Merge tag 'nand/for-4.16' of git://git.infradead.org/linux-mtd into mtd/next
[linux-2.6-microblaze.git] / fs / ext4 / inode.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  *  linux/fs/ext4/inode.c
4  *
5  * Copyright (C) 1992, 1993, 1994, 1995
6  * Remy Card (card@masi.ibp.fr)
7  * Laboratoire MASI - Institut Blaise Pascal
8  * Universite Pierre et Marie Curie (Paris VI)
9  *
10  *  from
11  *
12  *  linux/fs/minix/inode.c
13  *
14  *  Copyright (C) 1991, 1992  Linus Torvalds
15  *
16  *  64-bit file support on 64-bit platforms by Jakub Jelinek
17  *      (jj@sunsite.ms.mff.cuni.cz)
18  *
19  *  Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000
20  */
21
22 #include <linux/fs.h>
23 #include <linux/time.h>
24 #include <linux/highuid.h>
25 #include <linux/pagemap.h>
26 #include <linux/dax.h>
27 #include <linux/quotaops.h>
28 #include <linux/string.h>
29 #include <linux/buffer_head.h>
30 #include <linux/writeback.h>
31 #include <linux/pagevec.h>
32 #include <linux/mpage.h>
33 #include <linux/namei.h>
34 #include <linux/uio.h>
35 #include <linux/bio.h>
36 #include <linux/workqueue.h>
37 #include <linux/kernel.h>
38 #include <linux/printk.h>
39 #include <linux/slab.h>
40 #include <linux/bitops.h>
41 #include <linux/iomap.h>
42
43 #include "ext4_jbd2.h"
44 #include "xattr.h"
45 #include "acl.h"
46 #include "truncate.h"
47
48 #include <trace/events/ext4.h>
49
50 #define MPAGE_DA_EXTENT_TAIL 0x01
51
52 static __u32 ext4_inode_csum(struct inode *inode, struct ext4_inode *raw,
53                               struct ext4_inode_info *ei)
54 {
55         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
56         __u32 csum;
57         __u16 dummy_csum = 0;
58         int offset = offsetof(struct ext4_inode, i_checksum_lo);
59         unsigned int csum_size = sizeof(dummy_csum);
60
61         csum = ext4_chksum(sbi, ei->i_csum_seed, (__u8 *)raw, offset);
62         csum = ext4_chksum(sbi, csum, (__u8 *)&dummy_csum, csum_size);
63         offset += csum_size;
64         csum = ext4_chksum(sbi, csum, (__u8 *)raw + offset,
65                            EXT4_GOOD_OLD_INODE_SIZE - offset);
66
67         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
68                 offset = offsetof(struct ext4_inode, i_checksum_hi);
69                 csum = ext4_chksum(sbi, csum, (__u8 *)raw +
70                                    EXT4_GOOD_OLD_INODE_SIZE,
71                                    offset - EXT4_GOOD_OLD_INODE_SIZE);
72                 if (EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi)) {
73                         csum = ext4_chksum(sbi, csum, (__u8 *)&dummy_csum,
74                                            csum_size);
75                         offset += csum_size;
76                 }
77                 csum = ext4_chksum(sbi, csum, (__u8 *)raw + offset,
78                                    EXT4_INODE_SIZE(inode->i_sb) - offset);
79         }
80
81         return csum;
82 }
83
84 static int ext4_inode_csum_verify(struct inode *inode, struct ext4_inode *raw,
85                                   struct ext4_inode_info *ei)
86 {
87         __u32 provided, calculated;
88
89         if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
90             cpu_to_le32(EXT4_OS_LINUX) ||
91             !ext4_has_metadata_csum(inode->i_sb))
92                 return 1;
93
94         provided = le16_to_cpu(raw->i_checksum_lo);
95         calculated = ext4_inode_csum(inode, raw, ei);
96         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
97             EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
98                 provided |= ((__u32)le16_to_cpu(raw->i_checksum_hi)) << 16;
99         else
100                 calculated &= 0xFFFF;
101
102         return provided == calculated;
103 }
104
105 static void ext4_inode_csum_set(struct inode *inode, struct ext4_inode *raw,
106                                 struct ext4_inode_info *ei)
107 {
108         __u32 csum;
109
110         if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
111             cpu_to_le32(EXT4_OS_LINUX) ||
112             !ext4_has_metadata_csum(inode->i_sb))
113                 return;
114
115         csum = ext4_inode_csum(inode, raw, ei);
116         raw->i_checksum_lo = cpu_to_le16(csum & 0xFFFF);
117         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
118             EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
119                 raw->i_checksum_hi = cpu_to_le16(csum >> 16);
120 }
121
122 static inline int ext4_begin_ordered_truncate(struct inode *inode,
123                                               loff_t new_size)
124 {
125         trace_ext4_begin_ordered_truncate(inode, new_size);
126         /*
127          * If jinode is zero, then we never opened the file for
128          * writing, so there's no need to call
129          * jbd2_journal_begin_ordered_truncate() since there's no
130          * outstanding writes we need to flush.
131          */
132         if (!EXT4_I(inode)->jinode)
133                 return 0;
134         return jbd2_journal_begin_ordered_truncate(EXT4_JOURNAL(inode),
135                                                    EXT4_I(inode)->jinode,
136                                                    new_size);
137 }
138
139 static void ext4_invalidatepage(struct page *page, unsigned int offset,
140                                 unsigned int length);
141 static int __ext4_journalled_writepage(struct page *page, unsigned int len);
142 static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh);
143 static int ext4_meta_trans_blocks(struct inode *inode, int lblocks,
144                                   int pextents);
145
146 /*
147  * Test whether an inode is a fast symlink.
148  * A fast symlink has its symlink data stored in ext4_inode_info->i_data.
149  */
150 int ext4_inode_is_fast_symlink(struct inode *inode)
151 {
152         return S_ISLNK(inode->i_mode) && inode->i_size &&
153                (inode->i_size < EXT4_N_BLOCKS * 4);
154 }
155
156 /*
157  * Restart the transaction associated with *handle.  This does a commit,
158  * so before we call here everything must be consistently dirtied against
159  * this transaction.
160  */
161 int ext4_truncate_restart_trans(handle_t *handle, struct inode *inode,
162                                  int nblocks)
163 {
164         int ret;
165
166         /*
167          * Drop i_data_sem to avoid deadlock with ext4_map_blocks.  At this
168          * moment, get_block can be called only for blocks inside i_size since
169          * page cache has been already dropped and writes are blocked by
170          * i_mutex. So we can safely drop the i_data_sem here.
171          */
172         BUG_ON(EXT4_JOURNAL(inode) == NULL);
173         jbd_debug(2, "restarting handle %p\n", handle);
174         up_write(&EXT4_I(inode)->i_data_sem);
175         ret = ext4_journal_restart(handle, nblocks);
176         down_write(&EXT4_I(inode)->i_data_sem);
177         ext4_discard_preallocations(inode);
178
179         return ret;
180 }
181
182 /*
183  * Called at the last iput() if i_nlink is zero.
184  */
185 void ext4_evict_inode(struct inode *inode)
186 {
187         handle_t *handle;
188         int err;
189         int extra_credits = 3;
190         struct ext4_xattr_inode_array *ea_inode_array = NULL;
191
192         trace_ext4_evict_inode(inode);
193
194         if (inode->i_nlink) {
195                 /*
196                  * When journalling data dirty buffers are tracked only in the
197                  * journal. So although mm thinks everything is clean and
198                  * ready for reaping the inode might still have some pages to
199                  * write in the running transaction or waiting to be
200                  * checkpointed. Thus calling jbd2_journal_invalidatepage()
201                  * (via truncate_inode_pages()) to discard these buffers can
202                  * cause data loss. Also even if we did not discard these
203                  * buffers, we would have no way to find them after the inode
204                  * is reaped and thus user could see stale data if he tries to
205                  * read them before the transaction is checkpointed. So be
206                  * careful and force everything to disk here... We use
207                  * ei->i_datasync_tid to store the newest transaction
208                  * containing inode's data.
209                  *
210                  * Note that directories do not have this problem because they
211                  * don't use page cache.
212                  */
213                 if (inode->i_ino != EXT4_JOURNAL_INO &&
214                     ext4_should_journal_data(inode) &&
215                     (S_ISLNK(inode->i_mode) || S_ISREG(inode->i_mode)) &&
216                     inode->i_data.nrpages) {
217                         journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
218                         tid_t commit_tid = EXT4_I(inode)->i_datasync_tid;
219
220                         jbd2_complete_transaction(journal, commit_tid);
221                         filemap_write_and_wait(&inode->i_data);
222                 }
223                 truncate_inode_pages_final(&inode->i_data);
224
225                 goto no_delete;
226         }
227
228         if (is_bad_inode(inode))
229                 goto no_delete;
230         dquot_initialize(inode);
231
232         if (ext4_should_order_data(inode))
233                 ext4_begin_ordered_truncate(inode, 0);
234         truncate_inode_pages_final(&inode->i_data);
235
236         /*
237          * Protect us against freezing - iput() caller didn't have to have any
238          * protection against it
239          */
240         sb_start_intwrite(inode->i_sb);
241
242         if (!IS_NOQUOTA(inode))
243                 extra_credits += EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb);
244
245         handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE,
246                                  ext4_blocks_for_truncate(inode)+extra_credits);
247         if (IS_ERR(handle)) {
248                 ext4_std_error(inode->i_sb, PTR_ERR(handle));
249                 /*
250                  * If we're going to skip the normal cleanup, we still need to
251                  * make sure that the in-core orphan linked list is properly
252                  * cleaned up.
253                  */
254                 ext4_orphan_del(NULL, inode);
255                 sb_end_intwrite(inode->i_sb);
256                 goto no_delete;
257         }
258
259         if (IS_SYNC(inode))
260                 ext4_handle_sync(handle);
261
262         /*
263          * Set inode->i_size to 0 before calling ext4_truncate(). We need
264          * special handling of symlinks here because i_size is used to
265          * determine whether ext4_inode_info->i_data contains symlink data or
266          * block mappings. Setting i_size to 0 will remove its fast symlink
267          * status. Erase i_data so that it becomes a valid empty block map.
268          */
269         if (ext4_inode_is_fast_symlink(inode))
270                 memset(EXT4_I(inode)->i_data, 0, sizeof(EXT4_I(inode)->i_data));
271         inode->i_size = 0;
272         err = ext4_mark_inode_dirty(handle, inode);
273         if (err) {
274                 ext4_warning(inode->i_sb,
275                              "couldn't mark inode dirty (err %d)", err);
276                 goto stop_handle;
277         }
278         if (inode->i_blocks) {
279                 err = ext4_truncate(inode);
280                 if (err) {
281                         ext4_error(inode->i_sb,
282                                    "couldn't truncate inode %lu (err %d)",
283                                    inode->i_ino, err);
284                         goto stop_handle;
285                 }
286         }
287
288         /* Remove xattr references. */
289         err = ext4_xattr_delete_inode(handle, inode, &ea_inode_array,
290                                       extra_credits);
291         if (err) {
292                 ext4_warning(inode->i_sb, "xattr delete (err %d)", err);
293 stop_handle:
294                 ext4_journal_stop(handle);
295                 ext4_orphan_del(NULL, inode);
296                 sb_end_intwrite(inode->i_sb);
297                 ext4_xattr_inode_array_free(ea_inode_array);
298                 goto no_delete;
299         }
300
301         /*
302          * Kill off the orphan record which ext4_truncate created.
303          * AKPM: I think this can be inside the above `if'.
304          * Note that ext4_orphan_del() has to be able to cope with the
305          * deletion of a non-existent orphan - this is because we don't
306          * know if ext4_truncate() actually created an orphan record.
307          * (Well, we could do this if we need to, but heck - it works)
308          */
309         ext4_orphan_del(handle, inode);
310         EXT4_I(inode)->i_dtime  = get_seconds();
311
312         /*
313          * One subtle ordering requirement: if anything has gone wrong
314          * (transaction abort, IO errors, whatever), then we can still
315          * do these next steps (the fs will already have been marked as
316          * having errors), but we can't free the inode if the mark_dirty
317          * fails.
318          */
319         if (ext4_mark_inode_dirty(handle, inode))
320                 /* If that failed, just do the required in-core inode clear. */
321                 ext4_clear_inode(inode);
322         else
323                 ext4_free_inode(handle, inode);
324         ext4_journal_stop(handle);
325         sb_end_intwrite(inode->i_sb);
326         ext4_xattr_inode_array_free(ea_inode_array);
327         return;
328 no_delete:
329         ext4_clear_inode(inode);        /* We must guarantee clearing of inode... */
330 }
331
332 #ifdef CONFIG_QUOTA
333 qsize_t *ext4_get_reserved_space(struct inode *inode)
334 {
335         return &EXT4_I(inode)->i_reserved_quota;
336 }
337 #endif
338
339 /*
340  * Called with i_data_sem down, which is important since we can call
341  * ext4_discard_preallocations() from here.
342  */
343 void ext4_da_update_reserve_space(struct inode *inode,
344                                         int used, int quota_claim)
345 {
346         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
347         struct ext4_inode_info *ei = EXT4_I(inode);
348
349         spin_lock(&ei->i_block_reservation_lock);
350         trace_ext4_da_update_reserve_space(inode, used, quota_claim);
351         if (unlikely(used > ei->i_reserved_data_blocks)) {
352                 ext4_warning(inode->i_sb, "%s: ino %lu, used %d "
353                          "with only %d reserved data blocks",
354                          __func__, inode->i_ino, used,
355                          ei->i_reserved_data_blocks);
356                 WARN_ON(1);
357                 used = ei->i_reserved_data_blocks;
358         }
359
360         /* Update per-inode reservations */
361         ei->i_reserved_data_blocks -= used;
362         percpu_counter_sub(&sbi->s_dirtyclusters_counter, used);
363
364         spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
365
366         /* Update quota subsystem for data blocks */
367         if (quota_claim)
368                 dquot_claim_block(inode, EXT4_C2B(sbi, used));
369         else {
370                 /*
371                  * We did fallocate with an offset that is already delayed
372                  * allocated. So on delayed allocated writeback we should
373                  * not re-claim the quota for fallocated blocks.
374                  */
375                 dquot_release_reservation_block(inode, EXT4_C2B(sbi, used));
376         }
377
378         /*
379          * If we have done all the pending block allocations and if
380          * there aren't any writers on the inode, we can discard the
381          * inode's preallocations.
382          */
383         if ((ei->i_reserved_data_blocks == 0) &&
384             (atomic_read(&inode->i_writecount) == 0))
385                 ext4_discard_preallocations(inode);
386 }
387
388 static int __check_block_validity(struct inode *inode, const char *func,
389                                 unsigned int line,
390                                 struct ext4_map_blocks *map)
391 {
392         if (!ext4_data_block_valid(EXT4_SB(inode->i_sb), map->m_pblk,
393                                    map->m_len)) {
394                 ext4_error_inode(inode, func, line, map->m_pblk,
395                                  "lblock %lu mapped to illegal pblock "
396                                  "(length %d)", (unsigned long) map->m_lblk,
397                                  map->m_len);
398                 return -EFSCORRUPTED;
399         }
400         return 0;
401 }
402
403 int ext4_issue_zeroout(struct inode *inode, ext4_lblk_t lblk, ext4_fsblk_t pblk,
404                        ext4_lblk_t len)
405 {
406         int ret;
407
408         if (ext4_encrypted_inode(inode))
409                 return fscrypt_zeroout_range(inode, lblk, pblk, len);
410
411         ret = sb_issue_zeroout(inode->i_sb, pblk, len, GFP_NOFS);
412         if (ret > 0)
413                 ret = 0;
414
415         return ret;
416 }
417
418 #define check_block_validity(inode, map)        \
419         __check_block_validity((inode), __func__, __LINE__, (map))
420
421 #ifdef ES_AGGRESSIVE_TEST
422 static void ext4_map_blocks_es_recheck(handle_t *handle,
423                                        struct inode *inode,
424                                        struct ext4_map_blocks *es_map,
425                                        struct ext4_map_blocks *map,
426                                        int flags)
427 {
428         int retval;
429
430         map->m_flags = 0;
431         /*
432          * There is a race window that the result is not the same.
433          * e.g. xfstests #223 when dioread_nolock enables.  The reason
434          * is that we lookup a block mapping in extent status tree with
435          * out taking i_data_sem.  So at the time the unwritten extent
436          * could be converted.
437          */
438         down_read(&EXT4_I(inode)->i_data_sem);
439         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
440                 retval = ext4_ext_map_blocks(handle, inode, map, flags &
441                                              EXT4_GET_BLOCKS_KEEP_SIZE);
442         } else {
443                 retval = ext4_ind_map_blocks(handle, inode, map, flags &
444                                              EXT4_GET_BLOCKS_KEEP_SIZE);
445         }
446         up_read((&EXT4_I(inode)->i_data_sem));
447
448         /*
449          * We don't check m_len because extent will be collpased in status
450          * tree.  So the m_len might not equal.
451          */
452         if (es_map->m_lblk != map->m_lblk ||
453             es_map->m_flags != map->m_flags ||
454             es_map->m_pblk != map->m_pblk) {
455                 printk("ES cache assertion failed for inode: %lu "
456                        "es_cached ex [%d/%d/%llu/%x] != "
457                        "found ex [%d/%d/%llu/%x] retval %d flags %x\n",
458                        inode->i_ino, es_map->m_lblk, es_map->m_len,
459                        es_map->m_pblk, es_map->m_flags, map->m_lblk,
460                        map->m_len, map->m_pblk, map->m_flags,
461                        retval, flags);
462         }
463 }
464 #endif /* ES_AGGRESSIVE_TEST */
465
466 /*
467  * The ext4_map_blocks() function tries to look up the requested blocks,
468  * and returns if the blocks are already mapped.
469  *
470  * Otherwise it takes the write lock of the i_data_sem and allocate blocks
471  * and store the allocated blocks in the result buffer head and mark it
472  * mapped.
473  *
474  * If file type is extents based, it will call ext4_ext_map_blocks(),
475  * Otherwise, call with ext4_ind_map_blocks() to handle indirect mapping
476  * based files
477  *
478  * On success, it returns the number of blocks being mapped or allocated.  if
479  * create==0 and the blocks are pre-allocated and unwritten, the resulting @map
480  * is marked as unwritten. If the create == 1, it will mark @map as mapped.
481  *
482  * It returns 0 if plain look up failed (blocks have not been allocated), in
483  * that case, @map is returned as unmapped but we still do fill map->m_len to
484  * indicate the length of a hole starting at map->m_lblk.
485  *
486  * It returns the error in case of allocation failure.
487  */
488 int ext4_map_blocks(handle_t *handle, struct inode *inode,
489                     struct ext4_map_blocks *map, int flags)
490 {
491         struct extent_status es;
492         int retval;
493         int ret = 0;
494 #ifdef ES_AGGRESSIVE_TEST
495         struct ext4_map_blocks orig_map;
496
497         memcpy(&orig_map, map, sizeof(*map));
498 #endif
499
500         map->m_flags = 0;
501         ext_debug("ext4_map_blocks(): inode %lu, flag %d, max_blocks %u,"
502                   "logical block %lu\n", inode->i_ino, flags, map->m_len,
503                   (unsigned long) map->m_lblk);
504
505         /*
506          * ext4_map_blocks returns an int, and m_len is an unsigned int
507          */
508         if (unlikely(map->m_len > INT_MAX))
509                 map->m_len = INT_MAX;
510
511         /* We can handle the block number less than EXT_MAX_BLOCKS */
512         if (unlikely(map->m_lblk >= EXT_MAX_BLOCKS))
513                 return -EFSCORRUPTED;
514
515         /* Lookup extent status tree firstly */
516         if (ext4_es_lookup_extent(inode, map->m_lblk, &es)) {
517                 if (ext4_es_is_written(&es) || ext4_es_is_unwritten(&es)) {
518                         map->m_pblk = ext4_es_pblock(&es) +
519                                         map->m_lblk - es.es_lblk;
520                         map->m_flags |= ext4_es_is_written(&es) ?
521                                         EXT4_MAP_MAPPED : EXT4_MAP_UNWRITTEN;
522                         retval = es.es_len - (map->m_lblk - es.es_lblk);
523                         if (retval > map->m_len)
524                                 retval = map->m_len;
525                         map->m_len = retval;
526                 } else if (ext4_es_is_delayed(&es) || ext4_es_is_hole(&es)) {
527                         map->m_pblk = 0;
528                         retval = es.es_len - (map->m_lblk - es.es_lblk);
529                         if (retval > map->m_len)
530                                 retval = map->m_len;
531                         map->m_len = retval;
532                         retval = 0;
533                 } else {
534                         BUG_ON(1);
535                 }
536 #ifdef ES_AGGRESSIVE_TEST
537                 ext4_map_blocks_es_recheck(handle, inode, map,
538                                            &orig_map, flags);
539 #endif
540                 goto found;
541         }
542
543         /*
544          * Try to see if we can get the block without requesting a new
545          * file system block.
546          */
547         down_read(&EXT4_I(inode)->i_data_sem);
548         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
549                 retval = ext4_ext_map_blocks(handle, inode, map, flags &
550                                              EXT4_GET_BLOCKS_KEEP_SIZE);
551         } else {
552                 retval = ext4_ind_map_blocks(handle, inode, map, flags &
553                                              EXT4_GET_BLOCKS_KEEP_SIZE);
554         }
555         if (retval > 0) {
556                 unsigned int status;
557
558                 if (unlikely(retval != map->m_len)) {
559                         ext4_warning(inode->i_sb,
560                                      "ES len assertion failed for inode "
561                                      "%lu: retval %d != map->m_len %d",
562                                      inode->i_ino, retval, map->m_len);
563                         WARN_ON(1);
564                 }
565
566                 status = map->m_flags & EXT4_MAP_UNWRITTEN ?
567                                 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
568                 if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) &&
569                     !(status & EXTENT_STATUS_WRITTEN) &&
570                     ext4_find_delalloc_range(inode, map->m_lblk,
571                                              map->m_lblk + map->m_len - 1))
572                         status |= EXTENT_STATUS_DELAYED;
573                 ret = ext4_es_insert_extent(inode, map->m_lblk,
574                                             map->m_len, map->m_pblk, status);
575                 if (ret < 0)
576                         retval = ret;
577         }
578         up_read((&EXT4_I(inode)->i_data_sem));
579
580 found:
581         if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
582                 ret = check_block_validity(inode, map);
583                 if (ret != 0)
584                         return ret;
585         }
586
587         /* If it is only a block(s) look up */
588         if ((flags & EXT4_GET_BLOCKS_CREATE) == 0)
589                 return retval;
590
591         /*
592          * Returns if the blocks have already allocated
593          *
594          * Note that if blocks have been preallocated
595          * ext4_ext_get_block() returns the create = 0
596          * with buffer head unmapped.
597          */
598         if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED)
599                 /*
600                  * If we need to convert extent to unwritten
601                  * we continue and do the actual work in
602                  * ext4_ext_map_blocks()
603                  */
604                 if (!(flags & EXT4_GET_BLOCKS_CONVERT_UNWRITTEN))
605                         return retval;
606
607         /*
608          * Here we clear m_flags because after allocating an new extent,
609          * it will be set again.
610          */
611         map->m_flags &= ~EXT4_MAP_FLAGS;
612
613         /*
614          * New blocks allocate and/or writing to unwritten extent
615          * will possibly result in updating i_data, so we take
616          * the write lock of i_data_sem, and call get_block()
617          * with create == 1 flag.
618          */
619         down_write(&EXT4_I(inode)->i_data_sem);
620
621         /*
622          * We need to check for EXT4 here because migrate
623          * could have changed the inode type in between
624          */
625         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
626                 retval = ext4_ext_map_blocks(handle, inode, map, flags);
627         } else {
628                 retval = ext4_ind_map_blocks(handle, inode, map, flags);
629
630                 if (retval > 0 && map->m_flags & EXT4_MAP_NEW) {
631                         /*
632                          * We allocated new blocks which will result in
633                          * i_data's format changing.  Force the migrate
634                          * to fail by clearing migrate flags
635                          */
636                         ext4_clear_inode_state(inode, EXT4_STATE_EXT_MIGRATE);
637                 }
638
639                 /*
640                  * Update reserved blocks/metadata blocks after successful
641                  * block allocation which had been deferred till now. We don't
642                  * support fallocate for non extent files. So we can update
643                  * reserve space here.
644                  */
645                 if ((retval > 0) &&
646                         (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE))
647                         ext4_da_update_reserve_space(inode, retval, 1);
648         }
649
650         if (retval > 0) {
651                 unsigned int status;
652
653                 if (unlikely(retval != map->m_len)) {
654                         ext4_warning(inode->i_sb,
655                                      "ES len assertion failed for inode "
656                                      "%lu: retval %d != map->m_len %d",
657                                      inode->i_ino, retval, map->m_len);
658                         WARN_ON(1);
659                 }
660
661                 /*
662                  * We have to zeroout blocks before inserting them into extent
663                  * status tree. Otherwise someone could look them up there and
664                  * use them before they are really zeroed. We also have to
665                  * unmap metadata before zeroing as otherwise writeback can
666                  * overwrite zeros with stale data from block device.
667                  */
668                 if (flags & EXT4_GET_BLOCKS_ZERO &&
669                     map->m_flags & EXT4_MAP_MAPPED &&
670                     map->m_flags & EXT4_MAP_NEW) {
671                         clean_bdev_aliases(inode->i_sb->s_bdev, map->m_pblk,
672                                            map->m_len);
673                         ret = ext4_issue_zeroout(inode, map->m_lblk,
674                                                  map->m_pblk, map->m_len);
675                         if (ret) {
676                                 retval = ret;
677                                 goto out_sem;
678                         }
679                 }
680
681                 /*
682                  * If the extent has been zeroed out, we don't need to update
683                  * extent status tree.
684                  */
685                 if ((flags & EXT4_GET_BLOCKS_PRE_IO) &&
686                     ext4_es_lookup_extent(inode, map->m_lblk, &es)) {
687                         if (ext4_es_is_written(&es))
688                                 goto out_sem;
689                 }
690                 status = map->m_flags & EXT4_MAP_UNWRITTEN ?
691                                 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
692                 if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) &&
693                     !(status & EXTENT_STATUS_WRITTEN) &&
694                     ext4_find_delalloc_range(inode, map->m_lblk,
695                                              map->m_lblk + map->m_len - 1))
696                         status |= EXTENT_STATUS_DELAYED;
697                 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
698                                             map->m_pblk, status);
699                 if (ret < 0) {
700                         retval = ret;
701                         goto out_sem;
702                 }
703         }
704
705 out_sem:
706         up_write((&EXT4_I(inode)->i_data_sem));
707         if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
708                 ret = check_block_validity(inode, map);
709                 if (ret != 0)
710                         return ret;
711
712                 /*
713                  * Inodes with freshly allocated blocks where contents will be
714                  * visible after transaction commit must be on transaction's
715                  * ordered data list.
716                  */
717                 if (map->m_flags & EXT4_MAP_NEW &&
718                     !(map->m_flags & EXT4_MAP_UNWRITTEN) &&
719                     !(flags & EXT4_GET_BLOCKS_ZERO) &&
720                     !ext4_is_quota_file(inode) &&
721                     ext4_should_order_data(inode)) {
722                         if (flags & EXT4_GET_BLOCKS_IO_SUBMIT)
723                                 ret = ext4_jbd2_inode_add_wait(handle, inode);
724                         else
725                                 ret = ext4_jbd2_inode_add_write(handle, inode);
726                         if (ret)
727                                 return ret;
728                 }
729         }
730         return retval;
731 }
732
733 /*
734  * Update EXT4_MAP_FLAGS in bh->b_state. For buffer heads attached to pages
735  * we have to be careful as someone else may be manipulating b_state as well.
736  */
737 static void ext4_update_bh_state(struct buffer_head *bh, unsigned long flags)
738 {
739         unsigned long old_state;
740         unsigned long new_state;
741
742         flags &= EXT4_MAP_FLAGS;
743
744         /* Dummy buffer_head? Set non-atomically. */
745         if (!bh->b_page) {
746                 bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | flags;
747                 return;
748         }
749         /*
750          * Someone else may be modifying b_state. Be careful! This is ugly but
751          * once we get rid of using bh as a container for mapping information
752          * to pass to / from get_block functions, this can go away.
753          */
754         do {
755                 old_state = READ_ONCE(bh->b_state);
756                 new_state = (old_state & ~EXT4_MAP_FLAGS) | flags;
757         } while (unlikely(
758                  cmpxchg(&bh->b_state, old_state, new_state) != old_state));
759 }
760
761 static int _ext4_get_block(struct inode *inode, sector_t iblock,
762                            struct buffer_head *bh, int flags)
763 {
764         struct ext4_map_blocks map;
765         int ret = 0;
766
767         if (ext4_has_inline_data(inode))
768                 return -ERANGE;
769
770         map.m_lblk = iblock;
771         map.m_len = bh->b_size >> inode->i_blkbits;
772
773         ret = ext4_map_blocks(ext4_journal_current_handle(), inode, &map,
774                               flags);
775         if (ret > 0) {
776                 map_bh(bh, inode->i_sb, map.m_pblk);
777                 ext4_update_bh_state(bh, map.m_flags);
778                 bh->b_size = inode->i_sb->s_blocksize * map.m_len;
779                 ret = 0;
780         } else if (ret == 0) {
781                 /* hole case, need to fill in bh->b_size */
782                 bh->b_size = inode->i_sb->s_blocksize * map.m_len;
783         }
784         return ret;
785 }
786
787 int ext4_get_block(struct inode *inode, sector_t iblock,
788                    struct buffer_head *bh, int create)
789 {
790         return _ext4_get_block(inode, iblock, bh,
791                                create ? EXT4_GET_BLOCKS_CREATE : 0);
792 }
793
794 /*
795  * Get block function used when preparing for buffered write if we require
796  * creating an unwritten extent if blocks haven't been allocated.  The extent
797  * will be converted to written after the IO is complete.
