, 1);
895 invalid_cp:
896         f2fs_put_page(cp_page_1, 1);
897         return NULL;
898 }
899
900 int f2fs_get_valid_checkpoint(struct f2fs_sb_info *sbi)
901 {
902         struct f2fs_checkpoint *cp_block;
903         struct f2fs_super_block *fsb = sbi->raw_super;
904         struct page *cp1, *cp2, *cur_page;
905         unsigned long blk_size = sbi->blocksize;
906         unsigned long long cp1_version = 0, cp2_version = 0;
907         unsigned long long cp_start_blk_no;
908         unsigned int cp_blks = 1 + __cp_payload(sbi);
909         block_t cp_blk_no;
910         int i;
911         int err;
912
913         sbi->ckpt = f2fs_kvzalloc(sbi, array_size(blk_size, cp_blks),
914                                   GFP_KERNEL);
915         if (!sbi->ckpt)
916                 return -ENOMEM;
917         /*
918          * Finding out valid cp block involves read both
919          * sets( cp pack 1 and cp pack 2)
920          */
921         cp_start_blk_no = le32_to_cpu(fsb->cp_blkaddr);
922         cp1 = validate_checkpoint(sbi, cp_start_blk_no, &cp1_version);
923
924         /* The second checkpoint pack should start at the next segment */
925         cp_start_blk_no += ((unsigned long long)1) <<
926                                 le32_to_cpu(fsb->log_blocks_per_seg);
927         cp2 = validate_checkpoint(sbi, cp_start_blk_no, &cp2_version);
928
929         if (cp1 && cp2) {
930                 if (ver_after(cp2_version, cp1_version))
931                         cur_page = cp2;
932                 else
933                         cur_page = cp1;
934         } else if (cp1) {
935                 cur_page = cp1;
936         } else if (cp2) {
937                 cur_page = cp2;
938         } else {
939                 err = -EFSCORRUPTED;
940                 goto fail_no_cp;
941         }
942
943         cp_block = (struct f2fs_checkpoint *)page_address(cur_page);
944         memcpy(sbi->ckpt, cp_block, blk_size);
945
946         if (cur_page == cp1)
947                 sbi->cur_cp_pack = 1;
948         else
949                 sbi->cur_cp_pack = 2;
950
951         /* Sanity checking of checkpoint */
952         if (f2fs_sanity_check_ckpt(sbi)) {
953                 err = -EFSCORRUPTED;
954                 goto free_fail_no_cp;
955         }
956
957         if (cp_blks <= 1)
958                 goto done;
959
960         cp_blk_no = le32_to_cpu(fsb->cp_blkaddr);
961         if (cur_page == cp2)
962                 cp_blk_no += 1 << le32_to_cpu(fsb->log_blocks_per_seg);
963
964         for (i = 1; i < cp_blks; i++) {
965                 void *sit_bitmap_ptr;
966                 unsigned char *ckpt = (unsigned char *)sbi->ckpt;
967
968                 cur_page = f2fs_get_meta_page(sbi, cp_blk_no + i);
969                 if (IS_ERR(cur_page)) {
970                         err = PTR_ERR(cur_page);
971                         goto free_fail_no_cp;
972                 }
973                 sit_bitmap_ptr = page_address(cur_page);
974                 memcpy(ckpt + i * blk_size, sit_bitmap_ptr, blk_size);
975                 f2fs_put_page(cur_page, 1);
976         }
977 done:
978         f2fs_put_page(cp1, 1);
979         f2fs_put_page(cp2, 1);
980         return 0;
981
982 free_fail_no_cp:
983         f2fs_put_page(cp1, 1);
984         f2fs_put_page(cp2, 1);
985 fail_no_cp:
986         kvfree(sbi->ckpt);
987         return err;
988 }
989
990 static void __add_dirty_inode(struct inode *inode, enum inode_type type)
991 {
992         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
993         int flag = (type == DIR_INODE) ? FI_DIRTY_DIR : FI_DIRTY_FILE;
994
995         if (is_inode_flag_set(inode, flag))
996                 return;
997
998         set_inode_flag(inode, flag);
999         if (!f2fs_is_volatile_file(inode))
1000                 list_add_tail(&F2FS_I(inode)->dirty_list,
1001                                                 &sbi->inode_list[type]);
1002         stat_inc_dirty_inode(sbi, type);
1003 }
1004
1005 static void __remove_dirty_inode(struct inode *inode, enum inode_type type)
1006 {
1007         int flag = (type == DIR_INODE) ? FI_DIRTY_DIR : FI_DIRTY_FILE;
1008
1009         if (get_dirty_pages(inode) || !is_inode_flag_set(inode, flag))
1010                 return;
1011
1012         list_del_init(&F2FS_I(inode)->dirty_list);
1013         clear_inode_flag(inode, flag);
1014         stat_dec_dirty_inode(F2FS_I_SB(inode), type);
1015 }
1016
1017 void f2fs_update_dirty_page(struct inode *inode, struct page *page)
1018 {
1019         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1020         enum inode_type type = S_ISDIR(inode->i_mode) ? DIR_INODE : FILE_INODE;
1021
1022         if (!S_ISDIR(inode->i_mode) && !S_ISREG(inode->i_mode) &&
1023                         !S_ISLNK(inode->i_mode))
1024                 return;
1025
1026         spin_lock(&sbi->inode_lock[type]);
1027         if (type != FILE_INODE || test_opt(sbi, DATA_FLUSH))
1028                 __add_dirty_inode(inode, type);
1029         inode_inc_dirty_pages(inode);
1030         spin_unlock(&sbi->inode_lock[type]);
1031
1032         set_page_private_reference(page);
1033 }
1034
1035 void f2fs_remove_dirty_inode(struct inode *inode)
1036 {
1037         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1038         enum inode_type type = S_ISDIR(inode->i_mode) ? DIR_INODE : FILE_INODE;
1039
1040         if (!S_ISDIR(inode->i_mode) && !S_ISREG(inode->i_mode) &&
1041                         !S_ISLNK(inode->i_mode))
1042                 return;
1043
1044         if (type == FILE_INODE && !test_opt(sbi, DATA_FLUSH))
1045                 return;
1046
1047         spin_lock(&sbi->inode_lock[type]);
1048         __remove_dirty_inode(inode, type);
1049         spin_unlock(&sbi->inode_lock[type]);
1050 }
1051
1052 int f2fs_sync_dirty_inodes(struct f2fs_sb_info *sbi, enum inode_type type)
1053 {
1054         struct list_head *head;
1055         struct inode *inode;
1056         struct f2fs_inode_info *fi;
1057         bool is_dir = (type == DIR_INODE);
1058         unsigned long ino = 0;
1059
1060         trace_f2fs_sync_dirty_inodes_enter(sbi->sb, is_dir,
1061                                 get_pages(sbi, is_dir ?
