ALSA: mtpav: Don't call card private_free at probe error path
[linux-2.6-microblaze.git] / fs / exec.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/fs/exec.c
4  *
5  *  Copyright (C) 1991, 1992  Linus Torvalds
6  */
7
8 /*
9  * #!-checking implemented by tytso.
10  */
11 /*
12  * Demand-loading implemented 01.12.91 - no need to read anything but
13  * the header into memory. The inode of the executable is put into
14  * "current->executable", and page faults do the actual loading. Clean.
15  *
16  * Once more I can proudly say that linux stood up to being changed: it
17  * was less than 2 hours work to get demand-loading completely implemented.
18  *
19  * Demand loading changed July 1993 by Eric Youngdale.   Use mmap instead,
20  * current->executable is only used by the procfs.  This allows a dispatch
21  * table to check for several different types  of binary formats.  We keep
22  * trying until we recognize the file or we run out of supported binary
23  * formats.
24  */
25
26 #include <linux/kernel_read_file.h>
27 #include <linux/slab.h>
28 #include <linux/file.h>
29 #include <linux/fdtable.h>
30 #include <linux/mm.h>
31 #include <linux/vmacache.h>
32 #include <linux/stat.h>
33 #include <linux/fcntl.h>
34 #include <linux/swap.h>
35 #include <linux/string.h>
36 #include <linux/init.h>
37 #include <linux/sched/mm.h>
38 #include <linux/sched/coredump.h>
39 #include <linux/sched/signal.h>
40 #include <linux/sched/numa_balancing.h>
41 #include <linux/sched/task.h>
42 #include <linux/pagemap.h>
43 #include <linux/perf_event.h>
44 #include <linux/highmem.h>
45 #include <linux/spinlock.h>
46 #include <linux/key.h>
47 #include <linux/personality.h>
48 #include <linux/binfmts.h>
49 #include <linux/utsname.h>
50 #include <linux/pid_namespace.h>
51 #include <linux/module.h>
52 #include <linux/namei.h>
53 #include <linux/mount.h>
54 #include <linux/security.h>
55 #include <linux/syscalls.h>
56 #include <linux/tsacct_kern.h>
57 #include <linux/cn_proc.h>
58 #include <linux/audit.h>
59 #include <linux/tracehook.h>
60 #include <linux/kmod.h>
61 #include <linux/fsnotify.h>
62 #include <linux/fs_struct.h>
63 #include <linux/oom.h>
64 #include <linux/compat.h>
65 #include <linux/vmalloc.h>
66 #include <linux/io_uring.h>
67 #include <linux/syscall_user_dispatch.h>
68 #include <linux/coredump.h>
69
70 #include <linux/uaccess.h>
71 #include <asm/mmu_context.h>
72 #include <asm/tlb.h>
73
74 #include <trace/events/task.h>
75 #include "internal.h"
76
77 #include <trace/events/sched.h>
78
79 static int bprm_creds_from_file(struct linux_binprm *bprm);
80
81 int suid_dumpable = 0;
82
83 static LIST_HEAD(formats);
84 static DEFINE_RWLOCK(binfmt_lock);
85
86 void __register_binfmt(struct linux_binfmt * fmt, int insert)
87 {
88         write_lock(&binfmt_lock);
89         insert ? list_add(&fmt->lh, &formats) :
90                  list_add_tail(&fmt->lh, &formats);
91         write_unlock(&binfmt_lock);
92 }
93
94 EXPORT_SYMBOL(__register_binfmt);
95
96 void unregister_binfmt(struct linux_binfmt * fmt)
97 {
98         write_lock(&binfmt_lock);
99         list_del(&fmt->lh);
100         write_unlock(&binfmt_lock);
101 }
102
103 EXPORT_SYMBOL(unregister_binfmt);
104
105 static inline void put_binfmt(struct linux_binfmt * fmt)
106 {
107         module_put(fmt->module);
108 }
109
110 bool path_noexec(const struct path *path)
111 {
112         return (path->mnt->mnt_flags & MNT_NOEXEC) ||
113                (path->mnt->mnt_sb->s_iflags & SB_I_NOEXEC);
114 }
115
116 #ifdef CONFIG_USELIB
117 /*
118  * Note that a shared library must be both readable and executable due to
119  * security reasons.
120  *
121  * Also note that we take the address to load from from the file itself.
122  */
123 SYSCALL_DEFINE1(uselib, const char __user *, library)
124 {
125         struct linux_binfmt *fmt;
126         struct file *file;
127         struct filename *tmp = getname(library);
128         int error = PTR_ERR(tmp);
129         static const struct open_flags uselib_flags = {
130                 .open_flag = O_LARGEFILE | O_RDONLY | __FMODE_EXEC,
131                 .acc_mode = MAY_READ | MAY_EXEC,
132                 .intent = LOOKUP_OPEN,
133                 .lookup_flags = LOOKUP_FOLLOW,
134         };
135
136         if (IS_ERR(tmp))
137                 goto out;
138
139         file = do_filp_open(AT_FDCWD, tmp, &uselib_flags);
140         putname(tmp);
141         error = PTR_ERR(file);
142         if (IS_ERR(file))
143                 goto out;
144
145         /*
146          * may_open() has already checked for this, so it should be
147          * impossible to trip now. But we need to be extra cautious
148          * and check again at the very end too.
149          */
150         error = -EACCES;
151         if (WARN_ON_ONCE(!S_ISREG(file_inode(file)->i_mode) ||
152                          path_noexec(&file->f_path)))
153                 goto exit;
154
155         fsnotify_open(file);
156
157         error = -ENOEXEC;
158
159         read_lock(&binfmt_lock);
160         list_for_each_entry(fmt, &formats, lh) {
161                 if (!fmt->load_shlib)
162                         continue;
163                 if (!try_module_get(fmt->module))
164                         continue;
165                 read_unlock(&binfmt_lock);
166                 error = fmt->load_shlib(file);
167                 read_lock(&binfmt_lock);
168                 put_binfmt(fmt);
169                 if (error != -ENOEXEC)
170                         break;
171         }
172         read_unlock(&binfmt_lock);
173 exit:
174         fput(file);
175 out:
176         return error;
177 }
178 #endif /* #ifdef CONFIG_USELIB */
179
180 #ifdef CONFIG_MMU
181 /*
182  * The nascent bprm->mm is not visible until exec_mmap() but it can
183  * use a lot of memory, account these pages in current->mm temporary
184  * for oom_badness()->get_mm_rss(). Once exec succeeds or fails, we
185  * change the counter back via acct_arg_size(0).
186  */
187 static void acct_arg_size(struct linux_binprm *bprm, unsigned long pages)
188 {
189         struct mm_struct *mm = current->mm;
190         long diff = (long)(pages - bprm->vma_pages);
191
192         if (!mm || !diff)
193                 return;
194
195         bprm->vma_pages = pages;
196         add_mm_counter(mm, MM_ANONPAGES, diff);
197 }
198
199 static struct page *get_arg_page(struct linux_binprm *bprm, unsigned long pos,
200                 int write)
201 {
202         struct page *page;
203         int ret;
204         unsigned int gup_flags = FOLL_FORCE;
205
206 #ifdef CONFIG_STACK_GROWSUP
207         if (write) {
208                 ret = expand_downwards(bprm->vma, pos);
209                 if (ret < 0)
210                         return NULL;
211         }
212 #endif
213
214         if (write)
215                 gup_flags |= FOLL_WRITE;
216
217         /*
218          * We are doing an exec().  'current' is the process
219          * doing the exec and bprm->mm is the new process's mm.
220          */
221         mmap_read_lock(bprm->mm);
222         ret = get_user_pages_remote(bprm->mm, pos, 1, gup_flags,
223                         &page, NULL, NULL);
224         mmap_read_unlock(bprm->mm);
225         if (ret <= 0)
226                 return NULL;
227
228         if (write)
229                 acct_arg_size(bprm, vma_pages(bprm->vma));
230
231         return page;
232 }
233
234 static void put_arg_page(struct page *page)
235 {
236         put_page(page);
237 }
238
239 static void free_arg_pages(struct linux_binprm *bprm)
240 {
241 }
242
243 static void flush_arg_page(struct linux_binprm *bprm, unsigned long pos,
244                 struct page *page)
245 {
246         flush_cache_page(bprm->vma, pos, page_to_pfn(page));
247 }
248
249 static int __bprm_mm_init(struct linux_binprm *bprm)
250 {
251         int err;
252         struct vm_area_struct *vma = NULL;
253         struct mm_struct *mm = bprm->mm;
254
255         bprm->vma = vma = vm_area_alloc(mm);
256         if (!vma)
257                 return -ENOMEM;
258         vma_set_anonymous(vma);
259
260         if (mmap_write_lock_killable(mm)) {
261                 err = -EINTR;
262                 goto err_free;
263         }
264
265         /*
266          * Place the stack at the largest stack address the architecture
267          * supports. Later, we'll move this to an appropriate place. We don't
268          * use STACK_TOP because that can depend on attributes which aren't
269          * configured yet.
