Merge tag 'arm-soc/for-5.20/devicetree-arm64' of https://github.com/Broadcom/stblinux...
[linux-2.6-microblaze.git] / fs / exec.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/fs/exec.c
4  *
5  *  Copyright (C) 1991, 1992  Linus Torvalds
6  */
7
8 /*
9  * #!-checking implemented by tytso.
10  */
11 /*
12  * Demand-loading implemented 01.12.91 - no need to read anything but
13  * the header into memory. The inode of the executable is put into
14  * "current->executable", and page faults do the actual loading. Clean.
15  *
16  * Once more I can proudly say that linux stood up to being changed: it
17  * was less than 2 hours work to get demand-loading completely implemented.
18  *
19  * Demand loading changed July 1993 by Eric Youngdale.   Use mmap instead,
20  * current->executable is only used by the procfs.  This allows a dispatch
21  * table to check for several different types  of binary formats.  We keep
22  * trying until we recognize the file or we run out of supported binary
23  * formats.
24  */
25
26 #include <linux/kernel_read_file.h>
27 #include <linux/slab.h>
28 #include <linux/file.h>
29 #include <linux/fdtable.h>
30 #include <linux/mm.h>
31 #include <linux/vmacache.h>
32 #include <linux/stat.h>
33 #include <linux/fcntl.h>
34 #include <linux/swap.h>
35 #include <linux/string.h>
36 #include <linux/init.h>
37 #include <linux/sched/mm.h>
38 #include <linux/sched/coredump.h>
39 #include <linux/sched/signal.h>
40 #include <linux/sched/numa_balancing.h>
41 #include <linux/sched/task.h>
42 #include <linux/pagemap.h>
43 #include <linux/perf_event.h>
44 #include <linux/highmem.h>
45 #include <linux/spinlock.h>
46 #include <linux/key.h>
47 #include <linux/personality.h>
48 #include <linux/binfmts.h>
49 #include <linux/utsname.h>
50 #include <linux/pid_namespace.h>
51 #include <linux/module.h>
52 #include <linux/namei.h>
53 #include <linux/mount.h>
54 #include <linux/security.h>
55 #include <linux/syscalls.h>
56 #include <linux/tsacct_kern.h>
57 #include <linux/cn_proc.h>
58 #include <linux/audit.h>
59 #include <linux/kmod.h>
60 #include <linux/fsnotify.h>
61 #include <linux/fs_struct.h>
62 #include <linux/oom.h>
63 #include <linux/compat.h>
64 #include <linux/vmalloc.h>
65 #include <linux/io_uring.h>
66 #include <linux/syscall_user_dispatch.h>
67 #include <linux/coredump.h>
68
69 #include <linux/uaccess.h>
70 #include <asm/mmu_context.h>
71 #include <asm/tlb.h>
72
73 #include <trace/events/task.h>
74 #include "internal.h"
75
76 #include <trace/events/sched.h>
77
78 static int bprm_creds_from_file(struct linux_binprm *bprm);
79
80 int suid_dumpable = 0;
81
82 static LIST_HEAD(formats);
83 static DEFINE_RWLOCK(binfmt_lock);
84
85 void __register_binfmt(struct linux_binfmt * fmt, int insert)
86 {
87         write_lock(&binfmt_lock);
88         insert ? list_add(&fmt->lh, &formats) :
89                  list_add_tail(&fmt->lh, &formats);
90         write_unlock(&binfmt_lock);
91 }
92
93 EXPORT_SYMBOL(__register_binfmt);
94
95 void unregister_binfmt(struct linux_binfmt * fmt)
96 {
97         write_lock(&binfmt_lock);
98         list_del(&fmt->lh);
99         write_unlock(&binfmt_lock);
100 }
101
102 EXPORT_SYMBOL(unregister_binfmt);
103
104 static inline void put_binfmt(struct linux_binfmt * fmt)
105 {
106         module_put(fmt->module);
107 }
108
109 bool path_noexec(const struct path *path)
110 {
111         return (path->mnt->mnt_flags & MNT_NOEXEC) ||
112                (path->mnt->mnt_sb->s_iflags & SB_I_NOEXEC);
113 }
114
115 #ifdef CONFIG_USELIB
116 /*
117  * Note that a shared library must be both readable and executable due to
118  * security reasons.
119  *
120  * Also note that we take the address to load from the file itself.
121  */
122 SYSCALL_DEFINE1(uselib, const char __user *, library)
123 {
124         struct linux_binfmt *fmt;
125         struct file *file;
126         struct filename *tmp = getname(library);
127         int error = PTR_ERR(tmp);
128         static const struct open_flags uselib_flags = {
129                 .open_flag = O_LARGEFILE | O_RDONLY | __FMODE_EXEC,
130                 .acc_mode = MAY_READ | MAY_EXEC,
131                 .intent = LOOKUP_OPEN,
132                 .lookup_flags = LOOKUP_FOLLOW,
133         };
134
135         if (IS_ERR(tmp))
136                 goto out;
137
138         file = do_filp_open(AT_FDCWD, tmp, &uselib_flags);
139         putname(tmp);
140         error = PTR_ERR(file);
141         if (IS_ERR(file))
142                 goto out;
143
144         /*
145          * may_open() has already checked for this, so it should be
146          * impossible to trip now. But we need to be extra cautious
147          * and check again at the very end too.
148          */
149         error = -EACCES;
150         if (WARN_ON_ONCE(!S_ISREG(file_inode(file)->i_mode) ||
151                          path_noexec(&file->f_path)))
152                 goto exit;
153
154         fsnotify_open(file);
155
156         error = -ENOEXEC;
157
158         read_lock(&binfmt_lock);
159         list_for_each_entry(fmt, &formats, lh) {
160                 if (!fmt->load_shlib)
161                         continue;
162                 if (!try_module_get(fmt->module))
163                         continue;
164                 read_unlock(&binfmt_lock);
165                 error = fmt->load_shlib(file);
166                 read_lock(&binfmt_lock);
167                 put_binfmt(fmt);
168                 if (error != -ENOEXEC)
169                         break;
170         }
171         read_unlock(&binfmt_lock);
172 exit:
173         fput(file);
174 out:
175         return error;
176 }
177 #endif /* #ifdef CONFIG_USELIB */
178
179 #ifdef CONFIG_MMU
180 /*
181  * The nascent bprm->mm is not visible until exec_mmap() but it can
182  * use a lot of memory, account these pages in current->mm temporary
183  * for oom_badness()->get_mm_rss(). Once exec succeeds or fails, we
184  * change the counter back via acct_arg_size(0).
185  */
186 static void acct_arg_size(struct linux_binprm *bprm, unsigned long pages)
187 {
188         struct mm_struct *mm = current->mm;
189         long diff = (long)(pages - bprm->vma_pages);
190
191         if (!mm || !diff)
192                 return;
193
194         bprm->vma_pages = pages;
195         add_mm_counter(mm, MM_ANONPAGES, diff);
196 }
197
198 static struct page *get_arg_page(struct linux_binprm *bprm, unsigned long pos,
199                 int write)
200 {
201         struct page *page;
202         int ret;
203         unsigned int gup_flags = FOLL_FORCE;
204
205 #ifdef CONFIG_STACK_GROWSUP
206         if (write) {
207                 ret = expand_downwards(bprm->vma, pos);
208                 if (ret < 0)
209                         return NULL;
210         }
211 #endif
212
213         if (write)
214                 gup_flags |= FOLL_WRITE;
215
216         /*
217          * We are doing an exec().  'current' is the process
218          * doing the exec and bprm->mm is the new process's mm.
219          */
220         mmap_read_lock(bprm->mm);
221         ret = get_user_pages_remote(bprm->mm, pos, 1, gup_flags,
222                         &page, NULL, NULL);
223         mmap_read_unlock(bprm->mm);
224         if (ret <= 0)
225                 return NULL;
226
227         if (write)
228                 acct_arg_size(bprm, vma_pages(bprm->vma));
229
230         return page;
231 }
232
233 static void put_arg_page(struct page *page)
234 {
235         put_page(page);
236 }
237
238 static void free_arg_pages(struct linux_binprm *bprm)
239 {
240 }
241
242 static void flush_arg_page(struct linux_binprm *bprm, unsigned long pos,
243                 struct page *page)
244 {
245         flush_cache_page(bprm->vma, pos, page_to_pfn(page));
246 }
247
248 static int __bprm_mm_init(struct linux_binprm *bprm)
249 {
250         int err;
251         struct vm_area_struct *vma = NULL;
252         struct mm_struct *mm = bprm->mm;
253
254         bprm->vma = vma = vm_area_alloc(mm);
255         if (!vma)
256                 return -ENOMEM;
257         vma_set_anonymous(vma);
258
259         if (mmap_write_lock_killable(mm)) {
260                 err = -EINTR;
261                 goto err_free;
262         }
263
264         /*
265          * Place the stack at the largest stack address the architecture
266          * supports. Later, we'll move this to an appropriate place. We don't
267          * use STACK_TOP because that can depend on attributes which aren't
268          * configured yet.