1062                                 F2FS_DIRTY_DENTS : F2FS_DIRTY_DATA));
1063 retry:
1064         if (unlikely(f2fs_cp_error(sbi))) {
1065                 trace_f2fs_sync_dirty_inodes_exit(sbi->sb, is_dir,
1066                                 get_pages(sbi, is_dir ?
1067                                 F2FS_DIRTY_DENTS : F2FS_DIRTY_DATA));
1068                 return -EIO;
1069         }
1070
1071         spin_lock(&sbi->inode_lock[type]);
1072
1073         head = &sbi->inode_list[type];
1074         if (list_empty(head)) {
1075                 spin_unlock(&sbi->inode_lock[type]);
1076                 trace_f2fs_sync_dirty_inodes_exit(sbi->sb, is_dir,
1077                                 get_pages(sbi, is_dir ?
1078                                 F2FS_DIRTY_DENTS : F2FS_DIRTY_DATA));
1079                 return 0;
1080         }
1081         fi = list_first_entry(head, struct f2fs_inode_info, dirty_list);
1082         inode = igrab(&fi->vfs_inode);
1083         spin_unlock(&sbi->inode_lock[type]);
1084         if (inode) {
1085                 unsigned long cur_ino = inode->i_ino;
1086
1087                 F2FS_I(inode)->cp_task = current;
1088
1089                 filemap_fdatawrite(inode->i_mapping);
1090
1091                 F2FS_I(inode)->cp_task = NULL;
1092
1093                 iput(inode);
1094                 /* We need to give cpu to another writers. */
1095                 if (ino == cur_ino)
1096                         cond_resched();
1097                 else
1098                         ino = cur_ino;
1099         } else {
1100                 /*
1101                  * We should submit bio, since it exists several
1102                  * wribacking dentry pages in the freeing inode.
1103                  */
1104                 f2fs_submit_merged_write(sbi, DATA);
1105                 cond_resched();
1106         }
1107         goto retry;
1108 }
1109
1110 int f2fs_sync_inode_meta(struct f2fs_sb_info *sbi)
1111 {
1112         struct list_head *head = &sbi->inode_list[DIRTY_META];
1113         struct inode *inode;
1114         struct f2fs_inode_info *fi;
1115         s64 total = get_pages(sbi, F2FS_DIRTY_IMETA);
1116
1117         while (total--) {
1118                 if (unlikely(f2fs_cp_error(sbi)))
1119                         return -EIO;
1120
1121                 spin_lock(&sbi->inode_lock[DIRTY_META]);
1122                 if (list_empty(head)) {
1123                         spin_unlock(&sbi->inode_lock[DIRTY_META]);
1124                         return 0;
1125                 }
1126                 fi = list_first_entry(head, struct f2fs_inode_info,
1127                                                         gdirty_list);
1128                 inode = igrab(&fi->vfs_inode);
1129                 spin_unlock(&sbi->inode_lock[DIRTY_META]);
1130                 if (inode) {
1131                         sync_inode_metadata(inode, 0);
1132
1133                         /* it's on eviction */
1134                         if (is_inode_flag_set(inode, FI_DIRTY_INODE))
1135                                 f2fs_update_inode_page(inode);
1136                         iput(inode);
1137                 }
1138         }
1139         return 0;
1140 }
1141
1142 static void __prepare_cp_block(struct f2fs_sb_info *sbi)
1143 {
1144         struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
1145         struct f2fs_nm_info *nm_i = NM_I(sbi);
1146         nid_t last_nid = nm_i->next_scan_nid;
1147
1148         next_free_nid(sbi, &last_nid);
1149         ckpt->valid_block_count = cpu_to_le64(valid_user_blocks(sbi));
1150         ckpt->valid_node_count = cpu_to_le32(valid_node_count(sbi));
1151         ckpt->valid_inode_count = cpu_to_le32(valid_inode_count(sbi));
1152         ckpt->next_free_nid = cpu_to_le32(last_nid);
1153 }
1154
1155 static bool __need_flush_quota(struct f2fs_sb_info *sbi)
1156 {
1157         bool ret = false;
1158
1159         if (!is_journalled_quota(sbi))
1160                 return false;
1161
1162         if (!f2fs_down_write_trylock(&sbi->quota_sem))
1163                 return true;
1164         if (is_sbi_flag_set(sbi, SBI_QUOTA_SKIP_FLUSH)) {
1165                 ret = false;
1166         } else if (is_sbi_flag_set(sbi, SBI_QUOTA_NEED_REPAIR)) {
1167                 ret = false;
1168         } else if (is_sbi_flag_set(sbi, SBI_QUOTA_NEED_FLUSH)) {
1169                 clear_sbi_flag(sbi, SBI_QUOTA_NEED_FLUSH);
1170                 ret = true;
1171         } else if (get_pages(sbi, F2FS_DIRTY_QDATA)) {
1172                 ret = true;
1173         }
1174         f2fs_up_write(&sbi->quota_sem);
1175         return ret;
1176 }
1177
1178 /*
1179  * Freeze all the FS-operations for checkpoint.