270          */
271         BUILD_BUG_ON(VM_STACK_FLAGS & VM_STACK_INCOMPLETE_SETUP);
272         vma->vm_end = STACK_TOP_MAX;
273         vma->vm_start = vma->vm_end - PAGE_SIZE;
274         vma->vm_flags = VM_SOFTDIRTY | VM_STACK_FLAGS | VM_STACK_INCOMPLETE_SETUP;
275         vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
276
277         err = insert_vm_struct(mm, vma);
278         if (err)
279                 goto err;
280
281         mm->stack_vm = mm->total_vm = 1;
282         mmap_write_unlock(mm);
283         bprm->p = vma->vm_end - sizeof(void *);
284         return 0;
285 err:
286         mmap_write_unlock(mm);
287 err_free:
288         bprm->vma = NULL;
289         vm_area_free(vma);
290         return err;
291 }
292
293 static bool valid_arg_len(struct linux_binprm *bprm, long len)
294 {
295         return len <= MAX_ARG_STRLEN;
296 }
297
298 #else
299
300 static inline void acct_arg_size(struct linux_binprm *bprm, unsigned long pages)
301 {
302 }
303
304 static struct page *get_arg_page(struct linux_binprm *bprm, unsigned long pos,
305                 int write)
306 {
307         struct page *page;
308
309         page = bprm->page[pos / PAGE_SIZE];
310         if (!page && write) {
311                 page = alloc_page(GFP_HIGHUSER|__GFP_ZERO);
312                 if (!page)
313                         return NULL;
314                 bprm->page[pos / PAGE_SIZE] = page;
315         }
316
317         return page;
318 }
319
320 static void put_arg_page(struct page *page)
321 {
322 }
323
324 static void free_arg_page(struct linux_binprm *bprm, int i)
325 {
326         if (bprm->page[i]) {
327                 __free_page(bprm->page[i]);
328                 bprm->page[i] = NULL;
329         }
330 }
331
332 static void free_arg_pages(struct linux_binprm *bprm)
333 {
334         int i;
335
336         for (i = 0; i < MAX_ARG_PAGES; i++)
337                 free_arg_page(bprm, i);
338 }
339
340 static void flush_arg_page(struct linux_binprm *bprm, unsigned long pos,
341                 struct page *page)
342 {
343 }
344
345 static int __bprm_mm_init(struct linux_binprm *bprm)
346 {
347         bprm->p = PAGE_SIZE * MAX_ARG_PAGES - sizeof(void *);
348         return 0;
349 }
350
351 static bool valid_arg_len(struct linux_binprm *bprm, long len)
352 {
353         return len <= bprm->p;
354 }
355
356 #endif /* CONFIG_MMU */
357
358 /*
359  * Create a new mm_struct and populate it with a temporary stack
360  * vm_area_struct.  We don't have enough context at this point to set the stack
361  * flags, permissions, and offset, so we use temporary values.  We'll update
362  * them later in setup_arg_pages().
363  */
364 static int bprm_mm_init(struct linux_binprm *bprm)
365 {
366         int err;
367         struct mm_struct *mm = NULL;
368
369         bprm->mm = mm = mm_alloc();
370         err = -ENOMEM;
371         if (!mm)
372                 goto err;
373
374         /* Save current stack limit for all calculations made during exec. */
375         task_lock(current->group_leader);
376         bprm->rlim_stack = current->signal->rlim[RLIMIT_STACK];
377         task_unlock(current->group_leader);
378
379         err = __bprm_mm_init(bprm);
380         if (err)
381                 goto err;
382
383         return 0;
384
385 err:
386         if (mm) {
387                 bprm->mm = NULL;
388                 mmdrop(mm);
389         }
390
391         return err;
392 }
393
394 struct user_arg_ptr {
395 #ifdef CONFIG_COMPAT
396         bool is_compat;
397 #endif
398         union {
399                 const char __user *const __user *native;
400 #ifdef CONFIG_COMPAT
401                 const compat_uptr_t __user *compat;
402 #endif
403         } ptr;
404 };
405
406 static const char __user *get_user_arg_ptr(struct user_arg_ptr argv, int nr)
407 {
408         const char __user *native;
409
410 #ifdef CONFIG_COMPAT
411         if (unlikely(argv.is_compat)) {
412                 compat_uptr_t compat;
413
414                 if (get_user(compat, argv.ptr.compat + nr))
415                         return ERR_PTR(-EFAULT);
416
417                 return compat_ptr(compat);
418         }
419 #endif
420
421         if (get_user(native, argv.ptr.native + nr))
422                 return ERR_PTR(-EFAULT);
423
424         return native;
425 }
426
427 /*
428  * count() counts the number of strings in array ARGV.
429  */
430 static int count(struct user_arg_ptr argv, int max)
431 {
432         int i = 0;
433
434         if (argv.ptr.native != NULL) {
435                 for (;;) {
436                         const char __user *p = get_user_arg_ptr(argv, i);
437
438                         if (!p)
439                                 break;
440
441                         if (IS_ERR(p))
442                                 return -EFAULT;
443
444                         if (i >= max)
445                                 return -E2BIG;
446                         ++i;
447
448                         if (fatal_signal_pending(current))
449                                 return -ERESTARTNOHAND;
450                         cond_resched();
451                 }
452         }
453         return i;
454 }
455
456 static int count_strings_kernel(const char *const *argv)
457 {
458         int i;
459
460         if (!argv)
461                 return 0;
462
463         for (i = 0; argv[i]; ++i) {
464                 if (i >= MAX_ARG_STRINGS)
465                         return -E2BIG;
466                 if (fatal_signal_pending(current))
467                         return -ERESTARTNOHAND;
468                 cond_resched();
469         }
470         return i;
471 }
472
473 static int bprm_stack_limits(struct linux_binprm *bprm)
474 {
475         unsigned long limit, ptr_size;
476
477         /*
478          * Limit to 1/4 of the max stack size or 3/4 of _STK_LIM
479          * (whichever is smaller) for the argv+env strings.
480          * This ensures that:
481          *  - the remaining binfmt code will not run out of stack space,
482          *  - the program will have a reasonable amount of stack left
483          *    to work from.
484          */
485         limit = _STK_LIM / 4 * 3;
486         limit = min(limit, bprm->rlim_stack.rlim_cur / 4);
487         /*
488          * We've historically supported up to 32 pages (ARG_MAX)
489          * of argument strings even with small stacks
490          */
491         limit = max_t(unsigned long, limit, ARG_MAX);
492         /*
493          * We must account for the size of all the argv and envp pointers to
494          * the argv and envp strings, since they will also take up space in
495          * the stack. They aren't stored until much later when we can't
496          * signal to the parent that the child has run out of stack space.
497          * Instead, calculate it here so it's possible to fail gracefully.
498          */
499         ptr_size = (bprm->argc + bprm->envc) * sizeof(void *);
500         if (limit <= ptr_size)
501                 return -E2BIG;
502         limit -= ptr_size;
503
504         bprm->argmin = bprm->p - limit;
505         return 0;
506 }
507
508 /*
509  * 'copy_strings()' copies argument/environment strings from the old
510  * processes's memory to the new process's stack.  The call to get_user_pages()
511  * ensures the destination page is created and not swapped out.
512  */
513 static int copy_strings(int argc, struct user_arg_ptr argv,
514                         struct linux_binprm *bprm)
515 {
516         struct page *kmapped_page = NULL;
517         char *kaddr = NULL;
518         unsigned long kpos = 0;
519         int ret;
520
521         while (argc-- > 0) {
522                 const char __user *str;
523                 int len;
524                 unsigned long pos;
525
526                 ret = -EFAULT;
527                 str = get_user_arg_ptr(argv, argc);
528                 if (IS_ERR(str))
529                         goto out;
530
531                 len = strnlen_user(str, MAX_ARG_STRLEN);
532                 if (!len)
533                         goto out;
534
535                 ret = -E2BIG;
536                 if (!valid_arg_len(bprm, len))
537                         goto out;
538
539                 /* We're going to work our way backwords. */
540                 pos = bprm->p;
541                 str += len;
542                 bprm->p -= len;
543 #ifdef CONFIG_MMU
544                 if (bprm->p < bprm->argmin)
545                         goto out;
546 #endif
547
548                 while (len > 0) {
549                         int offset, bytes_to_copy;
550
551                         if (fatal_signal_pending(current)) {
552                                 ret = -ERESTARTNOHAND;
553                                 goto out;
554                         }
555                         cond_resched();
556
557                         offset = pos % PAGE_SIZE;
558                         if (offset == 0)
559                                 offset = PAGE_SIZE;
560
561                         bytes_to_copy = offset;
562                         if (bytes_to_copy > len)
563                                 bytes_to_copy = len;
564
565                         offset -= bytes_to_copy;
566                         pos -= bytes_to_copy;
567                         str -= bytes_to_copy;
568                         len -= bytes_to_copy;
569
570                         if (!kmapped_page || kpos != (pos & PAGE_MASK)) {
571                                 struct page *page;
572
573                                 page = get_arg_page(bprm, pos, 1);
574                                 if (!page) {
575                                         ret = -E2BIG;
576                                         goto out;
577                                 }
578
579                                 if (kmapped_page) {
580                                         flush_dcache_page(kmapped_page);
581                                         kunmap(kmapped_page);
582                                         put_arg_page(kmapped_page);
583                                 }
584                                 kmapped_page = page;
585                                 kaddr = kmap(kmapped_page);
586                                 kpos = pos & PAGE_MASK;
587                                 flush_arg_page(bprm, kpos, kmapped_page);
588                         }
589                         if (copy_from_user(kaddr+offset, str, bytes_to_copy)) {
590                                 ret = -EFAULT;
591                                 goto out;
592                         }
593                 }
594         }
595         ret = 0;
596 out:
597         if (kmapped_page) {
598                 flush_dcache_page(kmapped_page);
599                 kunmap(kmapped_page);
600                 put_arg_page(kmapped_page);
601         }
602         return ret;
603 }
604
605 /*
606  * Copy and argument/environment string from the kernel to the processes stack.