269          */
270         BUILD_BUG_ON(VM_STACK_FLAGS & VM_STACK_INCOMPLETE_SETUP);
271         vma->vm_end = STACK_TOP_MAX;
272         vma->vm_start = vma->vm_end - PAGE_SIZE;
273         vma->vm_flags = VM_SOFTDIRTY | VM_STACK_FLAGS | VM_STACK_INCOMPLETE_SETUP;
274         vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
275
276         err = insert_vm_struct(mm, vma);
277         if (err)
278                 goto err;
279
280         mm->stack_vm = mm->total_vm = 1;
281         mmap_write_unlock(mm);
282         bprm->p = vma->vm_end - sizeof(void *);
283         return 0;
284 err:
285         mmap_write_unlock(mm);
286 err_free:
287         bprm->vma = NULL;
288         vm_area_free(vma);
289         return err;
290 }
291
292 static bool valid_arg_len(struct linux_binprm *bprm, long len)
293 {
294         return len <= MAX_ARG_STRLEN;
295 }
296
297 #else
298
299 static inline void acct_arg_size(struct linux_binprm *bprm, unsigned long pages)
300 {
301 }
302
303 static struct page *get_arg_page(struct linux_binprm *bprm, unsigned long pos,
304                 int write)
305 {
306         struct page *page;
307
308         page = bprm->page[pos / PAGE_SIZE];
309         if (!page && write) {
310                 page = alloc_page(GFP_HIGHUSER|__GFP_ZERO);
311                 if (!page)
312                         return NULL;
313                 bprm->page[pos / PAGE_SIZE] = page;
314         }
315
316         return page;
317 }
318
319 static void put_arg_page(struct page *page)
320 {
321 }
322
323 static void free_arg_page(struct linux_binprm *bprm, int i)
324 {
325         if (bprm->page[i]) {
326                 __free_page(bprm->page[i]);
327                 bprm->page[i] = NULL;
328         }
329 }
330
331 static void free_arg_pages(struct linux_binprm *bprm)
332 {
333         int i;
334
335         for (i = 0; i < MAX_ARG_PAGES; i++)
336                 free_arg_page(bprm, i);
337 }
338
339 static void flush_arg_page(struct linux_binprm *bprm, unsigned long pos,
340                 struct page *page)
341 {
342 }
343
344 static int __bprm_mm_init(struct linux_binprm *bprm)
345 {
346         bprm->p = PAGE_SIZE * MAX_ARG_PAGES - sizeof(void *);
347         return 0;
348 }
349
350 static bool valid_arg_len(struct linux_binprm *bprm, long len)
351 {
352         return len <= bprm->p;
353 }
354
355 #endif /* CONFIG_MMU */
356
357 /*
358  * Create a new mm_struct and populate it with a temporary stack
359  * vm_area_struct.  We don't have enough context at this point to set the stack
360  * flags, permissions, and offset, so we use temporary values.  We'll update
361  * them later in setup_arg_pages().
362  */
363 static int bprm_mm_init(struct linux_binprm *bprm)
364 {
365         int err;
366         struct mm_struct *mm = NULL;
367
368         bprm->mm = mm = mm_alloc();
369         err = -ENOMEM;
370         if (!mm)
371                 goto err;
372
373         /* Save current stack limit for all calculations made during exec. */
374         task_lock(current->group_leader);
375         bprm->rlim_stack = current->signal->rlim[RLIMIT_STACK];
376         task_unlock(current->group_leader);
377
378         err = __bprm_mm_init(bprm);
379         if (err)
380                 goto err;
381
382         return 0;
383
384 err:
385         if (mm) {
386                 bprm->mm = NULL;
387                 mmdrop(mm);
388         }
389
390         return err;
391 }
392
393 struct user_arg_ptr {
394 #ifdef CONFIG_COMPAT
395         bool is_compat;
396 #endif
397         union {
398                 const char __user *const __user *native;
399 #ifdef CONFIG_COMPAT
400                 const compat_uptr_t __user *compat;
401 #endif
402         } ptr;
403 };
404
405 static const char __user *get_user_arg_ptr(struct user_arg_ptr argv, int nr)
406 {
407         const char __user *native;
408
409 #ifdef CONFIG_COMPAT
410         if (unlikely(argv.is_compat)) {
411                 compat_uptr_t compat;
412
413                 if (get_user(compat, argv.ptr.compat + nr))
414                         return ERR_PTR(-EFAULT);
415
416                 return compat_ptr(compat);
417         }
418 #endif
419
420         if (get_user(native, argv.ptr.native + nr))
421                 return ERR_PTR(-EFAULT);
422
423         return native;
424 }
425
426 /*
427  * count() counts the number of strings in array ARGV.
428  */
429 static int count(struct user_arg_ptr argv, int max)
430 {
431         int i = 0;
432
433         if (argv.ptr.native != NULL) {
434                 for (;;) {
435                         const char __user *p = get_user_arg_ptr(argv, i);
436
437                         if (!p)
438                                 break;
439
440                         if (IS_ERR(p))
441                                 return -EFAULT;
442
443                         if (i >= max)
444                                 return -E2BIG;
445                         ++i;
446
447                         if (fatal_signal_pending(current))
448                                 return -ERESTARTNOHAND;
449                         cond_resched();
450                 }
451         }
452         return i;
453 }
454
455 static int count_strings_kernel(const char *const *argv)
456 {
457         int i;
458
459         if (!argv)
460                 return 0;
461
462         for (i = 0; argv[i]; ++i) {
463                 if (i >= MAX_ARG_STRINGS)
464                         return -E2BIG;
465                 if (fatal_signal_pending(current))
466                         return -ERESTARTNOHAND;
467                 cond_resched();
468         }
469         return i;
470 }
471
472 static int bprm_stack_limits(struct linux_binprm *bprm)
473 {
474         unsigned long limit, ptr_size;
475
476         /*
477          * Limit to 1/4 of the max stack size or 3/4 of _STK_LIM
478          * (whichever is smaller) for the argv+env strings.
479          * This ensures that:
480          *  - the remaining binfmt code will not run out of stack space,
481          *  - the program will have a reasonable amount of stack left
482          *    to work from.
483          */
484         limit = _STK_LIM / 4 * 3;
485         limit = min(limit, bprm->rlim_stack.rlim_cur / 4);
486         /*
487          * We've historically supported up to 32 pages (ARG_MAX)
488          * of argument strings even with small stacks
489          */
490         limit = max_t(unsigned long, limit, ARG_MAX);
491         /*
492          * We must account for the size of all the argv and envp pointers to
493          * the argv and envp strings, since they will also take up space in
494          * the stack. They aren't stored until much later when we can't
495          * signal to the parent that the child has run out of stack space.
496          * Instead, calculate it here so it's possible to fail gracefully.
497          *
498          * In the case of argc = 0, make sure there is space for adding a
499          * empty string (which will bump argc to 1), to ensure confused
500          * userspace programs don't start processing from argv[1], thinking
501          * argc can never be 0, to keep them from walking envp by accident.
502          * See do_execveat_common().
503          */
504         ptr_size = (max(bprm->argc, 1) + bprm->envc) * sizeof(void *);
505         if (limit <= ptr_size)
506                 return -E2BIG;
507         limit -= ptr_size;
508
509         bprm->argmin = bprm->p - limit;
510         return 0;
511 }
512
513 /*
514  * 'copy_strings()' copies argument/environment strings from the old
515  * processes's memory to the new process's stack.  The call to get_user_pages()
516  * ensures the destination page is created and not swapped out.
517  */
518 static int copy_strings(int argc, struct user_arg_ptr argv,
519                         struct linux_binprm *bprm)
520 {
521         struct page *kmapped_page = NULL;
522         char *kaddr = NULL;
523         unsigned long kpos = 0;
524         int ret;
525
526         while (argc-- > 0) {
527                 const char __user *str;
528                 int len;
529                 unsigned long pos;
530
531                 ret = -EFAULT;
532                 str = get_user_arg_ptr(argv, argc);
533                 if (IS_ERR(str))
534                         goto out;
535
536                 len = strnlen_user(str, MAX_ARG_STRLEN);
537                 if (!len)
538                         goto out;
539
540                 ret = -E2BIG;
541                 if (!valid_arg_len(bprm, len))
542                         goto out;
543
544                 /* We're going to work our way backwards. */
545                 pos = bprm->p;
546                 str += len;
547                 bprm->p -= len;
548 #ifdef CONFIG_MMU
549                 if (bprm->p < bprm->argmin)
550                         goto out;
551 #endif
552
553                 while (len > 0) {
554                         int offset, bytes_to_copy;
555
556                         if (fatal_signal_pending(current)) {
557                                 ret = -ERESTARTNOHAND;
558                                 goto out;
559                         }
560                         cond_resched();
561
562                         offset = pos % PAGE_SIZE;
563                         if (offset == 0)
564                                 offset = PAGE_SIZE;
565
566                         bytes_to_copy = offset;
567                         if (bytes_to_copy > len)
568                                 bytes_to_copy = len;
569
570                         offset -= bytes_to_copy;
571                         pos -= bytes_to_copy;
572                         str -= bytes_to_copy;
573                         len -= bytes_to_copy;
574
575                         if (!kmapped_page || kpos != (pos & PAGE_MASK)) {
576                                 struct page *page;
577
578                                 page = get_arg_page(bprm, pos, 1);
579                                 if (!page) {
580                                         ret = -E2BIG;
581                                         goto out;
582                                 }
583
584                                 if (kmapped_page) {
585                                         flush_dcache_page(kmapped_page);
586                                         kunmap(kmapped_page);
587                                         put_arg_page(kmapped_page);
588                                 }
589                                 kmapped_page = page;
590                                 kaddr = kmap(kmapped_page);
591                                 kpos = pos & PAGE_MASK;
592                                 flush_arg_page(bprm, kpos, kmapped_page);
593                         }
594                         if (copy_from_user(kaddr+offset, str, bytes_to_copy)) {
595                                 ret = -EFAULT;
596                                 goto out;
597                         }
598                 }
599         }
600         ret = 0;
601 out:
602         if (kmapped_page) {
603                 flush_dcache_page(kmapped_page);
604                 kunmap(kmapped_page);
605                 put_arg_page(kmapped_page);
606         }
607         return ret;
608 }
609
610 /*
611  * Copy and argument/environment string from the kernel to the processes stack.