1180  */
1181 static int block_operations(struct f2fs_sb_info *sbi)
1182 {
1183         struct writeback_control wbc = {
1184                 .sync_mode = WB_SYNC_ALL,
1185                 .nr_to_write = LONG_MAX,
1186                 .for_reclaim = 0,
1187         };
1188         int err = 0, cnt = 0;
1189
1190         /*
1191          * Let's flush inline_data in dirty node pages.
1192          */
1193         f2fs_flush_inline_data(sbi);
1194
1195 retry_flush_quotas:
1196         f2fs_lock_all(sbi);
1197         if (__need_flush_quota(sbi)) {
1198                 int locked;
1199
1200                 if (++cnt > DEFAULT_RETRY_QUOTA_FLUSH_COUNT) {
1201                         set_sbi_flag(sbi, SBI_QUOTA_SKIP_FLUSH);
1202                         set_sbi_flag(sbi, SBI_QUOTA_NEED_FLUSH);
1203                         goto retry_flush_dents;
1204                 }
1205                 f2fs_unlock_all(sbi);
1206
1207                 /* only failed during mount/umount/freeze/quotactl */
1208                 locked = down_read_trylock(&sbi->sb->s_umount);
1209                 f2fs_quota_sync(sbi->sb, -1);
1210                 if (locked)
1211                         up_read(&sbi->sb->s_umount);
1212                 cond_resched();
1213                 goto retry_flush_quotas;
1214         }
1215
1216 retry_flush_dents:
1217         /* write all the dirty dentry pages */
1218         if (get_pages(sbi, F2FS_DIRTY_DENTS)) {
1219                 f2fs_unlock_all(sbi);
1220                 err = f2fs_sync_dirty_inodes(sbi, DIR_INODE);
1221                 if (err)
1222                         return err;
1223                 cond_resched();
1224                 goto retry_flush_quotas;
1225         }
1226
1227         /*
1228          * POR: we should ensure that there are no dirty node pages
1229          * until finishing nat/sit flush. inode->i_blocks can be updated.
1230          */
1231         f2fs_down_write(&sbi->node_change);
1232
1233         if (get_pages(sbi, F2FS_DIRTY_IMETA)) {
1234                 f2fs_up_write(&sbi->node_change);
1235                 f2fs_unlock_all(sbi);
1236                 err = f2fs_sync_inode_meta(sbi);
1237                 if (err)
1238                         return err;
1239                 cond_resched();
1240                 goto retry_flush_quotas;
1241         }
1242
1243 retry_flush_nodes:
1244         f2fs_down_write(&sbi->node_write);
1245
1246         if (get_pages(sbi, F2FS_DIRTY_NODES)) {
1247                 f2fs_up_write(&sbi->node_write);
1248                 atomic_inc(&sbi->wb_sync_req[NODE]);
1249                 err = f2fs_sync_node_pages(sbi, &wbc, false, FS_CP_NODE_IO);
1250                 atomic_dec(&sbi->wb_sync_req[NODE]);
1251                 if (err) {
1252                         f2fs_up_write(&sbi->node_change);
1253                         f2fs_unlock_all(sbi);
1254                         return err;
1255                 }
1256                 cond_resched();
1257                 goto retry_flush_nodes;
1258         }
1259
1260         /*
1261          * sbi->node_change is used only for AIO write_begin path which produces
1262          * dirty node blocks and some checkpoint values by block allocation.
1263          */
1264         __prepare_cp_block(sbi);
1265         f2fs_up_write(&sbi->node_change);
1266         return err;
1267 }
1268
1269 static void unblock_operations(struct f2fs_sb_info *sbi)
1270 {
1271         f2fs_up_write(&sbi->node_write);
1272         f2fs_unlock_all(sbi);
1273 }
1274
1275 void f2fs_wait_on_all_pages(struct f2fs_sb_info *sbi, int type)
1276 {
1277         DEFINE_WAIT(wait);
1278
1279         for (;;) {
1280                 if (!get_pages(sbi, type))
1281                         break;
1282
1283                 if (unlikely(f2fs_cp_error(sbi)))
1284                         break;
1285
1286                 if (type == F2FS_DIRTY_META)
1287                         f2fs_sync_meta_pages(sbi, META, LONG_MAX,
1288                                                         FS_CP_META_IO);
