Merge tag 'lkdtm-next' of https://git.kernel.org/pub/scm/linux/kernel/git/kees/linux...
[linux-2.6-microblaze.git] / fs / f2fs / checkpoint.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * fs/f2fs/checkpoint.c
4  *
5  * Copyright (c) 2012 Samsung Electronics Co., Ltd.
6  *             http://www.samsung.com/
7  */
8 #include <linux/fs.h>
9 #include <linux/bio.h>
10 #include <linux/mpage.h>
11 #include <linux/writeback.h>
12 #include <linux/blkdev.h>
13 #include <linux/f2fs_fs.h>
14 #include <linux/pagevec.h>
15 #include <linux/swap.h>
16 #include <linux/kthread.h>
17
18 #include "f2fs.h"
19 #include "node.h"
20 #include "segment.h"
21 #include "iostat.h"
22 #include <trace/events/f2fs.h>
23
24 #define DEFAULT_CHECKPOINT_IOPRIO (IOPRIO_PRIO_VALUE(IOPRIO_CLASS_BE, 3))
25
26 static struct kmem_cache *ino_entry_slab;
27 struct kmem_cache *f2fs_inode_entry_slab;
28
29 void f2fs_stop_checkpoint(struct f2fs_sb_info *sbi, bool end_io)
30 {
31         f2fs_build_fault_attr(sbi, 0, 0);
32         set_ckpt_flags(sbi, CP_ERROR_FLAG);
33         if (!end_io)
34                 f2fs_flush_merged_writes(sbi);
35 }
36
37 /*
38  * We guarantee no failure on the returned page.
39  */
40 struct page *f2fs_grab_meta_page(struct f2fs_sb_info *sbi, pgoff_t index)
41 {
42         struct address_space *mapping = META_MAPPING(sbi);
43         struct page *page;
44 repeat:
45         page = f2fs_grab_cache_page(mapping, index, false);
46         if (!page) {
47                 cond_resched();
48                 goto repeat;
49         }
50         f2fs_wait_on_page_writeback(page, META, true, true);
51         if (!PageUptodate(page))
52                 SetPageUptodate(page);
53         return page;
54 }
55
56 static struct page *__get_meta_page(struct f2fs_sb_info *sbi, pgoff_t index,
57                                                         bool is_meta)
58 {
59         struct address_space *mapping = META_MAPPING(sbi);
60         struct page *page;
61         struct f2fs_io_info fio = {
62                 .sbi = sbi,
63                 .type = META,
64                 .op = REQ_OP_READ,
65                 .op_flags = REQ_META | REQ_PRIO,
66                 .old_blkaddr = index,
67                 .new_blkaddr = index,
68                 .encrypted_page = NULL,
69                 .is_por = !is_meta,
70         };
71         int err;
72
73         if (unlikely(!is_meta))
74                 fio.op_flags &= ~REQ_META;
75 repeat:
76         page = f2fs_grab_cache_page(mapping, index, false);
77         if (!page) {
78                 cond_resched();
79                 goto repeat;
80         }
81         if (PageUptodate(page))
82                 goto out;
83
84         fio.page = page;
85
86         err = f2fs_submit_page_bio(&fio);
87         if (err) {
88                 f2fs_put_page(page, 1);
89                 return ERR_PTR(err);
90         }
91
92         f2fs_update_iostat(sbi, FS_META_READ_IO, F2FS_BLKSIZE);
93
94         lock_page(page);
95         if (unlikely(page->mapping != mapping)) {
96                 f2fs_put_page(page, 1);
97                 goto repeat;
98         }
99
100         if (unlikely(!PageUptodate(page))) {
101                 if (page->index == sbi->metapage_eio_ofs) {
102                         if (sbi->metapage_eio_cnt++ == MAX_RETRY_META_PAGE_EIO)
103                                 set_ckpt_flags(sbi, CP_ERROR_FLAG);
104                 } else {
105                         sbi->metapage_eio_ofs = page->index;
106                         sbi->metapage_eio_cnt = 0;
107                 }
108                 f2fs_put_page(page, 1);
109                 return ERR_PTR(-EIO);
110         }
111 out:
112         return page;
113 }
114
115 struct page *f2fs_get_meta_page(struct f2fs_sb_info *sbi, pgoff_t index)
116 {
117         return __get_meta_page(sbi, index, true);
118 }
119
120 struct page *f2fs_get_meta_page_retry(struct f2fs_sb_info *sbi, pgoff_t index)
121 {
122         struct page *page;
123         int count = 0;
124
125 retry:
126         page = __get_meta_page(sbi, index, true);
127         if (IS_ERR(page)) {
128                 if (PTR_ERR(page) == -EIO &&
129                                 ++count <= DEFAULT_RETRY_IO_COUNT)
130                         goto retry;
131                 f2fs_stop_checkpoint(sbi, false);
132         }
133         return page;
134 }
135
136 /* for POR only */
137 struct page *f2fs_get_tmp_page(struct f2fs_sb_info *sbi, pgoff_t index)
138 {
139         return __get_meta_page(sbi, index, false);
140 }
141
142 static bool __is_bitmap_valid(struct f2fs_sb_info *sbi, block_t blkaddr,
143                                                         int type)
144 {
145         struct seg_entry *se;
146         unsigned int segno, offset;
147         bool exist;
148
149         if (type != DATA_GENERIC_ENHANCE && type != DATA_GENERIC_ENHANCE_READ)
150                 return true;
151
152         segno = GET_SEGNO(sbi, blkaddr);
153         offset = GET_BLKOFF_FROM_SEG0(sbi, blkaddr);
154         se = get_seg_entry(sbi, segno);
155
156         exist = f2fs_test_bit(offset, se->cur_valid_map);
157         if (!exist && type == DATA_GENERIC_ENHANCE) {
158                 f2fs_err(sbi, "Inconsistent error blkaddr:%u, sit bitmap:%d",
159                          blkaddr, exist);
160                 set_sbi_flag(sbi, SBI_NEED_FSCK);
161                 WARN_ON(1);
162         }
163         return exist;
164 }
165
166 bool f2fs_is_valid_blkaddr(struct f2fs_sb_info *sbi,
167                                         block_t blkaddr, int type)
168 {
169         switch (type) {
170         case META_NAT:
171                 break;
172         case META_SIT:
173                 if (unlikely(blkaddr >= SIT_BLK_CNT(sbi)))
174                         return false;
175                 break;
176         case META_SSA:
177                 if (unlikely(blkaddr >= MAIN_BLKADDR(sbi) ||
178                         blkaddr < SM_I(sbi)->ssa_blkaddr))
179                         return false;
180                 break;
181         case META_CP:
182                 if (unlikely(blkaddr >= SIT_I(sbi)->sit_base_addr ||
183                         blkaddr < __start_cp_addr(sbi)))
184                         return false;
185                 break;
186         case META_POR:
187                 if (unlikely(blkaddr >= MAX_BLKADDR(sbi) ||
188                         blkaddr < MAIN_BLKADDR(sbi)))
189                         return false;
190                 break;
191         case DATA_GENERIC:
192         case DATA_GENERIC_ENHANCE:
193         case DATA_GENERIC_ENHANCE_READ:
194                 if (unlikely(blkaddr >= MAX_BLKADDR(sbi) ||
195                                 blkaddr < MAIN_BLKADDR(sbi))) {
196                         f2fs_warn(sbi, "access invalid blkaddr:%u",
197                                   blkaddr);
198                         set_sbi_flag(sbi, SBI_NEED_FSCK);
199                         WARN_ON(1);
200                         return false;
201                 } else {
202                         return __is_bitmap_valid(sbi, blkaddr, type);
203                 }
204                 break;
205         case META_GENERIC:
206                 if (unlikely(blkaddr < SEG0_BLKADDR(sbi) ||
207                         blkaddr >= MAIN_BLKADDR(sbi)))
208                         return false;
209                 break;
210         default:
211                 BUG();
212         }
213
214         return true;
215 }
216
217 /*
218  * Readahead CP/NAT/SIT/SSA/POR pages
219  */
220 int f2fs_ra_meta_pages(struct f2fs_sb_info *sbi, block_t start, int nrpages,
221                                                         int type, bool sync)
222 {
223         struct page *page;
224         block_t blkno = start;
225         struct f2fs_io_info fio = {
226                 .sbi = sbi,
227                 .type = META,
228                 .op = REQ_OP_READ,
229                 .op_flags = sync ? (REQ_META | REQ_PRIO) : REQ_RAHEAD,
230                 .encrypted_page = NULL,
231                 .in_list = false,
232                 .is_por = (type == META_POR),
233         };
234         struct blk_plug plug;
235         int err;
236
237         if (unlikely(type == META_POR))
238                 fio.op_flags &= ~REQ_META;
239
240         blk_start_plug(&plug);
241         for (; nrpages-- > 0; blkno++) {
242
243                 if (!f2fs_is_valid_blkaddr(sbi, blkno, type))
244                         goto out;
245
246                 switch (type) {
247                 case META_NAT:
248                         if (unlikely(blkno >=
249                                         NAT_BLOCK_OFFSET(NM_I(sbi)->max_nid)))
250                                 blkno = 0;
251                         /* get nat block addr */
252                         fio.new_blkaddr = current_nat_addr(sbi,
253                                         blkno * NAT_ENTRY_PER_BLOCK);
254                         break;
255                 case META_SIT:
256                         if (unlikely(blkno >= TOTAL_SEGS(sbi)))
257                                 goto out;
258                         /* get sit block addr */
259                         fio.new_blkaddr = current_sit_addr(sbi,
260                                         blkno * SIT_ENTRY_PER_BLOCK);
261                         break;
