Merge branch 'next' into for-linus
[linux-2.6-microblaze.git] / fs / ext4 / indirect.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  *  linux/fs/ext4/indirect.c
4  *
5  *  from
6  *
7  *  linux/fs/ext4/inode.c
8  *
9  * Copyright (C) 1992, 1993, 1994, 1995
10  * Remy Card (card@masi.ibp.fr)
11  * Laboratoire MASI - Institut Blaise Pascal
12  * Universite Pierre et Marie Curie (Paris VI)
13  *
14  *  from
15  *
16  *  linux/fs/minix/inode.c
17  *
18  *  Copyright (C) 1991, 1992  Linus Torvalds
19  *
20  *  Goal-directed block allocation by Stephen Tweedie
21  *      (sct@redhat.com), 1993, 1998
22  */
23
24 #include "ext4_jbd2.h"
25 #include "truncate.h"
26 #include <linux/dax.h>
27 #include <linux/uio.h>
28
29 #include <trace/events/ext4.h>
30
31 typedef struct {
32         __le32  *p;
33         __le32  key;
34         struct buffer_head *bh;
35 } Indirect;
36
37 static inline void add_chain(Indirect *p, struct buffer_head *bh, __le32 *v)
38 {
39         p->key = *(p->p = v);
40         p->bh = bh;
41 }
42
43 /**
44  *      ext4_block_to_path - parse the block number into array of offsets
45  *      @inode: inode in question (we are only interested in its superblock)
46  *      @i_block: block number to be parsed
47  *      @offsets: array to store the offsets in
48  *      @boundary: set this non-zero if the referred-to block is likely to be
49  *             followed (on disk) by an indirect block.
50  *
51  *      To store the locations of file's data ext4 uses a data structure common
52  *      for UNIX filesystems - tree of pointers anchored in the inode, with
53  *      data blocks at leaves and indirect blocks in intermediate nodes.
54  *      This function translates the block number into path in that tree -
55  *      return value is the path length and @offsets[n] is the offset of
56  *      pointer to (n+1)th node in the nth one. If @block is out of range
57  *      (negative or too large) warning is printed and zero returned.
58  *
59  *      Note: function doesn't find node addresses, so no IO is needed. All
60  *      we need to know is the capacity of indirect blocks (taken from the
61  *      inode->i_sb).
62  */
63
64 /*
65  * Portability note: the last comparison (check that we fit into triple
66  * indirect block) is spelled differently, because otherwise on an
67  * architecture with 32-bit longs and 8Kb pages we might get into trouble
68  * if our filesystem had 8Kb blocks. We might use long long, but that would
69  * kill us on x86. Oh, well, at least the sign propagation does not matter -
70  * i_block would have to be negative in the very beginning, so we would not
71  * get there at all.
72  */
73
74 static int ext4_block_to_path(struct inode *inode,
75                               ext4_lblk_t i_block,
76                               ext4_lblk_t offsets[4], int *boundary)
77 {
78         int ptrs = EXT4_ADDR_PER_BLOCK(inode->i_sb);
79         int ptrs_bits = EXT4_ADDR_PER_BLOCK_BITS(inode->i_sb);
80         const long direct_blocks = EXT4_NDIR_BLOCKS,
81                 indirect_blocks = ptrs,
82                 double_blocks = (1 << (ptrs_bits * 2));
83         int n = 0;
84         int final = 0;
85
86         if (i_block < direct_blocks) {
87                 offsets[n++] = i_block;
88                 final = direct_blocks;
89         } else if ((i_block -= direct_blocks) < indirect_blocks) {
90                 offsets[n++] = EXT4_IND_BLOCK;
91                 offsets[n++] = i_block;
92                 final = ptrs;
93         } else if ((i_block -= indirect_blocks) < double_blocks) {
94                 offsets[n++] = EXT4_DIND_BLOCK;
95                 offsets[n++] = i_block >> ptrs_bits;
96                 offsets[n++] = i_block & (ptrs - 1);
97                 final = ptrs;
98         } else if (((i_block -= double_blocks) >> (ptrs_bits * 2)) < ptrs) {
99                 offsets[n++] = EXT4_TIND_BLOCK;
100                 offsets[n++] = i_block >> (ptrs_bits * 2);
101                 offsets[n++] = (i_block >> ptrs_bits) & (ptrs - 1);
102                 offsets[n++] = i_block & (ptrs - 1);
103                 final = ptrs;
104         } else {
105                 ext4_warning(inode->i_sb, "block %lu > max in inode %lu",
106                              i_block + direct_blocks +
107                              indirect_blocks + double_blocks, inode->i_ino);
108         }
109         if (boundary)
110                 *boundary = final - 1 - (i_block & (ptrs - 1));
111         return n;
112 }
113
114 /**
115  *      ext4_get_branch - read the chain of indirect blocks leading to data
116  *      @inode: inode in question
117  *      @depth: depth of the chain (1 - direct pointer, etc.)
118  *      @offsets: offsets of pointers in inode/indirect blocks
119  *      @chain: place to store the result
120  *      @err: here we store the error value
121  *
122  *      Function fills the array of triples <key, p, bh> and returns %NULL
123  *      if everything went OK or the pointer to the last filled triple
124  *      (incomplete one) otherwise. Upon the return chain[i].key contains
125  *      the number of (i+1)-th block in the chain (as it is stored in memory,
126  *      i.e. little-endian 32-bit), chain[i].p contains the address of that
127  *      number (it points into struct inode for i==0 and into the bh->b_data
128  *      for i>0) and chain[i].bh points to the buffer_head of i-th indirect
129  *      block for i>0 and NULL for i==0. In other words, it holds the block
130  *      numbers of the chain, addresses they were taken from (and where we can
131  *      verify that chain did not change) and buffer_heads hosting these
132  *      numbers.
133  *
134  *      Function stops when it stumbles upon zero pointer (absent block)
135  *              (pointer to last triple returned, *@err == 0)
136  *      or when it gets an IO error reading an indirect block
137  *              (ditto, *@err == -EIO)
138  *      or when it reads all @depth-1 indirect blocks successfully and finds
139  *      the whole chain, all way to the data (returns %NULL, *err == 0).
140  *
141  *      Need to be called with
142  *      down_read(&EXT4_I(inode)->i_data_sem)
143  */
144 static Indirect *ext4_get_branch(struct inode *inode, int depth,
145                                  ext4_lblk_t  *offsets,
146                                  Indirect chain[4], int *err)
147 {
148         struct super_block *sb = inode->i_sb;
149         Indirect *p = chain;
150         struct buffer_head *bh;
151         int ret = -EIO;
152
153         *err = 0;
154         /* i_data is not going away, no lock needed */
155         add_chain(chain, NULL, EXT4_I(inode)->i_data + *offsets);
156         if (!p->key)
157                 goto no_block;
158         while (--depth) {
159                 bh = sb_getblk(sb, le32_to_cpu(p->key));
160                 if (unlikely(!bh)) {
161                         ret = -ENOMEM;
162                         goto failure;
163                 }
164
165                 if (!bh_uptodate_or_lock(bh)) {
166                         if (bh_submit_read(bh) < 0) {
167                                 put_bh(bh);
168                                 goto failure;
169                         }
170                         /* validate block references */
171                         if (ext4_check_indirect_blockref(inode, bh)) {
172                                 put_bh(bh);
173                                 goto failure;
174                         }
175                 }
176
177                 add_chain(++p, bh, (__le32 *)bh->b_data + *++offsets);
178                 /* Reader: end */
179                 if (!p->key)
180                         goto no_block;
181         }
182         return NULL;
183
184 failure:
185         *err = ret;
186 no_block:
187         return p;
188 }
189
190 /**
191  *      ext4_find_near - find a place for allocation with sufficient locality
192  *      @inode: owner
193  *      @ind: descriptor of indirect block.
