1668abf80549e1fc7b8389db0f1ab8d97f35e382
[linux-2.6-microblaze.git] / fs / ext4 / inode.c
1 /*
2  *  linux/fs/ext4/inode.c
3  *
4  * Copyright (C) 1992, 1993, 1994, 1995
5  * Remy Card (card@masi.ibp.fr)
6  * Laboratoire MASI - Institut Blaise Pascal
7  * Universite Pierre et Marie Curie (Paris VI)
8  *
9  *  from
10  *
11  *  linux/fs/minix/inode.c
12  *
13  *  Copyright (C) 1991, 1992  Linus Torvalds
14  *
15  *  64-bit file support on 64-bit platforms by Jakub Jelinek
16  *      (jj@sunsite.ms.mff.cuni.cz)
17  *
18  *  Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000
19  */
20
21 #include <linux/fs.h>
22 #include <linux/time.h>
23 #include <linux/jbd2.h>
24 #include <linux/highuid.h>
25 #include <linux/pagemap.h>
26 #include <linux/quotaops.h>
27 #include <linux/string.h>
28 #include <linux/buffer_head.h>
29 #include <linux/writeback.h>
30 #include <linux/pagevec.h>
31 #include <linux/mpage.h>
32 #include <linux/namei.h>
33 #include <linux/uio.h>
34 #include <linux/bio.h>
35 #include <linux/workqueue.h>
36 #include <linux/kernel.h>
37 #include <linux/printk.h>
38 #include <linux/slab.h>
39 #include <linux/ratelimit.h>
40
41 #include "ext4_jbd2.h"
42 #include "xattr.h"
43 #include "acl.h"
44 #include "truncate.h"
45
46 #include <trace/events/ext4.h>
47
48 #define MPAGE_DA_EXTENT_TAIL 0x01
49
50 static __u32 ext4_inode_csum(struct inode *inode, struct ext4_inode *raw,
51                               struct ext4_inode_info *ei)
52 {
53         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
54         __u16 csum_lo;
55         __u16 csum_hi = 0;
56         __u32 csum;
57
58         csum_lo = raw->i_checksum_lo;
59         raw->i_checksum_lo = 0;
60         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
61             EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi)) {
62                 csum_hi = raw->i_checksum_hi;
63                 raw->i_checksum_hi = 0;
64         }
65
66         csum = ext4_chksum(sbi, ei->i_csum_seed, (__u8 *)raw,
67                            EXT4_INODE_SIZE(inode->i_sb));
68
69         raw->i_checksum_lo = csum_lo;
70         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
71             EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
72                 raw->i_checksum_hi = csum_hi;
73
74         return csum;
75 }
76
77 static int ext4_inode_csum_verify(struct inode *inode, struct ext4_inode *raw,
78                                   struct ext4_inode_info *ei)
79 {
80         __u32 provided, calculated;
81
82         if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
83             cpu_to_le32(EXT4_OS_LINUX) ||
84             !EXT4_HAS_RO_COMPAT_FEATURE(inode->i_sb,
85                 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM))
86                 return 1;
87
88         provided = le16_to_cpu(raw->i_checksum_lo);
89         calculated = ext4_inode_csum(inode, raw, ei);
90         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
91             EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
92                 provided |= ((__u32)le16_to_cpu(raw->i_checksum_hi)) << 16;
93         else
94                 calculated &= 0xFFFF;
95
96         return provided == calculated;
97 }
98
99 static void ext4_inode_csum_set(struct inode *inode, struct ext4_inode *raw,
100                                 struct ext4_inode_info *ei)
101 {
102         __u32 csum;
103
104         if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
105             cpu_to_le32(EXT4_OS_LINUX) ||
106             !EXT4_HAS_RO_COMPAT_FEATURE(inode->i_sb,
107                 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM))
108                 return;
109
110         csum = ext4_inode_csum(inode, raw, ei);
111         raw->i_checksum_lo = cpu_to_le16(csum & 0xFFFF);
112         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
113             EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
114                 raw->i_checksum_hi = cpu_to_le16(csum >> 16);
115 }
116
117 static inline int ext4_begin_ordered_truncate(struct inode *inode,
118                                               loff_t new_size)
119 {
120         trace_ext4_begin_ordered_truncate(inode, new_size);
121         /*
122          * If jinode is zero, then we never opened the file for
123          * writing, so there's no need to call
124          * jbd2_journal_begin_ordered_truncate() since there's no
125          * outstanding writes we need to flush.
126          */
127         if (!EXT4_I(inode)->jinode)
128                 return 0;
129         return jbd2_journal_begin_ordered_truncate(EXT4_JOURNAL(inode),
130                                                    EXT4_I(inode)->jinode,
131                                                    new_size);
132 }
133
134 static void ext4_invalidatepage(struct page *page, unsigned long offset);
135 static int noalloc_get_block_write(struct inode *inode, sector_t iblock,
136                                    struct buffer_head *bh_result, int create);
137 static int ext4_set_bh_endio(struct buffer_head *bh, struct inode *inode);
138 static void ext4_end_io_buffer_write(struct buffer_head *bh, int uptodate);
139 static int __ext4_journalled_writepage(struct page *page, unsigned int len);
140 static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh);
141 static int ext4_discard_partial_page_buffers_no_lock(handle_t *handle,
142                 struct inode *inode, struct page *page, loff_t from,
143                 loff_t length, int flags);
144
145 /*
146  * Test whether an inode is a fast symlink.
147  */
148 static int ext4_inode_is_fast_symlink(struct inode *inode)
149 {
150         int ea_blocks = EXT4_I(inode)->i_file_acl ?
151                 (inode->i_sb->s_blocksize >> 9) : 0;
152
153         return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0);
154 }
155
156 /*
157  * Restart the transaction associated with *handle.  This does a commit,
158  * so before we call here everything must be consistently dirtied against
159  * this transaction.
160  */
161 int ext4_truncate_restart_trans(handle_t *handle, struct inode *inode,
162                                  int nblocks)
163 {
164         int ret;
165
166         /*
167          * Drop i_data_sem to avoid deadlock with ext4_map_blocks.  At this
168          * moment, get_block can be called only for blocks inside i_size since
169          * page cache has been already dropped and writes are blocked by
170          * i_mutex. So we can safely drop the i_data_sem here.
171          */
172         BUG_ON(EXT4_JOURNAL(inode) == NULL);
173         jbd_debug(2, "restarting handle %p\n", handle);
174         up_write(&EXT4_I(inode)->i_data_sem);
175         ret = ext4_journal_restart(handle, nblocks);
176         down_write(&EXT4_I(inode)->i_data_sem);
177         ext4_discard_preallocations(inode);
178
179         return ret;
180 }
181
182 /*
183  * Called at the last iput() if i_nlink is zero.
184  */
185 void ext4_evict_inode(struct inode *inode)
186 {
187         handle_t *handle;
188         int err;
189
190         trace_ext4_evict_inode(inode);
191
192         ext4_ioend_wait(inode);
193
194         if (inode->i_nlink) {
195                 /*
196                  * When journalling data dirty buffers are tracked only in the
197                  * journal. So although mm thinks everything is clean and
198                  * ready for reaping the inode might still have some pages to
199                  * write in the running transaction or waiting to be
200                  * checkpointed. Thus calling jbd2_journal_invalidatepage()
201                  * (via truncate_inode_pages()) to discard these buffers can
202                  * cause data loss. Also even if we did not discard these
203                  * buffers, we would have no way to find them after the inode
204                  * is reaped and thus user could see stale data if he tries to
205                  * read them before the transaction is checkpointed. So be
206                  * careful and force everything to disk here... We use
207                  * ei->i_datasync_tid to store the newest transaction
208                  * containing inode's data.
209                  *
210                  * Note that directories do not have this problem because they
211                  * don't use page cache.
212                  */
213                 if (ext4_should_journal_data(inode) &&
214                     (S_ISLNK(inode->i_mode) || S_ISREG(inode->i_mode))) {
215                         journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
216                         tid_t commit_tid = EXT4_I(inode)->i_datasync_tid;
217
218                         jbd2_log_start_commit(journal, commit_tid);
219                         jbd2_log_wait_commit(journal, commit_tid);
220                         filemap_write_and_wait(&inode->i_data);
221                 }
222                 truncate_inode_pages(&inode->i_data, 0);
223                 goto no_delete;
224         }
225
226         if (!is_bad_inode(inode))
227                 dquot_initialize(inode);
228
229         if (ext4_should_order_data(inode))
230                 ext4_begin_ordered_truncate(inode, 0);
231         truncate_inode_pages(&inode->i_data, 0);
232
233         if (is_bad_inode(inode))
234                 goto no_delete;
235
236         /*
237          * Protect us against freezing - iput() caller didn't have to have any
238          * protection against it
239          */
240         sb_start_intwrite(inode->i_sb);
241         handle = ext4_journal_start(inode, ext4_blocks_for_truncate(inode)+3);
242         if (IS_ERR(handle)) {
243                 ext4_std_error(inode->i_sb, PTR_ERR(handle));
244                 /*
245                  * If we're going to skip the normal cleanup, we still need to
246                  * make sure that the in-core orphan linked list is properly
247                  * cleaned up.
248                  */
249                 ext4_orphan_del(NULL, inode);
250                 sb_end_intwrite(inode->i_sb);
251                 goto no_delete;
252         }
253
254         if (IS_SYNC(inode))
255                 ext4_handle_sync(handle);
256         inode->i_size = 0;
257         err = ext4_mark_inode_dirty(handle, inode);
258         if (err) {
259                 ext4_warning(inode->i_sb,
260                              "couldn't mark inode dirty (err %d)", err);
261                 goto stop_handle;
262         }
263         if (inode->i_blocks)
264                 ext4_truncate(inode);
265
266         /*
267          * ext4_ext_truncate() doesn't reserve any slop when it
268          * restarts journal transactions; therefore there may not be
269          * enough credits left in the handle to remove the inode from
270          * the orphan list and set the dtime field.
271          */
272         if (!ext4_handle_has_enough_credits(handle, 3)) {
273                 err = ext4_journal_extend(handle, 3);
274                 if (err > 0)
275                         err = ext4_journal_restart(handle, 3);
276                 if (err != 0) {
277                         ext4_warning(inode->i_sb,
278                                      "couldn't extend journal (err %d)", err);
279                 stop_handle:
280                         ext4_journal_stop(handle);
281                         ext4_orphan_del(NULL, inode);
282                         sb_end_intwrite(inode->i_sb);
283                         goto no_delete;
284                 }
285         }
286
287         /*
288          * Kill off the orphan record which ext4_truncate created.
289          * AKPM: I think this can be inside the above `if'.
290          * Note that ext4_orphan_del() has to be able to cope with the
291          * deletion of a non-existent orphan - this is because we don't
292          * know if ext4_truncate() actually created an orphan record.
293          * (Well, we could do this if we need to, but heck - it works)
294          */
295         ext4_orphan_del(handle, inode);
296         EXT4_I(inode)->i_dtime  = get_seconds();
297
298         /*
299          * One subtle ordering requirement: if anything has gone wrong
300          * (transaction abort, IO errors, whatever), then we can still
301          * do these next steps (the fs will already have been marked as
302          * having errors), but we can't free the inode if the mark_dirty
303          * fails.
304          */
305         if (ext4_mark_inode_dirty(handle, inode))
306                 /* If that failed, just do the required in-core inode clear. */
307                 ext4_clear_inode(inode);
308         else
309                 ext4_free_inode(handle, inode);
310         ext4_journal_stop(handle);
311         sb_end_intwrite(inode->i_sb);
312         return;
313 no_delete:
314         ext4_clear_inode(inode);        /* We must guarantee clearing of inode... */
315 }
316
317 #ifdef CONFIG_QUOTA
318 qsize_t *ext4_get_reserved_space(struct inode *inode)
319 {
320         return &EXT4_I(inode)->i_reserved_quota;
321 }
322 #endif
323
324 /*
325  * Calculate the number of metadata blocks need to reserve
326  * to allocate a block located at @lblock
327  */
328 static int ext4_calc_metadata_amount(struct inode *inode, ext4_lblk_t lblock)
329 {
330         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
331                 return ext4_ext_calc_metadata_amount(inode, lblock);
332
333         return ext4_ind_calc_metadata_amount(inode, lblock);
334 }
335
336 /*
337  * Called with i_data_sem down, which is important since we can call
338  * ext4_discard_preallocations() from here.
339  */
340 void ext4_da_update_reserve_space(struct inode *inode,
341                                         int used, int quota_claim)
342 {
343         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
344         struct ext4_inode_info *ei = EXT4_I(inode);
345
346         spin_lock(&ei->i_block_reservation_lock);
347         trace_ext4_da_update_reserve_space(inode, used, quota_claim);
348         if (unlikely(used > ei->i_reserved_data_blocks)) {
349                 ext4_msg(inode->i_sb, KERN_NOTICE, "%s: ino %lu, used %d "
350                          "with only %d reserved data blocks",
351                          __func__, inode->i_ino, used,
352                          ei->i_reserved_data_blocks);
353                 WARN_ON(1);
354                 used = ei->i_reserved_data_blocks;
355         }
356
357         if (unlikely(ei->i_allocated_meta_blocks > ei->i_reserved_meta_blocks)) {
358                 ext4_msg(inode->i_sb, KERN_NOTICE, "%s: ino %lu, allocated %d "
359                          "with only %d reserved metadata blocks\n", __func__,
360                          inode->i_ino, ei->i_allocated_meta_blocks,
361                          ei->i_reserved_meta_blocks);
362                 WARN_ON(1);
363                 ei->i_allocated_meta_blocks = ei->i_reserved_meta_blocks;
364         }
365
366         /* Update per-inode reservations */
367         ei->i_reserved_data_blocks -= used;
368         ei->i_reserved_meta_blocks -= ei->i_allocated_meta_blocks;
369         percpu_counter_sub(&sbi->s_dirtyclusters_counter,
370                            used + ei->i_allocated_meta_blocks);
371         ei->i_allocated_meta_blocks = 0;
372
373         if (ei->i_reserved_data_blocks == 0) {
374                 /*
375                  * We can release all of the reserved metadata blocks
376                  * only when we have written all of the delayed
377                  * allocation blocks.
378                  */
379                 percpu_counter_sub(&sbi->s_dirtyclusters_counter,
380                                    ei->i_reserved_meta_blocks);
381                 ei->i_reserved_meta_blocks = 0;
382                 ei->i_da_metadata_calc_len = 0;
383         }
384         spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
385
386         /* Update quota subsystem for data blocks */
387         if (quota_claim)
388                 dquot_claim_block(inode, EXT4_C2B(sbi, used));
389         else {
390                 /*
391                  * We did fallocate with an offset that is already delayed
392                  * allocated. So on delayed allocated writeback we should
393                  * not re-claim the quota for fallocated blocks.
394                  */
395                 dquot_release_reservation_block(inode, EXT4_C2B(sbi, used));
396         }
397
398         /*
399          * If we have done all the pending block allocations and if
400          * there aren't any writers on the inode, we can discard the
401          * inode's preallocations.
402          */
403         if ((ei->i_reserved_data_blocks == 0) &&
404             (atomic_read(&inode->i_writecount) == 0))
405                 ext4_discard_preallocations(inode);
406 }
407
408 static int __check_block_validity(struct inode *inode, const char *func,
409                                 unsigned int line,
410                                 struct ext4_map_blocks *map)
411 {
412         if (!ext4_data_block_valid(EXT4_SB(inode->i_sb), map->m_pblk,
413                                    map->m_len)) {
414                 ext4_error_inode(inode, func, line, map->m_pblk,
415                                  "lblock %lu mapped to illegal pblock "
416                                  "(length %d)", (unsigned long) map->m_lblk,
417                                  map->m_len);
418                 return -EIO;
419         }
420         return 0;
421 }
422
423 #define check_block_validity(inode, map)        \
424         __check_block_validity((inode), __func__, __LINE__, (map))
425
426 /*
427  * Return the number of contiguous dirty pages in a given inode
428  * starting at page frame idx.
429  */
430 static pgoff_t ext4_num_dirty_pages(struct inode *inode, pgoff_t idx,
431                                     unsigned int max_pages)
432 {
433         struct address_space *mapping = inode->i_mapping;
434         pgoff_t index;
435         struct pagevec pvec;
436         pgoff_t num = 0;
437         int i, nr_pages, done = 0;
438
439         if (max_pages == 0)
440                 return 0;
441         pagevec_init(&pvec, 0);
442         while (!done) {
443                 index = idx;
444                 nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
445                                               PAGECACHE_TAG_DIRTY,
446                                               (pgoff_t)PAGEVEC_SIZE);
447                 if (nr_pages == 0)
448                         break;
449                 for (i = 0; i < nr_pages; i++) {
450                         struct page *page = pvec.pages[i];
451                         struct buffer_head *bh, *head;
452
453                         lock_page(page);
454                         if (unlikely(page->mapping != mapping) ||
455                             !PageDirty(page) ||
456                             PageWriteback(page) ||
457                             page->index != idx) {
458                                 done = 1;
459                                 unlock_page(page);
460                                 break;
461                         }
462                         if (page_has_buffers(page)) {
463                                 bh = head = page_buffers(page);
464                                 do {
465                                         if (!buffer_delay(bh) &&
466                                             !buffer_unwritten(bh))
467                                                 done = 1;
468                                         bh = bh->b_this_page;
469                                 } while (!done && (bh != head));
470                         }
471                         unlock_page(page);
472                         if (done)
473                                 break;
474                         idx++;
475                         num++;
476                         if (num >= max_pages) {
477                                 done = 1;
478                                 break;
479                         }
480                 }
481                 pagevec_release(&pvec);
482         }
483         return num;
484 }
485
486 /*
487  * The ext4_map_blocks() function tries to look up the requested blocks,
488  * and returns if the blocks are already mapped.
489  *
490  * Otherwise it takes the write lock of the i_data_sem and allocate blocks
491  * and store the allocated blocks in the result buffer head and mark it
492  * mapped.
493  *
494  * If file type is extents based, it will call ext4_ext_map_blocks(),
495  * Otherwise, call with ext4_ind_map_blocks() to handle indirect mapping
496  * based files
497  *
498  * On success, it returns the number of blocks being mapped or allocate.
499  * if create==0 and the blocks are pre-allocated and uninitialized block,
500  * the result buffer head is unmapped. If the create ==1, it will make sure
501  * the buffer head is mapped.
502  *
503  * It returns 0 if plain look up failed (blocks have not been allocated), in
504  * that case, buffer head is unmapped
505  *
506  * It returns the error in case of allocation failure.
507  */
508 int ext4_map_blocks(handle_t *handle, struct inode *inode,
509                     struct ext4_map_blocks *map, int flags)
510 {
511         int retval;
512
513         map->m_flags = 0;
514         ext_debug("ext4_map_blocks(): inode %lu, flag %d, max_blocks %u,"
515                   "logical block %lu\n", inode->i_ino, flags, map->m_len,
516                   (unsigned long) map->m_lblk);
517         /*
518          * Try to see if we can get the block without requesting a new
519          * file system block.
520          */
521         if (!(flags & EXT4_GET_BLOCKS_NO_LOCK))
522                 down_read((&EXT4_I(inode)->i_data_sem));
523         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
524                 retval = ext4_ext_map_blocks(handle, inode, map, flags &
525                                              EXT4_GET_BLOCKS_KEEP_SIZE);
526         } else {
527                 retval = ext4_ind_map_blocks(handle, inode, map, flags &
528                                              EXT4_GET_BLOCKS_KEEP_SIZE);
529         }
530         if (!(flags & EXT4_GET_BLOCKS_NO_LOCK))
531                 up_read((&EXT4_I(inode)->i_data_sem));
532
533         if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
534                 int ret;
535                 if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) {
536                         /* delayed alloc may be allocated by fallocate and
537                          * coverted to initialized by directIO.
538                          * we need to handle delayed extent here.
539                          */
540                         down_write((&EXT4_I(inode)->i_data_sem));
541                         goto delayed_mapped;
542                 }
543                 ret = check_block_validity(inode, map);
544                 if (ret != 0)
545                         return ret;
546         }
547
548         /* If it is only a block(s) look up */
549         if ((flags & EXT4_GET_BLOCKS_CREATE) == 0)
550                 return retval;
551
552         /*
553          * Returns if the blocks have already allocated
554          *
555          * Note that if blocks have been preallocated
556          * ext4_ext_get_block() returns the create = 0
557          * with buffer head unmapped.
558          */
559         if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED)
560                 return retval;
561
562         /*
563          * When we call get_blocks without the create flag, the
564          * BH_Unwritten flag could have gotten set if the blocks
565          * requested were part of a uninitialized extent.  We need to
566          * clear this flag now that we are committed to convert all or
567          * part of the uninitialized extent to be an initialized
568          * extent.  This is because we need to avoid the combination
569          * of BH_Unwritten and BH_Mapped flags being simultaneously
570          * set on the buffer_head.
571          */
572         map->m_flags &= ~EXT4_MAP_UNWRITTEN;
573
574         /*
575          * New blocks allocate and/or writing to uninitialized extent
576          * will possibly result in updating i_data, so we take
577          * the write lock of i_data_sem, and call get_blocks()
578          * with create == 1 flag.
579          */
580         down_write((&EXT4_I(inode)->i_data_sem));
581
582         /*
583          * if the caller is from delayed allocation writeout path
584          * we have already reserved fs blocks for allocation
585          * let the underlying get_block() function know to
586          * avoid double accounting
587          */
588         if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE)
589                 ext4_set_inode_state(inode, EXT4_STATE_DELALLOC_RESERVED);
590         /*
591          * We need to check for EXT4 here because migrate
592          * could have changed the inode type in between
593          */
594         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
595                 retval = ext4_ext_map_blocks(handle, inode, map, flags);
596         } else {
597                 retval = ext4_ind_map_blocks(handle, inode, map, flags);
598
599                 if (retval > 0 && map->m_flags & EXT4_MAP_NEW) {
600                         /*
601                          * We allocated new blocks which will result in
602                          * i_data's format changing.  Force the migrate
603                          * to fail by clearing migrate flags
604                          */
605                         ext4_clear_inode_state(inode, EXT4_STATE_EXT_MIGRATE);
606                 }
607
608                 /*
609                  * Update reserved blocks/metadata blocks after successful
610                  * block allocation which had been deferred till now. We don't
611                  * support fallocate for non extent files. So we can update
612                  * reserve space here.