262                 case META_SSA:
263                 case META_CP:
264                 case META_POR:
265                         fio.new_blkaddr = blkno;
266                         break;
267                 default:
268                         BUG();
269                 }
270
271                 page = f2fs_grab_cache_page(META_MAPPING(sbi),
272                                                 fio.new_blkaddr, false);
273                 if (!page)
274                         continue;
275                 if (PageUptodate(page)) {
276                         f2fs_put_page(page, 1);
277                         continue;
278                 }
279
280                 fio.page = page;
281                 err = f2fs_submit_page_bio(&fio);
282                 f2fs_put_page(page, err ? 1 : 0);
283
284                 if (!err)
285                         f2fs_update_iostat(sbi, FS_META_READ_IO, F2FS_BLKSIZE);
286         }
287 out:
288         blk_finish_plug(&plug);
289         return blkno - start;
290 }
291
292 void f2fs_ra_meta_pages_cond(struct f2fs_sb_info *sbi, pgoff_t index,
293                                                         unsigned int ra_blocks)
294 {
295         struct page *page;
296         bool readahead = false;
297
298         if (ra_blocks == RECOVERY_MIN_RA_BLOCKS)
299                 return;
300
301         page = find_get_page(META_MAPPING(sbi), index);
302         if (!page || !PageUptodate(page))
303                 readahead = true;
304         f2fs_put_page(page, 0);
305
306         if (readahead)
307                 f2fs_ra_meta_pages(sbi, index, ra_blocks, META_POR, true);
308 }
309
310 static int __f2fs_write_meta_page(struct page *page,
311                                 struct writeback_control *wbc,
312                                 enum iostat_type io_type)
313 {
314         struct f2fs_sb_info *sbi = F2FS_P_SB(page);
315
316         trace_f2fs_writepage(page, META);
317
318         if (unlikely(f2fs_cp_error(sbi)))
319                 goto redirty_out;
320         if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
321                 goto redirty_out;
322         if (wbc->for_reclaim && page->index < GET_SUM_BLOCK(sbi, 0))
323                 goto redirty_out;
324
325         f2fs_do_write_meta_page(sbi, page, io_type);
326         dec_page_count(sbi, F2FS_DIRTY_META);
327
328         if (wbc->for_reclaim)
329                 f2fs_submit_merged_write_cond(sbi, NULL, page, 0, META);
330
331         unlock_page(page);
332
333         if (unlikely(f2fs_cp_error(sbi)))
334                 f2fs_submit_merged_write(sbi, META);
335
336         return 0;
337
338 redirty_out:
339         redirty_page_for_writepage(wbc, page);
340         return AOP_WRITEPAGE_ACTIVATE;
341 }
342
343 static int f2fs_write_meta_page(struct page *page,
344                                 struct writeback_control *wbc)
345 {
346         return __f2fs_write_meta_page(page, wbc, FS_META_IO);
347 }
348
349 static int f2fs_write_meta_pages(struct address_space *mapping,
350                                 struct writeback_control *wbc)
351 {
352         struct f2fs_sb_info *sbi = F2FS_M_SB(mapping);
353         long diff, written;
354
355         if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
356                 goto skip_write;
357
358         /* collect a number of dirty meta pages and write together */
359         if (wbc->sync_mode != WB_SYNC_ALL &&
360                         get_pages(sbi, F2FS_DIRTY_META) <
361                                         nr_pages_to_skip(sbi, META))
362                 goto skip_write;
363
364         /* if locked failed, cp will flush dirty pages instead */
365         if (!f2fs_down_write_trylock(&sbi->cp_global_sem))
366                 goto skip_write;
367
368         trace_f2fs_writepages(mapping->host, wbc, META);
369         diff = nr_pages_to_write(sbi, META, wbc);
370         written = f2fs_sync_meta_pages(sbi, META, wbc->nr_to_write, FS_META_IO);
371         f2fs_up_write(&sbi->cp_global_sem);
372         wbc->nr_to_write = max((long)0, wbc->nr_to_write - written - diff);
373         return 0;
374
375 skip_write:
376         wbc->pages_skipped += get_pages(sbi, F2FS_DIRTY_META);
377         trace_f2fs_writepages(mapping->host, wbc, META);
378         return 0;
379 }
380
381 long f2fs_sync_meta_pages(struct f2fs_sb_info *sbi, enum page_type type,
382                                 long nr_to_write, enum iostat_type io_type)
383 {
384         struct address_space *mapping = META_MAPPING(sbi);
385         pgoff_t index = 0, prev = ULONG_MAX;
386         struct pagevec pvec;
387         long nwritten = 0;
388         int nr_pages;
389         struct writeback_control wbc = {
390                 .for_reclaim = 0,
391         };
392         struct blk_plug plug;
393
394         pagevec_init(&pvec);
395
396         blk_start_plug(&plug);
397
398         while ((nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
399                                 PAGECACHE_TAG_DIRTY))) {
400                 int i;
401
402                 for (i = 0; i < nr_pages; i++) {
403                         struct page *page = pvec.pages[i];
404
405                         if (prev == ULONG_MAX)
406                                 prev = page->index - 1;
407                         if (nr_to_write != LONG_MAX && page->index != prev + 1) {
408                                 pagevec_release(&pvec);
409                                 goto stop;
410                         }
411
412                         lock_page(page);
413
414                         if (unlikely(page->mapping != mapping)) {
415 continue_unlock:
416                                 unlock_page(page);
417                                 continue;
418                         }
419                         if (!PageDirty(page)) {
420                                 /* someone wrote it for us */
421                                 goto continue_unlock;
422                         }
423
424                         f2fs_wait_on_page_writeback(page, META, true, true);
425
426                         if (!clear_page_dirty_for_io(page))
427                                 goto continue_unlock;
428
429                         if (__f2fs_write_meta_page(page, &wbc, io_type)) {
430                                 unlock_page(page);
431                                 break;
432                         }
433                         nwritten++;
434                         prev = page->index;
435                         if (unlikely(nwritten >= nr_to_write))
436                                 break;
437                 }
438                 pagevec_release(&pvec);
439                 cond_resched();
440         }
441 stop:
442         if (nwritten)
443                 f2fs_submit_merged_write(sbi, type);
444
445         blk_finish_plug(&plug);
446
447         return nwritten;
448 }
449
450 static bool f2fs_dirty_meta_folio(struct address_space *mapping,
451                 struct folio *folio)
452 {
453         trace_f2fs_set_page_dirty(&folio->page, META);
454
455         if (!folio_test_uptodate(folio))
456                 folio_mark_uptodate(folio);
457         if (!folio_test_dirty(folio)) {
458                 filemap_dirty_folio(mapping, folio);
459                 inc_page_count(F2FS_M_SB(mapping), F2FS_DIRTY_META);
460                 set_page_private_reference(&folio->page);
461                 return true;
462         }
463         return false;
464 }
465
466 const struct address_space_operations f2fs_meta_aops = {
467         .writepage      = f2fs_write_meta_page,
468         .writepages     = f2fs_write_meta_pages,
469         .dirty_folio    = f2fs_dirty_meta_folio,
470         .invalidate_folio = f2fs_invalidate_folio,
471         .releasepage    = f2fs_release_page,
472 #ifdef CONFIG_MIGRATION
473         .migratepage    = f2fs_migrate_page,
474 #endif
475 };
476
477 static void __add_ino_entry(struct f2fs_sb_info *sbi, nid_t ino,
478                                                 unsigned int devidx, int type)
479 {
480         struct inode_management *im = &sbi->im[type];
481         struct ino_entry *e = NULL, *new = NULL;
482
483         if (type == FLUSH_INO) {
484                 rcu_read_lock();
485                 e = radix_tree_lookup(&im->ino_root, ino);
486                 rcu_read_unlock();
487         }
488
489 retry:
490         if (!e)
491                 new = f2fs_kmem_cache_alloc(ino_entry_slab,
492                                                 GFP_NOFS, true, NULL);
493
494         radix_tree_preload(GFP_NOFS | __GFP_NOFAIL);
495
496         spin_lock(&im->ino_lock);
497         e = radix_tree_lookup(&im->ino_root, ino);
498         if (!e) {
499                 if (!new) {
500                         spin_unlock(&im->ino_lock);
501                         goto retry;
502                 }
503                 e = new;
504                 if (unlikely(radix_tree_insert(&im->ino_root, ino, e)))
505                         f2fs_bug_on(sbi, 1);
506
507                 memset(e, 0, sizeof(struct ino_entry));
508                 e->ino = ino;
509
510                 list_add_tail(&e->list, &im->ino_list);
511                 if (type != ORPHAN_INO)
512                         im->ino_num++;
513         }
514