607  */
608 int copy_string_kernel(const char *arg, struct linux_binprm *bprm)
609 {
610         int len = strnlen(arg, MAX_ARG_STRLEN) + 1 /* terminating NUL */;
611         unsigned long pos = bprm->p;
612
613         if (len == 0)
614                 return -EFAULT;
615         if (!valid_arg_len(bprm, len))
616                 return -E2BIG;
617
618         /* We're going to work our way backwards. */
619         arg += len;
620         bprm->p -= len;
621         if (IS_ENABLED(CONFIG_MMU) && bprm->p < bprm->argmin)
622                 return -E2BIG;
623
624         while (len > 0) {
625                 unsigned int bytes_to_copy = min_t(unsigned int, len,
626                                 min_not_zero(offset_in_page(pos), PAGE_SIZE));
627                 struct page *page;
628                 char *kaddr;
629
630                 pos -= bytes_to_copy;
631                 arg -= bytes_to_copy;
632                 len -= bytes_to_copy;
633
634                 page = get_arg_page(bprm, pos, 1);
635                 if (!page)
636                         return -E2BIG;
637                 kaddr = kmap_atomic(page);
638                 flush_arg_page(bprm, pos & PAGE_MASK, page);
639                 memcpy(kaddr + offset_in_page(pos), arg, bytes_to_copy);
640                 flush_dcache_page(page);
641                 kunmap_atomic(kaddr);
642                 put_arg_page(page);
643         }
644
645         return 0;
646 }
647 EXPORT_SYMBOL(copy_string_kernel);
648
649 static int copy_strings_kernel(int argc, const char *const *argv,
650                                struct linux_binprm *bprm)
651 {
652         while (argc-- > 0) {
653                 int ret = copy_string_kernel(argv[argc], bprm);
654                 if (ret < 0)
655                         return ret;
656                 if (fatal_signal_pending(current))
657                         return -ERESTARTNOHAND;
658                 cond_resched();
659         }
660         return 0;
661 }
662
663 #ifdef CONFIG_MMU
664
665 /*
666  * During bprm_mm_init(), we create a temporary stack at STACK_TOP_MAX.  Once
667  * the binfmt code determines where the new stack should reside, we shift it to
668  * its final location.  The process proceeds as follows:
669  *
670  * 1) Use shift to calculate the new vma endpoints.
671  * 2) Extend vma to cover both the old and new ranges.  This ensures the
672  *    arguments passed to subsequent functions are consistent.
673  * 3) Move vma's page tables to the new range.
674  * 4) Free up any cleared pgd range.
675  * 5) Shrink the vma to cover only the new range.
676  */
677 static int shift_arg_pages(struct vm_area_struct *vma, unsigned long shift)
678 {
679         struct mm_struct *mm = vma->vm_mm;
680         unsigned long old_start = vma->vm_start;
681         unsigned long old_end = vma->vm_end;
682         unsigned long length = old_end - old_start;
683         unsigned long new_start = old_start - shift;
684         unsigned long new_end = old_end - shift;
685         struct mmu_gather tlb;
686
687         BUG_ON(new_start > new_end);
688
689         /*
690          * ensure there are no vmas between where we want to go
691          * and where we are
692          */
693         if (vma != find_vma(mm, new_start))
694                 return -EFAULT;
695
696         /*
697          * cover the whole range: [new_start, old_end)
698          */
699         if (vma_adjust(vma, new_start, old_end, vma->vm_pgoff, NULL))
700                 return -ENOMEM;
701
702         /*
703          * move the page tables downwards, on failure we rely on
704          * process cleanup to remove whatever mess we made.
705          */
706         if (length != move_page_tables(vma, old_start,
707                                        vma, new_start, length, false))
708                 return -ENOMEM;
709
710         lru_add_drain();
711         tlb_gather_mmu(&tlb, mm);
712         if (new_end > old_start) {
713                 /*
714                  * when the old and new regions overlap clear from new_end.
715                  */
716                 free_pgd_range(&tlb, new_end, old_end, new_end,
717                         vma->vm_next ? vma->vm_next->vm_start : USER_PGTABLES_CEILING);
718         } else {
719                 /*
720                  * otherwise, clean from old_start; this is done to not touch
721                  * the address space in [new_end, old_start) some architectures
722                  * have constraints on va-space that make this illegal (IA64) -
723                  * for the others its just a little faster.
724                  */
725                 free_pgd_range(&tlb, old_start, old_end, new_end,
726                         vma->vm_next ? vma->vm_next->vm_start : USER_PGTABLES_CEILING);
727         }
728         tlb_finish_mmu(&tlb);
729
730         /*
731          * Shrink the vma to just the new range.  Always succeeds.
732          */
733         vma_adjust(vma, new_start, new_end, vma->vm_pgoff, NULL);
734
735         return 0;
736 }
737
738 /*
739  * Finalizes the stack vm_area_struct. The flags and permissions are updated,
740  * the stack is optionally relocated, and some extra space is added.
741  */
742 int setup_arg_pages(struct linux_binprm *bprm,
743                     unsigned long stack_top,
744                     int executable_stack)
745 {
746         unsigned long ret;
747         unsigned long stack_shift;
748         struct mm_struct *mm = current->mm;
749         struct vm_area_struct *vma = bprm->vma;
750         struct vm_area_struct *prev = NULL;
751         unsigned long vm_flags;
752         unsigned long stack_base;
753         unsigned long stack_size;
754         unsigned long stack_expand;
755         unsigned long rlim_stack;
756
757 #ifdef CONFIG_STACK_GROWSUP
758         /* Limit stack size */
759         stack_base = bprm->rlim_stack.rlim_max;
760
761         stack_base = calc_max_stack_size(stack_base);
762
763         /* Add space for stack randomization. */
764         stack_base += (STACK_RND_MASK << PAGE_SHIFT);
765
766         /* Make sure we didn't let the argument array grow too large. */
767         if (vma->vm_end - vma->vm_start > stack_base)
768                 return -ENOMEM;
769
770         stack_base = PAGE_ALIGN(stack_top - stack_base);
771
772         stack_shift = vma->vm_start - stack_base;
773         mm->arg_start = bprm->p - stack_shift;
774         bprm->p = vma->vm_end - stack_shift;
775 #else
776         stack_top = arch_align_stack(stack_top);
777         stack_top = PAGE_ALIGN(stack_top);
778
779         if (unlikely(stack_top < mmap_min_addr) ||
780             unlikely(vma->vm_end - vma->vm_start >= stack_top - mmap_min_addr))
781                 return -ENOMEM;
782
783         stack_shift = vma->vm_end - stack_top;
784
785         bprm->p -= stack_shift;
786         mm->arg_start = bprm->p;
787 #endif
788
789         if (bprm->loader)
790                 bprm->loader -= stack_shift;
791         bprm->exec -= stack_shift;
792
793         if (mmap_write_lock_killable(mm))
794                 return -EINTR;
795
796         vm_flags = VM_STACK_FLAGS;
797
798         /*
799          * Adjust stack execute permissions; explicitly enable for
800          * EXSTACK_ENABLE_X, disable for EXSTACK_DISABLE_X and leave alone
801          * (arch default) otherwise.
802          */
803         if (unlikely(executable_stack == EXSTACK_ENABLE_X))
804                 vm_flags |= VM_EXEC;
805         else if (executable_stack == EXSTACK_DISABLE_X)
806                 vm_flags &= ~VM_EXEC;
807         vm_flags |= mm->def_flags;
808         vm_flags |= VM_STACK_INCOMPLETE_SETUP;
809
810         ret = mprotect_fixup(vma, &prev, vma->vm_start, vma->vm_end,
811                         vm_flags);
812         if (ret)
813                 goto out_unlock;
814         BUG_ON(prev != vma);
815
816         if (unlikely(vm_flags & VM_EXEC)) {
817                 pr_warn_once("process '%pD4' started with executable stack\n",
818                              bprm->file);
819         }
820
821         /* Move stack pages down in memory. */
822         if (stack_shift) {
823                 ret = shift_arg_pages(vma, stack_shift);
824                 if (ret)
825                         goto out_unlock;
826         }
827
828         /* mprotect_fixup is overkill to remove the temporary stack flags */
829         vma->vm_flags &= ~VM_STACK_INCOMPLETE_SETUP;
830
831         stack_expand = 131072UL; /* randomly 32*4k (or 2*64k) pages */
832         stack_size = vma->vm_end - vma->vm_start;
833         /*
834          * Align this down to a page boundary as expand_stack
835          * will align it up.
