dm zoned: fix unused but set variable warnings
[linux-2.6-microblaze.git] / fs / exec.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/fs/exec.c
4  *
5  *  Copyright (C) 1991, 1992  Linus Torvalds
6  */
7
8 /*
9  * #!-checking implemented by tytso.
10  */
11 /*
12  * Demand-loading implemented 01.12.91 - no need to read anything but
13  * the header into memory. The inode of the executable is put into
14  * "current->executable", and page faults do the actual loading. Clean.
15  *
16  * Once more I can proudly say that linux stood up to being changed: it
17  * was less than 2 hours work to get demand-loading completely implemented.
18  *
19  * Demand loading changed July 1993 by Eric Youngdale.   Use mmap instead,
20  * current->executable is only used by the procfs.  This allows a dispatch
21  * table to check for several different types  of binary formats.  We keep
22  * trying until we recognize the file or we run out of supported binary
23  * formats.
24  */
25
26 #include <linux/slab.h>
27 #include <linux/file.h>
28 #include <linux/fdtable.h>
29 #include <linux/mm.h>
30 #include <linux/vmacache.h>
31 #include <linux/stat.h>
32 #include <linux/fcntl.h>
33 #include <linux/swap.h>
34 #include <linux/string.h>
35 #include <linux/init.h>
36 #include <linux/sched/mm.h>
37 #include <linux/sched/coredump.h>
38 #include <linux/sched/signal.h>
39 #include <linux/sched/numa_balancing.h>
40 #include <linux/sched/task.h>
41 #include <linux/pagemap.h>
42 #include <linux/perf_event.h>
43 #include <linux/highmem.h>
44 #include <linux/spinlock.h>
45 #include <linux/key.h>
46 #include <linux/personality.h>
47 #include <linux/binfmts.h>
48 #include <linux/utsname.h>
49 #include <linux/pid_namespace.h>
50 #include <linux/module.h>
51 #include <linux/namei.h>
52 #include <linux/mount.h>
53 #include <linux/security.h>
54 #include <linux/syscalls.h>
55 #include <linux/tsacct_kern.h>
56 #include <linux/cn_proc.h>
57 #include <linux/audit.h>
58 #include <linux/tracehook.h>
59 #include <linux/kmod.h>
60 #include <linux/fsnotify.h>
61 #include <linux/fs_struct.h>
62 #include <linux/oom.h>
63 #include <linux/compat.h>
64 #include <linux/vmalloc.h>
65
66 #include <linux/uaccess.h>
67 #include <asm/mmu_context.h>
68 #include <asm/tlb.h>
69
70 #include <trace/events/task.h>
71 #include "internal.h"
72
73 #include <trace/events/sched.h>
74
75 static int bprm_creds_from_file(struct linux_binprm *bprm);
76
77 int suid_dumpable = 0;
78
79 static LIST_HEAD(formats);
80 static DEFINE_RWLOCK(binfmt_lock);
81
82 void __register_binfmt(struct linux_binfmt * fmt, int insert)
83 {
84         BUG_ON(!fmt);
85         if (WARN_ON(!fmt->load_binary))
86                 return;
87         write_lock(&binfmt_lock);
88         insert ? list_add(&fmt->lh, &formats) :
89                  list_add_tail(&fmt->lh, &formats);
90         write_unlock(&binfmt_lock);
91 }
92
93 EXPORT_SYMBOL(__register_binfmt);
94
95 void unregister_binfmt(struct linux_binfmt * fmt)
96 {
97         write_lock(&binfmt_lock);
98         list_del(&fmt->lh);
99         write_unlock(&binfmt_lock);
100 }
101
102 EXPORT_SYMBOL(unregister_binfmt);
103
104 static inline void put_binfmt(struct linux_binfmt * fmt)
105 {
106         module_put(fmt->module);
107 }
108
109 bool path_noexec(const struct path *path)
110 {
111         return (path->mnt->mnt_flags & MNT_NOEXEC) ||
112                (path->mnt->mnt_sb->s_iflags & SB_I_NOEXEC);
113 }
114
115 #ifdef CONFIG_USELIB
116 /*
117  * Note that a shared library must be both readable and executable due to
118  * security reasons.
119  *
120  * Also note that we take the address to load from from the file itself.
121  */
122 SYSCALL_DEFINE1(uselib, const char __user *, library)
123 {
124         struct linux_binfmt *fmt;
125         struct file *file;
126         struct filename *tmp = getname(library);
127         int error = PTR_ERR(tmp);
128         static const struct open_flags uselib_flags = {
129                 .open_flag = O_LARGEFILE | O_RDONLY | __FMODE_EXEC,
130                 .acc_mode = MAY_READ | MAY_EXEC,
131                 .intent = LOOKUP_OPEN,
132                 .lookup_flags = LOOKUP_FOLLOW,
133         };
134
135         if (IS_ERR(tmp))
136                 goto out;
137
138         file = do_filp_open(AT_FDCWD, tmp, &uselib_flags);
139         putname(tmp);
140         error = PTR_ERR(file);
141         if (IS_ERR(file))
142                 goto out;
143
144         error = -EINVAL;
145         if (!S_ISREG(file_inode(file)->i_mode))
146                 goto exit;
147
148         error = -EACCES;
149         if (path_noexec(&file->f_path))
150                 goto exit;
151
152         fsnotify_open(file);
153
154         error = -ENOEXEC;
155
156         read_lock(&binfmt_lock);
157         list_for_each_entry(fmt, &formats, lh) {
158                 if (!fmt->load_shlib)
159                         continue;
160                 if (!try_module_get(fmt->module))
161                         continue;
162                 read_unlock(&binfmt_lock);
163                 error = fmt->load_shlib(file);
164                 read_lock(&binfmt_lock);
165                 put_binfmt(fmt);
166                 if (error != -ENOEXEC)
167                         break;
168         }
169         read_unlock(&binfmt_lock);
170 exit:
171         fput(file);
172 out:
173         return error;
174 }
175 #endif /* #ifdef CONFIG_USELIB */
176
177 #ifdef CONFIG_MMU
178 /*
179  * The nascent bprm->mm is not visible until exec_mmap() but it can
180  * use a lot of memory, account these pages in current->mm temporary
181  * for oom_badness()->get_mm_rss(). Once exec succeeds or fails, we
182  * change the counter back via acct_arg_size(0).
183  */
184 static void acct_arg_size(struct linux_binprm *bprm, unsigned long pages)
185 {
186         struct mm_struct *mm = current->mm;
187         long diff = (long)(pages - bprm->vma_pages);
188
189         if (!mm || !diff)
190                 return;
191
192         bprm->vma_pages = pages;
193         add_mm_counter(mm, MM_ANONPAGES, diff);
194 }
195
196 static struct page *get_arg_page(struct linux_binprm *bprm, unsigned long pos,
197                 int write)
198 {
199         struct page *page;
200         int ret;
201         unsigned int gup_flags = FOLL_FORCE;
202
203 #ifdef CONFIG_STACK_GROWSUP
204         if (write) {
205                 ret = expand_downwards(bprm->vma, pos);
206                 if (ret < 0)
207                         return NULL;
208         }
209 #endif
210
211         if (write)
212                 gup_flags |= FOLL_WRITE;
213
214         /*
215          * We are doing an exec().  'current' is the process
216          * doing the exec and bprm->mm is the new process's mm.
217          */
218         ret = get_user_pages_remote(current, bprm->mm, pos, 1, gup_flags,
219                         &page, NULL, NULL);
220         if (ret <= 0)
221                 return NULL;
222
223         if (write)
224                 acct_arg_size(bprm, vma_pages(bprm->vma));
225
226         return page;
227 }
228
229 static void put_arg_page(struct page *page)
230 {
231         put_page(page);
232 }
233
234 static void free_arg_pages(struct linux_binprm *bprm)
235 {
236 }
237
238 static void flush_arg_page(struct linux_binprm *bprm, unsigned long pos,
239                 struct page *page)
240 {
241         flush_cache_page(bprm->vma, pos, page_to_pfn(page));
242 }
243
244 static int __bprm_mm_init(struct linux_binprm *bprm)
245 {
246         int err;
247         struct vm_area_struct *vma = NULL;
248         struct mm_struct *mm = bprm->mm;
249
250         bprm->vma = vma = vm_area_alloc(mm);
251         if (!vma)
252                 return -ENOMEM;
253         vma_set_anonymous(vma);
254
255         if (mmap_write_lock_killable(mm)) {
256                 err = -EINTR;
257                 goto err_free;
258         }
259
260         /*
261          * Place the stack at the largest stack address the architecture
262          * supports. Later, we'll move this to an appropriate place. We don't
263          * use STACK_TOP because that can depend on attributes which aren't
264          * configured yet.