515         if (type == FLUSH_INO)
516                 f2fs_set_bit(devidx, (char *)&e->dirty_device);
517
518         spin_unlock(&im->ino_lock);
519         radix_tree_preload_end();
520
521         if (new && e != new)
522                 kmem_cache_free(ino_entry_slab, new);
523 }
524
525 static void __remove_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type)
526 {
527         struct inode_management *im = &sbi->im[type];
528         struct ino_entry *e;
529
530         spin_lock(&im->ino_lock);
531         e = radix_tree_lookup(&im->ino_root, ino);
532         if (e) {
533                 list_del(&e->list);
534                 radix_tree_delete(&im->ino_root, ino);
535                 im->ino_num--;
536                 spin_unlock(&im->ino_lock);
537                 kmem_cache_free(ino_entry_slab, e);
538                 return;
539         }
540         spin_unlock(&im->ino_lock);
541 }
542
543 void f2fs_add_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type)
544 {
545         /* add new dirty ino entry into list */
546         __add_ino_entry(sbi, ino, 0, type);
547 }
548
549 void f2fs_remove_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type)
550 {
551         /* remove dirty ino entry from list */
552         __remove_ino_entry(sbi, ino, type);
553 }
554
555 /* mode should be APPEND_INO, UPDATE_INO or TRANS_DIR_INO */
556 bool f2fs_exist_written_data(struct f2fs_sb_info *sbi, nid_t ino, int mode)
557 {
558         struct inode_management *im = &sbi->im[mode];
559         struct ino_entry *e;
560
561         spin_lock(&im->ino_lock);
562         e = radix_tree_lookup(&im->ino_root, ino);
563         spin_unlock(&im->ino_lock);
564         return e ? true : false;
565 }
566
567 void f2fs_release_ino_entry(struct f2fs_sb_info *sbi, bool all)
568 {
569         struct ino_entry *e, *tmp;
570         int i;
571
572         for (i = all ? ORPHAN_INO : APPEND_INO; i < MAX_INO_ENTRY; i++) {
573                 struct inode_management *im = &sbi->im[i];
574
575                 spin_lock(&im->ino_lock);
576                 list_for_each_entry_safe(e, tmp, &im->ino_list, list) {
577                         list_del(&e->list);
578                         radix_tree_delete(&im->ino_root, e->ino);
579                         kmem_cache_free(ino_entry_slab, e);
580                         im->ino_num--;
581                 }
582                 spin_unlock(&im->ino_lock);
583         }
584 }
585
586 void f2fs_set_dirty_device(struct f2fs_sb_info *sbi, nid_t ino,
587                                         unsigned int devidx, int type)
588 {
589         __add_ino_entry(sbi, ino, devidx, type);
590 }
591
592 bool f2fs_is_dirty_device(struct f2fs_sb_info *sbi, nid_t ino,
593                                         unsigned int devidx, int type)
594 {
595         struct inode_management *im = &sbi->im[type];
596         struct ino_entry *e;
597         bool is_dirty = false;
598
599         spin_lock(&im->ino_lock);
600         e = radix_tree_lookup(&im->ino_root, ino);
601         if (e && f2fs_test_bit(devidx, (char *)&e->dirty_device))
602                 is_dirty = true;
603         spin_unlock(&im->ino_lock);
604         return is_dirty;
605 }
606
607 int f2fs_acquire_orphan_inode(struct f2fs_sb_info *sbi)
608 {
609         struct inode_management *im = &sbi->im[ORPHAN_INO];
610         int err = 0;
611
612         spin_lock(&im->ino_lock);
613
614         if (time_to_inject(sbi, FAULT_ORPHAN)) {
615                 spin_unlock(&im->ino_lock);
616                 f2fs_show_injection_info(sbi, FAULT_ORPHAN);
617                 return -ENOSPC;
618         }
619
620         if (unlikely(im->ino_num >= sbi->max_orphans))
621                 err = -ENOSPC;
622         else
623                 im->ino_num++;
624         spin_unlock(&im->ino_lock);
625
626         return err;
627 }
628
629 void f2fs_release_orphan_inode(struct f2fs_sb_info *sbi)
630 {
631         struct inode_management *im = &sbi->im[ORPHAN_INO];
632
633         spin_lock(&im->ino_lock);
634         f2fs_bug_on(sbi, im->ino_num == 0);
635         im->ino_num--;
636         spin_unlock(&im->ino_lock);
637 }
638
639 void f2fs_add_orphan_inode(struct inode *inode)
640 {
641         /* add new orphan ino entry into list */
642         __add_ino_entry(F2FS_I_SB(inode), inode->i_ino, 0, ORPHAN_INO);
643         f2fs_update_inode_page(inode);
644 }
645
646 void f2fs_remove_orphan_inode(struct f2fs_sb_info *sbi, nid_t ino)
647 {
648         /* remove orphan entry from orphan list */
649         __remove_ino_entry(sbi, ino, ORPHAN_INO);
650 }
651
652 static int recover_orphan_inode(struct f2fs_sb_info *sbi, nid_t ino)
653 {
654         struct inode *inode;
655         struct node_info ni;
656         int err;
657
658         inode = f2fs_iget_retry(sbi->sb, ino);
659         if (IS_ERR(inode)) {
660                 /*
661                  * there should be a bug that we can't find the entry
662                  * to orphan inode.
663                  */
664                 f2fs_bug_on(sbi, PTR_ERR(inode) == -ENOENT);
665                 return PTR_ERR(inode);
666         }
667
668         err = f2fs_dquot_initialize(inode);
669         if (err) {
670                 iput(inode);
671                 goto err_out;
672         }
673
674         clear_nlink(inode);
675
676         /* truncate all the data during iput */
677         iput(inode);
678
679         err = f2fs_get_node_info(sbi, ino, &ni, false);
680         if (err)
681                 goto err_out;
682
683         /* ENOMEM was fully retried in f2fs_evict_inode. */
684         if (ni.blk_addr != NULL_ADDR) {
685                 err = -EIO;
686                 goto err_out;
687         }
688         return 0;
689
690 err_out:
691         set_sbi_flag(sbi, SBI_NEED_FSCK);
692         f2fs_warn(sbi, "%s: orphan failed (ino=%x), run fsck to fix.",
693                   __func__, ino);
694         return err;
695 }
696
697 int f2fs_recover_orphan_inodes(struct f2fs_sb_info *sbi)
698 {
699         block_t start_blk, orphan_blocks, i, j;
700         unsigned int s_flags = sbi->sb->s_flags;
701         int err = 0;
702 #ifdef CONFIG_QUOTA
703         int quota_enabled;
704 #endif
705
706         if (!is_set_ckpt_flags(sbi, CP_ORPHAN_PRESENT_FLAG))
707                 return 0;
708
709         if (bdev_read_only(sbi->sb->s_bdev)) {
710                 f2fs_info(sbi, "write access unavailable, skipping orphan cleanup");
711                 return 0;
712         }
713
714         if (s_flags & SB_RDONLY) {
715                 f2fs_info(sbi, "orphan cleanup on readonly fs");
716                 sbi->sb->s_flags &= ~SB_RDONLY;
717         }
718
719 #ifdef CONFIG_QUOTA
720         /*
721          * Turn on quotas which were not enabled for read-only mounts if
722          * filesystem has quota feature, so that they are updated correctly.
723          */
724         quota_enabled = f2fs_enable_quota_files(sbi, s_flags & SB_RDONLY);
725 #endif
726
727         start_blk = __start_cp_addr(sbi) + 1 + __cp_payload(sbi);
728         orphan_blocks = __start_sum_addr(sbi) - 1 - __cp_payload(sbi);
729
730         f2fs_ra_meta_pages(sbi, start_blk, orphan_blocks, META_CP, true);
731
732         for (i = 0; i < orphan_blocks; i++) {
733                 struct page *page;
734                 struct f2fs_orphan_block *orphan_blk;
735
736                 page = f2fs_get_meta_page(sbi, start_blk + i);
737                 if (IS_ERR(page)) {
738                         err = PTR_ERR(page);
739                         goto out;
740                 }
741
742                 orphan_blk = (struct f2fs_orphan_block *)page_address(page);
743                 for (j = 0; j < le32_to_cpu(orphan_blk->entry_count); j++) {
744                         nid_t ino = le32_to_cpu(orphan_blk->ino[j]);
745
746                         err = recover_orphan_inode(sbi, ino);
747                         if (err) {
748                                 f2fs_put_page(page, 1);
749                                 goto out;
750                         }
751                 }
752                 f2fs_put_page(page, 1);
753         }
754         /* clear Orphan Flag */
755         clear_ckpt_flags(sbi, CP_ORPHAN_PRESENT_FLAG);
756 out:
757         set_sbi_flag(sbi, SBI_IS_RECOVERED);
758
759 #ifdef CONFIG_QUOTA
760         /* Turn quotas off */
761         if (quota_enabled)
762                 f2fs_quota_off_umount(sbi->sb);
763 #endif
764         sbi->sb->s_flags = s_flags; /* Restore SB_RDONLY status */
765
766         return err;
767 }
768
769 static void write_orphan_inodes(struct f2fs_sb_info *sbi, block_t start_blk)
770 {
771         struct list_head *head;
772         struct f2fs_orphan_block *orphan_blk = NULL;
773         unsigned int nentries = 0;
774         unsigned short index = 1;
775         unsigned short orphan_blocks;
776         struct page *page = NULL;
777         struct ino_entry *orphan = NULL;
778         struct inode_management *im = &sbi->im[ORPHAN_INO];
779
780         orphan_blocks = GET_ORPHAN_BLOCKS(im->ino_num);
781
782         /*
783          * we don't need to do spin_lock(&im->ino_lock) here, since all the
784          * orphan inode operations are covered under f2fs_lock_op().
785          * And, spin_lock should be avoided due to page operations below.
