ksmbd: fix translation in smb2_populate_readdir_entry()
[linux-2.6-microblaze.git] / fs / ecryptfs / crypto.c
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * eCryptfs: Linux filesystem encryption layer
4  *
5  * Copyright (C) 1997-2004 Erez Zadok
6  * Copyright (C) 2001-2004 Stony Brook University
7  * Copyright (C) 2004-2007 International Business Machines Corp.
8  *   Author(s): Michael A. Halcrow <mahalcro@us.ibm.com>
9  *              Michael C. Thompson <mcthomps@us.ibm.com>
10  */
11
12 #include <crypto/hash.h>
13 #include <crypto/skcipher.h>
14 #include <linux/fs.h>
15 #include <linux/mount.h>
16 #include <linux/pagemap.h>
17 #include <linux/random.h>
18 #include <linux/compiler.h>
19 #include <linux/key.h>
20 #include <linux/namei.h>
21 #include <linux/file.h>
22 #include <linux/scatterlist.h>
23 #include <linux/slab.h>
24 #include <asm/unaligned.h>
25 #include <linux/kernel.h>
26 #include <linux/xattr.h>
27 #include "ecryptfs_kernel.h"
28
29 #define DECRYPT         0
30 #define ENCRYPT         1
31
32 /**
33  * ecryptfs_from_hex
34  * @dst: Buffer to take the bytes from src hex; must be at least of
35  *       size (src_size / 2)
36  * @src: Buffer to be converted from a hex string representation to raw value
37  * @dst_size: size of dst buffer, or number of hex characters pairs to convert
38  */
39 void ecryptfs_from_hex(char *dst, char *src, int dst_size)
40 {
41         int x;
42         char tmp[3] = { 0, };
43
44         for (x = 0; x < dst_size; x++) {
45                 tmp[0] = src[x * 2];
46                 tmp[1] = src[x * 2 + 1];
47                 dst[x] = (unsigned char)simple_strtol(tmp, NULL, 16);
48         }
49 }
50
51 /**
52  * ecryptfs_calculate_md5 - calculates the md5 of @src
53  * @dst: Pointer to 16 bytes of allocated memory
54  * @crypt_stat: Pointer to crypt_stat struct for the current inode
55  * @src: Data to be md5'd
56  * @len: Length of @src
57  *
58  * Uses the allocated crypto context that crypt_stat references to
59  * generate the MD5 sum of the contents of src.
60  */
61 static int ecryptfs_calculate_md5(char *dst,
62                                   struct ecryptfs_crypt_stat *crypt_stat,
63                                   char *src, int len)
64 {
65         int rc = crypto_shash_tfm_digest(crypt_stat->hash_tfm, src, len, dst);
66
67         if (rc) {
68                 printk(KERN_ERR
69                        "%s: Error computing crypto hash; rc = [%d]\n",
70                        __func__, rc);
71                 goto out;
72         }
73 out:
74         return rc;
75 }
76
77 static int ecryptfs_crypto_api_algify_cipher_name(char **algified_name,
78                                                   char *cipher_name,
79                                                   char *chaining_modifier)
80 {
81         int cipher_name_len = strlen(cipher_name);
82         int chaining_modifier_len = strlen(chaining_modifier);
83         int algified_name_len;
84         int rc;
85
86         algified_name_len = (chaining_modifier_len + cipher_name_len + 3);
87         (*algified_name) = kmalloc(algified_name_len, GFP_KERNEL);
88         if (!(*algified_name)) {
89                 rc = -ENOMEM;
90                 goto out;
91         }
92         snprintf((*algified_name), algified_name_len, "%s(%s)",
93                  chaining_modifier, cipher_name);
94         rc = 0;
95 out:
96         return rc;
97 }
98
99 /**
100  * ecryptfs_derive_iv
101  * @iv: destination for the derived iv vale
102  * @crypt_stat: Pointer to crypt_stat struct for the current inode
103  * @offset: Offset of the extent whose IV we are to derive
104  *
105  * Generate the initialization vector from the given root IV and page
106  * offset.
107  *
108  * Returns zero on success; non-zero on error.