836          */
837         rlim_stack = bprm->rlim_stack.rlim_cur & PAGE_MASK;
838 #ifdef CONFIG_STACK_GROWSUP
839         if (stack_size + stack_expand > rlim_stack)
840                 stack_base = vma->vm_start + rlim_stack;
841         else
842                 stack_base = vma->vm_end + stack_expand;
843 #else
844         if (stack_size + stack_expand > rlim_stack)
845                 stack_base = vma->vm_end - rlim_stack;
846         else
847                 stack_base = vma->vm_start - stack_expand;
848 #endif
849         current->mm->start_stack = bprm->p;
850         ret = expand_stack(vma, stack_base);
851         if (ret)
852                 ret = -EFAULT;
853
854 out_unlock:
855         mmap_write_unlock(mm);
856         return ret;
857 }
858 EXPORT_SYMBOL(setup_arg_pages);
859
860 #else
861
862 /*
863  * Transfer the program arguments and environment from the holding pages
864  * onto the stack. The provided stack pointer is adjusted accordingly.
865  */
866 int transfer_args_to_stack(struct linux_binprm *bprm,
867                            unsigned long *sp_location)
868 {
869         unsigned long index, stop, sp;
870         int ret = 0;
871
872         stop = bprm->p >> PAGE_SHIFT;
873         sp = *sp_location;
874
875         for (index = MAX_ARG_PAGES - 1; index >= stop; index--) {
876                 unsigned int offset = index == stop ? bprm->p & ~PAGE_MASK : 0;
877                 char *src = kmap(bprm->page[index]) + offset;
878                 sp -= PAGE_SIZE - offset;
879                 if (copy_to_user((void *) sp, src, PAGE_SIZE - offset) != 0)
880                         ret = -EFAULT;
881                 kunmap(bprm->page[index]);
882                 if (ret)
883                         goto out;
884         }
885
886         *sp_location = sp;
887
888 out:
889         return ret;
890 }
891 EXPORT_SYMBOL(transfer_args_to_stack);
892
893 #endif /* CONFIG_MMU */
894
895 static struct file *do_open_execat(int fd, struct filename *name, int flags)
896 {
897         struct file *file;
898         int err;
899         struct open_flags open_exec_flags = {
900                 .open_flag = O_LARGEFILE | O_RDONLY | __FMODE_EXEC,
901                 .acc_mode = MAY_EXEC,
902                 .intent = LOOKUP_OPEN,
903                 .lookup_flags = LOOKUP_FOLLOW,
904         };
905
906         if ((flags & ~(AT_SYMLINK_NOFOLLOW | AT_EMPTY_PATH)) != 0)
907                 return ERR_PTR(-EINVAL);
908         if (flags & AT_SYMLINK_NOFOLLOW)
909                 open_exec_flags.lookup_flags &= ~LOOKUP_FOLLOW;
910         if (flags & AT_EMPTY_PATH)
911                 open_exec_flags.lookup_flags |= LOOKUP_EMPTY;
912
913         file = do_filp_open(fd, name, &open_exec_flags);
914         if (IS_ERR(file))
915                 goto out;
916
917         /*
918          * may_open() has already checked for this, so it should be
919          * impossible to trip now. But we need to be extra cautious
920          * and check again at the very end too.
921          */
922         err = -EACCES;
923         if (WARN_ON_ONCE(!S_ISREG(file_inode(file)->i_mode) ||
924                          path_noexec(&file->f_path)))
925                 goto exit;
926
927         err = deny_write_access(file);
928         if (err)
929                 goto exit;
930
931         if (name->name[0] != '\0')
932                 fsnotify_open(file);
933
934 out:
935         return file;
936
937 exit:
938         fput(file);
939         return ERR_PTR(err);
940 }
941
942 struct file *open_exec(const char *name)
943 {
944         struct filename *filename = getname_kernel(name);
945         struct file *f = ERR_CAST(filename);
946
947         if (!IS_ERR(filename)) {
948                 f = do_open_execat(AT_FDCWD, filename, 0);
949                 putname(filename);
950         }
951         return f;
952 }
953 EXPORT_SYMBOL(open_exec);
954
955 #if defined(CONFIG_HAVE_AOUT) || defined(CONFIG_BINFMT_FLAT) || \
956     defined(CONFIG_BINFMT_ELF_FDPIC)
957 ssize_t read_code(struct file *file, unsigned long addr, loff_t pos, size_t len)
958 {
959         ssize_t res = vfs_read(file, (void __user *)addr, len, &pos);
960         if (res > 0)
961                 flush_icache_user_range(addr, addr + len);
962         return res;
963 }
964 EXPORT_SYMBOL(read_code);
965 #endif
966
967 /*
968  * Maps the mm_struct mm into the current task struct.
969  * On success, this function returns with exec_update_lock
970  * held for writing.
971  */
972 static int exec_mmap(struct mm_struct *mm)
973 {
974         struct task_struct *tsk;
975         struct mm_struct *old_mm, *active_mm;
976         int ret;
977
978         /* Notify parent that we're no longer interested in the old VM */
979         tsk = current;
980         old_mm = current->mm;
981         exec_mm_release(tsk, old_mm);
982         if (old_mm)
983                 sync_mm_rss(old_mm);
984
985         ret = down_write_killable(&tsk->signal->exec_update_lock);
986         if (ret)
987                 return ret;
988
989         if (old_mm) {
990                 /*
991                  * If there is a pending fatal signal perhaps a signal
992                  * whose default action is to create a coredump get
993                  * out and die instead of going through with the exec.
994                  */
995                 ret = mmap_read_lock_killable(old_mm);
996                 if (ret) {
997                         up_write(&tsk->signal->exec_update_lock);
998                         return ret;
999                 }
1000         }
1001
1002         task_lock(tsk);
1003         membarrier_exec_mmap(mm);
1004
1005         local_irq_disable();
1006         active_mm = tsk->active_mm;
1007         tsk->active_mm = mm;
1008         tsk->mm = mm;
1009         /*
1010          * This prevents preemption while active_mm is being loaded and
1011          * it and mm are being updated, which could cause problems for
1012          * lazy tlb mm refcounting when these are updated by context
1013          * switches. Not all architectures can handle irqs off over
1014          * activate_mm yet.
1015          */
1016         if (!IS_ENABLED(CONFIG_ARCH_WANT_IRQS_OFF_ACTIVATE_MM))
1017                 local_irq_enable();
1018         activate_mm(active_mm, mm);
1019         if (IS_ENABLED(CONFIG_ARCH_WANT_IRQS_OFF_ACTIVATE_MM))
1020                 local_irq_enable();
1021         tsk->mm->vmacache_seqnum = 0;
1022         vmacache_flush(tsk);
1023         task_unlock(tsk);
1024         if (old_mm) {
1025                 mmap_read_unlock(old_mm);
1026                 BUG_ON(active_mm != old_mm);
1027                 setmax_mm_hiwater_rss(&tsk->signal->maxrss, old_mm);
1028                 mm_update_next_owner(old_mm);
1029                 mmput(old_mm);
1030                 return 0;
1031         }
1032         mmdrop(active_mm);
1033         return 0;
1034 }
1035
1036 static int de_thread(struct task_struct *tsk)
1037 {
1038         struct signal_struct *sig = tsk->signal;
1039         struct sighand_struct *oldsighand = tsk->sighand;
1040         spinlock_t *lock = &oldsighand->siglock;
1041
1042         if (thread_group_empty(tsk))
1043                 goto no_thread_group;
1044
1045         /*
1046          * Kill all other threads in the thread group.
1047          */
1048         spin_lock_irq(lock);
1049         if ((sig->flags & SIGNAL_GROUP_EXIT) || sig->group_exec_task) {
1050                 /*
1051                  * Another group action in progress, just
1052                  * return so that the signal is processed.
1053                  */
1054                 spin_unlock_irq(lock);
1055                 return -EAGAIN;
1056         }
1057
1058         sig->group_exec_task = tsk;
1059         sig->notify_count = zap_other_threads(tsk);
1060         if (!thread_group_leader(tsk))
1061                 sig->notify_count--;
1062
1063         while (sig->notify_count) {
1064                 __set_current_state(TASK_KILLABLE);
1065                 spin_unlock_irq(lock);
1066                 schedule();
1067                 if (__fatal_signal_pending(tsk))
1068                         goto killed;
1069                 spin_lock_irq(lock);
1070         }
1071         spin_unlock_irq(lock);
1072
1073         /*
1074          * At this point all other threads have exited, all we have to
1075          * do is to wait for the thread group leader to become inactive,
1076          * and to assume its PID:
1077          */
1078         if (!thread_group_leader(tsk)) {
1079                 struct task_struct *leader = tsk->group_leader;
1080
1081                 for (;;) {
1082                         cgroup_threadgroup_change_begin(tsk);
1083                         write_lock_irq(&tasklist_lock);
1084                         /*
1085                          * Do this under tasklist_lock to ensure that
1086                          * exit_notify() can't miss ->group_exec_task
1087                          */
1088                         sig->notify_count = -1;
1089                         if (likely(leader->exit_state))
1090                                 break;
1091                         __set_current_state(TASK_KILLABLE);
1092                         write_unlock_irq(&tasklist_lock);
1093                         cgroup_threadgroup_change_end(tsk);
1094                         schedule();
1095                         if (__fatal_signal_pending(tsk))
1096                                 goto killed;
1097                 }
1098
1099                 /*
1100                  * The only record we have of the real-time age of a
1101                  * process, regardless of execs it's done, is start_time.