613                  */
614                 if ((retval > 0) &&
615                         (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE))
616                         ext4_da_update_reserve_space(inode, retval, 1);
617         }
618         if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) {
619                 ext4_clear_inode_state(inode, EXT4_STATE_DELALLOC_RESERVED);
620
621                 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
622                         int ret;
623 delayed_mapped:
624                         /* delayed allocation blocks has been allocated */
625                         ret = ext4_es_remove_extent(inode, map->m_lblk,
626                                                     map->m_len);
627                         if (ret < 0)
628                                 retval = ret;
629                 }
630         }
631
632         up_write((&EXT4_I(inode)->i_data_sem));
633         if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
634                 int ret = check_block_validity(inode, map);
635                 if (ret != 0)
636                         return ret;
637         }
638         return retval;
639 }
640
641 /* Maximum number of blocks we map for direct IO at once. */
642 #define DIO_MAX_BLOCKS 4096
643
644 static int _ext4_get_block(struct inode *inode, sector_t iblock,
645                            struct buffer_head *bh, int flags)
646 {
647         handle_t *handle = ext4_journal_current_handle();
648         struct ext4_map_blocks map;
649         int ret = 0, started = 0;
650         int dio_credits;
651
652         if (ext4_has_inline_data(inode))
653                 return -ERANGE;
654
655         map.m_lblk = iblock;
656         map.m_len = bh->b_size >> inode->i_blkbits;
657
658         if (flags && !(flags & EXT4_GET_BLOCKS_NO_LOCK) && !handle) {
659                 /* Direct IO write... */
660                 if (map.m_len > DIO_MAX_BLOCKS)
661                         map.m_len = DIO_MAX_BLOCKS;
662                 dio_credits = ext4_chunk_trans_blocks(inode, map.m_len);
663                 handle = ext4_journal_start(inode, dio_credits);
664                 if (IS_ERR(handle)) {
665                         ret = PTR_ERR(handle);
666                         return ret;
667                 }
668                 started = 1;
669         }
670
671         ret = ext4_map_blocks(handle, inode, &map, flags);
672         if (ret > 0) {
673                 map_bh(bh, inode->i_sb, map.m_pblk);
674                 bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | map.m_flags;
675                 bh->b_size = inode->i_sb->s_blocksize * map.m_len;
676                 ret = 0;
677         }
678         if (started)
679                 ext4_journal_stop(handle);
680         return ret;
681 }
682
683 int ext4_get_block(struct inode *inode, sector_t iblock,
684                    struct buffer_head *bh, int create)
685 {
686         return _ext4_get_block(inode, iblock, bh,
687                                create ? EXT4_GET_BLOCKS_CREATE : 0);
688 }
689
690 /*
691  * `handle' can be NULL if create is zero
692  */
693 struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode,
694                                 ext4_lblk_t block, int create, int *errp)
695 {
696         struct ext4_map_blocks map;
697         struct buffer_head *bh;
698         int fatal = 0, err;
699
700         J_ASSERT(handle != NULL || create == 0);
701
702         map.m_lblk = block;
703         map.m_len = 1;
704         err = ext4_map_blocks(handle, inode, &map,
705                               create ? EXT4_GET_BLOCKS_CREATE : 0);
706
707         /* ensure we send some value back into *errp */
708         *errp = 0;
709
710         if (err < 0)
711                 *errp = err;
712         if (err <= 0)
713                 return NULL;
714
715         bh = sb_getblk(inode->i_sb, map.m_pblk);
716         if (!bh) {
717                 *errp = -EIO;
718                 return NULL;
719         }
720         if (map.m_flags & EXT4_MAP_NEW) {
721                 J_ASSERT(create != 0);
722                 J_ASSERT(handle != NULL);
723
724                 /*
725                  * Now that we do not always journal data, we should
726                  * keep in mind whether this should always journal the
727                  * new buffer as metadata.  For now, regular file
728                  * writes use ext4_get_block instead, so it's not a
729                  * problem.
730                  */
731                 lock_buffer(bh);
732                 BUFFER_TRACE(bh, "call get_create_access");
733                 fatal = ext4_journal_get_create_access(handle, bh);
734                 if (!fatal && !buffer_uptodate(bh)) {
735                         memset(bh->b_data, 0, inode->i_sb->s_blocksize);
736                         set_buffer_uptodate(bh);
737                 }
738                 unlock_buffer(bh);
739                 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
740                 err = ext4_handle_dirty_metadata(handle, inode, bh);
741                 if (!fatal)
742                         fatal = err;
743         } else {
744                 BUFFER_TRACE(bh, "not a new buffer");
745         }
746         if (fatal) {
747                 *errp = fatal;
748                 brelse(bh);
749                 bh = NULL;
750         }
751         return bh;
752 }
753
754 struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode,
755                                ext4_lblk_t block, int create, int *err)
756 {
757         struct buffer_head *bh;
758
759         bh = ext4_getblk(handle, inode, block, create, err);
760         if (!bh)
761                 return bh;
762         if (buffer_uptodate(bh))
763                 return bh;
764         ll_rw_block(READ | REQ_META | REQ_PRIO, 1, &bh);
765         wait_on_buffer(bh);
766         if (buffer_uptodate(bh))
767                 return bh;
768         put_bh(bh);
769         *err = -EIO;
770         return NULL;
771 }
772
773 static int walk_page_buffers(handle_t *handle,
774                              struct buffer_head *head,
775                              unsigned from,
776                              unsigned to,
777                              int *partial,
778                              int (*fn)(handle_t *handle,
779                                        struct buffer_head *bh))
780 {
781         struct buffer_head *bh;
782         unsigned block_start, block_end;
783         unsigned blocksize = head->b_size;
784         int err, ret = 0;
785         struct buffer_head *next;
786
787         for (bh = head, block_start = 0;
788              ret == 0 && (bh != head || !block_start);
789              block_start = block_end, bh = next) {
790                 next = bh->b_this_page;
791                 block_end = block_start + blocksize;
792                 if (block_end <= from || block_start >= to) {
793                         if (partial && !buffer_uptodate(bh))
794                                 *partial = 1;
795                         continue;
796                 }
797                 err = (*fn)(handle, bh);
798                 if (!ret)
799                         ret = err;
800         }
801         return ret;
802 }
803
804 /*
805  * To preserve ordering, it is essential that the hole instantiation and
806  * the data write be encapsulated in a single transaction.  We cannot
807  * close off a transaction and start a new one between the ext4_get_block()
808  * and the commit_write().  So doing the jbd2_journal_start at the start of
809  * prepare_write() is the right place.
810  *
811  * Also, this function can nest inside ext4_writepage() ->
812  * block_write_full_page(). In that case, we *know* that ext4_writepage()
813  * has generated enough buffer credits to do the whole page.  So we won't
814  * block on the journal in that case, which is good, because the caller may
815  * be PF_MEMALLOC.
816  *
817  * By accident, ext4 can be reentered when a transaction is open via
818  * quota file writes.  If we were to commit the transaction while thus
819  * reentered, there can be a deadlock - we would be holding a quota
820  * lock, and the commit would never complete if another thread had a
821  * transaction open and was blocking on the quota lock - a ranking
822  * violation.
823  *
824  * So what we do is to rely on the fact that jbd2_journal_stop/journal_start
825  * will _not_ run commit under these circumstances because handle->h_ref
826  * is elevated.  We'll still have enough credits for the tiny quotafile
827  * write.
828  */
829 static int do_journal_get_write_access(handle_t *handle,
830                                        struct buffer_head *bh)
831 {
832         int dirty = buffer_dirty(bh);
833         int ret;
834
835         if (!buffer_mapped(bh) || buffer_freed(bh))
836                 return 0;
837         /*
838          * __block_write_begin() could have dirtied some buffers. Clean
839          * the dirty bit as jbd2_journal_get_write_access() could complain
840          * otherwise about fs integrity issues. Setting of the dirty bit
841          * by __block_write_begin() isn't a real problem here as we clear
842          * the bit before releasing a page lock and thus writeback cannot
843          * ever write the buffer.
844          */
845         if (dirty)
846                 clear_buffer_dirty(bh);
847         ret = ext4_journal_get_write_access(handle, bh);
848         if (!ret && dirty)
849                 ret = ext4_handle_dirty_metadata(handle, NULL, bh);
850         return ret;
851 }
852
853 static int ext4_get_block_write(struct inode *inode, sector_t iblock,
854                    struct buffer_head *bh_result, int create);
855 static int ext4_get_block_write_nolock(struct inode *inode, sector_t iblock,
856                    struct buffer_head *bh_result, int create);
857 static int ext4_write_begin(struct file *file, struct address_space *mapping,
858                             loff_t pos, unsigned len, unsigned flags,
859                             struct page **pagep, void **fsdata)
860 {
861         struct inode *inode = mapping->host;
862         int ret, needed_blocks;
863         handle_t *handle;
864         int retries = 0;
865         struct page *page;
866         pgoff_t index;
867         unsigned from, to;
868
869         trace_ext4_write_begin(inode, pos, len, flags);
870         /*
871          * Reserve one block more for addition to orphan list in case
872          * we allocate blocks but write fails for some reason
873          */
874         needed_blocks = ext4_writepage_trans_blocks(inode) + 1;
875         index = pos >> PAGE_CACHE_SHIFT;
876         from = pos & (PAGE_CACHE_SIZE - 1);
877         to = from + len;
878
879 retry:
880         handle = ext4_journal_start(inode, needed_blocks);
881         if (IS_ERR(handle)) {
882                 ret = PTR_ERR(handle);
883                 goto out;
884         }
885
886         /* We cannot recurse into the filesystem as the transaction is already
887          * started */
888         flags |= AOP_FLAG_NOFS;
889
890         page = grab_cache_page_write_begin(mapping, index, flags);
891         if (!page) {
892                 ext4_journal_stop(handle);
893                 ret = -ENOMEM;
894                 goto out;
895         }
896         *pagep = page;
897
898         if (ext4_should_dioread_nolock(inode))
899                 ret = __block_write_begin(page, pos, len, ext4_get_block_write);
900         else
901                 ret = __block_write_begin(page, pos, len, ext4_get_block);
902
903         if (!ret && ext4_should_journal_data(inode)) {
904                 ret = walk_page_buffers(handle, page_buffers(page),
905                                 from, to, NULL, do_journal_get_write_access);
906         }
907
908         if (ret) {
909                 unlock_page(page);
910                 page_cache_release(page);
911                 /*
912                  * __block_write_begin may have instantiated a few blocks
913                  * outside i_size.  Trim these off again. Don't need
914                  * i_size_read because we hold i_mutex.
915                  *
916                  * Add inode to orphan list in case we crash before
917                  * truncate finishes
918                  */
919                 if (pos + len > inode->i_size && ext4_can_truncate(inode))
920                         ext4_orphan_add(handle, inode);
921
922                 ext4_journal_stop(handle);
923                 if (pos + len > inode->i_size) {
924                         ext4_truncate_failed_write(inode);
925                         /*
926                          * If truncate failed early the inode might
927                          * still be on the orphan list; we need to
928                          * make sure the inode is removed from the
929                          * orphan list in that case.
930                          */
931                         if (inode->i_nlink)
932                                 ext4_orphan_del(NULL, inode);
933                 }
934         }
935
936         if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
937                 goto retry;
938 out:
939         return ret;
940 }
941
942 /* For write_end() in data=journal mode */
943 static int write_end_fn(handle_t *handle, struct buffer_head *bh)
944 {
945         if (!buffer_mapped(bh) || buffer_freed(bh))
946                 return 0;
947         set_buffer_uptodate(bh);
948         return ext4_handle_dirty_metadata(handle, NULL, bh);
949 }
950
951 static int ext4_generic_write_end(struct file *file,
952                                   struct address_space *mapping,
953                                   loff_t pos, unsigned len, unsigned copied,
954                                   struct page *page, void *fsdata)
955 {
956         int i_size_changed = 0;
957         struct inode *inode = mapping->host;
958         handle_t *handle = ext4_journal_current_handle();
959
960         copied = block_write_end(file, mapping, pos, len, copied, page, fsdata);
961
962         /*
963          * No need to use i_size_read() here, the i_size
964          * cannot change under us because we hold i_mutex.
965          *
966          * But it's important to update i_size while still holding page lock:
967          * page writeout could otherwise come in and zero beyond i_size.
968          */
969         if (pos + copied > inode->i_size) {
970                 i_size_write(inode, pos + copied);
971                 i_size_changed = 1;
972         }
973
974         if (pos + copied >  EXT4_I(inode)->i_disksize) {
975                 /* We need to mark inode dirty even if
976                  * new_i_size is less that inode->i_size
977                  * bu greater than i_disksize.(hint delalloc)
978                  */
979                 ext4_update_i_disksize(inode, (pos + copied));
980                 i_size_changed = 1;
981         }
982         unlock_page(page);
983         page_cache_release(page);
984
985         /*
986          * Don't mark the inode dirty under page lock. First, it unnecessarily
987          * makes the holding time of page lock longer. Second, it forces lock
988          * ordering of page lock and transaction start for journaling
989          * filesystems.
990          */
991         if (i_size_changed)
992                 ext4_mark_inode_dirty(handle, inode);
993
994         return copied;
995 }
996
997 /*
998  * We need to pick up the new inode size which generic_commit_write gave us
999  * `file' can be NULL - eg, when called from page_symlink().
1000  *
1001  * ext4 never places buffers on inode->i_mapping->private_list.  metadata
1002  * buffers are managed internally.
1003  */
1004 static int ext4_ordered_write_end(struct file *file,
1005                                   struct address_space *mapping,
1006                                   loff_t pos, unsigned len, unsigned copied,
1007                                   struct page *page, void *fsdata)
1008 {
1009         handle_t *handle = ext4_journal_current_handle();
1010         struct inode *inode = mapping->host;
1011         int ret = 0, ret2;
1012
1013         trace_ext4_ordered_write_end(inode, pos, len, copied);
1014         ret = ext4_jbd2_file_inode(handle, inode);
1015
1016         if (ret == 0) {
1017                 ret2 = ext4_generic_write_end(file, mapping, pos, len, copied,
1018                                                         page, fsdata);
1019                 copied = ret2;
1020                 if (pos + len > inode->i_size && ext4_can_truncate(inode))
1021                         /* if we have allocated more blocks and copied
1022                          * less. We will have blocks allocated outside
1023                          * inode->i_size. So truncate them
1024                          */
1025                         ext4_orphan_add(handle, inode);
1026                 if (ret2 < 0)
1027                         ret = ret2;
1028         } else {
1029                 unlock_page(page);
1030                 page_cache_release(page);
1031         }
1032
1033         ret2 = ext4_journal_stop(handle);
1034         if (!ret)
1035                 ret = ret2;
1036
1037         if (pos + len > inode->i_size) {
1038                 ext4_truncate_failed_write(inode);
1039                 /*
1040                  * If truncate failed early the inode might still be
1041                  * on the orphan list; we need to make sure the inode
1042                  * is removed from the orphan list in that case.
1043                  */
1044                 if (inode->i_nlink)
1045                         ext4_orphan_del(NULL, inode);
1046         }
1047
1048
1049         return ret ? ret : copied;
1050 }
1051
1052 static int ext4_writeback_write_end(struct file *file,
1053                                     struct address_space *mapping,
1054                                     loff_t pos, unsigned len, unsigned copied,
1055                                     struct page *page, void *fsdata)
1056 {
1057         handle_t *handle = ext4_journal_current_handle();
1058         struct inode *inode = mapping->host;
1059         int ret = 0, ret2;
1060
1061         trace_ext4_writeback_write_end(inode, pos, len, copied);
1062         ret2 = ext4_generic_write_end(file, mapping, pos, len, copied,
1063                                                         page, fsdata);
1064         copied = ret2;
1065         if (pos + len > inode->i_size && ext4_can_truncate(inode))
1066                 /* if we have allocated more blocks and copied
1067                  * less. We will have blocks allocated outside
1068                  * inode->i_size. So truncate them
1069                  */
1070                 ext4_orphan_add(handle, inode);
1071
1072         if (ret2 < 0)
1073                 ret = ret2;
1074
1075         ret2 = ext4_journal_stop(handle);
1076         if (!ret)
1077                 ret = ret2;
1078
1079         if (pos + len > inode->i_size) {
1080                 ext4_truncate_failed_write(inode);
1081                 /*
1082                  * If truncate failed early the inode might still be
1083                  * on the orphan list; we need to make sure the inode
1084                  * is removed from the orphan list in that case.
1085                  */
1086                 if (inode->i_nlink)
1087                         ext4_orphan_del(NULL, inode);
1088         }
1089
1090         return ret ? ret : copied;
1091 }
1092
1093 static int ext4_journalled_write_end(struct file *file,
1094                                      struct address_space *mapping,
1095                                      loff_t pos, unsigned len, unsigned copied,
1096                                      struct page *page, void *fsdata)
1097 {
1098         handle_t *handle = ext4_journal_current_handle();
1099         struct inode *inode = mapping->host;
1100         int ret = 0, ret2;
1101         int partial = 0;
1102         unsigned from, to;
1103         loff_t new_i_size;
1104
1105         trace_ext4_journalled_write_end(inode, pos, len, copied);
1106         from = pos & (PAGE_CACHE_SIZE - 1);
1107         to = from + len;
1108
1109         BUG_ON(!ext4_handle_valid(handle));
1110
1111         if (copied < len) {
1112                 if (!PageUptodate(page))
1113                         copied = 0;
1114                 page_zero_new_buffers(page, from+copied, to);
1115         }
1116
1117         ret = walk_page_buffers(handle, page_buffers(page), from,
1118                                 to, &partial, write_end_fn);
1119         if (!partial)
1120                 SetPageUptodate(page);
1121         new_i_size = pos + copied;
1122         if (new_i_size > inode->i_size)
1123                 i_size_write(inode, pos+copied);
1124         ext4_set_inode_state(inode, EXT4_STATE_JDATA);
1125         EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
1126         if (new_i_size > EXT4_I(inode)->i_disksize) {
1127                 ext4_update_i_disksize(inode, new_i_size);
1128                 ret2 = ext4_mark_inode_dirty(handle, inode);
1129                 if (!ret)
1130                         ret = ret2;
1131         }
1132
1133         unlock_page(page);
1134         page_cache_release(page);
1135         if (pos + len > inode->i_size && ext4_can_truncate(inode))
1136                 /* if we have allocated more blocks and copied
1137                  * less. We will have blocks allocated outside
1138                  * inode->i_size. So truncate them
1139                  */
1140                 ext4_orphan_add(handle, inode);
1141
1142         ret2 = ext4_journal_stop(handle);
1143         if (!ret)
1144                 ret = ret2;
1145         if (pos + len > inode->i_size) {
1146                 ext4_truncate_failed_write(inode);
1147                 /*
1148                  * If truncate failed early the inode might still be
1149                  * on the orphan list; we need to make sure the inode
1150                  * is removed from the orphan list in that case.
1151                  */
1152                 if (inode->i_nlink)
1153                         ext4_orphan_del(NULL, inode);
1154         }
1155
1156         return ret ? ret : copied;
1157 }
1158
1159 /*
1160  * Reserve a single cluster located at lblock
1161  */
1162 static int ext4_da_reserve_space(struct inode *inode, ext4_lblk_t lblock)
1163 {
1164         int retries = 0;
1165         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1166         struct ext4_inode_info *ei = EXT4_I(inode);
1167         unsigned int md_needed;
1168         int ret;
1169         ext4_lblk_t save_last_lblock;
1170         int save_len;
1171
1172         /*
1173          * We will charge metadata quota at writeout time; this saves
1174          * us from metadata over-estimation, though we may go over by
1175          * a small amount in the end.  Here we just reserve for data.
1176          */
1177         ret = dquot_reserve_block(inode, EXT4_C2B(sbi, 1));
1178         if (ret)
1179                 return ret;
1180
1181         /*
1182          * recalculate the amount of metadata blocks to reserve
1183          * in order to allocate nrblocks
1184          * worse case is one extent per block
1185          */
1186 repeat:
1187         spin_lock(&ei->i_block_reservation_lock);
1188         /*
1189          * ext4_calc_metadata_amount() has side effects, which we have
1190          * to be prepared undo if we fail to claim space.
1191          */
1192         save_len = ei->i_da_metadata_calc_len;
1193         save_last_lblock = ei->i_da_metadata_calc_last_lblock;
1194         md_needed = EXT4_NUM_B2C(sbi,
1195                                  ext4_calc_metadata_amount(inode, lblock));
1196         trace_ext4_da_reserve_space(inode, md_needed);
1197
1198         /*
1199          * We do still charge estimated metadata to the sb though;
1200          * we cannot afford to run out of free blocks.
1201          */
1202         if (ext4_claim_free_clusters(sbi, md_needed + 1, 0)) {
1203                 ei->i_da_metadata_calc_len = save_len;
1204                 ei->i_da_metadata_calc_last_lblock = save_last_lblock;
1205                 spin_unlock(&ei->i_block_reservation_lock);
1206                 if (ext4_should_retry_alloc(inode->i_sb, &retries)) {
1207                         yield();
1208                         goto repeat;
1209                 }
1210                 dquot_release_reservation_block(inode, EXT4_C2B(sbi, 1));
1211                 return -ENOSPC;
1212         }
1213         ei->i_reserved_data_blocks++;
1214         ei->i_reserved_meta_blocks += md_needed;
1215         spin_unlock(&ei->i_block_reservation_lock);
1216
1217         return 0;       /* success */
1218 }
1219
1220 static void ext4_da_release_space(struct inode *inode, int to_free)
1221 {
1222         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1223         struct ext4_inode_info *ei = EXT4_I(inode);
1224
1225         if (!to_free)
1226                 return;         /* Nothing to release, exit */
1227
1228         spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1229
1230         trace_ext4_da_release_space(inode, to_free);
1231         if (unlikely(to_free > ei->i_reserved_data_blocks)) {
1232                 /*
1233                  * if there aren't enough reserved blocks, then the
1234                  * counter is messed up somewhere.  Since this
1235                  * function is called from invalidate page, it's
1236                  * harmless to return without any action.
1237                  */
1238                 ext4_msg(inode->i_sb, KERN_NOTICE, "ext4_da_release_space: "
1239                          "ino %lu, to_free %d with only %d reserved "
1240                          "data blocks", inode->i_ino, to_free,
1241                          ei->i_reserved_data_blocks);
1242                 WARN_ON(1);
1243                 to_free = ei->i_reserved_data_blocks;
1244         }
1245         ei->i_reserved_data_blocks -= to_free;
1246
1247         if (ei->i_reserved_data_blocks == 0) {
1248                 /*
1249                  * We can release all of the reserved metadata blocks
1250                  * only when we have written all of the delayed
1251                  * allocation blocks.
1252                  * Note that in case of bigalloc, i_reserved_meta_blocks,
1253                  * i_reserved_data_blocks, etc. refer to number of clusters.
1254                  */
1255                 percpu_counter_sub(&sbi->s_dirtyclusters_counter,
1256                                    ei->i_reserved_meta_blocks);
1257                 ei->i_reserved_meta_blocks = 0;
1258                 ei->i_da_metadata_calc_len = 0;
1259         }
1260
1261         /* update fs dirty data blocks counter */
1262         percpu_counter_sub(&sbi->s_dirtyclusters_counter, to_free);
1263
1264         spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1265
1266         dquot_release_reservation_block(inode, EXT4_C2B(sbi, to_free));
1267 }
1268
1269 static void ext4_da_page_release_reservation(struct page *page,
1270                                              unsigned long offset)
1271 {
1272         int to_release = 0;
1273         struct buffer_head *head, *bh;
1274         unsigned int curr_off = 0;
1275         struct inode *inode = page->mapping->host;
1276         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1277         int num_clusters;
1278         ext4_fsblk_t lblk;
1279
1280         head = page_buffers(page);
1281         bh = head;
1282         do {
1283                 unsigned int next_off = curr_off + bh->b_size;
1284
1285                 if ((offset <= curr_off) && (buffer_delay(bh))) {
1286                         to_release++;
1287                         clear_buffer_delay(bh);
1288                 }
1289                 curr_off = next_off;
1290         } while ((bh = bh->b_this_page) != head);
1291
1292         if (to_release) {
1293                 lblk = page->index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
1294                 ext4_es_remove_extent(inode, lblk, to_release);
1295         }
1296
1297         /* If we have released all the blocks belonging to a cluster, then we
1298          * need to release the reserved space for that cluster. */
1299         num_clusters = EXT4_NUM_B2C(sbi, to_release);
1300         while (num_clusters > 0) {
1301                 lblk = (page->index << (PAGE_CACHE_SHIFT - inode->i_blkbits)) +
1302                         ((num_clusters - 1) << sbi->s_cluster_bits);
1303                 if (sbi->s_cluster_ratio == 1 ||
1304                     !ext4_find_delalloc_cluster(inode, lblk))
1305                         ext4_da_release_space(inode, 1);
1306
1307                 num_clusters--;
1308         }
1309 }
1310
1311 /*
1312  * Delayed allocation stuff
1313  */
1314
1315 /*
1316  * mpage_da_submit_io - walks through extent of pages and try to write
1317  * them with writepage() call back
1318  *
1319  * @mpd->inode: inode
1320  * @mpd->first_page: first page of the extent
1321  * @mpd->next_page: page after the last page of the extent
1322  *
1323  * By the time mpage_da_submit_io() is called we expect all blocks
1324  * to be allocated. this may be wrong if allocation failed.