1289                 else if (type == F2FS_WB_CP_DATA)
1290                         f2fs_submit_merged_write(sbi, DATA);
1291
1292                 prepare_to_wait(&sbi->cp_wait, &wait, TASK_UNINTERRUPTIBLE);
1293                 io_schedule_timeout(DEFAULT_IO_TIMEOUT);
1294         }
1295         finish_wait(&sbi->cp_wait, &wait);
1296 }
1297
1298 static void update_ckpt_flags(struct f2fs_sb_info *sbi, struct cp_control *cpc)
1299 {
1300         unsigned long orphan_num = sbi->im[ORPHAN_INO].ino_num;
1301         struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
1302         unsigned long flags;
1303
1304         if (cpc->reason & CP_UMOUNT) {
1305                 if (le32_to_cpu(ckpt->cp_pack_total_block_count) +
1306                         NM_I(sbi)->nat_bits_blocks > sbi->blocks_per_seg) {
1307                         clear_ckpt_flags(sbi, CP_NAT_BITS_FLAG);
1308                         f2fs_notice(sbi, "Disable nat_bits due to no space");
1309                 } else if (!is_set_ckpt_flags(sbi, CP_NAT_BITS_FLAG) &&
1310                                                 f2fs_nat_bitmap_enabled(sbi)) {
1311                         f2fs_enable_nat_bits(sbi);
1312                         set_ckpt_flags(sbi, CP_NAT_BITS_FLAG);
1313                         f2fs_notice(sbi, "Rebuild and enable nat_bits");
1314                 }
1315         }
1316
1317         spin_lock_irqsave(&sbi->cp_lock, flags);
1318
1319         if (cpc->reason & CP_TRIMMED)
1320                 __set_ckpt_flags(ckpt, CP_TRIMMED_FLAG);
1321         else
1322                 __clear_ckpt_flags(ckpt, CP_TRIMMED_FLAG);
1323
1324         if (cpc->reason & CP_UMOUNT)
1325                 __set_ckpt_flags(ckpt, CP_UMOUNT_FLAG);
1326         else
1327                 __clear_ckpt_flags(ckpt, CP_UMOUNT_FLAG);
1328
1329         if (cpc->reason & CP_FASTBOOT)
1330                 __set_ckpt_flags(ckpt, CP_FASTBOOT_FLAG);
1331         else
1332                 __clear_ckpt_flags(ckpt, CP_FASTBOOT_FLAG);
1333
1334         if (orphan_num)
1335                 __set_ckpt_flags(ckpt, CP_ORPHAN_PRESENT_FLAG);
1336         else
1337                 __clear_ckpt_flags(ckpt, CP_ORPHAN_PRESENT_FLAG);
1338
1339         if (is_sbi_flag_set(sbi, SBI_NEED_FSCK))
1340                 __set_ckpt_flags(ckpt, CP_FSCK_FLAG);
1341
1342         if (is_sbi_flag_set(sbi, SBI_IS_RESIZEFS))
1343                 __set_ckpt_flags(ckpt, CP_RESIZEFS_FLAG);
1344         else
1345                 __clear_ckpt_flags(ckpt, CP_RESIZEFS_FLAG);
1346
1347         if (is_sbi_flag_set(sbi, SBI_CP_DISABLED))
1348                 __set_ckpt_flags(ckpt, CP_DISABLED_FLAG);
1349         else
1350                 __clear_ckpt_flags(ckpt, CP_DISABLED_FLAG);
1351
1352         if (is_sbi_flag_set(sbi, SBI_CP_DISABLED_QUICK))
1353                 __set_ckpt_flags(ckpt, CP_DISABLED_QUICK_FLAG);
1354         else
1355                 __clear_ckpt_flags(ckpt, CP_DISABLED_QUICK_FLAG);
1356
1357         if (is_sbi_flag_set(sbi, SBI_QUOTA_SKIP_FLUSH))
1358                 __set_ckpt_flags(ckpt, CP_QUOTA_NEED_FSCK_FLAG);
1359         else
1360                 __clear_ckpt_flags(ckpt, CP_QUOTA_NEED_FSCK_FLAG);
1361
1362         if (is_sbi_flag_set(sbi, SBI_QUOTA_NEED_REPAIR))
1363                 __set_ckpt_flags(ckpt, CP_QUOTA_NEED_FSCK_FLAG);
1364
1365         /* set this flag to activate crc|cp_ver for recovery */
1366         __set_ckpt_flags(ckpt, CP_CRC_RECOVERY_FLAG);
1367         __clear_ckpt_flags(ckpt, CP_NOCRC_RECOVERY_FLAG);
1368
1369         spin_unlock_irqrestore(&sbi->cp_lock, flags);
1370 }
1371
1372 static void commit_checkpoint(struct f2fs_sb_info *sbi,
1373         void *src, block_t blk_addr)
1374 {
1375         struct writeback_control wbc = {
1376                 .for_reclaim = 0,
1377         };
1378
1379         /*
1380          * pagevec_lookup_tag and lock_page again will take
1381          * some extra time. Therefore, f2fs_update_meta_pages and
1382          * f2fs_sync_meta_pages are combined in this function.