612  */
613 int copy_string_kernel(const char *arg, struct linux_binprm *bprm)
614 {
615         int len = strnlen(arg, MAX_ARG_STRLEN) + 1 /* terminating NUL */;
616         unsigned long pos = bprm->p;
617
618         if (len == 0)
619                 return -EFAULT;
620         if (!valid_arg_len(bprm, len))
621                 return -E2BIG;
622
623         /* We're going to work our way backwards. */
624         arg += len;
625         bprm->p -= len;
626         if (IS_ENABLED(CONFIG_MMU) && bprm->p < bprm->argmin)
627                 return -E2BIG;
628
629         while (len > 0) {
630                 unsigned int bytes_to_copy = min_t(unsigned int, len,
631                                 min_not_zero(offset_in_page(pos), PAGE_SIZE));
632                 struct page *page;
633                 char *kaddr;
634
635                 pos -= bytes_to_copy;
636                 arg -= bytes_to_copy;
637                 len -= bytes_to_copy;
638
639                 page = get_arg_page(bprm, pos, 1);
640                 if (!page)
641                         return -E2BIG;
642                 kaddr = kmap_atomic(page);
643                 flush_arg_page(bprm, pos & PAGE_MASK, page);
644                 memcpy(kaddr + offset_in_page(pos), arg, bytes_to_copy);
645                 flush_dcache_page(page);
646                 kunmap_atomic(kaddr);
647                 put_arg_page(page);
648         }
649
650         return 0;
651 }
652 EXPORT_SYMBOL(copy_string_kernel);
653
654 static int copy_strings_kernel(int argc, const char *const *argv,
655                                struct linux_binprm *bprm)
656 {
657         while (argc-- > 0) {
658                 int ret = copy_string_kernel(argv[argc], bprm);
659                 if (ret < 0)
660                         return ret;
661                 if (fatal_signal_pending(current))
662                         return -ERESTARTNOHAND;
663                 cond_resched();
664         }
665         return 0;
666 }
667
668 #ifdef CONFIG_MMU
669
670 /*
671  * During bprm_mm_init(), we create a temporary stack at STACK_TOP_MAX.  Once
672  * the binfmt code determines where the new stack should reside, we shift it to
673  * its final location.  The process proceeds as follows:
674  *
675  * 1) Use shift to calculate the new vma endpoints.
676  * 2) Extend vma to cover both the old and new ranges.  This ensures the
677  *    arguments passed to subsequent functions are consistent.
678  * 3) Move vma's page tables to the new range.
679  * 4) Free up any cleared pgd range.
680  * 5) Shrink the vma to cover only the new range.
681  */
682 static int shift_arg_pages(struct vm_area_struct *vma, unsigned long shift)
683 {
684         struct mm_struct *mm = vma->vm_mm;
685         unsigned long old_start = vma->vm_start;
686         unsigned long old_end = vma->vm_end;
687         unsigned long length = old_end - old_start;
688         unsigned long new_start = old_start - shift;
689         unsigned long new_end = old_end - shift;
690         struct mmu_gather tlb;
691
692         BUG_ON(new_start > new_end);
693
694         /*
695          * ensure there are no vmas between where we want to go
696          * and where we are
697          */
698         if (vma != find_vma(mm, new_start))
699                 return -EFAULT;
700
701         /*
702          * cover the whole range: [new_start, old_end)
703          */
704         if (vma_adjust(vma, new_start, old_end, vma->vm_pgoff, NULL))
705                 return -ENOMEM;
706
707         /*
708          * move the page tables downwards, on failure we rely on
709          * process cleanup to remove whatever mess we made.
710          */
711         if (length != move_page_tables(vma, old_start,
712                                        vma, new_start, length, false))
713                 return -ENOMEM;
714
715         lru_add_drain();
716         tlb_gather_mmu(&tlb, mm);
717         if (new_end > old_start) {
718                 /*
719                  * when the old and new regions overlap clear from new_end.
720                  */
721                 free_pgd_range(&tlb, new_end, old_end, new_end,
722                         vma->vm_next ? vma->vm_next->vm_start : USER_PGTABLES_CEILING);
723         } else {
724                 /*
725                  * otherwise, clean from old_start; this is done to not touch
726                  * the address space in [new_end, old_start) some architectures
727                  * have constraints on va-space that make this illegal (IA64) -
728                  * for the others its just a little faster.
729                  */
730                 free_pgd_range(&tlb, old_start, old_end, new_end,
731                         vma->vm_next ? vma->vm_next->vm_start : USER_PGTABLES_CEILING);
732         }
733         tlb_finish_mmu(&tlb);
734
735         /*
736          * Shrink the vma to just the new range.  Always succeeds.
737          */
738         vma_adjust(vma, new_start, new_end, vma->vm_pgoff, NULL);
739
740         return 0;
741 }
742
743 /*
744  * Finalizes the stack vm_area_struct. The flags and permissions are updated,
745  * the stack is optionally relocated, and some extra space is added.
746  */
747 int setup_arg_pages(struct linux_binprm *bprm,
748                     unsigned long stack_top,
749                     int executable_stack)
750 {
751         unsigned long ret;
752         unsigned long stack_shift;
753         struct mm_struct *mm = current->mm;
754         struct vm_area_struct *vma = bprm->vma;
755         struct vm_area_struct *prev = NULL;
756         unsigned long vm_flags;
757         unsigned long stack_base;
758         unsigned long stack_size;
759         unsigned long stack_expand;
760         unsigned long rlim_stack;
761         struct mmu_gather tlb;
762
763 #ifdef CONFIG_STACK_GROWSUP
764         /* Limit stack size */
765         stack_base = bprm->rlim_stack.rlim_max;
766
767         stack_base = calc_max_stack_size(stack_base);
768
769         /* Add space for stack randomization. */
770         stack_base += (STACK_RND_MASK << PAGE_SHIFT);
771
772         /* Make sure we didn't let the argument array grow too large. */
773         if (vma->vm_end - vma->vm_start > stack_base)
774                 return -ENOMEM;
775
776         stack_base = PAGE_ALIGN(stack_top - stack_base);
777
778         stack_shift = vma->vm_start - stack_base;
779         mm->arg_start = bprm->p - stack_shift;
780         bprm->p = vma->vm_end - stack_shift;
781 #else
782         stack_top = arch_align_stack(stack_top);
783         stack_top = PAGE_ALIGN(stack_top);
784
785         if (unlikely(stack_top < mmap_min_addr) ||
786             unlikely(vma->vm_end - vma->vm_start >= stack_top - mmap_min_addr))
787                 return -ENOMEM;
788
789         stack_shift = vma->vm_end - stack_top;
790
791         bprm->p -= stack_shift;
792         mm->arg_start = bprm->p;
793 #endif
794
795         if (bprm->loader)
796                 bprm->loader -= stack_shift;
797         bprm->exec -= stack_shift;
798
799         if (mmap_write_lock_killable(mm))
800                 return -EINTR;
801
802         vm_flags = VM_STACK_FLAGS;
803
804         /*
805          * Adjust stack execute permissions; explicitly enable for
806          * EXSTACK_ENABLE_X, disable for EXSTACK_DISABLE_X and leave alone
807          * (arch default) otherwise.
808          */
809         if (unlikely(executable_stack == EXSTACK_ENABLE_X))
810                 vm_flags |= VM_EXEC;
811         else if (executable_stack == EXSTACK_DISABLE_X)
812                 vm_flags &= ~VM_EXEC;
813         vm_flags |= mm->def_flags;
814         vm_flags |= VM_STACK_INCOMPLETE_SETUP;
815
816         tlb_gather_mmu(&tlb, mm);
817         ret = mprotect_fixup(&tlb, vma, &prev, vma->vm_start, vma->vm_end,
818                         vm_flags);
819         tlb_finish_mmu(&tlb);
820
821         if (ret)
822                 goto out_unlock;
823         BUG_ON(prev != vma);
824
825         if (unlikely(vm_flags & VM_EXEC)) {
826                 pr_warn_once("process '%pD4' started with executable stack\n",
827                              bprm->file);
828         }
829
830         /* Move stack pages down in memory. */
831         if (stack_shift) {
832                 ret = shift_arg_pages(vma, stack_shift);
833                 if (ret)
834                         goto out_unlock;
835         }
836
837         /* mprotect_fixup is overkill to remove the temporary stack flags */
838         vma->vm_flags &= ~VM_STACK_INCOMPLETE_SETUP;
839
840         stack_expand = 131072UL; /* randomly 32*4k (or 2*64k) pages */
841         stack_size = vma->vm_end - vma->vm_start;
842         /*
843          * Align this down to a page boundary as expand_stack
844          * will align it up.