798  */
799 int ext4_get_block_unwritten(struct inode *inode, sector_t iblock,
800                              struct buffer_head *bh_result, int create)
801 {
802         ext4_debug("ext4_get_block_unwritten: inode %lu, create flag %d\n",
803                    inode->i_ino, create);
804         return _ext4_get_block(inode, iblock, bh_result,
805                                EXT4_GET_BLOCKS_IO_CREATE_EXT);
806 }
807
808 /* Maximum number of blocks we map for direct IO at once. */
809 #define DIO_MAX_BLOCKS 4096
810
811 /*
812  * Get blocks function for the cases that need to start a transaction -
813  * generally difference cases of direct IO and DAX IO. It also handles retries
814  * in case of ENOSPC.
815  */
816 static int ext4_get_block_trans(struct inode *inode, sector_t iblock,
817                                 struct buffer_head *bh_result, int flags)
818 {
819         int dio_credits;
820         handle_t *handle;
821         int retries = 0;
822         int ret;
823
824         /* Trim mapping request to maximum we can map at once for DIO */
825         if (bh_result->b_size >> inode->i_blkbits > DIO_MAX_BLOCKS)
826                 bh_result->b_size = DIO_MAX_BLOCKS << inode->i_blkbits;
827         dio_credits = ext4_chunk_trans_blocks(inode,
828                                       bh_result->b_size >> inode->i_blkbits);
829 retry:
830         handle = ext4_journal_start(inode, EXT4_HT_MAP_BLOCKS, dio_credits);
831         if (IS_ERR(handle))
832                 return PTR_ERR(handle);
833
834         ret = _ext4_get_block(inode, iblock, bh_result, flags);
835         ext4_journal_stop(handle);
836
837         if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
838                 goto retry;
839         return ret;
840 }
841
842 /* Get block function for DIO reads and writes to inodes without extents */
843 int ext4_dio_get_block(struct inode *inode, sector_t iblock,
844                        struct buffer_head *bh, int create)
845 {
846         /* We don't expect handle for direct IO */
847         WARN_ON_ONCE(ext4_journal_current_handle());
848
849         if (!create)
850                 return _ext4_get_block(inode, iblock, bh, 0);
851         return ext4_get_block_trans(inode, iblock, bh, EXT4_GET_BLOCKS_CREATE);
852 }
853
854 /*
855  * Get block function for AIO DIO writes when we create unwritten extent if
856  * blocks are not allocated yet. The extent will be converted to written
857  * after IO is complete.
858  */
859 static int ext4_dio_get_block_unwritten_async(struct inode *inode,
860                 sector_t iblock, struct buffer_head *bh_result, int create)
861 {
862         int ret;
863
864         /* We don't expect handle for direct IO */
865         WARN_ON_ONCE(ext4_journal_current_handle());
866
867         ret = ext4_get_block_trans(inode, iblock, bh_result,
868                                    EXT4_GET_BLOCKS_IO_CREATE_EXT);
869
870         /*
871          * When doing DIO using unwritten extents, we need io_end to convert
872          * unwritten extents to written on IO completion. We allocate io_end
873          * once we spot unwritten extent and store it in b_private. Generic
874          * DIO code keeps b_private set and furthermore passes the value to
875          * our completion callback in 'private' argument.
876          */
877         if (!ret && buffer_unwritten(bh_result)) {
878                 if (!bh_result->b_private) {
879                         ext4_io_end_t *io_end;
880
881                         io_end = ext4_init_io_end(inode, GFP_KERNEL);
882                         if (!io_end)
883                                 return -ENOMEM;
884                         bh_result->b_private = io_end;
885                         ext4_set_io_unwritten_flag(inode, io_end);
886                 }
887                 set_buffer_defer_completion(bh_result);
888         }
889
890         return ret;
891 }
892
893 /*
894  * Get block function for non-AIO DIO writes when we create unwritten extent if
895  * blocks are not allocated yet. The extent will be converted to written
896  * after IO is complete by ext4_direct_IO_write().
897  */
898 static int ext4_dio_get_block_unwritten_sync(struct inode *inode,
899                 sector_t iblock, struct buffer_head *bh_result, int create)
900 {
901         int ret;
902
903         /* We don't expect handle for direct IO */
904         WARN_ON_ONCE(ext4_journal_current_handle());
905
906         ret = ext4_get_block_trans(inode, iblock, bh_result,
907                                    EXT4_GET_BLOCKS_IO_CREATE_EXT);
908
909         /*
910          * Mark inode as having pending DIO writes to unwritten extents.
911          * ext4_direct_IO_write() checks this flag and converts extents to
912          * written.
913          */
914         if (!ret && buffer_unwritten(bh_result))
915                 ext4_set_inode_state(inode, EXT4_STATE_DIO_UNWRITTEN);
916
917         return ret;
918 }
919
920 static int ext4_dio_get_block_overwrite(struct inode *inode, sector_t iblock,
921                    struct buffer_head *bh_result, int create)
922 {
923         int ret;
924
925         ext4_debug("ext4_dio_get_block_overwrite: inode %lu, create flag %d\n",
926                    inode->i_ino, create);
927         /* We don't expect handle for direct IO */
928         WARN_ON_ONCE(ext4_journal_current_handle());
929
930         ret = _ext4_get_block(inode, iblock, bh_result, 0);
931         /*
932          * Blocks should have been preallocated! ext4_file_write_iter() checks
933          * that.
934          */
935         WARN_ON_ONCE(!buffer_mapped(bh_result) || buffer_unwritten(bh_result));
936
937         return ret;
938 }
939
940
941 /*
942  * `handle' can be NULL if create is zero
943  */
944 struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode,
945                                 ext4_lblk_t block, int map_flags)
946 {
947         struct ext4_map_blocks map;
948         struct buffer_head *bh;
949         int create = map_flags & EXT4_GET_BLOCKS_CREATE;
950         int err;
951
952         J_ASSERT(handle != NULL || create == 0);
953
954         map.m_lblk = block;
955         map.m_len = 1;
956         err = ext4_map_blocks(handle, inode, &map, map_flags);
957
958         if (err == 0)
959                 return create ? ERR_PTR(-ENOSPC) : NULL;
960         if (err < 0)
961                 return ERR_PTR(err);
962
963         bh = sb_getblk(inode->i_sb, map.m_pblk);
964         if (unlikely(!bh))
965                 return ERR_PTR(-ENOMEM);
966         if (map.m_flags & EXT4_MAP_NEW) {
967                 J_ASSERT(create != 0);
968                 J_ASSERT(handle != NULL);
969
970                 /*
971                  * Now that we do not always journal data, we should
972                  * keep in mind whether this should always journal the
973                  * new buffer as metadata.  For now, regular file
974                  * writes use ext4_get_block instead, so it's not a
975                  * problem.
976                  */
977                 lock_buffer(bh);
978                 BUFFER_TRACE(bh, "call get_create_access");
979                 err = ext4_journal_get_create_access(handle, bh);
980                 if (unlikely(err)) {
981                         unlock_buffer(bh);
982                         goto errout;
983                 }
984                 if (!buffer_uptodate(bh)) {
985                         memset(bh->b_data, 0, inode->i_sb->s_blocksize);
986                         set_buffer_uptodate(bh);
987                 }
988                 unlock_buffer(bh);
989                 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
990                 err = ext4_handle_dirty_metadata(handle, inode, bh);
991                 if (unlikely(err))
992                         goto errout;
993         } else
994                 BUFFER_TRACE(bh, "not a new buffer");
995         return bh;
996 errout:
997         brelse(bh);
998         return ERR_PTR(err);
999 }
1000
1001 struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode,
1002                                ext4_lblk_t block, int map_flags)
1003 {
1004         struct buffer_head *bh;
1005
1006         bh = ext4_getblk(handle, inode, block, map_flags);
1007         if (IS_ERR(bh))
1008                 return bh;
1009         if (!bh || buffer_uptodate(bh))
1010                 return bh;
1011         ll_rw_block(REQ_OP_READ, REQ_META | REQ_PRIO, 1, &bh);
1012         wait_on_buffer(bh);
1013         if (buffer_uptodate(bh))
1014                 return bh;
1015         put_bh(bh);
1016         return ERR_PTR(-EIO);
1017 }
1018
1019 /* Read a contiguous batch of blocks. */
1020 int ext4_bread_batch(struct inode *inode, ext4_lblk_t block, int bh_count,
1021                      bool wait, struct buffer_head **bhs)
1022 {
1023         int i, err;
1024
1025         for (i = 0; i < bh_count; i++) {
1026                 bhs[i] = ext4_getblk(NULL, inode, block + i, 0 /* map_flags */);
1027                 if (IS_ERR(bhs[i])) {
1028                         err = PTR_ERR(bhs[i]);
1029                         bh_count = i;
1030                         goto out_brelse;
1031                 }
1032         }
1033
1034         for (i = 0; i < bh_count; i++)
1035                 /* Note that NULL bhs[i] is valid because of holes. */
1036                 if (bhs[i] && !buffer_uptodate(bhs[i]))
1037                         ll_rw_block(REQ_OP_READ, REQ_META | REQ_PRIO, 1,
1038                                     &bhs[i]);
1039
1040         if (!wait)
1041                 return 0;
1042
1043         for (i = 0; i < bh_count; i++)
1044                 if (bhs[i])
1045                         wait_on_buffer(bhs[i]);
1046
1047         for (i = 0; i < bh_count; i++) {
1048                 if (bhs[i] && !buffer_uptodate(bhs[i])) {
1049                         err = -EIO;
1050                         goto out_brelse;
1051                 }
1052         }
1053         return 0;
1054
1055 out_brelse:
1056         for (i = 0; i < bh_count; i++) {
1057                 brelse(bhs[i]);
1058                 bhs[i] = NULL;
1059         }
1060         return err;
1061 }
1062
1063 int ext4_walk_page_buffers(handle_t *handle,
1064                            struct buffer_head *head,
1065                            unsigned from,
1066                            unsigned to,
1067                            int *partial,
1068                            int (*fn)(handle_t *handle,
1069                                      struct buffer_head *bh))
1070 {
1071         struct buffer_head *bh;
1072         unsigned block_start, block_end;
1073         unsigned blocksize = head->b_size;
1074         int err, ret = 0;
1075         struct buffer_head *next;
1076
1077         for (bh = head, block_start = 0;
1078              ret == 0 && (bh != head || !block_start);
1079              block_start = block_end, bh = next) {
1080                 next = bh->b_this_page;
1081                 block_end = block_start + blocksize;
1082                 if (block_end <= from || block_start >= to) {
1083                         if (partial && !buffer_uptodate(bh))
1084                                 *partial = 1;
1085                         continue;
1086                 }
1087                 err = (*fn)(handle, bh);
1088                 if (!ret)
1089                         ret = err;
1090         }
1091         return ret;
1092 }
1093
1094 /*
1095  * To preserve ordering, it is essential that the hole instantiation and
1096  * the data write be encapsulated in a single transaction.  We cannot
1097  * close off a transaction and start a new one between the ext4_get_block()
1098  * and the commit_write().  So doing the jbd2_journal_start at the start of
1099  * prepare_write() is the right place.
1100  *
1101  * Also, this function can nest inside ext4_writepage().  In that case, we
1102  * *know* that ext4_writepage() has generated enough buffer credits to do the
1103  * whole page.  So we won't block on the journal in that case, which is good,
1104  * because the caller may be PF_MEMALLOC.
1105  *
1106  * By accident, ext4 can be reentered when a transaction is open via
1107  * quota file writes.  If we were to commit the transaction while thus
1108  * reentered, there can be a deadlock - we would be holding a quota
1109  * lock, and the commit would never complete if another thread had a
1110  * transaction open and was blocking on the quota lock - a ranking
1111  * violation.
1112  *
1113  * So what we do is to rely on the fact that jbd2_journal_stop/journal_start
1114  * will _not_ run commit under these circumstances because handle->h_ref
1115  * is elevated.  We'll still have enough credits for the tiny quotafile
1116  * write.
1117  */
1118 int do_journal_get_write_access(handle_t *handle,
1119                                 struct buffer_head *bh)
1120 {
1121         int dirty = buffer_dirty(bh);
1122         int ret;
1123
1124         if (!buffer_mapped(bh) || buffer_freed(bh))
1125                 return 0;
1126         /*
1127          * __block_write_begin() could have dirtied some buffers. Clean
1128          * the dirty bit as jbd2_journal_get_write_access() could complain
1129          * otherwise about fs integrity issues. Setting of the dirty bit
1130          * by __block_write_begin() isn't a real problem here as we clear
1131          * the bit before releasing a page lock and thus writeback cannot
1132          * ever write the buffer.
1133          */
1134         if (dirty)
1135                 clear_buffer_dirty(bh);
1136         BUFFER_TRACE(bh, "get write access");
1137         ret = ext4_journal_get_write_access(handle, bh);
1138         if (!ret && dirty)
1139                 ret = ext4_handle_dirty_metadata(handle, NULL, bh);
1140         return ret;
1141 }
1142
1143 #ifdef CONFIG_EXT4_FS_ENCRYPTION
1144 static int ext4_block_write_begin(struct page *page, loff_t pos, unsigned len,
1145                                   get_block_t *get_block)
1146 {
1147         unsigned from = pos & (PAGE_SIZE - 1);
1148         unsigned to = from + len;
1149         struct inode *inode = page->mapping->host;
1150         unsigned block_start, block_end;
1151         sector_t block;
1152         int err = 0;
1153         unsigned blocksize = inode->i_sb->s_blocksize;
1154         unsigned bbits;
1155         struct buffer_head *bh, *head, *wait[2], **wait_bh = wait;
1156         bool decrypt = false;
1157
1158         BUG_ON(!PageLocked(page));
1159         BUG_ON(from > PAGE_SIZE);
1160         BUG_ON(to > PAGE_SIZE);
1161         BUG_ON(from > to);
1162
1163         if (!page_has_buffers(page))
1164                 create_empty_buffers(page, blocksize, 0);
1165         head = page_buffers(page);
1166         bbits = ilog2(blocksize);
1167         block = (sector_t)page->index << (PAGE_SHIFT - bbits);
1168
1169         for (bh = head, block_start = 0; bh != head || !block_start;
1170             block++, block_start = block_end, bh = bh->b_this_page) {
1171                 block_end = block_start + blocksize;
1172                 if (block_end <= from || block_start >= to) {
1173                         if (PageUptodate(page)) {
1174                                 if (!buffer_uptodate(bh))
1175                                         set_buffer_uptodate(bh);
1176                         }
1177                         continue;
1178                 }
1179                 if (buffer_new(bh))
1180                         clear_buffer_new(bh);
1181                 if (!buffer_mapped(bh)) {
1182                         WARN_ON(bh->b_size != blocksize);
1183                         err = get_block(inode, block, bh, 1);
1184                         if (err)
1185                                 break;
1186                         if (buffer_new(bh)) {
1187                                 clean_bdev_bh_alias(bh);
1188                                 if (PageUptodate(page)) {
1189                                         clear_buffer_new(bh);
1190                                         set_buffer_uptodate(bh);
1191                                         mark_buffer_dirty(bh);
1192                                         continue;
1193                                 }
1194                                 if (block_end > to || block_start < from)
1195                                         zero_user_segments(page, to, block_end,
1196                                                            block_start, from);
1197                                 continue;
1198                         }
1199                 }
1200                 if (PageUptodate(page)) {
1201                         if (!buffer_uptodate(bh))
1202                                 set_buffer_uptodate(bh);
1203                         continue;
1204                 }
1205                 if (!buffer_uptodate(bh) && !buffer_delay(bh) &&
1206                     !buffer_unwritten(bh) &&
1207                     (block_start < from || block_end > to)) {
1208                         ll_rw_block(REQ_OP_READ, 0, 1, &bh);
1209                         *wait_bh++ = bh;
1210                         decrypt = ext4_encrypted_inode(inode) &&
1211                                 S_ISREG(inode->i_mode);
1212                 }
1213         }
1214         /*
1215          * If we issued read requests, let them complete.
1216          */
1217         while (wait_bh > wait) {
1218                 wait_on_buffer(*--wait_bh);
1219                 if (!buffer_uptodate(*wait_bh))
1220                         err = -EIO;
1221         }
1222         if (unlikely(err))
1223                 page_zero_new_buffers(page, from, to);
1224         else if (decrypt)
1225                 err = fscrypt_decrypt_page(page->mapping->host, page,
1226                                 PAGE_SIZE, 0, page->index);
1227         return err;
1228 }
1229 #endif
1230
1231 static int ext4_write_begin(struct file *file, struct address_space *mapping,
1232                             loff_t pos, unsigned len, unsigned flags,
1233                             struct page **pagep, void **fsdata)
1234 {
1235         struct inode *inode = mapping->host;
1236         int ret, needed_blocks;
1237         handle_t *handle;
1238         int retries = 0;
1239         struct page *page;
1240         pgoff_t index;
1241         unsigned from, to;
1242
1243         if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
1244                 return -EIO;
1245
1246         trace_ext4_write_begin(inode, pos, len, flags);
1247         /*
1248          * Reserve one block more for addition to orphan list in case
1249          * we allocate blocks but write fails for some reason
1250          */
1251         needed_blocks = ext4_writepage_trans_blocks(inode) + 1;
1252         index = pos >> PAGE_SHIFT;
1253         from = pos & (PAGE_SIZE - 1);
1254         to = from + len;
1255
1256         if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) {
1257                 ret = ext4_try_to_write_inline_data(mapping, inode, pos, len,
1258                                                     flags, pagep);
1259                 if (ret < 0)
1260                         return ret;
1261                 if (ret == 1)
1262                         return 0;
1263         }
1264
1265         /*
1266          * grab_cache_page_write_begin() can take a long time if the
1267          * system is thrashing due to memory pressure, or if the page
1268          * is being written back.  So grab it first before we start
1269          * the transaction handle.  This also allows us to allocate
1270          * the page (if needed) without using GFP_NOFS.
1271          */
1272 retry_grab:
1273         page = grab_cache_page_write_begin(mapping, index, flags);
1274         if (!page)
1275                 return -ENOMEM;
1276         unlock_page(page);
1277
1278 retry_journal:
1279         handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE, needed_blocks);
1280         if (IS_ERR(handle)) {
1281                 put_page(page);
1282                 return PTR_ERR(handle);
1283         }
1284
1285         lock_page(page);
1286         if (page->mapping != mapping) {
1287                 /* The page got truncated from under us */
1288                 unlock_page(page);
1289                 put_page(page);
1290                 ext4_journal_stop(handle);
1291                 goto retry_grab;
1292         }
1293         /* In case writeback began while the page was unlocked */
1294         wait_for_stable_page(page);
1295
1296 #ifdef CONFIG_EXT4_FS_ENCRYPTION
1297         if (ext4_should_dioread_nolock(inode))
1298                 ret = ext4_block_write_begin(page, pos, len,
1299                                              ext4_get_block_unwritten);
1300         else
1301                 ret = ext4_block_write_begin(page, pos, len,
1302                                              ext4_get_block);
1303 #else
1304         if (ext4_should_dioread_nolock(inode))
1305                 ret = __block_write_begin(page, pos, len,
1306                                           ext4_get_block_unwritten);
1307         else
1308                 ret = __block_write_begin(page, pos, len, ext4_get_block);
1309 #endif
1310         if (!ret && ext4_should_journal_data(inode)) {
1311                 ret = ext4_walk_page_buffers(handle, page_buffers(page),
1312                                              from, to, NULL,
1313                                              do_journal_get_write_access);
1314         }
1315
1316         if (ret) {
1317                 unlock_page(page);
1318                 /*
1319                  * __block_write_begin may have instantiated a few blocks
1320                  * outside i_size.  Trim these off again. Don't need
1321                  * i_size_read because we hold i_mutex.
1322                  *
1323                  * Add inode to orphan list in case we crash before
1324                  * truncate finishes
1325                  */
1326                 if (pos + len > inode->i_size && ext4_can_truncate(inode))
1327                         ext4_orphan_add(handle, inode);
1328
1329                 ext4_journal_stop(handle);
1330                 if (pos + len > inode->i_size) {
1331                         ext4_truncate_failed_write(inode);
1332                         /*
1333                          * If truncate failed early the inode might
1334                          * still be on the orphan list; we need to
1335                          * make sure the inode is removed from the
1336                          * orphan list in that case.
1337                          */
1338                         if (inode->i_nlink)
1339                                 ext4_orphan_del(NULL, inode);
1340                 }
1341
1342                 if (ret == -ENOSPC &&
1343                     ext4_should_retry_alloc(inode->i_sb, &retries))
1344                         goto retry_journal;
1345                 put_page(page);
1346                 return ret;
1347         }
1348         *pagep = page;
1349         return ret;
1350 }
1351
1352 /* For write_end() in data=journal mode */
1353 static int write_end_fn(handle_t *handle, struct buffer_head *bh)
1354 {
1355         int ret;
1356         if (!buffer_mapped(bh) || buffer_freed(bh))
1357                 return 0;
1358         set_buffer_uptodate(bh);
1359         ret = ext4_handle_dirty_metadata(handle, NULL, bh);
1360         clear_buffer_meta(bh);
1361         clear_buffer_prio(bh);
1362         return ret;
1363 }
1364
1365 /*
1366  * We need to pick up the new inode size which generic_commit_write gave us
1367  * `file' can be NULL - eg, when called from page_symlink().
1368  *
1369  * ext4 never places buffers on inode->i_mapping->private_list.  metadata
1370  * buffers are managed internally.
1371  */
1372 static int ext4_write_end(struct file *file,
1373                           struct address_space *mapping,
1374                           loff_t pos, unsigned len, unsigned copied,
1375                           struct page *page, void *fsdata)
1376 {
1377         handle_t *handle = ext4_journal_current_handle();
1378         struct inode *inode = mapping->host;
1379         loff_t old_size = inode->i_size;
1380         int ret = 0, ret2;
1381         int i_size_changed = 0;
1382
1383         trace_ext4_write_end(inode, pos, len, copied);
1384         if (ext4_has_inline_data(inode)) {
1385                 ret = ext4_write_inline_data_end(inode, pos, len,
1386                                                  copied, page);
1387                 if (ret < 0) {
1388                         unlock_page(page);
1389                         put_page(page);
1390                         goto errout;
1391                 }
1392                 copied = ret;
1393         } else
1394                 copied = block_write_end(file, mapping, pos,
1395                                          len, copied, page, fsdata);
1396         /*
1397          * it's important to update i_size while still holding page lock:
1398          * page writeout could otherwise come in and zero beyond i_size.
1399          */
1400         i_size_changed = ext4_update_inode_size(inode, pos + copied);
1401         unlock_page(page);
1402         put_page(page);
1403
1404         if (old_size < pos)
1405                 pagecache_isize_extended(inode, old_size, pos);
1406         /*
1407          * Don't mark the inode dirty under page lock. First, it unnecessarily
1408          * makes the holding time of page lock longer. Second, it forces lock
1409          * ordering of page lock and transaction start for journaling
1410          * filesystems.
1411          */
1412         if (i_size_changed)
1413                 ext4_mark_inode_dirty(handle, inode);
1414
1415         if (pos + len > inode->i_size && ext4_can_truncate(inode))
1416                 /* if we have allocated more blocks and copied
1417                  * less. We will have blocks allocated outside
1418                  * inode->i_size. So truncate them
1419                  */
1420                 ext4_orphan_add(handle, inode);
1421 errout:
1422         ret2 = ext4_journal_stop(handle);
1423         if (!ret)
1424                 ret = ret2;
1425
1426         if (pos + len > inode->i_size) {
1427                 ext4_truncate_failed_write(inode);
1428                 /*
1429                  * If truncate failed early the inode might still be
1430                  * on the orphan list; we need to make sure the inode
1431                  * is removed from the orphan list in that case.
1432                  */
1433                 if (inode->i_nlink)
1434                         ext4_orphan_del(NULL, inode);
1435         }
1436
1437         return ret ? ret : copied;
1438 }
1439
1440 /*
1441  * This is a private version of page_zero_new_buffers() which doesn't
1442  * set the buffer to be dirty, since in data=journalled mode we need
1443  * to call ext4_handle_dirty_metadata() instead.
1444  */
1445 static void ext4_journalled_zero_new_buffers(handle_t *handle,
1446                                             struct page *page,
1447                                             unsigned from, unsigned to)
1448 {
1449         unsigned int block_start = 0, block_end;
1450         struct buffer_head *head, *bh;
1451
1452         bh = head = page_buffers(page);
1453         do {
1454                 block_end = block_start + bh->b_size;
1455                 if (buffer_new(bh)) {
1456                         if (block_end > from && block_start < to) {
1457                                 if (!PageUptodate(page)) {
1458                                         unsigned start, size;
1459
1460                                         start = max(from, block_start);
1461                                         size = min(to, block_end) - start;
1462
1463                                         zero_user(page, start, size);
1464                                         write_end_fn(handle, bh);
1465                                 }
1466                                 clear_buffer_new(bh);
1467                         }
1468                 }
1469                 block_start = block_end;
1470                 bh = bh->b_this_page;
1471         } while (bh != head);
1472 }
1473
1474 static int ext4_journalled_write_end(struct file *file,
1475                                      struct address_space *mapping,
1476                                      loff_t pos, unsigned len, unsigned copied,
1477                                      struct page *page, void *fsdata)
1478 {
1479         handle_t *handle = ext4_journal_current_handle();
1480         struct inode *inode = mapping->host;
1481         loff_t old_size = inode->i_size;
1482         int ret = 0, ret2;
1483         int partial = 0;
1484         unsigned from, to;
1485         int size_changed = 0;
1486
1487         trace_ext4_journalled_write_end(inode, pos, len, copied);
1488         from = pos & (PAGE_SIZE - 1);
1489         to = from + len;
1490
1491         BUG_ON(!ext4_handle_valid(handle));
1492
1493         if (ext4_has_inline_data(inode)) {
1494                 ret = ext4_write_inline_data_end(inode, pos, len,
1495                                                  copied, page);
1496                 if (ret < 0) {
1497                         unlock_page(page);
1498                         put_page(page);
1499                         goto errout;
1500                 }
1501                 copied = ret;
1502         } else if (unlikely(copied < len) && !PageUptodate(page)) {
1503                 copied = 0;
1504                 ext4_journalled_zero_new_buffers(handle, page, from, to);
1505         } else {
1506                 if (unlikely(copied < len))
1507                         ext4_journalled_zero_new_buffers(handle, page,
1508                                                          from + copied, to);
1509                 ret = ext4_walk_page_buffers(handle, page_buffers(page), from,
1510                                              from + copied, &partial,
1511                                              write_end_fn);
1512                 if (!partial)
1513                         SetPageUptodate(page);
1514         }
1515         size_changed = ext4_update_inode_size(inode, pos + copied);
1516         ext4_set_inode_state(inode, EXT4_STATE_JDATA);
1517         EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
1518         unlock_page(page);
1519         put_page(page);
1520
1521         if (old_size < pos)
1522                 pagecache_isize_extended(inode, old_size, pos);
1523
1524         if (size_changed) {
1525                 ret2 = ext4_mark_inode_dirty(handle, inode);
1526                 if (!ret)
1527                         ret = ret2;
1528         }
1529
1530         if (pos + len > inode->i_size && ext4_can_truncate(inode))
1531                 /* if we have allocated more blocks and copied
1532                  * less. We will have blocks allocated outside
1533                  * inode->i_size. So truncate them
1534                  */
1535                 ext4_orphan_add(handle, inode);
1536
1537 errout:
1538         ret2 = ext4_journal_stop(handle);
1539         if (!ret)
1540                 ret = ret2;
1541         if (pos + len > inode->i_size) {
1542                 ext4_truncate_failed_write(inode);
1543                 /*
1544                  * If truncate failed early the inode might still be
1545                  * on the orphan list; we need to make sure the inode
1546                  * is removed from the orphan list in that case.
1547                  */
1548                 if (inode->i_nlink)
1549                         ext4_orphan_del(NULL, inode);
1550         }
1551
1552         return ret ? ret : copied;
1553 }
1554
1555 /*
1556  * Reserve space for a single cluster
1557  */
1558 static int ext4_da_reserve_space(struct inode *inode)
1559 {
1560         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1561         struct ext4_inode_info *ei = EXT4_I(inode);
1562         int ret;
1563
1564         /*
1565          * We will charge metadata quota at writeout time; this saves
1566          * us from metadata over-estimation, though we may go over by
1567          * a small amount in the end.  Here we just reserve for data.
1568          */
1569         ret = dquot_reserve_block(inode, EXT4_C2B(sbi, 1));
1570         if (ret)
1571                 return ret;
1572
1573         spin_lock(&ei->i_block_reservation_lock);
1574         if (ext4_claim_free_clusters(sbi, 1, 0)) {
1575                 spin_unlock(&ei->i_block_reservation_lock);
1576                 dquot_release_reservation_block(inode, EXT4_C2B(sbi, 1));
1577                 return -ENOSPC;
1578         }
1579         ei->i_reserved_data_blocks++;
1580         trace_ext4_da_reserve_space(inode);
1581         spin_unlock(&ei->i_block_reservation_lock);
1582
1583         return 0;       /* success */
1584 }
1585
1586 static void ext4_da_release_space(struct inode *inode, int to_free)
1587 {
1588         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1589         struct ext4_inode_info *ei = EXT4_I(inode);
1590
1591         if (!to_free)
1592                 return;         /* Nothing to release, exit */
1593
1594         spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1595
1596         trace_ext4_da_release_space(inode, to_free);
1597         if (unlikely(to_free > ei->i_reserved_data_blocks)) {
1598                 /*
1599                  * if there aren't enough reserved blocks, then the
1600                  * counter is messed up somewhere.  Since this
1601                  * function is called from invalidate page, it's
1602                  * harmless to return without any action.