194  *
195  *      This function returns the preferred place for block allocation.
196  *      It is used when heuristic for sequential allocation fails.
197  *      Rules are:
198  *        + if there is a block to the left of our position - allocate near it.
199  *        + if pointer will live in indirect block - allocate near that block.
200  *        + if pointer will live in inode - allocate in the same
201  *          cylinder group.
202  *
203  * In the latter case we colour the starting block by the callers PID to
204  * prevent it from clashing with concurrent allocations for a different inode
205  * in the same block group.   The PID is used here so that functionally related
206  * files will be close-by on-disk.
207  *
208  *      Caller must make sure that @ind is valid and will stay that way.
209  */
210 static ext4_fsblk_t ext4_find_near(struct inode *inode, Indirect *ind)
211 {
212         struct ext4_inode_info *ei = EXT4_I(inode);
213         __le32 *start = ind->bh ? (__le32 *) ind->bh->b_data : ei->i_data;
214         __le32 *p;
215
216         /* Try to find previous block */
217         for (p = ind->p - 1; p >= start; p--) {
218                 if (*p)
219                         return le32_to_cpu(*p);
220         }
221
222         /* No such thing, so let's try location of indirect block */
223         if (ind->bh)
224                 return ind->bh->b_blocknr;
225
226         /*
227          * It is going to be referred to from the inode itself? OK, just put it
228          * into the same cylinder group then.
229          */
230         return ext4_inode_to_goal_block(inode);
231 }
232
233 /**
234  *      ext4_find_goal - find a preferred place for allocation.
235  *      @inode: owner
236  *      @block:  block we want
237  *      @partial: pointer to the last triple within a chain
238  *
239  *      Normally this function find the preferred place for block allocation,
240  *      returns it.
241  *      Because this is only used for non-extent files, we limit the block nr
242  *      to 32 bits.
243  */
244 static ext4_fsblk_t ext4_find_goal(struct inode *inode, ext4_lblk_t block,
245                                    Indirect *partial)
246 {
247         ext4_fsblk_t goal;
248
249         /*
250          * XXX need to get goal block from mballoc's data structures
251          */
252
253         goal = ext4_find_near(inode, partial);
254         goal = goal & EXT4_MAX_BLOCK_FILE_PHYS;
255         return goal;
256 }
257
258 /**
259  *      ext4_blks_to_allocate - Look up the block map and count the number
260  *      of direct blocks need to be allocated for the given branch.
261  *
262  *      @branch: chain of indirect blocks
263  *      @k: number of blocks need for indirect blocks
264  *      @blks: number of data blocks to be mapped.
265  *      @blocks_to_boundary:  the offset in the indirect block
266  *
267  *      return the total number of blocks to be allocate, including the
268  *      direct and indirect blocks.
269  */
270 static int ext4_blks_to_allocate(Indirect *branch, int k, unsigned int blks,
271                                  int blocks_to_boundary)
272 {
273         unsigned int count = 0;
274
275         /*
276          * Simple case, [t,d]Indirect block(s) has not allocated yet
277          * then it's clear blocks on that path have not allocated
278          */
279         if (k > 0) {
280                 /* right now we don't handle cross boundary allocation */
281                 if (blks < blocks_to_boundary + 1)
282                         count += blks;
283                 else
284                         count += blocks_to_boundary + 1;
285                 return count;
286         }
287
288         count++;
289         while (count < blks && count <= blocks_to_boundary &&
290                 le32_to_cpu(*(branch[0].p + count)) == 0) {
291                 count++;
292         }
293         return count;
294 }
295
296 /**
297  * ext4_alloc_branch() - allocate and set up a chain of blocks
298  * @handle: handle for this transaction
299  * @ar: structure describing the allocation request
300  * @indirect_blks: number of allocated indirect blocks
301  * @offsets: offsets (in the blocks) to store the pointers to next.
302  * @branch: place to store the chain in.
303  *
304  *      This function allocates blocks, zeroes out all but the last one,
305  *      links them into chain and (if we are synchronous) writes them to disk.
306  *      In other words, it prepares a branch that can be spliced onto the
307  *      inode. It stores the information about that chain in the branch[], in
308  *      the same format as ext4_get_branch() would do. We are calling it after
309  *      we had read the existing part of chain and partial points to the last
310  *      triple of that (one with zero ->key). Upon the exit we have the same
311  *      picture as after the successful ext4_get_block(), except that in one
312  *      place chain is disconnected - *branch->p is still zero (we did not
313  *      set the last link), but branch->key contains the number that should
314  *      be placed into *branch->p to fill that gap.
315  *
316  *      If allocation fails we free all blocks we've allocated (and forget
317  *      their buffer_heads) and return the error value the from failed
318  *      ext4_alloc_block() (normally -ENOSPC). Otherwise we set the chain
319  *      as described above and return 0.
320  */
321 static int ext4_alloc_branch(handle_t *handle,
322                              struct ext4_allocation_request *ar,
323                              int indirect_blks, ext4_lblk_t *offsets,
324                              Indirect *branch)
325 {
326         struct buffer_head *            bh;
327         ext4_fsblk_t                    b, new_blocks[4];
328         __le32                          *p;
329         int                             i, j, err, len = 1;
330
331         for (i = 0; i <= indirect_blks; i++) {
332                 if (i == indirect_blks) {
333                         new_blocks[i] = ext4_mb_new_blocks(handle, ar, &err);
334                 } else {
335                         ar->goal = new_blocks[i] = ext4_new_meta_blocks(handle,
336                                         ar->inode, ar->goal,
337                                         ar->flags & EXT4_MB_DELALLOC_RESERVED,
338                                         NULL, &err);
339                         /* Simplify error cleanup... */
340                         branch[i+1].bh = NULL;
341                 }
342                 if (err) {
343                         i--;
344                         goto failed;
345                 }
346                 branch[i].key = cpu_to_le32(new_blocks[i]);
347                 if (i == 0)
348                         continue;
349
350                 bh = branch[i].bh = sb_getblk(ar->inode->i_sb, new_blocks[i-1]);
351                 if (unlikely(!bh)) {
352                         err = -ENOMEM;
353                         goto failed;
354                 }
355                 lock_buffer(bh);
356                 BUFFER_TRACE(bh, "call get_create_access");
357                 err = ext4_journal_get_create_access(handle, bh);
358                 if (err) {
359                         unlock_buffer(bh);
360                         goto failed;
361                 }
362
363                 memset(bh->b_data, 0, bh->b_size);
364                 p = branch[i].p = (__le32 *) bh->b_data + offsets[i];
365                 b = new_blocks[i];
366
367                 if (i == indirect_blks)
368                         len = ar->len;
369                 for (j = 0; j < len; j++)
370                         *p++ = cpu_to_le32(b++);
371
372                 BUFFER_TRACE(bh, "marking uptodate");
373                 set_buffer_uptodate(bh);
374                 unlock_buffer(bh);
375
376                 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
377                 err = ext4_handle_dirty_metadata(handle, ar->inode, bh);
378                 if (err)
379                         goto failed;
380         }
381         return 0;
382 failed:
383         if (i == indirect_blks) {
384                 /* Free data blocks */
385                 ext4_free_blocks(handle, ar->inode, NULL, new_blocks[i],
386                                  ar->len, 0);
387                 i--;
388         }
389         for (; i >= 0; i--) {
390                 /*
391                  * We want to ext4_forget() only freshly allocated indirect
392                  * blocks. Buffer for new_blocks[i] is at branch[i+1].bh
393                  * (buffer at branch[0].bh is indirect block / inode already
394                  * existing before ext4_alloc_branch() was called). Also
395                  * because blocks are freshly allocated, we don't need to
396                  * revoke them which is why we don't set
397                  * EXT4_FREE_BLOCKS_METADATA.