845          */
846         rlim_stack = bprm->rlim_stack.rlim_cur & PAGE_MASK;
847 #ifdef CONFIG_STACK_GROWSUP
848         if (stack_size + stack_expand > rlim_stack)
849                 stack_base = vma->vm_start + rlim_stack;
850         else
851                 stack_base = vma->vm_end + stack_expand;
852 #else
853         if (stack_size + stack_expand > rlim_stack)
854                 stack_base = vma->vm_end - rlim_stack;
855         else
856                 stack_base = vma->vm_start - stack_expand;
857 #endif
858         current->mm->start_stack = bprm->p;
859         ret = expand_stack(vma, stack_base);
860         if (ret)
861                 ret = -EFAULT;
862
863 out_unlock:
864         mmap_write_unlock(mm);
865         return ret;
866 }
867 EXPORT_SYMBOL(setup_arg_pages);
868
869 #else
870
871 /*
872  * Transfer the program arguments and environment from the holding pages
873  * onto the stack. The provided stack pointer is adjusted accordingly.
874  */
875 int transfer_args_to_stack(struct linux_binprm *bprm,
876                            unsigned long *sp_location)
877 {
878         unsigned long index, stop, sp;
879         int ret = 0;
880
881         stop = bprm->p >> PAGE_SHIFT;
882         sp = *sp_location;
883
884         for (index = MAX_ARG_PAGES - 1; index >= stop; index--) {
885                 unsigned int offset = index == stop ? bprm->p & ~PAGE_MASK : 0;
886                 char *src = kmap(bprm->page[index]) + offset;
887                 sp -= PAGE_SIZE - offset;
888                 if (copy_to_user((void *) sp, src, PAGE_SIZE - offset) != 0)
889                         ret = -EFAULT;
890                 kunmap(bprm->page[index]);
891                 if (ret)
892                         goto out;
893         }
894
895         *sp_location = sp;
896
897 out:
898         return ret;
899 }
900 EXPORT_SYMBOL(transfer_args_to_stack);
901
902 #endif /* CONFIG_MMU */
903
904 static struct file *do_open_execat(int fd, struct filename *name, int flags)
905 {
906         struct file *file;
907         int err;
908         struct open_flags open_exec_flags = {
909                 .open_flag = O_LARGEFILE | O_RDONLY | __FMODE_EXEC,
910                 .acc_mode = MAY_EXEC,
911                 .intent = LOOKUP_OPEN,
912                 .lookup_flags = LOOKUP_FOLLOW,
913         };
914
915         if ((flags & ~(AT_SYMLINK_NOFOLLOW | AT_EMPTY_PATH)) != 0)
916                 return ERR_PTR(-EINVAL);
917         if (flags & AT_SYMLINK_NOFOLLOW)
918                 open_exec_flags.lookup_flags &= ~LOOKUP_FOLLOW;
919         if (flags & AT_EMPTY_PATH)
920                 open_exec_flags.lookup_flags |= LOOKUP_EMPTY;
921
922         file = do_filp_open(fd, name, &open_exec_flags);
923         if (IS_ERR(file))
924                 goto out;
925
926         /*
927          * may_open() has already checked for this, so it should be
928          * impossible to trip now. But we need to be extra cautious
929          * and check again at the very end too.
930          */
931         err = -EACCES;
932         if (WARN_ON_ONCE(!S_ISREG(file_inode(file)->i_mode) ||
933                          path_noexec(&file->f_path)))
934                 goto exit;
935
936         err = deny_write_access(file);
937         if (err)
938                 goto exit;
939
940         if (name->name[0] != '\0')
941                 fsnotify_open(file);
942
943 out:
944         return file;
945
946 exit:
947         fput(file);
948         return ERR_PTR(err);
949 }
950
951 struct file *open_exec(const char *name)
952 {
953         struct filename *filename = getname_kernel(name);
954         struct file *f = ERR_CAST(filename);
955
956         if (!IS_ERR(filename)) {
957                 f = do_open_execat(AT_FDCWD, filename, 0);
958                 putname(filename);
959         }
960         return f;
961 }
962 EXPORT_SYMBOL(open_exec);
963
964 #if defined(CONFIG_HAVE_AOUT) || defined(CONFIG_BINFMT_FLAT) || \
965     defined(CONFIG_BINFMT_ELF_FDPIC)
966 ssize_t read_code(struct file *file, unsigned long addr, loff_t pos, size_t len)
967 {
968         ssize_t res = vfs_read(file, (void __user *)addr, len, &pos);
969         if (res > 0)
970                 flush_icache_user_range(addr, addr + len);
971         return res;
972 }
973 EXPORT_SYMBOL(read_code);
974 #endif
975
976 /*
977  * Maps the mm_struct mm into the current task struct.
978  * On success, this function returns with exec_update_lock
979  * held for writing.
980  */
981 static int exec_mmap(struct mm_struct *mm)
982 {
983         struct task_struct *tsk;
984         struct mm_struct *old_mm, *active_mm;
985         int ret;
986
987         /* Notify parent that we're no longer interested in the old VM */
988         tsk = current;
989         old_mm = current->mm;
990         exec_mm_release(tsk, old_mm);
991         if (old_mm)
992                 sync_mm_rss(old_mm);
993
994         ret = down_write_killable(&tsk->signal->exec_update_lock);
995         if (ret)
996                 return ret;
997
998         if (old_mm) {
999                 /*
1000                  * If there is a pending fatal signal perhaps a signal
1001                  * whose default action is to create a coredump get
1002                  * out and die instead of going through with the exec.
1003                  */
1004                 ret = mmap_read_lock_killable(old_mm);
1005                 if (ret) {
1006                         up_write(&tsk->signal->exec_update_lock);
1007                         return ret;
1008                 }
1009         }
1010
1011         task_lock(tsk);
1012         membarrier_exec_mmap(mm);
1013
1014         local_irq_disable();
1015         active_mm = tsk->active_mm;
1016         tsk->active_mm = mm;
1017         tsk->mm = mm;
1018         /*
1019          * This prevents preemption while active_mm is being loaded and
1020          * it and mm are being updated, which could cause problems for
1021          * lazy tlb mm refcounting when these are updated by context
1022          * switches. Not all architectures can handle irqs off over
1023          * activate_mm yet.
1024          */
1025         if (!IS_ENABLED(CONFIG_ARCH_WANT_IRQS_OFF_ACTIVATE_MM))
1026                 local_irq_enable();
1027         activate_mm(active_mm, mm);
1028         if (IS_ENABLED(CONFIG_ARCH_WANT_IRQS_OFF_ACTIVATE_MM))
1029                 local_irq_enable();
1030         tsk->mm->vmacache_seqnum = 0;
1031         vmacache_flush(tsk);
1032         task_unlock(tsk);
1033         if (old_mm) {
1034                 mmap_read_unlock(old_mm);
1035                 BUG_ON(active_mm != old_mm);
1036                 setmax_mm_hiwater_rss(&tsk->signal->maxrss, old_mm);
1037                 mm_update_next_owner(old_mm);
1038                 mmput(old_mm);
1039                 return 0;
1040         }
1041         mmdrop(active_mm);
1042         return 0;
1043 }
1044
1045 static int de_thread(struct task_struct *tsk)
1046 {
1047         struct signal_struct *sig = tsk->signal;
1048         struct sighand_struct *oldsighand = tsk->sighand;
1049         spinlock_t *lock = &oldsighand->siglock;
1050
1051         if (thread_group_empty(tsk))
1052                 goto no_thread_group;
1053
1054         /*
1055          * Kill all other threads in the thread group.
1056          */
1057         spin_lock_irq(lock);
1058         if ((sig->flags & SIGNAL_GROUP_EXIT) || sig->group_exec_task) {
1059                 /*
1060                  * Another group action in progress, just
1061                  * return so that the signal is processed.
1062                  */
1063                 spin_unlock_irq(lock);
1064                 return -EAGAIN;
1065         }
1066
1067         sig->group_exec_task = tsk;
1068         sig->notify_count = zap_other_threads(tsk);
1069         if (!thread_group_leader(tsk))
1070                 sig->notify_count--;
1071
1072         while (sig->notify_count) {
1073                 __set_current_state(TASK_KILLABLE);
1074                 spin_unlock_irq(lock);
1075                 schedule();
1076                 if (__fatal_signal_pending(tsk))
1077                         goto killed;
1078                 spin_lock_irq(lock);
1079         }
1080         spin_unlock_irq(lock);
1081
1082         /*
1083          * At this point all other threads have exited, all we have to
1084          * do is to wait for the thread group leader to become inactive,
1085          * and to assume its PID:
1086          */
1087         if (!thread_group_leader(tsk)) {
1088                 struct task_struct *leader = tsk->group_leader;
1089
1090                 for (;;) {
1091                         cgroup_threadgroup_change_begin(tsk);
1092                         write_lock_irq(&tasklist_lock);
1093                         /*
1094                          * Do this under tasklist_lock to ensure that
1095                          * exit_notify() can't miss ->group_exec_task
1096                          */
1097                         sig->notify_count = -1;
1098                         if (likely(leader->exit_state))
1099                                 break;
1100                         __set_current_state(TASK_KILLABLE);
1101                         write_unlock_irq(&tasklist_lock);
1102                         cgroup_threadgroup_change_end(tsk);
1103                         schedule();
1104                         if (__fatal_signal_pending(tsk))
1105                                 goto killed;
1106                 }
1107
1108                 /*
1109                  * The only record we have of the real-time age of a
1110                  * process, regardless of execs it's done, is start_time.