109  */
110 int ecryptfs_derive_iv(char *iv, struct ecryptfs_crypt_stat *crypt_stat,
111                        loff_t offset)
112 {
113         int rc = 0;
114         char dst[MD5_DIGEST_SIZE];
115         char src[ECRYPTFS_MAX_IV_BYTES + 16];
116
117         if (unlikely(ecryptfs_verbosity > 0)) {
118                 ecryptfs_printk(KERN_DEBUG, "root iv:\n");
119                 ecryptfs_dump_hex(crypt_stat->root_iv, crypt_stat->iv_bytes);
120         }
121         /* TODO: It is probably secure to just cast the least
122          * significant bits of the root IV into an unsigned long and
123          * add the offset to that rather than go through all this
124          * hashing business. -Halcrow */
125         memcpy(src, crypt_stat->root_iv, crypt_stat->iv_bytes);
126         memset((src + crypt_stat->iv_bytes), 0, 16);
127         snprintf((src + crypt_stat->iv_bytes), 16, "%lld", offset);
128         if (unlikely(ecryptfs_verbosity > 0)) {
129                 ecryptfs_printk(KERN_DEBUG, "source:\n");
130                 ecryptfs_dump_hex(src, (crypt_stat->iv_bytes + 16));
131         }
132         rc = ecryptfs_calculate_md5(dst, crypt_stat, src,
133                                     (crypt_stat->iv_bytes + 16));
134         if (rc) {
135                 ecryptfs_printk(KERN_WARNING, "Error attempting to compute "
136                                 "MD5 while generating IV for a page\n");
137                 goto out;
138         }
139         memcpy(iv, dst, crypt_stat->iv_bytes);
140         if (unlikely(ecryptfs_verbosity > 0)) {
141                 ecryptfs_printk(KERN_DEBUG, "derived iv:\n");
142                 ecryptfs_dump_hex(iv, crypt_stat->iv_bytes);
143         }
144 out:
145         return rc;
146 }
147
148 /**
149  * ecryptfs_init_crypt_stat
150  * @crypt_stat: Pointer to the crypt_stat struct to initialize.
151  *
152  * Initialize the crypt_stat structure.
153  */
154 int ecryptfs_init_crypt_stat(struct ecryptfs_crypt_stat *crypt_stat)
155 {
156         struct crypto_shash *tfm;
157         int rc;
158
159         tfm = crypto_alloc_shash(ECRYPTFS_DEFAULT_HASH, 0, 0);
160         if (IS_ERR(tfm)) {
161                 rc = PTR_ERR(tfm);
162                 ecryptfs_printk(KERN_ERR, "Error attempting to "
163                                 "allocate crypto context; rc = [%d]\n",
164                                 rc);
165                 return rc;
166         }
167
168         memset((void *)crypt_stat, 0, sizeof(struct ecryptfs_crypt_stat));
169         INIT_LIST_HEAD(&crypt_stat->keysig_list);
170         mutex_init(&crypt_stat->keysig_list_mutex);
171         mutex_init(&crypt_stat->cs_mutex);
172         mutex_init(&crypt_stat->cs_tfm_mutex);
173         crypt_stat->hash_tfm = tfm;
174         crypt_stat->flags |= ECRYPTFS_STRUCT_INITIALIZED;
175
176         return 0;
177 }
178
179 /**
180  * ecryptfs_destroy_crypt_stat
181  * @crypt_stat: Pointer to the crypt_stat struct to initialize.
182  *
183  * Releases all memory associated with a crypt_stat struct.
184  */
185 void ecryptfs_destroy_crypt_stat(struct ecryptfs_crypt_stat *crypt_stat)
186 {
187         struct ecryptfs_key_sig *key_sig, *key_sig_tmp;
188
189         crypto_free_skcipher(crypt_stat->tfm);
190         crypto_free_shash(crypt_stat->hash_tfm);
191         list_for_each_entry_safe(key_sig, key_sig_tmp,
192                                  &crypt_stat->keysig_list, crypt_stat_list) {
193                 list_del(&key_sig->crypt_stat_list);
194                 kmem_cache_free(ecryptfs_key_sig_cache, key_sig);
195         }
196         memset(crypt_stat, 0, sizeof(struct ecryptfs_crypt_stat));
197 }
198
199 void ecryptfs_destroy_mount_crypt_stat(
200         struct ecryptfs_mount_crypt_stat *mount_crypt_stat)
201 {
202         struct ecryptfs_global_auth_tok *auth_tok, *auth_tok_tmp;
203
204         if (!(mount_crypt_stat->flags & ECRYPTFS_MOUNT_CRYPT_STAT_INITIALIZED))
205                 return;
206         mutex_lock(&mount_crypt_stat->global_auth_tok_list_mutex);
207         list_for_each_entry_safe(auth_tok, auth_tok_tmp,
208                                  &mount_crypt_stat->global_auth_tok_list,
209                                  mount_crypt_stat_list) {
210                 list_del(&auth_tok->mount_crypt_stat_list);
211                 if (!(auth_tok->flags & ECRYPTFS_AUTH_TOK_INVALID))
212                         key_put(auth_tok->global_auth_tok_key);
213                 kmem_cache_free(ecryptfs_global_auth_tok_cache, auth_tok);
214         }
215         mutex_unlock(&mount_crypt_stat->global_auth_tok_list_mutex);
216         memset(mount_crypt_stat, 0, sizeof(struct ecryptfs_mount_crypt_stat));
217 }
218
219 /**
220  * virt_to_scatterlist
221  * @addr: Virtual address
222  * @size: Size of data; should be an even multiple of the block size
223  * @sg: Pointer to scatterlist array; set to NULL to obtain only
224  *      the number of scatterlist structs required in array
225  * @sg_size: Max array size
226  *
227  * Fills in a scatterlist array with page references for a passed
228  * virtual address.