786          */
787         head = &im->ino_list;
788
789         /* loop for each orphan inode entry and write them in Jornal block */
790         list_for_each_entry(orphan, head, list) {
791                 if (!page) {
792                         page = f2fs_grab_meta_page(sbi, start_blk++);
793                         orphan_blk =
794                                 (struct f2fs_orphan_block *)page_address(page);
795                         memset(orphan_blk, 0, sizeof(*orphan_blk));
796                 }
797
798                 orphan_blk->ino[nentries++] = cpu_to_le32(orphan->ino);
799
800                 if (nentries == F2FS_ORPHANS_PER_BLOCK) {
801                         /*
802                          * an orphan block is full of 1020 entries,
803                          * then we need to flush current orphan blocks
804                          * and bring another one in memory
805                          */
806                         orphan_blk->blk_addr = cpu_to_le16(index);
807                         orphan_blk->blk_count = cpu_to_le16(orphan_blocks);
808                         orphan_blk->entry_count = cpu_to_le32(nentries);
809                         set_page_dirty(page);
810                         f2fs_put_page(page, 1);
811                         index++;
812                         nentries = 0;
813                         page = NULL;
814                 }
815         }
816
817         if (page) {
818                 orphan_blk->blk_addr = cpu_to_le16(index);
819                 orphan_blk->blk_count = cpu_to_le16(orphan_blocks);
820                 orphan_blk->entry_count = cpu_to_le32(nentries);
821                 set_page_dirty(page);
822                 f2fs_put_page(page, 1);
823         }
824 }
825
826 static __u32 f2fs_checkpoint_chksum(struct f2fs_sb_info *sbi,
827                                                 struct f2fs_checkpoint *ckpt)
828 {
829         unsigned int chksum_ofs = le32_to_cpu(ckpt->checksum_offset);
830         __u32 chksum;
831
832         chksum = f2fs_crc32(sbi, ckpt, chksum_ofs);
833         if (chksum_ofs < CP_CHKSUM_OFFSET) {
834                 chksum_ofs += sizeof(chksum);
835                 chksum = f2fs_chksum(sbi, chksum, (__u8 *)ckpt + chksum_ofs,
836                                                 F2FS_BLKSIZE - chksum_ofs);
837         }
838         return chksum;
839 }
840
841 static int get_checkpoint_version(struct f2fs_sb_info *sbi, block_t cp_addr,
842                 struct f2fs_checkpoint **cp_block, struct page **cp_page,
843                 unsigned long long *version)
844 {
845         size_t crc_offset = 0;
846         __u32 crc;
847
848         *cp_page = f2fs_get_meta_page(sbi, cp_addr);
849         if (IS_ERR(*cp_page))
850                 return PTR_ERR(*cp_page);
851
852         *cp_block = (struct f2fs_checkpoint *)page_address(*cp_page);
853
854         crc_offset = le32_to_cpu((*cp_block)->checksum_offset);
855         if (crc_offset < CP_MIN_CHKSUM_OFFSET ||
856                         crc_offset > CP_CHKSUM_OFFSET) {
857                 f2fs_put_page(*cp_page, 1);
858                 f2fs_warn(sbi, "invalid crc_offset: %zu", crc_offset);
859                 return -EINVAL;
860         }
861
862         crc = f2fs_checkpoint_chksum(sbi, *cp_block);
863         if (crc != cur_cp_crc(*cp_block)) {
864                 f2fs_put_page(*cp_page, 1);
865                 f2fs_warn(sbi, "invalid crc value");
866                 return -EINVAL;
867         }
868
869         *version = cur_cp_version(*cp_block);
870         return 0;
871 }
872
873 static struct page *validate_checkpoint(struct f2fs_sb_info *sbi,
874                                 block_t cp_addr, unsigned long long *version)
875 {
876         struct page *cp_page_1 = NULL, *cp_page_2 = NULL;
877         struct f2fs_checkpoint *cp_block = NULL;
878         unsigned long long cur_version = 0, pre_version = 0;
879         unsigned int cp_blocks;
880         int err;
881
882         err = get_checkpoint_version(sbi, cp_addr, &cp_block,
883                                         &cp_page_1, version);
884         if (err)
885                 return NULL;
886
887         cp_blocks = le32_to_cpu(cp_block->cp_pack_total_block_count);
888
889         if (cp_blocks > sbi->blocks_per_seg || cp_blocks <= F2FS_CP_PACKS) {
890                 f2fs_warn(sbi, "invalid cp_pack_total_block_count:%u",
891                           le32_to_cpu(cp_block->cp_pack_total_block_count));
892                 goto invalid_cp;
893         }
894         pre_version = *version;
895
896         cp_addr += cp_blocks - 1;
897         err = get_checkpoint_version(sbi, cp_addr, &cp_block,
898                                         &cp_page_2, version);
899         if (err)
900                 goto invalid_cp;
901         cur_version = *version;
902
903         if (cur_version == pre_version) {
904                 *version = cur_version;
905                 f2fs_put_page(cp_page_2, 1);
906                 return cp_page_1;
907         }
908         f2fs_put_page(cp_page_2, 1);
909 invalid_cp:
910         f2fs_put_page(cp_page_1, 1);
911         return NULL;
912 }
913
914 int f2fs_get_valid_checkpoint(struct f2fs_sb_info *sbi)
915 {
916         struct f2fs_checkpoint *cp_block;
917         struct f2fs_super_block *fsb = sbi->raw_super;
918         struct page *cp1, *cp2, *cur_page;
919         unsigned long blk_size = sbi->blocksize;
920         unsigned long long cp1_version = 0, cp2_version = 0;
921         unsigned long long cp_start_blk_no;
922         unsigned int cp_blks = 1 + __cp_payload(sbi);
923         block_t cp_blk_no;
924         int i;
925         int err;
926
927         sbi->ckpt = f2fs_kvzalloc(sbi, array_size(blk_size, cp_blks),
928                                   GFP_KERNEL);
929         if (!sbi->ckpt)
930                 return -ENOMEM;
931         /*
932          * Finding out valid cp block involves read both
933          * sets( cp pack 1 and cp pack 2)
934          */
935         cp_start_blk_no = le32_to_cpu(fsb->cp_blkaddr);
936         cp1 = validate_checkpoint(sbi, cp_start_blk_no, &cp1_version);
937
938         /* The second checkpoint pack should start at the next segment */
939         cp_start_blk_no += ((unsigned long long)1) <<
940                                 le32_to_cpu(fsb->log_blocks_per_seg);
941         cp2 = validate_checkpoint(sbi, cp_start_blk_no, &cp2_version);
942
943         if (cp1 && cp2) {
944                 if (ver_after(cp2_version, cp1_version))
945                         cur_page = cp2;
946                 else
947                         cur_page = cp1;
948         } else if (cp1) {
949                 cur_page = cp1;
950         } else if (cp2) {
951                 cur_page = cp2;
952         } else {
953                 err = -EFSCORRUPTED;
954                 goto fail_no_cp;
955         }
956
957         cp_block = (struct f2fs_checkpoint *)page_address(cur_page);
958         memcpy(sbi->ckpt, cp_block, blk_size);
959
960         if (cur_page == cp1)
961                 sbi->cur_cp_pack = 1;
962         else
963                 sbi->cur_cp_pack = 2;
964
965         /* Sanity checking of checkpoint */
966         if (f2fs_sanity_check_ckpt(sbi)) {
967                 err = -EFSCORRUPTED;
968                 goto free_fail_no_cp;
969         }
970
971         if (cp_blks <= 1)
972                 goto done;
973
974         cp_blk_no = le32_to_cpu(fsb->cp_blkaddr);
975         if (cur_page == cp2)
976                 cp_blk_no += 1 << le32_to_cpu(fsb->log_blocks_per_seg);
977
978         for (i = 1; i < cp_blks; i++) {
979                 void *sit_bitmap_ptr;
980                 unsigned char *ckpt = (unsigned char *)sbi->ckpt;
981
982                 cur_page = f2fs_get_meta_page(sbi, cp_blk_no + i);
983                 if (IS_ERR(cur_page)) {
984                         err = PTR_ERR(cur_page);
985                         goto free_fail_no_cp;
986                 }
987                 sit_bitmap_ptr = page_address(cur_page);
988                 memcpy(ckpt + i * blk_size, sit_bitmap_ptr, blk_size);
989                 f2fs_put_page(cur_page, 1);
990         }
991 done:
992         f2fs_put_page(cp1, 1);
993         f2fs_put_page(cp2, 1);
994         return 0;
995
996 free_fail_no_cp:
997         f2fs_put_page(cp1, 1);
998         f2fs_put_page(cp2, 1);
999 fail_no_cp:
1000         kvfree(sbi->ckpt);
1001         return err;
1002 }
1003
1004 static void __add_dirty_inode(struct inode *inode, enum inode_type type)
1005 {
1006         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1007         int flag = (type == DIR_INODE) ? FI_DIRTY_DIR : FI_DIRTY_FILE;
1008
1009         if (is_inode_flag_set(inode, flag))
1010                 return;
1011
1012         set_inode_flag(inode, flag);
1013         if (!f2fs_is_volatile_file(inode))
1014                 list_add_tail(&F2FS_I(inode)->dirty_list,
1015                                                 &sbi->inode_list[type]);
1016         stat_inc_dirty_inode(sbi, type);
1017 }
1018
1019 static void __remove_dirty_inode(struct inode *inode, enum inode_type type)
1020 {
1021         int flag = (type == DIR_INODE) ? FI_DIRTY_DIR : FI_DIRTY_FILE;
1022
1023         if (get_dirty_pages(inode) || !is_inode_flag_set(inode, flag))
1024                 return;
1025
1026         list_del_init(&F2FS_I(inode)->dirty_list);
1027         clear_inode_flag(inode, flag);
1028         stat_dec_dirty_inode(F2FS_I_SB(inode), type);
1029 }
1030
1031 void f2fs_update_dirty_folio(struct inode *inode, struct folio *folio)
1032 {
1033         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1034         enum inode_type type = S_ISDIR(inode->i_mode) ? DIR_INODE : FILE_INODE;
1035
1036         if (!S_ISDIR(inode->i_mode) && !S_ISREG(inode->i_mode) &&
1037                         !S_ISLNK(inode->i_mode))
1038                 return;
1039
1040         spin_lock(&sbi->inode_lock[type]);
1041         if (type != FILE_INODE || test_opt(sbi, DATA_FLUSH))
1042                 __add_dirty_inode(inode, type);
1043         inode_inc_dirty_pages(inode);
1044         spin_unlock(&sbi->inode_lock[type]);
1045
1046         set_page_private_reference(&folio->page);
1047 }
1048
1049 void f2fs_remove_dirty_inode(struct inode *inode)
1050 {
1051         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1052         enum inode_type type = S_ISDIR(inode->i_mode) ? DIR_INODE : FILE_INODE;
1053
1054         if (!S_ISDIR(inode->i_mode) && !S_ISREG(inode->i_mode) &&
1055                         !S_ISLNK(inode->i_mode))
1056                 return;
1057
1058         if (type == FILE_INODE && !test_opt(sbi, DATA_FLUSH))
1059                 return;
1060
1061         spin_lock(&sbi->inode_lock[type]);
1062         __remove_dirty_inode(inode, type);
1063         spin_unlock(&sbi->inode_lock[type]);
1064 }
1065
1066 int f2fs_sync_dirty_inodes(struct f2fs_sb_info *sbi, enum inode_type type)
1067 {
1068         struct list_head *head;
1069         struct inode *inode;
1070         struct f2fs_inode_info *fi;
1071         bool is_dir = (type == DIR_INODE);
1072         unsigned long ino = 0;
1073
1074         trace_f2fs_sync_dirty_inodes_enter(sbi->sb, is_dir,
1075                                 get_pages(sbi, is_dir ?