1111                  * All the past CPU time is accumulated in signal_struct
1112                  * from sister threads now dead.  But in this non-leader
1113                  * exec, nothing survives from the original leader thread,
1114                  * whose birth marks the true age of this process now.
1115                  * When we take on its identity by switching to its PID, we
1116                  * also take its birthdate (always earlier than our own).
1117                  */
1118                 tsk->start_time = leader->start_time;
1119                 tsk->start_boottime = leader->start_boottime;
1120
1121                 BUG_ON(!same_thread_group(leader, tsk));
1122                 /*
1123                  * An exec() starts a new thread group with the
1124                  * TGID of the previous thread group. Rehash the
1125                  * two threads with a switched PID, and release
1126                  * the former thread group leader:
1127                  */
1128
1129                 /* Become a process group leader with the old leader's pid.
1130                  * The old leader becomes a thread of the this thread group.
1131                  */
1132                 exchange_tids(tsk, leader);
1133                 transfer_pid(leader, tsk, PIDTYPE_TGID);
1134                 transfer_pid(leader, tsk, PIDTYPE_PGID);
1135                 transfer_pid(leader, tsk, PIDTYPE_SID);
1136
1137                 list_replace_rcu(&leader->tasks, &tsk->tasks);
1138                 list_replace_init(&leader->sibling, &tsk->sibling);
1139
1140                 tsk->group_leader = tsk;
1141                 leader->group_leader = tsk;
1142
1143                 tsk->exit_signal = SIGCHLD;
1144                 leader->exit_signal = -1;
1145
1146                 BUG_ON(leader->exit_state != EXIT_ZOMBIE);
1147                 leader->exit_state = EXIT_DEAD;
1148
1149                 /*
1150                  * We are going to release_task()->ptrace_unlink() silently,
1151                  * the tracer can sleep in do_wait(). EXIT_DEAD guarantees
1152                  * the tracer wont't block again waiting for this thread.
1153                  */
1154                 if (unlikely(leader->ptrace))
1155                         __wake_up_parent(leader, leader->parent);
1156                 write_unlock_irq(&tasklist_lock);
1157                 cgroup_threadgroup_change_end(tsk);
1158
1159                 release_task(leader);
1160         }
1161
1162         sig->group_exec_task = NULL;
1163         sig->notify_count = 0;
1164
1165 no_thread_group:
1166         /* we have changed execution domain */
1167         tsk->exit_signal = SIGCHLD;
1168
1169         BUG_ON(!thread_group_leader(tsk));
1170         return 0;
1171
1172 killed:
1173         /* protects against exit_notify() and __exit_signal() */
1174         read_lock(&tasklist_lock);
1175         sig->group_exec_task = NULL;
1176         sig->notify_count = 0;
1177         read_unlock(&tasklist_lock);
1178         return -EAGAIN;
1179 }
1180
1181
1182 /*
1183  * This function makes sure the current process has its own signal table,
1184  * so that flush_signal_handlers can later reset the handlers without
1185  * disturbing other processes.  (Other processes might share the signal
1186  * table via the CLONE_SIGHAND option to clone().)
1187  */
1188 static int unshare_sighand(struct task_struct *me)
1189 {
1190         struct sighand_struct *oldsighand = me->sighand;
1191
1192         if (refcount_read(&oldsighand->count) != 1) {
1193                 struct sighand_struct *newsighand;
1194                 /*
1195                  * This ->sighand is shared with the CLONE_SIGHAND
1196                  * but not CLONE_THREAD task, switch to the new one.
1197                  */
1198                 newsighand = kmem_cache_alloc(sighand_cachep, GFP_KERNEL);
1199                 if (!newsighand)
1200                         return -ENOMEM;
1201
1202                 refcount_set(&newsighand->count, 1);
1203                 memcpy(newsighand->action, oldsighand->action,
1204                        sizeof(newsighand->action));
1205
1206                 write_lock_irq(&tasklist_lock);
1207                 spin_lock(&oldsighand->siglock);
1208                 rcu_assign_pointer(me->sighand, newsighand);
1209                 spin_unlock(&oldsighand->siglock);
1210                 write_unlock_irq(&tasklist_lock);
1211
1212                 __cleanup_sighand(oldsighand);
1213         }
1214         return 0;
1215 }
1216
1217 char *__get_task_comm(char *buf, size_t buf_size, struct task_struct *tsk)
1218 {
1219         task_lock(tsk);
1220         /* Always NUL terminated and zero-padded */
1221         strscpy_pad(buf, tsk->comm, buf_size);
1222         task_unlock(tsk);
1223         return buf;
1224 }
1225 EXPORT_SYMBOL_GPL(__get_task_comm);
1226
1227 /*
1228  * These functions flushes out all traces of the currently running executable
1229  * so that a new one can be started
1230  */
1231
1232 void __set_task_comm(struct task_struct *tsk, const char *buf, bool exec)
1233 {
1234         task_lock(tsk);
1235         trace_task_rename(tsk, buf);
1236         strscpy_pad(tsk->comm, buf, sizeof(tsk->comm));
1237         task_unlock(tsk);
1238         perf_event_comm(tsk, exec);
1239 }
1240
1241 /*
1242  * Calling this is the point of no return. None of the failures will be
1243  * seen by userspace since either the process is already taking a fatal
1244  * signal (via de_thread() or coredump), or will have SEGV raised
1245  * (after exec_mmap()) by search_binary_handler (see below).
1246  */
1247 int begin_new_exec(struct linux_binprm * bprm)
1248 {
1249         struct task_struct *me = current;
1250         int retval;
1251
1252         /* Once we are committed compute the creds */
1253         retval = bprm_creds_from_file(bprm);
1254         if (retval)
1255                 return retval;
1256
1257         /*
1258          * Ensure all future errors are fatal.
1259          */
1260         bprm->point_of_no_return = true;
1261
1262         /*
1263          * Make this the only thread in the thread group.
1264          */
1265         retval = de_thread(me);
1266         if (retval)
1267                 goto out;
1268
1269         /*
1270          * Cancel any io_uring activity across execve
1271          */
1272         io_uring_task_cancel();
1273
1274         /* Ensure the files table is not shared. */
1275         retval = unshare_files();
1276         if (retval)
1277                 goto out;
1278
1279         /*
1280          * Must be called _before_ exec_mmap() as bprm->mm is
1281          * not visible until then. This also enables the update
1282          * to be lockless.
1283          */
1284         retval = set_mm_exe_file(bprm->mm, bprm->file);
1285         if (retval)
1286                 goto out;
1287
1288         /* If the binary is not readable then enforce mm->dumpable=0 */
1289         would_dump(bprm, bprm->file);
1290         if (bprm->have_execfd)
1291                 would_dump(bprm, bprm->executable);
1292
1293         /*
1294          * Release all of the old mmap stuff
1295          */
1296         acct_arg_size(bprm, 0);
1297         retval = exec_mmap(bprm->mm);
1298         if (retval)
1299                 goto out;
1300
1301         bprm->mm = NULL;
1302
1303 #ifdef CONFIG_POSIX_TIMERS
1304         exit_itimers(me->signal);
1305         flush_itimer_signals();
1306 #endif
1307
1308         /*
1309          * Make the signal table private.
1310          */
1311         retval = unshare_sighand(me);
1312         if (retval)
1313                 goto out_unlock;
1314
1315         me->flags &= ~(PF_RANDOMIZE | PF_FORKNOEXEC |
1316                                         PF_NOFREEZE | PF_NO_SETAFFINITY);
1317         flush_thread();
1318         me->personality &= ~bprm->per_clear;
1319
1320         clear_syscall_work_syscall_user_dispatch(me);
1321
1322         /*
1323          * We have to apply CLOEXEC before we change whether the process is
1324          * dumpable (in setup_new_exec) to avoid a race with a process in userspace
1325          * trying to access the should-be-closed file descriptors of a process
1326          * undergoing exec(2).
1327          */
1328         do_close_on_exec(me->files);
1329
1330         if (bprm->secureexec) {
1331                 /* Make sure parent cannot signal privileged process. */
1332                 me->pdeath_signal = 0;
1333
1334                 /*
1335                  * For secureexec, reset the stack limit to sane default to
1336                  * avoid bad behavior from the prior rlimits. This has to
1337                  * happen before arch_pick_mmap_layout(), which examines
1338                  * RLIMIT_STACK, but after the point of no return to avoid
1339                  * needing to clean up the change on failure.
1340                  */
1341                 if (bprm->rlim_stack.rlim_cur > _STK_LIM)
1342                         bprm->rlim_stack.rlim_cur = _STK_LIM;
1343         }
1344
1345         me->sas_ss_sp = me->sas_ss_size = 0;
1346
1347         /*
1348          * Figure out dumpability. Note that this checking only of current
1349          * is wrong, but userspace depends on it. This should be testing
1350          * bprm->secureexec instead.