229  *
230  * Returns the number of scatterlist structs in array used
231  */
232 int virt_to_scatterlist(const void *addr, int size, struct scatterlist *sg,
233                         int sg_size)
234 {
235         int i = 0;
236         struct page *pg;
237         int offset;
238         int remainder_of_page;
239
240         sg_init_table(sg, sg_size);
241
242         while (size > 0 && i < sg_size) {
243                 pg = virt_to_page(addr);
244                 offset = offset_in_page(addr);
245                 sg_set_page(&sg[i], pg, 0, offset);
246                 remainder_of_page = PAGE_SIZE - offset;
247                 if (size >= remainder_of_page) {
248                         sg[i].length = remainder_of_page;
249                         addr += remainder_of_page;
250                         size -= remainder_of_page;
251                 } else {
252                         sg[i].length = size;
253                         addr += size;
254                         size = 0;
255                 }
256                 i++;
257         }
258         if (size > 0)
259                 return -ENOMEM;
260         return i;
261 }
262
263 struct extent_crypt_result {
264         struct completion completion;
265         int rc;
266 };
267
268 static void extent_crypt_complete(struct crypto_async_request *req, int rc)
269 {
270         struct extent_crypt_result *ecr = req->data;
271
272         if (rc == -EINPROGRESS)
273                 return;
274
275         ecr->rc = rc;
276         complete(&ecr->completion);
277 }
278
279 /**
280  * crypt_scatterlist
281  * @crypt_stat: Pointer to the crypt_stat struct to initialize.
282  * @dst_sg: Destination of the data after performing the crypto operation
283  * @src_sg: Data to be encrypted or decrypted
284  * @size: Length of data
285  * @iv: IV to use
286  * @op: ENCRYPT or DECRYPT to indicate the desired operation
287  *
288  * Returns the number of bytes encrypted or decrypted; negative value on error
289  */
290 static int crypt_scatterlist(struct ecryptfs_crypt_stat *crypt_stat,
291                              struct scatterlist *dst_sg,
292                              struct scatterlist *src_sg, int size,
293                              unsigned char *iv, int op)
294 {
295         struct skcipher_request *req = NULL;
296         struct extent_crypt_result ecr;
297         int rc = 0;
298
299         if (unlikely(ecryptfs_verbosity > 0)) {
300                 ecryptfs_printk(KERN_DEBUG, "Key size [%zd]; key:\n",
301                                 crypt_stat->key_size);
302                 ecryptfs_dump_hex(crypt_stat->key,
303                                   crypt_stat->key_size);
304         }
305
306         init_completion(&ecr.completion);
307
308         mutex_lock(&crypt_stat->cs_tfm_mutex);
309         req = skcipher_request_alloc(crypt_stat->tfm, GFP_NOFS);
310         if (!req) {
311                 mutex_unlock(&crypt_stat->cs_tfm_mutex);
312                 rc = -ENOMEM;
313                 goto out;
314         }
315
316         skcipher_request_set_callback(req,
317                         CRYPTO_TFM_REQ_MAY_BACKLOG | CRYPTO_TFM_REQ_MAY_SLEEP,
318                         extent_crypt_complete, &ecr);
319         /* Consider doing this once, when the file is opened */
320         if (!(crypt_stat->flags & ECRYPTFS_KEY_SET)) {
321                 rc = crypto_skcipher_setkey(crypt_stat->tfm, crypt_stat->key,
322                                             crypt_stat->key_size);
323                 if (rc) {
324                         ecryptfs_printk(KERN_ERR,
325                                         "Error setting key; rc = [%d]\n",
326                                         rc);
327                         mutex_unlock(&crypt_stat->cs_tfm_mutex);
328                         rc = -EINVAL;
329                         goto out;
330                 }
331                 crypt_stat->flags |= ECRYPTFS_KEY_SET;
332         }
333         mutex_unlock(&crypt_stat->cs_tfm_mutex);