1076                                 F2FS_DIRTY_DENTS : F2FS_DIRTY_DATA));
1077 retry:
1078         if (unlikely(f2fs_cp_error(sbi))) {
1079                 trace_f2fs_sync_dirty_inodes_exit(sbi->sb, is_dir,
1080                                 get_pages(sbi, is_dir ?
1081                                 F2FS_DIRTY_DENTS : F2FS_DIRTY_DATA));
1082                 return -EIO;
1083         }
1084
1085         spin_lock(&sbi->inode_lock[type]);
1086
1087         head = &sbi->inode_list[type];
1088         if (list_empty(head)) {
1089                 spin_unlock(&sbi->inode_lock[type]);
1090                 trace_f2fs_sync_dirty_inodes_exit(sbi->sb, is_dir,
1091                                 get_pages(sbi, is_dir ?
1092                                 F2FS_DIRTY_DENTS : F2FS_DIRTY_DATA));
1093                 return 0;
1094         }
1095         fi = list_first_entry(head, struct f2fs_inode_info, dirty_list);
1096         inode = igrab(&fi->vfs_inode);
1097         spin_unlock(&sbi->inode_lock[type]);
1098         if (inode) {
1099                 unsigned long cur_ino = inode->i_ino;
1100
1101                 F2FS_I(inode)->cp_task = current;
1102
1103                 filemap_fdatawrite(inode->i_mapping);
1104
1105                 F2FS_I(inode)->cp_task = NULL;
1106
1107                 iput(inode);
1108                 /* We need to give cpu to another writers. */
1109                 if (ino == cur_ino)
1110                         cond_resched();
1111                 else
1112                         ino = cur_ino;
1113         } else {
1114                 /*
1115                  * We should submit bio, since it exists several
1116                  * wribacking dentry pages in the freeing inode.
1117                  */
1118                 f2fs_submit_merged_write(sbi, DATA);
1119                 cond_resched();
1120         }
1121         goto retry;
1122 }
1123
1124 int f2fs_sync_inode_meta(struct f2fs_sb_info *sbi)
1125 {
1126         struct list_head *head = &sbi->inode_list[DIRTY_META];
1127         struct inode *inode;
1128         struct f2fs_inode_info *fi;
1129         s64 total = get_pages(sbi, F2FS_DIRTY_IMETA);
1130
1131         while (total--) {
1132                 if (unlikely(f2fs_cp_error(sbi)))
1133                         return -EIO;
1134
1135                 spin_lock(&sbi->inode_lock[DIRTY_META]);
1136                 if (list_empty(head)) {
1137                         spin_unlock(&sbi->inode_lock[DIRTY_META]);
1138                         return 0;
1139                 }
1140                 fi = list_first_entry(head, struct f2fs_inode_info,
1141                                                         gdirty_list);
1142                 inode = igrab(&fi->vfs_inode);
1143                 spin_unlock(&sbi->inode_lock[DIRTY_META]);
1144                 if (inode) {
1145                         sync_inode_metadata(inode, 0);
1146
1147                         /* it's on eviction */
1148                         if (is_inode_flag_set(inode, FI_DIRTY_INODE))
1149                                 f2fs_update_inode_page(inode);
1150                         iput(inode);
1151                 }
1152         }
1153         return 0;
1154 }
1155
1156 static void __prepare_cp_block(struct f2fs_sb_info *sbi)
1157 {
1158         struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
1159         struct f2fs_nm_info *nm_i = NM_I(sbi);
1160         nid_t last_nid = nm_i->next_scan_nid;
1161
1162         next_free_nid(sbi, &last_nid);
1163         ckpt->valid_block_count = cpu_to_le64(valid_user_blocks(sbi));
1164         ckpt->valid_node_count = cpu_to_le32(valid_node_count(sbi));
1165         ckpt->valid_inode_count = cpu_to_le32(valid_inode_count(sbi));
1166         ckpt->next_free_nid = cpu_to_le32(last_nid);
1167 }
1168
1169 static bool __need_flush_quota(struct f2fs_sb_info *sbi)
1170 {
1171         bool ret = false;
1172
1173         if (!is_journalled_quota(sbi))
1174                 return false;
1175
1176         if (!f2fs_down_write_trylock(&sbi->quota_sem))
1177                 return true;
1178         if (is_sbi_flag_set(sbi, SBI_QUOTA_SKIP_FLUSH)) {
1179                 ret = false;
1180         } else if (is_sbi_flag_set(sbi, SBI_QUOTA_NEED_REPAIR)) {
1181                 ret = false;
1182         } else if (is_sbi_flag_set(sbi, SBI_QUOTA_NEED_FLUSH)) {
1183                 clear_sbi_flag(sbi, SBI_QUOTA_NEED_FLUSH);
1184                 ret = true;
1185         } else if (get_pages(sbi, F2FS_DIRTY_QDATA)) {
1186                 ret = true;
1187         }
1188         f2fs_up_write(&sbi->quota_sem);
1189         return ret;
1190 }
1191
1192 /*
1193  * Freeze all the FS-operations for checkpoint.
1194  */
1195 static int block_operations(struct f2fs_sb_info *sbi)
1196 {
1197         struct writeback_control wbc = {
1198                 .sync_mode = WB_SYNC_ALL,
1199                 .nr_to_write = LONG_MAX,
1200                 .for_reclaim = 0,
1201         };
1202         int err = 0, cnt = 0;
1203
1204         /*
1205          * Let's flush inline_data in dirty node pages.
1206          */
1207         f2fs_flush_inline_data(sbi);
1208
1209 retry_flush_quotas:
1210         f2fs_lock_all(sbi);
1211         if (__need_flush_quota(sbi)) {
1212                 int locked;
1213
1214                 if (++cnt > DEFAULT_RETRY_QUOTA_FLUSH_COUNT) {
1215                         set_sbi_flag(sbi, SBI_QUOTA_SKIP_FLUSH);
1216                         set_sbi_flag(sbi, SBI_QUOTA_NEED_FLUSH);
1217                         goto retry_flush_dents;
1218                 }
1219                 f2fs_unlock_all(sbi);
1220
1221                 /* only failed during mount/umount/freeze/quotactl */
1222                 locked = down_read_trylock(&sbi->sb->s_umount);
1223                 f2fs_quota_sync(sbi->sb, -1);
1224                 if (locked)
1225                         up_read(&sbi->sb->s_umount);
1226                 cond_resched();
1227                 goto retry_flush_quotas;
1228         }
1229
1230 retry_flush_dents:
1231         /* write all the dirty dentry pages */
1232         if (get_pages(sbi, F2FS_DIRTY_DENTS)) {
1233                 f2fs_unlock_all(sbi);
1234                 err = f2fs_sync_dirty_inodes(sbi, DIR_INODE);
1235                 if (err)
1236                         return err;
1237                 cond_resched();
1238                 goto retry_flush_quotas;
1239         }
1240
1241         /*
1242          * POR: we should ensure that there are no dirty node pages
1243          * until finishing nat/sit flush. inode->i_blocks can be updated.
1244          */
1245         f2fs_down_write(&sbi->node_change);
1246
1247         if (get_pages(sbi, F2FS_DIRTY_IMETA)) {
1248                 f2fs_up_write(&sbi->node_change);
1249                 f2fs_unlock_all(sbi);
1250                 err = f2fs_sync_inode_meta(sbi);
1251                 if (err)
1252                         return err;
1253                 cond_resched();
1254                 goto retry_flush_quotas;
1255         }
1256
1257 retry_flush_nodes:
1258         f2fs_down_write(&sbi->node_write);
1259
1260         if (get_pages(sbi, F2FS_DIRTY_NODES)) {
1261                 f2fs_up_write(&sbi->node_write);
1262                 atomic_inc(&sbi->wb_sync_req[NODE]);
1263                 err = f2fs_sync_node_pages(sbi, &wbc, false, FS_CP_NODE_IO);
1264                 atomic_dec(&sbi->wb_sync_req[NODE]);
1265                 if (err) {
1266                         f2fs_up_write(&sbi->node_change);
1267                         f2fs_unlock_all(sbi);
1268                         return err;
1269                 }
1270                 cond_resched();
1271                 goto retry_flush_nodes;
1272         }
1273
1274         /*
1275          * sbi->node_change is used only for AIO write_begin path which produces
1276          * dirty node blocks and some checkpoint values by block allocation.