398                  */
399                 ext4_free_blocks(handle, ar->inode, branch[i+1].bh,
400                                  new_blocks[i], 1,
401                                  branch[i+1].bh ? EXT4_FREE_BLOCKS_FORGET : 0);
402         }
403         return err;
404 }
405
406 /**
407  * ext4_splice_branch() - splice the allocated branch onto inode.
408  * @handle: handle for this transaction
409  * @ar: structure describing the allocation request
410  * @where: location of missing link
411  * @num:   number of indirect blocks we are adding
412  *
413  * This function fills the missing link and does all housekeeping needed in
414  * inode (->i_blocks, etc.). In case of success we end up with the full
415  * chain to new block and return 0.
416  */
417 static int ext4_splice_branch(handle_t *handle,
418                               struct ext4_allocation_request *ar,
419                               Indirect *where, int num)
420 {
421         int i;
422         int err = 0;
423         ext4_fsblk_t current_block;
424
425         /*
426          * If we're splicing into a [td]indirect block (as opposed to the
427          * inode) then we need to get write access to the [td]indirect block
428          * before the splice.
429          */
430         if (where->bh) {
431                 BUFFER_TRACE(where->bh, "get_write_access");
432                 err = ext4_journal_get_write_access(handle, where->bh);
433                 if (err)
434                         goto err_out;
435         }
436         /* That's it */
437
438         *where->p = where->key;
439
440         /*
441          * Update the host buffer_head or inode to point to more just allocated
442          * direct blocks blocks
443          */
444         if (num == 0 && ar->len > 1) {
445                 current_block = le32_to_cpu(where->key) + 1;
446                 for (i = 1; i < ar->len; i++)
447                         *(where->p + i) = cpu_to_le32(current_block++);
448         }
449
450         /* We are done with atomic stuff, now do the rest of housekeeping */
451         /* had we spliced it onto indirect block? */
452         if (where->bh) {
453                 /*
454                  * If we spliced it onto an indirect block, we haven't
455                  * altered the inode.  Note however that if it is being spliced
456                  * onto an indirect block at the very end of the file (the
457                  * file is growing) then we *will* alter the inode to reflect
458                  * the new i_size.  But that is not done here - it is done in
459                  * generic_commit_write->__mark_inode_dirty->ext4_dirty_inode.
460                  */
461                 jbd_debug(5, "splicing indirect only\n");
462                 BUFFER_TRACE(where->bh, "call ext4_handle_dirty_metadata");
463                 err = ext4_handle_dirty_metadata(handle, ar->inode, where->bh);
464                 if (err)
465                         goto err_out;
466         } else {
467                 /*
468                  * OK, we spliced it into the inode itself on a direct block.
469                  */
470                 err = ext4_mark_inode_dirty(handle, ar->inode);
471                 if (unlikely(err))
472                         goto err_out;
473                 jbd_debug(5, "splicing direct\n");
474         }
475         return err;
476
477 err_out:
478         for (i = 1; i <= num; i++) {
479                 /*
480                  * branch[i].bh is newly allocated, so there is no
481                  * need to revoke the block, which is why we don't
482                  * need to set EXT4_FREE_BLOCKS_METADATA.
483                  */
484                 ext4_free_blocks(handle, ar->inode, where[i].bh, 0, 1,
485                                  EXT4_FREE_BLOCKS_FORGET);
486         }
487         ext4_free_blocks(handle, ar->inode, NULL, le32_to_cpu(where[num].key),
488                          ar->len, 0);
489
490         return err;
491 }
492
493 /*
494  * The ext4_ind_map_blocks() function handles non-extents inodes
495  * (i.e., using the traditional indirect/double-indirect i_blocks
496  * scheme) for ext4_map_blocks().
497  *
498  * Allocation strategy is simple: if we have to allocate something, we will
499  * have to go the whole way to leaf. So let's do it before attaching anything
500  * to tree, set linkage between the newborn blocks, write them if sync is
501  * required, recheck the path, free and repeat if check fails, otherwise
502  * set the last missing link (that will protect us from any truncate-generated
503  * removals - all blocks on the path are immune now) and possibly force the
504  * write on the parent block.
505  * That has a nice additional property: no special recovery from the failed
506  * allocations is needed - we simply release blocks and do not touch anything
507  * reachable from inode.
508  *
509  * `handle' can be NULL if create == 0.
510  *
511  * return > 0, # of blocks mapped or allocated.
512  * return = 0, if plain lookup failed.
513  * return < 0, error case.
514  *
515  * The ext4_ind_get_blocks() function should be called with
516  * down_write(&EXT4_I(inode)->i_data_sem) if allocating filesystem
517  * blocks (i.e., flags has EXT4_GET_BLOCKS_CREATE set) or
518  * down_read(&EXT4_I(inode)->i_data_sem) if not allocating file system
519  * blocks.