334         skcipher_request_set_crypt(req, src_sg, dst_sg, size, iv);
335         rc = op == ENCRYPT ? crypto_skcipher_encrypt(req) :
336                              crypto_skcipher_decrypt(req);
337         if (rc == -EINPROGRESS || rc == -EBUSY) {
338                 struct extent_crypt_result *ecr = req->base.data;
339
340                 wait_for_completion(&ecr->completion);
341                 rc = ecr->rc;
342                 reinit_completion(&ecr->completion);
343         }
344 out:
345         skcipher_request_free(req);
346         return rc;
347 }
348
349 /*
350  * lower_offset_for_page
351  *
352  * Convert an eCryptfs page index into a lower byte offset
353  */
354 static loff_t lower_offset_for_page(struct ecryptfs_crypt_stat *crypt_stat,
355                                     struct page *page)
356 {
357         return ecryptfs_lower_header_size(crypt_stat) +
358                ((loff_t)page->index << PAGE_SHIFT);
359 }
360
361 /**
362  * crypt_extent
363  * @crypt_stat: crypt_stat containing cryptographic context for the
364  *              encryption operation
365  * @dst_page: The page to write the result into
366  * @src_page: The page to read from
367  * @extent_offset: Page extent offset for use in generating IV
368  * @op: ENCRYPT or DECRYPT to indicate the desired operation
369  *
370  * Encrypts or decrypts one extent of data.
371  *
372  * Return zero on success; non-zero otherwise
373  */
374 static int crypt_extent(struct ecryptfs_crypt_stat *crypt_stat,
375                         struct page *dst_page,
376                         struct page *src_page,
377                         unsigned long extent_offset, int op)
378 {
379         pgoff_t page_index = op == ENCRYPT ? src_page->index : dst_page->index;
380         loff_t extent_base;
381         char extent_iv[ECRYPTFS_MAX_IV_BYTES];
382         struct scatterlist src_sg, dst_sg;
383         size_t extent_size = crypt_stat->extent_size;
384         int rc;
385
386         extent_base = (((loff_t)page_index) * (PAGE_SIZE / extent_size));
387         rc = ecryptfs_derive_iv(extent_iv, crypt_stat,
388                                 (extent_base + extent_offset));
389         if (rc) {
390                 ecryptfs_printk(KERN_ERR, "Error attempting to derive IV for "
391                         "extent [0x%.16llx]; rc = [%d]\n",
392                         (unsigned long long)(extent_base + extent_offset), rc);
393                 goto out;
394         }
395
396         sg_init_table(&src_sg, 1);
397         sg_init_table(&dst_sg, 1);
398
399         sg_set_page(&src_sg, src_page, extent_size,
400                     extent_offset * extent_size);
401         sg_set_page(&dst_sg, dst_page, extent_size,
402                     extent_offset * extent_size);
403
404         rc = crypt_scatterlist(crypt_stat, &dst_sg, &src_sg, extent_size,
405                                extent_iv, op);
406         if (rc < 0) {
407                 printk(KERN_ERR "%s: Error attempting to crypt page with "
408                        "page_index = [%ld], extent_offset = [%ld]; "
409                        "rc = [%d]\n", __func__, page_index, extent_offset, rc);
410                 goto out;
411         }
412         rc = 0;
413 out:
414         return rc;
415 }
416
417 /**
418  * ecryptfs_encrypt_page
419  * @page: Page mapped from the eCryptfs inode for the file; contains
420  *        decrypted content that needs to be encrypted (to a temporary
421  *        page; not in place) and written out to the lower file
422  *
423  * Encrypt an eCryptfs page. This is done on a per-extent basis. Note
424  * that eCryptfs pages may straddle the lower pages -- for instance,
425  * if the file was created on a machine with an 8K page size
426  * (resulting in an 8K header), and then the file is copied onto a
427  * host with a 32K page size, then when reading page 0 of the eCryptfs
428  * file, 24K of page 0 of the lower file will be read and decrypted,
429  * and then 8K of page 1 of the lower file will be read and decrypted.