1102                  * All the past CPU time is accumulated in signal_struct
1103                  * from sister threads now dead.  But in this non-leader
1104                  * exec, nothing survives from the original leader thread,
1105                  * whose birth marks the true age of this process now.
1106                  * When we take on its identity by switching to its PID, we
1107                  * also take its birthdate (always earlier than our own).
1108                  */
1109                 tsk->start_time = leader->start_time;
1110                 tsk->start_boottime = leader->start_boottime;
1111
1112                 BUG_ON(!same_thread_group(leader, tsk));
1113                 /*
1114                  * An exec() starts a new thread group with the
1115                  * TGID of the previous thread group. Rehash the
1116                  * two threads with a switched PID, and release
1117                  * the former thread group leader:
1118                  */
1119
1120                 /* Become a process group leader with the old leader's pid.
1121                  * The old leader becomes a thread of the this thread group.
1122                  */
1123                 exchange_tids(tsk, leader);
1124                 transfer_pid(leader, tsk, PIDTYPE_TGID);
1125                 transfer_pid(leader, tsk, PIDTYPE_PGID);
1126                 transfer_pid(leader, tsk, PIDTYPE_SID);
1127
1128                 list_replace_rcu(&leader->tasks, &tsk->tasks);
1129                 list_replace_init(&leader->sibling, &tsk->sibling);
1130
1131                 tsk->group_leader = tsk;
1132                 leader->group_leader = tsk;
1133
1134                 tsk->exit_signal = SIGCHLD;
1135                 leader->exit_signal = -1;
1136
1137                 BUG_ON(leader->exit_state != EXIT_ZOMBIE);
1138                 leader->exit_state = EXIT_DEAD;
1139
1140                 /*
1141                  * We are going to release_task()->ptrace_unlink() silently,
1142                  * the tracer can sleep in do_wait(). EXIT_DEAD guarantees
1143                  * the tracer wont't block again waiting for this thread.
1144                  */
1145                 if (unlikely(leader->ptrace))
1146                         __wake_up_parent(leader, leader->parent);
1147                 write_unlock_irq(&tasklist_lock);
1148                 cgroup_threadgroup_change_end(tsk);
1149
1150                 release_task(leader);
1151         }
1152
1153         sig->group_exec_task = NULL;
1154         sig->notify_count = 0;
1155
1156 no_thread_group:
1157         /* we have changed execution domain */
1158         tsk->exit_signal = SIGCHLD;
1159
1160         BUG_ON(!thread_group_leader(tsk));
1161         return 0;
1162
1163 killed:
1164         /* protects against exit_notify() and __exit_signal() */
1165         read_lock(&tasklist_lock);
1166         sig->group_exec_task = NULL;
1167         sig->notify_count = 0;
1168         read_unlock(&tasklist_lock);
1169         return -EAGAIN;
1170 }
1171
1172
1173 /*
1174  * This function makes sure the current process has its own signal table,
1175  * so that flush_signal_handlers can later reset the handlers without
1176  * disturbing other processes.  (Other processes might share the signal
1177  * table via the CLONE_SIGHAND option to clone().)
1178  */
1179 static int unshare_sighand(struct task_struct *me)
1180 {
1181         struct sighand_struct *oldsighand = me->sighand;
1182
1183         if (refcount_read(&oldsighand->count) != 1) {
1184                 struct sighand_struct *newsighand;
1185                 /*
1186                  * This ->sighand is shared with the CLONE_SIGHAND
1187                  * but not CLONE_THREAD task, switch to the new one.
1188                  */
1189                 newsighand = kmem_cache_alloc(sighand_cachep, GFP_KERNEL);
1190                 if (!newsighand)
1191                         return -ENOMEM;
1192
1193                 refcount_set(&newsighand->count, 1);
1194                 memcpy(newsighand->action, oldsighand->action,
1195                        sizeof(newsighand->action));
1196
1197                 write_lock_irq(&tasklist_lock);
1198                 spin_lock(&oldsighand->siglock);
1199                 rcu_assign_pointer(me->sighand, newsighand);
1200                 spin_unlock(&oldsighand->siglock);
1201                 write_unlock_irq(&tasklist_lock);
1202
1203                 __cleanup_sighand(oldsighand);
1204         }
1205         return 0;
1206 }
1207
1208 char *__get_task_comm(char *buf, size_t buf_size, struct task_struct *tsk)
1209 {
1210         task_lock(tsk);
1211         /* Always NUL terminated and zero-padded */
1212         strscpy_pad(buf, tsk->comm, buf_size);
1213         task_unlock(tsk);
1214         return buf;
1215 }
1216 EXPORT_SYMBOL_GPL(__get_task_comm);
1217
1218 /*
1219  * These functions flushes out all traces of the currently running executable
1220  * so that a new one can be started
1221  */
1222
1223 void __set_task_comm(struct task_struct *tsk, const char *buf, bool exec)
1224 {
1225         task_lock(tsk);
1226         trace_task_rename(tsk, buf);
1227         strscpy_pad(tsk->comm, buf, sizeof(tsk->comm));
1228         task_unlock(tsk);
1229         perf_event_comm(tsk, exec);
1230 }
1231
1232 /*
1233  * Calling this is the point of no return. None of the failures will be
1234  * seen by userspace since either the process is already taking a fatal
1235  * signal (via de_thread() or coredump), or will have SEGV raised
1236  * (after exec_mmap()) by search_binary_handler (see below).
1237  */
1238 int begin_new_exec(struct linux_binprm * bprm)
1239 {
1240         struct task_struct *me = current;
1241         int retval;
1242
1243         /* Once we are committed compute the creds */
1244         retval = bprm_creds_from_file(bprm);
1245         if (retval)
1246                 return retval;
1247
1248         /*
1249          * Ensure all future errors are fatal.
1250          */
1251         bprm->point_of_no_return = true;
1252
1253         /*
1254          * Make this the only thread in the thread group.
1255          */
1256         retval = de_thread(me);
1257         if (retval)
1258                 goto out;
1259
1260         /*
1261          * Cancel any io_uring activity across execve
1262          */
1263         io_uring_task_cancel();
1264
1265         /* Ensure the files table is not shared. */
1266         retval = unshare_files();
1267         if (retval)
1268                 goto out;
1269
1270         /*
1271          * Must be called _before_ exec_mmap() as bprm->mm is
1272          * not visibile until then. This also enables the update
1273          * to be lockless.
1274          */
1275         retval = set_mm_exe_file(bprm->mm, bprm->file);
1276         if (retval)
1277                 goto out;
1278
1279         /* If the binary is not readable then enforce mm->dumpable=0 */
1280         would_dump(bprm, bprm->file);
1281         if (bprm->have_execfd)
1282                 would_dump(bprm, bprm->executable);
1283
1284         /*
1285          * Release all of the old mmap stuff
1286          */
1287         acct_arg_size(bprm, 0);
1288         retval = exec_mmap(bprm->mm);
1289         if (retval)
1290                 goto out;
1291
1292         bprm->mm = NULL;
1293
1294 #ifdef CONFIG_POSIX_TIMERS
1295         exit_itimers(me->signal);
1296         flush_itimer_signals();
1297 #endif
1298
1299         /*
1300          * Make the signal table private.
1301          */
1302         retval = unshare_sighand(me);
1303         if (retval)
1304                 goto out_unlock;
1305
1306         /*
1307          * Ensure that the uaccess routines can actually operate on userspace
1308          * pointers:
1309          */
1310         force_uaccess_begin();
1311
1312         if (me->flags & PF_KTHREAD)
1313                 free_kthread_struct(me);
1314         me->flags &= ~(PF_RANDOMIZE | PF_FORKNOEXEC | PF_KTHREAD |
1315                                         PF_NOFREEZE | PF_NO_SETAFFINITY);
1316         flush_thread();
1317         me->personality &= ~bprm->per_clear;
1318
1319         clear_syscall_work_syscall_user_dispatch(me);
1320
1321         /*
1322          * We have to apply CLOEXEC before we change whether the process is
1323          * dumpable (in setup_new_exec) to avoid a race with a process in userspace
1324          * trying to access the should-be-closed file descriptors of a process
1325          * undergoing exec(2).
1326          */
1327         do_close_on_exec(me->files);
1328
1329         if (bprm->secureexec) {
1330                 /* Make sure parent cannot signal privileged process. */
1331                 me->pdeath_signal = 0;
1332
1333                 /*
1334                  * For secureexec, reset the stack limit to sane default to
1335                  * avoid bad behavior from the prior rlimits. This has to
1336                  * happen before arch_pick_mmap_layout(), which examines
1337                  * RLIMIT_STACK, but after the point of no return to avoid
1338                  * needing to clean up the change on failure.
1339                  */
1340                 if (bprm->rlim_stack.rlim_cur > _STK_LIM)
1341                         bprm->rlim_stack.rlim_cur = _STK_LIM;
1342         }
1343
1344         me->sas_ss_sp = me->sas_ss_size = 0;
1345
1346         /*
1347          * Figure out dumpability. Note that this checking only of current
1348          * is wrong, but userspace depends on it. This should be testing
1349          * bprm->secureexec instead.