265          */
266         BUILD_BUG_ON(VM_STACK_FLAGS & VM_STACK_INCOMPLETE_SETUP);
267         vma->vm_end = STACK_TOP_MAX;
268         vma->vm_start = vma->vm_end - PAGE_SIZE;
269         vma->vm_flags = VM_SOFTDIRTY | VM_STACK_FLAGS | VM_STACK_INCOMPLETE_SETUP;
270         vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
271
272         err = insert_vm_struct(mm, vma);
273         if (err)
274                 goto err;
275
276         mm->stack_vm = mm->total_vm = 1;
277         mmap_write_unlock(mm);
278         bprm->p = vma->vm_end - sizeof(void *);
279         return 0;
280 err:
281         mmap_write_unlock(mm);
282 err_free:
283         bprm->vma = NULL;
284         vm_area_free(vma);
285         return err;
286 }
287
288 static bool valid_arg_len(struct linux_binprm *bprm, long len)
289 {
290         return len <= MAX_ARG_STRLEN;
291 }
292
293 #else
294
295 static inline void acct_arg_size(struct linux_binprm *bprm, unsigned long pages)
296 {
297 }
298
299 static struct page *get_arg_page(struct linux_binprm *bprm, unsigned long pos,
300                 int write)
301 {
302         struct page *page;
303
304         page = bprm->page[pos / PAGE_SIZE];
305         if (!page && write) {
306                 page = alloc_page(GFP_HIGHUSER|__GFP_ZERO);
307                 if (!page)
308                         return NULL;
309                 bprm->page[pos / PAGE_SIZE] = page;
310         }
311
312         return page;
313 }
314
315 static void put_arg_page(struct page *page)
316 {
317 }
318
319 static void free_arg_page(struct linux_binprm *bprm, int i)
320 {
321         if (bprm->page[i]) {
322                 __free_page(bprm->page[i]);
323                 bprm->page[i] = NULL;
324         }
325 }
326
327 static void free_arg_pages(struct linux_binprm *bprm)
328 {
329         int i;
330
331         for (i = 0; i < MAX_ARG_PAGES; i++)
332                 free_arg_page(bprm, i);
333 }
334
335 static void flush_arg_page(struct linux_binprm *bprm, unsigned long pos,
336                 struct page *page)
337 {
338 }
339
340 static int __bprm_mm_init(struct linux_binprm *bprm)
341 {
342         bprm->p = PAGE_SIZE * MAX_ARG_PAGES - sizeof(void *);
343         return 0;
344 }
345
346 static bool valid_arg_len(struct linux_binprm *bprm, long len)
347 {
348         return len <= bprm->p;
349 }
350
351 #endif /* CONFIG_MMU */
352
353 /*
354  * Create a new mm_struct and populate it with a temporary stack
355  * vm_area_struct.  We don't have enough context at this point to set the stack
356  * flags, permissions, and offset, so we use temporary values.  We'll update
357  * them later in setup_arg_pages().
358  */
359 static int bprm_mm_init(struct linux_binprm *bprm)
360 {
361         int err;
362         struct mm_struct *mm = NULL;
363
364         bprm->mm = mm = mm_alloc();
365         err = -ENOMEM;
366         if (!mm)
367                 goto err;
368
369         /* Save current stack limit for all calculations made during exec. */
370         task_lock(current->group_leader);
371         bprm->rlim_stack = current->signal->rlim[RLIMIT_STACK];
372         task_unlock(current->group_leader);
373
374         err = __bprm_mm_init(bprm);
375         if (err)
376                 goto err;
377
378         return 0;
379
380 err:
381         if (mm) {
382                 bprm->mm = NULL;
383                 mmdrop(mm);
384         }
385
386         return err;
387 }
388
389 struct user_arg_ptr {
390 #ifdef CONFIG_COMPAT
391         bool is_compat;
392 #endif
393         union {
394                 const char __user *const __user *native;
395 #ifdef CONFIG_COMPAT
396                 const compat_uptr_t __user *compat;
397 #endif
398         } ptr;
399 };
400
401 static const char __user *get_user_arg_ptr(struct user_arg_ptr argv, int nr)
402 {
403         const char __user *native;
404
405 #ifdef CONFIG_COMPAT
406         if (unlikely(argv.is_compat)) {
407                 compat_uptr_t compat;
408
409                 if (get_user(compat, argv.ptr.compat + nr))
410                         return ERR_PTR(-EFAULT);
411
412                 return compat_ptr(compat);
413         }
414 #endif
415
416         if (get_user(native, argv.ptr.native + nr))
417                 return ERR_PTR(-EFAULT);
418
419         return native;
420 }
421
422 /*
423  * count() counts the number of strings in array ARGV.
424  */
425 static int count(struct user_arg_ptr argv, int max)
426 {
427         int i = 0;
428
429         if (argv.ptr.native != NULL) {
430                 for (;;) {
431                         const char __user *p = get_user_arg_ptr(argv, i);
432
433                         if (!p)
434                                 break;
435
436                         if (IS_ERR(p))
437                                 return -EFAULT;
438
439                         if (i >= max)
440                                 return -E2BIG;
441                         ++i;
442
443                         if (fatal_signal_pending(current))
444                                 return -ERESTARTNOHAND;
445                         cond_resched();
446                 }
447         }
448         return i;
449 }
450
451 static int prepare_arg_pages(struct linux_binprm *bprm,
452                         struct user_arg_ptr argv, struct user_arg_ptr envp)
453 {
454         unsigned long limit, ptr_size;
455
456         bprm->argc = count(argv, MAX_ARG_STRINGS);
457         if (bprm->argc < 0)
458                 return bprm->argc;
459
460         bprm->envc = count(envp, MAX_ARG_STRINGS);
461         if (bprm->envc < 0)
462                 return bprm->envc;
463
464         /*
465          * Limit to 1/4 of the max stack size or 3/4 of _STK_LIM
466          * (whichever is smaller) for the argv+env strings.
467          * This ensures that:
468          *  - the remaining binfmt code will not run out of stack space,
469          *  - the program will have a reasonable amount of stack left
470          *    to work from.
471          */
472         limit = _STK_LIM / 4 * 3;
473         limit = min(limit, bprm->rlim_stack.rlim_cur / 4);
474         /*
475          * We've historically supported up to 32 pages (ARG_MAX)
476          * of argument strings even with small stacks
477          */
478         limit = max_t(unsigned long, limit, ARG_MAX);
479         /*
480          * We must account for the size of all the argv and envp pointers to
481          * the argv and envp strings, since they will also take up space in
482          * the stack. They aren't stored until much later when we can't
483          * signal to the parent that the child has run out of stack space.
484          * Instead, calculate it here so it's possible to fail gracefully.
485          */
486         ptr_size = (bprm->argc + bprm->envc) * sizeof(void *);
487         if (limit <= ptr_size)
488                 return -E2BIG;
489         limit -= ptr_size;
490
491         bprm->argmin = bprm->p - limit;
492         return 0;
493 }
494
495 /*
496  * 'copy_strings()' copies argument/environment strings from the old
497  * processes's memory to the new process's stack.  The call to get_user_pages()
498  * ensures the destination page is created and not swapped out.
499  */
500 static int copy_strings(int argc, struct user_arg_ptr argv,
501                         struct linux_binprm *bprm)
502 {
503         struct page *kmapped_page = NULL;
504         char *kaddr = NULL;
505         unsigned long kpos = 0;
506         int ret;
507
508         while (argc-- > 0) {
509                 const char __user *str;
510                 int len;
511                 unsigned long pos;
512
513                 ret = -EFAULT;
514                 str = get_user_arg_ptr(argv, argc);
515                 if (IS_ERR(str))
516                         goto out;
517
518                 len = strnlen_user(str, MAX_ARG_STRLEN);
519                 if (!len)
520                         goto out;
521
522                 ret = -E2BIG;
523                 if (!valid_arg_len(bprm, len))
524                         goto out;
525
526                 /* We're going to work our way backwords. */
527                 pos = bprm->p;
528                 str += len;
529                 bprm->p -= len;
530 #ifdef CONFIG_MMU
531                 if (bprm->p < bprm->argmin)
532                         goto out;
533 #endif
534
535                 while (len > 0) {
536                         int offset, bytes_to_copy;
537
538                         if (fatal_signal_pending(current)) {
539                                 ret = -ERESTARTNOHAND;
540                                 goto out;
541                         }
542                         cond_resched();
543
544                         offset = pos % PAGE_SIZE;
545                         if (offset == 0)
546                                 offset = PAGE_SIZE;
547
548                         bytes_to_copy = offset;
549                         if (bytes_to_copy > len)
550                                 bytes_to_copy = len;
551
552                         offset -= bytes_to_copy;
553                         pos -= bytes_to_copy;
554                         str -= bytes_to_copy;
555                         len -= bytes_to_copy;
556
557                         if (!kmapped_page || kpos != (pos & PAGE_MASK)) {
558                                 struct page *page;
559
560                                 page = get_arg_page(bprm, pos, 1);
561                                 if (!page) {
562                                         ret = -E2BIG;
563                                         goto out;
564                                 }
565
566                                 if (kmapped_page) {
567                                         flush_kernel_dcache_page(kmapped_page);
568                                         kunmap(kmapped_page);
569                                         put_arg_page(kmapped_page);
570                                 }
571                                 kmapped_page = page;
572                                 kaddr = kmap(kmapped_page);
573                                 kpos = pos & PAGE_MASK;
574                                 flush_arg_page(bprm, kpos, kmapped_page);
575                         }
576                         if (copy_from_user(kaddr+offset, str, bytes_to_copy)) {
577                                 ret = -EFAULT;
578                                 goto out;
579                         }
580                 }
581         }
582         ret = 0;
583 out:
584         if (kmapped_page) {
585                 flush_kernel_dcache_page(kmapped_page);
586                 kunmap(kmapped_page);
587                 put_arg_page(kmapped_page);
588         }
589         return ret;
590 }
591
592 /*
593  * Copy and argument/environment string from the kernel to the processes stack.