520  */
521 int ext4_ind_map_blocks(handle_t *handle, struct inode *inode,
522                         struct ext4_map_blocks *map,
523                         int flags)
524 {
525         struct ext4_allocation_request ar;
526         int err = -EIO;
527         ext4_lblk_t offsets[4];
528         Indirect chain[4];
529         Indirect *partial;
530         int indirect_blks;
531         int blocks_to_boundary = 0;
532         int depth;
533         int count = 0;
534         ext4_fsblk_t first_block = 0;
535
536         trace_ext4_ind_map_blocks_enter(inode, map->m_lblk, map->m_len, flags);
537         J_ASSERT(!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)));
538         J_ASSERT(handle != NULL || (flags & EXT4_GET_BLOCKS_CREATE) == 0);
539         depth = ext4_block_to_path(inode, map->m_lblk, offsets,
540                                    &blocks_to_boundary);
541
542         if (depth == 0)
543                 goto out;
544
545         partial = ext4_get_branch(inode, depth, offsets, chain, &err);
546
547         /* Simplest case - block found, no allocation needed */
548         if (!partial) {
549                 first_block = le32_to_cpu(chain[depth - 1].key);
550                 count++;
551                 /*map more blocks*/
552                 while (count < map->m_len && count <= blocks_to_boundary) {
553                         ext4_fsblk_t blk;
554
555                         blk = le32_to_cpu(*(chain[depth-1].p + count));
556
557                         if (blk == first_block + count)
558                                 count++;
559                         else
560                                 break;
561                 }
562                 goto got_it;
563         }
564
565         /* Next simple case - plain lookup failed */
566         if ((flags & EXT4_GET_BLOCKS_CREATE) == 0) {
567                 unsigned epb = inode->i_sb->s_blocksize / sizeof(u32);
568                 int i;
569
570                 /*
571                  * Count number blocks in a subtree under 'partial'. At each
572                  * level we count number of complete empty subtrees beyond
573                  * current offset and then descend into the subtree only
574                  * partially beyond current offset.
575                  */
576                 count = 0;
577                 for (i = partial - chain + 1; i < depth; i++)
578                         count = count * epb + (epb - offsets[i] - 1);
579                 count++;
580                 /* Fill in size of a hole we found */
581                 map->m_pblk = 0;
582                 map->m_len = min_t(unsigned int, map->m_len, count);
583                 goto cleanup;
584         }
585
586         /* Failed read of indirect block */
587         if (err == -EIO)
588                 goto cleanup;
589
590         /*
591          * Okay, we need to do block allocation.
592         */
593         if (ext4_has_feature_bigalloc(inode->i_sb)) {
594                 EXT4_ERROR_INODE(inode, "Can't allocate blocks for "
595                                  "non-extent mapped inodes with bigalloc");
596                 return -EFSCORRUPTED;
597         }
598
599         /* Set up for the direct block allocation */
600         memset(&ar, 0, sizeof(ar));
601         ar.inode = inode;
602         ar.logical = map->m_lblk;
603         if (S_ISREG(inode->i_mode))
604                 ar.flags = EXT4_MB_HINT_DATA;
605         if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE)
606                 ar.flags |= EXT4_MB_DELALLOC_RESERVED;
607         if (flags & EXT4_GET_BLOCKS_METADATA_NOFAIL)
608                 ar.flags |= EXT4_MB_USE_RESERVED;
609
610         ar.goal = ext4_find_goal(inode, map->m_lblk, partial);
611
612         /* the number of blocks need to allocate for [d,t]indirect blocks */
613         indirect_blks = (chain + depth) - partial - 1;
614
615         /*
616          * Next look up the indirect map to count the totoal number of
617          * direct blocks to allocate for this branch.
618          */
619         ar.len = ext4_blks_to_allocate(partial, indirect_blks,
620                                        map->m_len, blocks_to_boundary);
621
622         /*
623          * Block out ext4_truncate while we alter the tree
624          */
625         err = ext4_alloc_branch(handle, &ar, indirect_blks,
626                                 offsets + (partial - chain), partial);
627
628         /*
629          * The ext4_splice_branch call will free and forget any buffers
630          * on the new chain if there is a failure, but that risks using
631          * up transaction credits, especially for bitmaps where the
632          * credits cannot be returned.  Can we handle this somehow?  We
633          * may need to return -EAGAIN upwards in the worst case.  --sct
634          */
635         if (!err)
636                 err = ext4_splice_branch(handle, &ar, partial, indirect_blks);
637         if (err)
638                 goto cleanup;
639
640         map->m_flags |= EXT4_MAP_NEW;
641
642         ext4_update_inode_fsync_trans(handle, inode, 1);
643         count = ar.len;
644 got_it:
645         map->m_flags |= EXT4_MAP_MAPPED;
646         map->m_pblk = le32_to_cpu(chain[depth-1].key);
647         map->m_len = count;
648         if (count > blocks_to_boundary)
649                 map->m_flags |= EXT4_MAP_BOUNDARY;
650         err = count;
651         /* Clean up and exit */
652         partial = chain + depth - 1;    /* the whole chain */
653 cleanup:
654         while (partial > chain) {
655                 BUFFER_TRACE(partial->bh, "call brelse");
656                 brelse(partial->bh);
657                 partial--;
658         }
659 out:
660         trace_ext4_ind_map_blocks_exit(inode, flags, map, err);
661         return err;
662 }
663
664 /*
665  * Calculate number of indirect blocks touched by mapping @nrblocks logically
666  * contiguous blocks
667  */
668 int ext4_ind_trans_blocks(struct inode *inode, int nrblocks)
669 {
670         /*
671          * With N contiguous data blocks, we need at most
672          * N/EXT4_ADDR_PER_BLOCK(inode->i_sb) + 1 indirect blocks,
673          * 2 dindirect blocks, and 1 tindirect block
674          */
675         return DIV_ROUND_UP(nrblocks, EXT4_ADDR_PER_BLOCK(inode->i_sb)) + 4;
676 }
677
678 static int ext4_ind_trunc_restart_fn(handle_t *handle, struct inode *inode,
679                                      struct buffer_head *bh, int *dropped)
680 {
681         int err;
682
683         if (bh) {
684                 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
685                 err = ext4_handle_dirty_metadata(handle, inode, bh);
686                 if (unlikely(err))
687                         return err;
688         }
689         err = ext4_mark_inode_dirty(handle, inode);
690         if (unlikely(err))
691                 return err;
692         /*
693          * Drop i_data_sem to avoid deadlock with ext4_map_blocks.  At this
694          * moment, get_block can be called only for blocks inside i_size since
695          * page cache has been already dropped and writes are blocked by
696          * i_mutex. So we can safely drop the i_data_sem here.
697          */
698         BUG_ON(EXT4_JOURNAL(inode) == NULL);
699         ext4_discard_preallocations(inode, 0);
700         up_write(&EXT4_I(inode)->i_data_sem);
701         *dropped = 1;
702         return 0;
703 }
704
705 /*
706  * Truncate transactions can be complex and absolutely huge.  So we need to
707  * be able to restart the transaction at a conventient checkpoint to make
708  * sure we don't overflow the journal.
709  *
710  * Try to extend this transaction for the purposes of truncation.  If
711  * extend fails, we restart transaction.
712  */
713 static int ext4_ind_truncate_ensure_credits(handle_t *handle,
714                                             struct inode *inode,
715                                             struct buffer_head *bh,
716                                             int revoke_creds)
717 {
718         int ret;
719         int dropped = 0;
720
721         ret = ext4_journal_ensure_credits_fn(handle, EXT4_RESERVE_TRANS_BLOCKS,
722                         ext4_blocks_for_truncate(inode), revoke_creds,
723                         ext4_ind_trunc_restart_fn(handle, inode, bh, &dropped));
724         if (dropped)
725                 down_write(&EXT4_I(inode)->i_data_sem);
726         if (ret <= 0)
727                 return ret;
728         if (bh) {
729                 BUFFER_TRACE(bh, "retaking write access");
730                 ret = ext4_journal_get_write_access(handle, bh);
731                 if (unlikely(ret))
732                         return ret;
733         }
734         return 0;
735 }
736
737 /*
738  * Probably it should be a library function... search for first non-zero word
739  * or memcmp with zero_page, whatever is better for particular architecture.