1603                  */
1604                 ext4_warning(inode->i_sb, "ext4_da_release_space: "
1605                          "ino %lu, to_free %d with only %d reserved "
1606                          "data blocks", inode->i_ino, to_free,
1607                          ei->i_reserved_data_blocks);
1608                 WARN_ON(1);
1609                 to_free = ei->i_reserved_data_blocks;
1610         }
1611         ei->i_reserved_data_blocks -= to_free;
1612
1613         /* update fs dirty data blocks counter */
1614         percpu_counter_sub(&sbi->s_dirtyclusters_counter, to_free);
1615
1616         spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1617
1618         dquot_release_reservation_block(inode, EXT4_C2B(sbi, to_free));
1619 }
1620
1621 static void ext4_da_page_release_reservation(struct page *page,
1622                                              unsigned int offset,
1623                                              unsigned int length)
1624 {
1625         int to_release = 0, contiguous_blks = 0;
1626         struct buffer_head *head, *bh;
1627         unsigned int curr_off = 0;
1628         struct inode *inode = page->mapping->host;
1629         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1630         unsigned int stop = offset + length;
1631         int num_clusters;
1632         ext4_fsblk_t lblk;
1633
1634         BUG_ON(stop > PAGE_SIZE || stop < length);
1635
1636         head = page_buffers(page);
1637         bh = head;
1638         do {
1639                 unsigned int next_off = curr_off + bh->b_size;
1640
1641                 if (next_off > stop)
1642                         break;
1643
1644                 if ((offset <= curr_off) && (buffer_delay(bh))) {
1645                         to_release++;
1646                         contiguous_blks++;
1647                         clear_buffer_delay(bh);
1648                 } else if (contiguous_blks) {
1649                         lblk = page->index <<
1650                                (PAGE_SHIFT - inode->i_blkbits);
1651                         lblk += (curr_off >> inode->i_blkbits) -
1652                                 contiguous_blks;
1653                         ext4_es_remove_extent(inode, lblk, contiguous_blks);
1654                         contiguous_blks = 0;
1655                 }
1656                 curr_off = next_off;
1657         } while ((bh = bh->b_this_page) != head);
1658
1659         if (contiguous_blks) {
1660                 lblk = page->index << (PAGE_SHIFT - inode->i_blkbits);
1661                 lblk += (curr_off >> inode->i_blkbits) - contiguous_blks;
1662                 ext4_es_remove_extent(inode, lblk, contiguous_blks);
1663         }
1664
1665         /* If we have released all the blocks belonging to a cluster, then we
1666          * need to release the reserved space for that cluster. */
1667         num_clusters = EXT4_NUM_B2C(sbi, to_release);
1668         while (num_clusters > 0) {
1669                 lblk = (page->index << (PAGE_SHIFT - inode->i_blkbits)) +
1670                         ((num_clusters - 1) << sbi->s_cluster_bits);
1671                 if (sbi->s_cluster_ratio == 1 ||
1672                     !ext4_find_delalloc_cluster(inode, lblk))
1673                         ext4_da_release_space(inode, 1);
1674
1675                 num_clusters--;
1676         }
1677 }
1678
1679 /*
1680  * Delayed allocation stuff
1681  */
1682
1683 struct mpage_da_data {
1684         struct inode *inode;
1685         struct writeback_control *wbc;
1686
1687         pgoff_t first_page;     /* The first page to write */
1688         pgoff_t next_page;      /* Current page to examine */
1689         pgoff_t last_page;      /* Last page to examine */
1690         /*
1691          * Extent to map - this can be after first_page because that can be
1692          * fully mapped. We somewhat abuse m_flags to store whether the extent
1693          * is delalloc or unwritten.
1694          */
1695         struct ext4_map_blocks map;
1696         struct ext4_io_submit io_submit;        /* IO submission data */
1697         unsigned int do_map:1;
1698 };
1699
1700 static void mpage_release_unused_pages(struct mpage_da_data *mpd,
1701                                        bool invalidate)
1702 {
1703         int nr_pages, i;
1704         pgoff_t index, end;
1705         struct pagevec pvec;
1706         struct inode *inode = mpd->inode;
1707         struct address_space *mapping = inode->i_mapping;
1708
1709         /* This is necessary when next_page == 0. */
1710         if (mpd->first_page >= mpd->next_page)
1711                 return;
1712
1713         index = mpd->first_page;
1714         end   = mpd->next_page - 1;
1715         if (invalidate) {
1716                 ext4_lblk_t start, last;
1717                 start = index << (PAGE_SHIFT - inode->i_blkbits);
1718                 last = end << (PAGE_SHIFT - inode->i_blkbits);
1719                 ext4_es_remove_extent(inode, start, last - start + 1);
1720         }
1721
1722         pagevec_init(&pvec);
1723         while (index <= end) {
1724                 nr_pages = pagevec_lookup_range(&pvec, mapping, &index, end);
1725                 if (nr_pages == 0)
1726                         break;
1727                 for (i = 0; i < nr_pages; i++) {
1728                         struct page *page = pvec.pages[i];
1729
1730                         BUG_ON(!PageLocked(page));
1731                         BUG_ON(PageWriteback(page));
1732                         if (invalidate) {
1733                                 if (page_mapped(page))
1734                                         clear_page_dirty_for_io(page);
1735                                 block_invalidatepage(page, 0, PAGE_SIZE);
1736                                 ClearPageUptodate(page);
1737                         }
1738                         unlock_page(page);
1739                 }
1740                 pagevec_release(&pvec);
1741         }
1742 }
1743
1744 static void ext4_print_free_blocks(struct inode *inode)
1745 {
1746         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1747         struct super_block *sb = inode->i_sb;
1748         struct ext4_inode_info *ei = EXT4_I(inode);
1749
1750         ext4_msg(sb, KERN_CRIT, "Total free blocks count %lld",
1751                EXT4_C2B(EXT4_SB(inode->i_sb),
1752                         ext4_count_free_clusters(sb)));
1753         ext4_msg(sb, KERN_CRIT, "Free/Dirty block details");
1754         ext4_msg(sb, KERN_CRIT, "free_blocks=%lld",
1755                (long long) EXT4_C2B(EXT4_SB(sb),
1756                 percpu_counter_sum(&sbi->s_freeclusters_counter)));
1757         ext4_msg(sb, KERN_CRIT, "dirty_blocks=%lld",
1758                (long long) EXT4_C2B(EXT4_SB(sb),
1759                 percpu_counter_sum(&sbi->s_dirtyclusters_counter)));
1760         ext4_msg(sb, KERN_CRIT, "Block reservation details");
1761         ext4_msg(sb, KERN_CRIT, "i_reserved_data_blocks=%u",
1762                  ei->i_reserved_data_blocks);
1763         return;
1764 }
1765
1766 static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh)
1767 {
1768         return (buffer_delay(bh) || buffer_unwritten(bh)) && buffer_dirty(bh);
1769 }
1770
1771 /*
1772  * This function is grabs code from the very beginning of
1773  * ext4_map_blocks, but assumes that the caller is from delayed write
1774  * time. This function looks up the requested blocks and sets the
1775  * buffer delay bit under the protection of i_data_sem.
1776  */
1777 static int ext4_da_map_blocks(struct inode *inode, sector_t iblock,
1778                               struct ext4_map_blocks *map,
1779                               struct buffer_head *bh)
1780 {
1781         struct extent_status es;
1782         int retval;
1783         sector_t invalid_block = ~((sector_t) 0xffff);
1784 #ifdef ES_AGGRESSIVE_TEST
1785         struct ext4_map_blocks orig_map;
1786
1787         memcpy(&orig_map, map, sizeof(*map));
1788 #endif
1789
1790         if (invalid_block < ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es))
1791                 invalid_block = ~0;
1792
1793         map->m_flags = 0;
1794         ext_debug("ext4_da_map_blocks(): inode %lu, max_blocks %u,"
1795                   "logical block %lu\n", inode->i_ino, map->m_len,
1796                   (unsigned long) map->m_lblk);
1797
1798         /* Lookup extent status tree firstly */
1799         if (ext4_es_lookup_extent(inode, iblock, &es)) {
1800                 if (ext4_es_is_hole(&es)) {
1801                         retval = 0;
1802                         down_read(&EXT4_I(inode)->i_data_sem);
1803                         goto add_delayed;
1804                 }
1805
1806                 /*
1807                  * Delayed extent could be allocated by fallocate.
1808                  * So we need to check it.
1809                  */
1810                 if (ext4_es_is_delayed(&es) && !ext4_es_is_unwritten(&es)) {
1811                         map_bh(bh, inode->i_sb, invalid_block);
1812                         set_buffer_new(bh);
1813                         set_buffer_delay(bh);
1814                         return 0;
1815                 }
1816
1817                 map->m_pblk = ext4_es_pblock(&es) + iblock - es.es_lblk;
1818                 retval = es.es_len - (iblock - es.es_lblk);
1819                 if (retval > map->m_len)
1820                         retval = map->m_len;
1821                 map->m_len = retval;
1822                 if (ext4_es_is_written(&es))
1823                         map->m_flags |= EXT4_MAP_MAPPED;
1824                 else if (ext4_es_is_unwritten(&es))
1825                         map->m_flags |= EXT4_MAP_UNWRITTEN;
1826                 else
1827                         BUG_ON(1);
1828
1829 #ifdef ES_AGGRESSIVE_TEST
1830                 ext4_map_blocks_es_recheck(NULL, inode, map, &orig_map, 0);
1831 #endif
1832                 return retval;
1833         }
1834
1835         /*
1836          * Try to see if we can get the block without requesting a new
1837          * file system block.
1838          */
1839         down_read(&EXT4_I(inode)->i_data_sem);
1840         if (ext4_has_inline_data(inode))
1841                 retval = 0;
1842         else if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
1843                 retval = ext4_ext_map_blocks(NULL, inode, map, 0);
1844         else
1845                 retval = ext4_ind_map_blocks(NULL, inode, map, 0);
1846
1847 add_delayed:
1848         if (retval == 0) {
1849                 int ret;
1850                 /*
1851                  * XXX: __block_prepare_write() unmaps passed block,
1852                  * is it OK?
1853                  */
1854                 /*
1855                  * If the block was allocated from previously allocated cluster,
1856                  * then we don't need to reserve it again. However we still need
1857                  * to reserve metadata for every block we're going to write.
1858                  */
1859                 if (EXT4_SB(inode->i_sb)->s_cluster_ratio == 1 ||
1860                     !ext4_find_delalloc_cluster(inode, map->m_lblk)) {
1861                         ret = ext4_da_reserve_space(inode);
1862                         if (ret) {
1863                                 /* not enough space to reserve */
1864                                 retval = ret;
1865                                 goto out_unlock;
1866                         }
1867                 }
1868
1869                 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
1870                                             ~0, EXTENT_STATUS_DELAYED);
1871                 if (ret) {
1872                         retval = ret;
1873                         goto out_unlock;
1874                 }
1875
1876                 map_bh(bh, inode->i_sb, invalid_block);
1877                 set_buffer_new(bh);
1878                 set_buffer_delay(bh);
1879         } else if (retval > 0) {
1880                 int ret;
1881                 unsigned int status;
1882
1883                 if (unlikely(retval != map->m_len)) {
1884                         ext4_warning(inode->i_sb,
1885                                      "ES len assertion failed for inode "
1886                                      "%lu: retval %d != map->m_len %d",
1887                                      inode->i_ino, retval, map->m_len);
1888                         WARN_ON(1);
1889                 }
1890
1891                 status = map->m_flags & EXT4_MAP_UNWRITTEN ?
1892                                 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
1893                 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
1894                                             map->m_pblk, status);
1895                 if (ret != 0)
1896                         retval = ret;
1897         }
1898
1899 out_unlock:
1900         up_read((&EXT4_I(inode)->i_data_sem));
1901
1902         return retval;
1903 }
1904
1905 /*
1906  * This is a special get_block_t callback which is used by
1907  * ext4_da_write_begin().  It will either return mapped block or
1908  * reserve space for a single block.
1909  *
1910  * For delayed buffer_head we have BH_Mapped, BH_New, BH_Delay set.
1911  * We also have b_blocknr = -1 and b_bdev initialized properly
1912  *
1913  * For unwritten buffer_head we have BH_Mapped, BH_New, BH_Unwritten set.
1914  * We also have b_blocknr = physicalblock mapping unwritten extent and b_bdev
1915  * initialized properly.
1916  */
1917 int ext4_da_get_block_prep(struct inode *inode, sector_t iblock,
1918                            struct buffer_head *bh, int create)
1919 {
1920         struct ext4_map_blocks map;
1921         int ret = 0;
1922
1923         BUG_ON(create == 0);
1924         BUG_ON(bh->b_size != inode->i_sb->s_blocksize);
1925
1926         map.m_lblk = iblock;
1927         map.m_len = 1;
1928
1929         /*
1930          * first, we need to know whether the block is allocated already
1931          * preallocated blocks are unmapped but should treated
1932          * the same as allocated blocks.
1933          */
1934         ret = ext4_da_map_blocks(inode, iblock, &map, bh);
1935         if (ret <= 0)
1936                 return ret;
1937
1938         map_bh(bh, inode->i_sb, map.m_pblk);
1939         ext4_update_bh_state(bh, map.m_flags);
1940
1941         if (buffer_unwritten(bh)) {
1942                 /* A delayed write to unwritten bh should be marked
1943                  * new and mapped.  Mapped ensures that we don't do
1944                  * get_block multiple times when we write to the same
1945                  * offset and new ensures that we do proper zero out
1946                  * for partial write.
1947                  */
1948                 set_buffer_new(bh);
1949                 set_buffer_mapped(bh);
1950         }
1951         return 0;
1952 }
1953
1954 static int bget_one(handle_t *handle, struct buffer_head *bh)
1955 {
1956         get_bh(bh);
1957         return 0;
1958 }
1959
1960 static int bput_one(handle_t *handle, struct buffer_head *bh)
1961 {
1962         put_bh(bh);
1963         return 0;
1964 }
1965
1966 static int __ext4_journalled_writepage(struct page *page,
1967                                        unsigned int len)
1968 {
1969         struct address_space *mapping = page->mapping;
1970         struct inode *inode = mapping->host;
1971         struct buffer_head *page_bufs = NULL;
1972         handle_t *handle = NULL;
1973         int ret = 0, err = 0;
1974         int inline_data = ext4_has_inline_data(inode);
1975         struct buffer_head *inode_bh = NULL;
1976
1977         ClearPageChecked(page);
1978
1979         if (inline_data) {
1980                 BUG_ON(page->index != 0);
1981                 BUG_ON(len > ext4_get_max_inline_size(inode));
1982                 inode_bh = ext4_journalled_write_inline_data(inode, len, page);
1983                 if (inode_bh == NULL)
1984                         goto out;
1985         } else {
1986                 page_bufs = page_buffers(page);
1987                 if (!page_bufs) {
1988                         BUG();
1989                         goto out;
1990                 }
1991                 ext4_walk_page_buffers(handle, page_bufs, 0, len,
1992                                        NULL, bget_one);
1993         }
1994         /*
1995          * We need to release the page lock before we start the
1996          * journal, so grab a reference so the page won't disappear
1997          * out from under us.
1998          */
1999         get_page(page);
2000         unlock_page(page);
2001
2002         handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
2003                                     ext4_writepage_trans_blocks(inode));
2004         if (IS_ERR(handle)) {
2005                 ret = PTR_ERR(handle);
2006                 put_page(page);
2007                 goto out_no_pagelock;
2008         }
2009         BUG_ON(!ext4_handle_valid(handle));
2010
2011         lock_page(page);
2012         put_page(page);
2013         if (page->mapping != mapping) {
2014                 /* The page got truncated from under us */
2015                 ext4_journal_stop(handle);
2016                 ret = 0;
2017                 goto out;
2018         }
2019
2020         if (inline_data) {
2021                 BUFFER_TRACE(inode_bh, "get write access");
2022                 ret = ext4_journal_get_write_access(handle, inode_bh);
2023
2024                 err = ext4_handle_dirty_metadata(handle, inode, inode_bh);
2025
2026         } else {
2027                 ret = ext4_walk_page_buffers(handle, page_bufs, 0, len, NULL,
2028                                              do_journal_get_write_access);
2029
2030                 err = ext4_walk_page_buffers(handle, page_bufs, 0, len, NULL,
2031                                              write_end_fn);
2032         }
2033         if (ret == 0)
2034                 ret = err;
2035         EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
2036         err = ext4_journal_stop(handle);
2037         if (!ret)
2038                 ret = err;
2039
2040         if (!ext4_has_inline_data(inode))
2041                 ext4_walk_page_buffers(NULL, page_bufs, 0, len,
2042                                        NULL, bput_one);
2043         ext4_set_inode_state(inode, EXT4_STATE_JDATA);
2044 out:
2045         unlock_page(page);
2046 out_no_pagelock:
2047         brelse(inode_bh);
2048         return ret;
2049 }
2050
2051 /*
2052  * Note that we don't need to start a transaction unless we're journaling data
2053  * because we should have holes filled from ext4_page_mkwrite(). We even don't
2054  * need to file the inode to the transaction's list in ordered mode because if
2055  * we are writing back data added by write(), the inode is already there and if
2056  * we are writing back data modified via mmap(), no one guarantees in which
2057  * transaction the data will hit the disk. In case we are journaling data, we
2058  * cannot start transaction directly because transaction start ranks above page
2059  * lock so we have to do some magic.
2060  *
2061  * This function can get called via...
2062  *   - ext4_writepages after taking page lock (have journal handle)
2063  *   - journal_submit_inode_data_buffers (no journal handle)
2064  *   - shrink_page_list via the kswapd/direct reclaim (no journal handle)
2065  *   - grab_page_cache when doing write_begin (have journal handle)
2066  *
2067  * We don't do any block allocation in this function. If we have page with
2068  * multiple blocks we need to write those buffer_heads that are mapped. This
2069  * is important for mmaped based write. So if we do with blocksize 1K
2070  * truncate(f, 1024);
2071  * a = mmap(f, 0, 4096);
2072  * a[0] = 'a';
2073  * truncate(f, 4096);
2074  * we have in the page first buffer_head mapped via page_mkwrite call back
2075  * but other buffer_heads would be unmapped but dirty (dirty done via the
2076  * do_wp_page). So writepage should write the first block. If we modify
2077  * the mmap area beyond 1024 we will again get a page_fault and the
2078  * page_mkwrite callback will do the block allocation and mark the
2079  * buffer_heads mapped.
2080  *
2081  * We redirty the page if we have any buffer_heads that is either delay or
2082  * unwritten in the page.
2083  *
2084  * We can get recursively called as show below.
2085  *
2086  *      ext4_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() ->
2087  *              ext4_writepage()
2088  *
2089  * But since we don't do any block allocation we should not deadlock.
2090  * Page also have the dirty flag cleared so we don't get recurive page_lock.
2091  */
2092 static int ext4_writepage(struct page *page,
2093                           struct writeback_control *wbc)
2094 {
2095         int ret = 0;
2096         loff_t size;
2097         unsigned int len;
2098         struct buffer_head *page_bufs = NULL;
2099         struct inode *inode = page->mapping->host;
2100         struct ext4_io_submit io_submit;
2101         bool keep_towrite = false;
2102
2103         if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb)))) {
2104                 ext4_invalidatepage(page, 0, PAGE_SIZE);
2105                 unlock_page(page);
2106                 return -EIO;
2107         }
2108
2109         trace_ext4_writepage(page);
2110         size = i_size_read(inode);
2111         if (page->index == size >> PAGE_SHIFT)
2112                 len = size & ~PAGE_MASK;
2113         else
2114                 len = PAGE_SIZE;
2115
2116         page_bufs = page_buffers(page);
2117         /*
2118          * We cannot do block allocation or other extent handling in this
2119          * function. If there are buffers needing that, we have to redirty
2120          * the page. But we may reach here when we do a journal commit via
2121          * journal_submit_inode_data_buffers() and in that case we must write
2122          * allocated buffers to achieve data=ordered mode guarantees.
2123          *
2124          * Also, if there is only one buffer per page (the fs block
2125          * size == the page size), if one buffer needs block
2126          * allocation or needs to modify the extent tree to clear the
2127          * unwritten flag, we know that the page can't be written at
2128          * all, so we might as well refuse the write immediately.
2129          * Unfortunately if the block size != page size, we can't as
2130          * easily detect this case using ext4_walk_page_buffers(), but
2131          * for the extremely common case, this is an optimization that
2132          * skips a useless round trip through ext4_bio_write_page().
2133          */
2134         if (ext4_walk_page_buffers(NULL, page_bufs, 0, len, NULL,
2135                                    ext4_bh_delay_or_unwritten)) {
2136                 redirty_page_for_writepage(wbc, page);
2137                 if ((current->flags & PF_MEMALLOC) ||
2138                     (inode->i_sb->s_blocksize == PAGE_SIZE)) {
2139                         /*
2140                          * For memory cleaning there's no point in writing only
2141                          * some buffers. So just bail out. Warn if we came here
2142                          * from direct reclaim.
2143                          */
2144                         WARN_ON_ONCE((current->flags & (PF_MEMALLOC|PF_KSWAPD))
2145                                                         == PF_MEMALLOC);
2146                         unlock_page(page);
2147                         return 0;
2148                 }
2149                 keep_towrite = true;
2150         }
2151
2152         if (PageChecked(page) && ext4_should_journal_data(inode))
2153                 /*
2154                  * It's mmapped pagecache.  Add buffers and journal it.  There
2155                  * doesn't seem much point in redirtying the page here.
2156                  */
2157                 return __ext4_journalled_writepage(page, len);
2158
2159         ext4_io_submit_init(&io_submit, wbc);
2160         io_submit.io_end = ext4_init_io_end(inode, GFP_NOFS);
2161         if (!io_submit.io_end) {
2162                 redirty_page_for_writepage(wbc, page);
2163                 unlock_page(page);
2164                 return -ENOMEM;
2165         }
2166         ret = ext4_bio_write_page(&io_submit, page, len, wbc, keep_towrite);
2167         ext4_io_submit(&io_submit);
2168         /* Drop io_end reference we got from init */
2169         ext4_put_io_end_defer(io_submit.io_end);
2170         return ret;
2171 }
2172
2173 static int mpage_submit_page(struct mpage_da_data *mpd, struct page *page)
2174 {
2175         int len;
2176         loff_t size;
2177         int err;
2178
2179         BUG_ON(page->index != mpd->first_page);
2180         clear_page_dirty_for_io(page);
2181         /*
2182          * We have to be very careful here!  Nothing protects writeback path
2183          * against i_size changes and the page can be writeably mapped into
2184          * page tables. So an application can be growing i_size and writing
2185          * data through mmap while writeback runs. clear_page_dirty_for_io()
2186          * write-protects our page in page tables and the page cannot get
2187          * written to again until we release page lock. So only after
2188          * clear_page_dirty_for_io() we are safe to sample i_size for
2189          * ext4_bio_write_page() to zero-out tail of the written page. We rely
2190          * on the barrier provided by TestClearPageDirty in
2191          * clear_page_dirty_for_io() to make sure i_size is really sampled only
2192          * after page tables are updated.
2193          */
2194         size = i_size_read(mpd->inode);
2195         if (page->index == size >> PAGE_SHIFT)
2196                 len = size & ~PAGE_MASK;
2197         else
2198                 len = PAGE_SIZE;
2199         err = ext4_bio_write_page(&mpd->io_submit, page, len, mpd->wbc, false);
2200         if (!err)
2201                 mpd->wbc->nr_to_write--;
2202         mpd->first_page++;
2203
2204         return err;
2205 }
2206
2207 #define BH_FLAGS ((1 << BH_Unwritten) | (1 << BH_Delay))
2208
2209 /*
2210  * mballoc gives us at most this number of blocks...
2211  * XXX: That seems to be only a limitation of ext4_mb_normalize_request().
2212  * The rest of mballoc seems to handle chunks up to full group size.
2213  */
2214 #define MAX_WRITEPAGES_EXTENT_LEN 2048
2215
2216 /*
2217  * mpage_add_bh_to_extent - try to add bh to extent of blocks to map
2218  *
2219  * @mpd - extent of blocks
2220  * @lblk - logical number of the block in the file
2221  * @bh - buffer head we want to add to the extent
2222  *
2223  * The function is used to collect contig. blocks in the same state. If the
2224  * buffer doesn't require mapping for writeback and we haven't started the
2225  * extent of buffers to map yet, the function returns 'true' immediately - the
2226  * caller can write the buffer right away. Otherwise the function returns true
2227  * if the block has been added to the extent, false if the block couldn't be
2228  * added.
2229  */
2230 static bool mpage_add_bh_to_extent(struct mpage_da_data *mpd, ext4_lblk_t lblk,
2231                                    struct buffer_head *bh)
2232 {
2233         struct ext4_map_blocks *map = &mpd->map;
2234
2235         /* Buffer that doesn't need mapping for writeback? */
2236         if (!buffer_dirty(bh) || !buffer_mapped(bh) ||
2237             (!buffer_delay(bh) && !buffer_unwritten(bh))) {
2238                 /* So far no extent to map => we write the buffer right away */
2239                 if (map->m_len == 0)
2240                         return true;
2241                 return false;
2242         }
2243
2244         /* First block in the extent? */
2245         if (map->m_len == 0) {
2246                 /* We cannot map unless handle is started... */
2247                 if (!mpd->do_map)
2248                         return false;
2249                 map->m_lblk = lblk;
2250                 map->m_len = 1;
2251                 map->m_flags = bh->b_state & BH_FLAGS;
2252                 return true;
2253         }
2254
2255         /* Don't go larger than mballoc is willing to allocate */
2256         if (map->m_len >= MAX_WRITEPAGES_EXTENT_LEN)
2257                 return false;
2258
2259         /* Can we merge the block to our big extent? */
2260         if (lblk == map->m_lblk + map->m_len &&
2261             (bh->b_state & BH_FLAGS) == map->m_flags) {
2262                 map->m_len++;
2263                 return true;
2264         }
2265         return false;
2266 }
2267
2268 /*
2269  * mpage_process_page_bufs - submit page buffers for IO or add them to extent
2270  *
2271  * @mpd - extent of blocks for mapping
2272  * @head - the first buffer in the page
2273  * @bh - buffer we should start processing from
2274  * @lblk - logical number of the block in the file corresponding to @bh
2275  *
2276  * Walk through page buffers from @bh upto @head (exclusive) and either submit
2277  * the page for IO if all buffers in this page were mapped and there's no
2278  * accumulated extent of buffers to map or add buffers in the page to the
2279  * extent of buffers to map. The function returns 1 if the caller can continue
2280  * by processing the next page, 0 if it should stop adding buffers to the
2281  * extent to map because we cannot extend it anymore. It can also return value
2282  * < 0 in case of error during IO submission.
2283  */
2284 static int mpage_process_page_bufs(struct mpage_da_data *mpd,
2285                                    struct buffer_head *head,
2286                                    struct buffer_head *bh,
2287                                    ext4_lblk_t lblk)
2288 {
2289         struct inode *inode = mpd->inode;
2290         int err;
2291         ext4_lblk_t blocks = (i_size_read(inode) + i_blocksize(inode) - 1)
2292                                                         >> inode->i_blkbits;
2293
2294         do {
2295                 BUG_ON(buffer_locked(bh));
2296
2297                 if (lblk >= blocks || !mpage_add_bh_to_extent(mpd, lblk, bh)) {
2298                         /* Found extent to map? */
2299                         if (mpd->map.m_len)
2300                                 return 0;
2301                         /* Buffer needs mapping and handle is not started? */
2302                         if (!mpd->do_map)
2303                                 return 0;
2304                         /* Everything mapped so far and we hit EOF */
2305                         break;
2306                 }
2307         } while (lblk++, (bh = bh->b_this_page) != head);
2308         /* So far everything mapped? Submit the page for IO. */
2309         if (mpd->map.m_len == 0) {
2310                 err = mpage_submit_page(mpd, head->b_page);
2311                 if (err < 0)
2312                         return err;
2313         }
2314         return lblk < blocks;
2315 }
2316
2317 /*
2318  * mpage_map_buffers - update buffers corresponding to changed extent and
2319  *                     submit fully mapped pages for IO
2320  *
2321  * @mpd - description of extent to map, on return next extent to map
2322  *
2323  * Scan buffers corresponding to changed extent (we expect corresponding pages
2324  * to be already locked) and update buffer state according to new extent state.
2325  * We map delalloc buffers to their physical location, clear unwritten bits,
2326  * and mark buffers as uninit when we perform writes to unwritten extents
2327  * and do extent conversion after IO is finished. If the last page is not fully
2328  * mapped, we update @map to the next extent in the last page that needs
2329  * mapping. Otherwise we submit the page for IO.
2330  */
2331 static int mpage_map_and_submit_buffers(struct mpage_da_data *mpd)
2332 {
2333         struct pagevec pvec;
2334         int nr_pages, i;
2335         struct inode *inode = mpd->inode;
2336         struct buffer_head *head, *bh;
2337         int bpp_bits = PAGE_SHIFT - inode->i_blkbits;
2338         pgoff_t start, end;
2339         ext4_lblk_t lblk;
2340         sector_t pblock;
2341         int err;
2342
2343         start = mpd->map.m_lblk >> bpp_bits;
2344         end = (mpd->map.m_lblk + mpd->map.m_len - 1) >> bpp_bits;
2345         lblk = start << bpp_bits;
2346         pblock = mpd->map.m_pblk;
2347
2348         pagevec_init(&pvec);
2349         while (start <= end) {
2350                 nr_pages = pagevec_lookup_range(&pvec, inode->i_mapping,
2351                                                 &start, end);
2352                 if (nr_pages == 0)
2353                         break;
2354                 for (i = 0; i < nr_pages; i++) {
2355                         struct page *page = pvec.pages[i];
2356
2357                         bh = head = page_buffers(page);
2358                         do {
2359                                 if (lblk < mpd->map.m_lblk)
2360                                         continue;
2361                                 if (lblk >= mpd->map.m_lblk + mpd->map.m_len) {
2362                                         /*
2363                                          * Buffer after end of mapped extent.
2364                                          * Find next buffer in the page to map.