594  */
595 int copy_string_kernel(const char *arg, struct linux_binprm *bprm)
596 {
597         int len = strnlen(arg, MAX_ARG_STRLEN) + 1 /* terminating NUL */;
598         unsigned long pos = bprm->p;
599
600         if (len == 0)
601                 return -EFAULT;
602         if (!valid_arg_len(bprm, len))
603                 return -E2BIG;
604
605         /* We're going to work our way backwards. */
606         arg += len;
607         bprm->p -= len;
608         if (IS_ENABLED(CONFIG_MMU) && bprm->p < bprm->argmin)
609                 return -E2BIG;
610
611         while (len > 0) {
612                 unsigned int bytes_to_copy = min_t(unsigned int, len,
613                                 min_not_zero(offset_in_page(pos), PAGE_SIZE));
614                 struct page *page;
615                 char *kaddr;
616
617                 pos -= bytes_to_copy;
618                 arg -= bytes_to_copy;
619                 len -= bytes_to_copy;
620
621                 page = get_arg_page(bprm, pos, 1);
622                 if (!page)
623                         return -E2BIG;
624                 kaddr = kmap_atomic(page);
625                 flush_arg_page(bprm, pos & PAGE_MASK, page);
626                 memcpy(kaddr + offset_in_page(pos), arg, bytes_to_copy);
627                 flush_kernel_dcache_page(page);
628                 kunmap_atomic(kaddr);
629                 put_arg_page(page);
630         }
631
632         return 0;
633 }
634 EXPORT_SYMBOL(copy_string_kernel);
635
636 #ifdef CONFIG_MMU
637
638 /*
639  * During bprm_mm_init(), we create a temporary stack at STACK_TOP_MAX.  Once
640  * the binfmt code determines where the new stack should reside, we shift it to
641  * its final location.  The process proceeds as follows:
642  *
643  * 1) Use shift to calculate the new vma endpoints.
644  * 2) Extend vma to cover both the old and new ranges.  This ensures the
645  *    arguments passed to subsequent functions are consistent.
646  * 3) Move vma's page tables to the new range.
647  * 4) Free up any cleared pgd range.
648  * 5) Shrink the vma to cover only the new range.
649  */
650 static int shift_arg_pages(struct vm_area_struct *vma, unsigned long shift)
651 {
652         struct mm_struct *mm = vma->vm_mm;
653         unsigned long old_start = vma->vm_start;
654         unsigned long old_end = vma->vm_end;
655         unsigned long length = old_end - old_start;
656         unsigned long new_start = old_start - shift;
657         unsigned long new_end = old_end - shift;
658         struct mmu_gather tlb;
659
660         BUG_ON(new_start > new_end);
661
662         /*
663          * ensure there are no vmas between where we want to go
664          * and where we are
665          */
666         if (vma != find_vma(mm, new_start))
667                 return -EFAULT;
668
669         /*
670          * cover the whole range: [new_start, old_end)
671          */
672         if (vma_adjust(vma, new_start, old_end, vma->vm_pgoff, NULL))
673                 return -ENOMEM;
674
675         /*
676          * move the page tables downwards, on failure we rely on
677          * process cleanup to remove whatever mess we made.
678          */
679         if (length != move_page_tables(vma, old_start,
680                                        vma, new_start, length, false))
681                 return -ENOMEM;
682
683         lru_add_drain();
684         tlb_gather_mmu(&tlb, mm, old_start, old_end);
685         if (new_end > old_start) {
686                 /*
687                  * when the old and new regions overlap clear from new_end.
688                  */
689                 free_pgd_range(&tlb, new_end, old_end, new_end,
690                         vma->vm_next ? vma->vm_next->vm_start : USER_PGTABLES_CEILING);
691         } else {
692                 /*
693                  * otherwise, clean from old_start; this is done to not touch
694                  * the address space in [new_end, old_start) some architectures
695                  * have constraints on va-space that make this illegal (IA64) -
696                  * for the others its just a little faster.
697                  */
698                 free_pgd_range(&tlb, old_start, old_end, new_end,
699                         vma->vm_next ? vma->vm_next->vm_start : USER_PGTABLES_CEILING);
700         }
701         tlb_finish_mmu(&tlb, old_start, old_end);
702
703         /*
704          * Shrink the vma to just the new range.  Always succeeds.
705          */
706         vma_adjust(vma, new_start, new_end, vma->vm_pgoff, NULL);
707
708         return 0;
709 }
710
711 /*
712  * Finalizes the stack vm_area_struct. The flags and permissions are updated,
713  * the stack is optionally relocated, and some extra space is added.
714  */
715 int setup_arg_pages(struct linux_binprm *bprm,
716                     unsigned long stack_top,
717                     int executable_stack)
718 {
719         unsigned long ret;
720         unsigned long stack_shift;
721         struct mm_struct *mm = current->mm;
722         struct vm_area_struct *vma = bprm->vma;
723         struct vm_area_struct *prev = NULL;
724         unsigned long vm_flags;
725         unsigned long stack_base;
726         unsigned long stack_size;
727         unsigned long stack_expand;
728         unsigned long rlim_stack;
729
730 #ifdef CONFIG_STACK_GROWSUP
731         /* Limit stack size */
732         stack_base = bprm->rlim_stack.rlim_max;
733         if (stack_base > STACK_SIZE_MAX)
734                 stack_base = STACK_SIZE_MAX;
735
736         /* Add space for stack randomization. */
737         stack_base += (STACK_RND_MASK << PAGE_SHIFT);
738
739         /* Make sure we didn't let the argument array grow too large. */
740         if (vma->vm_end - vma->vm_start > stack_base)
741                 return -ENOMEM;
742
743         stack_base = PAGE_ALIGN(stack_top - stack_base);
744
745         stack_shift = vma->vm_start - stack_base;
746         mm->arg_start = bprm->p - stack_shift;
747         bprm->p = vma->vm_end - stack_shift;
748 #else
749         stack_top = arch_align_stack(stack_top);
750         stack_top = PAGE_ALIGN(stack_top);
751
752         if (unlikely(stack_top < mmap_min_addr) ||
753             unlikely(vma->vm_end - vma->vm_start >= stack_top - mmap_min_addr))
754                 return -ENOMEM;
755
756         stack_shift = vma->vm_end - stack_top;
757
758         bprm->p -= stack_shift;
759         mm->arg_start = bprm->p;
760 #endif
761
762         if (bprm->loader)
763                 bprm->loader -= stack_shift;
764         bprm->exec -= stack_shift;
765
766         if (mmap_write_lock_killable(mm))
767                 return -EINTR;
768
769         vm_flags = VM_STACK_FLAGS;
770
771         /*
772          * Adjust stack execute permissions; explicitly enable for
773          * EXSTACK_ENABLE_X, disable for EXSTACK_DISABLE_X and leave alone
774          * (arch default) otherwise.
775          */
776         if (unlikely(executable_stack == EXSTACK_ENABLE_X))
777                 vm_flags |= VM_EXEC;
778         else if (executable_stack == EXSTACK_DISABLE_X)
779                 vm_flags &= ~VM_EXEC;
780         vm_flags |= mm->def_flags;
781         vm_flags |= VM_STACK_INCOMPLETE_SETUP;
782
783         ret = mprotect_fixup(vma, &prev, vma->vm_start, vma->vm_end,
784                         vm_flags);
785         if (ret)
786                 goto out_unlock;
787         BUG_ON(prev != vma);
788
789         if (unlikely(vm_flags & VM_EXEC)) {
790                 pr_warn_once("process '%pD4' started with executable stack\n",
791                              bprm->file);
792         }
793
794         /* Move stack pages down in memory. */
795         if (stack_shift) {
796                 ret = shift_arg_pages(vma, stack_shift);
797                 if (ret)
798                         goto out_unlock;
799         }
800
801         /* mprotect_fixup is overkill to remove the temporary stack flags */
802         vma->vm_flags &= ~VM_STACK_INCOMPLETE_SETUP;
803
804         stack_expand = 131072UL; /* randomly 32*4k (or 2*64k) pages */
805         stack_size = vma->vm_end - vma->vm_start;
806         /*
807          * Align this down to a page boundary as expand_stack
808          * will align it up.
809          */
810         rlim_stack = bprm->rlim_stack.rlim_cur & PAGE_MASK;
811 #ifdef CONFIG_STACK_GROWSUP
812         if (stack_size + stack_expand > rlim_stack)
813                 stack_base = vma->vm_start + rlim_stack;
814         else
815                 stack_base = vma->vm_end + stack_expand;
816 #else
817         if (stack_size + stack_expand > rlim_stack)
818                 stack_base = vma->vm_end - rlim_stack;
819         else
820                 stack_base = vma->vm_start - stack_expand;
821 #endif
822         current->mm->start_stack = bprm->p;
823         ret = expand_stack(vma, stack_base);
824         if (ret)
825                 ret = -EFAULT;
826
827 out_unlock:
828         mmap_write_unlock(mm);
829         return ret;
830 }
831 EXPORT_SYMBOL(setup_arg_pages);
832
833 #else
834
835 /*
836  * Transfer the program arguments and environment from the holding pages
837  * onto the stack. The provided stack pointer is adjusted accordingly.