1383          */
1384         struct page *page = f2fs_grab_meta_page(sbi, blk_addr);
1385         int err;
1386
1387         f2fs_wait_on_page_writeback(page, META, true, true);
1388
1389         memcpy(page_address(page), src, PAGE_SIZE);
1390
1391         set_page_dirty(page);
1392         if (unlikely(!clear_page_dirty_for_io(page)))
1393                 f2fs_bug_on(sbi, 1);
1394
1395         /* writeout cp pack 2 page */
1396         err = __f2fs_write_meta_page(page, &wbc, FS_CP_META_IO);
1397         if (unlikely(err && f2fs_cp_error(sbi))) {
1398                 f2fs_put_page(page, 1);
1399                 return;
1400         }
1401
1402         f2fs_bug_on(sbi, err);
1403         f2fs_put_page(page, 0);
1404
1405         /* submit checkpoint (with barrier if NOBARRIER is not set) */
1406         f2fs_submit_merged_write(sbi, META_FLUSH);
1407 }
1408
1409 static inline u64 get_sectors_written(struct block_device *bdev)
1410 {
1411         return (u64)part_stat_read(bdev, sectors[STAT_WRITE]);
1412 }
1413
1414 u64 f2fs_get_sectors_written(struct f2fs_sb_info *sbi)
1415 {
1416         if (f2fs_is_multi_device(sbi)) {
1417                 u64 sectors = 0;
1418                 int i;
1419
1420                 for (i = 0; i < sbi->s_ndevs; i++)
1421                         sectors += get_sectors_written(FDEV(i).bdev);
1422
1423                 return sectors;
1424         }
1425
1426         return get_sectors_written(sbi->sb->s_bdev);
1427 }
1428
1429 static int do_checkpoint(struct f2fs_sb_info *sbi, struct cp_control *cpc)
1430 {
1431         struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
1432         struct f2fs_nm_info *nm_i = NM_I(sbi);
1433         unsigned long orphan_num = sbi->im[ORPHAN_INO].ino_num, flags;
1434         block_t start_blk;
1435         unsigned int data_sum_blocks, orphan_blocks;
1436         __u32 crc32 = 0;
1437         int i;
1438         int cp_payload_blks = __cp_payload(sbi);
1439         struct curseg_info *seg_i = CURSEG_I(sbi, CURSEG_HOT_NODE);
1440         u64 kbytes_written;
1441         int err;
1442
1443         /* Flush all the NAT/SIT pages */
1444         f2fs_sync_meta_pages(sbi, META, LONG_MAX, FS_CP_META_IO);
1445
1446         /* start to update checkpoint, cp ver is already updated previously */
1447         ckpt->elapsed_time = cpu_to_le64(get_mtime(sbi, true));
1448         ckpt->free_segment_count = cpu_to_le32(free_segments(sbi));
1449         for (i = 0; i < NR_CURSEG_NODE_TYPE; i++) {
1450                 ckpt->cur_node_segno[i] =
1451                         cpu_to_le32(curseg_segno(sbi, i + CURSEG_HOT_NODE));
1452                 ckpt->cur_node_blkoff[i] =
1453                         cpu_to_le16(curseg_blkoff(sbi, i + CURSEG_HOT_NODE));
1454                 ckpt->alloc_type[i + CURSEG_HOT_NODE] =
1455                                 curseg_alloc_type(sbi, i + CURSEG_HOT_NODE);
1456         }
1457         for (i = 0; i < NR_CURSEG_DATA_TYPE; i++) {
1458                 ckpt->cur_data_segno[i] =
1459                         cpu_to_le32(curseg_segno(sbi, i + CURSEG_HOT_DATA));
1460                 ckpt->cur_data_blkoff[i] =
1461                         cpu_to_le16(curseg_blkoff(sbi, i + CURSEG_HOT_DATA));
1462                 ckpt->alloc_type[i + CURSEG_HOT_DATA] =
1463                                 curseg_alloc_type(sbi, i + CURSEG_HOT_DATA);
1464         }
1465
1466         /* 2 cp + n data seg summary + orphan inode blocks */
1467         data_sum_blocks = f2fs_npages_for_summary_flush(sbi, false);
1468         spin_lock_irqsave(&sbi->cp_lock, flags);
1469         if (data_sum_blocks < NR_CURSEG_DATA_TYPE)
1470                 __set_ckpt_flags(ckpt, CP_COMPACT_SUM_FLAG);
1471         else
1472                 __clear_ckpt_flags(ckpt, CP_COMPACT_SUM_FLAG);
1473         spin_unlock_irqrestore(&sbi->cp_lock, flags);
1474
1475         orphan_blocks = GET_ORPHAN_BLOCKS(orphan_num);
1476         ckpt->cp_pack_start_sum = cpu_to_le32(1 + cp_payload_blks +
1477                         orphan_blocks);
1478
1479         if (__remain_node_summaries(cpc->reason))
1480                 ckpt->cp_pack_total_block_count = cpu_to_le32(F2FS_CP_PACKS +
1481                                 cp_payload_blks + data_sum_blocks +
1482                                 orphan_blocks + NR_CURSEG_NODE_TYPE);
1483         else
1484                 ckpt->cp_pack_total_block_count = cpu_to_le32(F2FS_CP_PACKS +
1485                                 cp_payload_blks + data_sum_blocks +
1486                                 orphan_blocks);
1487
1488         /* update ckpt flag for checkpoint */
1489         update_ckpt_flags(sbi, cpc);
1490
1491         /* update SIT/NAT bitmap */
1492         get_sit_bitmap(sbi, __bitmap_ptr(sbi, SIT_BITMAP));
1493         get_nat_bitmap(sbi, __bitmap_ptr(sbi, NAT_BITMAP));
1494
1495         crc32 = f2fs_checkpoint_chksum(sbi, ckpt);
1496         *((__le32 *)((unsigned char *)ckpt +
1497                                 le32_to_cpu(ckpt->checksum_offset)))
1498                                 = cpu_to_le32(crc32);
1499
1500         start_blk = __start_cp_next_addr(sbi);
1501
1502         /* write nat bits */