1325  *
1326  * As pages are already locked by write_cache_pages(), we can't use it
1327  */
1328 static int mpage_da_submit_io(struct mpage_da_data *mpd,
1329                               struct ext4_map_blocks *map)
1330 {
1331         struct pagevec pvec;
1332         unsigned long index, end;
1333         int ret = 0, err, nr_pages, i;
1334         struct inode *inode = mpd->inode;
1335         struct address_space *mapping = inode->i_mapping;
1336         loff_t size = i_size_read(inode);
1337         unsigned int len, block_start;
1338         struct buffer_head *bh, *page_bufs = NULL;
1339         int journal_data = ext4_should_journal_data(inode);
1340         sector_t pblock = 0, cur_logical = 0;
1341         struct ext4_io_submit io_submit;
1342
1343         BUG_ON(mpd->next_page <= mpd->first_page);
1344         memset(&io_submit, 0, sizeof(io_submit));
1345         /*
1346          * We need to start from the first_page to the next_page - 1
1347          * to make sure we also write the mapped dirty buffer_heads.
1348          * If we look at mpd->b_blocknr we would only be looking
1349          * at the currently mapped buffer_heads.
1350          */
1351         index = mpd->first_page;
1352         end = mpd->next_page - 1;
1353
1354         pagevec_init(&pvec, 0);
1355         while (index <= end) {
1356                 nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
1357                 if (nr_pages == 0)
1358                         break;
1359                 for (i = 0; i < nr_pages; i++) {
1360                         int commit_write = 0, skip_page = 0;
1361                         struct page *page = pvec.pages[i];
1362
1363                         index = page->index;
1364                         if (index > end)
1365                                 break;
1366
1367                         if (index == size >> PAGE_CACHE_SHIFT)
1368                                 len = size & ~PAGE_CACHE_MASK;
1369                         else
1370                                 len = PAGE_CACHE_SIZE;
1371                         if (map) {
1372                                 cur_logical = index << (PAGE_CACHE_SHIFT -
1373                                                         inode->i_blkbits);
1374                                 pblock = map->m_pblk + (cur_logical -
1375                                                         map->m_lblk);
1376                         }
1377                         index++;
1378
1379                         BUG_ON(!PageLocked(page));
1380                         BUG_ON(PageWriteback(page));
1381
1382                         /*
1383                          * If the page does not have buffers (for
1384                          * whatever reason), try to create them using
1385                          * __block_write_begin.  If this fails,
1386                          * skip the page and move on.
1387                          */
1388                         if (!page_has_buffers(page)) {
1389                                 if (__block_write_begin(page, 0, len,
1390                                                 noalloc_get_block_write)) {
1391                                 skip_page:
1392                                         unlock_page(page);
1393                                         continue;
1394                                 }
1395                                 commit_write = 1;
1396                         }
1397
1398                         bh = page_bufs = page_buffers(page);
1399                         block_start = 0;
1400                         do {
1401                                 if (!bh)
1402                                         goto skip_page;
1403                                 if (map && (cur_logical >= map->m_lblk) &&
1404                                     (cur_logical <= (map->m_lblk +
1405                                                      (map->m_len - 1)))) {
1406                                         if (buffer_delay(bh)) {
1407                                                 clear_buffer_delay(bh);
1408                                                 bh->b_blocknr = pblock;
1409                                         }
1410                                         if (buffer_unwritten(bh) ||
1411                                             buffer_mapped(bh))
1412                                                 BUG_ON(bh->b_blocknr != pblock);
1413                                         if (map->m_flags & EXT4_MAP_UNINIT)
1414                                                 set_buffer_uninit(bh);
1415                                         clear_buffer_unwritten(bh);
1416                                 }
1417
1418                                 /*
1419                                  * skip page if block allocation undone and
1420                                  * block is dirty
1421                                  */
1422                                 if (ext4_bh_delay_or_unwritten(NULL, bh))
1423                                         skip_page = 1;
1424                                 bh = bh->b_this_page;
1425                                 block_start += bh->b_size;
1426                                 cur_logical++;
1427                                 pblock++;
1428                         } while (bh != page_bufs);
1429
1430                         if (skip_page)
1431                                 goto skip_page;
1432
1433                         if (commit_write)
1434                                 /* mark the buffer_heads as dirty & uptodate */
1435                                 block_commit_write(page, 0, len);
1436
1437                         clear_page_dirty_for_io(page);
1438                         /*
1439                          * Delalloc doesn't support data journalling,
1440                          * but eventually maybe we'll lift this
1441                          * restriction.
1442                          */
1443                         if (unlikely(journal_data && PageChecked(page)))
1444                                 err = __ext4_journalled_writepage(page, len);
1445                         else if (test_opt(inode->i_sb, MBLK_IO_SUBMIT))
1446                                 err = ext4_bio_write_page(&io_submit, page,
1447                                                           len, mpd->wbc);
1448                         else if (buffer_uninit(page_bufs)) {
1449                                 ext4_set_bh_endio(page_bufs, inode);
1450                                 err = block_write_full_page_endio(page,
1451                                         noalloc_get_block_write,
1452                                         mpd->wbc, ext4_end_io_buffer_write);
1453                         } else
1454                                 err = block_write_full_page(page,
1455                                         noalloc_get_block_write, mpd->wbc);
1456
1457                         if (!err)
1458                                 mpd->pages_written++;
1459                         /*
1460                          * In error case, we have to continue because
1461                          * remaining pages are still locked
1462                          */
1463                         if (ret == 0)
1464                                 ret = err;
1465                 }
1466                 pagevec_release(&pvec);
1467         }
1468         ext4_io_submit(&io_submit);
1469         return ret;
1470 }
1471
1472 static void ext4_da_block_invalidatepages(struct mpage_da_data *mpd)
1473 {
1474         int nr_pages, i;
1475         pgoff_t index, end;
1476         struct pagevec pvec;
1477         struct inode *inode = mpd->inode;
1478         struct address_space *mapping = inode->i_mapping;
1479         ext4_lblk_t start, last;
1480
1481         index = mpd->first_page;
1482         end   = mpd->next_page - 1;
1483
1484         start = index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
1485         last = end << (PAGE_CACHE_SHIFT - inode->i_blkbits);
1486         ext4_es_remove_extent(inode, start, last - start + 1);
1487
1488         pagevec_init(&pvec, 0);
1489         while (index <= end) {
1490                 nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
1491                 if (nr_pages == 0)
1492                         break;
1493                 for (i = 0; i < nr_pages; i++) {
1494                         struct page *page = pvec.pages[i];
1495                         if (page->index > end)
1496                                 break;
1497                         BUG_ON(!PageLocked(page));
1498                         BUG_ON(PageWriteback(page));
1499                         block_invalidatepage(page, 0);
1500                         ClearPageUptodate(page);
1501                         unlock_page(page);
1502                 }
1503                 index = pvec.pages[nr_pages - 1]->index + 1;
1504                 pagevec_release(&pvec);
1505         }
1506         return;
1507 }
1508
1509 static void ext4_print_free_blocks(struct inode *inode)
1510 {
1511         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1512         struct super_block *sb = inode->i_sb;
1513
1514         ext4_msg(sb, KERN_CRIT, "Total free blocks count %lld",
1515                EXT4_C2B(EXT4_SB(inode->i_sb),
1516                         ext4_count_free_clusters(inode->i_sb)));
1517         ext4_msg(sb, KERN_CRIT, "Free/Dirty block details");
1518         ext4_msg(sb, KERN_CRIT, "free_blocks=%lld",
1519                (long long) EXT4_C2B(EXT4_SB(inode->i_sb),
1520                 percpu_counter_sum(&sbi->s_freeclusters_counter)));
1521         ext4_msg(sb, KERN_CRIT, "dirty_blocks=%lld",
1522                (long long) EXT4_C2B(EXT4_SB(inode->i_sb),
1523                 percpu_counter_sum(&sbi->s_dirtyclusters_counter)));
1524         ext4_msg(sb, KERN_CRIT, "Block reservation details");
1525         ext4_msg(sb, KERN_CRIT, "i_reserved_data_blocks=%u",
1526                  EXT4_I(inode)->i_reserved_data_blocks);
1527         ext4_msg(sb, KERN_CRIT, "i_reserved_meta_blocks=%u",
1528                EXT4_I(inode)->i_reserved_meta_blocks);
1529         return;
1530 }
1531
1532 /*
1533  * mpage_da_map_and_submit - go through given space, map them
1534  *       if necessary, and then submit them for I/O
1535  *
1536  * @mpd - bh describing space
1537  *
1538  * The function skips space we know is already mapped to disk blocks.
1539  *
1540  */
1541 static void mpage_da_map_and_submit(struct mpage_da_data *mpd)
1542 {
1543         int err, blks, get_blocks_flags;
1544         struct ext4_map_blocks map, *mapp = NULL;
1545         sector_t next = mpd->b_blocknr;
1546         unsigned max_blocks = mpd->b_size >> mpd->inode->i_blkbits;
1547         loff_t disksize = EXT4_I(mpd->inode)->i_disksize;
1548         handle_t *handle = NULL;
1549
1550         /*
1551          * If the blocks are mapped already, or we couldn't accumulate
1552          * any blocks, then proceed immediately to the submission stage.
1553          */
1554         if ((mpd->b_size == 0) ||
1555             ((mpd->b_state  & (1 << BH_Mapped)) &&
1556              !(mpd->b_state & (1 << BH_Delay)) &&
1557              !(mpd->b_state & (1 << BH_Unwritten))))
1558                 goto submit_io;
1559
1560         handle = ext4_journal_current_handle();
1561         BUG_ON(!handle);
1562
1563         /*
1564          * Call ext4_map_blocks() to allocate any delayed allocation
1565          * blocks, or to convert an uninitialized extent to be
1566          * initialized (in the case where we have written into
1567          * one or more preallocated blocks).
1568          *
1569          * We pass in the magic EXT4_GET_BLOCKS_DELALLOC_RESERVE to
1570          * indicate that we are on the delayed allocation path.  This
1571          * affects functions in many different parts of the allocation
1572          * call path.  This flag exists primarily because we don't
1573          * want to change *many* call functions, so ext4_map_blocks()
1574          * will set the EXT4_STATE_DELALLOC_RESERVED flag once the
1575          * inode's allocation semaphore is taken.
1576          *
1577          * If the blocks in questions were delalloc blocks, set
1578          * EXT4_GET_BLOCKS_DELALLOC_RESERVE so the delalloc accounting
1579          * variables are updated after the blocks have been allocated.
1580          */
1581         map.m_lblk = next;
1582         map.m_len = max_blocks;
1583         get_blocks_flags = EXT4_GET_BLOCKS_CREATE;
1584         if (ext4_should_dioread_nolock(mpd->inode))
1585                 get_blocks_flags |= EXT4_GET_BLOCKS_IO_CREATE_EXT;
1586         if (mpd->b_state & (1 << BH_Delay))
1587                 get_blocks_flags |= EXT4_GET_BLOCKS_DELALLOC_RESERVE;
1588
1589         blks = ext4_map_blocks(handle, mpd->inode, &map, get_blocks_flags);
1590         if (blks < 0) {
1591                 struct super_block *sb = mpd->inode->i_sb;
1592
1593                 err = blks;
1594                 /*
1595                  * If get block returns EAGAIN or ENOSPC and there
1596                  * appears to be free blocks we will just let
1597                  * mpage_da_submit_io() unlock all of the pages.
1598                  */
1599                 if (err == -EAGAIN)
1600                         goto submit_io;
1601
1602                 if (err == -ENOSPC && ext4_count_free_clusters(sb)) {
1603                         mpd->retval = err;
1604                         goto submit_io;
1605                 }
1606
1607                 /*
1608                  * get block failure will cause us to loop in
1609                  * writepages, because a_ops->writepage won't be able
1610                  * to make progress. The page will be redirtied by
1611                  * writepage and writepages will again try to write
1612                  * the same.
1613                  */
1614                 if (!(EXT4_SB(sb)->s_mount_flags & EXT4_MF_FS_ABORTED)) {
1615                         ext4_msg(sb, KERN_CRIT,
1616                                  "delayed block allocation failed for inode %lu "
1617                                  "at logical offset %llu with max blocks %zd "
1618                                  "with error %d", mpd->inode->i_ino,
1619                                  (unsigned long long) next,
1620                                  mpd->b_size >> mpd->inode->i_blkbits, err);
1621                         ext4_msg(sb, KERN_CRIT,
1622                                 "This should not happen!! Data will be lost\n");
1623                         if (err == -ENOSPC)
1624                                 ext4_print_free_blocks(mpd->inode);
1625                 }
1626                 /* invalidate all the pages */
1627                 ext4_da_block_invalidatepages(mpd);
1628
1629                 /* Mark this page range as having been completed */
1630                 mpd->io_done = 1;
1631                 return;
1632         }
1633         BUG_ON(blks == 0);
1634
1635         mapp = &map;
1636         if (map.m_flags & EXT4_MAP_NEW) {
1637                 struct block_device *bdev = mpd->inode->i_sb->s_bdev;
1638                 int i;
1639
1640                 for (i = 0; i < map.m_len; i++)
1641                         unmap_underlying_metadata(bdev, map.m_pblk + i);
1642         }
1643
1644         /*
1645          * Update on-disk size along with block allocation.
1646          */
1647         disksize = ((loff_t) next + blks) << mpd->inode->i_blkbits;
1648         if (disksize > i_size_read(mpd->inode))
1649                 disksize = i_size_read(mpd->inode);
1650         if (disksize > EXT4_I(mpd->inode)->i_disksize) {
1651                 ext4_update_i_disksize(mpd->inode, disksize);
1652                 err = ext4_mark_inode_dirty(handle, mpd->inode);
1653                 if (err)
1654                         ext4_error(mpd->inode->i_sb,
1655                                    "Failed to mark inode %lu dirty",
1656                                    mpd->inode->i_ino);
1657         }
1658
1659 submit_io:
1660         mpage_da_submit_io(mpd, mapp);
1661         mpd->io_done = 1;
1662 }
1663
1664 #define BH_FLAGS ((1 << BH_Uptodate) | (1 << BH_Mapped) | \
1665                 (1 << BH_Delay) | (1 << BH_Unwritten))
1666
1667 /*
1668  * mpage_add_bh_to_extent - try to add one more block to extent of blocks
1669  *
1670  * @mpd->lbh - extent of blocks
1671  * @logical - logical number of the block in the file
1672  * @bh - bh of the block (used to access block's state)
1673  *
1674  * the function is used to collect contig. blocks in same state
1675  */
1676 static void mpage_add_bh_to_extent(struct mpage_da_data *mpd,
1677                                    sector_t logical, size_t b_size,
1678                                    unsigned long b_state)
1679 {
1680         sector_t next;
1681         int nrblocks = mpd->b_size >> mpd->inode->i_blkbits;
1682
1683         /*
1684          * XXX Don't go larger than mballoc is willing to allocate
1685          * This is a stopgap solution.  We eventually need to fold
1686          * mpage_da_submit_io() into this function and then call
1687          * ext4_map_blocks() multiple times in a loop
1688          */
1689         if (nrblocks >= 8*1024*1024/mpd->inode->i_sb->s_blocksize)
1690                 goto flush_it;
1691
1692         /* check if thereserved journal credits might overflow */
1693         if (!(ext4_test_inode_flag(mpd->inode, EXT4_INODE_EXTENTS))) {
1694                 if (nrblocks >= EXT4_MAX_TRANS_DATA) {
1695                         /*
1696                          * With non-extent format we are limited by the journal
1697                          * credit available.  Total credit needed to insert
1698                          * nrblocks contiguous blocks is dependent on the
1699                          * nrblocks.  So limit nrblocks.
1700                          */
1701                         goto flush_it;
1702                 } else if ((nrblocks + (b_size >> mpd->inode->i_blkbits)) >
1703                                 EXT4_MAX_TRANS_DATA) {
1704                         /*
1705                          * Adding the new buffer_head would make it cross the
1706                          * allowed limit for which we have journal credit
1707                          * reserved. So limit the new bh->b_size
1708                          */
1709                         b_size = (EXT4_MAX_TRANS_DATA - nrblocks) <<
1710                                                 mpd->inode->i_blkbits;
1711                         /* we will do mpage_da_submit_io in the next loop */
1712                 }
1713         }
1714         /*
1715          * First block in the extent
1716          */
1717         if (mpd->b_size == 0) {
1718                 mpd->b_blocknr = logical;
1719                 mpd->b_size = b_size;
1720                 mpd->b_state = b_state & BH_FLAGS;
1721                 return;
1722         }
1723
1724         next = mpd->b_blocknr + nrblocks;
1725         /*
1726          * Can we merge the block to our big extent?
1727          */
1728         if (logical == next && (b_state & BH_FLAGS) == mpd->b_state) {
1729                 mpd->b_size += b_size;
1730                 return;
1731         }
1732
1733 flush_it:
1734         /*
1735          * We couldn't merge the block to our extent, so we
1736          * need to flush current  extent and start new one
1737          */
1738         mpage_da_map_and_submit(mpd);
1739         return;
1740 }
1741
1742 static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh)
1743 {
1744         return (buffer_delay(bh) || buffer_unwritten(bh)) && buffer_dirty(bh);
1745 }
1746
1747 /*
1748  * This function is grabs code from the very beginning of
1749  * ext4_map_blocks, but assumes that the caller is from delayed write
1750  * time. This function looks up the requested blocks and sets the
1751  * buffer delay bit under the protection of i_data_sem.
1752  */
1753 static int ext4_da_map_blocks(struct inode *inode, sector_t iblock,
1754                               struct ext4_map_blocks *map,
1755                               struct buffer_head *bh)
1756 {
1757         int retval;
1758         sector_t invalid_block = ~((sector_t) 0xffff);
1759
1760         if (invalid_block < ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es))
1761                 invalid_block = ~0;
1762
1763         map->m_flags = 0;
1764         ext_debug("ext4_da_map_blocks(): inode %lu, max_blocks %u,"
1765                   "logical block %lu\n", inode->i_ino, map->m_len,
1766                   (unsigned long) map->m_lblk);
1767         /*
1768          * Try to see if we can get the block without requesting a new
1769          * file system block.
1770          */
1771         down_read((&EXT4_I(inode)->i_data_sem));
1772         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
1773                 retval = ext4_ext_map_blocks(NULL, inode, map, 0);
1774         else
1775                 retval = ext4_ind_map_blocks(NULL, inode, map, 0);
1776
1777         if (retval == 0) {
1778                 /*
1779                  * XXX: __block_prepare_write() unmaps passed block,
1780                  * is it OK?
1781                  */
1782                 /* If the block was allocated from previously allocated cluster,
1783                  * then we dont need to reserve it again. */
1784                 if (!(map->m_flags & EXT4_MAP_FROM_CLUSTER)) {
1785                         retval = ext4_da_reserve_space(inode, iblock);
1786                         if (retval)
1787                                 /* not enough space to reserve */
1788                                 goto out_unlock;
1789                 }
1790
1791                 retval = ext4_es_insert_extent(inode, map->m_lblk, map->m_len);
1792                 if (retval)
1793                         goto out_unlock;
1794
1795                 /* Clear EXT4_MAP_FROM_CLUSTER flag since its purpose is served
1796                  * and it should not appear on the bh->b_state.
1797                  */
1798                 map->m_flags &= ~EXT4_MAP_FROM_CLUSTER;
1799
1800                 map_bh(bh, inode->i_sb, invalid_block);
1801                 set_buffer_new(bh);
1802                 set_buffer_delay(bh);
1803         }
1804
1805 out_unlock:
1806         up_read((&EXT4_I(inode)->i_data_sem));
1807
1808         return retval;
1809 }
1810
1811 /*
1812  * This is a special get_blocks_t callback which is used by
1813  * ext4_da_write_begin().  It will either return mapped block or
1814  * reserve space for a single block.
1815  *
1816  * For delayed buffer_head we have BH_Mapped, BH_New, BH_Delay set.
1817  * We also have b_blocknr = -1 and b_bdev initialized properly
1818  *
1819  * For unwritten buffer_head we have BH_Mapped, BH_New, BH_Unwritten set.
1820  * We also have b_blocknr = physicalblock mapping unwritten extent and b_bdev
1821  * initialized properly.
1822  */
1823 static int ext4_da_get_block_prep(struct inode *inode, sector_t iblock,
1824                                   struct buffer_head *bh, int create)
1825 {
1826         struct ext4_map_blocks map;
1827         int ret = 0;
1828
1829         BUG_ON(create == 0);
1830         BUG_ON(bh->b_size != inode->i_sb->s_blocksize);
1831
1832         map.m_lblk = iblock;
1833         map.m_len = 1;
1834
1835         /*
1836          * first, we need to know whether the block is allocated already
1837          * preallocated blocks are unmapped but should treated
1838          * the same as allocated blocks.
1839          */
1840         ret = ext4_da_map_blocks(inode, iblock, &map, bh);
1841         if (ret <= 0)
1842                 return ret;
1843
1844         map_bh(bh, inode->i_sb, map.m_pblk);
1845         bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | map.m_flags;
1846
1847         if (buffer_unwritten(bh)) {
1848                 /* A delayed write to unwritten bh should be marked
1849                  * new and mapped.  Mapped ensures that we don't do
1850                  * get_block multiple times when we write to the same
1851                  * offset and new ensures that we do proper zero out
1852                  * for partial write.
1853                  */
1854                 set_buffer_new(bh);
1855                 set_buffer_mapped(bh);
1856         }
1857         return 0;
1858 }
1859
1860 /*
1861  * This function is used as a standard get_block_t calback function
1862  * when there is no desire to allocate any blocks.  It is used as a
1863  * callback function for block_write_begin() and block_write_full_page().
1864  * These functions should only try to map a single block at a time.
1865  *
1866  * Since this function doesn't do block allocations even if the caller
1867  * requests it by passing in create=1, it is critically important that
1868  * any caller checks to make sure that any buffer heads are returned
1869  * by this function are either all already mapped or marked for
1870  * delayed allocation before calling  block_write_full_page().  Otherwise,
1871  * b_blocknr could be left unitialized, and the page write functions will
1872  * be taken by surprise.