838  */
839 int transfer_args_to_stack(struct linux_binprm *bprm,
840                            unsigned long *sp_location)
841 {
842         unsigned long index, stop, sp;
843         int ret = 0;
844
845         stop = bprm->p >> PAGE_SHIFT;
846         sp = *sp_location;
847
848         for (index = MAX_ARG_PAGES - 1; index >= stop; index--) {
849                 unsigned int offset = index == stop ? bprm->p & ~PAGE_MASK : 0;
850                 char *src = kmap(bprm->page[index]) + offset;
851                 sp -= PAGE_SIZE - offset;
852                 if (copy_to_user((void *) sp, src, PAGE_SIZE - offset) != 0)
853                         ret = -EFAULT;
854                 kunmap(bprm->page[index]);
855                 if (ret)
856                         goto out;
857         }
858
859         *sp_location = sp;
860
861 out:
862         return ret;
863 }
864 EXPORT_SYMBOL(transfer_args_to_stack);
865
866 #endif /* CONFIG_MMU */
867
868 static struct file *do_open_execat(int fd, struct filename *name, int flags)
869 {
870         struct file *file;
871         int err;
872         struct open_flags open_exec_flags = {
873                 .open_flag = O_LARGEFILE | O_RDONLY | __FMODE_EXEC,
874                 .acc_mode = MAY_EXEC,
875                 .intent = LOOKUP_OPEN,
876                 .lookup_flags = LOOKUP_FOLLOW,
877         };
878
879         if ((flags & ~(AT_SYMLINK_NOFOLLOW | AT_EMPTY_PATH)) != 0)
880                 return ERR_PTR(-EINVAL);
881         if (flags & AT_SYMLINK_NOFOLLOW)
882                 open_exec_flags.lookup_flags &= ~LOOKUP_FOLLOW;
883         if (flags & AT_EMPTY_PATH)
884                 open_exec_flags.lookup_flags |= LOOKUP_EMPTY;
885
886         file = do_filp_open(fd, name, &open_exec_flags);
887         if (IS_ERR(file))
888                 goto out;
889
890         err = -EACCES;
891         if (!S_ISREG(file_inode(file)->i_mode))
892                 goto exit;
893
894         if (path_noexec(&file->f_path))
895                 goto exit;
896
897         err = deny_write_access(file);
898         if (err)
899                 goto exit;
900
901         if (name->name[0] != '\0')
902                 fsnotify_open(file);
903
904 out:
905         return file;
906
907 exit:
908         fput(file);
909         return ERR_PTR(err);
910 }
911
912 struct file *open_exec(const char *name)
913 {
914         struct filename *filename = getname_kernel(name);
915         struct file *f = ERR_CAST(filename);
916
917         if (!IS_ERR(filename)) {
918                 f = do_open_execat(AT_FDCWD, filename, 0);
919                 putname(filename);
920         }
921         return f;
922 }
923 EXPORT_SYMBOL(open_exec);
924
925 int kernel_read_file(struct file *file, void **buf, loff_t *size,
926                      loff_t max_size, enum kernel_read_file_id id)
927 {
928         loff_t i_size, pos;
929         ssize_t bytes = 0;
930         int ret;
931
932         if (!S_ISREG(file_inode(file)->i_mode) || max_size < 0)
933                 return -EINVAL;
934
935         ret = deny_write_access(file);
936         if (ret)
937                 return ret;
938
939         ret = security_kernel_read_file(file, id);
940         if (ret)
941                 goto out;
942
943         i_size = i_size_read(file_inode(file));
944         if (i_size <= 0) {
945                 ret = -EINVAL;
946                 goto out;
947         }
948         if (i_size > SIZE_MAX || (max_size > 0 && i_size > max_size)) {
949                 ret = -EFBIG;
950                 goto out;
951         }
952
953         if (id != READING_FIRMWARE_PREALLOC_BUFFER)
954                 *buf = vmalloc(i_size);
955         if (!*buf) {
956                 ret = -ENOMEM;
957                 goto out;
958         }
959
960         pos = 0;
961         while (pos < i_size) {
962                 bytes = kernel_read(file, *buf + pos, i_size - pos, &pos);
963                 if (bytes < 0) {
964                         ret = bytes;
965                         goto out_free;
966                 }
967
968                 if (bytes == 0)
969                         break;
970         }
971
972         if (pos != i_size) {
973                 ret = -EIO;
974                 goto out_free;
975         }
976
977         ret = security_kernel_post_read_file(file, *buf, i_size, id);
978         if (!ret)
979                 *size = pos;
980
981 out_free:
982         if (ret < 0) {
983                 if (id != READING_FIRMWARE_PREALLOC_BUFFER) {
984                         vfree(*buf);
985                         *buf = NULL;
986                 }
987         }
988
989 out:
990         allow_write_access(file);
991         return ret;
992 }
993 EXPORT_SYMBOL_GPL(kernel_read_file);
994
995 int kernel_read_file_from_path(const char *path, void **buf, loff_t *size,
996                                loff_t max_size, enum kernel_read_file_id id)
997 {
998         struct file *file;
999         int ret;
1000
1001         if (!path || !*path)
1002                 return -EINVAL;
1003
1004         file = filp_open(path, O_RDONLY, 0);
1005         if (IS_ERR(file))
1006                 return PTR_ERR(file);
1007
1008         ret = kernel_read_file(file, buf, size, max_size, id);
1009         fput(file);
1010         return ret;
1011 }
1012 EXPORT_SYMBOL_GPL(kernel_read_file_from_path);
1013
1014 int kernel_read_file_from_path_initns(const char *path, void **buf,
1015                                       loff_t *size, loff_t max_size,
1016                                       enum kernel_read_file_id id)
1017 {
1018         struct file *file;
1019         struct path root;
1020         int ret;
1021
1022         if (!path || !*path)
1023                 return -EINVAL;
1024
1025         task_lock(&init_task);
1026         get_fs_root(init_task.fs, &root);
1027         task_unlock(&init_task);
1028
1029         file = file_open_root(root.dentry, root.mnt, path, O_RDONLY, 0);
1030         path_put(&root);
1031         if (IS_ERR(file))
1032                 return PTR_ERR(file);
1033
1034         ret = kernel_read_file(file, buf, size, max_size, id);
1035         fput(file);
1036         return ret;
1037 }
1038 EXPORT_SYMBOL_GPL(kernel_read_file_from_path_initns);
1039
1040 int kernel_read_file_from_fd(int fd, void **buf, loff_t *size, loff_t max_size,
1041                              enum kernel_read_file_id id)
1042 {
1043         struct fd f = fdget(fd);
1044         int ret = -EBADF;
1045
1046         if (!f.file)
1047                 goto out;
1048
1049         ret = kernel_read_file(f.file, buf, size, max_size, id);
1050 out:
1051         fdput(f);
1052         return ret;
1053 }
1054 EXPORT_SYMBOL_GPL(kernel_read_file_from_fd);
1055
1056 #if defined(CONFIG_HAVE_AOUT) || defined(CONFIG_BINFMT_FLAT) || \
1057     defined(CONFIG_BINFMT_ELF_FDPIC)
1058 ssize_t read_code(struct file *file, unsigned long addr, loff_t pos, size_t len)
1059 {
1060         ssize_t res = vfs_read(file, (void __user *)addr, len, &pos);
1061         if (res > 0)
1062                 flush_icache_user_range(addr, addr + len);
1063         return res;
1064 }
1065 EXPORT_SYMBOL(read_code);
1066 #endif
1067
1068 /*
1069  * Maps the mm_struct mm into the current task struct.
1070  * On success, this function returns with the mutex
1071  * exec_update_mutex locked.
1072  */
1073 static int exec_mmap(struct mm_struct *mm)
1074 {
1075         struct task_struct *tsk;
1076         struct mm_struct *old_mm, *active_mm;
1077         int ret;
1078
1079         /* Notify parent that we're no longer interested in the old VM */
1080         tsk = current;
1081         old_mm = current->mm;
1082         exec_mm_release(tsk, old_mm);
1083         if (old_mm)
1084                 sync_mm_rss(old_mm);
1085
1086         ret = mutex_lock_killable(&tsk->signal->exec_update_mutex);
1087         if (ret)
1088                 return ret;
1089
1090         if (old_mm) {
1091                 /*
1092                  * Make sure that if there is a core dump in progress
1093                  * for the old mm, we get out and die instead of going
1094                  * through with the exec.  We must hold mmap_lock around
1095                  * checking core_state and changing tsk->mm.