1503         if ((cpc->reason & CP_UMOUNT) &&
1504                         is_set_ckpt_flags(sbi, CP_NAT_BITS_FLAG)) {
1505                 __u64 cp_ver = cur_cp_version(ckpt);
1506                 block_t blk;
1507
1508                 cp_ver |= ((__u64)crc32 << 32);
1509                 *(__le64 *)nm_i->nat_bits = cpu_to_le64(cp_ver);
1510
1511                 blk = start_blk + sbi->blocks_per_seg - nm_i->nat_bits_blocks;
1512                 for (i = 0; i < nm_i->nat_bits_blocks; i++)
1513                         f2fs_update_meta_page(sbi, nm_i->nat_bits +
1514                                         (i << F2FS_BLKSIZE_BITS), blk + i);
1515         }
1516
1517         /* write out checkpoint buffer at block 0 */
1518         f2fs_update_meta_page(sbi, ckpt, start_blk++);
1519
1520         for (i = 1; i < 1 + cp_payload_blks; i++)
1521                 f2fs_update_meta_page(sbi, (char *)ckpt + i * F2FS_BLKSIZE,
1522                                                         start_blk++);
1523
1524         if (orphan_num) {
1525                 write_orphan_inodes(sbi, start_blk);
1526                 start_blk += orphan_blocks;
1527         }
1528
1529         f2fs_write_data_summaries(sbi, start_blk);
1530         start_blk += data_sum_blocks;
1531
1532         /* Record write statistics in the hot node summary */
1533         kbytes_written = sbi->kbytes_written;
1534         kbytes_written += (f2fs_get_sectors_written(sbi) -
1535                                 sbi->sectors_written_start) >> 1;
1536         seg_i->journal->info.kbytes_written = cpu_to_le64(kbytes_written);
1537
1538         if (__remain_node_summaries(cpc->reason)) {
1539                 f2fs_write_node_summaries(sbi, start_blk);
1540                 start_blk += NR_CURSEG_NODE_TYPE;
1541         }
1542
1543         /* update user_block_counts */
1544         sbi->last_valid_block_count = sbi->total_valid_block_count;
1545         percpu_counter_set(&sbi->alloc_valid_block_count, 0);
1546
1547         /* Here, we have one bio having CP pack except cp pack 2 page */
1548         f2fs_sync_meta_pages(sbi, META, LONG_MAX, FS_CP_META_IO);
1549         /* Wait for all dirty meta pages to be submitted for IO */
1550         f2fs_wait_on_all_pages(sbi, F2FS_DIRTY_META);
1551
1552         /* wait for previous submitted meta pages writeback */
1553         f2fs_wait_on_all_pages(sbi, F2FS_WB_CP_DATA);
1554
1555         /* flush all device cache */
1556         err = f2fs_flush_device_cache(sbi);
1557         if (err)
1558                 return err;
1559
1560         /* barrier and flush checkpoint cp pack 2 page if it can */
1561         commit_checkpoint(sbi, ckpt, start_blk);
1562         f2fs_wait_on_all_pages(sbi, F2FS_WB_CP_DATA);
1563
1564         /*
1565          * invalidate intermediate page cache borrowed from meta inode which are
1566          * used for migration of encrypted, verity or compressed inode's blocks.
1567          */
1568         if (f2fs_sb_has_encrypt(sbi) || f2fs_sb_has_verity(sbi) ||
1569                 f2fs_sb_has_compression(sbi))
1570                 invalidate_mapping_pages(META_MAPPING(sbi),
1571                                 MAIN_BLKADDR(sbi), MAX_BLKADDR(sbi) - 1);
1572
1573         f2fs_release_ino_entry(sbi, false);
1574
1575         f2fs_reset_fsync_node_info(sbi);
1576
1577         clear_sbi_flag(sbi, SBI_IS_DIRTY);
1578         clear_sbi_flag(sbi, SBI_NEED_CP);
1579         clear_sbi_flag(sbi, SBI_QUOTA_SKIP_FLUSH);
1580
1581         spin_lock(&sbi->stat_lock);
1582         sbi->unusable_block_count = 0;
1583         spin_unlock(&sbi->stat_lock);
1584
1585         __set_cp_next_pack(sbi);
1586
1587         /*
1588          * redirty superblock if metadata like node page or inode cache is
1589          * updated during writing checkpoint.
1590          */
1591         if (get_pages(sbi, F2FS_DIRTY_NODES) ||
1592                         get_pages(sbi, F2FS_DIRTY_IMETA))
1593                 set_sbi_flag(sbi, SBI_IS_DIRTY);
1594
1595         f2fs_bug_on(sbi, get_pages(sbi, F2FS_DIRTY_DENTS));
1596
1597         return unlikely(f2fs_cp_error(sbi)) ? -EIO : 0;
1598 }
1599
1600 int f2fs_write_checkpoint(struct f2fs_sb_info *sbi, struct cp_control *cpc)
1601 {
1602         struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
1603         unsigned long long ckpt_ver;
1604         int err = 0;
1605
1606         if (f2fs_readonly(sbi->sb) || f2fs_hw_is_readonly(sbi))
1607                 return -EROFS;
1608
1609         if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED))) {
1610                 if (cpc->reason != CP_PAUSE)
1611                         return 0;
1612                 f2fs_warn(sbi, "Start checkpoint disabled!");
1613         }
1614         if (cpc->reason != CP_RESIZE)
1615                 f2fs_down_write(&sbi->cp_global_sem);
1616
1617         if (!is_sbi_flag_set(sbi, SBI_IS_DIRTY) &&
1618                 ((cpc->reason & CP_FASTBOOT) || (cpc->reason & CP_SYNC) ||
1619                 ((cpc->reason & CP_DISCARD) && !sbi->discard_blks)))
1620                 goto out;
1621         if (unlikely(f2fs_cp_error(sbi))) {
1622                 err = -EIO;
1623                 goto out;
1624         }
1625