430  *
431  * Returns zero on success; negative on error
432  */
433 int ecryptfs_encrypt_page(struct page *page)
434 {
435         struct inode *ecryptfs_inode;
436         struct ecryptfs_crypt_stat *crypt_stat;
437         char *enc_extent_virt;
438         struct page *enc_extent_page = NULL;
439         loff_t extent_offset;
440         loff_t lower_offset;
441         int rc = 0;
442
443         ecryptfs_inode = page->mapping->host;
444         crypt_stat =
445                 &(ecryptfs_inode_to_private(ecryptfs_inode)->crypt_stat);
446         BUG_ON(!(crypt_stat->flags & ECRYPTFS_ENCRYPTED));
447         enc_extent_page = alloc_page(GFP_USER);
448         if (!enc_extent_page) {
449                 rc = -ENOMEM;
450                 ecryptfs_printk(KERN_ERR, "Error allocating memory for "
451                                 "encrypted extent\n");
452                 goto out;
453         }
454
455         for (extent_offset = 0;
456              extent_offset < (PAGE_SIZE / crypt_stat->extent_size);
457              extent_offset++) {
458                 rc = crypt_extent(crypt_stat, enc_extent_page, page,
459                                   extent_offset, ENCRYPT);
460                 if (rc) {
461                         printk(KERN_ERR "%s: Error encrypting extent; "
462                                "rc = [%d]\n", __func__, rc);
463                         goto out;
464                 }
465         }
466
467         lower_offset = lower_offset_for_page(crypt_stat, page);
468         enc_extent_virt = kmap(enc_extent_page);
469         rc = ecryptfs_write_lower(ecryptfs_inode, enc_extent_virt, lower_offset,
470                                   PAGE_SIZE);
471         kunmap(enc_extent_page);
472         if (rc < 0) {
473                 ecryptfs_printk(KERN_ERR,
474                         "Error attempting to write lower page; rc = [%d]\n",
475                         rc);
476                 goto out;
477         }
478         rc = 0;
479 out:
480         if (enc_extent_page) {
481                 __free_page(enc_extent_page);
482         }
483         return rc;
484 }
485
486 /**
487  * ecryptfs_decrypt_page
488  * @page: Page mapped from the eCryptfs inode for the file; data read
489  *        and decrypted from the lower file will be written into this
490  *        page
491  *
492  * Decrypt an eCryptfs page. This is done on a per-extent basis. Note
493  * that eCryptfs pages may straddle the lower pages -- for instance,
494  * if the file was created on a machine with an 8K page size
495  * (resulting in an 8K header), and then the file is copied onto a
496  * host with a 32K page size, then when reading page 0 of the eCryptfs
497  * file, 24K of page 0 of the lower file will be read and decrypted,
498  * and then 8K of page 1 of the lower file will be read and decrypted.
499  *
500  * Returns zero on success; negative on error
501  */
502 int ecryptfs_decrypt_page(struct page *page)
503 {
504         struct inode *ecryptfs_inode;
505         struct ecryptfs_crypt_stat *crypt_stat;
506         char *page_virt;
507         unsigned long extent_offset;
508         loff_t lower_offset;
509         int rc = 0;
510
511         ecryptfs_inode = page->mapping->host;
512         crypt_stat =
513                 &(ecryptfs_inode_to_private(ecryptfs_inode)->crypt_stat);
514         BUG_ON(!(crypt_stat->flags & ECRYPTFS_ENCRYPTED));
515
516         lower_offset = lower_offset_for_page(crypt_stat, page);
517         page_virt = kmap(page);
518         rc = ecryptfs_read_lower(page_virt, lower_offset, PAGE_SIZE,
519                                  ecryptfs_inode);
520         kunmap(page);
521         if (rc < 0) {
522                 ecryptfs_printk(KERN_ERR,
523                         "Error attempting to read lower page; rc = [%d]\n",
524                         rc);
525                 goto out;
526         }
527
528         for (extent_offset = 0;
529              extent_offset < (PAGE_SIZE / crypt_stat->extent_size);
530              extent_offset++) {
531                 rc = crypt_extent(crypt_stat, page, page,
532                                   extent_offset, DECRYPT);
533                 if (rc) {
534                         printk(KERN_ERR "%s: Error decrypting extent; "
535                                "rc = [%d]\n", __func__, rc);
536                         goto out;
537                 }
538         }
539 out:
540         return rc;
541 }
542
543 #define ECRYPTFS_MAX_SCATTERLIST_LEN 4
544
545 /**
546  * ecryptfs_init_crypt_ctx
547  * @crypt_stat: Uninitialized crypt stats structure
548  *
549  * Initialize the crypto context.