1096                  */
1097                 mmap_read_lock(old_mm);
1098                 if (unlikely(old_mm->core_state)) {
1099                         mmap_read_unlock(old_mm);
1100                         mutex_unlock(&tsk->signal->exec_update_mutex);
1101                         return -EINTR;
1102                 }
1103         }
1104
1105         task_lock(tsk);
1106         active_mm = tsk->active_mm;
1107         membarrier_exec_mmap(mm);
1108         tsk->mm = mm;
1109         tsk->active_mm = mm;
1110         activate_mm(active_mm, mm);
1111         tsk->mm->vmacache_seqnum = 0;
1112         vmacache_flush(tsk);
1113         task_unlock(tsk);
1114         if (old_mm) {
1115                 mmap_read_unlock(old_mm);
1116                 BUG_ON(active_mm != old_mm);
1117                 setmax_mm_hiwater_rss(&tsk->signal->maxrss, old_mm);
1118                 mm_update_next_owner(old_mm);
1119                 mmput(old_mm);
1120                 return 0;
1121         }
1122         mmdrop(active_mm);
1123         return 0;
1124 }
1125
1126 static int de_thread(struct task_struct *tsk)
1127 {
1128         struct signal_struct *sig = tsk->signal;
1129         struct sighand_struct *oldsighand = tsk->sighand;
1130         spinlock_t *lock = &oldsighand->siglock;
1131
1132         if (thread_group_empty(tsk))
1133                 goto no_thread_group;
1134
1135         /*
1136          * Kill all other threads in the thread group.
1137          */
1138         spin_lock_irq(lock);
1139         if (signal_group_exit(sig)) {
1140                 /*
1141                  * Another group action in progress, just
1142                  * return so that the signal is processed.
1143                  */
1144                 spin_unlock_irq(lock);
1145                 return -EAGAIN;
1146         }
1147
1148         sig->group_exit_task = tsk;
1149         sig->notify_count = zap_other_threads(tsk);
1150         if (!thread_group_leader(tsk))
1151                 sig->notify_count--;
1152
1153         while (sig->notify_count) {
1154                 __set_current_state(TASK_KILLABLE);
1155                 spin_unlock_irq(lock);
1156                 schedule();
1157                 if (__fatal_signal_pending(tsk))
1158                         goto killed;
1159                 spin_lock_irq(lock);
1160         }
1161         spin_unlock_irq(lock);
1162
1163         /*
1164          * At this point all other threads have exited, all we have to
1165          * do is to wait for the thread group leader to become inactive,
1166          * and to assume its PID:
1167          */
1168         if (!thread_group_leader(tsk)) {
1169                 struct task_struct *leader = tsk->group_leader;
1170
1171                 for (;;) {
1172                         cgroup_threadgroup_change_begin(tsk);
1173                         write_lock_irq(&tasklist_lock);
1174                         /*
1175                          * Do this under tasklist_lock to ensure that
1176                          * exit_notify() can't miss ->group_exit_task
1177                          */
1178                         sig->notify_count = -1;
1179                         if (likely(leader->exit_state))
1180                                 break;
1181                         __set_current_state(TASK_KILLABLE);
1182                         write_unlock_irq(&tasklist_lock);
1183                         cgroup_threadgroup_change_end(tsk);
1184                         schedule();
1185                         if (__fatal_signal_pending(tsk))
1186                                 goto killed;
1187                 }
1188
1189                 /*
1190                  * The only record we have of the real-time age of a
1191                  * process, regardless of execs it's done, is start_time.
1192                  * All the past CPU time is accumulated in signal_struct
1193                  * from sister threads now dead.  But in this non-leader
1194                  * exec, nothing survives from the original leader thread,
1195                  * whose birth marks the true age of this process now.
1196                  * When we take on its identity by switching to its PID, we
1197                  * also take its birthdate (always earlier than our own).
1198                  */
1199                 tsk->start_time = leader->start_time;
1200                 tsk->start_boottime = leader->start_boottime;
1201
1202                 BUG_ON(!same_thread_group(leader, tsk));
1203                 /*
1204                  * An exec() starts a new thread group with the
1205                  * TGID of the previous thread group. Rehash the
1206                  * two threads with a switched PID, and release
1207                  * the former thread group leader:
1208                  */
1209
1210                 /* Become a process group leader with the old leader's pid.
1211                  * The old leader becomes a thread of the this thread group.
1212                  */
1213                 exchange_tids(tsk, leader);
1214                 transfer_pid(leader, tsk, PIDTYPE_TGID);
1215                 transfer_pid(leader, tsk, PIDTYPE_PGID);
1216                 transfer_pid(leader, tsk, PIDTYPE_SID);
1217
1218                 list_replace_rcu(&leader->tasks, &tsk->tasks);
1219                 list_replace_init(&leader->sibling, &tsk->sibling);
1220
1221                 tsk->group_leader = tsk;
1222                 leader->group_leader = tsk;
1223
1224                 tsk->exit_signal = SIGCHLD;
1225                 leader->exit_signal = -1;
1226
1227                 BUG_ON(leader->exit_state != EXIT_ZOMBIE);
1228                 leader->exit_state = EXIT_DEAD;
1229
1230                 /*
1231                  * We are going to release_task()->ptrace_unlink() silently,
1232                  * the tracer can sleep in do_wait(). EXIT_DEAD guarantees
1233                  * the tracer wont't block again waiting for this thread.
1234                  */
1235                 if (unlikely(leader->ptrace))
1236                         __wake_up_parent(leader, leader->parent);
1237                 write_unlock_irq(&tasklist_lock);
1238                 cgroup_threadgroup_change_end(tsk);
1239
1240                 release_task(leader);
1241         }
1242
1243         sig->group_exit_task = NULL;
1244         sig->notify_count = 0;
1245
1246 no_thread_group:
1247         /* we have changed execution domain */
1248         tsk->exit_signal = SIGCHLD;
1249
1250         BUG_ON(!thread_group_leader(tsk));
1251         return 0;
1252
1253 killed:
1254         /* protects against exit_notify() and __exit_signal() */
1255         read_lock(&tasklist_lock);
1256         sig->group_exit_task = NULL;
1257         sig->notify_count = 0;
1258         read_unlock(&tasklist_lock);
1259         return -EAGAIN;
1260 }
1261
1262
1263 /*
1264  * This function makes sure the current process has its own signal table,
1265  * so that flush_signal_handlers can later reset the handlers without
1266  * disturbing other processes.  (Other processes might share the signal
1267  * table via the CLONE_SIGHAND option to clone().)
1268  */
1269 static int unshare_sighand(struct task_struct *me)
1270 {
1271         struct sighand_struct *oldsighand = me->sighand;
1272
1273         if (refcount_read(&oldsighand->count) != 1) {
1274                 struct sighand_struct *newsighand;
1275                 /*
1276                  * This ->sighand is shared with the CLONE_SIGHAND
1277                  * but not CLONE_THREAD task, switch to the new one.
1278                  */
1279                 newsighand = kmem_cache_alloc(sighand_cachep, GFP_KERNEL);
1280                 if (!newsighand)
1281                         return -ENOMEM;
1282
1283                 refcount_set(&newsighand->count, 1);
1284                 memcpy(newsighand->action, oldsighand->action,
1285                        sizeof(newsighand->action));
1286
1287                 write_lock_irq(&tasklist_lock);
1288                 spin_lock(&oldsighand->siglock);
1289                 rcu_assign_pointer(me->sighand, newsighand);
1290                 spin_unlock(&oldsighand->siglock);
1291                 write_unlock_irq(&tasklist_lock);
1292
1293                 __cleanup_sighand(oldsighand);
1294         }
1295         return 0;
1296 }
1297
1298 char *__get_task_comm(char *buf, size_t buf_size, struct task_struct *tsk)
1299 {
1300         task_lock(tsk);
1301         strncpy(buf, tsk->comm, buf_size);
1302         task_unlock(tsk);
1303         return buf;
1304 }
1305 EXPORT_SYMBOL_GPL(__get_task_comm);
1306
1307 /*
1308  * These functions flushes out all traces of the currently running executable
1309  * so that a new one can be started
1310  */
1311
1312 void __set_task_comm(struct task_struct *tsk, const char *buf, bool exec)
1313 {
1314         task_lock(tsk);
1315         trace_task_rename(tsk, buf);
1316         strlcpy(tsk->comm, buf, sizeof(tsk->comm));
1317         task_unlock(tsk);
1318         perf_event_comm(tsk, exec);
1319 }
1320
1321 /*
1322  * Calling this is the point of no return. None of the failures will be
1323  * seen by userspace since either the process is already taking a fatal
1324  * signal (via de_thread() or coredump), or will have SEGV raised
1325  * (after exec_mmap()) by search_binary_handler (see below).
1326  */
1327 int begin_new_exec(struct linux_binprm * bprm)
1328 {
1329         struct task_struct *me = current;
1330         int retval;
1331
1332         /* Once we are committed compute the creds */
1333         retval = bprm_creds_from_file(bprm);
1334         if (retval)
1335                 return retval;
1336
1337         /*
1338          * Ensure all future errors are fatal.
1339          */
1340         bprm->point_of_no_return = true;
1341
1342         /*
1343          * Make this the only thread in the thread group.