1626         trace_f2fs_write_checkpoint(sbi->sb, cpc->reason, "start block_ops");
1627
1628         err = block_operations(sbi);
1629         if (err)
1630                 goto out;
1631
1632         trace_f2fs_write_checkpoint(sbi->sb, cpc->reason, "finish block_ops");
1633
1634         f2fs_flush_merged_writes(sbi);
1635
1636         /* this is the case of multiple fstrims without any changes */
1637         if (cpc->reason & CP_DISCARD) {
1638                 if (!f2fs_exist_trim_candidates(sbi, cpc)) {
1639                         unblock_operations(sbi);
1640                         goto out;
1641                 }
1642
1643                 if (NM_I(sbi)->nat_cnt[DIRTY_NAT] == 0 &&
1644                                 SIT_I(sbi)->dirty_sentries == 0 &&
1645                                 prefree_segments(sbi) == 0) {
1646                         f2fs_flush_sit_entries(sbi, cpc);
1647                         f2fs_clear_prefree_segments(sbi, cpc);
1648                         unblock_operations(sbi);
1649                         goto out;
1650                 }
1651         }
1652
1653         /*
1654          * update checkpoint pack index
1655          * Increase the version number so that
1656          * SIT entries and seg summaries are written at correct place
1657          */
1658         ckpt_ver = cur_cp_version(ckpt);
1659         ckpt->checkpoint_ver = cpu_to_le64(++ckpt_ver);
1660
1661         /* write cached NAT/SIT entries to NAT/SIT area */
1662         err = f2fs_flush_nat_entries(sbi, cpc);
1663         if (err) {
1664                 f2fs_err(sbi, "f2fs_flush_nat_entries failed err:%d, stop checkpoint", err);
1665                 f2fs_bug_on(sbi, !f2fs_cp_error(sbi));
1666                 goto stop;
1667         }
1668
1669         f2fs_flush_sit_entries(sbi, cpc);
1670
1671         /* save inmem log status */
1672         f2fs_save_inmem_curseg(sbi);
1673
1674         err = do_checkpoint(sbi, cpc);
1675         if (err) {
1676                 f2fs_err(sbi, "do_checkpoint failed err:%d, stop checkpoint", err);
1677                 f2fs_bug_on(sbi, !f2fs_cp_error(sbi));
1678                 f2fs_release_discard_addrs(sbi);
1679         } else {
1680                 f2fs_clear_prefree_segments(sbi, cpc);
1681         }
1682
1683         f2fs_restore_inmem_curseg(sbi);
1684 stop:
1685         unblock_operations(sbi);
1686         stat_inc_cp_count(sbi->stat_info);
1687
1688         if (cpc->reason & CP_RECOVERY)
1689                 f2fs_notice(sbi, "checkpoint: version = %llx", ckpt_ver);
1690
1691         /* update CP_TIME to trigger checkpoint periodically */
1692         f2fs_update_time(sbi, CP_TIME);
1693         trace_f2fs_write_checkpoint(sbi->sb, cpc->reason, "finish checkpoint");
1694 out:
1695         if (cpc->reason != CP_RESIZE)
1696                 f2fs_up_write(&sbi->cp_global_sem);
1697         return err;
1698 }
1699
1700 void f2fs_init_ino_entry_info(struct f2fs_sb_info *sbi)
1701 {
1702         int i;
1703
1704         for (i = 0; i < MAX_INO_ENTRY; i++) {
1705                 struct inode_management *im = &sbi->im[i];
1706
1707                 INIT_RADIX_TREE(&im->ino_root, GFP_ATOMIC);
1708                 spin_lock_init(&im->ino_lock);
1709                 INIT_LIST_HEAD(&im->ino_list);
1710                 im->ino_num = 0;
1711         }
1712
1713         sbi->max_orphans = (sbi->blocks_per_seg - F2FS_CP_PACKS -
1714                         NR_CURSEG_PERSIST_TYPE - __cp_payload(sbi)) *
1715                                 F2FS_ORPHANS_PER_BLOCK;
1716 }
1717
1718 int __init f2fs_create_checkpoint_caches(void)
1719 {
1720         ino_entry_slab = f2fs_kmem_cache_create("f2fs_ino_entry",
1721                         sizeof(struct ino_entry));
1722         if (!ino_entry_slab)
1723                 return -ENOMEM;
1724         f2fs_inode_entry_slab = f2fs_kmem_cache_create("f2fs_inode_entry",
1725                         sizeof(struct inode_entry));
1726         if (!f2fs_inode_entry_slab) {
1727                 kmem_cache_destroy(ino_entry_slab);
1728                 return -ENOMEM;
1729         }
1730         return 0;
1731 }
1732
1733 void f2fs_destroy_checkpoint_caches(void)
1734 {
1735         kmem_cache_destroy(ino_entry_slab);
1736         kmem_cache_destroy(f2fs_inode_entry_slab);
1737 }
1738
1739 static int __write_checkpoint_sync(struct f2fs_sb_info *sbi)
1740 {
1741         struct cp_control cpc = { .reason = CP_SYNC, };
1742         int err;
1743
1744         f2fs_down_write(&sbi->gc_lock);
1745         err = f2fs_write_checkpoint(sbi, &cpc);
1746         f2fs_up_write(&sbi->gc_lock);
1747
1748         return err;
1749 }
1750
1751 static void __checkpoint_and_complete_reqs(struct f2fs_sb_info *sbi)
1752 {
1753         struct ckpt_req_control *cprc = &sbi->cprc_info;
1754         struct ckpt_req *req, *next;
1755         struct llist_node *dispatch_list;
1756         u64 sum_diff = 0, diff, count = 0;
1757         int ret;
1758
1759         dispatch_list = llist_del_all(&cprc->issue_list);
1760         if (!dispatch_list)
1761                 return;
1762         dispatch_list = llist_reverse_order(dispatch_list);
1763
1764         ret = __write_checkpoint_sync(sbi);