550  *
551  * TODO: Performance: Keep a cache of initialized cipher contexts;
552  * only init if needed
553  */
554 int ecryptfs_init_crypt_ctx(struct ecryptfs_crypt_stat *crypt_stat)
555 {
556         char *full_alg_name;
557         int rc = -EINVAL;
558
559         ecryptfs_printk(KERN_DEBUG,
560                         "Initializing cipher [%s]; strlen = [%d]; "
561                         "key_size_bits = [%zd]\n",
562                         crypt_stat->cipher, (int)strlen(crypt_stat->cipher),
563                         crypt_stat->key_size << 3);
564         mutex_lock(&crypt_stat->cs_tfm_mutex);
565         if (crypt_stat->tfm) {
566                 rc = 0;
567                 goto out_unlock;
568         }
569         rc = ecryptfs_crypto_api_algify_cipher_name(&full_alg_name,
570                                                     crypt_stat->cipher, "cbc");
571         if (rc)
572                 goto out_unlock;
573         crypt_stat->tfm = crypto_alloc_skcipher(full_alg_name, 0, 0);
574         if (IS_ERR(crypt_stat->tfm)) {
575                 rc = PTR_ERR(crypt_stat->tfm);
576                 crypt_stat->tfm = NULL;
577                 ecryptfs_printk(KERN_ERR, "cryptfs: init_crypt_ctx(): "
578                                 "Error initializing cipher [%s]\n",
579                                 full_alg_name);
580                 goto out_free;
581         }
582         crypto_skcipher_set_flags(crypt_stat->tfm,
583                                   CRYPTO_TFM_REQ_FORBID_WEAK_KEYS);
584         rc = 0;
585 out_free:
586         kfree(full_alg_name);
587 out_unlock:
588         mutex_unlock(&crypt_stat->cs_tfm_mutex);
589         return rc;
590 }
591
592 static void set_extent_mask_and_shift(struct ecryptfs_crypt_stat *crypt_stat)
593 {
594         int extent_size_tmp;
595
596         crypt_stat->extent_mask = 0xFFFFFFFF;
597         crypt_stat->extent_shift = 0;
598         if (crypt_stat->extent_size == 0)
599                 return;
600         extent_size_tmp = crypt_stat->extent_size;
601         while ((extent_size_tmp & 0x01) == 0) {
602                 extent_size_tmp >>= 1;
603                 crypt_stat->extent_mask <<= 1;
604                 crypt_stat->extent_shift++;
605         }
606 }
607
608 void ecryptfs_set_default_sizes(struct ecryptfs_crypt_stat *crypt_stat)
609 {
610         /* Default values; may be overwritten as we are parsing the
611          * packets. */
612         crypt_stat->extent_size = ECRYPTFS_DEFAULT_EXTENT_SIZE;
613         set_extent_mask_and_shift(crypt_stat);
614         crypt_stat->iv_bytes = ECRYPTFS_DEFAULT_IV_BYTES;
615         if (crypt_stat->flags & ECRYPTFS_METADATA_IN_XATTR)
616                 crypt_stat->metadata_size = ECRYPTFS_MINIMUM_HEADER_EXTENT_SIZE;
617         else {
618                 if (PAGE_SIZE <= ECRYPTFS_MINIMUM_HEADER_EXTENT_SIZE)
619                         crypt_stat->metadata_size =
620                                 ECRYPTFS_MINIMUM_HEADER_EXTENT_SIZE;
621                 else
622                         crypt_stat->metadata_size = PAGE_SIZE;
623         }
624 }
625
626 /*
627  * ecryptfs_compute_root_iv
628  *
629  * On error, sets the root IV to all 0's.