1351          */
1352         if (bprm->interp_flags & BINPRM_FLAGS_ENFORCE_NONDUMP ||
1353             !(uid_eq(current_euid(), current_uid()) &&
1354               gid_eq(current_egid(), current_gid())))
1355                 set_dumpable(current->mm, suid_dumpable);
1356         else
1357                 set_dumpable(current->mm, SUID_DUMP_USER);
1358
1359         perf_event_exec();
1360         __set_task_comm(me, kbasename(bprm->filename), true);
1361
1362         /* An exec changes our domain. We are no longer part of the thread
1363            group */
1364         WRITE_ONCE(me->self_exec_id, me->self_exec_id + 1);
1365         flush_signal_handlers(me, 0);
1366
1367         retval = set_cred_ucounts(bprm->cred);
1368         if (retval < 0)
1369                 goto out_unlock;
1370
1371         /*
1372          * install the new credentials for this executable
1373          */
1374         security_bprm_committing_creds(bprm);
1375
1376         commit_creds(bprm->cred);
1377         bprm->cred = NULL;
1378
1379         /*
1380          * Disable monitoring for regular users
1381          * when executing setuid binaries. Must
1382          * wait until new credentials are committed
1383          * by commit_creds() above
1384          */
1385         if (get_dumpable(me->mm) != SUID_DUMP_USER)
1386                 perf_event_exit_task(me);
1387         /*
1388          * cred_guard_mutex must be held at least to this point to prevent
1389          * ptrace_attach() from altering our determination of the task's
1390          * credentials; any time after this it may be unlocked.
1391          */
1392         security_bprm_committed_creds(bprm);
1393
1394         /* Pass the opened binary to the interpreter. */
1395         if (bprm->have_execfd) {
1396                 retval = get_unused_fd_flags(0);
1397                 if (retval < 0)
1398                         goto out_unlock;
1399                 fd_install(retval, bprm->executable);
1400                 bprm->executable = NULL;
1401                 bprm->execfd = retval;
1402         }
1403         return 0;
1404
1405 out_unlock:
1406         up_write(&me->signal->exec_update_lock);
1407 out:
1408         return retval;
1409 }
1410 EXPORT_SYMBOL(begin_new_exec);
1411
1412 void would_dump(struct linux_binprm *bprm, struct file *file)
1413 {
1414         struct inode *inode = file_inode(file);
1415         struct user_namespace *mnt_userns = file_mnt_user_ns(file);
1416         if (inode_permission(mnt_userns, inode, MAY_READ) < 0) {
1417                 struct user_namespace *old, *user_ns;
1418                 bprm->interp_flags |= BINPRM_FLAGS_ENFORCE_NONDUMP;
1419
1420                 /* Ensure mm->user_ns contains the executable */
1421                 user_ns = old = bprm->mm->user_ns;
1422                 while ((user_ns != &init_user_ns) &&
1423                        !privileged_wrt_inode_uidgid(user_ns, mnt_userns, inode))
1424                         user_ns = user_ns->parent;
1425
1426                 if (old != user_ns) {
1427                         bprm->mm->user_ns = get_user_ns(user_ns);
1428                         put_user_ns(old);
1429                 }
1430         }
1431 }
1432 EXPORT_SYMBOL(would_dump);
1433
1434 void setup_new_exec(struct linux_binprm * bprm)
1435 {
1436         /* Setup things that can depend upon the personality */
1437         struct task_struct *me = current;
1438
1439         arch_pick_mmap_layout(me->mm, &bprm->rlim_stack);
1440
1441         arch_setup_new_exec();
1442
1443         /* Set the new mm task size. We have to do that late because it may
1444          * depend on TIF_32BIT which is only updated in flush_thread() on
1445          * some architectures like powerpc
1446          */
1447         me->mm->task_size = TASK_SIZE;
1448         up_write(&me->signal->exec_update_lock);
1449         mutex_unlock(&me->signal->cred_guard_mutex);
1450 }
1451 EXPORT_SYMBOL(setup_new_exec);
1452
1453 /* Runs immediately before start_thread() takes over. */
1454 void finalize_exec(struct linux_binprm *bprm)
1455 {
1456         /* Store any stack rlimit changes before starting thread. */
1457         task_lock(current->group_leader);
1458         current->signal->rlim[RLIMIT_STACK] = bprm->rlim_stack;
1459         task_unlock(current->group_leader);
1460 }
1461 EXPORT_SYMBOL(finalize_exec);
1462
1463 /*
1464  * Prepare credentials and lock ->cred_guard_mutex.
1465  * setup_new_exec() commits the new creds and drops the lock.
1466  * Or, if exec fails before, free_bprm() should release ->cred
1467  * and unlock.
1468  */
1469 static int prepare_bprm_creds(struct linux_binprm *bprm)
1470 {
1471         if (mutex_lock_interruptible(&current->signal->cred_guard_mutex))
1472                 return -ERESTARTNOINTR;
1473
1474         bprm->cred = prepare_exec_creds();
1475         if (likely(bprm->cred))
1476                 return 0;
1477
1478         mutex_unlock(&current->signal->cred_guard_mutex);
1479         return -ENOMEM;
1480 }
1481
1482 static void free_bprm(struct linux_binprm *bprm)
1483 {
1484         if (bprm->mm) {
1485                 acct_arg_size(bprm, 0);
1486                 mmput(bprm->mm);
1487         }
1488         free_arg_pages(bprm);
1489         if (bprm->cred) {
1490                 mutex_unlock(&current->signal->cred_guard_mutex);
1491                 abort_creds(bprm->cred);
1492         }
1493         if (bprm->file) {
1494                 allow_write_access(bprm->file);
1495                 fput(bprm->file);
1496         }
1497         if (bprm->executable)
1498                 fput(bprm->executable);
1499         /* If a binfmt changed the interp, free it. */
1500         if (bprm->interp != bprm->filename)
1501                 kfree(bprm->interp);
1502         kfree(bprm->fdpath);
1503         kfree(bprm);
1504 }
1505
1506 static struct linux_binprm *alloc_bprm(int fd, struct filename *filename)
1507 {
1508         struct linux_binprm *bprm = kzalloc(sizeof(*bprm), GFP_KERNEL);
1509         int retval = -ENOMEM;
1510         if (!bprm)
1511                 goto out;
1512
1513         if (fd == AT_FDCWD || filename->name[0] == '/') {
1514                 bprm->filename = filename->name;
1515         } else {
1516                 if (filename->name[0] == '\0')
1517                         bprm->fdpath = kasprintf(GFP_KERNEL, "/dev/fd/%d", fd);
1518                 else
1519                         bprm->fdpath = kasprintf(GFP_KERNEL, "/dev/fd/%d/%s",
1520                                                   fd, filename->name);
1521                 if (!bprm->fdpath)
1522                         goto out_free;
1523
1524                 bprm->filename = bprm->fdpath;
1525         }
1526         bprm->interp = bprm->filename;
1527
1528         retval = bprm_mm_init(bprm);
1529         if (retval)
1530                 goto out_free;
1531         return bprm;
1532
1533 out_free:
1534         free_bprm(bprm);
1535 out:
1536         return ERR_PTR(retval);
1537 }
1538
1539 int bprm_change_interp(const char *interp, struct linux_binprm *bprm)
1540 {
1541         /* If a binfmt changed the interp, free it first. */
1542         if (bprm->interp != bprm->filename)
1543                 kfree(bprm->interp);
1544         bprm->interp = kstrdup(interp, GFP_KERNEL);
1545         if (!bprm->interp)
1546                 return -ENOMEM;
1547         return 0;
1548 }
1549 EXPORT_SYMBOL(bprm_change_interp);
1550
1551 /*
1552  * determine how safe it is to execute the proposed program
1553  * - the caller must hold ->cred_guard_mutex to protect against
1554  *   PTRACE_ATTACH or seccomp thread-sync
1555  */
1556 static void check_unsafe_exec(struct linux_binprm *bprm)
1557 {
1558         struct task_struct *p = current, *t;
1559         unsigned n_fs;
1560
1561         if (p->ptrace)
1562                 bprm->unsafe |= LSM_UNSAFE_PTRACE;
1563
1564         /*
1565          * This isn't strictly necessary, but it makes it harder for LSMs to
1566          * mess up.
1567          */
1568         if (task_no_new_privs(current))
1569                 bprm->unsafe |= LSM_UNSAFE_NO_NEW_PRIVS;
1570
1571         t = p;
1572         n_fs = 1;
1573         spin_lock(&p->fs->lock);
1574         rcu_read_lock();
1575         while_each_thread(p, t) {
1576                 if (t->fs == p->fs)
1577                         n_fs++;
1578         }
1579         rcu_read_unlock();
1580
1581         if (p->fs->users > n_fs)
1582                 bprm->unsafe |= LSM_UNSAFE_SHARE;
1583         else
1584                 p->fs->in_exec = 1;
1585         spin_unlock(&p->fs->lock);
1586 }
1587
1588 static void bprm_fill_uid(struct linux_binprm *bprm, struct file *file)
1589 {
1590         /* Handle suid and sgid on files */
1591         struct user_namespace *mnt_userns;
1592         struct inode *inode;
1593         unsigned int mode;
1594         kuid_t uid;
1595         kgid_t gid;
1596
1597         if (!mnt_may_suid(file->f_path.mnt))
1598                 return;
1599
1600         if (task_no_new_privs(current))
1601                 return;
1602
1603         inode = file->f_path.dentry->d_inode;
1604         mode = READ_ONCE(inode->i_mode);
1605         if (!(mode & (S_ISUID|S_ISGID)))
1606                 return;
1607
1608         mnt_userns = file_mnt_user_ns(file);
1609
1610         /* Be careful if suid/sgid is set */
1611         inode_lock(inode);
1612
1613         /* reload atomically mode/uid/gid now that lock held */
1614         mode = inode->i_mode;
1615         uid = i_uid_into_mnt(mnt_userns, inode);
1616         gid = i_gid_into_mnt(mnt_userns, inode);
1617         inode_unlock(inode);
1618
1619         /* We ignore suid/sgid if there are no mappings for them in the ns */
1620         if (!kuid_has_mapping(bprm->cred->user_ns, uid) ||
1621                  !kgid_has_mapping(bprm->cred->user_ns, gid))
1622                 return;
1623
1624         if (mode & S_ISUID) {
1625                 bprm->per_clear |= PER_CLEAR_ON_SETID;
1626                 bprm->cred->euid = uid;
1627         }
1628
1629         if ((mode & (S_ISGID | S_IXGRP)) == (S_ISGID | S_IXGRP)) {
1630                 bprm->per_clear |= PER_CLEAR_ON_SETID;
1631                 bprm->cred->egid = gid;
1632         }
1633 }
1634
1635 /*
1636  * Compute brpm->cred based upon the final binary.