1344          */
1345         retval = de_thread(me);
1346         if (retval)
1347                 goto out;
1348
1349         /*
1350          * Must be called _before_ exec_mmap() as bprm->mm is
1351          * not visibile until then. This also enables the update
1352          * to be lockless.
1353          */
1354         set_mm_exe_file(bprm->mm, bprm->file);
1355
1356         /* If the binary is not readable then enforce mm->dumpable=0 */
1357         would_dump(bprm, bprm->file);
1358         if (bprm->have_execfd)
1359                 would_dump(bprm, bprm->executable);
1360
1361         /*
1362          * Release all of the old mmap stuff
1363          */
1364         acct_arg_size(bprm, 0);
1365         retval = exec_mmap(bprm->mm);
1366         if (retval)
1367                 goto out;
1368
1369         bprm->mm = NULL;
1370
1371 #ifdef CONFIG_POSIX_TIMERS
1372         exit_itimers(me->signal);
1373         flush_itimer_signals();
1374 #endif
1375
1376         /*
1377          * Make the signal table private.
1378          */
1379         retval = unshare_sighand(me);
1380         if (retval)
1381                 goto out_unlock;
1382
1383         set_fs(USER_DS);
1384         me->flags &= ~(PF_RANDOMIZE | PF_FORKNOEXEC | PF_KTHREAD |
1385                                         PF_NOFREEZE | PF_NO_SETAFFINITY);
1386         flush_thread();
1387         me->personality &= ~bprm->per_clear;
1388
1389         /*
1390          * We have to apply CLOEXEC before we change whether the process is
1391          * dumpable (in setup_new_exec) to avoid a race with a process in userspace
1392          * trying to access the should-be-closed file descriptors of a process
1393          * undergoing exec(2).
1394          */
1395         do_close_on_exec(me->files);
1396
1397         if (bprm->secureexec) {
1398                 /* Make sure parent cannot signal privileged process. */
1399                 me->pdeath_signal = 0;
1400
1401                 /*
1402                  * For secureexec, reset the stack limit to sane default to
1403                  * avoid bad behavior from the prior rlimits. This has to
1404                  * happen before arch_pick_mmap_layout(), which examines
1405                  * RLIMIT_STACK, but after the point of no return to avoid
1406                  * needing to clean up the change on failure.
1407                  */
1408                 if (bprm->rlim_stack.rlim_cur > _STK_LIM)
1409                         bprm->rlim_stack.rlim_cur = _STK_LIM;
1410         }
1411
1412         me->sas_ss_sp = me->sas_ss_size = 0;
1413
1414         /*
1415          * Figure out dumpability. Note that this checking only of current
1416          * is wrong, but userspace depends on it. This should be testing
1417          * bprm->secureexec instead.
1418          */
1419         if (bprm->interp_flags & BINPRM_FLAGS_ENFORCE_NONDUMP ||
1420             !(uid_eq(current_euid(), current_uid()) &&
1421               gid_eq(current_egid(), current_gid())))
1422                 set_dumpable(current->mm, suid_dumpable);
1423         else
1424                 set_dumpable(current->mm, SUID_DUMP_USER);
1425
1426         perf_event_exec();
1427         __set_task_comm(me, kbasename(bprm->filename), true);
1428
1429         /* An exec changes our domain. We are no longer part of the thread
1430            group */
1431         WRITE_ONCE(me->self_exec_id, me->self_exec_id + 1);
1432         flush_signal_handlers(me, 0);
1433
1434         /*
1435          * install the new credentials for this executable
1436          */
1437         security_bprm_committing_creds(bprm);
1438
1439         commit_creds(bprm->cred);
1440         bprm->cred = NULL;
1441
1442         /*
1443          * Disable monitoring for regular users
1444          * when executing setuid binaries. Must
1445          * wait until new credentials are committed
1446          * by commit_creds() above
1447          */
1448         if (get_dumpable(me->mm) != SUID_DUMP_USER)
1449                 perf_event_exit_task(me);
1450         /*
1451          * cred_guard_mutex must be held at least to this point to prevent
1452          * ptrace_attach() from altering our determination of the task's
1453          * credentials; any time after this it may be unlocked.
1454          */
1455         security_bprm_committed_creds(bprm);
1456
1457         /* Pass the opened binary to the interpreter. */
1458         if (bprm->have_execfd) {
1459                 retval = get_unused_fd_flags(0);
1460                 if (retval < 0)
1461                         goto out_unlock;
1462                 fd_install(retval, bprm->executable);
1463                 bprm->executable = NULL;
1464                 bprm->execfd = retval;
1465         }
1466         return 0;
1467
1468 out_unlock:
1469         mutex_unlock(&me->signal->exec_update_mutex);
1470 out:
1471         return retval;
1472 }
1473 EXPORT_SYMBOL(begin_new_exec);
1474
1475 void would_dump(struct linux_binprm *bprm, struct file *file)
1476 {
1477         struct inode *inode = file_inode(file);
1478         if (inode_permission(inode, MAY_READ) < 0) {
1479                 struct user_namespace *old, *user_ns;
1480                 bprm->interp_flags |= BINPRM_FLAGS_ENFORCE_NONDUMP;
1481
1482                 /* Ensure mm->user_ns contains the executable */
1483                 user_ns = old = bprm->mm->user_ns;
1484                 while ((user_ns != &init_user_ns) &&
1485                        !privileged_wrt_inode_uidgid(user_ns, inode))
1486                         user_ns = user_ns->parent;
1487
1488                 if (old != user_ns) {
1489                         bprm->mm->user_ns = get_user_ns(user_ns);
1490                         put_user_ns(old);
1491                 }
1492         }
1493 }
1494 EXPORT_SYMBOL(would_dump);
1495
1496 void setup_new_exec(struct linux_binprm * bprm)
1497 {
1498         /* Setup things that can depend upon the personality */
1499         struct task_struct *me = current;
1500
1501         arch_pick_mmap_layout(me->mm, &bprm->rlim_stack);
1502
1503         arch_setup_new_exec();
1504
1505         /* Set the new mm task size. We have to do that late because it may
1506          * depend on TIF_32BIT which is only updated in flush_thread() on
1507          * some architectures like powerpc
1508          */
1509         me->mm->task_size = TASK_SIZE;
1510         mutex_unlock(&me->signal->exec_update_mutex);
1511         mutex_unlock(&me->signal->cred_guard_mutex);
1512 }
1513 EXPORT_SYMBOL(setup_new_exec);
1514
1515 /* Runs immediately before start_thread() takes over. */
1516 void finalize_exec(struct linux_binprm *bprm)
1517 {
1518         /* Store any stack rlimit changes before starting thread. */
1519         task_lock(current->group_leader);
1520         current->signal->rlim[RLIMIT_STACK] = bprm->rlim_stack;
1521         task_unlock(current->group_leader);
1522 }
1523 EXPORT_SYMBOL(finalize_exec);
1524
1525 /*
1526  * Prepare credentials and lock ->cred_guard_mutex.
1527  * setup_new_exec() commits the new creds and drops the lock.
1528  * Or, if exec fails before, free_bprm() should release ->cred and
1529  * and unlock.
1530  */
1531 static int prepare_bprm_creds(struct linux_binprm *bprm)
1532 {
1533         if (mutex_lock_interruptible(&current->signal->cred_guard_mutex))
1534                 return -ERESTARTNOINTR;
1535
1536         bprm->cred = prepare_exec_creds();
1537         if (likely(bprm->cred))
1538                 return 0;
1539
1540         mutex_unlock(&current->signal->cred_guard_mutex);
1541         return -ENOMEM;
1542 }
1543
1544 static void free_bprm(struct linux_binprm *bprm)
1545 {
1546         free_arg_pages(bprm);
1547         if (bprm->cred) {
1548                 mutex_unlock(&current->signal->cred_guard_mutex);
1549                 abort_creds(bprm->cred);
1550         }
1551         if (bprm->file) {
1552                 allow_write_access(bprm->file);
1553                 fput(bprm->file);
1554         }
1555         if (bprm->executable)
1556                 fput(bprm->executable);
1557         /* If a binfmt changed the interp, free it. */
1558         if (bprm->interp != bprm->filename)
1559                 kfree(bprm->interp);
1560         kfree(bprm);
1561 }
1562
1563 int bprm_change_interp(const char *interp, struct linux_binprm *bprm)
1564 {
1565         /* If a binfmt changed the interp, free it first. */
1566         if (bprm->interp != bprm->filename)
1567                 kfree(bprm->interp);
1568         bprm->interp = kstrdup(interp, GFP_KERNEL);
1569         if (!bprm->interp)
1570                 return -ENOMEM;
1571         return 0;
1572 }
1573 EXPORT_SYMBOL(bprm_change_interp);
1574
1575 /*
1576  * determine how safe it is to execute the proposed program
1577  * - the caller must hold ->cred_guard_mutex to protect against
1578  *   PTRACE_ATTACH or seccomp thread-sync
1579  */
1580 static void check_unsafe_exec(struct linux_binprm *bprm)
1581 {
1582         struct task_struct *p = current, *t;
1583         unsigned n_fs;
1584
1585         if (p->ptrace)
1586                 bprm->unsafe |= LSM_UNSAFE_PTRACE;
1587
1588         /*
1589          * This isn't strictly necessary, but it makes it harder for LSMs to
1590          * mess up.