1350          */
1351         if (bprm->interp_flags & BINPRM_FLAGS_ENFORCE_NONDUMP ||
1352             !(uid_eq(current_euid(), current_uid()) &&
1353               gid_eq(current_egid(), current_gid())))
1354                 set_dumpable(current->mm, suid_dumpable);
1355         else
1356                 set_dumpable(current->mm, SUID_DUMP_USER);
1357
1358         perf_event_exec();
1359         __set_task_comm(me, kbasename(bprm->filename), true);
1360
1361         /* An exec changes our domain. We are no longer part of the thread
1362            group */
1363         WRITE_ONCE(me->self_exec_id, me->self_exec_id + 1);
1364         flush_signal_handlers(me, 0);
1365
1366         retval = set_cred_ucounts(bprm->cred);
1367         if (retval < 0)
1368                 goto out_unlock;
1369
1370         /*
1371          * install the new credentials for this executable
1372          */
1373         security_bprm_committing_creds(bprm);
1374
1375         commit_creds(bprm->cred);
1376         bprm->cred = NULL;
1377
1378         /*
1379          * Disable monitoring for regular users
1380          * when executing setuid binaries. Must
1381          * wait until new credentials are committed
1382          * by commit_creds() above
1383          */
1384         if (get_dumpable(me->mm) != SUID_DUMP_USER)
1385                 perf_event_exit_task(me);
1386         /*
1387          * cred_guard_mutex must be held at least to this point to prevent
1388          * ptrace_attach() from altering our determination of the task's
1389          * credentials; any time after this it may be unlocked.
1390          */
1391         security_bprm_committed_creds(bprm);
1392
1393         /* Pass the opened binary to the interpreter. */
1394         if (bprm->have_execfd) {
1395                 retval = get_unused_fd_flags(0);
1396                 if (retval < 0)
1397                         goto out_unlock;
1398                 fd_install(retval, bprm->executable);
1399                 bprm->executable = NULL;
1400                 bprm->execfd = retval;
1401         }
1402         return 0;
1403
1404 out_unlock:
1405         up_write(&me->signal->exec_update_lock);
1406 out:
1407         return retval;
1408 }
1409 EXPORT_SYMBOL(begin_new_exec);
1410
1411 void would_dump(struct linux_binprm *bprm, struct file *file)
1412 {
1413         struct inode *inode = file_inode(file);
1414         struct user_namespace *mnt_userns = file_mnt_user_ns(file);
1415         if (inode_permission(mnt_userns, inode, MAY_READ) < 0) {
1416                 struct user_namespace *old, *user_ns;
1417                 bprm->interp_flags |= BINPRM_FLAGS_ENFORCE_NONDUMP;
1418
1419                 /* Ensure mm->user_ns contains the executable */
1420                 user_ns = old = bprm->mm->user_ns;
1421                 while ((user_ns != &init_user_ns) &&
1422                        !privileged_wrt_inode_uidgid(user_ns, mnt_userns, inode))
1423                         user_ns = user_ns->parent;
1424
1425                 if (old != user_ns) {
1426                         bprm->mm->user_ns = get_user_ns(user_ns);
1427                         put_user_ns(old);
1428                 }
1429         }
1430 }
1431 EXPORT_SYMBOL(would_dump);
1432
1433 void setup_new_exec(struct linux_binprm * bprm)
1434 {
1435         /* Setup things that can depend upon the personality */
1436         struct task_struct *me = current;
1437
1438         arch_pick_mmap_layout(me->mm, &bprm->rlim_stack);
1439
1440         arch_setup_new_exec();
1441
1442         /* Set the new mm task size. We have to do that late because it may
1443          * depend on TIF_32BIT which is only updated in flush_thread() on
1444          * some architectures like powerpc
1445          */
1446         me->mm->task_size = TASK_SIZE;
1447         up_write(&me->signal->exec_update_lock);
1448         mutex_unlock(&me->signal->cred_guard_mutex);
1449 }
1450 EXPORT_SYMBOL(setup_new_exec);
1451
1452 /* Runs immediately before start_thread() takes over. */
1453 void finalize_exec(struct linux_binprm *bprm)
1454 {
1455         /* Store any stack rlimit changes before starting thread. */
1456         task_lock(current->group_leader);
1457         current->signal->rlim[RLIMIT_STACK] = bprm->rlim_stack;
1458         task_unlock(current->group_leader);
1459 }
1460 EXPORT_SYMBOL(finalize_exec);
1461
1462 /*
1463  * Prepare credentials and lock ->cred_guard_mutex.
1464  * setup_new_exec() commits the new creds and drops the lock.
1465  * Or, if exec fails before, free_bprm() should release ->cred
1466  * and unlock.
1467  */
1468 static int prepare_bprm_creds(struct linux_binprm *bprm)
1469 {
1470         if (mutex_lock_interruptible(&current->signal->cred_guard_mutex))
1471                 return -ERESTARTNOINTR;
1472
1473         bprm->cred = prepare_exec_creds();
1474         if (likely(bprm->cred))
1475                 return 0;
1476
1477         mutex_unlock(&current->signal->cred_guard_mutex);
1478         return -ENOMEM;
1479 }
1480
1481 static void free_bprm(struct linux_binprm *bprm)
1482 {
1483         if (bprm->mm) {
1484                 acct_arg_size(bprm, 0);
1485                 mmput(bprm->mm);
1486         }
1487         free_arg_pages(bprm);
1488         if (bprm->cred) {
1489                 mutex_unlock(&current->signal->cred_guard_mutex);
1490                 abort_creds(bprm->cred);
1491         }
1492         if (bprm->file) {
1493                 allow_write_access(bprm->file);
1494                 fput(bprm->file);
1495         }
1496         if (bprm->executable)
1497                 fput(bprm->executable);
1498         /* If a binfmt changed the interp, free it. */
1499         if (bprm->interp != bprm->filename)
1500                 kfree(bprm->interp);
1501         kfree(bprm->fdpath);
1502         kfree(bprm);
1503 }
1504
1505 static struct linux_binprm *alloc_bprm(int fd, struct filename *filename)
1506 {
1507         struct linux_binprm *bprm = kzalloc(sizeof(*bprm), GFP_KERNEL);
1508         int retval = -ENOMEM;
1509         if (!bprm)
1510                 goto out;
1511
1512         if (fd == AT_FDCWD || filename->name[0] == '/') {
1513                 bprm->filename = filename->name;
1514         } else {
1515                 if (filename->name[0] == '\0')
1516                         bprm->fdpath = kasprintf(GFP_KERNEL, "/dev/fd/%d", fd);
1517                 else
1518                         bprm->fdpath = kasprintf(GFP_KERNEL, "/dev/fd/%d/%s",
1519                                                   fd, filename->name);
1520                 if (!bprm->fdpath)
1521                         goto out_free;
1522
1523                 bprm->filename = bprm->fdpath;
1524         }
1525         bprm->interp = bprm->filename;
1526
1527         retval = bprm_mm_init(bprm);
1528         if (retval)
1529                 goto out_free;
1530         return bprm;
1531
1532 out_free:
1533         free_bprm(bprm);
1534 out:
1535         return ERR_PTR(retval);
1536 }
1537
1538 int bprm_change_interp(const char *interp, struct linux_binprm *bprm)
1539 {
1540         /* If a binfmt changed the interp, free it first. */
1541         if (bprm->interp != bprm->filename)
1542                 kfree(bprm->interp);
1543         bprm->interp = kstrdup(interp, GFP_KERNEL);
1544         if (!bprm->interp)
1545                 return -ENOMEM;
1546         return 0;
1547 }
1548 EXPORT_SYMBOL(bprm_change_interp);
1549
1550 /*
1551  * determine how safe it is to execute the proposed program
1552  * - the caller must hold ->cred_guard_mutex to protect against
1553  *   PTRACE_ATTACH or seccomp thread-sync
1554  */
1555 static void check_unsafe_exec(struct linux_binprm *bprm)
1556 {
1557         struct task_struct *p = current, *t;
1558         unsigned n_fs;
1559
1560         if (p->ptrace)
1561                 bprm->unsafe |= LSM_UNSAFE_PTRACE;
1562
1563         /*
1564          * This isn't strictly necessary, but it makes it harder for LSMs to
1565          * mess up.