1637  */
1638 static int bprm_creds_from_file(struct linux_binprm *bprm)
1639 {
1640         /* Compute creds based on which file? */
1641         struct file *file = bprm->execfd_creds ? bprm->executable : bprm->file;
1642
1643         bprm_fill_uid(bprm, file);
1644         return security_bprm_creds_from_file(bprm, file);
1645 }
1646
1647 /*
1648  * Fill the binprm structure from the inode.
1649  * Read the first BINPRM_BUF_SIZE bytes
1650  *
1651  * This may be called multiple times for binary chains (scripts for example).
1652  */
1653 static int prepare_binprm(struct linux_binprm *bprm)
1654 {
1655         loff_t pos = 0;
1656
1657         memset(bprm->buf, 0, BINPRM_BUF_SIZE);
1658         return kernel_read(bprm->file, bprm->buf, BINPRM_BUF_SIZE, &pos);
1659 }
1660
1661 /*
1662  * Arguments are '\0' separated strings found at the location bprm->p
1663  * points to; chop off the first by relocating brpm->p to right after
1664  * the first '\0' encountered.
1665  */
1666 int remove_arg_zero(struct linux_binprm *bprm)
1667 {
1668         int ret = 0;
1669         unsigned long offset;
1670         char *kaddr;
1671         struct page *page;
1672
1673         if (!bprm->argc)
1674                 return 0;
1675
1676         do {
1677                 offset = bprm->p & ~PAGE_MASK;
1678                 page = get_arg_page(bprm, bprm->p, 0);
1679                 if (!page) {
1680                         ret = -EFAULT;
1681                         goto out;
1682                 }
1683                 kaddr = kmap_atomic(page);
1684
1685                 for (; offset < PAGE_SIZE && kaddr[offset];
1686                                 offset++, bprm->p++)
1687                         ;
1688
1689                 kunmap_atomic(kaddr);
1690                 put_arg_page(page);
1691         } while (offset == PAGE_SIZE);
1692
1693         bprm->p++;
1694         bprm->argc--;
1695         ret = 0;
1696
1697 out:
1698         return ret;
1699 }
1700 EXPORT_SYMBOL(remove_arg_zero);
1701
1702 #define printable(c) (((c)=='\t') || ((c)=='\n') || (0x20<=(c) && (c)<=0x7e))
1703 /*
1704  * cycle the list of binary formats handler, until one recognizes the image
1705  */
1706 static int search_binary_handler(struct linux_binprm *bprm)
1707 {
1708         bool need_retry = IS_ENABLED(CONFIG_MODULES);
1709         struct linux_binfmt *fmt;
1710         int retval;
1711
1712         retval = prepare_binprm(bprm);
1713         if (retval < 0)
1714                 return retval;
1715
1716         retval = security_bprm_check(bprm);
1717         if (retval)
1718                 return retval;
1719
1720         retval = -ENOENT;
1721  retry:
1722         read_lock(&binfmt_lock);
1723         list_for_each_entry(fmt, &formats, lh) {
1724                 if (!try_module_get(fmt->module))
1725                         continue;
1726                 read_unlock(&binfmt_lock);
1727
1728                 retval = fmt->load_binary(bprm);
1729
1730                 read_lock(&binfmt_lock);
1731                 put_binfmt(fmt);
1732                 if (bprm->point_of_no_return || (retval != -ENOEXEC)) {
1733                         read_unlock(&binfmt_lock);
1734                         return retval;
1735                 }
1736         }
1737         read_unlock(&binfmt_lock);
1738
1739         if (need_retry) {
1740                 if (printable(bprm->buf[0]) && printable(bprm->buf[1]) &&
1741                     printable(bprm->buf[2]) && printable(bprm->buf[3]))
1742                         return retval;
1743                 if (request_module("binfmt-%04x", *(ushort *)(bprm->buf + 2)) < 0)
1744                         return retval;
1745                 need_retry = false;
1746                 goto retry;
1747         }
1748
1749         return retval;
1750 }
1751
1752 static int exec_binprm(struct linux_binprm *bprm)
1753 {
1754         pid_t old_pid, old_vpid;
1755         int ret, depth;
1756
1757         /* Need to fetch pid before load_binary changes it */
1758         old_pid = current->pid;
1759         rcu_read_lock();
1760         old_vpid = task_pid_nr_ns(current, task_active_pid_ns(current->parent));
1761         rcu_read_unlock();
1762
1763         /* This allows 4 levels of binfmt rewrites before failing hard. */
1764         for (depth = 0;; depth++) {
1765                 struct file *exec;
1766                 if (depth > 5)
1767                         return -ELOOP;
1768
1769                 ret = search_binary_handler(bprm);
1770                 if (ret < 0)
1771                         return ret;
1772                 if (!bprm->interpreter)
1773                         break;
1774
1775                 exec = bprm->file;
1776                 bprm->file = bprm->interpreter;
1777                 bprm->interpreter = NULL;
1778
1779                 allow_write_access(exec);
1780                 if (unlikely(bprm->have_execfd)) {
1781                         if (bprm->executable) {
1782                                 fput(exec);
1783                                 return -ENOEXEC;
1784                         }
1785                         bprm->executable = exec;
1786                 } else
1787                         fput(exec);
1788         }
1789
1790         audit_bprm(bprm);
1791         trace_sched_process_exec(current, old_pid, bprm);
1792         ptrace_event(PTRACE_EVENT_EXEC, old_vpid);
1793         proc_exec_connector(current);
1794         return 0;
1795 }
1796
1797 /*
1798  * sys_execve() executes a new program.
1799  */
1800 static int bprm_execve(struct linux_binprm *bprm,
1801                        int fd, struct filename *filename, int flags)
1802 {
1803         struct file *file;
1804         int retval;
1805
1806         retval = prepare_bprm_creds(bprm);
1807         if (retval)
1808                 return retval;
1809
1810         check_unsafe_exec(bprm);
1811         current->in_execve = 1;
1812
1813         file = do_open_execat(fd, filename, flags);
1814         retval = PTR_ERR(file);
1815         if (IS_ERR(file))
1816                 goto out_unmark;
1817
1818         sched_exec();
1819
1820         bprm->file = file;
1821         /*
1822          * Record that a name derived from an O_CLOEXEC fd will be
1823          * inaccessible after exec.  This allows the code in exec to
1824          * choose to fail when the executable is not mmaped into the
1825          * interpreter and an open file descriptor is not passed to
1826          * the interpreter.  This makes for a better user experience
1827          * than having the interpreter start and then immediately fail
1828          * when it finds the executable is inaccessible.
1829          */
1830         if (bprm->fdpath && get_close_on_exec(fd))
1831                 bprm->interp_flags |= BINPRM_FLAGS_PATH_INACCESSIBLE;
1832
1833         /* Set the unchanging part of bprm->cred */
1834         retval = security_bprm_creds_for_exec(bprm);
1835         if (retval)
1836                 goto out;
1837
1838         retval = exec_binprm(bprm);
1839         if (retval < 0)
1840                 goto out;
1841
1842         /* execve succeeded */
1843         current->fs->in_exec = 0;
1844         current->in_execve = 0;
1845         rseq_execve(current);
1846         acct_update_integrals(current);
1847         task_numa_free(current, false);
1848         return retval;
1849
1850 out:
1851         /*
1852          * If past the point of no return ensure the code never
1853          * returns to the userspace process.  Use an existing fatal
1854          * signal if present otherwise terminate the process with
1855          * SIGSEGV.
1856          */
1857         if (bprm->point_of_no_return && !fatal_signal_pending(current))
1858                 force_fatal_sig(SIGSEGV);
1859
1860 out_unmark:
1861         current->fs->in_exec = 0;
1862         current->in_execve = 0;
1863
1864         return retval;
1865 }
1866
1867 static int do_execveat_common(int fd, struct filename *filename,
1868                               struct user_arg_ptr argv,
1869                               struct user_arg_ptr envp,
1870                               int flags)
1871 {
1872         struct linux_binprm *bprm;
1873         int retval;
1874
1875         if (IS_ERR(filename))
1876                 return PTR_ERR(filename);
1877
1878         /*
1879          * We move the actual failure in case of RLIMIT_NPROC excess from
1880          * set*uid() to execve() because too many poorly written programs
1881          * don't check setuid() return code.  Here we additionally recheck
1882          * whether NPROC limit is still exceeded.