740  * Linus?
741  */
742 static inline int all_zeroes(__le32 *p, __le32 *q)
743 {
744         while (p < q)
745                 if (*p++)
746                         return 0;
747         return 1;
748 }
749
750 /**
751  *      ext4_find_shared - find the indirect blocks for partial truncation.
752  *      @inode:   inode in question
753  *      @depth:   depth of the affected branch
754  *      @offsets: offsets of pointers in that branch (see ext4_block_to_path)
755  *      @chain:   place to store the pointers to partial indirect blocks
756  *      @top:     place to the (detached) top of branch
757  *
758  *      This is a helper function used by ext4_truncate().
759  *
760  *      When we do truncate() we may have to clean the ends of several
761  *      indirect blocks but leave the blocks themselves alive. Block is
762  *      partially truncated if some data below the new i_size is referred
763  *      from it (and it is on the path to the first completely truncated
764  *      data block, indeed).  We have to free the top of that path along
765  *      with everything to the right of the path. Since no allocation
766  *      past the truncation point is possible until ext4_truncate()
767  *      finishes, we may safely do the latter, but top of branch may
768  *      require special attention - pageout below the truncation point
769  *      might try to populate it.
770  *
771  *      We atomically detach the top of branch from the tree, store the
772  *      block number of its root in *@top, pointers to buffer_heads of
773  *      partially truncated blocks - in @chain[].bh and pointers to
774  *      their last elements that should not be removed - in
775  *      @chain[].p. Return value is the pointer to last filled element
776  *      of @chain.
777  *
778  *      The work left to caller to do the actual freeing of subtrees:
779  *              a) free the subtree starting from *@top
780  *              b) free the subtrees whose roots are stored in
781  *                      (@chain[i].p+1 .. end of @chain[i].bh->b_data)
782  *              c) free the subtrees growing from the inode past the @chain[0].
783  *                      (no partially truncated stuff there).  */
784
785 static Indirect *ext4_find_shared(struct inode *inode, int depth,
786                                   ext4_lblk_t offsets[4], Indirect chain[4],
787                                   __le32 *top)
788 {
789         Indirect *partial, *p;
790         int k, err;
791
792         *top = 0;
793         /* Make k index the deepest non-null offset + 1 */
794         for (k = depth; k > 1 && !offsets[k-1]; k--)
795                 ;
796         partial = ext4_get_branch(inode, k, offsets, chain, &err);
797         /* Writer: pointers */
798         if (!partial)
799                 partial = chain + k-1;
800         /*
801          * If the branch acquired continuation since we've looked at it -
802          * fine, it should all survive and (new) top doesn't belong to us.
803          */
804         if (!partial->key && *partial->p)
805                 /* Writer: end */
806                 goto no_top;
807         for (p = partial; (p > chain) && all_zeroes((__le32 *) p->bh->b_data, p->p); p--)
808                 ;
809         /*
810          * OK, we've found the last block that must survive. The rest of our
811          * branch should be detached before unlocking. However, if that rest
812          * of branch is all ours and does not grow immediately from the inode
813          * it's easier to cheat and just decrement partial->p.
814          */
815         if (p == chain + k - 1 && p > chain) {
816                 p->p--;
817         } else {
818                 *top = *p->p;
819                 /* Nope, don't do this in ext4.  Must leave the tree intact */
820 #if 0
821                 *p->p = 0;
822 #endif
823         }
824         /* Writer: end */
825
826         while (partial > p) {
827                 brelse(partial->bh);
828                 partial--;
829         }
830 no_top:
831         return partial;
832 }
833
834 /*
835  * Zero a number of block pointers in either an inode or an indirect block.
836  * If we restart the transaction we must again get write access to the
837  * indirect block for further modification.
838  *
839  * We release `count' blocks on disk, but (last - first) may be greater
840  * than `count' because there can be holes in there.
841  *
842  * Return 0 on success, 1 on invalid block range
843  * and < 0 on fatal error.
844  */
845 static int ext4_clear_blocks(handle_t *handle, struct inode *inode,
846                              struct buffer_head *bh,
847                              ext4_fsblk_t block_to_free,
848                              unsigned long count, __le32 *first,
849                              __le32 *last)
850 {
851         __le32 *p;
852         int     flags = EXT4_FREE_BLOCKS_VALIDATED;
853         int     err;
854
855         if (S_ISDIR(inode->i_mode) || S_ISLNK(inode->i_mode) ||
856             ext4_test_inode_flag(inode, EXT4_INODE_EA_INODE))
857                 flags |= EXT4_FREE_BLOCKS_FORGET | EXT4_FREE_BLOCKS_METADATA;
858         else if (ext4_should_journal_data(inode))
859                 flags |= EXT4_FREE_BLOCKS_FORGET;
860
861         if (!ext4_inode_block_valid(inode, block_to_free, count)) {
862                 EXT4_ERROR_INODE(inode, "attempt to clear invalid "
863                                  "blocks %llu len %lu",
864                                  (unsigned long long) block_to_free, count);
865                 return 1;
866         }
867
868         err = ext4_ind_truncate_ensure_credits(handle, inode, bh,
869                                 ext4_free_data_revoke_credits(inode, count));
870         if (err < 0)
871                 goto out_err;
872
873         for (p = first; p < last; p++)
874                 *p = 0;
875
876         ext4_free_blocks(handle, inode, NULL, block_to_free, count, flags);
877         return 0;
878 out_err:
879         ext4_std_error(inode->i_sb, err);
880         return err;
881 }
882
883 /**
884  * ext4_free_data - free a list of data blocks
885  * @handle:     handle for this transaction
886  * @inode:      inode we are dealing with
887  * @this_bh:    indirect buffer_head which contains *@first and *@last
888  * @first:      array of block numbers
889  * @last:       points immediately past the end of array
890  *
891  * We are freeing all blocks referred from that array (numbers are stored as
892  * little-endian 32-bit) and updating @inode->i_blocks appropriately.
893  *
894  * We accumulate contiguous runs of blocks to free.  Conveniently, if these
895  * blocks are contiguous then releasing them at one time will only affect one
896  * or two bitmap blocks (+ group descriptor(s) and superblock) and we won't
897  * actually use a lot of journal space.
898  *
899  * @this_bh will be %NULL if @first and @last point into the inode's direct
900  * block pointers.