2365                                          */
2366                                         mpd->map.m_len = 0;
2367                                         mpd->map.m_flags = 0;
2368                                         /*
2369                                          * FIXME: If dioread_nolock supports
2370                                          * blocksize < pagesize, we need to make
2371                                          * sure we add size mapped so far to
2372                                          * io_end->size as the following call
2373                                          * can submit the page for IO.
2374                                          */
2375                                         err = mpage_process_page_bufs(mpd, head,
2376                                                                       bh, lblk);
2377                                         pagevec_release(&pvec);
2378                                         if (err > 0)
2379                                                 err = 0;
2380                                         return err;
2381                                 }
2382                                 if (buffer_delay(bh)) {
2383                                         clear_buffer_delay(bh);
2384                                         bh->b_blocknr = pblock++;
2385                                 }
2386                                 clear_buffer_unwritten(bh);
2387                         } while (lblk++, (bh = bh->b_this_page) != head);
2388
2389                         /*
2390                          * FIXME: This is going to break if dioread_nolock
2391                          * supports blocksize < pagesize as we will try to
2392                          * convert potentially unmapped parts of inode.
2393                          */
2394                         mpd->io_submit.io_end->size += PAGE_SIZE;
2395                         /* Page fully mapped - let IO run! */
2396                         err = mpage_submit_page(mpd, page);
2397                         if (err < 0) {
2398                                 pagevec_release(&pvec);
2399                                 return err;
2400                         }
2401                 }
2402                 pagevec_release(&pvec);
2403         }
2404         /* Extent fully mapped and matches with page boundary. We are done. */
2405         mpd->map.m_len = 0;
2406         mpd->map.m_flags = 0;
2407         return 0;
2408 }
2409
2410 static int mpage_map_one_extent(handle_t *handle, struct mpage_da_data *mpd)
2411 {
2412         struct inode *inode = mpd->inode;
2413         struct ext4_map_blocks *map = &mpd->map;
2414         int get_blocks_flags;
2415         int err, dioread_nolock;
2416
2417         trace_ext4_da_write_pages_extent(inode, map);
2418         /*
2419          * Call ext4_map_blocks() to allocate any delayed allocation blocks, or
2420          * to convert an unwritten extent to be initialized (in the case
2421          * where we have written into one or more preallocated blocks).  It is
2422          * possible that we're going to need more metadata blocks than
2423          * previously reserved. However we must not fail because we're in
2424          * writeback and there is nothing we can do about it so it might result
2425          * in data loss.  So use reserved blocks to allocate metadata if
2426          * possible.
2427          *
2428          * We pass in the magic EXT4_GET_BLOCKS_DELALLOC_RESERVE if
2429          * the blocks in question are delalloc blocks.  This indicates
2430          * that the blocks and quotas has already been checked when
2431          * the data was copied into the page cache.
2432          */
2433         get_blocks_flags = EXT4_GET_BLOCKS_CREATE |
2434                            EXT4_GET_BLOCKS_METADATA_NOFAIL |
2435                            EXT4_GET_BLOCKS_IO_SUBMIT;
2436         dioread_nolock = ext4_should_dioread_nolock(inode);
2437         if (dioread_nolock)
2438                 get_blocks_flags |= EXT4_GET_BLOCKS_IO_CREATE_EXT;
2439         if (map->m_flags & (1 << BH_Delay))
2440                 get_blocks_flags |= EXT4_GET_BLOCKS_DELALLOC_RESERVE;
2441
2442         err = ext4_map_blocks(handle, inode, map, get_blocks_flags);
2443         if (err < 0)
2444                 return err;
2445         if (dioread_nolock && (map->m_flags & EXT4_MAP_UNWRITTEN)) {
2446                 if (!mpd->io_submit.io_end->handle &&
2447                     ext4_handle_valid(handle)) {
2448                         mpd->io_submit.io_end->handle = handle->h_rsv_handle;
2449                         handle->h_rsv_handle = NULL;
2450                 }
2451                 ext4_set_io_unwritten_flag(inode, mpd->io_submit.io_end);
2452         }
2453
2454         BUG_ON(map->m_len == 0);
2455         if (map->m_flags & EXT4_MAP_NEW) {
2456                 clean_bdev_aliases(inode->i_sb->s_bdev, map->m_pblk,
2457                                    map->m_len);
2458         }
2459         return 0;
2460 }
2461
2462 /*
2463  * mpage_map_and_submit_extent - map extent starting at mpd->lblk of length
2464  *                               mpd->len and submit pages underlying it for IO
2465  *
2466  * @handle - handle for journal operations
2467  * @mpd - extent to map
2468  * @give_up_on_write - we set this to true iff there is a fatal error and there
2469  *                     is no hope of writing the data. The caller should discard
2470  *                     dirty pages to avoid infinite loops.
2471  *
2472  * The function maps extent starting at mpd->lblk of length mpd->len. If it is
2473  * delayed, blocks are allocated, if it is unwritten, we may need to convert
2474  * them to initialized or split the described range from larger unwritten
2475  * extent. Note that we need not map all the described range since allocation
2476  * can return less blocks or the range is covered by more unwritten extents. We
2477  * cannot map more because we are limited by reserved transaction credits. On
2478  * the other hand we always make sure that the last touched page is fully
2479  * mapped so that it can be written out (and thus forward progress is
2480  * guaranteed). After mapping we submit all mapped pages for IO.
2481  */
2482 static int mpage_map_and_submit_extent(handle_t *handle,
2483                                        struct mpage_da_data *mpd,
2484                                        bool *give_up_on_write)
2485 {
2486         struct inode *inode = mpd->inode;
2487         struct ext4_map_blocks *map = &mpd->map;
2488         int err;
2489         loff_t disksize;
2490         int progress = 0;
2491
2492         mpd->io_submit.io_end->offset =
2493                                 ((loff_t)map->m_lblk) << inode->i_blkbits;
2494         do {
2495                 err = mpage_map_one_extent(handle, mpd);
2496                 if (err < 0) {
2497                         struct super_block *sb = inode->i_sb;
2498
2499                         if (ext4_forced_shutdown(EXT4_SB(sb)) ||
2500                             EXT4_SB(sb)->s_mount_flags & EXT4_MF_FS_ABORTED)
2501                                 goto invalidate_dirty_pages;
2502                         /*
2503                          * Let the uper layers retry transient errors.
2504                          * In the case of ENOSPC, if ext4_count_free_blocks()
2505                          * is non-zero, a commit should free up blocks.
2506                          */
2507                         if ((err == -ENOMEM) ||
2508                             (err == -ENOSPC && ext4_count_free_clusters(sb))) {
2509                                 if (progress)
2510                                         goto update_disksize;
2511                                 return err;
2512                         }
2513                         ext4_msg(sb, KERN_CRIT,
2514                                  "Delayed block allocation failed for "
2515                                  "inode %lu at logical offset %llu with"
2516                                  " max blocks %u with error %d",
2517                                  inode->i_ino,
2518                                  (unsigned long long)map->m_lblk,
2519                                  (unsigned)map->m_len, -err);
2520                         ext4_msg(sb, KERN_CRIT,
2521                                  "This should not happen!! Data will "
2522                                  "be lost\n");
2523                         if (err == -ENOSPC)
2524                                 ext4_print_free_blocks(inode);
2525                 invalidate_dirty_pages:
2526                         *give_up_on_write = true;
2527                         return err;
2528                 }
2529                 progress = 1;
2530                 /*
2531                  * Update buffer state, submit mapped pages, and get us new
2532                  * extent to map
2533                  */
2534                 err = mpage_map_and_submit_buffers(mpd);
2535                 if (err < 0)
2536                         goto update_disksize;
2537         } while (map->m_len);
2538
2539 update_disksize:
2540         /*
2541          * Update on-disk size after IO is submitted.  Races with
2542          * truncate are avoided by checking i_size under i_data_sem.
2543          */
2544         disksize = ((loff_t)mpd->first_page) << PAGE_SHIFT;
2545         if (disksize > EXT4_I(inode)->i_disksize) {
2546                 int err2;
2547                 loff_t i_size;
2548
2549                 down_write(&EXT4_I(inode)->i_data_sem);
2550                 i_size = i_size_read(inode);
2551                 if (disksize > i_size)
2552                         disksize = i_size;
2553                 if (disksize > EXT4_I(inode)->i_disksize)
2554                         EXT4_I(inode)->i_disksize = disksize;
2555                 up_write(&EXT4_I(inode)->i_data_sem);
2556                 err2 = ext4_mark_inode_dirty(handle, inode);
2557                 if (err2)
2558                         ext4_error(inode->i_sb,
2559                                    "Failed to mark inode %lu dirty",
2560                                    inode->i_ino);
2561                 if (!err)
2562                         err = err2;
2563         }
2564         return err;
2565 }
2566
2567 /*
2568  * Calculate the total number of credits to reserve for one writepages
2569  * iteration. This is called from ext4_writepages(). We map an extent of
2570  * up to MAX_WRITEPAGES_EXTENT_LEN blocks and then we go on and finish mapping
2571  * the last partial page. So in total we can map MAX_WRITEPAGES_EXTENT_LEN +
2572  * bpp - 1 blocks in bpp different extents.
2573  */
2574 static int ext4_da_writepages_trans_blocks(struct inode *inode)
2575 {
2576         int bpp = ext4_journal_blocks_per_page(inode);
2577
2578         return ext4_meta_trans_blocks(inode,
2579                                 MAX_WRITEPAGES_EXTENT_LEN + bpp - 1, bpp);
2580 }
2581
2582 /*
2583  * mpage_prepare_extent_to_map - find & lock contiguous range of dirty pages
2584  *                               and underlying extent to map
2585  *
2586  * @mpd - where to look for pages
2587  *
2588  * Walk dirty pages in the mapping. If they are fully mapped, submit them for
2589  * IO immediately. When we find a page which isn't mapped we start accumulating
2590  * extent of buffers underlying these pages that needs mapping (formed by
2591  * either delayed or unwritten buffers). We also lock the pages containing
2592  * these buffers. The extent found is returned in @mpd structure (starting at
2593  * mpd->lblk with length mpd->len blocks).
2594  *
2595  * Note that this function can attach bios to one io_end structure which are
2596  * neither logically nor physically contiguous. Although it may seem as an
2597  * unnecessary complication, it is actually inevitable in blocksize < pagesize
2598  * case as we need to track IO to all buffers underlying a page in one io_end.
2599  */
2600 static int mpage_prepare_extent_to_map(struct mpage_da_data *mpd)
2601 {
2602         struct address_space *mapping = mpd->inode->i_mapping;
2603         struct pagevec pvec;
2604         unsigned int nr_pages;
2605         long left = mpd->wbc->nr_to_write;
2606         pgoff_t index = mpd->first_page;
2607         pgoff_t end = mpd->last_page;
2608         int tag;
2609         int i, err = 0;
2610         int blkbits = mpd->inode->i_blkbits;
2611         ext4_lblk_t lblk;
2612         struct buffer_head *head;
2613
2614         if (mpd->wbc->sync_mode == WB_SYNC_ALL || mpd->wbc->tagged_writepages)
2615                 tag = PAGECACHE_TAG_TOWRITE;
2616         else
2617                 tag = PAGECACHE_TAG_DIRTY;
2618
2619         pagevec_init(&pvec);
2620         mpd->map.m_len = 0;
2621         mpd->next_page = index;
2622         while (index <= end) {
2623                 nr_pages = pagevec_lookup_range_tag(&pvec, mapping, &index, end,
2624                                 tag);
2625                 if (nr_pages == 0)
2626                         goto out;
2627
2628                 for (i = 0; i < nr_pages; i++) {
2629                         struct page *page = pvec.pages[i];
2630
2631                         /*
2632                          * Accumulated enough dirty pages? This doesn't apply
2633                          * to WB_SYNC_ALL mode. For integrity sync we have to
2634                          * keep going because someone may be concurrently
2635                          * dirtying pages, and we might have synced a lot of
2636                          * newly appeared dirty pages, but have not synced all
2637                          * of the old dirty pages.
2638                          */
2639                         if (mpd->wbc->sync_mode == WB_SYNC_NONE && left <= 0)
2640                                 goto out;
2641
2642                         /* If we can't merge this page, we are done. */
2643                         if (mpd->map.m_len > 0 && mpd->next_page != page->index)
2644                                 goto out;
2645
2646                         lock_page(page);
2647                         /*
2648                          * If the page is no longer dirty, or its mapping no
2649                          * longer corresponds to inode we are writing (which
2650                          * means it has been truncated or invalidated), or the
2651                          * page is already under writeback and we are not doing
2652                          * a data integrity writeback, skip the page
2653                          */
2654                         if (!PageDirty(page) ||
2655                             (PageWriteback(page) &&
2656                              (mpd->wbc->sync_mode == WB_SYNC_NONE)) ||
2657                             unlikely(page->mapping != mapping)) {
2658                                 unlock_page(page);
2659                                 continue;
2660                         }
2661
2662                         wait_on_page_writeback(page);
2663                         BUG_ON(PageWriteback(page));
2664
2665                         if (mpd->map.m_len == 0)
2666                                 mpd->first_page = page->index;
2667                         mpd->next_page = page->index + 1;
2668                         /* Add all dirty buffers to mpd */
2669                         lblk = ((ext4_lblk_t)page->index) <<
2670                                 (PAGE_SHIFT - blkbits);
2671                         head = page_buffers(page);
2672                         err = mpage_process_page_bufs(mpd, head, head, lblk);
2673                         if (err <= 0)
2674                                 goto out;
2675                         err = 0;
2676                         left--;
2677                 }
2678                 pagevec_release(&pvec);
2679                 cond_resched();
2680         }
2681         return 0;
2682 out:
2683         pagevec_release(&pvec);
2684         return err;
2685 }
2686
2687 static int __writepage(struct page *page, struct writeback_control *wbc,
2688                        void *data)
2689 {
2690         struct address_space *mapping = data;
2691         int ret = ext4_writepage(page, wbc);
2692         mapping_set_error(mapping, ret);
2693         return ret;
2694 }
2695
2696 static int ext4_writepages(struct address_space *mapping,
2697                            struct writeback_control *wbc)
2698 {
2699         pgoff_t writeback_index = 0;
2700         long nr_to_write = wbc->nr_to_write;
2701         int range_whole = 0;
2702         int cycled = 1;
2703         handle_t *handle = NULL;
2704         struct mpage_da_data mpd;
2705         struct inode *inode = mapping->host;
2706         int needed_blocks, rsv_blocks = 0, ret = 0;
2707         struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb);
2708         bool done;
2709         struct blk_plug plug;
2710         bool give_up_on_write = false;
2711
2712         if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
2713                 return -EIO;
2714
2715         percpu_down_read(&sbi->s_journal_flag_rwsem);
2716         trace_ext4_writepages(inode, wbc);
2717
2718         if (dax_mapping(mapping)) {
2719                 ret = dax_writeback_mapping_range(mapping, inode->i_sb->s_bdev,
2720                                                   wbc);
2721                 goto out_writepages;
2722         }
2723
2724         /*
2725          * No pages to write? This is mainly a kludge to avoid starting
2726          * a transaction for special inodes like journal inode on last iput()
2727          * because that could violate lock ordering on umount
2728          */
2729         if (!mapping->nrpages || !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
2730                 goto out_writepages;
2731
2732         if (ext4_should_journal_data(inode)) {
2733                 struct blk_plug plug;
2734
2735                 blk_start_plug(&plug);
2736                 ret = write_cache_pages(mapping, wbc, __writepage, mapping);
2737                 blk_finish_plug(&plug);
2738                 goto out_writepages;
2739         }
2740
2741         /*
2742          * If the filesystem has aborted, it is read-only, so return
2743          * right away instead of dumping stack traces later on that
2744          * will obscure the real source of the problem.  We test
2745          * EXT4_MF_FS_ABORTED instead of sb->s_flag's MS_RDONLY because
2746          * the latter could be true if the filesystem is mounted
2747          * read-only, and in that case, ext4_writepages should
2748          * *never* be called, so if that ever happens, we would want
2749          * the stack trace.
2750          */
2751         if (unlikely(ext4_forced_shutdown(EXT4_SB(mapping->host->i_sb)) ||
2752                      sbi->s_mount_flags & EXT4_MF_FS_ABORTED)) {
2753                 ret = -EROFS;
2754                 goto out_writepages;
2755         }
2756
2757         if (ext4_should_dioread_nolock(inode)) {
2758                 /*
2759                  * We may need to convert up to one extent per block in
2760                  * the page and we may dirty the inode.
2761                  */
2762                 rsv_blocks = 1 + (PAGE_SIZE >> inode->i_blkbits);
2763         }
2764
2765         /*
2766          * If we have inline data and arrive here, it means that
2767          * we will soon create the block for the 1st page, so
2768          * we'd better clear the inline data here.
2769          */
2770         if (ext4_has_inline_data(inode)) {
2771                 /* Just inode will be modified... */
2772                 handle = ext4_journal_start(inode, EXT4_HT_INODE, 1);
2773                 if (IS_ERR(handle)) {
2774                         ret = PTR_ERR(handle);
2775                         goto out_writepages;
2776                 }
2777                 BUG_ON(ext4_test_inode_state(inode,
2778                                 EXT4_STATE_MAY_INLINE_DATA));
2779                 ext4_destroy_inline_data(handle, inode);
2780                 ext4_journal_stop(handle);
2781         }
2782
2783         if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
2784                 range_whole = 1;
2785
2786         if (wbc->range_cyclic) {
2787                 writeback_index = mapping->writeback_index;
2788                 if (writeback_index)
2789                         cycled = 0;
2790                 mpd.first_page = writeback_index;
2791                 mpd.last_page = -1;
2792         } else {
2793                 mpd.first_page = wbc->range_start >> PAGE_SHIFT;
2794                 mpd.last_page = wbc->range_end >> PAGE_SHIFT;
2795         }
2796
2797         mpd.inode = inode;
2798         mpd.wbc = wbc;
2799         ext4_io_submit_init(&mpd.io_submit, wbc);
2800 retry:
2801         if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
2802                 tag_pages_for_writeback(mapping, mpd.first_page, mpd.last_page);
2803         done = false;
2804         blk_start_plug(&plug);
2805
2806         /*
2807          * First writeback pages that don't need mapping - we can avoid
2808          * starting a transaction unnecessarily and also avoid being blocked
2809          * in the block layer on device congestion while having transaction
2810          * started.
2811          */
2812         mpd.do_map = 0;
2813         mpd.io_submit.io_end = ext4_init_io_end(inode, GFP_KERNEL);
2814         if (!mpd.io_submit.io_end) {
2815                 ret = -ENOMEM;
2816                 goto unplug;
2817         }
2818         ret = mpage_prepare_extent_to_map(&mpd);
2819         /* Submit prepared bio */
2820         ext4_io_submit(&mpd.io_submit);
2821         ext4_put_io_end_defer(mpd.io_submit.io_end);
2822         mpd.io_submit.io_end = NULL;
2823         /* Unlock pages we didn't use */
2824         mpage_release_unused_pages(&mpd, false);
2825         if (ret < 0)
2826                 goto unplug;
2827
2828         while (!done && mpd.first_page <= mpd.last_page) {
2829                 /* For each extent of pages we use new io_end */
2830                 mpd.io_submit.io_end = ext4_init_io_end(inode, GFP_KERNEL);
2831                 if (!mpd.io_submit.io_end) {
2832                         ret = -ENOMEM;
2833                         break;
2834                 }
2835
2836                 /*
2837                  * We have two constraints: We find one extent to map and we
2838                  * must always write out whole page (makes a difference when
2839                  * blocksize < pagesize) so that we don't block on IO when we
2840                  * try to write out the rest of the page. Journalled mode is
2841                  * not supported by delalloc.
2842                  */
2843                 BUG_ON(ext4_should_journal_data(inode));
2844                 needed_blocks = ext4_da_writepages_trans_blocks(inode);
2845
2846                 /* start a new transaction */
2847                 handle = ext4_journal_start_with_reserve(inode,
2848                                 EXT4_HT_WRITE_PAGE, needed_blocks, rsv_blocks);
2849                 if (IS_ERR(handle)) {
2850                         ret = PTR_ERR(handle);
2851                         ext4_msg(inode->i_sb, KERN_CRIT, "%s: jbd2_start: "
2852                                "%ld pages, ino %lu; err %d", __func__,
2853                                 wbc->nr_to_write, inode->i_ino, ret);
2854                         /* Release allocated io_end */
2855                         ext4_put_io_end(mpd.io_submit.io_end);
2856                         mpd.io_submit.io_end = NULL;
2857                         break;
2858                 }
2859                 mpd.do_map = 1;
2860
2861                 trace_ext4_da_write_pages(inode, mpd.first_page, mpd.wbc);
2862                 ret = mpage_prepare_extent_to_map(&mpd);
2863                 if (!ret) {
2864                         if (mpd.map.m_len)
2865                                 ret = mpage_map_and_submit_extent(handle, &mpd,
2866                                         &give_up_on_write);
2867                         else {
2868                                 /*
2869                                  * We scanned the whole range (or exhausted
2870                                  * nr_to_write), submitted what was mapped and
2871                                  * didn't find anything needing mapping. We are
2872                                  * done.
2873                                  */
2874                                 done = true;
2875                         }
2876                 }
2877                 /*
2878                  * Caution: If the handle is synchronous,
2879                  * ext4_journal_stop() can wait for transaction commit
2880                  * to finish which may depend on writeback of pages to
2881                  * complete or on page lock to be released.  In that
2882                  * case, we have to wait until after after we have
2883                  * submitted all the IO, released page locks we hold,
2884                  * and dropped io_end reference (for extent conversion
2885                  * to be able to complete) before stopping the handle.
2886                  */
2887                 if (!ext4_handle_valid(handle) || handle->h_sync == 0) {
2888                         ext4_journal_stop(handle);
2889                         handle = NULL;
2890                         mpd.do_map = 0;
2891                 }
2892                 /* Submit prepared bio */
2893                 ext4_io_submit(&mpd.io_submit);
2894                 /* Unlock pages we didn't use */
2895                 mpage_release_unused_pages(&mpd, give_up_on_write);
2896                 /*
2897                  * Drop our io_end reference we got from init. We have
2898                  * to be careful and use deferred io_end finishing if
2899                  * we are still holding the transaction as we can
2900                  * release the last reference to io_end which may end
2901                  * up doing unwritten extent conversion.
2902                  */
2903                 if (handle) {
2904                         ext4_put_io_end_defer(mpd.io_submit.io_end);
2905                         ext4_journal_stop(handle);
2906                 } else
2907                         ext4_put_io_end(mpd.io_submit.io_end);
2908                 mpd.io_submit.io_end = NULL;
2909
2910                 if (ret == -ENOSPC && sbi->s_journal) {
2911                         /*
2912                          * Commit the transaction which would
2913                          * free blocks released in the transaction
2914                          * and try again
2915                          */
2916                         jbd2_journal_force_commit_nested(sbi->s_journal);
2917                         ret = 0;
2918                         continue;
2919                 }
2920                 /* Fatal error - ENOMEM, EIO... */
2921                 if (ret)
2922                         break;
2923         }
2924 unplug:
2925         blk_finish_plug(&plug);
2926         if (!ret && !cycled && wbc->nr_to_write > 0) {
2927                 cycled = 1;
2928                 mpd.last_page = writeback_index - 1;
2929                 mpd.first_page = 0;
2930                 goto retry;
2931         }
2932
2933         /* Update index */
2934         if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
2935                 /*
2936                  * Set the writeback_index so that range_cyclic
2937                  * mode will write it back later
2938                  */
2939                 mapping->writeback_index = mpd.first_page;
2940
2941 out_writepages:
2942         trace_ext4_writepages_result(inode, wbc, ret,
2943                                      nr_to_write - wbc->nr_to_write);
2944         percpu_up_read(&sbi->s_journal_flag_rwsem);
2945         return ret;
2946 }
2947
2948 static int ext4_nonda_switch(struct super_block *sb)
2949 {
2950         s64 free_clusters, dirty_clusters;
2951         struct ext4_sb_info *sbi = EXT4_SB(sb);
2952
2953         /*
2954          * switch to non delalloc mode if we are running low
2955          * on free block. The free block accounting via percpu
2956          * counters can get slightly wrong with percpu_counter_batch getting
2957          * accumulated on each CPU without updating global counters
2958          * Delalloc need an accurate free block accounting. So switch
2959          * to non delalloc when we are near to error range.
2960          */
2961         free_clusters =
2962                 percpu_counter_read_positive(&sbi->s_freeclusters_counter);
2963         dirty_clusters =
2964                 percpu_counter_read_positive(&sbi->s_dirtyclusters_counter);
2965         /*
2966          * Start pushing delalloc when 1/2 of free blocks are dirty.
2967          */
2968         if (dirty_clusters && (free_clusters < 2 * dirty_clusters))
2969                 try_to_writeback_inodes_sb(sb, WB_REASON_FS_FREE_SPACE);
2970
2971         if (2 * free_clusters < 3 * dirty_clusters ||
2972             free_clusters < (dirty_clusters + EXT4_FREECLUSTERS_WATERMARK)) {
2973                 /*
2974                  * free block count is less than 150% of dirty blocks
2975                  * or free blocks is less than watermark
2976                  */
2977                 return 1;
2978         }
2979         return 0;
2980 }
2981
2982 /* We always reserve for an inode update; the superblock could be there too */
2983 static int ext4_da_write_credits(struct inode *inode, loff_t pos, unsigned len)
2984 {
2985         if (likely(ext4_has_feature_large_file(inode->i_sb)))
2986                 return 1;
2987
2988         if (pos + len <= 0x7fffffffULL)
2989                 return 1;
2990
2991         /* We might need to update the superblock to set LARGE_FILE */
2992         return 2;
2993 }
2994
2995 static int ext4_da_write_begin(struct file *file, struct address_space *mapping,
2996                                loff_t pos, unsigned len, unsigned flags,
2997                                struct page **pagep, void **fsdata)
2998 {
2999         int ret, retries = 0;
3000         struct page *page;
3001         pgoff_t index;
3002         struct inode *inode = mapping->host;
3003         handle_t *handle;
3004
3005         if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
3006                 return -EIO;
3007
3008         index = pos >> PAGE_SHIFT;
3009
3010         if (ext4_nonda_switch(inode->i_sb) ||
3011             S_ISLNK(inode->i_mode)) {
3012                 *fsdata = (void *)FALL_BACK_TO_NONDELALLOC;
3013                 return ext4_write_begin(file, mapping, pos,
3014                                         len, flags, pagep, fsdata);
3015         }
3016         *fsdata = (void *)0;
3017         trace_ext4_da_write_begin(inode, pos, len, flags);
3018
3019         if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) {
3020                 ret = ext4_da_write_inline_data_begin(mapping, inode,
3021                                                       pos, len, flags,
3022                                                       pagep, fsdata);
3023                 if (ret < 0)
3024                         return ret;
3025                 if (ret == 1)
3026                         return 0;
3027         }
3028
3029         /*
3030          * grab_cache_page_write_begin() can take a long time if the
3031          * system is thrashing due to memory pressure, or if the page
3032          * is being written back.  So grab it first before we start
3033          * the transaction handle.  This also allows us to allocate
3034          * the page (if needed) without using GFP_NOFS.
3035          */
3036 retry_grab:
3037         page = grab_cache_page_write_begin(mapping, index, flags);
3038         if (!page)
3039                 return -ENOMEM;
3040         unlock_page(page);
3041
3042         /*
3043          * With delayed allocation, we don't log the i_disksize update
3044          * if there is delayed block allocation. But we still need
3045          * to journalling the i_disksize update if writes to the end
3046          * of file which has an already mapped buffer.
3047          */
3048 retry_journal:
3049         handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
3050                                 ext4_da_write_credits(inode, pos, len));
3051         if (IS_ERR(handle)) {
3052                 put_page(page);
3053                 return PTR_ERR(handle);
3054         }
3055
3056         lock_page(page);
3057         if (page->mapping != mapping) {
3058                 /* The page got truncated from under us */
3059                 unlock_page(page);
3060                 put_page(page);
3061                 ext4_journal_stop(handle);
3062                 goto retry_grab;
3063         }
3064         /* In case writeback began while the page was unlocked */
3065         wait_for_stable_page(page);
3066
3067 #ifdef CONFIG_EXT4_FS_ENCRYPTION
3068         ret = ext4_block_write_begin(page, pos, len,
3069                                      ext4_da_get_block_prep);
3070 #else
3071         ret = __block_write_begin(page, pos, len, ext4_da_get_block_prep);
3072 #endif
3073         if (ret < 0) {
3074                 unlock_page(page);
3075                 ext4_journal_stop(handle);
3076                 /*
3077                  * block_write_begin may have instantiated a few blocks
3078                  * outside i_size.  Trim these off again. Don't need
3079                  * i_size_read because we hold i_mutex.
3080                  */
3081                 if (pos + len > inode->i_size)
3082                         ext4_truncate_failed_write(inode);
3083
3084                 if (ret == -ENOSPC &&
3085                     ext4_should_retry_alloc(inode->i_sb, &retries))
3086                         goto retry_journal;
3087
3088                 put_page(page);
3089                 return ret;
3090         }
3091
3092         *pagep = page;
3093         return ret;
3094 }
3095
3096 /*
3097  * Check if we should update i_disksize
3098  * when write to the end of file but not require block allocation
3099  */
3100 static int ext4_da_should_update_i_disksize(struct page *page,
3101                                             unsigned long offset)
3102 {
3103         struct buffer_head *bh;
3104         struct inode *inode = page->mapping->host;
3105         unsigned int idx;
3106         int i;
3107
3108         bh = page_buffers(page);
3109         idx = offset >> inode->i_blkbits;
3110
3111         for (i = 0; i < idx; i++)
3112                 bh = bh->b_this_page;
3113
3114         if (!buffer_mapped(bh) || (buffer_delay(bh)) || buffer_unwritten(bh))
3115                 return 0;
3116         return 1;
3117 }
3118
3119 static int ext4_da_write_end(struct file *file,
3120                              struct address_space *mapping,
3121                              loff_t pos, unsigned len, unsigned copied,
3122                              struct page *page, void *fsdata)
3123 {
3124         struct inode *inode = mapping->host;
3125         int ret = 0, ret2;
3126         handle_t *handle = ext4_journal_current_handle();
3127         loff_t new_i_size;
3128         unsigned long start, end;
3129         int write_mode = (int)(unsigned long)fsdata;
3130
3131         if (write_mode == FALL_BACK_TO_NONDELALLOC)
3132                 return ext4_write_end(file, mapping, pos,
3133                                       len, copied, page, fsdata);
3134
3135         trace_ext4_da_write_end(inode, pos, len, copied);
3136         start = pos & (PAGE_SIZE - 1);
3137         end = start + copied - 1;
3138
3139         /*
3140          * generic_write_end() will run mark_inode_dirty() if i_size
3141          * changes.  So let's piggyback the i_disksize mark_inode_dirty
3142          * into that.