1873  */
1874 static int noalloc_get_block_write(struct inode *inode, sector_t iblock,
1875                                    struct buffer_head *bh_result, int create)
1876 {
1877         BUG_ON(bh_result->b_size != inode->i_sb->s_blocksize);
1878         return _ext4_get_block(inode, iblock, bh_result, 0);
1879 }
1880
1881 static int bget_one(handle_t *handle, struct buffer_head *bh)
1882 {
1883         get_bh(bh);
1884         return 0;
1885 }
1886
1887 static int bput_one(handle_t *handle, struct buffer_head *bh)
1888 {
1889         put_bh(bh);
1890         return 0;
1891 }
1892
1893 static int __ext4_journalled_writepage(struct page *page,
1894                                        unsigned int len)
1895 {
1896         struct address_space *mapping = page->mapping;
1897         struct inode *inode = mapping->host;
1898         struct buffer_head *page_bufs;
1899         handle_t *handle = NULL;
1900         int ret = 0;
1901         int err;
1902
1903         ClearPageChecked(page);
1904         page_bufs = page_buffers(page);
1905         BUG_ON(!page_bufs);
1906         walk_page_buffers(handle, page_bufs, 0, len, NULL, bget_one);
1907         /* As soon as we unlock the page, it can go away, but we have
1908          * references to buffers so we are safe */
1909         unlock_page(page);
1910
1911         handle = ext4_journal_start(inode, ext4_writepage_trans_blocks(inode));
1912         if (IS_ERR(handle)) {
1913                 ret = PTR_ERR(handle);
1914                 goto out;
1915         }
1916
1917         BUG_ON(!ext4_handle_valid(handle));
1918
1919         ret = walk_page_buffers(handle, page_bufs, 0, len, NULL,
1920                                 do_journal_get_write_access);
1921
1922         err = walk_page_buffers(handle, page_bufs, 0, len, NULL,
1923                                 write_end_fn);
1924         if (ret == 0)
1925                 ret = err;
1926         EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
1927         err = ext4_journal_stop(handle);
1928         if (!ret)
1929                 ret = err;
1930
1931         walk_page_buffers(handle, page_bufs, 0, len, NULL, bput_one);
1932         ext4_set_inode_state(inode, EXT4_STATE_JDATA);
1933 out:
1934         return ret;
1935 }
1936
1937 /*
1938  * Note that we don't need to start a transaction unless we're journaling data
1939  * because we should have holes filled from ext4_page_mkwrite(). We even don't
1940  * need to file the inode to the transaction's list in ordered mode because if
1941  * we are writing back data added by write(), the inode is already there and if
1942  * we are writing back data modified via mmap(), no one guarantees in which
1943  * transaction the data will hit the disk. In case we are journaling data, we
1944  * cannot start transaction directly because transaction start ranks above page
1945  * lock so we have to do some magic.
1946  *
1947  * This function can get called via...
1948  *   - ext4_da_writepages after taking page lock (have journal handle)
1949  *   - journal_submit_inode_data_buffers (no journal handle)
1950  *   - shrink_page_list via the kswapd/direct reclaim (no journal handle)
1951  *   - grab_page_cache when doing write_begin (have journal handle)
1952  *
1953  * We don't do any block allocation in this function. If we have page with
1954  * multiple blocks we need to write those buffer_heads that are mapped. This
1955  * is important for mmaped based write. So if we do with blocksize 1K
1956  * truncate(f, 1024);
1957  * a = mmap(f, 0, 4096);
1958  * a[0] = 'a';
1959  * truncate(f, 4096);
1960  * we have in the page first buffer_head mapped via page_mkwrite call back
1961  * but other buffer_heads would be unmapped but dirty (dirty done via the
1962  * do_wp_page). So writepage should write the first block. If we modify
1963  * the mmap area beyond 1024 we will again get a page_fault and the
1964  * page_mkwrite callback will do the block allocation and mark the
1965  * buffer_heads mapped.
1966  *
1967  * We redirty the page if we have any buffer_heads that is either delay or
1968  * unwritten in the page.
1969  *
1970  * We can get recursively called as show below.
1971  *
1972  *      ext4_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() ->
1973  *              ext4_writepage()
1974  *
1975  * But since we don't do any block allocation we should not deadlock.
1976  * Page also have the dirty flag cleared so we don't get recurive page_lock.
1977  */
1978 static int ext4_writepage(struct page *page,
1979                           struct writeback_control *wbc)
1980 {
1981         int ret = 0, commit_write = 0;
1982         loff_t size;
1983         unsigned int len;
1984         struct buffer_head *page_bufs = NULL;
1985         struct inode *inode = page->mapping->host;
1986
1987         trace_ext4_writepage(page);
1988         size = i_size_read(inode);
1989         if (page->index == size >> PAGE_CACHE_SHIFT)
1990                 len = size & ~PAGE_CACHE_MASK;
1991         else
1992                 len = PAGE_CACHE_SIZE;
1993
1994         /*
1995          * If the page does not have buffers (for whatever reason),
1996          * try to create them using __block_write_begin.  If this
1997          * fails, redirty the page and move on.
1998          */
1999         if (!page_has_buffers(page)) {
2000                 if (__block_write_begin(page, 0, len,
2001                                         noalloc_get_block_write)) {
2002                 redirty_page:
2003                         redirty_page_for_writepage(wbc, page);
2004                         unlock_page(page);
2005                         return 0;
2006                 }
2007                 commit_write = 1;
2008         }
2009         page_bufs = page_buffers(page);
2010         if (walk_page_buffers(NULL, page_bufs, 0, len, NULL,
2011                               ext4_bh_delay_or_unwritten)) {
2012                 /*
2013                  * We don't want to do block allocation, so redirty
2014                  * the page and return.  We may reach here when we do
2015                  * a journal commit via journal_submit_inode_data_buffers.
2016                  * We can also reach here via shrink_page_list but it
2017                  * should never be for direct reclaim so warn if that
2018                  * happens
2019                  */
2020                 WARN_ON_ONCE((current->flags & (PF_MEMALLOC|PF_KSWAPD)) ==
2021                                                                 PF_MEMALLOC);
2022                 goto redirty_page;
2023         }
2024         if (commit_write)
2025                 /* now mark the buffer_heads as dirty and uptodate */
2026                 block_commit_write(page, 0, len);
2027
2028         if (PageChecked(page) && ext4_should_journal_data(inode))
2029                 /*
2030                  * It's mmapped pagecache.  Add buffers and journal it.  There
2031                  * doesn't seem much point in redirtying the page here.
2032                  */
2033                 return __ext4_journalled_writepage(page, len);
2034
2035         if (buffer_uninit(page_bufs)) {
2036                 ext4_set_bh_endio(page_bufs, inode);
2037                 ret = block_write_full_page_endio(page, noalloc_get_block_write,
2038                                             wbc, ext4_end_io_buffer_write);
2039         } else
2040                 ret = block_write_full_page(page, noalloc_get_block_write,
2041                                             wbc);
2042
2043         return ret;
2044 }
2045
2046 /*
2047  * This is called via ext4_da_writepages() to
2048  * calculate the total number of credits to reserve to fit
2049  * a single extent allocation into a single transaction,
2050  * ext4_da_writpeages() will loop calling this before
2051  * the block allocation.
2052  */
2053
2054 static int ext4_da_writepages_trans_blocks(struct inode *inode)
2055 {
2056         int max_blocks = EXT4_I(inode)->i_reserved_data_blocks;
2057
2058         /*
2059          * With non-extent format the journal credit needed to
2060          * insert nrblocks contiguous block is dependent on
2061          * number of contiguous block. So we will limit
2062          * number of contiguous block to a sane value
2063          */
2064         if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) &&
2065             (max_blocks > EXT4_MAX_TRANS_DATA))
2066                 max_blocks = EXT4_MAX_TRANS_DATA;
2067
2068         return ext4_chunk_trans_blocks(inode, max_blocks);
2069 }
2070
2071 /*
2072  * write_cache_pages_da - walk the list of dirty pages of the given
2073  * address space and accumulate pages that need writing, and call
2074  * mpage_da_map_and_submit to map a single contiguous memory region
2075  * and then write them.
2076  */
2077 static int write_cache_pages_da(struct address_space *mapping,
2078                                 struct writeback_control *wbc,
2079                                 struct mpage_da_data *mpd,
2080                                 pgoff_t *done_index)
2081 {
2082         struct buffer_head      *bh, *head;
2083         struct inode            *inode = mapping->host;
2084         struct pagevec          pvec;
2085         unsigned int            nr_pages;
2086         sector_t                logical;
2087         pgoff_t                 index, end;
2088         long                    nr_to_write = wbc->nr_to_write;
2089         int                     i, tag, ret = 0;
2090
2091         memset(mpd, 0, sizeof(struct mpage_da_data));
2092         mpd->wbc = wbc;
2093         mpd->inode = inode;
2094         pagevec_init(&pvec, 0);
2095         index = wbc->range_start >> PAGE_CACHE_SHIFT;
2096         end = wbc->range_end >> PAGE_CACHE_SHIFT;
2097
2098         if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
2099                 tag = PAGECACHE_TAG_TOWRITE;
2100         else
2101                 tag = PAGECACHE_TAG_DIRTY;
2102
2103         *done_index = index;
2104         while (index <= end) {
2105                 nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
2106                               min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
2107                 if (nr_pages == 0)
2108                         return 0;
2109
2110                 for (i = 0; i < nr_pages; i++) {
2111                         struct page *page = pvec.pages[i];
2112
2113                         /*
2114                          * At this point, the page may be truncated or
2115                          * invalidated (changing page->mapping to NULL), or
2116                          * even swizzled back from swapper_space to tmpfs file
2117                          * mapping. However, page->index will not change
2118                          * because we have a reference on the page.
2119                          */
2120                         if (page->index > end)
2121                                 goto out;
2122
2123                         *done_index = page->index + 1;
2124
2125                         /*
2126                          * If we can't merge this page, and we have
2127                          * accumulated an contiguous region, write it
2128                          */
2129                         if ((mpd->next_page != page->index) &&
2130                             (mpd->next_page != mpd->first_page)) {
2131                                 mpage_da_map_and_submit(mpd);
2132                                 goto ret_extent_tail;
2133                         }
2134
2135                         lock_page(page);
2136
2137                         /*
2138                          * If the page is no longer dirty, or its
2139                          * mapping no longer corresponds to inode we
2140                          * are writing (which means it has been
2141                          * truncated or invalidated), or the page is
2142                          * already under writeback and we are not
2143                          * doing a data integrity writeback, skip the page
2144                          */
2145                         if (!PageDirty(page) ||
2146                             (PageWriteback(page) &&
2147                              (wbc->sync_mode == WB_SYNC_NONE)) ||
2148                             unlikely(page->mapping != mapping)) {
2149                                 unlock_page(page);
2150                                 continue;
2151                         }
2152
2153                         wait_on_page_writeback(page);
2154                         BUG_ON(PageWriteback(page));
2155
2156                         if (mpd->next_page != page->index)
2157                                 mpd->first_page = page->index;
2158                         mpd->next_page = page->index + 1;
2159                         logical = (sector_t) page->index <<
2160                                 (PAGE_CACHE_SHIFT - inode->i_blkbits);
2161
2162                         if (!page_has_buffers(page)) {
2163                                 mpage_add_bh_to_extent(mpd, logical,
2164                                                        PAGE_CACHE_SIZE,
2165                                                        (1 << BH_Dirty) | (1 << BH_Uptodate));
2166                                 if (mpd->io_done)
2167                                         goto ret_extent_tail;
2168                         } else {
2169                                 /*
2170                                  * Page with regular buffer heads,
2171                                  * just add all dirty ones
2172                                  */
2173                                 head = page_buffers(page);
2174                                 bh = head;
2175                                 do {
2176                                         BUG_ON(buffer_locked(bh));
2177                                         /*
2178                                          * We need to try to allocate
2179                                          * unmapped blocks in the same page.
2180                                          * Otherwise we won't make progress
2181                                          * with the page in ext4_writepage
2182                                          */
2183                                         if (ext4_bh_delay_or_unwritten(NULL, bh)) {
2184                                                 mpage_add_bh_to_extent(mpd, logical,
2185                                                                        bh->b_size,
2186                                                                        bh->b_state);
2187                                                 if (mpd->io_done)
2188                                                         goto ret_extent_tail;
2189                                         } else if (buffer_dirty(bh) && (buffer_mapped(bh))) {
2190                                                 /*
2191                                                  * mapped dirty buffer. We need
2192                                                  * to update the b_state
2193                                                  * because we look at b_state
2194                                                  * in mpage_da_map_blocks.  We
2195                                                  * don't update b_size because
2196                                                  * if we find an unmapped
2197                                                  * buffer_head later we need to
2198                                                  * use the b_state flag of that
2199                                                  * buffer_head.
2200                                                  */
2201                                                 if (mpd->b_size == 0)
2202                                                         mpd->b_state = bh->b_state & BH_FLAGS;
2203                                         }
2204                                         logical++;
2205                                 } while ((bh = bh->b_this_page) != head);
2206                         }
2207
2208                         if (nr_to_write > 0) {
2209                                 nr_to_write--;
2210                                 if (nr_to_write == 0 &&
2211                                     wbc->sync_mode == WB_SYNC_NONE)
2212                                         /*
2213                                          * We stop writing back only if we are
2214                                          * not doing integrity sync. In case of
2215                                          * integrity sync we have to keep going
2216                                          * because someone may be concurrently
2217                                          * dirtying pages, and we might have
2218                                          * synced a lot of newly appeared dirty
2219                                          * pages, but have not synced all of the
2220                                          * old dirty pages.
2221                                          */
2222                                         goto out;
2223                         }
2224                 }
2225                 pagevec_release(&pvec);
2226                 cond_resched();
2227         }
2228         return 0;
2229 ret_extent_tail:
2230         ret = MPAGE_DA_EXTENT_TAIL;
2231 out:
2232         pagevec_release(&pvec);
2233         cond_resched();
2234         return ret;
2235 }
2236
2237
2238 static int ext4_da_writepages(struct address_space *mapping,
2239                               struct writeback_control *wbc)
2240 {
2241         pgoff_t index;
2242         int range_whole = 0;
2243         handle_t *handle = NULL;
2244         struct mpage_da_data mpd;
2245         struct inode *inode = mapping->host;
2246         int pages_written = 0;
2247         unsigned int max_pages;
2248         int range_cyclic, cycled = 1, io_done = 0;
2249         int needed_blocks, ret = 0;
2250         long desired_nr_to_write, nr_to_writebump = 0;
2251         loff_t range_start = wbc->range_start;
2252         struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb);
2253         pgoff_t done_index = 0;
2254         pgoff_t end;
2255         struct blk_plug plug;
2256
2257         trace_ext4_da_writepages(inode, wbc);
2258
2259         /*
2260          * No pages to write? This is mainly a kludge to avoid starting
2261          * a transaction for special inodes like journal inode on last iput()
2262          * because that could violate lock ordering on umount
2263          */
2264         if (!mapping->nrpages || !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
2265                 return 0;
2266
2267         /*
2268          * If the filesystem has aborted, it is read-only, so return
2269          * right away instead of dumping stack traces later on that
2270          * will obscure the real source of the problem.  We test
2271          * EXT4_MF_FS_ABORTED instead of sb->s_flag's MS_RDONLY because
2272          * the latter could be true if the filesystem is mounted
2273          * read-only, and in that case, ext4_da_writepages should
2274          * *never* be called, so if that ever happens, we would want
2275          * the stack trace.
2276          */
2277         if (unlikely(sbi->s_mount_flags & EXT4_MF_FS_ABORTED))
2278                 return -EROFS;
2279
2280         if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
2281                 range_whole = 1;
2282
2283         range_cyclic = wbc->range_cyclic;
2284         if (wbc->range_cyclic) {
2285                 index = mapping->writeback_index;
2286                 if (index)
2287                         cycled = 0;
2288                 wbc->range_start = index << PAGE_CACHE_SHIFT;
2289                 wbc->range_end  = LLONG_MAX;
2290                 wbc->range_cyclic = 0;
2291                 end = -1;
2292         } else {
2293                 index = wbc->range_start >> PAGE_CACHE_SHIFT;
2294                 end = wbc->range_end >> PAGE_CACHE_SHIFT;
2295         }
2296
2297         /*
2298          * This works around two forms of stupidity.  The first is in
2299          * the writeback code, which caps the maximum number of pages
2300          * written to be 1024 pages.  This is wrong on multiple
2301          * levels; different architectues have a different page size,
2302          * which changes the maximum amount of data which gets
2303          * written.  Secondly, 4 megabytes is way too small.  XFS
2304          * forces this value to be 16 megabytes by multiplying
2305          * nr_to_write parameter by four, and then relies on its
2306          * allocator to allocate larger extents to make them
2307          * contiguous.  Unfortunately this brings us to the second
2308          * stupidity, which is that ext4's mballoc code only allocates
2309          * at most 2048 blocks.  So we force contiguous writes up to
2310          * the number of dirty blocks in the inode, or
2311          * sbi->max_writeback_mb_bump whichever is smaller.
2312          */
2313         max_pages = sbi->s_max_writeback_mb_bump << (20 - PAGE_CACHE_SHIFT);
2314         if (!range_cyclic && range_whole) {
2315                 if (wbc->nr_to_write == LONG_MAX)
2316                         desired_nr_to_write = wbc->nr_to_write;
2317                 else
2318                         desired_nr_to_write = wbc->nr_to_write * 8;
2319         } else
2320                 desired_nr_to_write = ext4_num_dirty_pages(inode, index,
2321                                                            max_pages);
2322         if (desired_nr_to_write > max_pages)
2323                 desired_nr_to_write = max_pages;
2324
2325         if (wbc->nr_to_write < desired_nr_to_write) {
2326                 nr_to_writebump = desired_nr_to_write - wbc->nr_to_write;
2327                 wbc->nr_to_write = desired_nr_to_write;
2328         }
2329
2330 retry:
2331         if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
2332                 tag_pages_for_writeback(mapping, index, end);
2333
2334         blk_start_plug(&plug);
2335         while (!ret && wbc->nr_to_write > 0) {
2336
2337                 /*
2338                  * we  insert one extent at a time. So we need
2339                  * credit needed for single extent allocation.
2340                  * journalled mode is currently not supported
2341                  * by delalloc
2342                  */
2343                 BUG_ON(ext4_should_journal_data(inode));
2344                 needed_blocks = ext4_da_writepages_trans_blocks(inode);
2345
2346                 /* start a new transaction*/
2347                 handle = ext4_journal_start(inode, needed_blocks);
2348                 if (IS_ERR(handle)) {
2349                         ret = PTR_ERR(handle);
2350                         ext4_msg(inode->i_sb, KERN_CRIT, "%s: jbd2_start: "
2351                                "%ld pages, ino %lu; err %d", __func__,
2352                                 wbc->nr_to_write, inode->i_ino, ret);
2353                         blk_finish_plug(&plug);
2354                         goto out_writepages;
2355                 }
2356
2357                 /*
2358                  * Now call write_cache_pages_da() to find the next
2359                  * contiguous region of logical blocks that need
2360                  * blocks to be allocated by ext4 and submit them.
2361                  */
2362                 ret = write_cache_pages_da(mapping, wbc, &mpd, &done_index);
2363                 /*
2364                  * If we have a contiguous extent of pages and we
2365                  * haven't done the I/O yet, map the blocks and submit
2366                  * them for I/O.
2367                  */
2368                 if (!mpd.io_done && mpd.next_page != mpd.first_page) {
2369                         mpage_da_map_and_submit(&mpd);
2370                         ret = MPAGE_DA_EXTENT_TAIL;
2371                 }
2372                 trace_ext4_da_write_pages(inode, &mpd);
2373                 wbc->nr_to_write -= mpd.pages_written;
2374
2375                 ext4_journal_stop(handle);
2376
2377                 if ((mpd.retval == -ENOSPC) && sbi->s_journal) {
2378                         /* commit the transaction which would
2379                          * free blocks released in the transaction
2380                          * and try again
2381                          */
2382                         jbd2_journal_force_commit_nested(sbi->s_journal);
2383                         ret = 0;
2384                 } else if (ret == MPAGE_DA_EXTENT_TAIL) {
2385                         /*
2386                          * Got one extent now try with rest of the pages.
2387                          * If mpd.retval is set -EIO, journal is aborted.
2388                          * So we don't need to write any more.
2389                          */
2390                         pages_written += mpd.pages_written;
2391                         ret = mpd.retval;
2392                         io_done = 1;
2393                 } else if (wbc->nr_to_write)
2394                         /*
2395                          * There is no more writeout needed
2396                          * or we requested for a noblocking writeout
2397                          * and we found the device congested
2398                          */
2399                         break;
2400         }
2401         blk_finish_plug(&plug);
2402         if (!io_done && !cycled) {
2403                 cycled = 1;
2404                 index = 0;
2405                 wbc->range_start = index << PAGE_CACHE_SHIFT;
2406                 wbc->range_end  = mapping->writeback_index - 1;
2407                 goto retry;
2408         }
2409
2410         /* Update index */
2411         wbc->range_cyclic = range_cyclic;
2412         if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
2413                 /*
2414                  * set the writeback_index so that range_cyclic
2415                  * mode will write it back later
2416                  */
2417                 mapping->writeback_index = done_index;
2418
2419 out_writepages:
2420         wbc->nr_to_write -= nr_to_writebump;
2421         wbc->range_start = range_start;
2422         trace_ext4_da_writepages_result(inode, wbc, ret, pages_written);
2423         return ret;
2424 }
2425
2426 #define FALL_BACK_TO_NONDELALLOC 1
2427 static int ext4_nonda_switch(struct super_block *sb)
2428 {
2429         s64 free_blocks, dirty_blocks;
2430         struct ext4_sb_info *sbi = EXT4_SB(sb);
2431
2432         /*
2433          * switch to non delalloc mode if we are running low
2434          * on free block. The free block accounting via percpu
2435          * counters can get slightly wrong with percpu_counter_batch getting
2436          * accumulated on each CPU without updating global counters
2437          * Delalloc need an accurate free block accounting. So switch
2438          * to non delalloc when we are near to error range.
2439          */
2440         free_blocks  = EXT4_C2B(sbi,
2441                 percpu_counter_read_positive(&sbi->s_freeclusters_counter));
2442         dirty_blocks = percpu_counter_read_positive(&sbi->s_dirtyclusters_counter);
2443         /*
2444          * Start pushing delalloc when 1/2 of free blocks are dirty.
2445          */
2446         if (dirty_blocks && (free_blocks < 2 * dirty_blocks) &&
2447             !writeback_in_progress(sb->s_bdi) &&
2448             down_read_trylock(&sb->s_umount)) {
2449                 writeback_inodes_sb(sb, WB_REASON_FS_FREE_SPACE);
2450                 up_read(&sb->s_umount);
2451         }
2452
2453         if (2 * free_blocks < 3 * dirty_blocks ||
2454                 free_blocks < (dirty_blocks + EXT4_FREECLUSTERS_WATERMARK)) {
2455                 /*
2456                  * free block count is less than 150% of dirty blocks
2457                  * or free blocks is less than watermark
2458                  */
2459                 return 1;
2460         }
2461         return 0;
2462 }
2463
2464 static int ext4_da_write_begin(struct file *file, struct address_space *mapping,
2465                                loff_t pos, unsigned len, unsigned flags,
2466                                struct page **pagep, void **fsdata)
2467 {
2468         int ret, retries = 0;
2469         struct page *page;
2470         pgoff_t index;
2471         struct inode *inode = mapping->host;
2472         handle_t *handle;
2473
2474         index = pos >> PAGE_CACHE_SHIFT;
2475
2476         if (ext4_nonda_switch(inode->i_sb)) {
2477                 *fsdata = (void *)FALL_BACK_TO_NONDELALLOC;
2478                 return ext4_write_begin(file, mapping, pos,
2479                                         len, flags, pagep, fsdata);
2480         }
2481         *fsdata = (void *)0;
2482         trace_ext4_da_write_begin(inode, pos, len, flags);
2483 retry:
2484         /*
2485          * With delayed allocation, we don't log the i_disksize update
2486          * if there is delayed block allocation. But we still need
2487          * to journalling the i_disksize update if writes to the end
2488          * of file which has an already mapped buffer.