1591          */
1592         if (task_no_new_privs(current))
1593                 bprm->unsafe |= LSM_UNSAFE_NO_NEW_PRIVS;
1594
1595         t = p;
1596         n_fs = 1;
1597         spin_lock(&p->fs->lock);
1598         rcu_read_lock();
1599         while_each_thread(p, t) {
1600                 if (t->fs == p->fs)
1601                         n_fs++;
1602         }
1603         rcu_read_unlock();
1604
1605         if (p->fs->users > n_fs)
1606                 bprm->unsafe |= LSM_UNSAFE_SHARE;
1607         else
1608                 p->fs->in_exec = 1;
1609         spin_unlock(&p->fs->lock);
1610 }
1611
1612 static void bprm_fill_uid(struct linux_binprm *bprm, struct file *file)
1613 {
1614         /* Handle suid and sgid on files */
1615         struct inode *inode;
1616         unsigned int mode;
1617         kuid_t uid;
1618         kgid_t gid;
1619
1620         if (!mnt_may_suid(file->f_path.mnt))
1621                 return;
1622
1623         if (task_no_new_privs(current))
1624                 return;
1625
1626         inode = file->f_path.dentry->d_inode;
1627         mode = READ_ONCE(inode->i_mode);
1628         if (!(mode & (S_ISUID|S_ISGID)))
1629                 return;
1630
1631         /* Be careful if suid/sgid is set */
1632         inode_lock(inode);
1633
1634         /* reload atomically mode/uid/gid now that lock held */
1635         mode = inode->i_mode;
1636         uid = inode->i_uid;
1637         gid = inode->i_gid;
1638         inode_unlock(inode);
1639
1640         /* We ignore suid/sgid if there are no mappings for them in the ns */
1641         if (!kuid_has_mapping(bprm->cred->user_ns, uid) ||
1642                  !kgid_has_mapping(bprm->cred->user_ns, gid))
1643                 return;
1644
1645         if (mode & S_ISUID) {
1646                 bprm->per_clear |= PER_CLEAR_ON_SETID;
1647                 bprm->cred->euid = uid;
1648         }
1649
1650         if ((mode & (S_ISGID | S_IXGRP)) == (S_ISGID | S_IXGRP)) {
1651                 bprm->per_clear |= PER_CLEAR_ON_SETID;
1652                 bprm->cred->egid = gid;
1653         }
1654 }
1655
1656 /*
1657  * Compute brpm->cred based upon the final binary.
1658  */
1659 static int bprm_creds_from_file(struct linux_binprm *bprm)
1660 {
1661         /* Compute creds based on which file? */
1662         struct file *file = bprm->execfd_creds ? bprm->executable : bprm->file;
1663
1664         bprm_fill_uid(bprm, file);
1665         return security_bprm_creds_from_file(bprm, file);
1666 }
1667
1668 /*
1669  * Fill the binprm structure from the inode.
1670  * Read the first BINPRM_BUF_SIZE bytes
1671  *
1672  * This may be called multiple times for binary chains (scripts for example).
1673  */
1674 static int prepare_binprm(struct linux_binprm *bprm)
1675 {
1676         loff_t pos = 0;
1677
1678         memset(bprm->buf, 0, BINPRM_BUF_SIZE);
1679         return kernel_read(bprm->file, bprm->buf, BINPRM_BUF_SIZE, &pos);
1680 }
1681
1682 /*
1683  * Arguments are '\0' separated strings found at the location bprm->p
1684  * points to; chop off the first by relocating brpm->p to right after
1685  * the first '\0' encountered.
1686  */
1687 int remove_arg_zero(struct linux_binprm *bprm)
1688 {
1689         int ret = 0;
1690         unsigned long offset;
1691         char *kaddr;
1692         struct page *page;
1693
1694         if (!bprm->argc)
1695                 return 0;
1696
1697         do {
1698                 offset = bprm->p & ~PAGE_MASK;
1699                 page = get_arg_page(bprm, bprm->p, 0);
1700                 if (!page) {
1701                         ret = -EFAULT;
1702                         goto out;
1703                 }
1704                 kaddr = kmap_atomic(page);
1705
1706                 for (; offset < PAGE_SIZE && kaddr[offset];
1707                                 offset++, bprm->p++)
1708                         ;
1709
1710                 kunmap_atomic(kaddr);
1711                 put_arg_page(page);
1712         } while (offset == PAGE_SIZE);
1713
1714         bprm->p++;
1715         bprm->argc--;
1716         ret = 0;
1717
1718 out:
1719         return ret;
1720 }
1721 EXPORT_SYMBOL(remove_arg_zero);
1722
1723 #define printable(c) (((c)=='\t') || ((c)=='\n') || (0x20<=(c) && (c)<=0x7e))
1724 /*
1725  * cycle the list of binary formats handler, until one recognizes the image
1726  */
1727 static int search_binary_handler(struct linux_binprm *bprm)
1728 {
1729         bool need_retry = IS_ENABLED(CONFIG_MODULES);
1730         struct linux_binfmt *fmt;
1731         int retval;
1732
1733         retval = prepare_binprm(bprm);
1734         if (retval < 0)
1735                 return retval;
1736
1737         retval = security_bprm_check(bprm);
1738         if (retval)
1739                 return retval;
1740
1741         retval = -ENOENT;
1742  retry:
1743         read_lock(&binfmt_lock);
1744         list_for_each_entry(fmt, &formats, lh) {
1745                 if (!try_module_get(fmt->module))
1746                         continue;
1747                 read_unlock(&binfmt_lock);
1748
1749                 retval = fmt->load_binary(bprm);
1750
1751                 read_lock(&binfmt_lock);
1752                 put_binfmt(fmt);
1753                 if (bprm->point_of_no_return || (retval != -ENOEXEC)) {
1754                         read_unlock(&binfmt_lock);
1755                         return retval;
1756                 }
1757         }
1758         read_unlock(&binfmt_lock);
1759
1760         if (need_retry) {
1761                 if (printable(bprm->buf[0]) && printable(bprm->buf[1]) &&
1762                     printable(bprm->buf[2]) && printable(bprm->buf[3]))
1763                         return retval;
1764                 if (request_module("binfmt-%04x", *(ushort *)(bprm->buf + 2)) < 0)
1765                         return retval;
1766                 need_retry = false;
1767                 goto retry;
1768         }
1769
1770         return retval;
1771 }
1772
1773 static int exec_binprm(struct linux_binprm *bprm)
1774 {
1775         pid_t old_pid, old_vpid;
1776         int ret, depth;
1777
1778         /* Need to fetch pid before load_binary changes it */
1779         old_pid = current->pid;
1780         rcu_read_lock();
1781         old_vpid = task_pid_nr_ns(current, task_active_pid_ns(current->parent));
1782         rcu_read_unlock();
1783
1784         /* This allows 4 levels of binfmt rewrites before failing hard. */
1785         for (depth = 0;; depth++) {
1786                 struct file *exec;
1787                 if (depth > 5)
1788                         return -ELOOP;
1789
1790                 ret = search_binary_handler(bprm);
1791                 if (ret < 0)
1792                         return ret;
1793                 if (!bprm->interpreter)
1794                         break;
1795
1796                 exec = bprm->file;
1797                 bprm->file = bprm->interpreter;
1798                 bprm->interpreter = NULL;
1799
1800                 allow_write_access(exec);
1801                 if (unlikely(bprm->have_execfd)) {
1802                         if (bprm->executable) {
1803                                 fput(exec);
1804                                 return -ENOEXEC;
1805                         }
1806                         bprm->executable = exec;
1807                 } else
1808                         fput(exec);
1809         }
1810
1811         audit_bprm(bprm);
1812         trace_sched_process_exec(current, old_pid, bprm);
1813         ptrace_event(PTRACE_EVENT_EXEC, old_vpid);
1814         proc_exec_connector(current);
1815         return 0;
1816 }
1817
1818 /*
1819  * sys_execve() executes a new program.
1820  */
1821 static int __do_execve_file(int fd, struct filename *filename,
1822                             struct user_arg_ptr argv,
1823                             struct user_arg_ptr envp,
1824                             int flags, struct file *file)
1825 {
1826         char *pathbuf = NULL;
1827         struct linux_binprm *bprm;
1828         struct files_struct *displaced;
1829         int retval;
1830
1831         if (IS_ERR(filename))
1832                 return PTR_ERR(filename);
1833
1834         /*
1835          * We move the actual failure in case of RLIMIT_NPROC excess from
1836          * set*uid() to execve() because too many poorly written programs
1837          * don't check setuid() return code.  Here we additionally recheck
1838          * whether NPROC limit is still exceeded.