1566          */
1567         if (task_no_new_privs(current))
1568                 bprm->unsafe |= LSM_UNSAFE_NO_NEW_PRIVS;
1569
1570         t = p;
1571         n_fs = 1;
1572         spin_lock(&p->fs->lock);
1573         rcu_read_lock();
1574         while_each_thread(p, t) {
1575                 if (t->fs == p->fs)
1576                         n_fs++;
1577         }
1578         rcu_read_unlock();
1579
1580         if (p->fs->users > n_fs)
1581                 bprm->unsafe |= LSM_UNSAFE_SHARE;
1582         else
1583                 p->fs->in_exec = 1;
1584         spin_unlock(&p->fs->lock);
1585 }
1586
1587 static void bprm_fill_uid(struct linux_binprm *bprm, struct file *file)
1588 {
1589         /* Handle suid and sgid on files */
1590         struct user_namespace *mnt_userns;
1591         struct inode *inode;
1592         unsigned int mode;
1593         kuid_t uid;
1594         kgid_t gid;
1595
1596         if (!mnt_may_suid(file->f_path.mnt))
1597                 return;
1598
1599         if (task_no_new_privs(current))
1600                 return;
1601
1602         inode = file->f_path.dentry->d_inode;
1603         mode = READ_ONCE(inode->i_mode);
1604         if (!(mode & (S_ISUID|S_ISGID)))
1605                 return;
1606
1607         mnt_userns = file_mnt_user_ns(file);
1608
1609         /* Be careful if suid/sgid is set */
1610         inode_lock(inode);
1611
1612         /* reload atomically mode/uid/gid now that lock held */
1613         mode = inode->i_mode;
1614         uid = i_uid_into_mnt(mnt_userns, inode);
1615         gid = i_gid_into_mnt(mnt_userns, inode);
1616         inode_unlock(inode);
1617
1618         /* We ignore suid/sgid if there are no mappings for them in the ns */
1619         if (!kuid_has_mapping(bprm->cred->user_ns, uid) ||
1620                  !kgid_has_mapping(bprm->cred->user_ns, gid))
1621                 return;
1622
1623         if (mode & S_ISUID) {
1624                 bprm->per_clear |= PER_CLEAR_ON_SETID;
1625                 bprm->cred->euid = uid;
1626         }
1627
1628         if ((mode & (S_ISGID | S_IXGRP)) == (S_ISGID | S_IXGRP)) {
1629                 bprm->per_clear |= PER_CLEAR_ON_SETID;
1630                 bprm->cred->egid = gid;
1631         }
1632 }
1633
1634 /*
1635  * Compute brpm->cred based upon the final binary.
1636  */
1637 static int bprm_creds_from_file(struct linux_binprm *bprm)
1638 {
1639         /* Compute creds based on which file? */
1640         struct file *file = bprm->execfd_creds ? bprm->executable : bprm->file;
1641
1642         bprm_fill_uid(bprm, file);
1643         return security_bprm_creds_from_file(bprm, file);
1644 }
1645
1646 /*
1647  * Fill the binprm structure from the inode.
1648  * Read the first BINPRM_BUF_SIZE bytes
1649  *
1650  * This may be called multiple times for binary chains (scripts for example).
1651  */
1652 static int prepare_binprm(struct linux_binprm *bprm)
1653 {
1654         loff_t pos = 0;
1655
1656         memset(bprm->buf, 0, BINPRM_BUF_SIZE);
1657         return kernel_read(bprm->file, bprm->buf, BINPRM_BUF_SIZE, &pos);
1658 }
1659
1660 /*
1661  * Arguments are '\0' separated strings found at the location bprm->p
1662  * points to; chop off the first by relocating brpm->p to right after
1663  * the first '\0' encountered.
1664  */
1665 int remove_arg_zero(struct linux_binprm *bprm)
1666 {
1667         int ret = 0;
1668         unsigned long offset;
1669         char *kaddr;
1670         struct page *page;
1671
1672         if (!bprm->argc)
1673                 return 0;
1674
1675         do {
1676                 offset = bprm->p & ~PAGE_MASK;
1677                 page = get_arg_page(bprm, bprm->p, 0);
1678                 if (!page) {
1679                         ret = -EFAULT;
1680                         goto out;
1681                 }
1682                 kaddr = kmap_atomic(page);
1683
1684                 for (; offset < PAGE_SIZE && kaddr[offset];
1685                                 offset++, bprm->p++)
1686                         ;
1687
1688                 kunmap_atomic(kaddr);
1689                 put_arg_page(page);
1690         } while (offset == PAGE_SIZE);
1691
1692         bprm->p++;
1693         bprm->argc--;
1694         ret = 0;
1695
1696 out:
1697         return ret;
1698 }
1699 EXPORT_SYMBOL(remove_arg_zero);
1700
1701 #define printable(c) (((c)=='\t') || ((c)=='\n') || (0x20<=(c) && (c)<=0x7e))
1702 /*
1703  * cycle the list of binary formats handler, until one recognizes the image
1704  */
1705 static int search_binary_handler(struct linux_binprm *bprm)
1706 {
1707         bool need_retry = IS_ENABLED(CONFIG_MODULES);
1708         struct linux_binfmt *fmt;
1709         int retval;
1710
1711         retval = prepare_binprm(bprm);
1712         if (retval < 0)
1713                 return retval;
1714
1715         retval = security_bprm_check(bprm);
1716         if (retval)
1717                 return retval;
1718
1719         retval = -ENOENT;
1720  retry:
1721         read_lock(&binfmt_lock);
1722         list_for_each_entry(fmt, &formats, lh) {
1723                 if (!try_module_get(fmt->module))
1724                         continue;
1725                 read_unlock(&binfmt_lock);
1726
1727                 retval = fmt->load_binary(bprm);
1728
1729                 read_lock(&binfmt_lock);
1730                 put_binfmt(fmt);
1731                 if (bprm->point_of_no_return || (retval != -ENOEXEC)) {
1732                         read_unlock(&binfmt_lock);
1733                         return retval;
1734                 }
1735         }
1736         read_unlock(&binfmt_lock);
1737
1738         if (need_retry) {
1739                 if (printable(bprm->buf[0]) && printable(bprm->buf[1]) &&
1740                     printable(bprm->buf[2]) && printable(bprm->buf[3]))
1741                         return retval;
1742                 if (request_module("binfmt-%04x", *(ushort *)(bprm->buf + 2)) < 0)
1743                         return retval;
1744                 need_retry = false;
1745                 goto retry;
1746         }
1747
1748         return retval;
1749 }
1750
1751 static int exec_binprm(struct linux_binprm *bprm)
1752 {
1753         pid_t old_pid, old_vpid;
1754         int ret, depth;
1755
1756         /* Need to fetch pid before load_binary changes it */
1757         old_pid = current->pid;
1758         rcu_read_lock();
1759         old_vpid = task_pid_nr_ns(current, task_active_pid_ns(current->parent));
1760         rcu_read_unlock();
1761
1762         /* This allows 4 levels of binfmt rewrites before failing hard. */
1763         for (depth = 0;; depth++) {
1764                 struct file *exec;
1765                 if (depth > 5)
1766                         return -ELOOP;
1767
1768                 ret = search_binary_handler(bprm);
1769                 if (ret < 0)
1770                         return ret;
1771                 if (!bprm->interpreter)
1772                         break;
1773
1774                 exec = bprm->file;
1775                 bprm->file = bprm->interpreter;
1776                 bprm->interpreter = NULL;
1777
1778                 allow_write_access(exec);
1779                 if (unlikely(bprm->have_execfd)) {
1780                         if (bprm->executable) {
1781                                 fput(exec);
1782                                 return -ENOEXEC;
1783                         }
1784                         bprm->executable = exec;
1785                 } else
1786                         fput(exec);
1787         }
1788
1789         audit_bprm(bprm);
1790         trace_sched_process_exec(current, old_pid, bprm);
1791         ptrace_event(PTRACE_EVENT_EXEC, old_vpid);
1792         proc_exec_connector(current);
1793         return 0;
1794 }
1795
1796 /*
1797  * sys_execve() executes a new program.
1798  */
1799 static int bprm_execve(struct linux_binprm *bprm,
1800                        int fd, struct filename *filename, int flags)
1801 {
1802         struct file *file;
1803         int retval;
1804
1805         retval = prepare_bprm_creds(bprm);
1806         if (retval)
1807                 return retval;
1808
1809         check_unsafe_exec(bprm);
1810         current->in_execve = 1;
1811
1812         file = do_open_execat(fd, filename, flags);
1813         retval = PTR_ERR(file);
1814         if (IS_ERR(file))
1815                 goto out_unmark;
1816
1817         sched_exec();
1818
1819         bprm->file = file;
1820         /*
1821          * Record that a name derived from an O_CLOEXEC fd will be
1822          * inaccessible after exec.  This allows the code in exec to
1823          * choose to fail when the executable is not mmaped into the
1824          * interpreter and an open file descriptor is not passed to
1825          * the interpreter.  This makes for a better user experience
1826          * than having the interpreter start and then immediately fail
1827          * when it finds the executable is inaccessible.
1828          */
1829         if (bprm->fdpath && get_close_on_exec(fd))
1830                 bprm->interp_flags |= BINPRM_FLAGS_PATH_INACCESSIBLE;
1831
1832         /* Set the unchanging part of bprm->cred */
1833         retval = security_bprm_creds_for_exec(bprm);
1834         if (retval)
1835                 goto out;
1836
1837         retval = exec_binprm(bprm);
1838         if (retval < 0)
1839                 goto out;
1840
1841         /* execve succeeded */
1842         current->fs->in_exec = 0;
1843         current->in_execve = 0;
1844         rseq_execve(current);
1845         acct_update_integrals(current);
1846         task_numa_free(current, false);
1847         return retval;
1848
1849 out:
1850         /*
1851          * If past the point of no return ensure the code never
1852          * returns to the userspace process.  Use an existing fatal
1853          * signal if present otherwise terminate the process with
1854          * SIGSEGV.