3143          */
3144         new_i_size = pos + copied;
3145         if (copied && new_i_size > EXT4_I(inode)->i_disksize) {
3146                 if (ext4_has_inline_data(inode) ||
3147                     ext4_da_should_update_i_disksize(page, end)) {
3148                         ext4_update_i_disksize(inode, new_i_size);
3149                         /* We need to mark inode dirty even if
3150                          * new_i_size is less that inode->i_size
3151                          * bu greater than i_disksize.(hint delalloc)
3152                          */
3153                         ext4_mark_inode_dirty(handle, inode);
3154                 }
3155         }
3156
3157         if (write_mode != CONVERT_INLINE_DATA &&
3158             ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA) &&
3159             ext4_has_inline_data(inode))
3160                 ret2 = ext4_da_write_inline_data_end(inode, pos, len, copied,
3161                                                      page);
3162         else
3163                 ret2 = generic_write_end(file, mapping, pos, len, copied,
3164                                                         page, fsdata);
3165
3166         copied = ret2;
3167         if (ret2 < 0)
3168                 ret = ret2;
3169         ret2 = ext4_journal_stop(handle);
3170         if (!ret)
3171                 ret = ret2;
3172
3173         return ret ? ret : copied;
3174 }
3175
3176 static void ext4_da_invalidatepage(struct page *page, unsigned int offset,
3177                                    unsigned int length)
3178 {
3179         /*
3180          * Drop reserved blocks
3181          */
3182         BUG_ON(!PageLocked(page));
3183         if (!page_has_buffers(page))
3184                 goto out;
3185
3186         ext4_da_page_release_reservation(page, offset, length);
3187
3188 out:
3189         ext4_invalidatepage(page, offset, length);
3190
3191         return;
3192 }
3193
3194 /*
3195  * Force all delayed allocation blocks to be allocated for a given inode.
3196  */
3197 int ext4_alloc_da_blocks(struct inode *inode)
3198 {
3199         trace_ext4_alloc_da_blocks(inode);
3200
3201         if (!EXT4_I(inode)->i_reserved_data_blocks)
3202                 return 0;
3203
3204         /*
3205          * We do something simple for now.  The filemap_flush() will
3206          * also start triggering a write of the data blocks, which is
3207          * not strictly speaking necessary (and for users of
3208          * laptop_mode, not even desirable).  However, to do otherwise
3209          * would require replicating code paths in:
3210          *
3211          * ext4_writepages() ->
3212          *    write_cache_pages() ---> (via passed in callback function)
3213          *        __mpage_da_writepage() -->
3214          *           mpage_add_bh_to_extent()
3215          *           mpage_da_map_blocks()
3216          *
3217          * The problem is that write_cache_pages(), located in
3218          * mm/page-writeback.c, marks pages clean in preparation for
3219          * doing I/O, which is not desirable if we're not planning on
3220          * doing I/O at all.
3221          *
3222          * We could call write_cache_pages(), and then redirty all of
3223          * the pages by calling redirty_page_for_writepage() but that
3224          * would be ugly in the extreme.  So instead we would need to
3225          * replicate parts of the code in the above functions,
3226          * simplifying them because we wouldn't actually intend to
3227          * write out the pages, but rather only collect contiguous
3228          * logical block extents, call the multi-block allocator, and
3229          * then update the buffer heads with the block allocations.
3230          *
3231          * For now, though, we'll cheat by calling filemap_flush(),
3232          * which will map the blocks, and start the I/O, but not
3233          * actually wait for the I/O to complete.
3234          */
3235         return filemap_flush(inode->i_mapping);
3236 }
3237
3238 /*
3239  * bmap() is special.  It gets used by applications such as lilo and by
3240  * the swapper to find the on-disk block of a specific piece of data.
3241  *
3242  * Naturally, this is dangerous if the block concerned is still in the
3243  * journal.  If somebody makes a swapfile on an ext4 data-journaling
3244  * filesystem and enables swap, then they may get a nasty shock when the
3245  * data getting swapped to that swapfile suddenly gets overwritten by
3246  * the original zero's written out previously to the journal and
3247  * awaiting writeback in the kernel's buffer cache.
3248  *
3249  * So, if we see any bmap calls here on a modified, data-journaled file,
3250  * take extra steps to flush any blocks which might be in the cache.
3251  */
3252 static sector_t ext4_bmap(struct address_space *mapping, sector_t block)
3253 {
3254         struct inode *inode = mapping->host;
3255         journal_t *journal;
3256         int err;
3257
3258         /*
3259          * We can get here for an inline file via the FIBMAP ioctl
3260          */
3261         if (ext4_has_inline_data(inode))
3262                 return 0;
3263
3264         if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) &&
3265                         test_opt(inode->i_sb, DELALLOC)) {
3266                 /*
3267                  * With delalloc we want to sync the file
3268                  * so that we can make sure we allocate
3269                  * blocks for file
3270                  */
3271                 filemap_write_and_wait(mapping);
3272         }
3273
3274         if (EXT4_JOURNAL(inode) &&
3275             ext4_test_inode_state(inode, EXT4_STATE_JDATA)) {
3276                 /*
3277                  * This is a REALLY heavyweight approach, but the use of
3278                  * bmap on dirty files is expected to be extremely rare:
3279                  * only if we run lilo or swapon on a freshly made file
3280                  * do we expect this to happen.
3281                  *
3282                  * (bmap requires CAP_SYS_RAWIO so this does not
3283                  * represent an unprivileged user DOS attack --- we'd be
3284                  * in trouble if mortal users could trigger this path at
3285                  * will.)
3286                  *
3287                  * NB. EXT4_STATE_JDATA is not set on files other than
3288                  * regular files.  If somebody wants to bmap a directory
3289                  * or symlink and gets confused because the buffer
3290                  * hasn't yet been flushed to disk, they deserve
3291                  * everything they get.
3292                  */
3293
3294                 ext4_clear_inode_state(inode, EXT4_STATE_JDATA);
3295                 journal = EXT4_JOURNAL(inode);
3296                 jbd2_journal_lock_updates(journal);
3297                 err = jbd2_journal_flush(journal);
3298                 jbd2_journal_unlock_updates(journal);
3299
3300                 if (err)
3301                         return 0;
3302         }
3303
3304         return generic_block_bmap(mapping, block, ext4_get_block);
3305 }
3306
3307 static int ext4_readpage(struct file *file, struct page *page)
3308 {
3309         int ret = -EAGAIN;
3310         struct inode *inode = page->mapping->host;
3311
3312         trace_ext4_readpage(page);
3313
3314         if (ext4_has_inline_data(inode))
3315                 ret = ext4_readpage_inline(inode, page);
3316
3317         if (ret == -EAGAIN)
3318                 return ext4_mpage_readpages(page->mapping, NULL, page, 1);
3319
3320         return ret;
3321 }
3322
3323 static int
3324 ext4_readpages(struct file *file, struct address_space *mapping,
3325                 struct list_head *pages, unsigned nr_pages)
3326 {
3327         struct inode *inode = mapping->host;
3328
3329         /* If the file has inline data, no need to do readpages. */
3330         if (ext4_has_inline_data(inode))
3331                 return 0;
3332
3333         return ext4_mpage_readpages(mapping, pages, NULL, nr_pages);
3334 }
3335
3336 static void ext4_invalidatepage(struct page *page, unsigned int offset,
3337                                 unsigned int length)
3338 {
3339         trace_ext4_invalidatepage(page, offset, length);
3340
3341         /* No journalling happens on data buffers when this function is used */
3342         WARN_ON(page_has_buffers(page) && buffer_jbd(page_buffers(page)));
3343
3344         block_invalidatepage(page, offset, length);
3345 }
3346
3347 static int __ext4_journalled_invalidatepage(struct page *page,
3348                                             unsigned int offset,
3349                                             unsigned int length)
3350 {
3351         journal_t *journal = EXT4_JOURNAL(page->mapping->host);
3352
3353         trace_ext4_journalled_invalidatepage(page, offset, length);
3354
3355         /*
3356          * If it's a full truncate we just forget about the pending dirtying
3357          */
3358         if (offset == 0 && length == PAGE_SIZE)
3359                 ClearPageChecked(page);
3360
3361         return jbd2_journal_invalidatepage(journal, page, offset, length);
3362 }
3363
3364 /* Wrapper for aops... */
3365 static void ext4_journalled_invalidatepage(struct page *page,
3366                                            unsigned int offset,
3367                                            unsigned int length)
3368 {
3369         WARN_ON(__ext4_journalled_invalidatepage(page, offset, length) < 0);
3370 }
3371
3372 static int ext4_releasepage(struct page *page, gfp_t wait)
3373 {
3374         journal_t *journal = EXT4_JOURNAL(page->mapping->host);
3375
3376         trace_ext4_releasepage(page);
3377
3378         /* Page has dirty journalled data -> cannot release */
3379         if (PageChecked(page))
3380                 return 0;
3381         if (journal)
3382                 return jbd2_journal_try_to_free_buffers(journal, page, wait);
3383         else
3384                 return try_to_free_buffers(page);
3385 }
3386
3387 static bool ext4_inode_datasync_dirty(struct inode *inode)
3388 {
3389         journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
3390
3391         if (journal)
3392                 return !jbd2_transaction_committed(journal,
3393                                         EXT4_I(inode)->i_datasync_tid);
3394         /* Any metadata buffers to write? */
3395         if (!list_empty(&inode->i_mapping->private_list))
3396                 return true;
3397         return inode->i_state & I_DIRTY_DATASYNC;
3398 }
3399
3400 static int ext4_iomap_begin(struct inode *inode, loff_t offset, loff_t length,
3401                             unsigned flags, struct iomap *iomap)
3402 {
3403         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
3404         unsigned int blkbits = inode->i_blkbits;
3405         unsigned long first_block = offset >> blkbits;
3406         unsigned long last_block = (offset + length - 1) >> blkbits;
3407         struct ext4_map_blocks map;
3408         bool delalloc = false;
3409         int ret;
3410
3411
3412         if (flags & IOMAP_REPORT) {
3413                 if (ext4_has_inline_data(inode)) {
3414                         ret = ext4_inline_data_iomap(inode, iomap);
3415                         if (ret != -EAGAIN) {
3416                                 if (ret == 0 && offset >= iomap->length)
3417                                         ret = -ENOENT;
3418                                 return ret;
3419                         }
3420                 }
3421         } else {
3422                 if (WARN_ON_ONCE(ext4_has_inline_data(inode)))
3423                         return -ERANGE;
3424         }
3425
3426         map.m_lblk = first_block;
3427         map.m_len = last_block - first_block + 1;
3428
3429         if (flags & IOMAP_REPORT) {
3430                 ret = ext4_map_blocks(NULL, inode, &map, 0);
3431                 if (ret < 0)
3432                         return ret;
3433
3434                 if (ret == 0) {
3435                         ext4_lblk_t end = map.m_lblk + map.m_len - 1;
3436                         struct extent_status es;
3437
3438                         ext4_es_find_delayed_extent_range(inode, map.m_lblk, end, &es);
3439
3440                         if (!es.es_len || es.es_lblk > end) {
3441                                 /* entire range is a hole */
3442                         } else if (es.es_lblk > map.m_lblk) {
3443                                 /* range starts with a hole */
3444                                 map.m_len = es.es_lblk - map.m_lblk;
3445                         } else {
3446                                 ext4_lblk_t offs = 0;
3447
3448                                 if (es.es_lblk < map.m_lblk)
3449                                         offs = map.m_lblk - es.es_lblk;
3450                                 map.m_lblk = es.es_lblk + offs;
3451                                 map.m_len = es.es_len - offs;
3452                                 delalloc = true;
3453                         }
3454                 }
3455         } else if (flags & IOMAP_WRITE) {
3456                 int dio_credits;
3457                 handle_t *handle;
3458                 int retries = 0;
3459
3460                 /* Trim mapping request to maximum we can map at once for DIO */
3461                 if (map.m_len > DIO_MAX_BLOCKS)
3462                         map.m_len = DIO_MAX_BLOCKS;
3463                 dio_credits = ext4_chunk_trans_blocks(inode, map.m_len);
3464 retry:
3465                 /*
3466                  * Either we allocate blocks and then we don't get unwritten
3467                  * extent so we have reserved enough credits, or the blocks
3468                  * are already allocated and unwritten and in that case
3469                  * extent conversion fits in the credits as well.
3470                  */
3471                 handle = ext4_journal_start(inode, EXT4_HT_MAP_BLOCKS,
3472                                             dio_credits);
3473                 if (IS_ERR(handle))
3474                         return PTR_ERR(handle);
3475
3476                 ret = ext4_map_blocks(handle, inode, &map,
3477                                       EXT4_GET_BLOCKS_CREATE_ZERO);
3478                 if (ret < 0) {
3479                         ext4_journal_stop(handle);
3480                         if (ret == -ENOSPC &&
3481                             ext4_should_retry_alloc(inode->i_sb, &retries))
3482                                 goto retry;
3483                         return ret;
3484                 }
3485
3486                 /*
3487                  * If we added blocks beyond i_size, we need to make sure they
3488                  * will get truncated if we crash before updating i_size in
3489                  * ext4_iomap_end(). For faults we don't need to do that (and
3490                  * even cannot because for orphan list operations inode_lock is
3491                  * required) - if we happen to instantiate block beyond i_size,
3492                  * it is because we race with truncate which has already added
3493                  * the inode to the orphan list.
3494                  */
3495                 if (!(flags & IOMAP_FAULT) && first_block + map.m_len >
3496                     (i_size_read(inode) + (1 << blkbits) - 1) >> blkbits) {
3497                         int err;
3498
3499                         err = ext4_orphan_add(handle, inode);
3500                         if (err < 0) {
3501                                 ext4_journal_stop(handle);
3502                                 return err;
3503                         }
3504                 }
3505                 ext4_journal_stop(handle);
3506         } else {
3507                 ret = ext4_map_blocks(NULL, inode, &map, 0);
3508                 if (ret < 0)
3509                         return ret;
3510         }
3511
3512         iomap->flags = 0;
3513         if (ext4_inode_datasync_dirty(inode))
3514                 iomap->flags |= IOMAP_F_DIRTY;
3515         iomap->bdev = inode->i_sb->s_bdev;
3516         iomap->dax_dev = sbi->s_daxdev;
3517         iomap->offset = first_block << blkbits;
3518         iomap->length = (u64)map.m_len << blkbits;
3519
3520         if (ret == 0) {
3521                 iomap->type = delalloc ? IOMAP_DELALLOC : IOMAP_HOLE;
3522                 iomap->addr = IOMAP_NULL_ADDR;
3523         } else {
3524                 if (map.m_flags & EXT4_MAP_MAPPED) {
3525                         iomap->type = IOMAP_MAPPED;
3526                 } else if (map.m_flags & EXT4_MAP_UNWRITTEN) {
3527                         iomap->type = IOMAP_UNWRITTEN;
3528                 } else {
3529                         WARN_ON_ONCE(1);
3530                         return -EIO;
3531                 }
3532                 iomap->addr = (u64)map.m_pblk << blkbits;
3533         }
3534
3535         if (map.m_flags & EXT4_MAP_NEW)
3536                 iomap->flags |= IOMAP_F_NEW;
3537
3538         return 0;
3539 }
3540
3541 static int ext4_iomap_end(struct inode *inode, loff_t offset, loff_t length,
3542                           ssize_t written, unsigned flags, struct iomap *iomap)
3543 {
3544         int ret = 0;
3545         handle_t *handle;
3546         int blkbits = inode->i_blkbits;
3547         bool truncate = false;
3548
3549         if (!(flags & IOMAP_WRITE) || (flags & IOMAP_FAULT))
3550                 return 0;
3551
3552         handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
3553         if (IS_ERR(handle)) {
3554                 ret = PTR_ERR(handle);
3555                 goto orphan_del;
3556         }
3557         if (ext4_update_inode_size(inode, offset + written))
3558                 ext4_mark_inode_dirty(handle, inode);
3559         /*
3560          * We may need to truncate allocated but not written blocks beyond EOF.
3561          */
3562         if (iomap->offset + iomap->length > 
3563             ALIGN(inode->i_size, 1 << blkbits)) {
3564                 ext4_lblk_t written_blk, end_blk;
3565
3566                 written_blk = (offset + written) >> blkbits;
3567                 end_blk = (offset + length) >> blkbits;
3568                 if (written_blk < end_blk && ext4_can_truncate(inode))
3569                         truncate = true;
3570         }
3571         /*
3572          * Remove inode from orphan list if we were extending a inode and
3573          * everything went fine.
3574          */
3575         if (!truncate && inode->i_nlink &&
3576             !list_empty(&EXT4_I(inode)->i_orphan))
3577                 ext4_orphan_del(handle, inode);
3578         ext4_journal_stop(handle);
3579         if (truncate) {
3580                 ext4_truncate_failed_write(inode);
3581 orphan_del:
3582                 /*
3583                  * If truncate failed early the inode might still be on the
3584                  * orphan list; we need to make sure the inode is removed from
3585                  * the orphan list in that case.
3586                  */
3587                 if (inode->i_nlink)
3588                         ext4_orphan_del(NULL, inode);
3589         }
3590         return ret;
3591 }
3592
3593 const struct iomap_ops ext4_iomap_ops = {
3594         .iomap_begin            = ext4_iomap_begin,
3595         .iomap_end              = ext4_iomap_end,
3596 };
3597
3598 static int ext4_end_io_dio(struct kiocb *iocb, loff_t offset,
3599                             ssize_t size, void *private)
3600 {
3601         ext4_io_end_t *io_end = private;
3602
3603         /* if not async direct IO just return */
3604         if (!io_end)
3605                 return 0;
3606
3607         ext_debug("ext4_end_io_dio(): io_end 0x%p "
3608                   "for inode %lu, iocb 0x%p, offset %llu, size %zd\n",
3609                   io_end, io_end->inode->i_ino, iocb, offset, size);
3610
3611         /*
3612          * Error during AIO DIO. We cannot convert unwritten extents as the
3613          * data was not written. Just clear the unwritten flag and drop io_end.
3614          */
3615         if (size <= 0) {
3616                 ext4_clear_io_unwritten_flag(io_end);
3617                 size = 0;
3618         }
3619         io_end->offset = offset;
3620         io_end->size = size;
3621         ext4_put_io_end(io_end);
3622
3623         return 0;
3624 }
3625
3626 /*
3627  * Handling of direct IO writes.
3628  *
3629  * For ext4 extent files, ext4 will do direct-io write even to holes,
3630  * preallocated extents, and those write extend the file, no need to
3631  * fall back to buffered IO.
3632  *
3633  * For holes, we fallocate those blocks, mark them as unwritten
3634  * If those blocks were preallocated, we mark sure they are split, but
3635  * still keep the range to write as unwritten.
3636  *
3637  * The unwritten extents will be converted to written when DIO is completed.
3638  * For async direct IO, since the IO may still pending when return, we
3639  * set up an end_io call back function, which will do the conversion
3640  * when async direct IO completed.
3641  *
3642  * If the O_DIRECT write will extend the file then add this inode to the
3643  * orphan list.  So recovery will truncate it back to the original size
3644  * if the machine crashes during the write.
3645  *
3646  */
3647 static ssize_t ext4_direct_IO_write(struct kiocb *iocb, struct iov_iter *iter)
3648 {
3649         struct file *file = iocb->ki_filp;
3650         struct inode *inode = file->f_mapping->host;
3651         struct ext4_inode_info *ei = EXT4_I(inode);
3652         ssize_t ret;
3653         loff_t offset = iocb->ki_pos;
3654         size_t count = iov_iter_count(iter);
3655         int overwrite = 0;
3656         get_block_t *get_block_func = NULL;
3657         int dio_flags = 0;
3658         loff_t final_size = offset + count;
3659         int orphan = 0;
3660         handle_t *handle;
3661
3662         if (final_size > inode->i_size) {
3663                 /* Credits for sb + inode write */
3664                 handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
3665                 if (IS_ERR(handle)) {
3666                         ret = PTR_ERR(handle);
3667                         goto out;
3668                 }
3669                 ret = ext4_orphan_add(handle, inode);
3670                 if (ret) {
3671                         ext4_journal_stop(handle);
3672                         goto out;
3673                 }
3674                 orphan = 1;
3675                 ei->i_disksize = inode->i_size;
3676                 ext4_journal_stop(handle);
3677         }
3678
3679         BUG_ON(iocb->private == NULL);
3680
3681         /*
3682          * Make all waiters for direct IO properly wait also for extent
3683          * conversion. This also disallows race between truncate() and
3684          * overwrite DIO as i_dio_count needs to be incremented under i_mutex.
3685          */
3686         inode_dio_begin(inode);
3687
3688         /* If we do a overwrite dio, i_mutex locking can be released */
3689         overwrite = *((int *)iocb->private);
3690
3691         if (overwrite)
3692                 inode_unlock(inode);
3693
3694         /*
3695          * For extent mapped files we could direct write to holes and fallocate.
3696          *
3697          * Allocated blocks to fill the hole are marked as unwritten to prevent
3698          * parallel buffered read to expose the stale data before DIO complete
3699          * the data IO.
3700          *
3701          * As to previously fallocated extents, ext4 get_block will just simply
3702          * mark the buffer mapped but still keep the extents unwritten.
3703          *
3704          * For non AIO case, we will convert those unwritten extents to written
3705          * after return back from blockdev_direct_IO. That way we save us from
3706          * allocating io_end structure and also the overhead of offloading
3707          * the extent convertion to a workqueue.
3708          *
3709          * For async DIO, the conversion needs to be deferred when the
3710          * IO is completed. The ext4 end_io callback function will be
3711          * called to take care of the conversion work.  Here for async
3712          * case, we allocate an io_end structure to hook to the iocb.
3713          */
3714         iocb->private = NULL;
3715         if (overwrite)
3716                 get_block_func = ext4_dio_get_block_overwrite;
3717         else if (!ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS) ||
3718                    round_down(offset, i_blocksize(inode)) >= inode->i_size) {
3719                 get_block_func = ext4_dio_get_block;
3720                 dio_flags = DIO_LOCKING | DIO_SKIP_HOLES;
3721         } else if (is_sync_kiocb(iocb)) {
3722                 get_block_func = ext4_dio_get_block_unwritten_sync;
3723                 dio_flags = DIO_LOCKING;
3724         } else {
3725                 get_block_func = ext4_dio_get_block_unwritten_async;
3726                 dio_flags = DIO_LOCKING;
3727         }
3728         ret = __blockdev_direct_IO(iocb, inode, inode->i_sb->s_bdev, iter,
3729                                    get_block_func, ext4_end_io_dio, NULL,
3730                                    dio_flags);
3731
3732         if (ret > 0 && !overwrite && ext4_test_inode_state(inode,
3733                                                 EXT4_STATE_DIO_UNWRITTEN)) {
3734                 int err;
3735                 /*
3736                  * for non AIO case, since the IO is already
3737                  * completed, we could do the conversion right here
3738                  */
3739                 err = ext4_convert_unwritten_extents(NULL, inode,
3740                                                      offset, ret);
3741                 if (err < 0)
3742                         ret = err;
3743                 ext4_clear_inode_state(inode, EXT4_STATE_DIO_UNWRITTEN);
3744         }
3745
3746         inode_dio_end(inode);
3747         /* take i_mutex locking again if we do a ovewrite dio */
3748         if (overwrite)
3749                 inode_lock(inode);
3750
3751         if (ret < 0 && final_size > inode->i_size)
3752                 ext4_truncate_failed_write(inode);
3753
3754         /* Handle extending of i_size after direct IO write */
3755         if (orphan) {
3756                 int err;
3757
3758                 /* Credits for sb + inode write */
3759                 handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
3760                 if (IS_ERR(handle)) {
3761                         /* This is really bad luck. We've written the data
3762                          * but cannot extend i_size. Bail out and pretend
3763                          * the write failed... */
3764                         ret = PTR_ERR(handle);
3765                         if (inode->i_nlink)
3766                                 ext4_orphan_del(NULL, inode);
3767
3768                         goto out;
3769                 }
3770                 if (inode->i_nlink)
3771                         ext4_orphan_del(handle, inode);
3772                 if (ret > 0) {
3773                         loff_t end = offset + ret;
3774                         if (end > inode->i_size) {
3775                                 ei->i_disksize = end;
3776                                 i_size_write(inode, end);
3777                                 /*
3778                                  * We're going to return a positive `ret'
3779                                  * here due to non-zero-length I/O, so there's
3780                                  * no way of reporting error returns from
3781                                  * ext4_mark_inode_dirty() to userspace.  So
3782                                  * ignore it.
3783                                  */
3784                                 ext4_mark_inode_dirty(handle, inode);
3785                         }
3786                 }
3787                 err = ext4_journal_stop(handle);
3788                 if (ret == 0)
3789                         ret = err;
3790         }
3791 out:
3792         return ret;
3793 }
3794
3795 static ssize_t ext4_direct_IO_read(struct kiocb *iocb, struct iov_iter *iter)
3796 {
3797         struct address_space *mapping = iocb->ki_filp->f_mapping;
3798         struct inode *inode = mapping->host;
3799         size_t count = iov_iter_count(iter);
3800         ssize_t ret;
3801
3802         /*
3803          * Shared inode_lock is enough for us - it protects against concurrent
3804          * writes & truncates and since we take care of writing back page cache,
3805          * we are protected against page writeback as well.
3806          */
3807         inode_lock_shared(inode);
3808         ret = filemap_write_and_wait_range(mapping, iocb->ki_pos,
3809                                            iocb->ki_pos + count - 1);
3810         if (ret)
3811                 goto out_unlock;
3812         ret = __blockdev_direct_IO(iocb, inode, inode->i_sb->s_bdev,
3813                                    iter, ext4_dio_get_block, NULL, NULL, 0);
3814 out_unlock:
3815         inode_unlock_shared(inode);
3816         return ret;
3817 }
3818
3819 static ssize_t ext4_direct_IO(struct kiocb *iocb, struct iov_iter *iter)
3820 {
3821         struct file *file = iocb->ki_filp;
3822         struct inode *inode = file->f_mapping->host;
3823         size_t count = iov_iter_count(iter);
3824         loff_t offset = iocb->ki_pos;
3825         ssize_t ret;
3826
3827 #ifdef CONFIG_EXT4_FS_ENCRYPTION
3828         if (ext4_encrypted_inode(inode) && S_ISREG(inode->i_mode))
3829                 return 0;
3830 #endif
3831
3832         /*
3833          * If we are doing data journalling we don't support O_DIRECT
3834          */
3835         if (ext4_should_journal_data(inode))
3836                 return 0;
3837
3838         /* Let buffer I/O handle the inline data case. */
3839         if (ext4_has_inline_data(inode))
3840                 return 0;
3841
3842         /* DAX uses iomap path now */
3843         if (WARN_ON_ONCE(IS_DAX(inode)))
3844                 return 0;
3845
3846         trace_ext4_direct_IO_enter(inode, offset, count, iov_iter_rw(iter));
3847         if (iov_iter_rw(iter) == READ)
3848                 ret = ext4_direct_IO_read(iocb, iter);
3849         else
3850                 ret = ext4_direct_IO_write(iocb, iter);
3851         trace_ext4_direct_IO_exit(inode, offset, count, iov_iter_rw(iter), ret);
3852         return ret;
3853 }
3854
3855 /*
3856  * Pages can be marked dirty completely asynchronously from ext4's journalling
3857  * activity.  By filemap_sync_pte(), try_to_unmap_one(), etc.  We cannot do
3858  * much here because ->set_page_dirty is called under VFS locks.  The page is
3859  * not necessarily locked.
3860  *
3861  * We cannot just dirty the page and leave attached buffers clean, because the
3862  * buffers' dirty state is "definitive".  We cannot just set the buffers dirty
3863  * or jbddirty because all the journalling code will explode.
3864  *
3865  * So what we do is to mark the page "pending dirty" and next time writepage
3866  * is called, propagate that into the buffers appropriately.