2489          */
2490         handle = ext4_journal_start(inode, 1);
2491         if (IS_ERR(handle)) {
2492                 ret = PTR_ERR(handle);
2493                 goto out;
2494         }
2495         /* We cannot recurse into the filesystem as the transaction is already
2496          * started */
2497         flags |= AOP_FLAG_NOFS;
2498
2499         page = grab_cache_page_write_begin(mapping, index, flags);
2500         if (!page) {
2501                 ext4_journal_stop(handle);
2502                 ret = -ENOMEM;
2503                 goto out;
2504         }
2505         *pagep = page;
2506
2507         ret = __block_write_begin(page, pos, len, ext4_da_get_block_prep);
2508         if (ret < 0) {
2509                 unlock_page(page);
2510                 ext4_journal_stop(handle);
2511                 page_cache_release(page);
2512                 /*
2513                  * block_write_begin may have instantiated a few blocks
2514                  * outside i_size.  Trim these off again. Don't need
2515                  * i_size_read because we hold i_mutex.
2516                  */
2517                 if (pos + len > inode->i_size)
2518                         ext4_truncate_failed_write(inode);
2519         }
2520
2521         if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
2522                 goto retry;
2523 out:
2524         return ret;
2525 }
2526
2527 /*
2528  * Check if we should update i_disksize
2529  * when write to the end of file but not require block allocation
2530  */
2531 static int ext4_da_should_update_i_disksize(struct page *page,
2532                                             unsigned long offset)
2533 {
2534         struct buffer_head *bh;
2535         struct inode *inode = page->mapping->host;
2536         unsigned int idx;
2537         int i;
2538
2539         bh = page_buffers(page);
2540         idx = offset >> inode->i_blkbits;
2541
2542         for (i = 0; i < idx; i++)
2543                 bh = bh->b_this_page;
2544
2545         if (!buffer_mapped(bh) || (buffer_delay(bh)) || buffer_unwritten(bh))
2546                 return 0;
2547         return 1;
2548 }
2549
2550 static int ext4_da_write_end(struct file *file,
2551                              struct address_space *mapping,
2552                              loff_t pos, unsigned len, unsigned copied,
2553                              struct page *page, void *fsdata)
2554 {
2555         struct inode *inode = mapping->host;
2556         int ret = 0, ret2;
2557         handle_t *handle = ext4_journal_current_handle();
2558         loff_t new_i_size;
2559         unsigned long start, end;
2560         int write_mode = (int)(unsigned long)fsdata;
2561
2562         if (write_mode == FALL_BACK_TO_NONDELALLOC) {
2563                 switch (ext4_inode_journal_mode(inode)) {
2564                 case EXT4_INODE_ORDERED_DATA_MODE:
2565                         return ext4_ordered_write_end(file, mapping, pos,
2566                                         len, copied, page, fsdata);
2567                 case EXT4_INODE_WRITEBACK_DATA_MODE:
2568                         return ext4_writeback_write_end(file, mapping, pos,
2569                                         len, copied, page, fsdata);
2570                 default:
2571                         BUG();
2572                 }
2573         }
2574
2575         trace_ext4_da_write_end(inode, pos, len, copied);
2576         start = pos & (PAGE_CACHE_SIZE - 1);
2577         end = start + copied - 1;
2578
2579         /*
2580          * generic_write_end() will run mark_inode_dirty() if i_size
2581          * changes.  So let's piggyback the i_disksize mark_inode_dirty
2582          * into that.
2583          */
2584
2585         new_i_size = pos + copied;
2586         if (copied && new_i_size > EXT4_I(inode)->i_disksize) {
2587                 if (ext4_da_should_update_i_disksize(page, end)) {
2588                         down_write(&EXT4_I(inode)->i_data_sem);
2589                         if (new_i_size > EXT4_I(inode)->i_disksize)
2590                                 EXT4_I(inode)->i_disksize = new_i_size;
2591                         up_write(&EXT4_I(inode)->i_data_sem);
2592                         /* We need to mark inode dirty even if
2593                          * new_i_size is less that inode->i_size
2594                          * bu greater than i_disksize.(hint delalloc)
2595                          */
2596                         ext4_mark_inode_dirty(handle, inode);
2597                 }
2598         }
2599         ret2 = generic_write_end(file, mapping, pos, len, copied,
2600                                                         page, fsdata);
2601         copied = ret2;
2602         if (ret2 < 0)
2603                 ret = ret2;
2604         ret2 = ext4_journal_stop(handle);
2605         if (!ret)
2606                 ret = ret2;
2607
2608         return ret ? ret : copied;
2609 }
2610
2611 static void ext4_da_invalidatepage(struct page *page, unsigned long offset)
2612 {
2613         /*
2614          * Drop reserved blocks
2615          */
2616         BUG_ON(!PageLocked(page));
2617         if (!page_has_buffers(page))
2618                 goto out;
2619
2620         ext4_da_page_release_reservation(page, offset);
2621
2622 out:
2623         ext4_invalidatepage(page, offset);
2624
2625         return;
2626 }
2627
2628 /*
2629  * Force all delayed allocation blocks to be allocated for a given inode.
2630  */
2631 int ext4_alloc_da_blocks(struct inode *inode)
2632 {
2633         trace_ext4_alloc_da_blocks(inode);
2634
2635         if (!EXT4_I(inode)->i_reserved_data_blocks &&
2636             !EXT4_I(inode)->i_reserved_meta_blocks)
2637                 return 0;
2638
2639         /*
2640          * We do something simple for now.  The filemap_flush() will
2641          * also start triggering a write of the data blocks, which is
2642          * not strictly speaking necessary (and for users of
2643          * laptop_mode, not even desirable).  However, to do otherwise
2644          * would require replicating code paths in:
2645          *
2646          * ext4_da_writepages() ->
2647          *    write_cache_pages() ---> (via passed in callback function)
2648          *        __mpage_da_writepage() -->
2649          *           mpage_add_bh_to_extent()
2650          *           mpage_da_map_blocks()
2651          *
2652          * The problem is that write_cache_pages(), located in
2653          * mm/page-writeback.c, marks pages clean in preparation for
2654          * doing I/O, which is not desirable if we're not planning on
2655          * doing I/O at all.
2656          *
2657          * We could call write_cache_pages(), and then redirty all of
2658          * the pages by calling redirty_page_for_writepage() but that
2659          * would be ugly in the extreme.  So instead we would need to
2660          * replicate parts of the code in the above functions,
2661          * simplifying them because we wouldn't actually intend to
2662          * write out the pages, but rather only collect contiguous
2663          * logical block extents, call the multi-block allocator, and
2664          * then update the buffer heads with the block allocations.
2665          *
2666          * For now, though, we'll cheat by calling filemap_flush(),
2667          * which will map the blocks, and start the I/O, but not
2668          * actually wait for the I/O to complete.
2669          */
2670         return filemap_flush(inode->i_mapping);
2671 }
2672
2673 /*
2674  * bmap() is special.  It gets used by applications such as lilo and by
2675  * the swapper to find the on-disk block of a specific piece of data.
2676  *
2677  * Naturally, this is dangerous if the block concerned is still in the
2678  * journal.  If somebody makes a swapfile on an ext4 data-journaling
2679  * filesystem and enables swap, then they may get a nasty shock when the
2680  * data getting swapped to that swapfile suddenly gets overwritten by
2681  * the original zero's written out previously to the journal and
2682  * awaiting writeback in the kernel's buffer cache.
2683  *
2684  * So, if we see any bmap calls here on a modified, data-journaled file,
2685  * take extra steps to flush any blocks which might be in the cache.
2686  */
2687 static sector_t ext4_bmap(struct address_space *mapping, sector_t block)
2688 {
2689         struct inode *inode = mapping->host;
2690         journal_t *journal;
2691         int err;
2692
2693         /*
2694          * We can get here for an inline file via the FIBMAP ioctl
2695          */
2696         if (ext4_has_inline_data(inode))
2697                 return 0;
2698
2699         if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) &&
2700                         test_opt(inode->i_sb, DELALLOC)) {
2701                 /*
2702                  * With delalloc we want to sync the file
2703                  * so that we can make sure we allocate
2704                  * blocks for file
2705                  */
2706                 filemap_write_and_wait(mapping);
2707         }
2708
2709         if (EXT4_JOURNAL(inode) &&
2710             ext4_test_inode_state(inode, EXT4_STATE_JDATA)) {
2711                 /*
2712                  * This is a REALLY heavyweight approach, but the use of
2713                  * bmap on dirty files is expected to be extremely rare:
2714                  * only if we run lilo or swapon on a freshly made file
2715                  * do we expect this to happen.
2716                  *
2717                  * (bmap requires CAP_SYS_RAWIO so this does not
2718                  * represent an unprivileged user DOS attack --- we'd be
2719                  * in trouble if mortal users could trigger this path at
2720                  * will.)
2721                  *
2722                  * NB. EXT4_STATE_JDATA is not set on files other than
2723                  * regular files.  If somebody wants to bmap a directory
2724                  * or symlink and gets confused because the buffer
2725                  * hasn't yet been flushed to disk, they deserve
2726                  * everything they get.
2727                  */
2728
2729                 ext4_clear_inode_state(inode, EXT4_STATE_JDATA);
2730                 journal = EXT4_JOURNAL(inode);
2731                 jbd2_journal_lock_updates(journal);
2732                 err = jbd2_journal_flush(journal);
2733                 jbd2_journal_unlock_updates(journal);
2734
2735                 if (err)
2736                         return 0;
2737         }
2738
2739         return generic_block_bmap(mapping, block, ext4_get_block);
2740 }
2741
2742 static int ext4_readpage(struct file *file, struct page *page)
2743 {
2744         int ret = -EAGAIN;
2745         struct inode *inode = page->mapping->host;
2746
2747         trace_ext4_readpage(page);
2748
2749         if (ext4_has_inline_data(inode))
2750                 ret = ext4_readpage_inline(inode, page);
2751
2752         if (ret == -EAGAIN)
2753                 return mpage_readpage(page, ext4_get_block);
2754
2755         return ret;
2756 }
2757
2758 static int
2759 ext4_readpages(struct file *file, struct address_space *mapping,
2760                 struct list_head *pages, unsigned nr_pages)
2761 {
2762         struct inode *inode = mapping->host;
2763
2764         /* If the file has inline data, no need to do readpages. */
2765         if (ext4_has_inline_data(inode))
2766                 return 0;
2767
2768         return mpage_readpages(mapping, pages, nr_pages, ext4_get_block);
2769 }
2770
2771 static void ext4_invalidatepage_free_endio(struct page *page, unsigned long offset)
2772 {
2773         struct buffer_head *head, *bh;
2774         unsigned int curr_off = 0;
2775
2776         if (!page_has_buffers(page))
2777                 return;
2778         head = bh = page_buffers(page);
2779         do {
2780                 if (offset <= curr_off && test_clear_buffer_uninit(bh)
2781                                         && bh->b_private) {
2782                         ext4_free_io_end(bh->b_private);
2783                         bh->b_private = NULL;
2784                         bh->b_end_io = NULL;
2785                 }
2786                 curr_off = curr_off + bh->b_size;
2787                 bh = bh->b_this_page;
2788         } while (bh != head);
2789 }
2790
2791 static void ext4_invalidatepage(struct page *page, unsigned long offset)
2792 {
2793         journal_t *journal = EXT4_JOURNAL(page->mapping->host);
2794
2795         trace_ext4_invalidatepage(page, offset);
2796
2797         /*
2798          * free any io_end structure allocated for buffers to be discarded
2799          */
2800         if (ext4_should_dioread_nolock(page->mapping->host))
2801                 ext4_invalidatepage_free_endio(page, offset);
2802         /*
2803          * If it's a full truncate we just forget about the pending dirtying
2804          */
2805         if (offset == 0)
2806                 ClearPageChecked(page);
2807
2808         if (journal)
2809                 jbd2_journal_invalidatepage(journal, page, offset);
2810         else
2811                 block_invalidatepage(page, offset);
2812 }
2813
2814 static int ext4_releasepage(struct page *page, gfp_t wait)
2815 {
2816         journal_t *journal = EXT4_JOURNAL(page->mapping->host);
2817
2818         trace_ext4_releasepage(page);
2819
2820         WARN_ON(PageChecked(page));
2821         if (!page_has_buffers(page))
2822                 return 0;
2823         if (journal)
2824                 return jbd2_journal_try_to_free_buffers(journal, page, wait);
2825         else
2826                 return try_to_free_buffers(page);
2827 }
2828
2829 /*
2830  * ext4_get_block used when preparing for a DIO write or buffer write.
2831  * We allocate an uinitialized extent if blocks haven't been allocated.
2832  * The extent will be converted to initialized after the IO is complete.
2833  */
2834 static int ext4_get_block_write(struct inode *inode, sector_t iblock,
2835                    struct buffer_head *bh_result, int create)
2836 {
2837         ext4_debug("ext4_get_block_write: inode %lu, create flag %d\n",
2838                    inode->i_ino, create);
2839         return _ext4_get_block(inode, iblock, bh_result,
2840                                EXT4_GET_BLOCKS_IO_CREATE_EXT);
2841 }
2842
2843 static int ext4_get_block_write_nolock(struct inode *inode, sector_t iblock,
2844                    struct buffer_head *bh_result, int create)
2845 {
2846         ext4_debug("ext4_get_block_write_nolock: inode %lu, create flag %d\n",
2847                    inode->i_ino, create);
2848         return _ext4_get_block(inode, iblock, bh_result,
2849                                EXT4_GET_BLOCKS_NO_LOCK);
2850 }
2851
2852 static void ext4_end_io_dio(struct kiocb *iocb, loff_t offset,
2853                             ssize_t size, void *private, int ret,
2854                             bool is_async)
2855 {
2856         struct inode *inode = iocb->ki_filp->f_path.dentry->d_inode;
2857         ext4_io_end_t *io_end = iocb->private;
2858
2859         /* if not async direct IO or dio with 0 bytes write, just return */
2860         if (!io_end || !size)
2861                 goto out;
2862
2863         ext_debug("ext4_end_io_dio(): io_end 0x%p "
2864                   "for inode %lu, iocb 0x%p, offset %llu, size %zd\n",
2865                   iocb->private, io_end->inode->i_ino, iocb, offset,
2866                   size);
2867
2868         iocb->private = NULL;
2869
2870         /* if not aio dio with unwritten extents, just free io and return */
2871         if (!(io_end->flag & EXT4_IO_END_UNWRITTEN)) {
2872                 ext4_free_io_end(io_end);
2873 out:
2874                 if (is_async)
2875                         aio_complete(iocb, ret, 0);
2876                 inode_dio_done(inode);
2877                 return;
2878         }
2879
2880         io_end->offset = offset;
2881         io_end->size = size;
2882         if (is_async) {
2883                 io_end->iocb = iocb;
2884                 io_end->result = ret;
2885         }
2886
2887         ext4_add_complete_io(io_end);
2888 }
2889
2890 static void ext4_end_io_buffer_write(struct buffer_head *bh, int uptodate)
2891 {
2892         ext4_io_end_t *io_end = bh->b_private;
2893         struct inode *inode;
2894
2895         if (!test_clear_buffer_uninit(bh) || !io_end)
2896                 goto out;
2897
2898         if (!(io_end->inode->i_sb->s_flags & MS_ACTIVE)) {
2899                 ext4_msg(io_end->inode->i_sb, KERN_INFO,
2900                          "sb umounted, discard end_io request for inode %lu",
2901                          io_end->inode->i_ino);
2902                 ext4_free_io_end(io_end);
2903                 goto out;
2904         }
2905
2906         /*
2907          * It may be over-defensive here to check EXT4_IO_END_UNWRITTEN now,
2908          * but being more careful is always safe for the future change.
2909          */
2910         inode = io_end->inode;
2911         ext4_set_io_unwritten_flag(inode, io_end);
2912         ext4_add_complete_io(io_end);
2913 out:
2914         bh->b_private = NULL;
2915         bh->b_end_io = NULL;
2916         clear_buffer_uninit(bh);
2917         end_buffer_async_write(bh, uptodate);
2918 }
2919
2920 static int ext4_set_bh_endio(struct buffer_head *bh, struct inode *inode)
2921 {
2922         ext4_io_end_t *io_end;
2923         struct page *page = bh->b_page;
2924         loff_t offset = (sector_t)page->index << PAGE_CACHE_SHIFT;
2925         size_t size = bh->b_size;
2926
2927 retry:
2928         io_end = ext4_init_io_end(inode, GFP_ATOMIC);
2929         if (!io_end) {
2930                 pr_warn_ratelimited("%s: allocation fail\n", __func__);
2931                 schedule();
2932                 goto retry;
2933         }
2934         io_end->offset = offset;
2935         io_end->size = size;
2936         /*
2937          * We need to hold a reference to the page to make sure it
2938          * doesn't get evicted before ext4_end_io_work() has a chance
2939          * to convert the extent from written to unwritten.
2940          */
2941         io_end->page = page;
2942         get_page(io_end->page);
2943
2944         bh->b_private = io_end;
2945         bh->b_end_io = ext4_end_io_buffer_write;
2946         return 0;
2947 }
2948
2949 /*
2950  * For ext4 extent files, ext4 will do direct-io write to holes,
2951  * preallocated extents, and those write extend the file, no need to
2952  * fall back to buffered IO.
2953  *
2954  * For holes, we fallocate those blocks, mark them as uninitialized
2955  * If those blocks were preallocated, we mark sure they are split, but
2956  * still keep the range to write as uninitialized.
2957  *
2958  * The unwritten extents will be converted to written when DIO is completed.
2959  * For async direct IO, since the IO may still pending when return, we
2960  * set up an end_io call back function, which will do the conversion
2961  * when async direct IO completed.
2962  *
2963  * If the O_DIRECT write will extend the file then add this inode to the
2964  * orphan list.  So recovery will truncate it back to the original size
2965  * if the machine crashes during the write.
2966  *
2967  */
2968 static ssize_t ext4_ext_direct_IO(int rw, struct kiocb *iocb,
2969                               const struct iovec *iov, loff_t offset,
2970                               unsigned long nr_segs)
2971 {
2972         struct file *file = iocb->ki_filp;
2973         struct inode *inode = file->f_mapping->host;
2974         ssize_t ret;
2975         size_t count = iov_length(iov, nr_segs);
2976         int overwrite = 0;
2977         get_block_t *get_block_func = NULL;
2978         int dio_flags = 0;
2979         loff_t final_size = offset + count;
2980
2981         /* Use the old path for reads and writes beyond i_size. */
2982         if (rw != WRITE || final_size > inode->i_size)
2983                 return ext4_ind_direct_IO(rw, iocb, iov, offset, nr_segs);
2984
2985         BUG_ON(iocb->private == NULL);
2986
2987         /* If we do a overwrite dio, i_mutex locking can be released */
2988         overwrite = *((int *)iocb->private);
2989
2990         if (overwrite) {
2991                 atomic_inc(&inode->i_dio_count);
2992                 down_read(&EXT4_I(inode)->i_data_sem);
2993                 mutex_unlock(&inode->i_mutex);
2994         }
2995
2996         /*
2997          * We could direct write to holes and fallocate.
2998          *
2999          * Allocated blocks to fill the hole are marked as
3000          * uninitialized to prevent parallel buffered read to expose
3001          * the stale data before DIO complete the data IO.
3002          *
3003          * As to previously fallocated extents, ext4 get_block will
3004          * just simply mark the buffer mapped but still keep the
3005          * extents uninitialized.
3006          *
3007          * For non AIO case, we will convert those unwritten extents
3008          * to written after return back from blockdev_direct_IO.
3009          *
3010          * For async DIO, the conversion needs to be deferred when the
3011          * IO is completed. The ext4 end_io callback function will be
3012          * called to take care of the conversion work.  Here for async
3013          * case, we allocate an io_end structure to hook to the iocb.
3014          */
3015         iocb->private = NULL;
3016         ext4_inode_aio_set(inode, NULL);
3017         if (!is_sync_kiocb(iocb)) {
3018                 ext4_io_end_t *io_end = ext4_init_io_end(inode, GFP_NOFS);
3019                 if (!io_end) {
3020                         ret = -ENOMEM;
3021                         goto retake_lock;
3022                 }
3023                 io_end->flag |= EXT4_IO_END_DIRECT;
3024                 iocb->private = io_end;
3025                 /*
3026                  * we save the io structure for current async direct
3027                  * IO, so that later ext4_map_blocks() could flag the
3028                  * io structure whether there is a unwritten extents
3029                  * needs to be converted when IO is completed.
3030                  */
3031                 ext4_inode_aio_set(inode, io_end);
3032         }
3033
3034         if (overwrite) {
3035                 get_block_func = ext4_get_block_write_nolock;
3036         } else {
3037                 get_block_func = ext4_get_block_write;
3038                 dio_flags = DIO_LOCKING;
3039         }
3040         ret = __blockdev_direct_IO(rw, iocb, inode,
3041                                    inode->i_sb->s_bdev, iov,
3042                                    offset, nr_segs,
3043                                    get_block_func,
3044                                    ext4_end_io_dio,
3045                                    NULL,
3046                                    dio_flags);
3047
3048         if (iocb->private)
3049                 ext4_inode_aio_set(inode, NULL);
3050         /*
3051          * The io_end structure takes a reference to the inode, that
3052          * structure needs to be destroyed and the reference to the
3053          * inode need to be dropped, when IO is complete, even with 0
3054          * byte write, or failed.
3055          *
3056          * In the successful AIO DIO case, the io_end structure will
3057          * be destroyed and the reference to the inode will be dropped
3058          * after the end_io call back function is called.
3059          *
3060          * In the case there is 0 byte write, or error case, since VFS
3061          * direct IO won't invoke the end_io call back function, we
3062          * need to free the end_io structure here.