1855          */
1856         if (bprm->point_of_no_return && !fatal_signal_pending(current))
1857                 force_fatal_sig(SIGSEGV);
1858
1859 out_unmark:
1860         current->fs->in_exec = 0;
1861         current->in_execve = 0;
1862
1863         return retval;
1864 }
1865
1866 static int do_execveat_common(int fd, struct filename *filename,
1867                               struct user_arg_ptr argv,
1868                               struct user_arg_ptr envp,
1869                               int flags)
1870 {
1871         struct linux_binprm *bprm;
1872         int retval;
1873
1874         if (IS_ERR(filename))
1875                 return PTR_ERR(filename);
1876
1877         /*
1878          * We move the actual failure in case of RLIMIT_NPROC excess from
1879          * set*uid() to execve() because too many poorly written programs
1880          * don't check setuid() return code.  Here we additionally recheck
1881          * whether NPROC limit is still exceeded.
1882          */
1883         if ((current->flags & PF_NPROC_EXCEEDED) &&
1884             is_ucounts_overlimit(current_ucounts(), UCOUNT_RLIMIT_NPROC, rlimit(RLIMIT_NPROC))) {
1885                 retval = -EAGAIN;
1886                 goto out_ret;
1887         }
1888
1889         /* We're below the limit (still or again), so we don't want to make
1890          * further execve() calls fail. */
1891         current->flags &= ~PF_NPROC_EXCEEDED;
1892
1893         bprm = alloc_bprm(fd, filename);
1894         if (IS_ERR(bprm)) {
1895                 retval = PTR_ERR(bprm);
1896                 goto out_ret;
1897         }
1898
1899         retval = count(argv, MAX_ARG_STRINGS);
1900         if (retval < 0)
1901                 goto out_free;
1902         bprm->argc = retval;
1903
1904         retval = count(envp, MAX_ARG_STRINGS);
1905         if (retval < 0)
1906                 goto out_free;
1907         bprm->envc = retval;
1908
1909         retval = bprm_stack_limits(bprm);
1910         if (retval < 0)
1911                 goto out_free;
1912
1913         retval = copy_string_kernel(bprm->filename, bprm);
1914         if (retval < 0)
1915                 goto out_free;
1916         bprm->exec = bprm->p;
1917
1918         retval = copy_strings(bprm->envc, envp, bprm);
1919         if (retval < 0)
1920                 goto out_free;
1921
1922         retval = copy_strings(bprm->argc, argv, bprm);
1923         if (retval < 0)
1924                 goto out_free;
1925
1926         retval = bprm_execve(bprm, fd, filename, flags);
1927 out_free:
1928         free_bprm(bprm);
1929
1930 out_ret:
1931         putname(filename);
1932         return retval;
1933 }
1934
1935 int kernel_execve(const char *kernel_filename,
1936                   const char *const *argv, const char *const *envp)
1937 {
1938         struct filename *filename;
1939         struct linux_binprm *bprm;
1940         int fd = AT_FDCWD;
1941         int retval;
1942
1943         filename = getname_kernel(kernel_filename);
1944         if (IS_ERR(filename))
1945                 return PTR_ERR(filename);
1946
1947         bprm = alloc_bprm(fd, filename);
1948         if (IS_ERR(bprm)) {
1949                 retval = PTR_ERR(bprm);
1950                 goto out_ret;
1951         }
1952
1953         retval = count_strings_kernel(argv);
1954         if (retval < 0)
1955                 goto out_free;
1956         bprm->argc = retval;
1957
1958         retval = count_strings_kernel(envp);
1959         if (retval < 0)
1960                 goto out_free;
1961         bprm->envc = retval;
1962
1963         retval = bprm_stack_limits(bprm);
1964         if (retval < 0)
1965                 goto out_free;
1966
1967         retval = copy_string_kernel(bprm->filename, bprm);
1968         if (retval < 0)
1969                 goto out_free;
1970         bprm->exec = bprm->p;
1971
1972         retval = copy_strings_kernel(bprm->envc, envp, bprm);
1973         if (retval < 0)
1974                 goto out_free;
1975
1976         retval = copy_strings_kernel(bprm->argc, argv, bprm);
1977         if (retval < 0)
1978                 goto out_free;
1979
1980         retval = bprm_execve(bprm, fd, filename, 0);
1981 out_free:
1982         free_bprm(bprm);
1983 out_ret:
1984         putname(filename);
1985         return retval;
1986 }
1987
1988 static int do_execve(struct filename *filename,
1989         const char __user *const __user *__argv,
1990         const char __user *const __user *__envp)
1991 {
1992         struct user_arg_ptr argv = { .ptr.native = __argv };
1993         struct user_arg_ptr envp = { .ptr.native = __envp };
1994         return do_execveat_common(AT_FDCWD, filename, argv, envp, 0);
1995 }
1996
1997 static int do_execveat(int fd, struct filename *filename,
1998                 const char __user *const __user *__argv,
1999                 const char __user *const __user *__envp,
2000                 int flags)
2001 {
2002         struct user_arg_ptr argv = { .ptr.native = __argv };
2003         struct user_arg_ptr envp = { .ptr.native = __envp };
2004
2005         return do_execveat_common(fd, filename, argv, envp, flags);
2006 }
2007
2008 #ifdef CONFIG_COMPAT
2009 static int compat_do_execve(struct filename *filename,
2010         const compat_uptr_t __user *__argv,
2011         const compat_uptr_t __user *__envp)
2012 {
2013         struct user_arg_ptr argv = {
2014                 .is_compat = true,
2015                 .ptr.compat = __argv,
2016         };
2017         struct user_arg_ptr envp = {
2018                 .is_compat = true,
2019                 .ptr.compat = __envp,
2020         };
2021         return do_execveat_common(AT_FDCWD, filename, argv, envp, 0);
2022 }
2023
2024 static int compat_do_execveat(int fd, struct filename *filename,
2025                               const compat_uptr_t __user *__argv,
2026                               const compat_uptr_t __user *__envp,
2027                               int flags)
2028 {
2029         struct user_arg_ptr argv = {
2030                 .is_compat = true,
2031                 .ptr.compat = __argv,
2032         };
2033         struct user_arg_ptr envp = {
2034                 .is_compat = true,
2035                 .ptr.compat = __envp,
2036         };
2037         return do_execveat_common(fd, filename, argv, envp, flags);
2038 }
2039 #endif
2040
2041 void set_binfmt(struct linux_binfmt *new)
2042 {
2043         struct mm_struct *mm = current->mm;
2044
2045         if (mm->binfmt)
2046                 module_put(mm->binfmt->module);
2047
2048         mm->binfmt = new;
2049         if (new)
2050                 __module_get(new->module);
2051 }
2052 EXPORT_SYMBOL(set_binfmt);
2053
2054 /*
2055  * set_dumpable stores three-value SUID_DUMP_* into mm->flags.
2056  */
2057 void set_dumpable(struct mm_struct *mm, int value)
2058 {
2059         if (WARN_ON((unsigned)value > SUID_DUMP_ROOT))
2060                 return;
2061
2062         set_mask_bits(&mm->flags, MMF_DUMPABLE_MASK, value);
2063 }
2064
2065 SYSCALL_DEFINE3(execve,
2066                 const char __user *, filename,
2067                 const char __user *const __user *, argv,
2068                 const char __user *const __user *, envp)
2069 {
2070         return do_execve(getname(filename), argv, envp);
2071 }
2072
2073 SYSCALL_DEFINE5(execveat,
2074                 int, fd, const char __user *, filename,
2075                 const char __user *const __user *, argv,
2076                 const char __user *const __user *, envp,
2077                 int, flags)
2078 {
2079         return do_execveat(fd,
2080                            getname_uflags(filename, flags),
2081                            argv, envp, flags);
2082 }
2083
2084 #ifdef CONFIG_COMPAT
2085 COMPAT_SYSCALL_DEFINE3(execve, const char __user *, filename,
2086         const compat_uptr_t __user *, argv,
2087         const compat_uptr_t __user *, envp)
2088 {
2089         return compat_do_execve(getname(filename), argv, envp);
2090 }
2091
2092 COMPAT_SYSCALL_DEFINE5(execveat, int, fd,
2093                        const char __user *, filename,
2094                        const compat_uptr_t __user *, argv,
2095                        const compat_uptr_t __user *, envp,
2096                        int,  flags)
2097 {
2098         return compat_do_execveat(fd,
2099                                   getname_uflags(filename, flags),
2100                                   argv, envp, flags);
2101 }
2102 #endif
2103
2104 #ifdef CONFIG_SYSCTL
2105
2106 static int proc_dointvec_minmax_coredump(struct ctl_table *table, int write,
2107                 void *buffer, size_t *lenp, loff_t *ppos)
2108 {
2109         int error = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
2110
2111         if (!error)
2112                 validate_coredump_safety();
2113         return error;
2114 }
2115
2116 static struct ctl_table fs_exec_sysctls[] = {
2117         {
2118                 .procname       = "suid_dumpable",
2119                 .data           = &suid_dumpable,
2120                 .maxlen         = sizeof(int),
2121                 .mode           = 0644,
2122                 .proc_handler   = proc_dointvec_minmax_coredump,
2123                 .extra1         = SYSCTL_ZERO,
2124                 .extra2         = SYSCTL_TWO,
2125         },
2126         { }
2127 };
2128
2129 static int __init init_fs_exec_sysctls(void)
2130 {
2131         register_sysctl_init("fs", fs_exec_sysctls);
2132         return 0;
2133 }
2134
2135 fs_initcall(init_fs_exec_sysctls);
2136 #endif /* CONFIG_SYSCTL */