3867  */
3868 static int ext4_journalled_set_page_dirty(struct page *page)
3869 {
3870         SetPageChecked(page);
3871         return __set_page_dirty_nobuffers(page);
3872 }
3873
3874 static int ext4_set_page_dirty(struct page *page)
3875 {
3876         WARN_ON_ONCE(!PageLocked(page) && !PageDirty(page));
3877         WARN_ON_ONCE(!page_has_buffers(page));
3878         return __set_page_dirty_buffers(page);
3879 }
3880
3881 static const struct address_space_operations ext4_aops = {
3882         .readpage               = ext4_readpage,
3883         .readpages              = ext4_readpages,
3884         .writepage              = ext4_writepage,
3885         .writepages             = ext4_writepages,
3886         .write_begin            = ext4_write_begin,
3887         .write_end              = ext4_write_end,
3888         .set_page_dirty         = ext4_set_page_dirty,
3889         .bmap                   = ext4_bmap,
3890         .invalidatepage         = ext4_invalidatepage,
3891         .releasepage            = ext4_releasepage,
3892         .direct_IO              = ext4_direct_IO,
3893         .migratepage            = buffer_migrate_page,
3894         .is_partially_uptodate  = block_is_partially_uptodate,
3895         .error_remove_page      = generic_error_remove_page,
3896 };
3897
3898 static const struct address_space_operations ext4_journalled_aops = {
3899         .readpage               = ext4_readpage,
3900         .readpages              = ext4_readpages,
3901         .writepage              = ext4_writepage,
3902         .writepages             = ext4_writepages,
3903         .write_begin            = ext4_write_begin,
3904         .write_end              = ext4_journalled_write_end,
3905         .set_page_dirty         = ext4_journalled_set_page_dirty,
3906         .bmap                   = ext4_bmap,
3907         .invalidatepage         = ext4_journalled_invalidatepage,
3908         .releasepage            = ext4_releasepage,
3909         .direct_IO              = ext4_direct_IO,
3910         .is_partially_uptodate  = block_is_partially_uptodate,
3911         .error_remove_page      = generic_error_remove_page,
3912 };
3913
3914 static const struct address_space_operations ext4_da_aops = {
3915         .readpage               = ext4_readpage,
3916         .readpages              = ext4_readpages,
3917         .writepage              = ext4_writepage,
3918         .writepages             = ext4_writepages,
3919         .write_begin            = ext4_da_write_begin,
3920         .write_end              = ext4_da_write_end,
3921         .set_page_dirty         = ext4_set_page_dirty,
3922         .bmap                   = ext4_bmap,
3923         .invalidatepage         = ext4_da_invalidatepage,
3924         .releasepage            = ext4_releasepage,
3925         .direct_IO              = ext4_direct_IO,
3926         .migratepage            = buffer_migrate_page,
3927         .is_partially_uptodate  = block_is_partially_uptodate,
3928         .error_remove_page      = generic_error_remove_page,
3929 };
3930
3931 void ext4_set_aops(struct inode *inode)
3932 {
3933         switch (ext4_inode_journal_mode(inode)) {
3934         case EXT4_INODE_ORDERED_DATA_MODE:
3935         case EXT4_INODE_WRITEBACK_DATA_MODE:
3936                 break;
3937         case EXT4_INODE_JOURNAL_DATA_MODE:
3938                 inode->i_mapping->a_ops = &ext4_journalled_aops;
3939                 return;
3940         default:
3941                 BUG();
3942         }
3943         if (test_opt(inode->i_sb, DELALLOC))
3944                 inode->i_mapping->a_ops = &ext4_da_aops;
3945         else
3946                 inode->i_mapping->a_ops = &ext4_aops;
3947 }
3948
3949 static int __ext4_block_zero_page_range(handle_t *handle,
3950                 struct address_space *mapping, loff_t from, loff_t length)
3951 {
3952         ext4_fsblk_t index = from >> PAGE_SHIFT;
3953         unsigned offset = from & (PAGE_SIZE-1);
3954         unsigned blocksize, pos;
3955         ext4_lblk_t iblock;
3956         struct inode *inode = mapping->host;
3957         struct buffer_head *bh;
3958         struct page *page;
3959         int err = 0;
3960
3961         page = find_or_create_page(mapping, from >> PAGE_SHIFT,
3962                                    mapping_gfp_constraint(mapping, ~__GFP_FS));
3963         if (!page)
3964                 return -ENOMEM;
3965
3966         blocksize = inode->i_sb->s_blocksize;
3967
3968         iblock = index << (PAGE_SHIFT - inode->i_sb->s_blocksize_bits);
3969
3970         if (!page_has_buffers(page))
3971                 create_empty_buffers(page, blocksize, 0);
3972
3973         /* Find the buffer that contains "offset" */
3974         bh = page_buffers(page);
3975         pos = blocksize;
3976         while (offset >= pos) {
3977                 bh = bh->b_this_page;
3978                 iblock++;
3979                 pos += blocksize;
3980         }
3981         if (buffer_freed(bh)) {
3982                 BUFFER_TRACE(bh, "freed: skip");
3983                 goto unlock;
3984         }
3985         if (!buffer_mapped(bh)) {
3986                 BUFFER_TRACE(bh, "unmapped");
3987                 ext4_get_block(inode, iblock, bh, 0);
3988                 /* unmapped? It's a hole - nothing to do */
3989                 if (!buffer_mapped(bh)) {
3990                         BUFFER_TRACE(bh, "still unmapped");
3991                         goto unlock;
3992                 }
3993         }
3994
3995         /* Ok, it's mapped. Make sure it's up-to-date */
3996         if (PageUptodate(page))
3997                 set_buffer_uptodate(bh);
3998
3999         if (!buffer_uptodate(bh)) {
4000                 err = -EIO;
4001                 ll_rw_block(REQ_OP_READ, 0, 1, &bh);
4002                 wait_on_buffer(bh);
4003                 /* Uhhuh. Read error. Complain and punt. */
4004                 if (!buffer_uptodate(bh))
4005                         goto unlock;
4006                 if (S_ISREG(inode->i_mode) &&
4007                     ext4_encrypted_inode(inode)) {
4008                         /* We expect the key to be set. */
4009                         BUG_ON(!fscrypt_has_encryption_key(inode));
4010                         BUG_ON(blocksize != PAGE_SIZE);
4011                         WARN_ON_ONCE(fscrypt_decrypt_page(page->mapping->host,
4012                                                 page, PAGE_SIZE, 0, page->index));
4013                 }
4014         }
4015         if (ext4_should_journal_data(inode)) {
4016                 BUFFER_TRACE(bh, "get write access");
4017                 err = ext4_journal_get_write_access(handle, bh);
4018                 if (err)
4019                         goto unlock;
4020         }
4021         zero_user(page, offset, length);
4022         BUFFER_TRACE(bh, "zeroed end of block");
4023
4024         if (ext4_should_journal_data(inode)) {
4025                 err = ext4_handle_dirty_metadata(handle, inode, bh);
4026         } else {
4027                 err = 0;
4028                 mark_buffer_dirty(bh);
4029                 if (ext4_should_order_data(inode))
4030                         err = ext4_jbd2_inode_add_write(handle, inode);
4031         }
4032
4033 unlock:
4034         unlock_page(page);
4035         put_page(page);
4036         return err;
4037 }
4038
4039 /*
4040  * ext4_block_zero_page_range() zeros out a mapping of length 'length'
4041  * starting from file offset 'from'.  The range to be zero'd must
4042  * be contained with in one block.  If the specified range exceeds
4043  * the end of the block it will be shortened to end of the block
4044  * that cooresponds to 'from'
4045  */
4046 static int ext4_block_zero_page_range(handle_t *handle,
4047                 struct address_space *mapping, loff_t from, loff_t length)
4048 {
4049         struct inode *inode = mapping->host;
4050         unsigned offset = from & (PAGE_SIZE-1);
4051         unsigned blocksize = inode->i_sb->s_blocksize;
4052         unsigned max = blocksize - (offset & (blocksize - 1));
4053
4054         /*
4055          * correct length if it does not fall between
4056          * 'from' and the end of the block
4057          */
4058         if (length > max || length < 0)
4059                 length = max;
4060
4061         if (IS_DAX(inode)) {
4062                 return iomap_zero_range(inode, from, length, NULL,
4063                                         &ext4_iomap_ops);
4064         }
4065         return __ext4_block_zero_page_range(handle, mapping, from, length);
4066 }
4067
4068 /*
4069  * ext4_block_truncate_page() zeroes out a mapping from file offset `from'
4070  * up to the end of the block which corresponds to `from'.
4071  * This required during truncate. We need to physically zero the tail end
4072  * of that block so it doesn't yield old data if the file is later grown.
4073  */
4074 static int ext4_block_truncate_page(handle_t *handle,
4075                 struct address_space *mapping, loff_t from)
4076 {
4077         unsigned offset = from & (PAGE_SIZE-1);
4078         unsigned length;
4079         unsigned blocksize;
4080         struct inode *inode = mapping->host;
4081
4082         /* If we are processing an encrypted inode during orphan list handling */
4083         if (ext4_encrypted_inode(inode) && !fscrypt_has_encryption_key(inode))
4084                 return 0;
4085
4086         blocksize = inode->i_sb->s_blocksize;
4087         length = blocksize - (offset & (blocksize - 1));
4088
4089         return ext4_block_zero_page_range(handle, mapping, from, length);
4090 }
4091
4092 int ext4_zero_partial_blocks(handle_t *handle, struct inode *inode,
4093                              loff_t lstart, loff_t length)
4094 {
4095         struct super_block *sb = inode->i_sb;
4096         struct address_space *mapping = inode->i_mapping;
4097         unsigned partial_start, partial_end;
4098         ext4_fsblk_t start, end;
4099         loff_t byte_end = (lstart + length - 1);
4100         int err = 0;
4101
4102         partial_start = lstart & (sb->s_blocksize - 1);
4103         partial_end = byte_end & (sb->s_blocksize - 1);
4104
4105         start = lstart >> sb->s_blocksize_bits;
4106         end = byte_end >> sb->s_blocksize_bits;
4107
4108         /* Handle partial zero within the single block */
4109         if (start == end &&
4110             (partial_start || (partial_end != sb->s_blocksize - 1))) {
4111                 err = ext4_block_zero_page_range(handle, mapping,
4112                                                  lstart, length);
4113                 return err;
4114         }
4115         /* Handle partial zero out on the start of the range */
4116         if (partial_start) {
4117                 err = ext4_block_zero_page_range(handle, mapping,
4118                                                  lstart, sb->s_blocksize);
4119                 if (err)
4120                         return err;
4121         }
4122         /* Handle partial zero out on the end of the range */
4123         if (partial_end != sb->s_blocksize - 1)
4124                 err = ext4_block_zero_page_range(handle, mapping,
4125                                                  byte_end - partial_end,
4126                                                  partial_end + 1);
4127         return err;
4128 }
4129
4130 int ext4_can_truncate(struct inode *inode)
4131 {
4132         if (S_ISREG(inode->i_mode))
4133                 return 1;
4134         if (S_ISDIR(inode->i_mode))
4135                 return 1;
4136         if (S_ISLNK(inode->i_mode))
4137                 return !ext4_inode_is_fast_symlink(inode);
4138         return 0;
4139 }
4140
4141 /*
4142  * We have to make sure i_disksize gets properly updated before we truncate
4143  * page cache due to hole punching or zero range. Otherwise i_disksize update
4144  * can get lost as it may have been postponed to submission of writeback but
4145  * that will never happen after we truncate page cache.
4146  */
4147 int ext4_update_disksize_before_punch(struct inode *inode, loff_t offset,
4148                                       loff_t len)
4149 {
4150         handle_t *handle;
4151         loff_t size = i_size_read(inode);
4152
4153         WARN_ON(!inode_is_locked(inode));
4154         if (offset > size || offset + len < size)
4155                 return 0;
4156
4157         if (EXT4_I(inode)->i_disksize >= size)
4158                 return 0;
4159
4160         handle = ext4_journal_start(inode, EXT4_HT_MISC, 1);
4161         if (IS_ERR(handle))
4162                 return PTR_ERR(handle);
4163         ext4_update_i_disksize(inode, size);
4164         ext4_mark_inode_dirty(handle, inode);
4165         ext4_journal_stop(handle);
4166
4167         return 0;
4168 }
4169
4170 /*
4171  * ext4_punch_hole: punches a hole in a file by releasing the blocks
4172  * associated with the given offset and length
4173  *
4174  * @inode:  File inode
4175  * @offset: The offset where the hole will begin
4176  * @len:    The length of the hole
4177  *
4178  * Returns: 0 on success or negative on failure
4179  */
4180
4181 int ext4_punch_hole(struct inode *inode, loff_t offset, loff_t length)
4182 {
4183         struct super_block *sb = inode->i_sb;
4184         ext4_lblk_t first_block, stop_block;
4185         struct address_space *mapping = inode->i_mapping;
4186         loff_t first_block_offset, last_block_offset;
4187         handle_t *handle;
4188         unsigned int credits;
4189         int ret = 0;
4190
4191         if (!S_ISREG(inode->i_mode))
4192                 return -EOPNOTSUPP;
4193
4194         trace_ext4_punch_hole(inode, offset, length, 0);
4195
4196         /*
4197          * Write out all dirty pages to avoid race conditions
4198          * Then release them.
4199          */
4200         if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) {
4201                 ret = filemap_write_and_wait_range(mapping, offset,
4202                                                    offset + length - 1);
4203                 if (ret)
4204                         return ret;
4205         }
4206
4207         inode_lock(inode);
4208
4209         /* No need to punch hole beyond i_size */
4210         if (offset >= inode->i_size)
4211                 goto out_mutex;
4212
4213         /*
4214          * If the hole extends beyond i_size, set the hole
4215          * to end after the page that contains i_size
4216          */
4217         if (offset + length > inode->i_size) {
4218                 length = inode->i_size +
4219                    PAGE_SIZE - (inode->i_size & (PAGE_SIZE - 1)) -
4220                    offset;
4221         }
4222
4223         if (offset & (sb->s_blocksize - 1) ||
4224             (offset + length) & (sb->s_blocksize - 1)) {
4225                 /*
4226                  * Attach jinode to inode for jbd2 if we do any zeroing of
4227                  * partial block
4228                  */
4229                 ret = ext4_inode_attach_jinode(inode);
4230                 if (ret < 0)
4231                         goto out_mutex;
4232
4233         }
4234
4235         /* Wait all existing dio workers, newcomers will block on i_mutex */
4236         ext4_inode_block_unlocked_dio(inode);
4237         inode_dio_wait(inode);
4238
4239         /*
4240          * Prevent page faults from reinstantiating pages we have released from
4241          * page cache.
4242          */
4243         down_write(&EXT4_I(inode)->i_mmap_sem);
4244         first_block_offset = round_up(offset, sb->s_blocksize);
4245         last_block_offset = round_down((offset + length), sb->s_blocksize) - 1;
4246
4247         /* Now release the pages and zero block aligned part of pages*/
4248         if (last_block_offset > first_block_offset) {
4249                 ret = ext4_update_disksize_before_punch(inode, offset, length);
4250                 if (ret)
4251                         goto out_dio;
4252                 truncate_pagecache_range(inode, first_block_offset,
4253                                          last_block_offset);
4254         }
4255
4256         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4257                 credits = ext4_writepage_trans_blocks(inode);
4258         else
4259                 credits = ext4_blocks_for_truncate(inode);
4260         handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits);
4261         if (IS_ERR(handle)) {
4262                 ret = PTR_ERR(handle);
4263                 ext4_std_error(sb, ret);
4264                 goto out_dio;
4265         }
4266
4267         ret = ext4_zero_partial_blocks(handle, inode, offset,
4268                                        length);
4269         if (ret)
4270                 goto out_stop;
4271
4272         first_block = (offset + sb->s_blocksize - 1) >>
4273                 EXT4_BLOCK_SIZE_BITS(sb);
4274         stop_block = (offset + length) >> EXT4_BLOCK_SIZE_BITS(sb);
4275
4276         /* If there are no blocks to remove, return now */
4277         if (first_block >= stop_block)
4278                 goto out_stop;
4279
4280         down_write(&EXT4_I(inode)->i_data_sem);
4281         ext4_discard_preallocations(inode);
4282
4283         ret = ext4_es_remove_extent(inode, first_block,
4284                                     stop_block - first_block);
4285         if (ret) {
4286                 up_write(&EXT4_I(inode)->i_data_sem);
4287                 goto out_stop;
4288         }
4289
4290         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4291                 ret = ext4_ext_remove_space(inode, first_block,
4292                                             stop_block - 1);
4293         else
4294                 ret = ext4_ind_remove_space(handle, inode, first_block,
4295                                             stop_block);
4296
4297         up_write(&EXT4_I(inode)->i_data_sem);
4298         if (IS_SYNC(inode))
4299                 ext4_handle_sync(handle);
4300
4301         inode->i_mtime = inode->i_ctime = current_time(inode);
4302         ext4_mark_inode_dirty(handle, inode);
4303         if (ret >= 0)
4304                 ext4_update_inode_fsync_trans(handle, inode, 1);
4305 out_stop:
4306         ext4_journal_stop(handle);
4307 out_dio:
4308         up_write(&EXT4_I(inode)->i_mmap_sem);
4309         ext4_inode_resume_unlocked_dio(inode);
4310 out_mutex:
4311         inode_unlock(inode);
4312         return ret;
4313 }
4314
4315 int ext4_inode_attach_jinode(struct inode *inode)
4316 {
4317         struct ext4_inode_info *ei = EXT4_I(inode);
4318         struct jbd2_inode *jinode;
4319
4320         if (ei->jinode || !EXT4_SB(inode->i_sb)->s_journal)
4321                 return 0;
4322
4323         jinode = jbd2_alloc_inode(GFP_KERNEL);
4324         spin_lock(&inode->i_lock);
4325         if (!ei->jinode) {
4326                 if (!jinode) {
4327                         spin_unlock(&inode->i_lock);
4328                         return -ENOMEM;
4329                 }
4330                 ei->jinode = jinode;
4331                 jbd2_journal_init_jbd_inode(ei->jinode, inode);
4332                 jinode = NULL;
4333         }
4334         spin_unlock(&inode->i_lock);
4335         if (unlikely(jinode != NULL))
4336                 jbd2_free_inode(jinode);
4337         return 0;
4338 }
4339
4340 /*
4341  * ext4_truncate()
4342  *
4343  * We block out ext4_get_block() block instantiations across the entire
4344  * transaction, and VFS/VM ensures that ext4_truncate() cannot run
4345  * simultaneously on behalf of the same inode.
4346  *
4347  * As we work through the truncate and commit bits of it to the journal there
4348  * is one core, guiding principle: the file's tree must always be consistent on
4349  * disk.  We must be able to restart the truncate after a crash.
4350  *
4351  * The file's tree may be transiently inconsistent in memory (although it
4352  * probably isn't), but whenever we close off and commit a journal transaction,
4353  * the contents of (the filesystem + the journal) must be consistent and
4354  * restartable.  It's pretty simple, really: bottom up, right to left (although
4355  * left-to-right works OK too).
4356  *
4357  * Note that at recovery time, journal replay occurs *before* the restart of
4358  * truncate against the orphan inode list.
4359  *
4360  * The committed inode has the new, desired i_size (which is the same as
4361  * i_disksize in this case).  After a crash, ext4_orphan_cleanup() will see
4362  * that this inode's truncate did not complete and it will again call
4363  * ext4_truncate() to have another go.  So there will be instantiated blocks
4364  * to the right of the truncation point in a crashed ext4 filesystem.  But
4365  * that's fine - as long as they are linked from the inode, the post-crash
4366  * ext4_truncate() run will find them and release them.
4367  */
4368 int ext4_truncate(struct inode *inode)
4369 {
4370         struct ext4_inode_info *ei = EXT4_I(inode);
4371         unsigned int credits;
4372         int err = 0;
4373         handle_t *handle;
4374         struct address_space *mapping = inode->i_mapping;
4375
4376         /*
4377          * There is a possibility that we're either freeing the inode
4378          * or it's a completely new inode. In those cases we might not
4379          * have i_mutex locked because it's not necessary.
4380          */
4381         if (!(inode->i_state & (I_NEW|I_FREEING)))
4382                 WARN_ON(!inode_is_locked(inode));
4383         trace_ext4_truncate_enter(inode);
4384
4385         if (!ext4_can_truncate(inode))
4386                 return 0;
4387
4388         ext4_clear_inode_flag(inode, EXT4_INODE_EOFBLOCKS);
4389
4390         if (inode->i_size == 0 && !test_opt(inode->i_sb, NO_AUTO_DA_ALLOC))
4391                 ext4_set_inode_state(inode, EXT4_STATE_DA_ALLOC_CLOSE);
4392
4393         if (ext4_has_inline_data(inode)) {
4394                 int has_inline = 1;
4395
4396                 err = ext4_inline_data_truncate(inode, &has_inline);
4397                 if (err)
4398                         return err;
4399                 if (has_inline)
4400                         return 0;
4401         }
4402
4403         /* If we zero-out tail of the page, we have to create jinode for jbd2 */
4404         if (inode->i_size & (inode->i_sb->s_blocksize - 1)) {
4405                 if (ext4_inode_attach_jinode(inode) < 0)
4406                         return 0;
4407         }
4408
4409         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4410                 credits = ext4_writepage_trans_blocks(inode);
4411         else
4412                 credits = ext4_blocks_for_truncate(inode);
4413
4414         handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits);
4415         if (IS_ERR(handle))
4416                 return PTR_ERR(handle);
4417
4418         if (inode->i_size & (inode->i_sb->s_blocksize - 1))
4419                 ext4_block_truncate_page(handle, mapping, inode->i_size);
4420
4421         /*
4422          * We add the inode to the orphan list, so that if this
4423          * truncate spans multiple transactions, and we crash, we will
4424          * resume the truncate when the filesystem recovers.  It also
4425          * marks the inode dirty, to catch the new size.
4426          *
4427          * Implication: the file must always be in a sane, consistent
4428          * truncatable state while each transaction commits.
4429          */
4430         err = ext4_orphan_add(handle, inode);
4431         if (err)
4432                 goto out_stop;
4433
4434         down_write(&EXT4_I(inode)->i_data_sem);
4435
4436         ext4_discard_preallocations(inode);
4437
4438         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4439                 err = ext4_ext_truncate(handle, inode);
4440         else
4441                 ext4_ind_truncate(handle, inode);
4442
4443         up_write(&ei->i_data_sem);
4444         if (err)
4445                 goto out_stop;
4446
4447         if (IS_SYNC(inode))
4448                 ext4_handle_sync(handle);
4449
4450 out_stop:
4451         /*
4452          * If this was a simple ftruncate() and the file will remain alive,
4453          * then we need to clear up the orphan record which we created above.
4454          * However, if this was a real unlink then we were called by
4455          * ext4_evict_inode(), and we allow that function to clean up the
4456          * orphan info for us.
4457          */
4458         if (inode->i_nlink)
4459                 ext4_orphan_del(handle, inode);
4460
4461         inode->i_mtime = inode->i_ctime = current_time(inode);
4462         ext4_mark_inode_dirty(handle, inode);
4463         ext4_journal_stop(handle);
4464
4465         trace_ext4_truncate_exit(inode);
4466         return err;
4467 }
4468
4469 /*
4470  * ext4_get_inode_loc returns with an extra refcount against the inode's
4471  * underlying buffer_head on success. If 'in_mem' is true, we have all
4472  * data in memory that is needed to recreate the on-disk version of this
4473  * inode.
4474  */
4475 static int __ext4_get_inode_loc(struct inode *inode,
4476                                 struct ext4_iloc *iloc, int in_mem)
4477 {
4478         struct ext4_group_desc  *gdp;
4479         struct buffer_head      *bh;
4480         struct super_block      *sb = inode->i_sb;
4481         ext4_fsblk_t            block;
4482         int                     inodes_per_block, inode_offset;
4483
4484         iloc->bh = NULL;
4485         if (!ext4_valid_inum(sb, inode->i_ino))
4486                 return -EFSCORRUPTED;
4487
4488         iloc->block_group = (inode->i_ino - 1) / EXT4_INODES_PER_GROUP(sb);
4489         gdp = ext4_get_group_desc(sb, iloc->block_group, NULL);
4490         if (!gdp)
4491                 return -EIO;
4492
4493         /*
4494          * Figure out the offset within the block group inode table
4495          */
4496         inodes_per_block = EXT4_SB(sb)->s_inodes_per_block;
4497         inode_offset = ((inode->i_ino - 1) %
4498                         EXT4_INODES_PER_GROUP(sb));
4499         block = ext4_inode_table(sb, gdp) + (inode_offset / inodes_per_block);
4500         iloc->offset = (inode_offset % inodes_per_block) * EXT4_INODE_SIZE(sb);
4501
4502         bh = sb_getblk(sb, block);
4503         if (unlikely(!bh))
4504                 return -ENOMEM;
4505         if (!buffer_uptodate(bh)) {
4506                 lock_buffer(bh);
4507
4508                 /*
4509                  * If the buffer has the write error flag, we have failed
4510                  * to write out another inode in the same block.  In this
4511                  * case, we don't have to read the block because we may
4512                  * read the old inode data successfully.
4513                  */
4514                 if (buffer_write_io_error(bh) && !buffer_uptodate(bh))
4515                         set_buffer_uptodate(bh);
4516
4517                 if (buffer_uptodate(bh)) {
4518                         /* someone brought it uptodate while we waited */
4519                         unlock_buffer(bh);
4520                         goto has_buffer;
4521                 }
4522
4523                 /*
4524                  * If we have all information of the inode in memory and this
4525                  * is the only valid inode in the block, we need not read the
4526                  * block.
4527                  */
4528                 if (in_mem) {
4529                         struct buffer_head *bitmap_bh;
4530                         int i, start;
4531
4532                         start = inode_offset & ~(inodes_per_block - 1);
4533
4534                         /* Is the inode bitmap in cache? */
4535                         bitmap_bh = sb_getblk(sb, ext4_inode_bitmap(sb, gdp));
4536                         if (unlikely(!bitmap_bh))
4537                                 goto make_io;
4538
4539                         /*
4540                          * If the inode bitmap isn't in cache then the
4541                          * optimisation may end up performing two reads instead
4542                          * of one, so skip it.
4543                          */
4544                         if (!buffer_uptodate(bitmap_bh)) {
4545                                 brelse(bitmap_bh);
4546                                 goto make_io;
4547                         }
4548                         for (i = start; i < start + inodes_per_block; i++) {
4549                                 if (i == inode_offset)
4550                                         continue;
4551                                 if (ext4_test_bit(i, bitmap_bh->b_data))
4552                                         break;
4553                         }
4554                         brelse(bitmap_bh);
4555                         if (i == start + inodes_per_block) {
4556                                 /* all other inodes are free, so skip I/O */
4557                                 memset(bh->b_data, 0, bh->b_size);
4558                                 set_buffer_uptodate(bh);
4559                                 unlock_buffer(bh);
4560                                 goto has_buffer;
4561                         }
4562                 }
4563
4564 make_io:
4565                 /*
4566                  * If we need to do any I/O, try to pre-readahead extra
4567                  * blocks from the inode table.
4568                  */
4569                 if (EXT4_SB(sb)->s_inode_readahead_blks) {
4570                         ext4_fsblk_t b, end, table;
4571                         unsigned num;
4572                         __u32 ra_blks = EXT4_SB(sb)->s_inode_readahead_blks;
4573
4574                         table = ext4_inode_table(sb, gdp);
4575                         /* s_inode_readahead_blks is always a power of 2 */
4576                         b = block & ~((ext4_fsblk_t) ra_blks - 1);
4577                         if (table > b)
4578                                 b = table;
4579                         end = b + ra_blks;
4580                         num = EXT4_INODES_PER_GROUP(sb);
4581                         if (ext4_has_group_desc_csum(sb))
4582                                 num -= ext4_itable_unused_count(sb, gdp);
4583                         table += num / inodes_per_block;
4584                         if (end > table)
4585                                 end = table;
4586                         while (b <= end)
4587                                 sb_breadahead(sb, b++);
4588                 }
4589
4590                 /*
4591                  * There are other valid inodes in the buffer, this inode
4592                  * has in-inode xattrs, or we don't have this inode in memory.
4593                  * Read the block from disk.