1277          */
1278         __prepare_cp_block(sbi);
1279         f2fs_up_write(&sbi->node_change);
1280         return err;
1281 }
1282
1283 static void unblock_operations(struct f2fs_sb_info *sbi)
1284 {
1285         f2fs_up_write(&sbi->node_write);
1286         f2fs_unlock_all(sbi);
1287 }
1288
1289 void f2fs_wait_on_all_pages(struct f2fs_sb_info *sbi, int type)
1290 {
1291         DEFINE_WAIT(wait);
1292
1293         for (;;) {
1294                 if (!get_pages(sbi, type))
1295                         break;
1296
1297                 if (unlikely(f2fs_cp_error(sbi)))
1298                         break;
1299
1300                 if (type == F2FS_DIRTY_META)
1301                         f2fs_sync_meta_pages(sbi, META, LONG_MAX,
1302                                                         FS_CP_META_IO);
1303                 else if (type == F2FS_WB_CP_DATA)
1304                         f2fs_submit_merged_write(sbi, DATA);
1305
1306                 prepare_to_wait(&sbi->cp_wait, &wait, TASK_UNINTERRUPTIBLE);
1307                 io_schedule_timeout(DEFAULT_IO_TIMEOUT);
1308         }
1309         finish_wait(&sbi->cp_wait, &wait);
1310 }
1311
1312 static void update_ckpt_flags(struct f2fs_sb_info *sbi, struct cp_control *cpc)
1313 {
1314         unsigned long orphan_num = sbi->im[ORPHAN_INO].ino_num;
1315         struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
1316         unsigned long flags;
1317
1318         if (cpc->reason & CP_UMOUNT) {
1319                 if (le32_to_cpu(ckpt->cp_pack_total_block_count) +
1320                         NM_I(sbi)->nat_bits_blocks > sbi->blocks_per_seg) {
1321                         clear_ckpt_flags(sbi, CP_NAT_BITS_FLAG);
1322                         f2fs_notice(sbi, "Disable nat_bits due to no space");
1323                 } else if (!is_set_ckpt_flags(sbi, CP_NAT_BITS_FLAG) &&
1324                                                 f2fs_nat_bitmap_enabled(sbi)) {
1325                         f2fs_enable_nat_bits(sbi);
1326                         set_ckpt_flags(sbi, CP_NAT_BITS_FLAG);
1327                         f2fs_notice(sbi, "Rebuild and enable nat_bits");
1328                 }
1329         }
1330
1331         spin_lock_irqsave(&sbi->cp_lock, flags);
1332
1333         if (cpc->reason & CP_TRIMMED)
1334                 __set_ckpt_flags(ckpt, CP_TRIMMED_FLAG);
1335         else
1336                 __clear_ckpt_flags(ckpt, CP_TRIMMED_FLAG);
1337
1338         if (cpc->reason & CP_UMOUNT)
1339                 __set_ckpt_flags(ckpt, CP_UMOUNT_FLAG);
1340         else
1341                 __clear_ckpt_flags(ckpt, CP_UMOUNT_FLAG);
1342
1343         if (cpc->reason & CP_FASTBOOT)
1344                 __set_ckpt_flags(ckpt, CP_FASTBOOT_FLAG);
1345         else
1346                 __clear_ckpt_flags(ckpt, CP_FASTBOOT_FLAG);
1347
1348         if (orphan_num)
1349                 __set_ckpt_flags(ckpt, CP_ORPHAN_PRESENT_FLAG);
1350         else
1351                 __clear_ckpt_flags(ckpt, CP_ORPHAN_PRESENT_FLAG);
1352
1353         if (is_sbi_flag_set(sbi, SBI_NEED_FSCK))
1354                 __set_ckpt_flags(ckpt, CP_FSCK_FLAG);
1355
1356         if (is_sbi_flag_set(sbi, SBI_IS_RESIZEFS))
1357                 __set_ckpt_flags(ckpt, CP_RESIZEFS_FLAG);
1358         else
1359                 __clear_ckpt_flags(ckpt, CP_RESIZEFS_FLAG);
1360
1361         if (is_sbi_flag_set(sbi, SBI_CP_DISABLED))
1362                 __set_ckpt_flags(ckpt, CP_DISABLED_FLAG);
1363         else
1364                 __clear_ckpt_flags(ckpt, CP_DISABLED_FLAG);
1365
1366         if (is_sbi_flag_set(sbi, SBI_CP_DISABLED_QUICK))
1367                 __set_ckpt_flags(ckpt, CP_DISABLED_QUICK_FLAG);
1368         else
1369                 __clear_ckpt_flags(ckpt, CP_DISABLED_QUICK_FLAG);
1370
1371         if (is_sbi_flag_set(sbi, SBI_QUOTA_SKIP_FLUSH))
1372                 __set_ckpt_flags(ckpt, CP_QUOTA_NEED_FSCK_FLAG);
1373         else
1374                 __clear_ckpt_flags(ckpt, CP_QUOTA_NEED_FSCK_FLAG);
1375
1376         if (is_sbi_flag_set(sbi, SBI_QUOTA_NEED_REPAIR))
1377                 __set_ckpt_flags(ckpt, CP_QUOTA_NEED_FSCK_FLAG);
1378
1379         /* set this flag to activate crc|cp_ver for recovery */
1380         __set_ckpt_flags(ckpt, CP_CRC_RECOVERY_FLAG);
1381         __clear_ckpt_flags(ckpt, CP_NOCRC_RECOVERY_FLAG);
1382
1383         spin_unlock_irqrestore(&sbi->cp_lock, flags);
1384 }
1385
1386 static void commit_checkpoint(struct f2fs_sb_info *sbi,
1387         void *src, block_t blk_addr)
1388 {
1389         struct writeback_control wbc = {
1390                 .for_reclaim = 0,
1391         };
1392
1393         /*
1394          * pagevec_lookup_tag and lock_page again will take
1395          * some extra time. Therefore, f2fs_update_meta_pages and
1396          * f2fs_sync_meta_pages are combined in this function.
1397          */
1398         struct page *page = f2fs_grab_meta_page(sbi, blk_addr);
1399         int err;
1400
1401         f2fs_wait_on_page_writeback(page, META, true, true);
1402
1403         memcpy(page_address(page), src, PAGE_SIZE);
1404
1405         set_page_dirty(page);
1406         if (unlikely(!clear_page_dirty_for_io(page)))
1407                 f2fs_bug_on(sbi, 1);
1408
1409         /* writeout cp pack 2 page */
1410         err = __f2fs_write_meta_page(page, &wbc, FS_CP_META_IO);
1411         if (unlikely(err && f2fs_cp_error(sbi))) {
1412                 f2fs_put_page(page, 1);
1413                 return;
1414         }
1415
1416         f2fs_bug_on(sbi, err);
1417         f2fs_put_page(page, 0);
1418
1419         /* submit checkpoint (with barrier if NOBARRIER is not set) */
1420         f2fs_submit_merged_write(sbi, META_FLUSH);
1421 }
1422
1423 static inline u64 get_sectors_written(struct block_device *bdev)
1424 {
1425         return (u64)part_stat_read(bdev, sectors[STAT_WRITE]);
1426 }
1427
1428 u64 f2fs_get_sectors_written(struct f2fs_sb_info *sbi)
1429 {
1430         if (f2fs_is_multi_device(sbi)) {
1431                 u64 sectors = 0;
1432                 int i;
1433
1434                 for (i = 0; i < sbi->s_ndevs; i++)
1435                         sectors += get_sectors_written(FDEV(i).bdev);
1436
1437                 return sectors;
1438         }
1439
1440         return get_sectors_written(sbi->sb->s_bdev);
1441 }
1442
1443 static int do_checkpoint(struct f2fs_sb_info *sbi, struct cp_control *cpc)
1444 {
1445         struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
1446         struct f2fs_nm_info *nm_i = NM_I(sbi);
1447         unsigned long orphan_num = sbi->im[ORPHAN_INO].ino_num, flags;
1448         block_t start_blk;
1449         unsigned int data_sum_blocks, orphan_blocks;
1450         __u32 crc32 = 0;
1451         int i;
1452         int cp_payload_blks = __cp_payload(sbi);
1453         struct curseg_info *seg_i = CURSEG_I(sbi, CURSEG_HOT_NODE);
1454         u64 kbytes_written;
1455         int err;
1456
1457         /* Flush all the NAT/SIT pages */
1458         f2fs_sync_meta_pages(sbi, META, LONG_MAX, FS_CP_META_IO);
1459
1460         /* start to update checkpoint, cp ver is already updated previously */
1461         ckpt->elapsed_time = cpu_to_le64(get_mtime(sbi, true));
1462         ckpt->free_segment_count = cpu_to_le32(free_segments(sbi));
1463         for (i = 0; i < NR_CURSEG_NODE_TYPE; i++) {
1464                 ckpt->cur_node_segno[i] =
1465                         cpu_to_le32(curseg_segno(sbi, i + CURSEG_HOT_NODE));
1466                 ckpt->cur_node_blkoff[i] =
1467                         cpu_to_le16(curseg_blkoff(sbi, i + CURSEG_HOT_NODE));
1468                 ckpt->alloc_type[i + CURSEG_HOT_NODE] =
1469                                 curseg_alloc_type(sbi, i + CURSEG_HOT_NODE);
1470         }
1471         for (i = 0; i < NR_CURSEG_DATA_TYPE; i++) {
1472                 ckpt->cur_data_segno[i] =
1473                         cpu_to_le32(curseg_segno(sbi, i + CURSEG_HOT_DATA));
1474                 ckpt->cur_data_blkoff[i] =
1475                         cpu_to_le16(curseg_blkoff(sbi, i + CURSEG_HOT_DATA));
1476                 ckpt->alloc_type[i + CURSEG_HOT_DATA] =
1477                                 curseg_alloc_type(sbi, i + CURSEG_HOT_DATA);
1478         }
1479
1480         /* 2 cp + n data seg summary + orphan inode blocks */
1481         data_sum_blocks = f2fs_npages_for_summary_flush(sbi, false);
1482         spin_lock_irqsave(&sbi->cp_lock, flags);
1483         if (data_sum_blocks < NR_CURSEG_DATA_TYPE)
1484                 __set_ckpt_flags(ckpt, CP_COMPACT_SUM_FLAG);