1839          */
1840         if ((current->flags & PF_NPROC_EXCEEDED) &&
1841             atomic_read(&current_user()->processes) > rlimit(RLIMIT_NPROC)) {
1842                 retval = -EAGAIN;
1843                 goto out_ret;
1844         }
1845
1846         /* We're below the limit (still or again), so we don't want to make
1847          * further execve() calls fail. */
1848         current->flags &= ~PF_NPROC_EXCEEDED;
1849
1850         retval = unshare_files(&displaced);
1851         if (retval)
1852                 goto out_ret;
1853
1854         retval = -ENOMEM;
1855         bprm = kzalloc(sizeof(*bprm), GFP_KERNEL);
1856         if (!bprm)
1857                 goto out_files;
1858
1859         retval = prepare_bprm_creds(bprm);
1860         if (retval)
1861                 goto out_free;
1862
1863         check_unsafe_exec(bprm);
1864         current->in_execve = 1;
1865
1866         if (!file)
1867                 file = do_open_execat(fd, filename, flags);
1868         retval = PTR_ERR(file);
1869         if (IS_ERR(file))
1870                 goto out_unmark;
1871
1872         sched_exec();
1873
1874         bprm->file = file;
1875         if (!filename) {
1876                 bprm->filename = "none";
1877         } else if (fd == AT_FDCWD || filename->name[0] == '/') {
1878                 bprm->filename = filename->name;
1879         } else {
1880                 if (filename->name[0] == '\0')
1881                         pathbuf = kasprintf(GFP_KERNEL, "/dev/fd/%d", fd);
1882                 else
1883                         pathbuf = kasprintf(GFP_KERNEL, "/dev/fd/%d/%s",
1884                                             fd, filename->name);
1885                 if (!pathbuf) {
1886                         retval = -ENOMEM;
1887                         goto out_unmark;
1888                 }
1889                 /*
1890                  * Record that a name derived from an O_CLOEXEC fd will be
1891                  * inaccessible after exec. Relies on having exclusive access to
1892                  * current->files (due to unshare_files above).
1893                  */
1894                 if (close_on_exec(fd, rcu_dereference_raw(current->files->fdt)))
1895                         bprm->interp_flags |= BINPRM_FLAGS_PATH_INACCESSIBLE;
1896                 bprm->filename = pathbuf;
1897         }
1898         bprm->interp = bprm->filename;
1899
1900         retval = bprm_mm_init(bprm);
1901         if (retval)
1902                 goto out_unmark;
1903
1904         retval = prepare_arg_pages(bprm, argv, envp);
1905         if (retval < 0)
1906                 goto out;
1907
1908         /* Set the unchanging part of bprm->cred */
1909         retval = security_bprm_creds_for_exec(bprm);
1910         if (retval)
1911                 goto out;
1912
1913         retval = copy_string_kernel(bprm->filename, bprm);
1914         if (retval < 0)
1915                 goto out;
1916
1917         bprm->exec = bprm->p;
1918         retval = copy_strings(bprm->envc, envp, bprm);
1919         if (retval < 0)
1920                 goto out;
1921
1922         retval = copy_strings(bprm->argc, argv, bprm);
1923         if (retval < 0)
1924                 goto out;
1925
1926         retval = exec_binprm(bprm);
1927         if (retval < 0)
1928                 goto out;
1929
1930         /* execve succeeded */
1931         current->fs->in_exec = 0;
1932         current->in_execve = 0;
1933         rseq_execve(current);
1934         acct_update_integrals(current);
1935         task_numa_free(current, false);
1936         free_bprm(bprm);
1937         kfree(pathbuf);
1938         if (filename)
1939                 putname(filename);
1940         if (displaced)
1941                 put_files_struct(displaced);
1942         return retval;
1943
1944 out:
1945         /*
1946          * If past the point of no return ensure the the code never
1947          * returns to the userspace process.  Use an existing fatal
1948          * signal if present otherwise terminate the process with
1949          * SIGSEGV.
1950          */
1951         if (bprm->point_of_no_return && !fatal_signal_pending(current))
1952                 force_sigsegv(SIGSEGV);
1953         if (bprm->mm) {
1954                 acct_arg_size(bprm, 0);
1955                 mmput(bprm->mm);
1956         }
1957
1958 out_unmark:
1959         current->fs->in_exec = 0;
1960         current->in_execve = 0;
1961
1962 out_free:
1963         free_bprm(bprm);
1964         kfree(pathbuf);
1965
1966 out_files:
1967         if (displaced)
1968                 reset_files_struct(displaced);
1969 out_ret:
1970         if (filename)
1971                 putname(filename);
1972         return retval;
1973 }
1974
1975 static int do_execveat_common(int fd, struct filename *filename,
1976                               struct user_arg_ptr argv,
1977                               struct user_arg_ptr envp,
1978                               int flags)
1979 {
1980         return __do_execve_file(fd, filename, argv, envp, flags, NULL);
1981 }
1982
1983 int do_execve_file(struct file *file, void *__argv, void *__envp)
1984 {
1985         struct user_arg_ptr argv = { .ptr.native = __argv };
1986         struct user_arg_ptr envp = { .ptr.native = __envp };
1987
1988         return __do_execve_file(AT_FDCWD, NULL, argv, envp, 0, file);
1989 }
1990
1991 int do_execve(struct filename *filename,
1992         const char __user *const __user *__argv,
1993         const char __user *const __user *__envp)
1994 {
1995         struct user_arg_ptr argv = { .ptr.native = __argv };
1996         struct user_arg_ptr envp = { .ptr.native = __envp };
1997         return do_execveat_common(AT_FDCWD, filename, argv, envp, 0);
1998 }
1999
2000 int do_execveat(int fd, struct filename *filename,
2001                 const char __user *const __user *__argv,
2002                 const char __user *const __user *__envp,
2003                 int flags)
2004 {
2005         struct user_arg_ptr argv = { .ptr.native = __argv };
2006         struct user_arg_ptr envp = { .ptr.native = __envp };
2007
2008         return do_execveat_common(fd, filename, argv, envp, flags);
2009 }
2010
2011 #ifdef CONFIG_COMPAT
2012 static int compat_do_execve(struct filename *filename,
2013         const compat_uptr_t __user *__argv,
2014         const compat_uptr_t __user *__envp)
2015 {
2016         struct user_arg_ptr argv = {
2017                 .is_compat = true,
2018                 .ptr.compat = __argv,
2019         };
2020         struct user_arg_ptr envp = {
2021                 .is_compat = true,
2022                 .ptr.compat = __envp,
2023         };
2024         return do_execveat_common(AT_FDCWD, filename, argv, envp, 0);
2025 }
2026
2027 static int compat_do_execveat(int fd, struct filename *filename,
2028                               const compat_uptr_t __user *__argv,
2029                               const compat_uptr_t __user *__envp,
2030                               int flags)
2031 {
2032         struct user_arg_ptr argv = {
2033                 .is_compat = true,
2034                 .ptr.compat = __argv,
2035         };
2036         struct user_arg_ptr envp = {
2037                 .is_compat = true,
2038                 .ptr.compat = __envp,
2039         };
2040         return do_execveat_common(fd, filename, argv, envp, flags);
2041 }
2042 #endif
2043
2044 void set_binfmt(struct linux_binfmt *new)
2045 {
2046         struct mm_struct *mm = current->mm;
2047
2048         if (mm->binfmt)
2049                 module_put(mm->binfmt->module);
2050
2051         mm->binfmt = new;
2052         if (new)
2053                 __module_get(new->module);
2054 }
2055 EXPORT_SYMBOL(set_binfmt);
2056
2057 /*
2058  * set_dumpable stores three-value SUID_DUMP_* into mm->flags.
2059  */
2060 void set_dumpable(struct mm_struct *mm, int value)
2061 {
2062         if (WARN_ON((unsigned)value > SUID_DUMP_ROOT))
2063                 return;
2064
2065         set_mask_bits(&mm->flags, MMF_DUMPABLE_MASK, value);
2066 }
2067
2068 SYSCALL_DEFINE3(execve,
2069                 const char __user *, filename,
2070                 const char __user *const __user *, argv,
2071                 const char __user *const __user *, envp)
2072 {
2073         return do_execve(getname(filename), argv, envp);
2074 }
2075
2076 SYSCALL_DEFINE5(execveat,
2077                 int, fd, const char __user *, filename,
2078                 const char __user *const __user *, argv,
2079                 const char __user *const __user *, envp,
2080                 int, flags)
2081 {
2082         int lookup_flags = (flags & AT_EMPTY_PATH) ? LOOKUP_EMPTY : 0;
2083
2084         return do_execveat(fd,
2085                            getname_flags(filename, lookup_flags, NULL),
2086                            argv, envp, flags);
2087 }
2088
2089 #ifdef CONFIG_COMPAT
2090 COMPAT_SYSCALL_DEFINE3(execve, const char __user *, filename,
2091         const compat_uptr_t __user *, argv,
2092         const compat_uptr_t __user *, envp)
2093 {
2094         return compat_do_execve(getname(filename), argv, envp);
2095 }
2096
2097 COMPAT_SYSCALL_DEFINE5(execveat, int, fd,
2098                        const char __user *, filename,
2099                        const compat_uptr_t __user *, argv,
2100                        const compat_uptr_t __user *, envp,
2101                        int,  flags)
2102 {
2103         int lookup_flags = (flags & AT_EMPTY_PATH) ? LOOKUP_EMPTY : 0;
2104
2105         return compat_do_execveat(fd,
2106                                   getname_flags(filename, lookup_flags, NULL),
2107                                   argv, envp, flags);
2108 }
2109 #endif