3063          */
3064         if (ret != -EIOCBQUEUED && ret <= 0 && iocb->private) {
3065                 ext4_free_io_end(iocb->private);
3066                 iocb->private = NULL;
3067         } else if (ret > 0 && !overwrite && ext4_test_inode_state(inode,
3068                                                 EXT4_STATE_DIO_UNWRITTEN)) {
3069                 int err;
3070                 /*
3071                  * for non AIO case, since the IO is already
3072                  * completed, we could do the conversion right here
3073                  */
3074                 err = ext4_convert_unwritten_extents(inode,
3075                                                      offset, ret);
3076                 if (err < 0)
3077                         ret = err;
3078                 ext4_clear_inode_state(inode, EXT4_STATE_DIO_UNWRITTEN);
3079         }
3080
3081 retake_lock:
3082         /* take i_mutex locking again if we do a ovewrite dio */
3083         if (overwrite) {
3084                 inode_dio_done(inode);
3085                 up_read(&EXT4_I(inode)->i_data_sem);
3086                 mutex_lock(&inode->i_mutex);
3087         }
3088
3089         return ret;
3090 }
3091
3092 static ssize_t ext4_direct_IO(int rw, struct kiocb *iocb,
3093                               const struct iovec *iov, loff_t offset,
3094                               unsigned long nr_segs)
3095 {
3096         struct file *file = iocb->ki_filp;
3097         struct inode *inode = file->f_mapping->host;
3098         ssize_t ret;
3099
3100         /*
3101          * If we are doing data journalling we don't support O_DIRECT
3102          */
3103         if (ext4_should_journal_data(inode))
3104                 return 0;
3105
3106         /* Let buffer I/O handle the inline data case. */
3107         if (ext4_has_inline_data(inode))
3108                 return 0;
3109
3110         trace_ext4_direct_IO_enter(inode, offset, iov_length(iov, nr_segs), rw);
3111         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3112                 ret = ext4_ext_direct_IO(rw, iocb, iov, offset, nr_segs);
3113         else
3114                 ret = ext4_ind_direct_IO(rw, iocb, iov, offset, nr_segs);
3115         trace_ext4_direct_IO_exit(inode, offset,
3116                                 iov_length(iov, nr_segs), rw, ret);
3117         return ret;
3118 }
3119
3120 /*
3121  * Pages can be marked dirty completely asynchronously from ext4's journalling
3122  * activity.  By filemap_sync_pte(), try_to_unmap_one(), etc.  We cannot do
3123  * much here because ->set_page_dirty is called under VFS locks.  The page is
3124  * not necessarily locked.
3125  *
3126  * We cannot just dirty the page and leave attached buffers clean, because the
3127  * buffers' dirty state is "definitive".  We cannot just set the buffers dirty
3128  * or jbddirty because all the journalling code will explode.
3129  *
3130  * So what we do is to mark the page "pending dirty" and next time writepage
3131  * is called, propagate that into the buffers appropriately.
3132  */
3133 static int ext4_journalled_set_page_dirty(struct page *page)
3134 {
3135         SetPageChecked(page);
3136         return __set_page_dirty_nobuffers(page);
3137 }
3138
3139 static const struct address_space_operations ext4_ordered_aops = {
3140         .readpage               = ext4_readpage,
3141         .readpages              = ext4_readpages,
3142         .writepage              = ext4_writepage,
3143         .write_begin            = ext4_write_begin,
3144         .write_end              = ext4_ordered_write_end,
3145         .bmap                   = ext4_bmap,
3146         .invalidatepage         = ext4_invalidatepage,
3147         .releasepage            = ext4_releasepage,
3148         .direct_IO              = ext4_direct_IO,
3149         .migratepage            = buffer_migrate_page,
3150         .is_partially_uptodate  = block_is_partially_uptodate,
3151         .error_remove_page      = generic_error_remove_page,
3152 };
3153
3154 static const struct address_space_operations ext4_writeback_aops = {
3155         .readpage               = ext4_readpage,
3156         .readpages              = ext4_readpages,
3157         .writepage              = ext4_writepage,
3158         .write_begin            = ext4_write_begin,
3159         .write_end              = ext4_writeback_write_end,
3160         .bmap                   = ext4_bmap,
3161         .invalidatepage         = ext4_invalidatepage,
3162         .releasepage            = ext4_releasepage,
3163         .direct_IO              = ext4_direct_IO,
3164         .migratepage            = buffer_migrate_page,
3165         .is_partially_uptodate  = block_is_partially_uptodate,
3166         .error_remove_page      = generic_error_remove_page,
3167 };
3168
3169 static const struct address_space_operations ext4_journalled_aops = {
3170         .readpage               = ext4_readpage,
3171         .readpages              = ext4_readpages,
3172         .writepage              = ext4_writepage,
3173         .write_begin            = ext4_write_begin,
3174         .write_end              = ext4_journalled_write_end,
3175         .set_page_dirty         = ext4_journalled_set_page_dirty,
3176         .bmap                   = ext4_bmap,
3177         .invalidatepage         = ext4_invalidatepage,
3178         .releasepage            = ext4_releasepage,
3179         .direct_IO              = ext4_direct_IO,
3180         .is_partially_uptodate  = block_is_partially_uptodate,
3181         .error_remove_page      = generic_error_remove_page,
3182 };
3183
3184 static const struct address_space_operations ext4_da_aops = {
3185         .readpage               = ext4_readpage,
3186         .readpages              = ext4_readpages,
3187         .writepage              = ext4_writepage,
3188         .writepages             = ext4_da_writepages,
3189         .write_begin            = ext4_da_write_begin,
3190         .write_end              = ext4_da_write_end,
3191         .bmap                   = ext4_bmap,
3192         .invalidatepage         = ext4_da_invalidatepage,
3193         .releasepage            = ext4_releasepage,
3194         .direct_IO              = ext4_direct_IO,
3195         .migratepage            = buffer_migrate_page,
3196         .is_partially_uptodate  = block_is_partially_uptodate,
3197         .error_remove_page      = generic_error_remove_page,
3198 };
3199
3200 void ext4_set_aops(struct inode *inode)
3201 {
3202         switch (ext4_inode_journal_mode(inode)) {
3203         case EXT4_INODE_ORDERED_DATA_MODE:
3204                 if (test_opt(inode->i_sb, DELALLOC))
3205                         inode->i_mapping->a_ops = &ext4_da_aops;
3206                 else
3207                         inode->i_mapping->a_ops = &ext4_ordered_aops;
3208                 break;
3209         case EXT4_INODE_WRITEBACK_DATA_MODE:
3210                 if (test_opt(inode->i_sb, DELALLOC))
3211                         inode->i_mapping->a_ops = &ext4_da_aops;
3212                 else
3213                         inode->i_mapping->a_ops = &ext4_writeback_aops;
3214                 break;
3215         case EXT4_INODE_JOURNAL_DATA_MODE:
3216                 inode->i_mapping->a_ops = &ext4_journalled_aops;
3217                 break;
3218         default:
3219                 BUG();
3220         }
3221 }
3222
3223
3224 /*
3225  * ext4_discard_partial_page_buffers()
3226  * Wrapper function for ext4_discard_partial_page_buffers_no_lock.
3227  * This function finds and locks the page containing the offset
3228  * "from" and passes it to ext4_discard_partial_page_buffers_no_lock.
3229  * Calling functions that already have the page locked should call
3230  * ext4_discard_partial_page_buffers_no_lock directly.
3231  */
3232 int ext4_discard_partial_page_buffers(handle_t *handle,
3233                 struct address_space *mapping, loff_t from,
3234                 loff_t length, int flags)
3235 {
3236         struct inode *inode = mapping->host;
3237         struct page *page;
3238         int err = 0;
3239
3240         page = find_or_create_page(mapping, from >> PAGE_CACHE_SHIFT,
3241                                    mapping_gfp_mask(mapping) & ~__GFP_FS);
3242         if (!page)
3243                 return -ENOMEM;
3244
3245         err = ext4_discard_partial_page_buffers_no_lock(handle, inode, page,
3246                 from, length, flags);
3247
3248         unlock_page(page);
3249         page_cache_release(page);
3250         return err;
3251 }
3252
3253 /*
3254  * ext4_discard_partial_page_buffers_no_lock()
3255  * Zeros a page range of length 'length' starting from offset 'from'.
3256  * Buffer heads that correspond to the block aligned regions of the
3257  * zeroed range will be unmapped.  Unblock aligned regions
3258  * will have the corresponding buffer head mapped if needed so that
3259  * that region of the page can be updated with the partial zero out.
3260  *
3261  * This function assumes that the page has already been  locked.  The
3262  * The range to be discarded must be contained with in the given page.
3263  * If the specified range exceeds the end of the page it will be shortened
3264  * to the end of the page that corresponds to 'from'.  This function is
3265  * appropriate for updating a page and it buffer heads to be unmapped and
3266  * zeroed for blocks that have been either released, or are going to be
3267  * released.
3268  *
3269  * handle: The journal handle
3270  * inode:  The files inode
3271  * page:   A locked page that contains the offset "from"
3272  * from:   The starting byte offset (from the beginning of the file)
3273  *         to begin discarding
3274  * len:    The length of bytes to discard
3275  * flags:  Optional flags that may be used:
3276  *
3277  *         EXT4_DISCARD_PARTIAL_PG_ZERO_UNMAPPED
3278  *         Only zero the regions of the page whose buffer heads
3279  *         have already been unmapped.  This flag is appropriate
3280  *         for updating the contents of a page whose blocks may
3281  *         have already been released, and we only want to zero
3282  *         out the regions that correspond to those released blocks.
3283  *
3284  * Returns zero on success or negative on failure.
3285  */
3286 static int ext4_discard_partial_page_buffers_no_lock(handle_t *handle,
3287                 struct inode *inode, struct page *page, loff_t from,
3288                 loff_t length, int flags)
3289 {
3290         ext4_fsblk_t index = from >> PAGE_CACHE_SHIFT;
3291         unsigned int offset = from & (PAGE_CACHE_SIZE-1);
3292         unsigned int blocksize, max, pos;
3293         ext4_lblk_t iblock;
3294         struct buffer_head *bh;
3295         int err = 0;
3296
3297         blocksize = inode->i_sb->s_blocksize;
3298         max = PAGE_CACHE_SIZE - offset;
3299
3300         if (index != page->index)
3301                 return -EINVAL;
3302
3303         /*
3304          * correct length if it does not fall between
3305          * 'from' and the end of the page
3306          */
3307         if (length > max || length < 0)
3308                 length = max;
3309
3310         iblock = index << (PAGE_CACHE_SHIFT - inode->i_sb->s_blocksize_bits);
3311
3312         if (!page_has_buffers(page))
3313                 create_empty_buffers(page, blocksize, 0);
3314
3315         /* Find the buffer that contains "offset" */
3316         bh = page_buffers(page);
3317         pos = blocksize;
3318         while (offset >= pos) {
3319                 bh = bh->b_this_page;
3320                 iblock++;
3321                 pos += blocksize;
3322         }
3323
3324         pos = offset;
3325         while (pos < offset + length) {
3326                 unsigned int end_of_block, range_to_discard;
3327
3328                 err = 0;
3329
3330                 /* The length of space left to zero and unmap */
3331                 range_to_discard = offset + length - pos;
3332
3333                 /* The length of space until the end of the block */
3334                 end_of_block = blocksize - (pos & (blocksize-1));
3335
3336                 /*
3337                  * Do not unmap or zero past end of block
3338                  * for this buffer head
3339                  */
3340                 if (range_to_discard > end_of_block)
3341                         range_to_discard = end_of_block;
3342
3343
3344                 /*
3345                  * Skip this buffer head if we are only zeroing unampped
3346                  * regions of the page
3347                  */
3348                 if (flags & EXT4_DISCARD_PARTIAL_PG_ZERO_UNMAPPED &&
3349                         buffer_mapped(bh))
3350                                 goto next;
3351
3352                 /* If the range is block aligned, unmap */
3353                 if (range_to_discard == blocksize) {
3354                         clear_buffer_dirty(bh);
3355                         bh->b_bdev = NULL;
3356                         clear_buffer_mapped(bh);
3357                         clear_buffer_req(bh);
3358                         clear_buffer_new(bh);
3359                         clear_buffer_delay(bh);
3360                         clear_buffer_unwritten(bh);
3361                         clear_buffer_uptodate(bh);
3362                         zero_user(page, pos, range_to_discard);
3363                         BUFFER_TRACE(bh, "Buffer discarded");
3364                         goto next;
3365                 }
3366
3367                 /*
3368                  * If this block is not completely contained in the range
3369                  * to be discarded, then it is not going to be released. Because
3370                  * we need to keep this block, we need to make sure this part
3371                  * of the page is uptodate before we modify it by writeing
3372                  * partial zeros on it.
3373                  */
3374                 if (!buffer_mapped(bh)) {
3375                         /*
3376                          * Buffer head must be mapped before we can read
3377                          * from the block
3378                          */
3379                         BUFFER_TRACE(bh, "unmapped");
3380                         ext4_get_block(inode, iblock, bh, 0);
3381                         /* unmapped? It's a hole - nothing to do */
3382                         if (!buffer_mapped(bh)) {
3383                                 BUFFER_TRACE(bh, "still unmapped");
3384                                 goto next;
3385                         }
3386                 }
3387
3388                 /* Ok, it's mapped. Make sure it's up-to-date */
3389                 if (PageUptodate(page))
3390                         set_buffer_uptodate(bh);
3391
3392                 if (!buffer_uptodate(bh)) {
3393                         err = -EIO;
3394                         ll_rw_block(READ, 1, &bh);
3395                         wait_on_buffer(bh);
3396                         /* Uhhuh. Read error. Complain and punt.*/
3397                         if (!buffer_uptodate(bh))
3398                                 goto next;
3399                 }
3400
3401                 if (ext4_should_journal_data(inode)) {
3402                         BUFFER_TRACE(bh, "get write access");
3403                         err = ext4_journal_get_write_access(handle, bh);
3404                         if (err)
3405                                 goto next;
3406                 }
3407
3408                 zero_user(page, pos, range_to_discard);
3409
3410                 err = 0;
3411                 if (ext4_should_journal_data(inode)) {
3412                         err = ext4_handle_dirty_metadata(handle, inode, bh);
3413                 } else
3414                         mark_buffer_dirty(bh);
3415
3416                 BUFFER_TRACE(bh, "Partial buffer zeroed");
3417 next:
3418                 bh = bh->b_this_page;
3419                 iblock++;
3420                 pos += range_to_discard;
3421         }
3422
3423         return err;
3424 }
3425
3426 int ext4_can_truncate(struct inode *inode)
3427 {
3428         if (S_ISREG(inode->i_mode))
3429                 return 1;
3430         if (S_ISDIR(inode->i_mode))
3431                 return 1;
3432         if (S_ISLNK(inode->i_mode))
3433                 return !ext4_inode_is_fast_symlink(inode);
3434         return 0;
3435 }
3436
3437 /*
3438  * ext4_punch_hole: punches a hole in a file by releaseing the blocks
3439  * associated with the given offset and length
3440  *
3441  * @inode:  File inode
3442  * @offset: The offset where the hole will begin
3443  * @len:    The length of the hole
3444  *
3445  * Returns: 0 on success or negative on failure
3446  */
3447
3448 int ext4_punch_hole(struct file *file, loff_t offset, loff_t length)
3449 {
3450         struct inode *inode = file->f_path.dentry->d_inode;
3451         if (!S_ISREG(inode->i_mode))
3452                 return -EOPNOTSUPP;
3453
3454         if (!ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
3455                 /* TODO: Add support for non extent hole punching */
3456                 return -EOPNOTSUPP;
3457         }
3458
3459         if (EXT4_SB(inode->i_sb)->s_cluster_ratio > 1) {
3460                 /* TODO: Add support for bigalloc file systems */
3461                 return -EOPNOTSUPP;
3462         }
3463
3464         return ext4_ext_punch_hole(file, offset, length);
3465 }
3466
3467 /*
3468  * ext4_truncate()
3469  *
3470  * We block out ext4_get_block() block instantiations across the entire
3471  * transaction, and VFS/VM ensures that ext4_truncate() cannot run
3472  * simultaneously on behalf of the same inode.
3473  *
3474  * As we work through the truncate and commit bits of it to the journal there
3475  * is one core, guiding principle: the file's tree must always be consistent on
3476  * disk.  We must be able to restart the truncate after a crash.
3477  *
3478  * The file's tree may be transiently inconsistent in memory (although it
3479  * probably isn't), but whenever we close off and commit a journal transaction,
3480  * the contents of (the filesystem + the journal) must be consistent and
3481  * restartable.  It's pretty simple, really: bottom up, right to left (although
3482  * left-to-right works OK too).
3483  *
3484  * Note that at recovery time, journal replay occurs *before* the restart of
3485  * truncate against the orphan inode list.
3486  *
3487  * The committed inode has the new, desired i_size (which is the same as
3488  * i_disksize in this case).  After a crash, ext4_orphan_cleanup() will see
3489  * that this inode's truncate did not complete and it will again call
3490  * ext4_truncate() to have another go.  So there will be instantiated blocks
3491  * to the right of the truncation point in a crashed ext4 filesystem.  But
3492  * that's fine - as long as they are linked from the inode, the post-crash
3493  * ext4_truncate() run will find them and release them.
3494  */
3495 void ext4_truncate(struct inode *inode)
3496 {
3497         trace_ext4_truncate_enter(inode);
3498
3499         if (!ext4_can_truncate(inode))
3500                 return;
3501
3502         ext4_clear_inode_flag(inode, EXT4_INODE_EOFBLOCKS);
3503
3504         if (inode->i_size == 0 && !test_opt(inode->i_sb, NO_AUTO_DA_ALLOC))
3505                 ext4_set_inode_state(inode, EXT4_STATE_DA_ALLOC_CLOSE);
3506
3507         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3508                 ext4_ext_truncate(inode);
3509         else
3510                 ext4_ind_truncate(inode);
3511
3512         trace_ext4_truncate_exit(inode);
3513 }
3514
3515 /*
3516  * ext4_get_inode_loc returns with an extra refcount against the inode's
3517  * underlying buffer_head on success. If 'in_mem' is true, we have all
3518  * data in memory that is needed to recreate the on-disk version of this
3519  * inode.
3520  */
3521 static int __ext4_get_inode_loc(struct inode *inode,
3522                                 struct ext4_iloc *iloc, int in_mem)
3523 {
3524         struct ext4_group_desc  *gdp;
3525         struct buffer_head      *bh;
3526         struct super_block      *sb = inode->i_sb;
3527         ext4_fsblk_t            block;
3528         int                     inodes_per_block, inode_offset;
3529
3530         iloc->bh = NULL;
3531         if (!ext4_valid_inum(sb, inode->i_ino))
3532                 return -EIO;
3533
3534         iloc->block_group = (inode->i_ino - 1) / EXT4_INODES_PER_GROUP(sb);
3535         gdp = ext4_get_group_desc(sb, iloc->block_group, NULL);
3536         if (!gdp)
3537                 return -EIO;
3538
3539         /*
3540          * Figure out the offset within the block group inode table
3541          */
3542         inodes_per_block = EXT4_SB(sb)->s_inodes_per_block;
3543         inode_offset = ((inode->i_ino - 1) %
3544                         EXT4_INODES_PER_GROUP(sb));
3545         block = ext4_inode_table(sb, gdp) + (inode_offset / inodes_per_block);
3546         iloc->offset = (inode_offset % inodes_per_block) * EXT4_INODE_SIZE(sb);
3547
3548         bh = sb_getblk(sb, block);
3549         if (!bh) {
3550                 EXT4_ERROR_INODE_BLOCK(inode, block,
3551                                        "unable to read itable block");
3552                 return -EIO;
3553         }
3554         if (!buffer_uptodate(bh)) {
3555                 lock_buffer(bh);
3556
3557                 /*
3558                  * If the buffer has the write error flag, we have failed
3559                  * to write out another inode in the same block.  In this
3560                  * case, we don't have to read the block because we may
3561                  * read the old inode data successfully.
3562                  */
3563                 if (buffer_write_io_error(bh) && !buffer_uptodate(bh))
3564                         set_buffer_uptodate(bh);
3565
3566                 if (buffer_uptodate(bh)) {
3567                         /* someone brought it uptodate while we waited */
3568                         unlock_buffer(bh);
3569                         goto has_buffer;
3570                 }
3571
3572                 /*
3573                  * If we have all information of the inode in memory and this
3574                  * is the only valid inode in the block, we need not read the
3575                  * block.
3576                  */
3577                 if (in_mem) {
3578                         struct buffer_head *bitmap_bh;
3579                         int i, start;
3580
3581                         start = inode_offset & ~(inodes_per_block - 1);
3582
3583                         /* Is the inode bitmap in cache? */
3584                         bitmap_bh = sb_getblk(sb, ext4_inode_bitmap(sb, gdp));
3585                         if (!bitmap_bh)
3586                                 goto make_io;
3587
3588                         /*
3589                          * If the inode bitmap isn't in cache then the
3590                          * optimisation may end up performing two reads instead
3591                          * of one, so skip it.
3592                          */
3593                         if (!buffer_uptodate(bitmap_bh)) {
3594                                 brelse(bitmap_bh);
3595                                 goto make_io;
3596                         }
3597                         for (i = start; i < start + inodes_per_block; i++) {
3598                                 if (i == inode_offset)
3599                                         continue;
3600                                 if (ext4_test_bit(i, bitmap_bh->b_data))
3601                                         break;
3602                         }
3603                         brelse(bitmap_bh);
3604                         if (i == start + inodes_per_block) {
3605                                 /* all other inodes are free, so skip I/O */
3606                                 memset(bh->b_data, 0, bh->b_size);
3607                                 set_buffer_uptodate(bh);
3608                                 unlock_buffer(bh);
3609                                 goto has_buffer;
3610                         }
3611                 }
3612
3613 make_io:
3614                 /*
3615                  * If we need to do any I/O, try to pre-readahead extra
3616                  * blocks from the inode table.
3617                  */
3618                 if (EXT4_SB(sb)->s_inode_readahead_blks) {
3619                         ext4_fsblk_t b, end, table;
3620                         unsigned num;
3621
3622                         table = ext4_inode_table(sb, gdp);
3623                         /* s_inode_readahead_blks is always a power of 2 */
3624                         b = block & ~(EXT4_SB(sb)->s_inode_readahead_blks-1);
3625                         if (table > b)
3626                                 b = table;
3627                         end = b + EXT4_SB(sb)->s_inode_readahead_blks;
3628                         num = EXT4_INODES_PER_GROUP(sb);
3629                         if (ext4_has_group_desc_csum(sb))
3630                                 num -= ext4_itable_unused_count(sb, gdp);
3631                         table += num / inodes_per_block;
3632                         if (end > table)
3633                                 end = table;
3634                         while (b <= end)
3635                                 sb_breadahead(sb, b++);
3636                 }
3637
3638                 /*
3639                  * There are other valid inodes in the buffer, this inode
3640                  * has in-inode xattrs, or we don't have this inode in memory.
3641                  * Read the block from disk.