630  */
631 int ecryptfs_compute_root_iv(struct ecryptfs_crypt_stat *crypt_stat)
632 {
633         int rc = 0;
634         char dst[MD5_DIGEST_SIZE];
635
636         BUG_ON(crypt_stat->iv_bytes > MD5_DIGEST_SIZE);
637         BUG_ON(crypt_stat->iv_bytes <= 0);
638         if (!(crypt_stat->flags & ECRYPTFS_KEY_VALID)) {
639                 rc = -EINVAL;
640                 ecryptfs_printk(KERN_WARNING, "Session key not valid; "
641                                 "cannot generate root IV\n");
642                 goto out;
643         }
644         rc = ecryptfs_calculate_md5(dst, crypt_stat, crypt_stat->key,
645                                     crypt_stat->key_size);
646         if (rc) {
647                 ecryptfs_printk(KERN_WARNING, "Error attempting to compute "
648                                 "MD5 while generating root IV\n");
649                 goto out;
650         }
651         memcpy(crypt_stat->root_iv, dst, crypt_stat->iv_bytes);
652 out:
653         if (rc) {
654                 memset(crypt_stat->root_iv, 0, crypt_stat->iv_bytes);
655                 crypt_stat->flags |= ECRYPTFS_SECURITY_WARNING;
656         }
657         return rc;
658 }
659
660 static void ecryptfs_generate_new_key(struct ecryptfs_crypt_stat *crypt_stat)
661 {
662         get_random_bytes(crypt_stat->key, crypt_stat->key_size);
663         crypt_stat->flags |= ECRYPTFS_KEY_VALID;
664         ecryptfs_compute_root_iv(crypt_stat);
665         if (unlikely(ecryptfs_verbosity > 0)) {
666                 ecryptfs_printk(KERN_DEBUG, "Generated new session key:\n");
667                 ecryptfs_dump_hex(crypt_stat->key,
668                                   crypt_stat->key_size);
669         }
670 }
671
672 /**
673  * ecryptfs_copy_mount_wide_flags_to_inode_flags
674  * @crypt_stat: The inode's cryptographic context
675  * @mount_crypt_stat: The mount point's cryptographic context
676  *
677  * This function propagates the mount-wide flags to individual inode
678  * flags.
679  */
680 static void ecryptfs_copy_mount_wide_flags_to_inode_flags(
681         struct ecryptfs_crypt_stat *crypt_stat,
682         struct ecryptfs_mount_crypt_stat *mount_crypt_stat)
683 {
684         if (mount_crypt_stat->flags & ECRYPTFS_XATTR_METADATA_ENABLED)
685                 crypt_stat->flags |= ECRYPTFS_METADATA_IN_XATTR;
686         if (mount_crypt_stat->flags & ECRYPTFS_ENCRYPTED_VIEW_ENABLED)
687                 crypt_stat->flags |= ECRYPTFS_VIEW_AS_ENCRYPTED;
688         if (mount_crypt_stat->flags & ECRYPTFS_GLOBAL_ENCRYPT_FILENAMES) {
689                 crypt_stat->flags |= ECRYPTFS_ENCRYPT_FILENAMES;
690                 if (mount_crypt_stat->flags
691                     & ECRYPTFS_GLOBAL_ENCFN_USE_MOUNT_FNEK)
692                         crypt_stat->flags |= ECRYPTFS_ENCFN_USE_MOUNT_FNEK;
693                 else if (mount_crypt_stat->flags
694                          & ECRYPTFS_GLOBAL_ENCFN_USE_FEK)
695                         crypt_stat->flags |= ECRYPTFS_ENCFN_USE_FEK;
696         }
697 }
698
699 static int ecryptfs_copy_mount_wide_sigs_to_inode_sigs(
700         struct ecryptfs_crypt_stat *crypt_stat,
701         struct ecryptfs_mount_crypt_stat *mount_crypt_stat)
702 {
703         struct ecryptfs_global_auth_tok *global_auth_tok;
704         int rc = 0;
705
706         mutex_lock(&crypt_stat->keysig_list_mutex);
707         mutex_lock(&mount_crypt_stat->global_auth_tok_list_mutex);
708
709         list_for_each_entry(global_auth_tok,
710                             &mount_crypt_stat->global_auth_tok_list,
711                             mount_crypt_stat_list) {
712                 if (global_auth_tok->flags & ECRYPTFS_AUTH_TOK_FNEK)
713                         continue;
714                 rc = ecryptfs_add_keysig(crypt_stat, global_auth_tok->sig);
715                 if (rc) {
716                         printk(KERN_ERR "Error adding keysig; rc = [%d]\n", rc);
717                         goto out;
718                 }
719         }
720
721 out:
722         mutex_unlock(&mount_crypt_stat->global_auth_tok_list_mutex);
723         mutex_unlock(&crypt_stat->keysig_list_mutex);
724         return rc;
725 }
726
727 /**
728  * ecryptfs_set_default_crypt_stat_vals
729  * @crypt_stat: The inode's cryptographic context
730  * @mount_crypt_stat: The mount point's cryptographic context
731  *
732  * Default values in the event that policy does not override them.