1485         else
1486                 __clear_ckpt_flags(ckpt, CP_COMPACT_SUM_FLAG);
1487         spin_unlock_irqrestore(&sbi->cp_lock, flags);
1488
1489         orphan_blocks = GET_ORPHAN_BLOCKS(orphan_num);
1490         ckpt->cp_pack_start_sum = cpu_to_le32(1 + cp_payload_blks +
1491                         orphan_blocks);
1492
1493         if (__remain_node_summaries(cpc->reason))
1494                 ckpt->cp_pack_total_block_count = cpu_to_le32(F2FS_CP_PACKS +
1495                                 cp_payload_blks + data_sum_blocks +
1496                                 orphan_blocks + NR_CURSEG_NODE_TYPE);
1497         else
1498                 ckpt->cp_pack_total_block_count = cpu_to_le32(F2FS_CP_PACKS +
1499                                 cp_payload_blks + data_sum_blocks +
1500                                 orphan_blocks);
1501
1502         /* update ckpt flag for checkpoint */
1503         update_ckpt_flags(sbi, cpc);
1504
1505         /* update SIT/NAT bitmap */
1506         get_sit_bitmap(sbi, __bitmap_ptr(sbi, SIT_BITMAP));
1507         get_nat_bitmap(sbi, __bitmap_ptr(sbi, NAT_BITMAP));
1508
1509         crc32 = f2fs_checkpoint_chksum(sbi, ckpt);
1510         *((__le32 *)((unsigned char *)ckpt +
1511                                 le32_to_cpu(ckpt->checksum_offset)))
1512                                 = cpu_to_le32(crc32);
1513
1514         start_blk = __start_cp_next_addr(sbi);
1515
1516         /* write nat bits */
1517         if ((cpc->reason & CP_UMOUNT) &&
1518                         is_set_ckpt_flags(sbi, CP_NAT_BITS_FLAG)) {
1519                 __u64 cp_ver = cur_cp_version(ckpt);
1520                 block_t blk;
1521
1522                 cp_ver |= ((__u64)crc32 << 32);
1523                 *(__le64 *)nm_i->nat_bits = cpu_to_le64(cp_ver);
1524
1525                 blk = start_blk + sbi->blocks_per_seg - nm_i->nat_bits_blocks;
1526                 for (i = 0; i < nm_i->nat_bits_blocks; i++)
1527                         f2fs_update_meta_page(sbi, nm_i->nat_bits +
1528                                         (i << F2FS_BLKSIZE_BITS), blk + i);
1529         }
1530
1531         /* write out checkpoint buffer at block 0 */
1532         f2fs_update_meta_page(sbi, ckpt, start_blk++);
1533
1534         for (i = 1; i < 1 + cp_payload_blks; i++)
1535                 f2fs_update_meta_page(sbi, (char *)ckpt + i * F2FS_BLKSIZE,
1536                                                         start_blk++);
1537
1538         if (orphan_num) {
1539                 write_orphan_inodes(sbi, start_blk);
1540                 start_blk += orphan_blocks;
1541         }
1542
1543         f2fs_write_data_summaries(sbi, start_blk);
1544         start_blk += data_sum_blocks;
1545
1546         /* Record write statistics in the hot node summary */
1547         kbytes_written = sbi->kbytes_written;
1548         kbytes_written += (f2fs_get_sectors_written(sbi) -
1549                                 sbi->sectors_written_start) >> 1;
1550         seg_i->journal->info.kbytes_written = cpu_to_le64(kbytes_written);
1551
1552         if (__remain_node_summaries(cpc->reason)) {
1553                 f2fs_write_node_summaries(sbi, start_blk);
1554                 start_blk += NR_CURSEG_NODE_TYPE;
1555         }
1556
1557         /* update user_block_counts */
1558         sbi->last_valid_block_count = sbi->total_valid_block_count;
1559         percpu_counter_set(&sbi->alloc_valid_block_count, 0);
1560         percpu_counter_set(&sbi->rf_node_block_count, 0);
1561
1562         /* Here, we have one bio having CP pack except cp pack 2 page */
1563         f2fs_sync_meta_pages(sbi, META, LONG_MAX, FS_CP_META_IO);
1564         /* Wait for all dirty meta pages to be submitted for IO */
1565         f2fs_wait_on_all_pages(sbi, F2FS_DIRTY_META);
1566
1567         /* wait for previous submitted meta pages writeback */
1568         f2fs_wait_on_all_pages(sbi, F2FS_WB_CP_DATA);
1569
1570         /* flush all device cache */
1571         err = f2fs_flush_device_cache(sbi);
1572         if (err)
1573                 return err;
1574
1575         /* barrier and flush checkpoint cp pack 2 page if it can */
1576         commit_checkpoint(sbi, ckpt, start_blk);
1577         f2fs_wait_on_all_pages(sbi, F2FS_WB_CP_DATA);
1578
1579         /*
1580          * invalidate intermediate page cache borrowed from meta inode which are
1581          * used for migration of encrypted, verity or compressed inode's blocks.
1582          */
1583         if (f2fs_sb_has_encrypt(sbi) || f2fs_sb_has_verity(sbi) ||
1584                 f2fs_sb_has_compression(sbi))
1585                 invalidate_mapping_pages(META_MAPPING(sbi),
1586                                 MAIN_BLKADDR(sbi), MAX_BLKADDR(sbi) - 1);
1587
1588         f2fs_release_ino_entry(sbi, false);
1589
1590         f2fs_reset_fsync_node_info(sbi);
1591
1592         clear_sbi_flag(sbi, SBI_IS_DIRTY);
1593         clear_sbi_flag(sbi, SBI_NEED_CP);
1594         clear_sbi_flag(sbi, SBI_QUOTA_SKIP_FLUSH);
1595
1596         spin_lock(&sbi->stat_lock);
1597         sbi->unusable_block_count = 0;
1598         spin_unlock(&sbi->stat_lock);
1599
1600         __set_cp_next_pack(sbi);
1601
1602         /*
1603          * redirty superblock if metadata like node page or inode cache is
1604          * updated during writing checkpoint.
1605          */
1606         if (get_pages(sbi, F2FS_DIRTY_NODES) ||
1607                         get_pages(sbi, F2FS_DIRTY_IMETA))
1608                 set_sbi_flag(sbi, SBI_IS_DIRTY);
1609
1610         f2fs_bug_on(sbi, get_pages(sbi, F2FS_DIRTY_DENTS));
1611
1612         return unlikely(f2fs_cp_error(sbi)) ? -EIO : 0;
1613 }
1614
1615 int f2fs_write_checkpoint(struct f2fs_sb_info *sbi, struct cp_control *cpc)
1616 {
1617         struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
1618         unsigned long long ckpt_ver;
1619         int err = 0;
1620
1621         if (f2fs_readonly(sbi->sb) || f2fs_hw_is_readonly(sbi))
1622                 return -EROFS;
1623
1624         if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED))) {
1625                 if (cpc->reason != CP_PAUSE)
1626                         return 0;
1627                 f2fs_warn(sbi, "Start checkpoint disabled!");
1628         }
1629         if (cpc->reason != CP_RESIZE)
1630                 f2fs_down_write(&sbi->cp_global_sem);
1631
1632         if (!is_sbi_flag_set(sbi, SBI_IS_DIRTY) &&
1633                 ((cpc->reason & CP_FASTBOOT) || (cpc->reason & CP_SYNC) ||
1634                 ((cpc->reason & CP_DISCARD) && !sbi->discard_blks)))
1635                 goto out;
1636         if (unlikely(f2fs_cp_error(sbi))) {
1637                 err = -EIO;
1638                 goto out;
1639         }
1640
1641         trace_f2fs_write_checkpoint(sbi->sb, cpc->reason, "start block_ops");
1642
1643         err = block_operations(sbi);
1644         if (err)
1645                 goto out;
1646
1647         trace_f2fs_write_checkpoint(sbi->sb, cpc->reason, "finish block_ops");
1648
1649         f2fs_flush_merged_writes(sbi);
1650
1651         /* this is the case of multiple fstrims without any changes */
1652         if (cpc->reason & CP_DISCARD) {
1653                 if (!f2fs_exist_trim_candidates(sbi, cpc)) {
1654                         unblock_operations(sbi);
1655                         goto out;
1656                 }
1657
1658                 if (NM_I(sbi)->nat_cnt[DIRTY_NAT] == 0 &&
1659                                 SIT_I(sbi)->dirty_sentries == 0 &&
1660                                 prefree_segments(sbi) == 0) {
1661                         f2fs_flush_sit_entries(sbi, cpc);
1662                         f2fs_clear_prefree_segments(sbi, cpc);
1663                         unblock_operations(sbi);
1664                         goto out;
1665                 }
1666         }
1667
1668         /*
1669          * update checkpoint pack index
1670          * Increase the version number so that
1671          * SIT entries and seg summaries are written at correct place
1672          */
1673         ckpt_ver = cur_cp_version(ckpt);
1674         ckpt->checkpoint_ver = cpu_to_le64(++ckpt_ver);
1675
1676         /* write cached NAT/SIT entries to NAT/SIT area */
1677         err = f2fs_flush_nat_entries(sbi, cpc);
1678         if (err) {
1679                 f2fs_err(sbi, "f2fs_flush_nat_entries failed err:%d, stop checkpoint", err);
1680                 f2fs_bug_on(sbi, !f2fs_cp_error(sbi));
1681                 goto stop;
1682         }
1683
1684         f2fs_flush_sit_entries(sbi, cpc);
1685