4594                  */
4595                 trace_ext4_load_inode(inode);
4596                 get_bh(bh);
4597                 bh->b_end_io = end_buffer_read_sync;
4598                 submit_bh(REQ_OP_READ, REQ_META | REQ_PRIO, bh);
4599                 wait_on_buffer(bh);
4600                 if (!buffer_uptodate(bh)) {
4601                         EXT4_ERROR_INODE_BLOCK(inode, block,
4602                                                "unable to read itable block");
4603                         brelse(bh);
4604                         return -EIO;
4605                 }
4606         }
4607 has_buffer:
4608         iloc->bh = bh;
4609         return 0;
4610 }
4611
4612 int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc)
4613 {
4614         /* We have all inode data except xattrs in memory here. */
4615         return __ext4_get_inode_loc(inode, iloc,
4616                 !ext4_test_inode_state(inode, EXT4_STATE_XATTR));
4617 }
4618
4619 static bool ext4_should_use_dax(struct inode *inode)
4620 {
4621         if (!test_opt(inode->i_sb, DAX))
4622                 return false;
4623         if (!S_ISREG(inode->i_mode))
4624                 return false;
4625         if (ext4_should_journal_data(inode))
4626                 return false;
4627         if (ext4_has_inline_data(inode))
4628                 return false;
4629         if (ext4_encrypted_inode(inode))
4630                 return false;
4631         return true;
4632 }
4633
4634 void ext4_set_inode_flags(struct inode *inode)
4635 {
4636         unsigned int flags = EXT4_I(inode)->i_flags;
4637         unsigned int new_fl = 0;
4638
4639         if (flags & EXT4_SYNC_FL)
4640                 new_fl |= S_SYNC;
4641         if (flags & EXT4_APPEND_FL)
4642                 new_fl |= S_APPEND;
4643         if (flags & EXT4_IMMUTABLE_FL)
4644                 new_fl |= S_IMMUTABLE;
4645         if (flags & EXT4_NOATIME_FL)
4646                 new_fl |= S_NOATIME;
4647         if (flags & EXT4_DIRSYNC_FL)
4648                 new_fl |= S_DIRSYNC;
4649         if (ext4_should_use_dax(inode))
4650                 new_fl |= S_DAX;
4651         if (flags & EXT4_ENCRYPT_FL)
4652                 new_fl |= S_ENCRYPTED;
4653         inode_set_flags(inode, new_fl,
4654                         S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC|S_DAX|
4655                         S_ENCRYPTED);
4656 }
4657
4658 static blkcnt_t ext4_inode_blocks(struct ext4_inode *raw_inode,
4659                                   struct ext4_inode_info *ei)
4660 {
4661         blkcnt_t i_blocks ;
4662         struct inode *inode = &(ei->vfs_inode);
4663         struct super_block *sb = inode->i_sb;
4664
4665         if (ext4_has_feature_huge_file(sb)) {
4666                 /* we are using combined 48 bit field */
4667                 i_blocks = ((u64)le16_to_cpu(raw_inode->i_blocks_high)) << 32 |
4668                                         le32_to_cpu(raw_inode->i_blocks_lo);
4669                 if (ext4_test_inode_flag(inode, EXT4_INODE_HUGE_FILE)) {
4670                         /* i_blocks represent file system block size */
4671                         return i_blocks  << (inode->i_blkbits - 9);
4672                 } else {
4673                         return i_blocks;
4674                 }
4675         } else {
4676                 return le32_to_cpu(raw_inode->i_blocks_lo);
4677         }
4678 }
4679
4680 static inline void ext4_iget_extra_inode(struct inode *inode,
4681                                          struct ext4_inode *raw_inode,
4682                                          struct ext4_inode_info *ei)
4683 {
4684         __le32 *magic = (void *)raw_inode +
4685                         EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize;
4686         if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize + sizeof(__le32) <=
4687             EXT4_INODE_SIZE(inode->i_sb) &&
4688             *magic == cpu_to_le32(EXT4_XATTR_MAGIC)) {
4689                 ext4_set_inode_state(inode, EXT4_STATE_XATTR);
4690                 ext4_find_inline_data_nolock(inode);
4691         } else
4692                 EXT4_I(inode)->i_inline_off = 0;
4693 }
4694
4695 int ext4_get_projid(struct inode *inode, kprojid_t *projid)
4696 {
4697         if (!ext4_has_feature_project(inode->i_sb))
4698                 return -EOPNOTSUPP;
4699         *projid = EXT4_I(inode)->i_projid;
4700         return 0;
4701 }
4702
4703 struct inode *ext4_iget(struct super_block *sb, unsigned long ino)
4704 {
4705         struct ext4_iloc iloc;
4706         struct ext4_inode *raw_inode;
4707         struct ext4_inode_info *ei;
4708         struct inode *inode;
4709         journal_t *journal = EXT4_SB(sb)->s_journal;
4710         long ret;
4711         loff_t size;
4712         int block;
4713         uid_t i_uid;
4714         gid_t i_gid;
4715         projid_t i_projid;
4716
4717         inode = iget_locked(sb, ino);
4718         if (!inode)
4719                 return ERR_PTR(-ENOMEM);
4720         if (!(inode->i_state & I_NEW))
4721                 return inode;
4722
4723         ei = EXT4_I(inode);
4724         iloc.bh = NULL;
4725
4726         ret = __ext4_get_inode_loc(inode, &iloc, 0);
4727         if (ret < 0)
4728                 goto bad_inode;
4729         raw_inode = ext4_raw_inode(&iloc);
4730
4731         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4732                 ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize);
4733                 if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize >
4734                         EXT4_INODE_SIZE(inode->i_sb) ||
4735                     (ei->i_extra_isize & 3)) {
4736                         EXT4_ERROR_INODE(inode,
4737                                          "bad extra_isize %u (inode size %u)",
4738                                          ei->i_extra_isize,
4739                                          EXT4_INODE_SIZE(inode->i_sb));
4740                         ret = -EFSCORRUPTED;
4741                         goto bad_inode;
4742                 }
4743         } else
4744                 ei->i_extra_isize = 0;
4745
4746         /* Precompute checksum seed for inode metadata */
4747         if (ext4_has_metadata_csum(sb)) {
4748                 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4749                 __u32 csum;
4750                 __le32 inum = cpu_to_le32(inode->i_ino);
4751                 __le32 gen = raw_inode->i_generation;
4752                 csum = ext4_chksum(sbi, sbi->s_csum_seed, (__u8 *)&inum,
4753                                    sizeof(inum));
4754                 ei->i_csum_seed = ext4_chksum(sbi, csum, (__u8 *)&gen,
4755                                               sizeof(gen));
4756         }
4757
4758         if (!ext4_inode_csum_verify(inode, raw_inode, ei)) {
4759                 EXT4_ERROR_INODE(inode, "checksum invalid");
4760                 ret = -EFSBADCRC;
4761                 goto bad_inode;
4762         }
4763
4764         inode->i_mode = le16_to_cpu(raw_inode->i_mode);
4765         i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low);
4766         i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low);
4767         if (ext4_has_feature_project(sb) &&
4768             EXT4_INODE_SIZE(sb) > EXT4_GOOD_OLD_INODE_SIZE &&
4769             EXT4_FITS_IN_INODE(raw_inode, ei, i_projid))
4770                 i_projid = (projid_t)le32_to_cpu(raw_inode->i_projid);
4771         else
4772                 i_projid = EXT4_DEF_PROJID;
4773
4774         if (!(test_opt(inode->i_sb, NO_UID32))) {
4775                 i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16;
4776                 i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16;
4777         }
4778         i_uid_write(inode, i_uid);
4779         i_gid_write(inode, i_gid);
4780         ei->i_projid = make_kprojid(&init_user_ns, i_projid);
4781         set_nlink(inode, le16_to_cpu(raw_inode->i_links_count));
4782
4783         ext4_clear_state_flags(ei);     /* Only relevant on 32-bit archs */
4784         ei->i_inline_off = 0;
4785         ei->i_dir_start_lookup = 0;
4786         ei->i_dtime = le32_to_cpu(raw_inode->i_dtime);
4787         /* We now have enough fields to check if the inode was active or not.
4788          * This is needed because nfsd might try to access dead inodes
4789          * the test is that same one that e2fsck uses
4790          * NeilBrown 1999oct15
4791          */
4792         if (inode->i_nlink == 0) {
4793                 if ((inode->i_mode == 0 ||
4794                      !(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) &&
4795                     ino != EXT4_BOOT_LOADER_INO) {
4796                         /* this inode is deleted */
4797                         ret = -ESTALE;
4798                         goto bad_inode;
4799                 }
4800                 /* The only unlinked inodes we let through here have
4801                  * valid i_mode and are being read by the orphan
4802                  * recovery code: that's fine, we're about to complete
4803                  * the process of deleting those.
4804                  * OR it is the EXT4_BOOT_LOADER_INO which is
4805                  * not initialized on a new filesystem. */
4806         }
4807         ei->i_flags = le32_to_cpu(raw_inode->i_flags);
4808         inode->i_blocks = ext4_inode_blocks(raw_inode, ei);
4809         ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl_lo);
4810         if (ext4_has_feature_64bit(sb))
4811                 ei->i_file_acl |=
4812                         ((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32;
4813         inode->i_size = ext4_isize(sb, raw_inode);
4814         if ((size = i_size_read(inode)) < 0) {
4815                 EXT4_ERROR_INODE(inode, "bad i_size value: %lld", size);
4816                 ret = -EFSCORRUPTED;
4817                 goto bad_inode;
4818         }
4819         ei->i_disksize = inode->i_size;
4820 #ifdef CONFIG_QUOTA
4821         ei->i_reserved_quota = 0;
4822 #endif
4823         inode->i_generation = le32_to_cpu(raw_inode->i_generation);
4824         ei->i_block_group = iloc.block_group;
4825         ei->i_last_alloc_group = ~0;
4826         /*
4827          * NOTE! The in-memory inode i_data array is in little-endian order
4828          * even on big-endian machines: we do NOT byteswap the block numbers!
4829          */
4830         for (block = 0; block < EXT4_N_BLOCKS; block++)
4831                 ei->i_data[block] = raw_inode->i_block[block];
4832         INIT_LIST_HEAD(&ei->i_orphan);
4833
4834         /*
4835          * Set transaction id's of transactions that have to be committed
4836          * to finish f[data]sync. We set them to currently running transaction
4837          * as we cannot be sure that the inode or some of its metadata isn't
4838          * part of the transaction - the inode could have been reclaimed and
4839          * now it is reread from disk.
4840          */
4841         if (journal) {
4842                 transaction_t *transaction;
4843                 tid_t tid;
4844
4845                 read_lock(&journal->j_state_lock);
4846                 if (journal->j_running_transaction)
4847                         transaction = journal->j_running_transaction;
4848                 else
4849                         transaction = journal->j_committing_transaction;
4850                 if (transaction)
4851                         tid = transaction->t_tid;
4852                 else
4853                         tid = journal->j_commit_sequence;
4854                 read_unlock(&journal->j_state_lock);
4855                 ei->i_sync_tid = tid;
4856                 ei->i_datasync_tid = tid;
4857         }
4858
4859         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4860                 if (ei->i_extra_isize == 0) {
4861                         /* The extra space is currently unused. Use it. */
4862                         BUILD_BUG_ON(sizeof(struct ext4_inode) & 3);
4863                         ei->i_extra_isize = sizeof(struct ext4_inode) -
4864                                             EXT4_GOOD_OLD_INODE_SIZE;
4865                 } else {
4866                         ext4_iget_extra_inode(inode, raw_inode, ei);
4867                 }
4868         }
4869
4870         EXT4_INODE_GET_XTIME(i_ctime, inode, raw_inode);
4871         EXT4_INODE_GET_XTIME(i_mtime, inode, raw_inode);
4872         EXT4_INODE_GET_XTIME(i_atime, inode, raw_inode);
4873         EXT4_EINODE_GET_XTIME(i_crtime, ei, raw_inode);
4874
4875         if (likely(!test_opt2(inode->i_sb, HURD_COMPAT))) {
4876                 inode->i_version = le32_to_cpu(raw_inode->i_disk_version);
4877                 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4878                         if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
4879                                 inode->i_version |=
4880                     (__u64)(le32_to_cpu(raw_inode->i_version_hi)) << 32;
4881                 }
4882         }
4883
4884         ret = 0;
4885         if (ei->i_file_acl &&
4886             !ext4_data_block_valid(EXT4_SB(sb), ei->i_file_acl, 1)) {
4887                 EXT4_ERROR_INODE(inode, "bad extended attribute block %llu",
4888                                  ei->i_file_acl);
4889                 ret = -EFSCORRUPTED;
4890                 goto bad_inode;
4891         } else if (!ext4_has_inline_data(inode)) {
4892                 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
4893                         if ((S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
4894                             (S_ISLNK(inode->i_mode) &&
4895                              !ext4_inode_is_fast_symlink(inode))))
4896                                 /* Validate extent which is part of inode */
4897                                 ret = ext4_ext_check_inode(inode);
4898                 } else if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
4899                            (S_ISLNK(inode->i_mode) &&
4900                             !ext4_inode_is_fast_symlink(inode))) {
4901                         /* Validate block references which are part of inode */
4902                         ret = ext4_ind_check_inode(inode);
4903                 }
4904         }
4905         if (ret)
4906                 goto bad_inode;
4907
4908         if (S_ISREG(inode->i_mode)) {
4909                 inode->i_op = &ext4_file_inode_operations;
4910                 inode->i_fop = &ext4_file_operations;
4911                 ext4_set_aops(inode);
4912         } else if (S_ISDIR(inode->i_mode)) {
4913                 inode->i_op = &ext4_dir_inode_operations;
4914                 inode->i_fop = &ext4_dir_operations;
4915         } else if (S_ISLNK(inode->i_mode)) {
4916                 if (ext4_encrypted_inode(inode)) {
4917                         inode->i_op = &ext4_encrypted_symlink_inode_operations;
4918                         ext4_set_aops(inode);
4919                 } else if (ext4_inode_is_fast_symlink(inode)) {
4920                         inode->i_link = (char *)ei->i_data;
4921                         inode->i_op = &ext4_fast_symlink_inode_operations;
4922                         nd_terminate_link(ei->i_data, inode->i_size,
4923                                 sizeof(ei->i_data) - 1);
4924                 } else {
4925                         inode->i_op = &ext4_symlink_inode_operations;
4926                         ext4_set_aops(inode);
4927                 }
4928                 inode_nohighmem(inode);
4929         } else if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode) ||
4930               S_ISFIFO(inode->i_mode) || S_ISSOCK(inode->i_mode)) {
4931                 inode->i_op = &ext4_special_inode_operations;
4932                 if (raw_inode->i_block[0])
4933                         init_special_inode(inode, inode->i_mode,
4934                            old_decode_dev(le32_to_cpu(raw_inode->i_block[0])));
4935                 else
4936                         init_special_inode(inode, inode->i_mode,
4937                            new_decode_dev(le32_to_cpu(raw_inode->i_block[1])));
4938         } else if (ino == EXT4_BOOT_LOADER_INO) {
4939                 make_bad_inode(inode);
4940         } else {
4941                 ret = -EFSCORRUPTED;
4942                 EXT4_ERROR_INODE(inode, "bogus i_mode (%o)", inode->i_mode);
4943                 goto bad_inode;
4944         }
4945         brelse(iloc.bh);
4946         ext4_set_inode_flags(inode);
4947
4948         unlock_new_inode(inode);
4949         return inode;
4950
4951 bad_inode:
4952         brelse(iloc.bh);
4953         iget_failed(inode);
4954         return ERR_PTR(ret);
4955 }
4956
4957 struct inode *ext4_iget_normal(struct super_block *sb, unsigned long ino)
4958 {
4959         if (ino < EXT4_FIRST_INO(sb) && ino != EXT4_ROOT_INO)
4960                 return ERR_PTR(-EFSCORRUPTED);
4961         return ext4_iget(sb, ino);
4962 }
4963
4964 static int ext4_inode_blocks_set(handle_t *handle,
4965                                 struct ext4_inode *raw_inode,
4966                                 struct ext4_inode_info *ei)
4967 {
4968         struct inode *inode = &(ei->vfs_inode);
4969         u64 i_blocks = inode->i_blocks;
4970         struct super_block *sb = inode->i_sb;
4971
4972         if (i_blocks <= ~0U) {
4973                 /*
4974                  * i_blocks can be represented in a 32 bit variable
4975                  * as multiple of 512 bytes
4976                  */
4977                 raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4978                 raw_inode->i_blocks_high = 0;
4979                 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4980                 return 0;
4981         }
4982         if (!ext4_has_feature_huge_file(sb))
4983                 return -EFBIG;
4984
4985         if (i_blocks <= 0xffffffffffffULL) {
4986                 /*
4987                  * i_blocks can be represented in a 48 bit variable
4988                  * as multiple of 512 bytes
4989                  */
4990                 raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4991                 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
4992                 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4993         } else {
4994                 ext4_set_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4995                 /* i_block is stored in file system block size */
4996                 i_blocks = i_blocks >> (inode->i_blkbits - 9);
4997                 raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4998                 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
4999         }
5000         return 0;
5001 }
5002
5003 struct other_inode {
5004         unsigned long           orig_ino;
5005         struct ext4_inode       *raw_inode;
5006 };
5007
5008 static int other_inode_match(struct inode * inode, unsigned long ino,
5009                              void *data)
5010 {
5011         struct other_inode *oi = (struct other_inode *) data;
5012
5013         if ((inode->i_ino != ino) ||
5014             (inode->i_state & (I_FREEING | I_WILL_FREE | I_NEW |
5015                                I_DIRTY_SYNC | I_DIRTY_DATASYNC)) ||
5016             ((inode->i_state & I_DIRTY_TIME) == 0))
5017                 return 0;
5018         spin_lock(&inode->i_lock);
5019         if (((inode->i_state & (I_FREEING | I_WILL_FREE | I_NEW |
5020                                 I_DIRTY_SYNC | I_DIRTY_DATASYNC)) == 0) &&
5021             (inode->i_state & I_DIRTY_TIME)) {
5022                 struct ext4_inode_info  *ei = EXT4_I(inode);
5023
5024                 inode->i_state &= ~(I_DIRTY_TIME | I_DIRTY_TIME_EXPIRED);
5025                 spin_unlock(&inode->i_lock);
5026
5027                 spin_lock(&ei->i_raw_lock);
5028                 EXT4_INODE_SET_XTIME(i_ctime, inode, oi->raw_inode);
5029                 EXT4_INODE_SET_XTIME(i_mtime, inode, oi->raw_inode);
5030                 EXT4_INODE_SET_XTIME(i_atime, inode, oi->raw_inode);
5031                 ext4_inode_csum_set(inode, oi->raw_inode, ei);
5032                 spin_unlock(&ei->i_raw_lock);
5033                 trace_ext4_other_inode_update_time(inode, oi->orig_ino);
5034                 return -1;
5035         }
5036         spin_unlock(&inode->i_lock);
5037         return -1;
5038 }
5039
5040 /*
5041  * Opportunistically update the other time fields for other inodes in
5042  * the same inode table block.
5043  */
5044 static void ext4_update_other_inodes_time(struct super_block *sb,
5045                                           unsigned long orig_ino, char *buf)
5046 {
5047         struct other_inode oi;
5048         unsigned long ino;
5049         int i, inodes_per_block = EXT4_SB(sb)->s_inodes_per_block;
5050         int inode_size = EXT4_INODE_SIZE(sb);
5051
5052         oi.orig_ino = orig_ino;
5053         /*
5054          * Calculate the first inode in the inode table block.  Inode
5055          * numbers are one-based.  That is, the first inode in a block
5056          * (assuming 4k blocks and 256 byte inodes) is (n*16 + 1).
5057          */
5058         ino = ((orig_ino - 1) & ~(inodes_per_block - 1)) + 1;
5059         for (i = 0; i < inodes_per_block; i++, ino++, buf += inode_size) {
5060                 if (ino == orig_ino)
5061                         continue;
5062                 oi.raw_inode = (struct ext4_inode *) buf;
5063                 (void) find_inode_nowait(sb, ino, other_inode_match, &oi);
5064         }
5065 }
5066
5067 /*
5068  * Post the struct inode info into an on-disk inode location in the
5069  * buffer-cache.  This gobbles the caller's reference to the
5070  * buffer_head in the inode location struct.
5071  *
5072  * The caller must have write access to iloc->bh.
5073  */
5074 static int ext4_do_update_inode(handle_t *handle,
5075                                 struct inode *inode,
5076                                 struct ext4_iloc *iloc)
5077 {
5078         struct ext4_inode *raw_inode = ext4_raw_inode(iloc);
5079         struct ext4_inode_info *ei = EXT4_I(inode);
5080         struct buffer_head *bh = iloc->bh;
5081         struct super_block *sb = inode->i_sb;
5082         int err = 0, rc, block;
5083         int need_datasync = 0, set_large_file = 0;
5084         uid_t i_uid;
5085         gid_t i_gid;
5086         projid_t i_projid;
5087
5088         spin_lock(&ei->i_raw_lock);
5089
5090         /* For fields not tracked in the in-memory inode,
5091          * initialise them to zero for new inodes. */
5092         if (ext4_test_inode_state(inode, EXT4_STATE_NEW))
5093                 memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size);
5094
5095         raw_inode->i_mode = cpu_to_le16(inode->i_mode);
5096         i_uid = i_uid_read(inode);
5097         i_gid = i_gid_read(inode);
5098         i_projid = from_kprojid(&init_user_ns, ei->i_projid);
5099         if (!(test_opt(inode->i_sb, NO_UID32))) {
5100                 raw_inode->i_uid_low = cpu_to_le16(low_16_bits(i_uid));
5101                 raw_inode->i_gid_low = cpu_to_le16(low_16_bits(i_gid));
5102 /*
5103  * Fix up interoperability with old kernels. Otherwise, old inodes get
5104  * re-used with the upper 16 bits of the uid/gid intact
5105  */
5106                 if (ei->i_dtime && list_empty(&ei->i_orphan)) {
5107                         raw_inode->i_uid_high = 0;
5108                         raw_inode->i_gid_high = 0;
5109                 } else {
5110                         raw_inode->i_uid_high =
5111                                 cpu_to_le16(high_16_bits(i_uid));
5112                         raw_inode->i_gid_high =
5113                                 cpu_to_le16(high_16_bits(i_gid));
5114                 }
5115         } else {
5116                 raw_inode->i_uid_low = cpu_to_le16(fs_high2lowuid(i_uid));
5117                 raw_inode->i_gid_low = cpu_to_le16(fs_high2lowgid(i_gid));
5118                 raw_inode->i_uid_high = 0;
5119                 raw_inode->i_gid_high = 0;
5120         }
5121         raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
5122
5123         EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode);
5124         EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode);
5125         EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode);
5126         EXT4_EINODE_SET_XTIME(i_crtime, ei, raw_inode);
5127
5128         err = ext4_inode_blocks_set(handle, raw_inode, ei);
5129         if (err) {
5130                 spin_unlock(&ei->i_raw_lock);
5131                 goto out_brelse;
5132         }
5133         raw_inode->i_dtime = cpu_to_le32(ei->i_dtime);
5134         raw_inode->i_flags = cpu_to_le32(ei->i_flags & 0xFFFFFFFF);
5135         if (likely(!test_opt2(inode->i_sb, HURD_COMPAT)))
5136                 raw_inode->i_file_acl_high =
5137                         cpu_to_le16(ei->i_file_acl >> 32);
5138         raw_inode->i_file_acl_lo = cpu_to_le32(ei->i_file_acl);
5139         if (ei->i_disksize != ext4_isize(inode->i_sb, raw_inode)) {
5140                 ext4_isize_set(raw_inode, ei->i_disksize);
5141                 need_datasync = 1;
5142         }
5143         if (ei->i_disksize > 0x7fffffffULL) {
5144                 if (!ext4_has_feature_large_file(sb) ||
5145                                 EXT4_SB(sb)->s_es->s_rev_level ==
5146                     cpu_to_le32(EXT4_GOOD_OLD_REV))
5147                         set_large_file = 1;
5148         }
5149         raw_inode->i_generation = cpu_to_le32(inode->i_generation);
5150         if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
5151                 if (old_valid_dev(inode->i_rdev)) {
5152                         raw_inode->i_block[0] =
5153                                 cpu_to_le32(old_encode_dev(inode->i_rdev));
5154                         raw_inode->i_block[1] = 0;
5155                 } else {
5156                         raw_inode->i_block[0] = 0;
5157                         raw_inode->i_block[1] =
5158                                 cpu_to_le32(new_encode_dev(inode->i_rdev));
5159                         raw_inode->i_block[2] = 0;
5160                 }
5161         } else if (!ext4_has_inline_data(inode)) {
5162                 for (block = 0; block < EXT4_N_BLOCKS; block++)
5163                         raw_inode->i_block[block] = ei->i_data[block];
5164         }
5165
5166         if (likely(!test_opt2(inode->i_sb, HURD_COMPAT))) {
5167                 raw_inode->i_disk_version = cpu_to_le32(inode->i_version);
5168                 if (ei->i_extra_isize) {
5169                         if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
5170                                 raw_inode->i_version_hi =
5171                                         cpu_to_le32(inode->i_version >> 32);
5172                         raw_inode->i_extra_isize =
5173                                 cpu_to_le16(ei->i_extra_isize);
5174                 }
5175         }
5176
5177         BUG_ON(!ext4_has_feature_project(inode->i_sb) &&
5178                i_projid != EXT4_DEF_PROJID);
5179
5180         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
5181             EXT4_FITS_IN_INODE(raw_inode, ei, i_projid))
5182                 raw_inode->i_projid = cpu_to_le32(i_projid);
5183
5184         ext4_inode_csum_set(inode, raw_inode, ei);
5185         spin_unlock(&ei->i_raw_lock);
5186         if (inode->i_sb->s_flags & MS_LAZYTIME)
5187                 ext4_update_other_inodes_time(inode->i_sb, inode->i_ino,
5188                                               bh->b_data);
5189
5190         BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
5191         rc = ext4_handle_dirty_metadata(handle, NULL, bh);
5192         if (!err)
5193                 err = rc;
5194         ext4_clear_inode_state(inode, EXT4_STATE_NEW);
5195         if (set_large_file) {
5196                 BUFFER_TRACE(EXT4_SB(sb)->s_sbh, "get write access");
5197                 err = ext4_journal_get_write_access(handle, EXT4_SB(sb)->s_sbh);
5198                 if (err)
5199                         goto out_brelse;
5200                 ext4_update_dynamic_rev(sb);
5201                 ext4_set_feature_large_file(sb);
5202                 ext4_handle_sync(handle);
5203                 err = ext4_handle_dirty_super(handle, sb);
5204         }
5205         ext4_update_inode_fsync_trans(handle, inode, need_datasync);
5206 out_brelse:
5207         brelse(bh);
5208         ext4_std_error(inode->i_sb, err);
5209         return err;
5210 }
5211
5212 /*
5213  * ext4_write_inode()
5214  *
5215  * We are called from a few places:
5216  *
5217  * - Within generic_file_aio_write() -> generic_write_sync() for O_SYNC files.
5218  *   Here, there will be no transaction running. We wait for any running
5219  *   transaction to commit.
5220  *
5221  * - Within flush work (sys_sync(), kupdate and such).
5222  *   We wait on commit, if told to.
5223  *
5224  * - Within iput_final() -> write_inode_now()
5225  *   We wait on commit, if told to.
5226  *
5227  * In all cases it is actually safe for us to return without doing anything,
5228  * because the inode has been copied into a raw inode buffer in
5229  * ext4_mark_inode_dirty().  This is a correctness thing for WB_SYNC_ALL
5230  * writeback.
5231  *
5232  * Note that we are absolutely dependent upon all inode dirtiers doing the
5233  * right thing: they *must* call mark_inode_dirty() after dirtying info in
5234  * which we are interested.
5235  *
5236  * It would be a bug for them to not do this.  The code:
5237  *
5238  *      mark_inode_dirty(inode)
5239  *      stuff();
5240  *      inode->i_size = expr;
5241  *
5242  * is in error because write_inode() could occur while `stuff()' is running,
5243  * and the new i_size will be lost.  Plus the inode will no longer be on the
5244  * superblock's dirty inode list.
5245  */
5246 int ext4_write_inode(struct inode *inode, struct writeback_control *wbc)
5247 {
5248         int err;
5249
5250         if (WARN_ON_ONCE(current->flags & PF_MEMALLOC))
5251                 return 0;
5252
5253         if (EXT4_SB(inode->i_sb)->s_journal) {
5254                 if (ext4_journal_current_handle()) {
5255                         jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n");
5256                         dump_stack();
5257                         return -EIO;
5258                 }
5259
5260                 /*
5261                  * No need to force transaction in WB_SYNC_NONE mode. Also
5262                  * ext4_sync_fs() will force the commit after everything is
5263                  * written.
5264                  */
5265                 if (wbc->sync_mode != WB_SYNC_ALL || wbc->for_sync)
5266                         return 0;
5267
5268                 err = ext4_force_commit(inode->i_sb);
5269         } else {
5270                 struct ext4_iloc iloc;
5271
5272                 err = __ext4_get_inode_loc(inode, &iloc, 0);
5273                 if (err)
5274                         return err;
5275                 /*
5276                  * sync(2) will flush the whole buffer cache. No need to do
5277                  * it here separately for each inode.
5278                  */
5279                 if (wbc->sync_mode == WB_SYNC_ALL && !wbc->for_sync)
5280                         sync_dirty_buffer(iloc.bh);
5281                 if (buffer_req(iloc.bh) && !buffer_uptodate(iloc.bh)) {
5282                         EXT4_ERROR_INODE_BLOCK(inode, iloc.bh->b_blocknr,
5283                                          "IO error syncing inode");
5284                         err = -EIO;
5285                 }
5286                 brelse(iloc.bh);
5287         }
5288         return err;
5289 }
5290
5291 /*
5292  * In data=journal mode ext4_journalled_invalidatepage() may fail to invalidate
5293  * buffers that are attached to a page stradding i_size and are undergoing
5294  * commit. In that case we have to wait for commit to finish and try again.
5295  */
5296 static void ext4_wait_for_tail_page_commit(struct inode *inode)
5297 {
5298         struct page *page;
5299         unsigned offset;
5300         journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
5301         tid_t commit_tid = 0;
5302         int ret;
5303
5304         offset = inode->i_size & (PAGE_SIZE - 1);
5305         /*
5306          * All buffers in the last page remain valid? Then there's nothing to
5307          * do. We do the check mainly to optimize the common PAGE_SIZE ==
5308          * blocksize case
5309          */
5310         if (offset > PAGE_SIZE - i_blocksize(inode))
5311                 return;
5312         while (1) {
5313                 page = find_lock_page(inode->i_mapping,
5314                                       inode->i_size >> PAGE_SHIFT);
5315                 if (!page)
5316                         return;
5317                 ret = __ext4_journalled_invalidatepage(page, offset,
5318                                                 PAGE_SIZE - offset);
5319                 unlock_page(page);
5320                 put_page(page);
5321                 if (ret != -EBUSY)
5322                         return;
5323                 commit_tid = 0;
5324                 read_lock(&journal->j_state_lock);
5325                 if (journal->j_committing_transaction)
5326                         commit_tid = journal->j_committing_transaction->t_tid;
5327                 read_unlock(&journal->j_state_lock);
5328                 if (commit_tid)
5329                         jbd2_log_wait_commit(journal, commit_tid);
5330         }
5331 }
5332
5333 /*
5334  * ext4_setattr()
5335  *
5336  * Called from notify_change.
5337  *
5338  * We want to trap VFS attempts to truncate the file as soon as
5339  * possible.  In particular, we want to make sure that when the VFS
5340  * shrinks i_size, we put the inode on the orphan list and modify
5341  * i_disksize immediately, so that during the subsequent flushing of
5342  * dirty pages and freeing of disk blocks, we can guarantee that any
5343  * commit will leave the blocks being flushed in an unused state on
5344  * disk.  (On recovery, the inode will get truncated and the blocks will
5345  * be freed, so we have a strong guarantee that no future commit will
5346  * leave these blocks visible to the user.)
5347  *
5348  * Another thing we have to assure is that if we are in ordered mode
5349  * and inode is still attached to the committing transaction, we must
5350  * we start writeout of all the dirty pages which are being truncated.
5351  * This way we are sure that all the data written in the previous
5352  * transaction are already on disk (truncate waits for pages under
5353  * writeback).
5354  *
5355  * Called with inode->i_mutex down.