901  */
902 static void ext4_free_data(handle_t *handle, struct inode *inode,
903                            struct buffer_head *this_bh,
904                            __le32 *first, __le32 *last)
905 {
906         ext4_fsblk_t block_to_free = 0;    /* Starting block # of a run */
907         unsigned long count = 0;            /* Number of blocks in the run */
908         __le32 *block_to_free_p = NULL;     /* Pointer into inode/ind
909                                                corresponding to
910                                                block_to_free */
911         ext4_fsblk_t nr;                    /* Current block # */
912         __le32 *p;                          /* Pointer into inode/ind
913                                                for current block */
914         int err = 0;
915
916         if (this_bh) {                          /* For indirect block */
917                 BUFFER_TRACE(this_bh, "get_write_access");
918                 err = ext4_journal_get_write_access(handle, this_bh);
919                 /* Important: if we can't update the indirect pointers
920                  * to the blocks, we can't free them. */
921                 if (err)
922                         return;
923         }
924
925         for (p = first; p < last; p++) {
926                 nr = le32_to_cpu(*p);
927                 if (nr) {
928                         /* accumulate blocks to free if they're contiguous */
929                         if (count == 0) {
930                                 block_to_free = nr;
931                                 block_to_free_p = p;
932                                 count = 1;
933                         } else if (nr == block_to_free + count) {
934                                 count++;
935                         } else {
936                                 err = ext4_clear_blocks(handle, inode, this_bh,
937                                                         block_to_free, count,
938                                                         block_to_free_p, p);
939                                 if (err)
940                                         break;
941                                 block_to_free = nr;
942                                 block_to_free_p = p;
943                                 count = 1;
944                         }
945                 }
946         }
947
948         if (!err && count > 0)
949                 err = ext4_clear_blocks(handle, inode, this_bh, block_to_free,
950                                         count, block_to_free_p, p);
951         if (err < 0)
952                 /* fatal error */
953                 return;
954
955         if (this_bh) {
956                 BUFFER_TRACE(this_bh, "call ext4_handle_dirty_metadata");
957
958                 /*
959                  * The buffer head should have an attached journal head at this
960                  * point. However, if the data is corrupted and an indirect
961                  * block pointed to itself, it would have been detached when
962                  * the block was cleared. Check for this instead of OOPSing.
963                  */
964                 if ((EXT4_JOURNAL(inode) == NULL) || bh2jh(this_bh))
965                         ext4_handle_dirty_metadata(handle, inode, this_bh);
966                 else
967                         EXT4_ERROR_INODE(inode,
968                                          "circular indirect block detected at "
969                                          "block %llu",
970                                 (unsigned long long) this_bh->b_blocknr);
971         }
972 }
973
974 /**
975  *      ext4_free_branches - free an array of branches
976  *      @handle: JBD handle for this transaction
977  *      @inode: inode we are dealing with
978  *      @parent_bh: the buffer_head which contains *@first and *@last
979  *      @first: array of block numbers
980  *      @last:  pointer immediately past the end of array
981  *      @depth: depth of the branches to free
982  *
983  *      We are freeing all blocks referred from these branches (numbers are
984  *      stored as little-endian 32-bit) and updating @inode->i_blocks
985  *      appropriately.
986  */
987 static void ext4_free_branches(handle_t *handle, struct inode *inode,
988                                struct buffer_head *parent_bh,
989                                __le32 *first, __le32 *last, int depth)
990 {
991         ext4_fsblk_t nr;
992         __le32 *p;
993
994         if (ext4_handle_is_aborted(handle))
995                 return;
996
997         if (depth--) {
998                 struct buffer_head *bh;
999                 int addr_per_block = EXT4_ADDR_PER_BLOCK(inode->i_sb);
1000                 p = last;
1001                 while (--p >= first) {
1002                         nr = le32_to_cpu(*p);
1003                         if (!nr)
1004                                 continue;               /* A hole */
1005
1006                         if (!ext4_inode_block_valid(inode, nr, 1)) {
1007                                 EXT4_ERROR_INODE(inode,
1008                                                  "invalid indirect mapped "
1009                                                  "block %lu (level %d)",
1010                                                  (unsigned long) nr, depth);
1011                                 break;
1012                         }
1013
1014                         /* Go read the buffer for the next level down */
1015                         bh = sb_bread(inode->i_sb, nr);
1016
1017                         /*
1018                          * A read failure? Report error and clear slot
1019                          * (should be rare).
1020                          */
1021                         if (!bh) {
1022                                 ext4_error_inode_block(inode, nr, EIO,
1023                                                        "Read failure");
1024                                 continue;
1025                         }
1026
1027                         /* This zaps the entire block.  Bottom up. */
1028                         BUFFER_TRACE(bh, "free child branches");
1029                         ext4_free_branches(handle, inode, bh,
1030                                         (__le32 *) bh->b_data,
1031                                         (__le32 *) bh->b_data + addr_per_block,
1032                                         depth);
1033                         brelse(bh);
1034
1035                         /*
1036                          * Everything below this this pointer has been
1037                          * released.  Now let this top-of-subtree go.
1038                          *
1039                          * We want the freeing of this indirect block to be
1040                          * atomic in the journal with the updating of the
1041                          * bitmap block which owns it.  So make some room in
1042                          * the journal.
1043                          *
1044                          * We zero the parent pointer *after* freeing its
1045                          * pointee in the bitmaps, so if extend_transaction()
1046                          * for some reason fails to put the bitmap changes and
1047                          * the release into the same transaction, recovery
1048                          * will merely complain about releasing a free block,
1049                          * rather than leaking blocks.
1050                          */
1051                         if (ext4_handle_is_aborted(handle))
1052                                 return;
1053                         if (ext4_ind_truncate_ensure_credits(handle, inode,
1054                                         NULL,
1055                                         ext4_free_metadata_revoke_credits(
1056                                                         inode->i_sb, 1)) < 0)
1057                                 return;
1058
1059                         /*
1060                          * The forget flag here is critical because if
1061                          * we are journaling (and not doing data
1062                          * journaling), we have to make sure a revoke
1063                          * record is written to prevent the journal
1064                          * replay from overwriting the (former)
1065                          * indirect block if it gets reallocated as a
1066                          * data block.  This must happen in the same
1067                          * transaction where the data blocks are
1068                          * actually freed.