1883          */
1884         if ((current->flags & PF_NPROC_EXCEEDED) &&
1885             is_ucounts_overlimit(current_ucounts(), UCOUNT_RLIMIT_NPROC, rlimit(RLIMIT_NPROC))) {
1886                 retval = -EAGAIN;
1887                 goto out_ret;
1888         }
1889
1890         /* We're below the limit (still or again), so we don't want to make
1891          * further execve() calls fail. */
1892         current->flags &= ~PF_NPROC_EXCEEDED;
1893
1894         bprm = alloc_bprm(fd, filename);
1895         if (IS_ERR(bprm)) {
1896                 retval = PTR_ERR(bprm);
1897                 goto out_ret;
1898         }
1899
1900         retval = count(argv, MAX_ARG_STRINGS);
1901         if (retval == 0)
1902                 pr_warn_once("process '%s' launched '%s' with NULL argv: empty string added\n",
1903                              current->comm, bprm->filename);
1904         if (retval < 0)
1905                 goto out_free;
1906         bprm->argc = retval;
1907
1908         retval = count(envp, MAX_ARG_STRINGS);
1909         if (retval < 0)
1910                 goto out_free;
1911         bprm->envc = retval;
1912
1913         retval = bprm_stack_limits(bprm);
1914         if (retval < 0)
1915                 goto out_free;
1916
1917         retval = copy_string_kernel(bprm->filename, bprm);
1918         if (retval < 0)
1919                 goto out_free;
1920         bprm->exec = bprm->p;
1921
1922         retval = copy_strings(bprm->envc, envp, bprm);
1923         if (retval < 0)
1924                 goto out_free;
1925
1926         retval = copy_strings(bprm->argc, argv, bprm);
1927         if (retval < 0)
1928                 goto out_free;
1929
1930         /*
1931          * When argv is empty, add an empty string ("") as argv[0] to
1932          * ensure confused userspace programs that start processing
1933          * from argv[1] won't end up walking envp. See also
1934          * bprm_stack_limits().
1935          */
1936         if (bprm->argc == 0) {
1937                 retval = copy_string_kernel("", bprm);
1938                 if (retval < 0)
1939                         goto out_free;
1940                 bprm->argc = 1;
1941         }
1942
1943         retval = bprm_execve(bprm, fd, filename, flags);
1944 out_free:
1945         free_bprm(bprm);
1946
1947 out_ret:
1948         putname(filename);
1949         return retval;
1950 }
1951
1952 int kernel_execve(const char *kernel_filename,
1953                   const char *const *argv, const char *const *envp)
1954 {
1955         struct filename *filename;
1956         struct linux_binprm *bprm;
1957         int fd = AT_FDCWD;
1958         int retval;
1959
1960         /* It is non-sense for kernel threads to call execve */
1961         if (WARN_ON_ONCE(current->flags & PF_KTHREAD))
1962                 return -EINVAL;
1963
1964         filename = getname_kernel(kernel_filename);
1965         if (IS_ERR(filename))
1966                 return PTR_ERR(filename);
1967
1968         bprm = alloc_bprm(fd, filename);
1969         if (IS_ERR(bprm)) {
1970                 retval = PTR_ERR(bprm);
1971                 goto out_ret;
1972         }
1973
1974         retval = count_strings_kernel(argv);
1975         if (WARN_ON_ONCE(retval == 0))
1976                 retval = -EINVAL;
1977         if (retval < 0)
1978                 goto out_free;
1979         bprm->argc = retval;
1980
1981         retval = count_strings_kernel(envp);
1982         if (retval < 0)
1983                 goto out_free;
1984         bprm->envc = retval;
1985
1986         retval = bprm_stack_limits(bprm);
1987         if (retval < 0)
1988                 goto out_free;
1989
1990         retval = copy_string_kernel(bprm->filename, bprm);
1991         if (retval < 0)
1992                 goto out_free;
1993         bprm->exec = bprm->p;
1994
1995         retval = copy_strings_kernel(bprm->envc, envp, bprm);
1996         if (retval < 0)
1997                 goto out_free;
1998
1999         retval = copy_strings_kernel(bprm->argc, argv, bprm);
2000         if (retval < 0)
2001                 goto out_free;
2002
2003         retval = bprm_execve(bprm, fd, filename, 0);
2004 out_free:
2005         free_bprm(bprm);
2006 out_ret:
2007         putname(filename);
2008         return retval;
2009 }
2010
2011 static int do_execve(struct filename *filename,
2012         const char __user *const __user *__argv,
2013         const char __user *const __user *__envp)
2014 {
2015         struct user_arg_ptr argv = { .ptr.native = __argv };
2016         struct user_arg_ptr envp = { .ptr.native = __envp };
2017         return do_execveat_common(AT_FDCWD, filename, argv, envp, 0);
2018 }
2019
2020 static int do_execveat(int fd, struct filename *filename,
2021                 const char __user *const __user *__argv,
2022                 const char __user *const __user *__envp,
2023                 int flags)
2024 {
2025         struct user_arg_ptr argv = { .ptr.native = __argv };
2026         struct user_arg_ptr envp = { .ptr.native = __envp };
2027
2028         return do_execveat_common(fd, filename, argv, envp, flags);
2029 }
2030
2031 #ifdef CONFIG_COMPAT
2032 static int compat_do_execve(struct filename *filename,
2033         const compat_uptr_t __user *__argv,
2034         const compat_uptr_t __user *__envp)
2035 {
2036         struct user_arg_ptr argv = {
2037                 .is_compat = true,
2038                 .ptr.compat = __argv,
2039         };
2040         struct user_arg_ptr envp = {
2041                 .is_compat = true,
2042                 .ptr.compat = __envp,
2043         };
2044         return do_execveat_common(AT_FDCWD, filename, argv, envp, 0);
2045 }
2046
2047 static int compat_do_execveat(int fd, struct filename *filename,
2048                               const compat_uptr_t __user *__argv,
2049                               const compat_uptr_t __user *__envp,
2050                               int flags)
2051 {
2052         struct user_arg_ptr argv = {
2053                 .is_compat = true,
2054                 .ptr.compat = __argv,
2055         };
2056         struct user_arg_ptr envp = {
2057                 .is_compat = true,
2058                 .ptr.compat = __envp,
2059         };
2060         return do_execveat_common(fd, filename, argv, envp, flags);
2061 }
2062 #endif
2063
2064 void set_binfmt(struct linux_binfmt *new)
2065 {
2066         struct mm_struct *mm = current->mm;
2067
2068         if (mm->binfmt)
2069                 module_put(mm->binfmt->module);
2070
2071         mm->binfmt = new;
2072         if (new)
2073                 __module_get(new->module);
2074 }
2075 EXPORT_SYMBOL(set_binfmt);
2076
2077 /*
2078  * set_dumpable stores three-value SUID_DUMP_* into mm->flags.
2079  */
2080 void set_dumpable(struct mm_struct *mm, int value)
2081 {
2082         if (WARN_ON((unsigned)value > SUID_DUMP_ROOT))
2083                 return;
2084
2085         set_mask_bits(&mm->flags, MMF_DUMPABLE_MASK, value);
2086 }
2087
2088 SYSCALL_DEFINE3(execve,
2089                 const char __user *, filename,
2090                 const char __user *const __user *, argv,
2091                 const char __user *const __user *, envp)
2092 {
2093         return do_execve(getname(filename), argv, envp);
2094 }
2095
2096 SYSCALL_DEFINE5(execveat,
2097                 int, fd, const char __user *, filename,
2098                 const char __user *const __user *, argv,
2099                 const char __user *const __user *, envp,
2100                 int, flags)
2101 {
2102         return do_execveat(fd,
2103                            getname_uflags(filename, flags),
2104                            argv, envp, flags);
2105 }
2106
2107 #ifdef CONFIG_COMPAT
2108 COMPAT_SYSCALL_DEFINE3(execve, const char __user *, filename,
2109         const compat_uptr_t __user *, argv,
2110         const compat_uptr_t __user *, envp)
2111 {
2112         return compat_do_execve(getname(filename), argv, envp);
2113 }
2114
2115 COMPAT_SYSCALL_DEFINE5(execveat, int, fd,
2116                        const char __user *, filename,
2117                        const compat_uptr_t __user *, argv,
2118                        const compat_uptr_t __user *, envp,
2119                        int,  flags)
2120 {
2121         return compat_do_execveat(fd,
2122                                   getname_uflags(filename, flags),
2123                                   argv, envp, flags);
2124 }
2125 #endif
2126
2127 #ifdef CONFIG_SYSCTL
2128
2129 static int proc_dointvec_minmax_coredump(struct ctl_table *table, int write,
2130                 void *buffer, size_t *lenp, loff_t *ppos)
2131 {
2132         int error = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
2133
2134         if (!error)
2135                 validate_coredump_safety();
2136         return error;
2137 }
2138
2139 static struct ctl_table fs_exec_sysctls[] = {
2140         {
2141                 .procname       = "suid_dumpable",
2142                 .data           = &suid_dumpable,
2143                 .maxlen         = sizeof(int),
2144                 .mode           = 0644,
2145                 .proc_handler   = proc_dointvec_minmax_coredump,
2146                 .extra1         = SYSCTL_ZERO,
2147                 .extra2         = SYSCTL_TWO,
2148         },
2149         { }
2150 };
2151
2152 static int __init init_fs_exec_sysctls(void)
2153 {
2154         register_sysctl_init("fs", fs_exec_sysctls);
2155         return 0;
2156 }
2157
2158 fs_initcall(init_fs_exec_sysctls);
2159 #endif /* CONFIG_SYSCTL */