1686         /* save inmem log status */
1687         f2fs_save_inmem_curseg(sbi);
1688
1689         err = do_checkpoint(sbi, cpc);
1690         if (err) {
1691                 f2fs_err(sbi, "do_checkpoint failed err:%d, stop checkpoint", err);
1692                 f2fs_bug_on(sbi, !f2fs_cp_error(sbi));
1693                 f2fs_release_discard_addrs(sbi);
1694         } else {
1695                 f2fs_clear_prefree_segments(sbi, cpc);
1696         }
1697
1698         f2fs_restore_inmem_curseg(sbi);
1699 stop:
1700         unblock_operations(sbi);
1701         stat_inc_cp_count(sbi->stat_info);
1702
1703         if (cpc->reason & CP_RECOVERY)
1704                 f2fs_notice(sbi, "checkpoint: version = %llx", ckpt_ver);
1705
1706         /* update CP_TIME to trigger checkpoint periodically */
1707         f2fs_update_time(sbi, CP_TIME);
1708         trace_f2fs_write_checkpoint(sbi->sb, cpc->reason, "finish checkpoint");
1709 out:
1710         if (cpc->reason != CP_RESIZE)
1711                 f2fs_up_write(&sbi->cp_global_sem);
1712         return err;
1713 }
1714
1715 void f2fs_init_ino_entry_info(struct f2fs_sb_info *sbi)
1716 {
1717         int i;
1718
1719         for (i = 0; i < MAX_INO_ENTRY; i++) {
1720                 struct inode_management *im = &sbi->im[i];
1721
1722                 INIT_RADIX_TREE(&im->ino_root, GFP_ATOMIC);
1723                 spin_lock_init(&im->ino_lock);
1724                 INIT_LIST_HEAD(&im->ino_list);
1725                 im->ino_num = 0;
1726         }
1727
1728         sbi->max_orphans = (sbi->blocks_per_seg - F2FS_CP_PACKS -
1729                         NR_CURSEG_PERSIST_TYPE - __cp_payload(sbi)) *
1730                                 F2FS_ORPHANS_PER_BLOCK;
1731 }
1732
1733 int __init f2fs_create_checkpoint_caches(void)
1734 {
1735         ino_entry_slab = f2fs_kmem_cache_create("f2fs_ino_entry",
1736                         sizeof(struct ino_entry));
1737         if (!ino_entry_slab)
1738                 return -ENOMEM;
1739         f2fs_inode_entry_slab = f2fs_kmem_cache_create("f2fs_inode_entry",
1740                         sizeof(struct inode_entry));
1741         if (!f2fs_inode_entry_slab) {
1742                 kmem_cache_destroy(ino_entry_slab);
1743                 return -ENOMEM;
1744         }
1745         return 0;
1746 }
1747
1748 void f2fs_destroy_checkpoint_caches(void)
1749 {
1750         kmem_cache_destroy(ino_entry_slab);
1751         kmem_cache_destroy(f2fs_inode_entry_slab);
1752 }
1753
1754 static int __write_checkpoint_sync(struct f2fs_sb_info *sbi)
1755 {
1756         struct cp_control cpc = { .reason = CP_SYNC, };
1757         int err;
1758
1759         f2fs_down_write(&sbi->gc_lock);
1760         err = f2fs_write_checkpoint(sbi, &cpc);
1761         f2fs_up_write(&sbi->gc_lock);
1762
1763         return err;
1764 }
1765
1766 static void __checkpoint_and_complete_reqs(struct f2fs_sb_info *sbi)
1767 {
1768         struct ckpt_req_control *cprc = &sbi->cprc_info;
1769         struct ckpt_req *req, *next;
1770         struct llist_node *dispatch_list;
1771         u64 sum_diff = 0, diff, count = 0;
1772         int ret;
1773
1774         dispatch_list = llist_del_all(&cprc->issue_list);
1775         if (!dispatch_list)
1776                 return;
1777         dispatch_list = llist_reverse_order(dispatch_list);
1778
1779         ret = __write_checkpoint_sync(sbi);
1780         atomic_inc(&cprc->issued_ckpt);
1781
1782         llist_for_each_entry_safe(req, next, dispatch_list, llnode) {
1783                 diff = (u64)ktime_ms_delta(ktime_get(), req->queue_time);
1784                 req->ret = ret;
1785                 complete(&req->wait);
1786
1787                 sum_diff += diff;
1788                 count++;
1789         }
1790         atomic_sub(count, &cprc->queued_ckpt);
1791         atomic_add(count, &cprc->total_ckpt);
1792
1793         spin_lock(&cprc->stat_lock);
1794         cprc->cur_time = (unsigned int)div64_u64(sum_diff, count);
1795         if (cprc->peak_time < cprc->cur_time)
1796                 cprc->peak_time = cprc->cur_time;
1797         spin_unlock(&cprc->stat_lock);
1798 }
1799
1800 static int issue_checkpoint_thread(void *data)
1801 {
1802         struct f2fs_sb_info *sbi = data;
1803         struct ckpt_req_control *cprc = &sbi->cprc_info;
1804         wait_queue_head_t *q = &cprc->ckpt_wait_queue;
1805 repeat:
1806         if (kthread_should_stop())
1807                 return 0;
1808
1809         if (!llist_empty(&cprc->issue_list))
1810                 __checkpoint_and_complete_reqs(sbi);
1811
1812         wait_event_interruptible(*q,
1813                 kthread_should_stop() || !llist_empty(&cprc->issue_list));
1814         goto repeat;
1815 }
1816
1817 static void flush_remained_ckpt_reqs(struct f2fs_sb_info *sbi,
1818                 struct ckpt_req *wait_req)
1819 {
1820         struct ckpt_req_control *cprc = &sbi->cprc_info;
1821
1822         if (!llist_empty(&cprc->issue_list)) {
1823                 __checkpoint_and_complete_reqs(sbi);
1824         } else {
1825                 /* already dispatched by issue_checkpoint_thread */
1826                 if (wait_req)
1827                         wait_for_completion(&wait_req->wait);
1828         }
1829 }
1830
1831 static void init_ckpt_req(struct ckpt_req *req)
1832 {
1833         memset(req, 0, sizeof(struct ckpt_req));
1834
1835         init_completion(&req->wait);
1836         req->queue_time = ktime_get();
1837 }
1838
1839 int f2fs_issue_checkpoint(struct f2fs_sb_info *sbi)
1840 {
1841         struct ckpt_req_control *cprc = &sbi->cprc_info;
1842         struct ckpt_req req;
1843         struct cp_control cpc;
1844
1845         cpc.reason = __get_cp_reason(sbi);
1846         if (!test_opt(sbi, MERGE_CHECKPOINT) || cpc.reason != CP_SYNC) {
1847                 int ret;
1848
1849                 f2fs_down_write(&sbi->gc_lock);
1850                 ret = f2fs_write_checkpoint(sbi, &cpc);
1851                 f2fs_up_write(&sbi->gc_lock);
1852
1853                 return ret;
1854         }
1855
1856         if (!cprc->f2fs_issue_ckpt)
1857                 return __write_checkpoint_sync(sbi);
1858
1859         init_ckpt_req(&req);
1860
1861         llist_add(&req.llnode, &cprc->issue_list);
1862         atomic_inc(&cprc->queued_ckpt);
1863
1864         /*
1865          * update issue_list before we wake up issue_checkpoint thread,
1866          * this smp_mb() pairs with another barrier in ___wait_event(),
1867          * see more details in comments of waitqueue_active().
1868          */
1869         smp_mb();
1870
1871         if (waitqueue_active(&cprc->ckpt_wait_queue))
1872                 wake_up(&cprc->ckpt_wait_queue);
1873
1874         if (cprc->f2fs_issue_ckpt)
1875                 wait_for_completion(&req.wait);
1876         else
1877                 flush_remained_ckpt_reqs(sbi, &req);
1878
1879         return req.ret;
1880 }
1881
1882 int f2fs_start_ckpt_thread(struct f2fs_sb_info *sbi)
1883 {
1884         dev_t dev = sbi->sb->s_bdev->bd_dev;
1885         struct ckpt_req_control *cprc = &sbi->cprc_info;
1886
1887         if (cprc->f2fs_issue_ckpt)
1888                 return 0;
1889
1890         cprc->f2fs_issue_ckpt = kthread_run(issue_checkpoint_thread, sbi,
1891                         "f2fs_ckpt-%u:%u", MAJOR(dev), MINOR(dev));
1892         if (IS_ERR(cprc->f2fs_issue_ckpt)) {
1893                 cprc->f2fs_issue_ckpt = NULL;
1894                 return -ENOMEM;
1895         }
1896
1897         set_task_ioprio(cprc->f2fs_issue_ckpt, cprc->ckpt_thread_ioprio);
1898
1899         return 0;
1900 }
1901
1902 void f2fs_stop_ckpt_thread(struct f2fs_sb_info *sbi)
1903 {
1904         struct ckpt_req_control *cprc = &sbi->cprc_info;
1905
1906         if (cprc->f2fs_issue_ckpt) {
1907                 struct task_struct *ckpt_task = cprc->f2fs_issue_ckpt;
1908
1909                 cprc->f2fs_issue_ckpt = NULL;
1910                 kthread_stop(ckpt_task);
1911
1912                 flush_remained_ckpt_reqs(sbi, NULL);
1913         }
1914 }
1915
1916 void f2fs_init_ckpt_req_control(struct f2fs_sb_info *sbi)
1917 {
1918         struct ckpt_req_control *cprc = &sbi->cprc_info;
1919
1920         atomic_set(&cprc->issued_ckpt, 0);
1921         atomic_set(&cprc->total_ckpt, 0);
1922         atomic_set(&cprc->queued_ckpt, 0);
1923         cprc->ckpt_thread_ioprio = DEFAULT_CHECKPOINT_IOPRIO;
1924         init_waitqueue_head(&cprc->ckpt_wait_queue);
1925         init_llist_head(&cprc->issue_list);
1926         spin_lock_init(&cprc->stat_lock);
1927 }