1069                          */
1070                         ext4_free_blocks(handle, inode, NULL, nr, 1,
1071                                          EXT4_FREE_BLOCKS_METADATA|
1072                                          EXT4_FREE_BLOCKS_FORGET);
1073
1074                         if (parent_bh) {
1075                                 /*
1076                                  * The block which we have just freed is
1077                                  * pointed to by an indirect block: journal it
1078                                  */
1079                                 BUFFER_TRACE(parent_bh, "get_write_access");
1080                                 if (!ext4_journal_get_write_access(handle,
1081                                                                    parent_bh)){
1082                                         *p = 0;
1083                                         BUFFER_TRACE(parent_bh,
1084                                         "call ext4_handle_dirty_metadata");
1085                                         ext4_handle_dirty_metadata(handle,
1086                                                                    inode,
1087                                                                    parent_bh);
1088                                 }
1089                         }
1090                 }
1091         } else {
1092                 /* We have reached the bottom of the tree. */
1093                 BUFFER_TRACE(parent_bh, "free data blocks");
1094                 ext4_free_data(handle, inode, parent_bh, first, last);
1095         }
1096 }
1097
1098 void ext4_ind_truncate(handle_t *handle, struct inode *inode)
1099 {
1100         struct ext4_inode_info *ei = EXT4_I(inode);
1101         __le32 *i_data = ei->i_data;
1102         int addr_per_block = EXT4_ADDR_PER_BLOCK(inode->i_sb);
1103         ext4_lblk_t offsets[4];
1104         Indirect chain[4];
1105         Indirect *partial;
1106         __le32 nr = 0;
1107         int n = 0;
1108         ext4_lblk_t last_block, max_block;
1109         unsigned blocksize = inode->i_sb->s_blocksize;
1110
1111         last_block = (inode->i_size + blocksize-1)
1112                                         >> EXT4_BLOCK_SIZE_BITS(inode->i_sb);
1113         max_block = (EXT4_SB(inode->i_sb)->s_bitmap_maxbytes + blocksize-1)
1114                                         >> EXT4_BLOCK_SIZE_BITS(inode->i_sb);
1115
1116         if (last_block != max_block) {
1117                 n = ext4_block_to_path(inode, last_block, offsets, NULL);
1118                 if (n == 0)
1119                         return;
1120         }
1121
1122         ext4_es_remove_extent(inode, last_block, EXT_MAX_BLOCKS - last_block);
1123
1124         /*
1125          * The orphan list entry will now protect us from any crash which
1126          * occurs before the truncate completes, so it is now safe to propagate
1127          * the new, shorter inode size (held for now in i_size) into the
1128          * on-disk inode. We do this via i_disksize, which is the value which
1129          * ext4 *really* writes onto the disk inode.
1130          */
1131         ei->i_disksize = inode->i_size;
1132
1133         if (last_block == max_block) {
1134                 /*
1135                  * It is unnecessary to free any data blocks if last_block is
1136                  * equal to the indirect block limit.
1137                  */
1138                 return;
1139         } else if (n == 1) {            /* direct blocks */
1140                 ext4_free_data(handle, inode, NULL, i_data+offsets[0],
1141                                i_data + EXT4_NDIR_BLOCKS);
1142                 goto do_indirects;
1143         }
1144
1145         partial = ext4_find_shared(inode, n, offsets, chain, &nr);
1146         /* Kill the top of shared branch (not detached) */
1147         if (nr) {
1148                 if (partial == chain) {
1149                         /* Shared branch grows from the inode */
1150                         ext4_free_branches(handle, inode, NULL,
1151                                            &nr, &nr+1, (chain+n-1) - partial);
1152                         *partial->p = 0;
1153                         /*
1154                          * We mark the inode dirty prior to restart,
1155                          * and prior to stop.  No need for it here.
1156                          */
1157                 } else {
1158                         /* Shared branch grows from an indirect block */
1159                         BUFFER_TRACE(partial->bh, "get_write_access");
1160                         ext4_free_branches(handle, inode, partial->bh,
1161                                         partial->p,
1162                                         partial->p+1, (chain+n-1) - partial);
1163                 }
1164         }
1165         /* Clear the ends of indirect blocks on the shared branch */
1166         while (partial > chain) {
1167                 ext4_free_branches(handle, inode, partial->bh, partial->p + 1,
1168                                    (__le32*)partial->bh->b_data+addr_per_block,
1169                                    (chain+n-1) - partial);
1170                 BUFFER_TRACE(partial->bh, "call brelse");
1171                 brelse(partial->bh);
1172                 partial--;
1173         }
1174 do_indirects:
1175         /* Kill the remaining (whole) subtrees */
1176         switch (offsets[0]) {
1177         default:
1178                 nr = i_data[EXT4_IND_BLOCK];
1179                 if (nr) {
1180                         ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 1);
1181                         i_data[EXT4_IND_BLOCK] = 0;
1182                 }
1183                 fallthrough;
1184         case EXT4_IND_BLOCK:
1185                 nr = i_data[EXT4_DIND_BLOCK];
1186                 if (nr) {
1187                         ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 2);
1188                         i_data[EXT4_DIND_BLOCK] = 0;
1189                 }
1190                 fallthrough;
1191         case EXT4_DIND_BLOCK:
1192                 nr = i_data[EXT4_TIND_BLOCK];
1193                 if (nr) {
1194                         ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 3);
1195                         i_data[EXT4_TIND_BLOCK] = 0;
1196                 }
1197                 fallthrough;
1198         case EXT4_TIND_BLOCK:
1199                 ;
1200         }
1201 }
1202
1203 /**
1204  *      ext4_ind_remove_space - remove space from the range
1205  *      @handle: JBD handle for this transaction
1206  *      @inode: inode we are dealing with
1207  *      @start: First block to remove
1208  *      @end:   One block after the last block to remove (exclusive)
1209  *
1210  *      Free the blocks in the defined range (end is exclusive endpoint of
1211  *      range). This is used by ext4_punch_hole().
1212  */
1213 int ext4_ind_remove_space(handle_t *handle, struct inode *inode,
1214                           ext4_lblk_t start, ext4_lblk_t end)
1215 {
1216         struct ext4_inode_info *ei = EXT4_I(inode);
1217         __le32 *i_data = ei->i_data;
1218         int addr_per_block = EXT4_ADDR_PER_BLOCK(inode->i_sb);
1219         ext4_lblk_t offsets[4], offsets2[4];
1220         Indirect chain[4], chain2[4];
1221         Indirect *partial, *partial2;
1222         Indirect *p = NULL, *p2 = NULL;
1223         ext4_lblk_t max_block;
1224         __le32 nr = 0, nr2 = 0;
1225         int n = 0, n2 = 0;
1226         unsigned blocksize = inode->i_sb->s_blocksize;
1227
1228         max_block = (EXT4_SB(inode->i_sb)->s_bitmap_maxbytes + blocksize-1)
1229                                         >> EXT4_BLOCK_SIZE_BITS(inode->i_sb);
1230         if (end >= max_block)
1231                 end = max_block;
1232         if ((start >= end) || (start > max_block))
1233                 return 0;
1234
1235         n = ext4_block_to_path(inode, start, offsets, NULL);
1236         n2 = ext4_block_to_path(inode, end, offsets2, NULL);
1237
1238         BUG_ON(n > n2);
1239
1240         if ((n == 1) && (n == n2)) {
1241                 /* We're punching only within direct block range */
1242                 ext4_free_data(handle, inode, NULL, i_data + offsets[0],
1243                                i_data + offsets2[0]);
1244                 return 0;
1245         } else if (n2 > n) {
1246                 /*
1247                  * Start and end are on a different levels so we're going to
1248                  * free partial block at start, and partial block at end of
1249                  * the range. If there are some levels in between then
1250                  * do_indirects label will take care of that.
1251                  */
1252
1253                 if (n == 1) {
1254                         /*
1255                          * Start is at the direct block level, free
1256                          * everything to the end of the level.