1765         atomic_inc(&cprc->issued_ckpt);
1766
1767         llist_for_each_entry_safe(req, next, dispatch_list, llnode) {
1768                 diff = (u64)ktime_ms_delta(ktime_get(), req->queue_time);
1769                 req->ret = ret;
1770                 complete(&req->wait);
1771
1772                 sum_diff += diff;
1773                 count++;
1774         }
1775         atomic_sub(count, &cprc->queued_ckpt);
1776         atomic_add(count, &cprc->total_ckpt);
1777
1778         spin_lock(&cprc->stat_lock);
1779         cprc->cur_time = (unsigned int)div64_u64(sum_diff, count);
1780         if (cprc->peak_time < cprc->cur_time)
1781                 cprc->peak_time = cprc->cur_time;
1782         spin_unlock(&cprc->stat_lock);
1783 }
1784
1785 static int issue_checkpoint_thread(void *data)
1786 {
1787         struct f2fs_sb_info *sbi = data;
1788         struct ckpt_req_control *cprc = &sbi->cprc_info;
1789         wait_queue_head_t *q = &cprc->ckpt_wait_queue;
1790 repeat:
1791         if (kthread_should_stop())
1792                 return 0;
1793
1794         if (!llist_empty(&cprc->issue_list))
1795                 __checkpoint_and_complete_reqs(sbi);
1796
1797         wait_event_interruptible(*q,
1798                 kthread_should_stop() || !llist_empty(&cprc->issue_list));
1799         goto repeat;
1800 }
1801
1802 static void flush_remained_ckpt_reqs(struct f2fs_sb_info *sbi,
1803                 struct ckpt_req *wait_req)
1804 {
1805         struct ckpt_req_control *cprc = &sbi->cprc_info;
1806
1807         if (!llist_empty(&cprc->issue_list)) {
1808                 __checkpoint_and_complete_reqs(sbi);
1809         } else {
1810                 /* already dispatched by issue_checkpoint_thread */
1811                 if (wait_req)
1812                         wait_for_completion(&wait_req->wait);
1813         }
1814 }
1815
1816 static void init_ckpt_req(struct ckpt_req *req)
1817 {
1818         memset(req, 0, sizeof(struct ckpt_req));
1819
1820         init_completion(&req->wait);
1821         req->queue_time = ktime_get();
1822 }
1823
1824 int f2fs_issue_checkpoint(struct f2fs_sb_info *sbi)
1825 {
1826         struct ckpt_req_control *cprc = &sbi->cprc_info;
1827         struct ckpt_req req;
1828         struct cp_control cpc;
1829
1830         cpc.reason = __get_cp_reason(sbi);
1831         if (!test_opt(sbi, MERGE_CHECKPOINT) || cpc.reason != CP_SYNC) {
1832                 int ret;
1833
1834                 f2fs_down_write(&sbi->gc_lock);
1835                 ret = f2fs_write_checkpoint(sbi, &cpc);
1836                 f2fs_up_write(&sbi->gc_lock);
1837
1838                 return ret;
1839         }
1840
1841         if (!cprc->f2fs_issue_ckpt)
1842                 return __write_checkpoint_sync(sbi);
1843
1844         init_ckpt_req(&req);
1845
1846         llist_add(&req.llnode, &cprc->issue_list);
1847         atomic_inc(&cprc->queued_ckpt);
1848
1849         /*
1850          * update issue_list before we wake up issue_checkpoint thread,
1851          * this smp_mb() pairs with another barrier in ___wait_event(),
1852          * see more details in comments of waitqueue_active().
1853          */
1854         smp_mb();
1855
1856         if (waitqueue_active(&cprc->ckpt_wait_queue))
1857                 wake_up(&cprc->ckpt_wait_queue);
1858
1859         if (cprc->f2fs_issue_ckpt)
1860                 wait_for_completion(&req.wait);
1861         else
1862                 flush_remained_ckpt_reqs(sbi, &req);
1863
1864         return req.ret;
1865 }
1866
1867 int f2fs_start_ckpt_thread(struct f2fs_sb_info *sbi)
1868 {
1869         dev_t dev = sbi->sb->s_bdev->bd_dev;
1870         struct ckpt_req_control *cprc = &sbi->cprc_info;
1871
1872         if (cprc->f2fs_issue_ckpt)
1873                 return 0;
1874
1875         cprc->f2fs_issue_ckpt = kthread_run(issue_checkpoint_thread, sbi,
1876                         "f2fs_ckpt-%u:%u", MAJOR(dev), MINOR(dev));
1877         if (IS_ERR(cprc->f2fs_issue_ckpt)) {
1878                 cprc->f2fs_issue_ckpt = NULL;
1879                 return -ENOMEM;
1880         }
1881
1882         set_task_ioprio(cprc->f2fs_issue_ckpt, cprc->ckpt_thread_ioprio);
1883
1884         return 0;
1885 }
1886
1887 void f2fs_stop_ckpt_thread(struct f2fs_sb_info *sbi)
1888 {
1889         struct ckpt_req_control *cprc = &sbi->cprc_info;
1890
1891         if (cprc->f2fs_issue_ckpt) {
1892                 struct task_struct *ckpt_task = cprc->f2fs_issue_ckpt;
1893
1894                 cprc->f2fs_issue_ckpt = NULL;
1895                 kthread_stop(ckpt_task);
1896
1897                 flush_remained_ckpt_reqs(sbi, NULL);
1898         }
1899 }
1900
1901 void f2fs_init_ckpt_req_control(struct f2fs_sb_info *sbi)
1902 {
1903         struct ckpt_req_control *cprc = &sbi->cprc_info;
1904
1905         atomic_set(&cprc->issued_ckpt, 0);
1906         atomic_set(&cprc->total_ckpt, 0);
1907         atomic_set(&cprc->queued_ckpt, 0);
1908         cprc->ckpt_thread_ioprio = DEFAULT_CHECKPOINT_IOPRIO;
1909         init_waitqueue_head(&cprc->ckpt_wait_queue);
1910         init_llist_head(&cprc->issue_list);
1911         spin_lock_init(&cprc->stat_lock);
1912 }