5356  */
5357 int ext4_setattr(struct dentry *dentry, struct iattr *attr)
5358 {
5359         struct inode *inode = d_inode(dentry);
5360         int error, rc = 0;
5361         int orphan = 0;
5362         const unsigned int ia_valid = attr->ia_valid;
5363
5364         if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
5365                 return -EIO;
5366
5367         error = setattr_prepare(dentry, attr);
5368         if (error)
5369                 return error;
5370
5371         error = fscrypt_prepare_setattr(dentry, attr);
5372         if (error)
5373                 return error;
5374
5375         if (is_quota_modification(inode, attr)) {
5376                 error = dquot_initialize(inode);
5377                 if (error)
5378                         return error;
5379         }
5380         if ((ia_valid & ATTR_UID && !uid_eq(attr->ia_uid, inode->i_uid)) ||
5381             (ia_valid & ATTR_GID && !gid_eq(attr->ia_gid, inode->i_gid))) {
5382                 handle_t *handle;
5383
5384                 /* (user+group)*(old+new) structure, inode write (sb,
5385                  * inode block, ? - but truncate inode update has it) */
5386                 handle = ext4_journal_start(inode, EXT4_HT_QUOTA,
5387                         (EXT4_MAXQUOTAS_INIT_BLOCKS(inode->i_sb) +
5388                          EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb)) + 3);
5389                 if (IS_ERR(handle)) {
5390                         error = PTR_ERR(handle);
5391                         goto err_out;
5392                 }
5393
5394                 /* dquot_transfer() calls back ext4_get_inode_usage() which
5395                  * counts xattr inode references.
5396                  */
5397                 down_read(&EXT4_I(inode)->xattr_sem);
5398                 error = dquot_transfer(inode, attr);
5399                 up_read(&EXT4_I(inode)->xattr_sem);
5400
5401                 if (error) {
5402                         ext4_journal_stop(handle);
5403                         return error;
5404                 }
5405                 /* Update corresponding info in inode so that everything is in
5406                  * one transaction */
5407                 if (attr->ia_valid & ATTR_UID)
5408                         inode->i_uid = attr->ia_uid;
5409                 if (attr->ia_valid & ATTR_GID)
5410                         inode->i_gid = attr->ia_gid;
5411                 error = ext4_mark_inode_dirty(handle, inode);
5412                 ext4_journal_stop(handle);
5413         }
5414
5415         if (attr->ia_valid & ATTR_SIZE) {
5416                 handle_t *handle;
5417                 loff_t oldsize = inode->i_size;
5418                 int shrink = (attr->ia_size <= inode->i_size);
5419
5420                 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) {
5421                         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
5422
5423                         if (attr->ia_size > sbi->s_bitmap_maxbytes)
5424                                 return -EFBIG;
5425                 }
5426                 if (!S_ISREG(inode->i_mode))
5427                         return -EINVAL;
5428
5429                 if (IS_I_VERSION(inode) && attr->ia_size != inode->i_size)
5430                         inode_inc_iversion(inode);
5431
5432                 if (ext4_should_order_data(inode) &&
5433                     (attr->ia_size < inode->i_size)) {
5434                         error = ext4_begin_ordered_truncate(inode,
5435                                                             attr->ia_size);
5436                         if (error)
5437                                 goto err_out;
5438                 }
5439                 if (attr->ia_size != inode->i_size) {
5440                         handle = ext4_journal_start(inode, EXT4_HT_INODE, 3);
5441                         if (IS_ERR(handle)) {
5442                                 error = PTR_ERR(handle);
5443                                 goto err_out;
5444                         }
5445                         if (ext4_handle_valid(handle) && shrink) {
5446                                 error = ext4_orphan_add(handle, inode);
5447                                 orphan = 1;
5448                         }
5449                         /*
5450                          * Update c/mtime on truncate up, ext4_truncate() will
5451                          * update c/mtime in shrink case below
5452                          */
5453                         if (!shrink) {
5454                                 inode->i_mtime = current_time(inode);
5455                                 inode->i_ctime = inode->i_mtime;
5456                         }
5457                         down_write(&EXT4_I(inode)->i_data_sem);
5458                         EXT4_I(inode)->i_disksize = attr->ia_size;
5459                         rc = ext4_mark_inode_dirty(handle, inode);
5460                         if (!error)
5461                                 error = rc;
5462                         /*
5463                          * We have to update i_size under i_data_sem together
5464                          * with i_disksize to avoid races with writeback code
5465                          * running ext4_wb_update_i_disksize().
5466                          */
5467                         if (!error)
5468                                 i_size_write(inode, attr->ia_size);
5469                         up_write(&EXT4_I(inode)->i_data_sem);
5470                         ext4_journal_stop(handle);
5471                         if (error) {
5472                                 if (orphan)
5473                                         ext4_orphan_del(NULL, inode);
5474                                 goto err_out;
5475                         }
5476                 }
5477                 if (!shrink)
5478                         pagecache_isize_extended(inode, oldsize, inode->i_size);
5479
5480                 /*
5481                  * Blocks are going to be removed from the inode. Wait
5482                  * for dio in flight.  Temporarily disable
5483                  * dioread_nolock to prevent livelock.
5484                  */
5485                 if (orphan) {
5486                         if (!ext4_should_journal_data(inode)) {
5487                                 ext4_inode_block_unlocked_dio(inode);
5488                                 inode_dio_wait(inode);
5489                                 ext4_inode_resume_unlocked_dio(inode);
5490                         } else
5491                                 ext4_wait_for_tail_page_commit(inode);
5492                 }
5493                 down_write(&EXT4_I(inode)->i_mmap_sem);
5494                 /*
5495                  * Truncate pagecache after we've waited for commit
5496                  * in data=journal mode to make pages freeable.
5497                  */
5498                 truncate_pagecache(inode, inode->i_size);
5499                 if (shrink) {
5500                         rc = ext4_truncate(inode);
5501                         if (rc)
5502                                 error = rc;
5503                 }
5504                 up_write(&EXT4_I(inode)->i_mmap_sem);
5505         }
5506
5507         if (!error) {
5508                 setattr_copy(inode, attr);
5509                 mark_inode_dirty(inode);
5510         }
5511
5512         /*
5513          * If the call to ext4_truncate failed to get a transaction handle at
5514          * all, we need to clean up the in-core orphan list manually.
5515          */
5516         if (orphan && inode->i_nlink)
5517                 ext4_orphan_del(NULL, inode);
5518
5519         if (!error && (ia_valid & ATTR_MODE))
5520                 rc = posix_acl_chmod(inode, inode->i_mode);
5521
5522 err_out:
5523         ext4_std_error(inode->i_sb, error);
5524         if (!error)
5525                 error = rc;
5526         return error;
5527 }
5528
5529 int ext4_getattr(const struct path *path, struct kstat *stat,
5530                  u32 request_mask, unsigned int query_flags)
5531 {
5532         struct inode *inode = d_inode(path->dentry);
5533         struct ext4_inode *raw_inode;
5534         struct ext4_inode_info *ei = EXT4_I(inode);
5535         unsigned int flags;
5536
5537         if (EXT4_FITS_IN_INODE(raw_inode, ei, i_crtime)) {
5538                 stat->result_mask |= STATX_BTIME;
5539                 stat->btime.tv_sec = ei->i_crtime.tv_sec;
5540                 stat->btime.tv_nsec = ei->i_crtime.tv_nsec;
5541         }
5542
5543         flags = ei->i_flags & EXT4_FL_USER_VISIBLE;
5544         if (flags & EXT4_APPEND_FL)
5545                 stat->attributes |= STATX_ATTR_APPEND;
5546         if (flags & EXT4_COMPR_FL)
5547                 stat->attributes |= STATX_ATTR_COMPRESSED;
5548         if (flags & EXT4_ENCRYPT_FL)
5549                 stat->attributes |= STATX_ATTR_ENCRYPTED;
5550         if (flags & EXT4_IMMUTABLE_FL)
5551                 stat->attributes |= STATX_ATTR_IMMUTABLE;
5552         if (flags & EXT4_NODUMP_FL)
5553                 stat->attributes |= STATX_ATTR_NODUMP;
5554
5555         stat->attributes_mask |= (STATX_ATTR_APPEND |
5556                                   STATX_ATTR_COMPRESSED |
5557                                   STATX_ATTR_ENCRYPTED |
5558                                   STATX_ATTR_IMMUTABLE |
5559                                   STATX_ATTR_NODUMP);
5560
5561         generic_fillattr(inode, stat);
5562         return 0;
5563 }
5564
5565 int ext4_file_getattr(const struct path *path, struct kstat *stat,
5566                       u32 request_mask, unsigned int query_flags)
5567 {
5568         struct inode *inode = d_inode(path->dentry);
5569         u64 delalloc_blocks;
5570
5571         ext4_getattr(path, stat, request_mask, query_flags);
5572
5573         /*
5574          * If there is inline data in the inode, the inode will normally not
5575          * have data blocks allocated (it may have an external xattr block).
5576          * Report at least one sector for such files, so tools like tar, rsync,
5577          * others don't incorrectly think the file is completely sparse.
5578          */
5579         if (unlikely(ext4_has_inline_data(inode)))
5580                 stat->blocks += (stat->size + 511) >> 9;
5581
5582         /*
5583          * We can't update i_blocks if the block allocation is delayed
5584          * otherwise in the case of system crash before the real block
5585          * allocation is done, we will have i_blocks inconsistent with
5586          * on-disk file blocks.
5587          * We always keep i_blocks updated together with real
5588          * allocation. But to not confuse with user, stat
5589          * will return the blocks that include the delayed allocation
5590          * blocks for this file.
5591          */
5592         delalloc_blocks = EXT4_C2B(EXT4_SB(inode->i_sb),
5593                                    EXT4_I(inode)->i_reserved_data_blocks);
5594         stat->blocks += delalloc_blocks << (inode->i_sb->s_blocksize_bits - 9);
5595         return 0;
5596 }
5597
5598 static int ext4_index_trans_blocks(struct inode *inode, int lblocks,
5599                                    int pextents)
5600 {
5601         if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)))
5602                 return ext4_ind_trans_blocks(inode, lblocks);
5603         return ext4_ext_index_trans_blocks(inode, pextents);
5604 }
5605
5606 /*
5607  * Account for index blocks, block groups bitmaps and block group
5608  * descriptor blocks if modify datablocks and index blocks
5609  * worse case, the indexs blocks spread over different block groups
5610  *
5611  * If datablocks are discontiguous, they are possible to spread over
5612  * different block groups too. If they are contiguous, with flexbg,
5613  * they could still across block group boundary.
5614  *
5615  * Also account for superblock, inode, quota and xattr blocks
5616  */
5617 static int ext4_meta_trans_blocks(struct inode *inode, int lblocks,
5618                                   int pextents)
5619 {
5620         ext4_group_t groups, ngroups = ext4_get_groups_count(inode->i_sb);
5621         int gdpblocks;
5622         int idxblocks;
5623         int ret = 0;
5624
5625         /*
5626          * How many index blocks need to touch to map @lblocks logical blocks
5627          * to @pextents physical extents?
5628          */
5629         idxblocks = ext4_index_trans_blocks(inode, lblocks, pextents);
5630
5631         ret = idxblocks;
5632
5633         /*
5634          * Now let's see how many group bitmaps and group descriptors need
5635          * to account
5636          */
5637         groups = idxblocks + pextents;
5638         gdpblocks = groups;
5639         if (groups > ngroups)
5640                 groups = ngroups;
5641         if (groups > EXT4_SB(inode->i_sb)->s_gdb_count)
5642                 gdpblocks = EXT4_SB(inode->i_sb)->s_gdb_count;
5643
5644         /* bitmaps and block group descriptor blocks */
5645         ret += groups + gdpblocks;
5646
5647         /* Blocks for super block, inode, quota and xattr blocks */
5648         ret += EXT4_META_TRANS_BLOCKS(inode->i_sb);
5649
5650         return ret;
5651 }
5652
5653 /*
5654  * Calculate the total number of credits to reserve to fit
5655  * the modification of a single pages into a single transaction,
5656  * which may include multiple chunks of block allocations.
5657  *
5658  * This could be called via ext4_write_begin()
5659  *
5660  * We need to consider the worse case, when
5661  * one new block per extent.
5662  */
5663 int ext4_writepage_trans_blocks(struct inode *inode)
5664 {
5665         int bpp = ext4_journal_blocks_per_page(inode);
5666         int ret;
5667
5668         ret = ext4_meta_trans_blocks(inode, bpp, bpp);
5669
5670         /* Account for data blocks for journalled mode */
5671         if (ext4_should_journal_data(inode))
5672                 ret += bpp;
5673         return ret;
5674 }
5675
5676 /*
5677  * Calculate the journal credits for a chunk of data modification.
5678  *
5679  * This is called from DIO, fallocate or whoever calling
5680  * ext4_map_blocks() to map/allocate a chunk of contiguous disk blocks.
5681  *
5682  * journal buffers for data blocks are not included here, as DIO
5683  * and fallocate do no need to journal data buffers.
5684  */
5685 int ext4_chunk_trans_blocks(struct inode *inode, int nrblocks)
5686 {
5687         return ext4_meta_trans_blocks(inode, nrblocks, 1);
5688 }
5689
5690 /*
5691  * The caller must have previously called ext4_reserve_inode_write().
5692  * Give this, we know that the caller already has write access to iloc->bh.
5693  */
5694 int ext4_mark_iloc_dirty(handle_t *handle,
5695                          struct inode *inode, struct ext4_iloc *iloc)
5696 {
5697         int err = 0;
5698
5699         if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
5700                 return -EIO;
5701
5702         if (IS_I_VERSION(inode))
5703                 inode_inc_iversion(inode);
5704
5705         /* the do_update_inode consumes one bh->b_count */
5706         get_bh(iloc->bh);
5707
5708         /* ext4_do_update_inode() does jbd2_journal_dirty_metadata */
5709         err = ext4_do_update_inode(handle, inode, iloc);
5710         put_bh(iloc->bh);
5711         return err;
5712 }
5713
5714 /*
5715  * On success, We end up with an outstanding reference count against
5716  * iloc->bh.  This _must_ be cleaned up later.
5717  */
5718
5719 int
5720 ext4_reserve_inode_write(handle_t *handle, struct inode *inode,
5721                          struct ext4_iloc *iloc)
5722 {
5723         int err;
5724
5725         if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
5726                 return -EIO;
5727
5728         err = ext4_get_inode_loc(inode, iloc);
5729         if (!err) {
5730                 BUFFER_TRACE(iloc->bh, "get_write_access");
5731                 err = ext4_journal_get_write_access(handle, iloc->bh);
5732                 if (err) {
5733                         brelse(iloc->bh);
5734                         iloc->bh = NULL;
5735                 }
5736         }
5737         ext4_std_error(inode->i_sb, err);
5738         return err;
5739 }
5740
5741 static int __ext4_expand_extra_isize(struct inode *inode,
5742                                      unsigned int new_extra_isize,
5743                                      struct ext4_iloc *iloc,
5744                                      handle_t *handle, int *no_expand)
5745 {
5746         struct ext4_inode *raw_inode;
5747         struct ext4_xattr_ibody_header *header;
5748         int error;
5749
5750         raw_inode = ext4_raw_inode(iloc);
5751
5752         header = IHDR(inode, raw_inode);
5753
5754         /* No extended attributes present */
5755         if (!ext4_test_inode_state(inode, EXT4_STATE_XATTR) ||
5756             header->h_magic != cpu_to_le32(EXT4_XATTR_MAGIC)) {
5757                 memset((void *)raw_inode + EXT4_GOOD_OLD_INODE_SIZE +
5758                        EXT4_I(inode)->i_extra_isize, 0,
5759                        new_extra_isize - EXT4_I(inode)->i_extra_isize);
5760                 EXT4_I(inode)->i_extra_isize = new_extra_isize;
5761                 return 0;
5762         }
5763
5764         /* try to expand with EAs present */
5765         error = ext4_expand_extra_isize_ea(inode, new_extra_isize,
5766                                            raw_inode, handle);
5767         if (error) {
5768                 /*
5769                  * Inode size expansion failed; don't try again
5770                  */
5771                 *no_expand = 1;
5772         }
5773
5774         return error;
5775 }
5776
5777 /*
5778  * Expand an inode by new_extra_isize bytes.
5779  * Returns 0 on success or negative error number on failure.
5780  */
5781 static int ext4_try_to_expand_extra_isize(struct inode *inode,
5782                                           unsigned int new_extra_isize,
5783                                           struct ext4_iloc iloc,
5784                                           handle_t *handle)
5785 {
5786         int no_expand;
5787         int error;
5788
5789         if (ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND))
5790                 return -EOVERFLOW;
5791
5792         /*
5793          * In nojournal mode, we can immediately attempt to expand
5794          * the inode.  When journaled, we first need to obtain extra
5795          * buffer credits since we may write into the EA block
5796          * with this same handle. If journal_extend fails, then it will
5797          * only result in a minor loss of functionality for that inode.
5798          * If this is felt to be critical, then e2fsck should be run to
5799          * force a large enough s_min_extra_isize.
5800          */
5801         if (ext4_handle_valid(handle) &&
5802             jbd2_journal_extend(handle,
5803                                 EXT4_DATA_TRANS_BLOCKS(inode->i_sb)) != 0)
5804                 return -ENOSPC;
5805
5806         if (ext4_write_trylock_xattr(inode, &no_expand) == 0)
5807                 return -EBUSY;
5808
5809         error = __ext4_expand_extra_isize(inode, new_extra_isize, &iloc,
5810                                           handle, &no_expand);
5811         ext4_write_unlock_xattr(inode, &no_expand);
5812
5813         return error;
5814 }
5815
5816 int ext4_expand_extra_isize(struct inode *inode,
5817                             unsigned int new_extra_isize,
5818                             struct ext4_iloc *iloc)
5819 {
5820         handle_t *handle;
5821         int no_expand;
5822         int error, rc;
5823
5824         if (ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND)) {
5825                 brelse(iloc->bh);
5826                 return -EOVERFLOW;
5827         }
5828
5829         handle = ext4_journal_start(inode, EXT4_HT_INODE,
5830                                     EXT4_DATA_TRANS_BLOCKS(inode->i_sb));
5831         if (IS_ERR(handle)) {
5832                 error = PTR_ERR(handle);
5833                 brelse(iloc->bh);
5834                 return error;
5835         }
5836
5837         ext4_write_lock_xattr(inode, &no_expand);
5838
5839         BUFFER_TRACE(iloc.bh, "get_write_access");
5840         error = ext4_journal_get_write_access(handle, iloc->bh);
5841         if (error) {
5842                 brelse(iloc->bh);
5843                 goto out_stop;
5844         }
5845
5846         error = __ext4_expand_extra_isize(inode, new_extra_isize, iloc,
5847                                           handle, &no_expand);
5848
5849         rc = ext4_mark_iloc_dirty(handle, inode, iloc);
5850         if (!error)
5851                 error = rc;
5852
5853         ext4_write_unlock_xattr(inode, &no_expand);
5854 out_stop:
5855         ext4_journal_stop(handle);
5856         return error;
5857 }
5858
5859 /*
5860  * What we do here is to mark the in-core inode as clean with respect to inode
5861  * dirtiness (it may still be data-dirty).
5862  * This means that the in-core inode may be reaped by prune_icache
5863  * without having to perform any I/O.  This is a very good thing,
5864  * because *any* task may call prune_icache - even ones which
5865  * have a transaction open against a different journal.
5866  *
5867  * Is this cheating?  Not really.  Sure, we haven't written the
5868  * inode out, but prune_icache isn't a user-visible syncing function.
5869  * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync)
5870  * we start and wait on commits.
5871  */
5872 int ext4_mark_inode_dirty(handle_t *handle, struct inode *inode)
5873 {
5874         struct ext4_iloc iloc;
5875         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
5876         int err;
5877
5878         might_sleep();
5879         trace_ext4_mark_inode_dirty(inode, _RET_IP_);
5880         err = ext4_reserve_inode_write(handle, inode, &iloc);
5881         if (err)
5882                 return err;
5883
5884         if (EXT4_I(inode)->i_extra_isize < sbi->s_want_extra_isize)
5885                 ext4_try_to_expand_extra_isize(inode, sbi->s_want_extra_isize,
5886                                                iloc, handle);
5887
5888         return ext4_mark_iloc_dirty(handle, inode, &iloc);
5889 }
5890
5891 /*
5892  * ext4_dirty_inode() is called from __mark_inode_dirty()
5893  *
5894  * We're really interested in the case where a file is being extended.
5895  * i_size has been changed by generic_commit_write() and we thus need
5896  * to include the updated inode in the current transaction.
5897  *
5898  * Also, dquot_alloc_block() will always dirty the inode when blocks
5899  * are allocated to the file.
5900  *
5901  * If the inode is marked synchronous, we don't honour that here - doing
5902  * so would cause a commit on atime updates, which we don't bother doing.
5903  * We handle synchronous inodes at the highest possible level.
5904  *
5905  * If only the I_DIRTY_TIME flag is set, we can skip everything.  If
5906  * I_DIRTY_TIME and I_DIRTY_SYNC is set, the only inode fields we need
5907  * to copy into the on-disk inode structure are the timestamp files.
5908  */
5909 void ext4_dirty_inode(struct inode *inode, int flags)
5910 {
5911         handle_t *handle;
5912
5913         if (flags == I_DIRTY_TIME)
5914                 return;
5915         handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
5916         if (IS_ERR(handle))
5917                 goto out;
5918
5919         ext4_mark_inode_dirty(handle, inode);
5920
5921         ext4_journal_stop(handle);
5922 out:
5923         return;
5924 }
5925
5926 #if 0
5927 /*
5928  * Bind an inode's backing buffer_head into this transaction, to prevent
5929  * it from being flushed to disk early.  Unlike
5930  * ext4_reserve_inode_write, this leaves behind no bh reference and
5931  * returns no iloc structure, so the caller needs to repeat the iloc
5932  * lookup to mark the inode dirty later.
5933  */
5934 static int ext4_pin_inode(handle_t *handle, struct inode *inode)
5935 {
5936         struct ext4_iloc iloc;
5937
5938         int err = 0;
5939         if (handle) {
5940                 err = ext4_get_inode_loc(inode, &iloc);
5941                 if (!err) {
5942                         BUFFER_TRACE(iloc.bh, "get_write_access");
5943                         err = jbd2_journal_get_write_access(handle, iloc.bh);
5944                         if (!err)
5945                                 err = ext4_handle_dirty_metadata(handle,
5946                                                                  NULL,
5947                                                                  iloc.bh);
5948                         brelse(iloc.bh);
5949                 }
5950         }
5951         ext4_std_error(inode->i_sb, err);
5952         return err;
5953 }
5954 #endif
5955
5956 int ext4_change_inode_journal_flag(struct inode *inode, int val)
5957 {
5958         journal_t *journal;
5959         handle_t *handle;
5960         int err;
5961         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
5962
5963         /*
5964          * We have to be very careful here: changing a data block's
5965          * journaling status dynamically is dangerous.  If we write a
5966          * data block to the journal, change the status and then delete
5967          * that block, we risk forgetting to revoke the old log record
5968          * from the journal and so a subsequent replay can corrupt data.
5969          * So, first we make sure that the journal is empty and that
5970          * nobody is changing anything.
5971          */
5972
5973         journal = EXT4_JOURNAL(inode);
5974         if (!journal)
5975                 return 0;
5976         if (is_journal_aborted(journal))
5977                 return -EROFS;
5978
5979         /* Wait for all existing dio workers */
5980         ext4_inode_block_unlocked_dio(inode);
5981         inode_dio_wait(inode);
5982
5983         /*
5984          * Before flushing the journal and switching inode's aops, we have
5985          * to flush all dirty data the inode has. There can be outstanding
5986          * delayed allocations, there can be unwritten extents created by
5987          * fallocate or buffered writes in dioread_nolock mode covered by
5988          * dirty data which can be converted only after flushing the dirty
5989          * data (and journalled aops don't know how to handle these cases).
5990          */
5991         if (val) {
5992                 down_write(&EXT4_I(inode)->i_mmap_sem);
5993                 err = filemap_write_and_wait(inode->i_mapping);
5994                 if (err < 0) {
5995                         up_write(&EXT4_I(inode)->i_mmap_sem);
5996                         ext4_inode_resume_unlocked_dio(inode);
5997                         return err;
5998                 }
5999         }
6000
6001         percpu_down_write(&sbi->s_journal_flag_rwsem);
6002         jbd2_journal_lock_updates(journal);
6003
6004         /*
6005          * OK, there are no updates running now, and all cached data is
6006          * synced to disk.  We are now in a completely consistent state
6007          * which doesn't have anything in the journal, and we know that
6008          * no filesystem updates are running, so it is safe to modify
6009          * the inode's in-core data-journaling state flag now.
6010          */
6011
6012         if (val)
6013                 ext4_set_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
6014         else {
6015                 err = jbd2_journal_flush(journal);
6016                 if (err < 0) {
6017                         jbd2_journal_unlock_updates(journal);
6018                         percpu_up_write(&sbi->s_journal_flag_rwsem);
6019                         ext4_inode_resume_unlocked_dio(inode);
6020                         return err;
6021                 }
6022                 ext4_clear_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
6023         }
6024         ext4_set_aops(inode);
6025
6026         jbd2_journal_unlock_updates(journal);
6027         percpu_up_write(&sbi->s_journal_flag_rwsem);
6028
6029         if (val)
6030                 up_write(&EXT4_I(inode)->i_mmap_sem);
6031         ext4_inode_resume_unlocked_dio(inode);
6032
6033         /* Finally we can mark the inode as dirty. */
6034
6035         handle = ext4_journal_start(inode, EXT4_HT_INODE, 1);
6036         if (IS_ERR(handle))
6037                 return PTR_ERR(handle);
6038
6039         err = ext4_mark_inode_dirty(handle, inode);
6040         ext4_handle_sync(handle);
6041         ext4_journal_stop(handle);
6042         ext4_std_error(inode->i_sb, err);
6043
6044         return err;
6045 }
6046
6047 static int ext4_bh_unmapped(handle_t *handle, struct buffer_head *bh)
6048 {
6049         return !buffer_mapped(bh);
6050 }
6051
6052 int ext4_page_mkwrite(struct vm_fault *vmf)
6053 {
6054         struct vm_area_struct *vma = vmf->vma;
6055         struct page *page = vmf->page;
6056         loff_t size;
6057         unsigned long len;
6058         int ret;
6059         struct file *file = vma->vm_file;
6060         struct inode *inode = file_inode(file);
6061         struct address_space *mapping = inode->i_mapping;
6062         handle_t *handle;
6063         get_block_t *get_block;
6064         int retries = 0;
6065
6066         sb_start_pagefault(inode->i_sb);
6067         file_update_time(vma->vm_file);
6068
6069         down_read(&EXT4_I(inode)->i_mmap_sem);
6070
6071         ret = ext4_convert_inline_data(inode);
6072         if (ret)
6073                 goto out_ret;
6074
6075         /* Delalloc case is easy... */
6076         if (test_opt(inode->i_sb, DELALLOC) &&
6077             !ext4_should_journal_data(inode) &&
6078             !ext4_nonda_switch(inode->i_sb)) {
6079                 do {
6080                         ret = block_page_mkwrite(vma, vmf,
6081                                                    ext4_da_get_block_prep);
6082                 } while (ret == -ENOSPC &&
6083                        ext4_should_retry_alloc(inode->i_sb, &retries));
6084                 goto out_ret;
6085         }
6086
6087         lock_page(page);
6088         size = i_size_read(inode);
6089         /* Page got truncated from under us? */
6090         if (page->mapping != mapping || page_offset(page) > size) {
6091                 unlock_page(page);
6092                 ret = VM_FAULT_NOPAGE;
6093                 goto out;
6094         }
6095
6096         if (page->index == size >> PAGE_SHIFT)
6097                 len = size & ~PAGE_MASK;
6098         else
6099                 len = PAGE_SIZE;
6100         /*
6101          * Return if we have all the buffers mapped. This avoids the need to do
6102          * journal_start/journal_stop which can block and take a long time
6103          */
6104         if (page_has_buffers(page)) {
6105                 if (!ext4_walk_page_buffers(NULL, page_buffers(page),
6106                                             0, len, NULL,
6107                                             ext4_bh_unmapped)) {
6108                         /* Wait so that we don't change page under IO */
6109                         wait_for_stable_page(page);
6110                         ret = VM_FAULT_LOCKED;
6111                         goto out;
6112                 }
6113         }
6114         unlock_page(page);
6115         /* OK, we need to fill the hole... */
6116         if (ext4_should_dioread_nolock(inode))
6117                 get_block = ext4_get_block_unwritten;
6118         else
6119                 get_block = ext4_get_block;
6120 retry_alloc:
6121         handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
6122                                     ext4_writepage_trans_blocks(inode));
6123         if (IS_ERR(handle)) {
6124                 ret = VM_FAULT_SIGBUS;
6125                 goto out;
6126         }
6127         ret = block_page_mkwrite(vma, vmf, get_block);
6128         if (!ret && ext4_should_journal_data(inode)) {
6129                 if (ext4_walk_page_buffers(handle, page_buffers(page), 0,
6130                           PAGE_SIZE, NULL, do_journal_get_write_access)) {
6131                         unlock_page(page);
6132                         ret = VM_FAULT_SIGBUS;
6133                         ext4_journal_stop(handle);
6134                         goto out;
6135                 }
6136                 ext4_set_inode_state(inode, EXT4_STATE_JDATA);
6137         }
6138         ext4_journal_stop(handle);
6139         if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
6140                 goto retry_alloc;
6141 out_ret:
6142         ret = block_page_mkwrite_return(ret);
6143 out:
6144         up_read(&EXT4_I(inode)->i_mmap_sem);
6145         sb_end_pagefault(inode->i_sb);
6146         return ret;
6147 }
6148
6149 int ext4_filemap_fault(struct vm_fault *vmf)
6150 {
6151         struct inode *inode = file_inode(vmf->vma->vm_file);
6152         int err;
6153
6154         down_read(&EXT4_I(inode)->i_mmap_sem);
6155         err = filemap_fault(vmf);
6156         up_read(&EXT4_I(inode)->i_mmap_sem);
6157
6158         return err;
6159 }