3642                  */
3643                 trace_ext4_load_inode(inode);
3644                 get_bh(bh);
3645                 bh->b_end_io = end_buffer_read_sync;
3646                 submit_bh(READ | REQ_META | REQ_PRIO, bh);
3647                 wait_on_buffer(bh);
3648                 if (!buffer_uptodate(bh)) {
3649                         EXT4_ERROR_INODE_BLOCK(inode, block,
3650                                                "unable to read itable block");
3651                         brelse(bh);
3652                         return -EIO;
3653                 }
3654         }
3655 has_buffer:
3656         iloc->bh = bh;
3657         return 0;
3658 }
3659
3660 int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc)
3661 {
3662         /* We have all inode data except xattrs in memory here. */
3663         return __ext4_get_inode_loc(inode, iloc,
3664                 !ext4_test_inode_state(inode, EXT4_STATE_XATTR));
3665 }
3666
3667 void ext4_set_inode_flags(struct inode *inode)
3668 {
3669         unsigned int flags = EXT4_I(inode)->i_flags;
3670
3671         inode->i_flags &= ~(S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC);
3672         if (flags & EXT4_SYNC_FL)
3673                 inode->i_flags |= S_SYNC;
3674         if (flags & EXT4_APPEND_FL)
3675                 inode->i_flags |= S_APPEND;
3676         if (flags & EXT4_IMMUTABLE_FL)
3677                 inode->i_flags |= S_IMMUTABLE;
3678         if (flags & EXT4_NOATIME_FL)
3679                 inode->i_flags |= S_NOATIME;
3680         if (flags & EXT4_DIRSYNC_FL)
3681                 inode->i_flags |= S_DIRSYNC;
3682 }
3683
3684 /* Propagate flags from i_flags to EXT4_I(inode)->i_flags */
3685 void ext4_get_inode_flags(struct ext4_inode_info *ei)
3686 {
3687         unsigned int vfs_fl;
3688         unsigned long old_fl, new_fl;
3689
3690         do {
3691                 vfs_fl = ei->vfs_inode.i_flags;
3692                 old_fl = ei->i_flags;
3693                 new_fl = old_fl & ~(EXT4_SYNC_FL|EXT4_APPEND_FL|
3694                                 EXT4_IMMUTABLE_FL|EXT4_NOATIME_FL|
3695                                 EXT4_DIRSYNC_FL);
3696                 if (vfs_fl & S_SYNC)
3697                         new_fl |= EXT4_SYNC_FL;
3698                 if (vfs_fl & S_APPEND)
3699                         new_fl |= EXT4_APPEND_FL;
3700                 if (vfs_fl & S_IMMUTABLE)
3701                         new_fl |= EXT4_IMMUTABLE_FL;
3702                 if (vfs_fl & S_NOATIME)
3703                         new_fl |= EXT4_NOATIME_FL;
3704                 if (vfs_fl & S_DIRSYNC)
3705                         new_fl |= EXT4_DIRSYNC_FL;
3706         } while (cmpxchg(&ei->i_flags, old_fl, new_fl) != old_fl);
3707 }
3708
3709 static blkcnt_t ext4_inode_blocks(struct ext4_inode *raw_inode,
3710                                   struct ext4_inode_info *ei)
3711 {
3712         blkcnt_t i_blocks ;
3713         struct inode *inode = &(ei->vfs_inode);
3714         struct super_block *sb = inode->i_sb;
3715
3716         if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
3717                                 EXT4_FEATURE_RO_COMPAT_HUGE_FILE)) {
3718                 /* we are using combined 48 bit field */
3719                 i_blocks = ((u64)le16_to_cpu(raw_inode->i_blocks_high)) << 32 |
3720                                         le32_to_cpu(raw_inode->i_blocks_lo);
3721                 if (ext4_test_inode_flag(inode, EXT4_INODE_HUGE_FILE)) {
3722                         /* i_blocks represent file system block size */
3723                         return i_blocks  << (inode->i_blkbits - 9);
3724                 } else {
3725                         return i_blocks;
3726                 }
3727         } else {
3728                 return le32_to_cpu(raw_inode->i_blocks_lo);
3729         }
3730 }
3731
3732 static inline void ext4_iget_extra_inode(struct inode *inode,
3733                                          struct ext4_inode *raw_inode,
3734                                          struct ext4_inode_info *ei)
3735 {
3736         __le32 *magic = (void *)raw_inode +
3737                         EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize;
3738         if (*magic == cpu_to_le32(EXT4_XATTR_MAGIC)) {
3739                 ext4_set_inode_state(inode, EXT4_STATE_XATTR);
3740                 ext4_find_inline_data_nolock(inode);
3741         }
3742 }
3743
3744 struct inode *ext4_iget(struct super_block *sb, unsigned long ino)
3745 {
3746         struct ext4_iloc iloc;
3747         struct ext4_inode *raw_inode;
3748         struct ext4_inode_info *ei;
3749         struct inode *inode;
3750         journal_t *journal = EXT4_SB(sb)->s_journal;
3751         long ret;
3752         int block;
3753         uid_t i_uid;
3754         gid_t i_gid;
3755
3756         inode = iget_locked(sb, ino);
3757         if (!inode)
3758                 return ERR_PTR(-ENOMEM);
3759         if (!(inode->i_state & I_NEW))
3760                 return inode;
3761
3762         ei = EXT4_I(inode);
3763         iloc.bh = NULL;
3764
3765         ret = __ext4_get_inode_loc(inode, &iloc, 0);
3766         if (ret < 0)
3767                 goto bad_inode;
3768         raw_inode = ext4_raw_inode(&iloc);
3769
3770         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
3771                 ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize);
3772                 if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize >
3773                     EXT4_INODE_SIZE(inode->i_sb)) {
3774                         EXT4_ERROR_INODE(inode, "bad extra_isize (%u != %u)",
3775                                 EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize,
3776                                 EXT4_INODE_SIZE(inode->i_sb));
3777                         ret = -EIO;
3778                         goto bad_inode;
3779                 }
3780         } else
3781                 ei->i_extra_isize = 0;
3782
3783         /* Precompute checksum seed for inode metadata */
3784         if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
3785                         EXT4_FEATURE_RO_COMPAT_METADATA_CSUM)) {
3786                 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
3787                 __u32 csum;
3788                 __le32 inum = cpu_to_le32(inode->i_ino);
3789                 __le32 gen = raw_inode->i_generation;
3790                 csum = ext4_chksum(sbi, sbi->s_csum_seed, (__u8 *)&inum,
3791                                    sizeof(inum));
3792                 ei->i_csum_seed = ext4_chksum(sbi, csum, (__u8 *)&gen,
3793                                               sizeof(gen));
3794         }
3795
3796         if (!ext4_inode_csum_verify(inode, raw_inode, ei)) {
3797                 EXT4_ERROR_INODE(inode, "checksum invalid");
3798                 ret = -EIO;
3799                 goto bad_inode;
3800         }
3801
3802         inode->i_mode = le16_to_cpu(raw_inode->i_mode);
3803         i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low);
3804         i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low);
3805         if (!(test_opt(inode->i_sb, NO_UID32))) {
3806                 i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16;
3807                 i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16;
3808         }
3809         i_uid_write(inode, i_uid);
3810         i_gid_write(inode, i_gid);
3811         set_nlink(inode, le16_to_cpu(raw_inode->i_links_count));
3812
3813         ext4_clear_state_flags(ei);     /* Only relevant on 32-bit archs */
3814         ei->i_inline_off = 0;
3815         ei->i_dir_start_lookup = 0;
3816         ei->i_dtime = le32_to_cpu(raw_inode->i_dtime);
3817         /* We now have enough fields to check if the inode was active or not.
3818          * This is needed because nfsd might try to access dead inodes
3819          * the test is that same one that e2fsck uses
3820          * NeilBrown 1999oct15
3821          */
3822         if (inode->i_nlink == 0) {
3823                 if (inode->i_mode == 0 ||
3824                     !(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) {
3825                         /* this inode is deleted */
3826                         ret = -ESTALE;
3827                         goto bad_inode;
3828                 }
3829                 /* The only unlinked inodes we let through here have
3830                  * valid i_mode and are being read by the orphan
3831                  * recovery code: that's fine, we're about to complete
3832                  * the process of deleting those. */
3833         }
3834         ei->i_flags = le32_to_cpu(raw_inode->i_flags);
3835         inode->i_blocks = ext4_inode_blocks(raw_inode, ei);
3836         ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl_lo);
3837         if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_64BIT))
3838                 ei->i_file_acl |=
3839                         ((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32;
3840         inode->i_size = ext4_isize(raw_inode);
3841         ei->i_disksize = inode->i_size;
3842 #ifdef CONFIG_QUOTA
3843         ei->i_reserved_quota = 0;
3844 #endif
3845         inode->i_generation = le32_to_cpu(raw_inode->i_generation);
3846         ei->i_block_group = iloc.block_group;
3847         ei->i_last_alloc_group = ~0;
3848         /*
3849          * NOTE! The in-memory inode i_data array is in little-endian order
3850          * even on big-endian machines: we do NOT byteswap the block numbers!
3851          */
3852         for (block = 0; block < EXT4_N_BLOCKS; block++)
3853                 ei->i_data[block] = raw_inode->i_block[block];
3854         INIT_LIST_HEAD(&ei->i_orphan);
3855
3856         /*
3857          * Set transaction id's of transactions that have to be committed
3858          * to finish f[data]sync. We set them to currently running transaction
3859          * as we cannot be sure that the inode or some of its metadata isn't
3860          * part of the transaction - the inode could have been reclaimed and
3861          * now it is reread from disk.
3862          */
3863         if (journal) {
3864                 transaction_t *transaction;
3865                 tid_t tid;
3866
3867                 read_lock(&journal->j_state_lock);
3868                 if (journal->j_running_transaction)
3869                         transaction = journal->j_running_transaction;
3870                 else
3871                         transaction = journal->j_committing_transaction;
3872                 if (transaction)
3873                         tid = transaction->t_tid;
3874                 else
3875                         tid = journal->j_commit_sequence;
3876                 read_unlock(&journal->j_state_lock);
3877                 ei->i_sync_tid = tid;
3878                 ei->i_datasync_tid = tid;
3879         }
3880
3881         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
3882                 if (ei->i_extra_isize == 0) {
3883                         /* The extra space is currently unused. Use it. */
3884                         ei->i_extra_isize = sizeof(struct ext4_inode) -
3885                                             EXT4_GOOD_OLD_INODE_SIZE;
3886                 } else {
3887                         ext4_iget_extra_inode(inode, raw_inode, ei);
3888                 }
3889         }
3890
3891         EXT4_INODE_GET_XTIME(i_ctime, inode, raw_inode);
3892         EXT4_INODE_GET_XTIME(i_mtime, inode, raw_inode);
3893         EXT4_INODE_GET_XTIME(i_atime, inode, raw_inode);
3894         EXT4_EINODE_GET_XTIME(i_crtime, ei, raw_inode);
3895
3896         inode->i_version = le32_to_cpu(raw_inode->i_disk_version);
3897         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
3898                 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
3899                         inode->i_version |=
3900                         (__u64)(le32_to_cpu(raw_inode->i_version_hi)) << 32;
3901         }
3902
3903         ret = 0;
3904         if (ei->i_file_acl &&
3905             !ext4_data_block_valid(EXT4_SB(sb), ei->i_file_acl, 1)) {
3906                 EXT4_ERROR_INODE(inode, "bad extended attribute block %llu",
3907                                  ei->i_file_acl);
3908                 ret = -EIO;
3909                 goto bad_inode;
3910         } else if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
3911                 if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
3912                     (S_ISLNK(inode->i_mode) &&
3913                      !ext4_inode_is_fast_symlink(inode)))
3914                         /* Validate extent which is part of inode */
3915                         ret = ext4_ext_check_inode(inode);
3916         } else if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
3917                    (S_ISLNK(inode->i_mode) &&
3918                     !ext4_inode_is_fast_symlink(inode))) {
3919                 /* Validate block references which are part of inode */
3920                 ret = ext4_ind_check_inode(inode);
3921         }
3922         if (ret)
3923                 goto bad_inode;
3924
3925         if (S_ISREG(inode->i_mode)) {
3926                 inode->i_op = &ext4_file_inode_operations;
3927                 inode->i_fop = &ext4_file_operations;
3928                 ext4_set_aops(inode);
3929         } else if (S_ISDIR(inode->i_mode)) {
3930                 inode->i_op = &ext4_dir_inode_operations;
3931                 inode->i_fop = &ext4_dir_operations;
3932         } else if (S_ISLNK(inode->i_mode)) {
3933                 if (ext4_inode_is_fast_symlink(inode)) {
3934                         inode->i_op = &ext4_fast_symlink_inode_operations;
3935                         nd_terminate_link(ei->i_data, inode->i_size,
3936                                 sizeof(ei->i_data) - 1);
3937                 } else {
3938                         inode->i_op = &ext4_symlink_inode_operations;
3939                         ext4_set_aops(inode);
3940                 }
3941         } else if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode) ||
3942               S_ISFIFO(inode->i_mode) || S_ISSOCK(inode->i_mode)) {
3943                 inode->i_op = &ext4_special_inode_operations;
3944                 if (raw_inode->i_block[0])
3945                         init_special_inode(inode, inode->i_mode,
3946                            old_decode_dev(le32_to_cpu(raw_inode->i_block[0])));
3947                 else
3948                         init_special_inode(inode, inode->i_mode,
3949                            new_decode_dev(le32_to_cpu(raw_inode->i_block[1])));
3950         } else {
3951                 ret = -EIO;
3952                 EXT4_ERROR_INODE(inode, "bogus i_mode (%o)", inode->i_mode);
3953                 goto bad_inode;
3954         }
3955         brelse(iloc.bh);
3956         ext4_set_inode_flags(inode);
3957         unlock_new_inode(inode);
3958         return inode;
3959
3960 bad_inode:
3961         brelse(iloc.bh);
3962         iget_failed(inode);
3963         return ERR_PTR(ret);
3964 }
3965
3966 static int ext4_inode_blocks_set(handle_t *handle,
3967                                 struct ext4_inode *raw_inode,
3968                                 struct ext4_inode_info *ei)
3969 {
3970         struct inode *inode = &(ei->vfs_inode);
3971         u64 i_blocks = inode->i_blocks;
3972         struct super_block *sb = inode->i_sb;
3973
3974         if (i_blocks <= ~0U) {
3975                 /*
3976                  * i_blocks can be represented in a 32 bit variable
3977                  * as multiple of 512 bytes
3978                  */
3979                 raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
3980                 raw_inode->i_blocks_high = 0;
3981                 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
3982                 return 0;
3983         }
3984         if (!EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_HUGE_FILE))
3985                 return -EFBIG;
3986
3987         if (i_blocks <= 0xffffffffffffULL) {
3988                 /*
3989                  * i_blocks can be represented in a 48 bit variable
3990                  * as multiple of 512 bytes
3991                  */
3992                 raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
3993                 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
3994                 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
3995         } else {
3996                 ext4_set_inode_flag(inode, EXT4_INODE_HUGE_FILE);
3997                 /* i_block is stored in file system block size */
3998                 i_blocks = i_blocks >> (inode->i_blkbits - 9);
3999                 raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4000                 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
4001         }
4002         return 0;
4003 }
4004
4005 /*
4006  * Post the struct inode info into an on-disk inode location in the
4007  * buffer-cache.  This gobbles the caller's reference to the
4008  * buffer_head in the inode location struct.
4009  *
4010  * The caller must have write access to iloc->bh.
4011  */
4012 static int ext4_do_update_inode(handle_t *handle,
4013                                 struct inode *inode,
4014                                 struct ext4_iloc *iloc)
4015 {
4016         struct ext4_inode *raw_inode = ext4_raw_inode(iloc);
4017         struct ext4_inode_info *ei = EXT4_I(inode);
4018         struct buffer_head *bh = iloc->bh;
4019         int err = 0, rc, block;
4020         int need_datasync = 0;
4021         uid_t i_uid;
4022         gid_t i_gid;
4023
4024         /* For fields not not tracking in the in-memory inode,
4025          * initialise them to zero for new inodes. */
4026         if (ext4_test_inode_state(inode, EXT4_STATE_NEW))
4027                 memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size);
4028
4029         ext4_get_inode_flags(ei);
4030         raw_inode->i_mode = cpu_to_le16(inode->i_mode);
4031         i_uid = i_uid_read(inode);
4032         i_gid = i_gid_read(inode);
4033         if (!(test_opt(inode->i_sb, NO_UID32))) {
4034                 raw_inode->i_uid_low = cpu_to_le16(low_16_bits(i_uid));
4035                 raw_inode->i_gid_low = cpu_to_le16(low_16_bits(i_gid));
4036 /*
4037  * Fix up interoperability with old kernels. Otherwise, old inodes get
4038  * re-used with the upper 16 bits of the uid/gid intact
4039  */
4040                 if (!ei->i_dtime) {
4041                         raw_inode->i_uid_high =
4042                                 cpu_to_le16(high_16_bits(i_uid));
4043                         raw_inode->i_gid_high =
4044                                 cpu_to_le16(high_16_bits(i_gid));
4045                 } else {
4046                         raw_inode->i_uid_high = 0;
4047                         raw_inode->i_gid_high = 0;
4048                 }
4049         } else {
4050                 raw_inode->i_uid_low = cpu_to_le16(fs_high2lowuid(i_uid));
4051                 raw_inode->i_gid_low = cpu_to_le16(fs_high2lowgid(i_gid));
4052                 raw_inode->i_uid_high = 0;
4053                 raw_inode->i_gid_high = 0;
4054         }
4055         raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
4056
4057         EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode);
4058         EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode);
4059         EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode);
4060         EXT4_EINODE_SET_XTIME(i_crtime, ei, raw_inode);
4061
4062         if (ext4_inode_blocks_set(handle, raw_inode, ei))
4063                 goto out_brelse;
4064         raw_inode->i_dtime = cpu_to_le32(ei->i_dtime);
4065         raw_inode->i_flags = cpu_to_le32(ei->i_flags & 0xFFFFFFFF);
4066         if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
4067             cpu_to_le32(EXT4_OS_HURD))
4068                 raw_inode->i_file_acl_high =
4069                         cpu_to_le16(ei->i_file_acl >> 32);
4070         raw_inode->i_file_acl_lo = cpu_to_le32(ei->i_file_acl);
4071         if (ei->i_disksize != ext4_isize(raw_inode)) {
4072                 ext4_isize_set(raw_inode, ei->i_disksize);
4073                 need_datasync = 1;
4074         }
4075         if (ei->i_disksize > 0x7fffffffULL) {
4076                 struct super_block *sb = inode->i_sb;
4077                 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb,
4078                                 EXT4_FEATURE_RO_COMPAT_LARGE_FILE) ||
4079                                 EXT4_SB(sb)->s_es->s_rev_level ==
4080                                 cpu_to_le32(EXT4_GOOD_OLD_REV)) {
4081                         /* If this is the first large file
4082                          * created, add a flag to the superblock.
4083                          */
4084                         err = ext4_journal_get_write_access(handle,
4085                                         EXT4_SB(sb)->s_sbh);
4086                         if (err)
4087                                 goto out_brelse;
4088                         ext4_update_dynamic_rev(sb);
4089                         EXT4_SET_RO_COMPAT_FEATURE(sb,
4090                                         EXT4_FEATURE_RO_COMPAT_LARGE_FILE);
4091                         ext4_handle_sync(handle);
4092                         err = ext4_handle_dirty_super(handle, sb);
4093                 }
4094         }
4095         raw_inode->i_generation = cpu_to_le32(inode->i_generation);
4096         if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
4097                 if (old_valid_dev(inode->i_rdev)) {
4098                         raw_inode->i_block[0] =
4099                                 cpu_to_le32(old_encode_dev(inode->i_rdev));
4100                         raw_inode->i_block[1] = 0;
4101                 } else {
4102                         raw_inode->i_block[0] = 0;
4103                         raw_inode->i_block[1] =
4104                                 cpu_to_le32(new_encode_dev(inode->i_rdev));
4105                         raw_inode->i_block[2] = 0;
4106                 }
4107         } else
4108                 for (block = 0; block < EXT4_N_BLOCKS; block++)
4109                         raw_inode->i_block[block] = ei->i_data[block];
4110
4111         raw_inode->i_disk_version = cpu_to_le32(inode->i_version);
4112         if (ei->i_extra_isize) {
4113                 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
4114                         raw_inode->i_version_hi =
4115                         cpu_to_le32(inode->i_version >> 32);
4116                 raw_inode->i_extra_isize = cpu_to_le16(ei->i_extra_isize);
4117         }
4118
4119         ext4_inode_csum_set(inode, raw_inode, ei);
4120
4121         BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
4122         rc = ext4_handle_dirty_metadata(handle, NULL, bh);
4123         if (!err)
4124                 err = rc;
4125         ext4_clear_inode_state(inode, EXT4_STATE_NEW);
4126
4127         ext4_update_inode_fsync_trans(handle, inode, need_datasync);
4128 out_brelse:
4129         brelse(bh);
4130         ext4_std_error(inode->i_sb, err);
4131         return err;
4132 }
4133
4134 /*
4135  * ext4_write_inode()
4136  *
4137  * We are called from a few places:
4138  *
4139  * - Within generic_file_write() for O_SYNC files.
4140  *   Here, there will be no transaction running. We wait for any running
4141  *   transaction to commit.
4142  *
4143  * - Within sys_sync(), kupdate and such.
4144  *   We wait on commit, if tol to.
4145  *
4146  * - Within prune_icache() (PF_MEMALLOC == true)
4147  *   Here we simply return.  We can't afford to block kswapd on the
4148  *   journal commit.
4149  *
4150  * In all cases it is actually safe for us to return without doing anything,
4151  * because the inode has been copied into a raw inode buffer in
4152  * ext4_mark_inode_dirty().  This is a correctness thing for O_SYNC and for
4153  * knfsd.
4154  *
4155  * Note that we are absolutely dependent upon all inode dirtiers doing the
4156  * right thing: they *must* call mark_inode_dirty() after dirtying info in
4157  * which we are interested.
4158  *
4159  * It would be a bug for them to not do this.  The code:
4160  *
4161  *      mark_inode_dirty(inode)
4162  *      stuff();
4163  *      inode->i_size = expr;
4164  *
4165  * is in error because a kswapd-driven write_inode() could occur while
4166  * `stuff()' is running, and the new i_size will be lost.  Plus the inode
4167  * will no longer be on the superblock's dirty inode list.
4168  */
4169 int ext4_write_inode(struct inode *inode, struct writeback_control *wbc)
4170 {
4171         int err;
4172
4173         if (current->flags & PF_MEMALLOC)
4174                 return 0;
4175
4176         if (EXT4_SB(inode->i_sb)->s_journal) {
4177                 if (ext4_journal_current_handle()) {
4178                         jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n");
4179                         dump_stack();
4180                         return -EIO;
4181                 }
4182
4183                 if (wbc->sync_mode != WB_SYNC_ALL)
4184                         return 0;
4185
4186                 err = ext4_force_commit(inode->i_sb);
4187         } else {
4188                 struct ext4_iloc iloc;
4189
4190                 err = __ext4_get_inode_loc(inode, &iloc, 0);
4191                 if (err)
4192                         return err;
4193                 if (wbc->sync_mode == WB_SYNC_ALL)
4194                         sync_dirty_buffer(iloc.bh);
4195                 if (buffer_req(iloc.bh) && !buffer_uptodate(iloc.bh)) {
4196                         EXT4_ERROR_INODE_BLOCK(inode, iloc.bh->b_blocknr,
4197                                          "IO error syncing inode");
4198                         err = -EIO;
4199                 }
4200                 brelse(iloc.bh);
4201         }
4202         return err;
4203 }
4204
4205 /*
4206  * ext4_setattr()
4207  *
4208  * Called from notify_change.
4209  *
4210  * We want to trap VFS attempts to truncate the file as soon as
4211  * possible.  In particular, we want to make sure that when the VFS
4212  * shrinks i_size, we put the inode on the orphan list and modify
4213  * i_disksize immediately, so that during the subsequent flushing of
4214  * dirty pages and freeing of disk blocks, we can guarantee that any
4215  * commit will leave the blocks being flushed in an unused state on
4216  * disk.  (On recovery, the inode will get truncated and the blocks will
4217  * be freed, so we have a strong guarantee that no future commit will
4218  * leave these blocks visible to the user.)