1257                          */
1258                         ext4_free_data(handle, inode, NULL, i_data + offsets[0],
1259                                        i_data + EXT4_NDIR_BLOCKS);
1260                         goto end_range;
1261                 }
1262
1263
1264                 partial = p = ext4_find_shared(inode, n, offsets, chain, &nr);
1265                 if (nr) {
1266                         if (partial == chain) {
1267                                 /* Shared branch grows from the inode */
1268                                 ext4_free_branches(handle, inode, NULL,
1269                                            &nr, &nr+1, (chain+n-1) - partial);
1270                                 *partial->p = 0;
1271                         } else {
1272                                 /* Shared branch grows from an indirect block */
1273                                 BUFFER_TRACE(partial->bh, "get_write_access");
1274                                 ext4_free_branches(handle, inode, partial->bh,
1275                                         partial->p,
1276                                         partial->p+1, (chain+n-1) - partial);
1277                         }
1278                 }
1279
1280                 /*
1281                  * Clear the ends of indirect blocks on the shared branch
1282                  * at the start of the range
1283                  */
1284                 while (partial > chain) {
1285                         ext4_free_branches(handle, inode, partial->bh,
1286                                 partial->p + 1,
1287                                 (__le32 *)partial->bh->b_data+addr_per_block,
1288                                 (chain+n-1) - partial);
1289                         partial--;
1290                 }
1291
1292 end_range:
1293                 partial2 = p2 = ext4_find_shared(inode, n2, offsets2, chain2, &nr2);
1294                 if (nr2) {
1295                         if (partial2 == chain2) {
1296                                 /*
1297                                  * Remember, end is exclusive so here we're at
1298                                  * the start of the next level we're not going
1299                                  * to free. Everything was covered by the start
1300                                  * of the range.
1301                                  */
1302                                 goto do_indirects;
1303                         }
1304                 } else {
1305                         /*
1306                          * ext4_find_shared returns Indirect structure which
1307                          * points to the last element which should not be
1308                          * removed by truncate. But this is end of the range
1309                          * in punch_hole so we need to point to the next element
1310                          */
1311                         partial2->p++;
1312                 }
1313
1314                 /*
1315                  * Clear the ends of indirect blocks on the shared branch
1316                  * at the end of the range
1317                  */
1318                 while (partial2 > chain2) {
1319                         ext4_free_branches(handle, inode, partial2->bh,
1320                                            (__le32 *)partial2->bh->b_data,
1321                                            partial2->p,
1322                                            (chain2+n2-1) - partial2);
1323                         partial2--;
1324                 }
1325                 goto do_indirects;
1326         }
1327
1328         /* Punch happened within the same level (n == n2) */
1329         partial = p = ext4_find_shared(inode, n, offsets, chain, &nr);
1330         partial2 = p2 = ext4_find_shared(inode, n2, offsets2, chain2, &nr2);
1331
1332         /* Free top, but only if partial2 isn't its subtree. */
1333         if (nr) {
1334                 int level = min(partial - chain, partial2 - chain2);
1335                 int i;
1336                 int subtree = 1;
1337
1338                 for (i = 0; i <= level; i++) {
1339                         if (offsets[i] != offsets2[i]) {
1340                                 subtree = 0;
1341                                 break;
1342                         }
1343                 }
1344
1345                 if (!subtree) {
1346                         if (partial == chain) {
1347                                 /* Shared branch grows from the inode */
1348                                 ext4_free_branches(handle, inode, NULL,
1349                                                    &nr, &nr+1,
1350                                                    (chain+n-1) - partial);
1351                                 *partial->p = 0;
1352                         } else {
1353                                 /* Shared branch grows from an indirect block */
1354                                 BUFFER_TRACE(partial->bh, "get_write_access");
1355                                 ext4_free_branches(handle, inode, partial->bh,
1356                                                    partial->p,
1357                                                    partial->p+1,
1358                                                    (chain+n-1) - partial);
1359                         }
1360                 }
1361         }
1362
1363         if (!nr2) {
1364                 /*
1365                  * ext4_find_shared returns Indirect structure which
1366                  * points to the last element which should not be
1367                  * removed by truncate. But this is end of the range
1368                  * in punch_hole so we need to point to the next element
1369                  */
1370                 partial2->p++;
1371         }
1372
1373         while (partial > chain || partial2 > chain2) {
1374                 int depth = (chain+n-1) - partial;
1375                 int depth2 = (chain2+n2-1) - partial2;
1376
1377                 if (partial > chain && partial2 > chain2 &&
1378                     partial->bh->b_blocknr == partial2->bh->b_blocknr) {
1379                         /*
1380                          * We've converged on the same block. Clear the range,
1381                          * then we're done.
1382                          */
1383                         ext4_free_branches(handle, inode, partial->bh,
1384                                            partial->p + 1,
1385                                            partial2->p,
1386                                            (chain+n-1) - partial);
1387                         goto cleanup;
1388                 }
1389
1390                 /*
1391                  * The start and end partial branches may not be at the same
1392                  * level even though the punch happened within one level. So, we
1393                  * give them a chance to arrive at the same level, then walk
1394                  * them in step with each other until we converge on the same
1395                  * block.
1396                  */
1397                 if (partial > chain && depth <= depth2) {
1398                         ext4_free_branches(handle, inode, partial->bh,
1399                                            partial->p + 1,
1400                                            (__le32 *)partial->bh->b_data+addr_per_block,
1401                                            (chain+n-1) - partial);
1402                         partial--;
1403                 }
1404                 if (partial2 > chain2 && depth2 <= depth) {
1405                         ext4_free_branches(handle, inode, partial2->bh,
1406                                            (__le32 *)partial2->bh->b_data,
1407                                            partial2->p,
1408                                            (chain2+n2-1) - partial2);
1409                         partial2--;
1410                 }
1411         }
1412
1413 cleanup:
1414         while (p && p > chain) {
1415                 BUFFER_TRACE(p->bh, "call brelse");
1416                 brelse(p->bh);
1417                 p--;
1418         }
1419         while (p2 && p2 > chain2) {
1420                 BUFFER_TRACE(p2->bh, "call brelse");
1421                 brelse(p2->bh);
1422                 p2--;
1423         }
1424         return 0;
1425
1426 do_indirects:
1427         /* Kill the remaining (whole) subtrees */
1428         switch (offsets[0]) {
1429         default:
1430                 if (++n >= n2)
1431                         break;
1432                 nr = i_data[EXT4_IND_BLOCK];
1433                 if (nr) {
1434                         ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 1);
1435                         i_data[EXT4_IND_BLOCK] = 0;
1436                 }
1437                 fallthrough;
1438         case EXT4_IND_BLOCK:
1439                 if (++n >= n2)
1440                         break;
1441                 nr = i_data[EXT4_DIND_BLOCK];
1442                 if (nr) {
1443                         ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 2);
1444                         i_data[EXT4_DIND_BLOCK] = 0;
1445                 }
1446                 fallthrough;
1447         case EXT4_DIND_BLOCK:
1448                 if (++n >= n2)
1449                         break;
1450                 nr = i_data[EXT4_TIND_BLOCK];
1451                 if (nr) {
1452                         ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 3);
1453                         i_data[EXT4_TIND_BLOCK] = 0;
1454                 }
1455                 fallthrough;
1456         case EXT4_TIND_BLOCK:
1457                 ;
1458         }
1459         goto cleanup;
1460 }