4219  *
4220  * Another thing we have to assure is that if we are in ordered mode
4221  * and inode is still attached to the committing transaction, we must
4222  * we start writeout of all the dirty pages which are being truncated.
4223  * This way we are sure that all the data written in the previous
4224  * transaction are already on disk (truncate waits for pages under
4225  * writeback).
4226  *
4227  * Called with inode->i_mutex down.
4228  */
4229 int ext4_setattr(struct dentry *dentry, struct iattr *attr)
4230 {
4231         struct inode *inode = dentry->d_inode;
4232         int error, rc = 0;
4233         int orphan = 0;
4234         const unsigned int ia_valid = attr->ia_valid;
4235
4236         error = inode_change_ok(inode, attr);
4237         if (error)
4238                 return error;
4239
4240         if (is_quota_modification(inode, attr))
4241                 dquot_initialize(inode);
4242         if ((ia_valid & ATTR_UID && !uid_eq(attr->ia_uid, inode->i_uid)) ||
4243             (ia_valid & ATTR_GID && !gid_eq(attr->ia_gid, inode->i_gid))) {
4244                 handle_t *handle;
4245
4246                 /* (user+group)*(old+new) structure, inode write (sb,
4247                  * inode block, ? - but truncate inode update has it) */
4248                 handle = ext4_journal_start(inode, (EXT4_MAXQUOTAS_INIT_BLOCKS(inode->i_sb)+
4249                                         EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb))+3);
4250                 if (IS_ERR(handle)) {
4251                         error = PTR_ERR(handle);
4252                         goto err_out;
4253                 }
4254                 error = dquot_transfer(inode, attr);
4255                 if (error) {
4256                         ext4_journal_stop(handle);
4257                         return error;
4258                 }
4259                 /* Update corresponding info in inode so that everything is in
4260                  * one transaction */
4261                 if (attr->ia_valid & ATTR_UID)
4262                         inode->i_uid = attr->ia_uid;
4263                 if (attr->ia_valid & ATTR_GID)
4264                         inode->i_gid = attr->ia_gid;
4265                 error = ext4_mark_inode_dirty(handle, inode);
4266                 ext4_journal_stop(handle);
4267         }
4268
4269         if (attr->ia_valid & ATTR_SIZE) {
4270
4271                 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) {
4272                         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4273
4274                         if (attr->ia_size > sbi->s_bitmap_maxbytes)
4275                                 return -EFBIG;
4276                 }
4277         }
4278
4279         if (S_ISREG(inode->i_mode) &&
4280             attr->ia_valid & ATTR_SIZE &&
4281             (attr->ia_size < inode->i_size)) {
4282                 handle_t *handle;
4283
4284                 handle = ext4_journal_start(inode, 3);
4285                 if (IS_ERR(handle)) {
4286                         error = PTR_ERR(handle);
4287                         goto err_out;
4288                 }
4289                 if (ext4_handle_valid(handle)) {
4290                         error = ext4_orphan_add(handle, inode);
4291                         orphan = 1;
4292                 }
4293                 EXT4_I(inode)->i_disksize = attr->ia_size;
4294                 rc = ext4_mark_inode_dirty(handle, inode);
4295                 if (!error)
4296                         error = rc;
4297                 ext4_journal_stop(handle);
4298
4299                 if (ext4_should_order_data(inode)) {
4300                         error = ext4_begin_ordered_truncate(inode,
4301                                                             attr->ia_size);
4302                         if (error) {
4303                                 /* Do as much error cleanup as possible */
4304                                 handle = ext4_journal_start(inode, 3);
4305                                 if (IS_ERR(handle)) {
4306                                         ext4_orphan_del(NULL, inode);
4307                                         goto err_out;
4308                                 }
4309                                 ext4_orphan_del(handle, inode);
4310                                 orphan = 0;
4311                                 ext4_journal_stop(handle);
4312                                 goto err_out;
4313                         }
4314                 }
4315         }
4316
4317         if (attr->ia_valid & ATTR_SIZE) {
4318                 if (attr->ia_size != i_size_read(inode)) {
4319                         truncate_setsize(inode, attr->ia_size);
4320                         /* Inode size will be reduced, wait for dio in flight.
4321                          * Temporarily disable dioread_nolock to prevent
4322                          * livelock. */
4323                         if (orphan) {
4324                                 ext4_inode_block_unlocked_dio(inode);
4325                                 inode_dio_wait(inode);
4326                                 ext4_inode_resume_unlocked_dio(inode);
4327                         }
4328                 }
4329                 ext4_truncate(inode);
4330         }
4331
4332         if (!rc) {
4333                 setattr_copy(inode, attr);
4334                 mark_inode_dirty(inode);
4335         }
4336
4337         /*
4338          * If the call to ext4_truncate failed to get a transaction handle at
4339          * all, we need to clean up the in-core orphan list manually.
4340          */
4341         if (orphan && inode->i_nlink)
4342                 ext4_orphan_del(NULL, inode);
4343
4344         if (!rc && (ia_valid & ATTR_MODE))
4345                 rc = ext4_acl_chmod(inode);
4346
4347 err_out:
4348         ext4_std_error(inode->i_sb, error);
4349         if (!error)
4350                 error = rc;
4351         return error;
4352 }
4353
4354 int ext4_getattr(struct vfsmount *mnt, struct dentry *dentry,
4355                  struct kstat *stat)
4356 {
4357         struct inode *inode;
4358         unsigned long delalloc_blocks;
4359
4360         inode = dentry->d_inode;
4361         generic_fillattr(inode, stat);
4362
4363         /*
4364          * We can't update i_blocks if the block allocation is delayed
4365          * otherwise in the case of system crash before the real block
4366          * allocation is done, we will have i_blocks inconsistent with
4367          * on-disk file blocks.
4368          * We always keep i_blocks updated together with real
4369          * allocation. But to not confuse with user, stat
4370          * will return the blocks that include the delayed allocation
4371          * blocks for this file.
4372          */
4373         delalloc_blocks = EXT4_C2B(EXT4_SB(inode->i_sb),
4374                                 EXT4_I(inode)->i_reserved_data_blocks);
4375
4376         stat->blocks += (delalloc_blocks << inode->i_sb->s_blocksize_bits)>>9;
4377         return 0;
4378 }
4379
4380 static int ext4_index_trans_blocks(struct inode *inode, int nrblocks, int chunk)
4381 {
4382         if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)))
4383                 return ext4_ind_trans_blocks(inode, nrblocks, chunk);
4384         return ext4_ext_index_trans_blocks(inode, nrblocks, chunk);
4385 }
4386
4387 /*
4388  * Account for index blocks, block groups bitmaps and block group
4389  * descriptor blocks if modify datablocks and index blocks
4390  * worse case, the indexs blocks spread over different block groups
4391  *
4392  * If datablocks are discontiguous, they are possible to spread over
4393  * different block groups too. If they are contiguous, with flexbg,
4394  * they could still across block group boundary.
4395  *
4396  * Also account for superblock, inode, quota and xattr blocks
4397  */
4398 static int ext4_meta_trans_blocks(struct inode *inode, int nrblocks, int chunk)
4399 {
4400         ext4_group_t groups, ngroups = ext4_get_groups_count(inode->i_sb);
4401         int gdpblocks;
4402         int idxblocks;
4403         int ret = 0;
4404
4405         /*
4406          * How many index blocks need to touch to modify nrblocks?
4407          * The "Chunk" flag indicating whether the nrblocks is
4408          * physically contiguous on disk
4409          *
4410          * For Direct IO and fallocate, they calls get_block to allocate
4411          * one single extent at a time, so they could set the "Chunk" flag
4412          */
4413         idxblocks = ext4_index_trans_blocks(inode, nrblocks, chunk);
4414
4415         ret = idxblocks;
4416
4417         /*
4418          * Now let's see how many group bitmaps and group descriptors need
4419          * to account
4420          */
4421         groups = idxblocks;
4422         if (chunk)
4423                 groups += 1;
4424         else
4425                 groups += nrblocks;
4426
4427         gdpblocks = groups;
4428         if (groups > ngroups)
4429                 groups = ngroups;
4430         if (groups > EXT4_SB(inode->i_sb)->s_gdb_count)
4431                 gdpblocks = EXT4_SB(inode->i_sb)->s_gdb_count;
4432
4433         /* bitmaps and block group descriptor blocks */
4434         ret += groups + gdpblocks;
4435
4436         /* Blocks for super block, inode, quota and xattr blocks */
4437         ret += EXT4_META_TRANS_BLOCKS(inode->i_sb);
4438
4439         return ret;
4440 }
4441
4442 /*
4443  * Calculate the total number of credits to reserve to fit
4444  * the modification of a single pages into a single transaction,
4445  * which may include multiple chunks of block allocations.
4446  *
4447  * This could be called via ext4_write_begin()
4448  *
4449  * We need to consider the worse case, when
4450  * one new block per extent.
4451  */
4452 int ext4_writepage_trans_blocks(struct inode *inode)
4453 {
4454         int bpp = ext4_journal_blocks_per_page(inode);
4455         int ret;
4456
4457         ret = ext4_meta_trans_blocks(inode, bpp, 0);
4458
4459         /* Account for data blocks for journalled mode */
4460         if (ext4_should_journal_data(inode))
4461                 ret += bpp;
4462         return ret;
4463 }
4464
4465 /*
4466  * Calculate the journal credits for a chunk of data modification.
4467  *
4468  * This is called from DIO, fallocate or whoever calling
4469  * ext4_map_blocks() to map/allocate a chunk of contiguous disk blocks.
4470  *
4471  * journal buffers for data blocks are not included here, as DIO
4472  * and fallocate do no need to journal data buffers.
4473  */
4474 int ext4_chunk_trans_blocks(struct inode *inode, int nrblocks)
4475 {
4476         return ext4_meta_trans_blocks(inode, nrblocks, 1);
4477 }
4478
4479 /*
4480  * The caller must have previously called ext4_reserve_inode_write().
4481  * Give this, we know that the caller already has write access to iloc->bh.
4482  */
4483 int ext4_mark_iloc_dirty(handle_t *handle,
4484                          struct inode *inode, struct ext4_iloc *iloc)
4485 {
4486         int err = 0;
4487
4488         if (IS_I_VERSION(inode))
4489                 inode_inc_iversion(inode);
4490
4491         /* the do_update_inode consumes one bh->b_count */
4492         get_bh(iloc->bh);
4493
4494         /* ext4_do_update_inode() does jbd2_journal_dirty_metadata */
4495         err = ext4_do_update_inode(handle, inode, iloc);
4496         put_bh(iloc->bh);
4497         return err;
4498 }
4499
4500 /*
4501  * On success, We end up with an outstanding reference count against
4502  * iloc->bh.  This _must_ be cleaned up later.
4503  */
4504
4505 int
4506 ext4_reserve_inode_write(handle_t *handle, struct inode *inode,
4507                          struct ext4_iloc *iloc)
4508 {
4509         int err;
4510
4511         err = ext4_get_inode_loc(inode, iloc);
4512         if (!err) {
4513                 BUFFER_TRACE(iloc->bh, "get_write_access");
4514                 err = ext4_journal_get_write_access(handle, iloc->bh);
4515                 if (err) {
4516                         brelse(iloc->bh);
4517                         iloc->bh = NULL;
4518                 }
4519         }
4520         ext4_std_error(inode->i_sb, err);
4521         return err;
4522 }
4523
4524 /*
4525  * Expand an inode by new_extra_isize bytes.
4526  * Returns 0 on success or negative error number on failure.
4527  */
4528 static int ext4_expand_extra_isize(struct inode *inode,
4529                                    unsigned int new_extra_isize,
4530                                    struct ext4_iloc iloc,
4531                                    handle_t *handle)
4532 {
4533         struct ext4_inode *raw_inode;
4534         struct ext4_xattr_ibody_header *header;
4535
4536         if (EXT4_I(inode)->i_extra_isize >= new_extra_isize)
4537                 return 0;
4538
4539         raw_inode = ext4_raw_inode(&iloc);
4540
4541         header = IHDR(inode, raw_inode);
4542
4543         /* No extended attributes present */
4544         if (!ext4_test_inode_state(inode, EXT4_STATE_XATTR) ||
4545             header->h_magic != cpu_to_le32(EXT4_XATTR_MAGIC)) {
4546                 memset((void *)raw_inode + EXT4_GOOD_OLD_INODE_SIZE, 0,
4547                         new_extra_isize);
4548                 EXT4_I(inode)->i_extra_isize = new_extra_isize;
4549                 return 0;
4550         }
4551
4552         /* try to expand with EAs present */
4553         return ext4_expand_extra_isize_ea(inode, new_extra_isize,
4554                                           raw_inode, handle);
4555 }
4556
4557 /*
4558  * What we do here is to mark the in-core inode as clean with respect to inode
4559  * dirtiness (it may still be data-dirty).
4560  * This means that the in-core inode may be reaped by prune_icache
4561  * without having to perform any I/O.  This is a very good thing,
4562  * because *any* task may call prune_icache - even ones which
4563  * have a transaction open against a different journal.
4564  *
4565  * Is this cheating?  Not really.  Sure, we haven't written the
4566  * inode out, but prune_icache isn't a user-visible syncing function.
4567  * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync)
4568  * we start and wait on commits.
4569  */
4570 int ext4_mark_inode_dirty(handle_t *handle, struct inode *inode)
4571 {
4572         struct ext4_iloc iloc;
4573         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4574         static unsigned int mnt_count;
4575         int err, ret;
4576
4577         might_sleep();
4578         trace_ext4_mark_inode_dirty(inode, _RET_IP_);
4579         err = ext4_reserve_inode_write(handle, inode, &iloc);
4580         if (ext4_handle_valid(handle) &&
4581             EXT4_I(inode)->i_extra_isize < sbi->s_want_extra_isize &&
4582             !ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND)) {
4583                 /*
4584                  * We need extra buffer credits since we may write into EA block
4585                  * with this same handle. If journal_extend fails, then it will
4586                  * only result in a minor loss of functionality for that inode.
4587                  * If this is felt to be critical, then e2fsck should be run to
4588                  * force a large enough s_min_extra_isize.
4589                  */
4590                 if ((jbd2_journal_extend(handle,
4591                              EXT4_DATA_TRANS_BLOCKS(inode->i_sb))) == 0) {
4592                         ret = ext4_expand_extra_isize(inode,
4593                                                       sbi->s_want_extra_isize,
4594                                                       iloc, handle);
4595                         if (ret) {
4596                                 ext4_set_inode_state(inode,
4597                                                      EXT4_STATE_NO_EXPAND);
4598                                 if (mnt_count !=
4599                                         le16_to_cpu(sbi->s_es->s_mnt_count)) {
4600                                         ext4_warning(inode->i_sb,
4601                                         "Unable to expand inode %lu. Delete"
4602                                         " some EAs or run e2fsck.",
4603                                         inode->i_ino);
4604                                         mnt_count =
4605                                           le16_to_cpu(sbi->s_es->s_mnt_count);
4606                                 }
4607                         }
4608                 }
4609         }
4610         if (!err)
4611                 err = ext4_mark_iloc_dirty(handle, inode, &iloc);
4612         return err;
4613 }
4614
4615 /*
4616  * ext4_dirty_inode() is called from __mark_inode_dirty()
4617  *
4618  * We're really interested in the case where a file is being extended.
4619  * i_size has been changed by generic_commit_write() and we thus need
4620  * to include the updated inode in the current transaction.
4621  *
4622  * Also, dquot_alloc_block() will always dirty the inode when blocks
4623  * are allocated to the file.
4624  *
4625  * If the inode is marked synchronous, we don't honour that here - doing
4626  * so would cause a commit on atime updates, which we don't bother doing.
4627  * We handle synchronous inodes at the highest possible level.
4628  */
4629 void ext4_dirty_inode(struct inode *inode, int flags)
4630 {
4631         handle_t *handle;
4632
4633         handle = ext4_journal_start(inode, 2);
4634         if (IS_ERR(handle))
4635                 goto out;
4636
4637         ext4_mark_inode_dirty(handle, inode);
4638
4639         ext4_journal_stop(handle);
4640 out:
4641         return;
4642 }
4643
4644 #if 0
4645 /*
4646  * Bind an inode's backing buffer_head into this transaction, to prevent
4647  * it from being flushed to disk early.  Unlike
4648  * ext4_reserve_inode_write, this leaves behind no bh reference and
4649  * returns no iloc structure, so the caller needs to repeat the iloc
4650  * lookup to mark the inode dirty later.
4651  */
4652 static int ext4_pin_inode(handle_t *handle, struct inode *inode)
4653 {
4654         struct ext4_iloc iloc;
4655
4656         int err = 0;
4657         if (handle) {
4658                 err = ext4_get_inode_loc(inode, &iloc);
4659                 if (!err) {
4660                         BUFFER_TRACE(iloc.bh, "get_write_access");
4661                         err = jbd2_journal_get_write_access(handle, iloc.bh);
4662                         if (!err)
4663                                 err = ext4_handle_dirty_metadata(handle,
4664                                                                  NULL,
4665                                                                  iloc.bh);
4666                         brelse(iloc.bh);
4667                 }
4668         }
4669         ext4_std_error(inode->i_sb, err);
4670         return err;
4671 }
4672 #endif
4673
4674 int ext4_change_inode_journal_flag(struct inode *inode, int val)
4675 {
4676         journal_t *journal;
4677         handle_t *handle;
4678         int err;
4679
4680         /*
4681          * We have to be very careful here: changing a data block's
4682          * journaling status dynamically is dangerous.  If we write a
4683          * data block to the journal, change the status and then delete
4684          * that block, we risk forgetting to revoke the old log record
4685          * from the journal and so a subsequent replay can corrupt data.
4686          * So, first we make sure that the journal is empty and that
4687          * nobody is changing anything.
4688          */
4689
4690         journal = EXT4_JOURNAL(inode);
4691         if (!journal)
4692                 return 0;
4693         if (is_journal_aborted(journal))
4694                 return -EROFS;
4695         /* We have to allocate physical blocks for delalloc blocks
4696          * before flushing journal. otherwise delalloc blocks can not
4697          * be allocated any more. even more truncate on delalloc blocks
4698          * could trigger BUG by flushing delalloc blocks in journal.
4699          * There is no delalloc block in non-journal data mode.
4700          */
4701         if (val && test_opt(inode->i_sb, DELALLOC)) {
4702                 err = ext4_alloc_da_blocks(inode);
4703                 if (err < 0)
4704                         return err;
4705         }
4706
4707         /* Wait for all existing dio workers */
4708         ext4_inode_block_unlocked_dio(inode);
4709         inode_dio_wait(inode);
4710
4711         jbd2_journal_lock_updates(journal);
4712
4713         /*
4714          * OK, there are no updates running now, and all cached data is
4715          * synced to disk.  We are now in a completely consistent state
4716          * which doesn't have anything in the journal, and we know that
4717          * no filesystem updates are running, so it is safe to modify
4718          * the inode's in-core data-journaling state flag now.
4719          */
4720
4721         if (val)
4722                 ext4_set_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
4723         else {
4724                 jbd2_journal_flush(journal);
4725                 ext4_clear_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
4726         }
4727         ext4_set_aops(inode);
4728
4729         jbd2_journal_unlock_updates(journal);
4730         ext4_inode_resume_unlocked_dio(inode);
4731
4732         /* Finally we can mark the inode as dirty. */
4733
4734         handle = ext4_journal_start(inode, 1);
4735         if (IS_ERR(handle))
4736                 return PTR_ERR(handle);
4737
4738         err = ext4_mark_inode_dirty(handle, inode);
4739         ext4_handle_sync(handle);
4740         ext4_journal_stop(handle);
4741         ext4_std_error(inode->i_sb, err);
4742
4743         return err;
4744 }
4745
4746 static int ext4_bh_unmapped(handle_t *handle, struct buffer_head *bh)
4747 {
4748         return !buffer_mapped(bh);
4749 }
4750
4751 int ext4_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
4752 {
4753         struct page *page = vmf->page;
4754         loff_t size;
4755         unsigned long len;
4756         int ret;
4757         struct file *file = vma->vm_file;
4758         struct inode *inode = file->f_path.dentry->d_inode;
4759         struct address_space *mapping = inode->i_mapping;
4760         handle_t *handle;
4761         get_block_t *get_block;
4762         int retries = 0;
4763
4764         sb_start_pagefault(inode->i_sb);
4765         file_update_time(vma->vm_file);
4766         /* Delalloc case is easy... */
4767         if (test_opt(inode->i_sb, DELALLOC) &&
4768             !ext4_should_journal_data(inode) &&
4769             !ext4_nonda_switch(inode->i_sb)) {
4770                 do {
4771                         ret = __block_page_mkwrite(vma, vmf,
4772                                                    ext4_da_get_block_prep);
4773                 } while (ret == -ENOSPC &&
4774                        ext4_should_retry_alloc(inode->i_sb, &retries));
4775                 goto out_ret;
4776         }
4777
4778         lock_page(page);
4779         size = i_size_read(inode);
4780         /* Page got truncated from under us? */
4781         if (page->mapping != mapping || page_offset(page) > size) {
4782                 unlock_page(page);
4783                 ret = VM_FAULT_NOPAGE;
4784                 goto out;
4785         }
4786
4787         if (page->index == size >> PAGE_CACHE_SHIFT)
4788                 len = size & ~PAGE_CACHE_MASK;
4789         else
4790                 len = PAGE_CACHE_SIZE;
4791         /*
4792          * Return if we have all the buffers mapped. This avoids the need to do
4793          * journal_start/journal_stop which can block and take a long time
4794          */
4795         if (page_has_buffers(page)) {
4796                 if (!walk_page_buffers(NULL, page_buffers(page), 0, len, NULL,
4797                                         ext4_bh_unmapped)) {
4798                         /* Wait so that we don't change page under IO */
4799                         wait_on_page_writeback(page);
4800                         ret = VM_FAULT_LOCKED;
4801                         goto out;
4802                 }
4803         }
4804         unlock_page(page);
4805         /* OK, we need to fill the hole... */
4806         if (ext4_should_dioread_nolock(inode))
4807                 get_block = ext4_get_block_write;
4808         else
4809                 get_block = ext4_get_block;
4810 retry_alloc:
4811         handle = ext4_journal_start(inode, ext4_writepage_trans_blocks(inode));
4812         if (IS_ERR(handle)) {
4813                 ret = VM_FAULT_SIGBUS;
4814                 goto out;
4815         }
4816         ret = __block_page_mkwrite(vma, vmf, get_block);
4817         if (!ret && ext4_should_journal_data(inode)) {
4818                 if (walk_page_buffers(handle, page_buffers(page), 0,
4819                           PAGE_CACHE_SIZE, NULL, do_journal_get_write_access)) {
4820                         unlock_page(page);
4821                         ret = VM_FAULT_SIGBUS;
4822                         ext4_journal_stop(handle);
4823                         goto out;
4824                 }
4825                 ext4_set_inode_state(inode, EXT4_STATE_JDATA);
4826         }
4827         ext4_journal_stop(handle);
4828         if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
4829                 goto retry_alloc;
4830 out_ret:
4831         ret = block_page_mkwrite_return(ret);
4832 out:
4833         sb_end_pagefault(inode->i_sb);
4834         return ret;
4835 }