733  */
734 static void ecryptfs_set_default_crypt_stat_vals(
735         struct ecryptfs_crypt_stat *crypt_stat,
736         struct ecryptfs_mount_crypt_stat *mount_crypt_stat)
737 {
738         ecryptfs_copy_mount_wide_flags_to_inode_flags(crypt_stat,
739                                                       mount_crypt_stat);
740         ecryptfs_set_default_sizes(crypt_stat);
741         strcpy(crypt_stat->cipher, ECRYPTFS_DEFAULT_CIPHER);
742         crypt_stat->key_size = ECRYPTFS_DEFAULT_KEY_BYTES;
743         crypt_stat->flags &= ~(ECRYPTFS_KEY_VALID);
744         crypt_stat->file_version = ECRYPTFS_FILE_VERSION;
745         crypt_stat->mount_crypt_stat = mount_crypt_stat;
746 }
747
748 /**
749  * ecryptfs_new_file_context
750  * @ecryptfs_inode: The eCryptfs inode
751  *
752  * If the crypto context for the file has not yet been established,
753  * this is where we do that.  Establishing a new crypto context
754  * involves the following decisions:
755  *  - What cipher to use?
756  *  - What set of authentication tokens to use?
757  * Here we just worry about getting enough information into the
758  * authentication tokens so that we know that they are available.
759  * We associate the available authentication tokens with the new file
760  * via the set of signatures in the crypt_stat struct.  Later, when
761  * the headers are actually written out, we may again defer to
762  * userspace to perform the encryption of the session key; for the
763  * foreseeable future, this will be the case with public key packets.
764  *
765  * Returns zero on success; non-zero otherwise
766  */
767 int ecryptfs_new_file_context(struct inode *ecryptfs_inode)
768 {
769         struct ecryptfs_crypt_stat *crypt_stat =
770             &ecryptfs_inode_to_private(ecryptfs_inode)->crypt_stat;
771         struct ecryptfs_mount_crypt_stat *mount_crypt_stat =
772             &ecryptfs_superblock_to_private(
773                     ecryptfs_inode->i_sb)->mount_crypt_stat;
774         int cipher_name_len;
775         int rc = 0;
776
777         ecryptfs_set_default_crypt_stat_vals(crypt_stat, mount_crypt_stat);
778         crypt_stat->flags |= (ECRYPTFS_ENCRYPTED | ECRYPTFS_KEY_VALID);
779         ecryptfs_copy_mount_wide_flags_to_inode_flags(crypt_stat,
780                                                       mount_crypt_stat);
781         rc = ecryptfs_copy_mount_wide_sigs_to_inode_sigs(crypt_stat,
782                                                          mount_crypt_stat);
783         if (rc) {
784                 printk(KERN_ERR "Error attempting to copy mount-wide key sigs "
785                        "to the inode key sigs; rc = [%d]\n", rc);
786                 goto out;
787         }
788         cipher_name_len =
789                 strlen(mount_crypt_stat->global_default_cipher_name);
790         memcpy(crypt_stat->cipher,
791                mount_crypt_stat->global_default_cipher_name,
792                cipher_name_len);
793         crypt_stat->cipher[cipher_name_len] = '\0';
794         crypt_stat->key_size =
795                 mount_crypt_stat->global_default_cipher_key_size;
796         ecryptfs_generate_new_key(crypt_stat);
797         rc = ecryptfs_init_crypt_ctx(crypt_stat);
798         if (rc)
799                 ecryptfs_printk(KERN_ERR, "Error initializing cryptographic "
800                                 "context for cipher [%s]: rc = [%d]\n",
801                                 crypt_stat->cipher, rc);
802 out:
803         return rc;
804 }
805
806 /**
807  * ecryptfs_validate_marker - check for the ecryptfs marker
808  * @data: The data block in which to check
809  *
810  * Returns zero if marker found; -EINVAL if not found
811  */
812 static int ecryptfs_validate_marker(char *data)
813 {
814         u32 m_1, m_2;
815
816         m_1 = get_unaligned_be32(data);
817         m_2 = get_unaligned_be32(data + 4);
818         if ((m_1 ^ MAGIC_ECRYPTFS_MARKER) == m_2)
819                 return 0;
820         ecryptfs_printk(KERN_DEBUG, "m_1 = [0x%.8x]; m_2 = [0x%.8x]; "
821                         "MAGIC_ECRYPTFS_MARKER = [0x%.8x]\n", m_1, m_2,
822                         MAGIC_ECRYPTFS_MARKER);
823         ecryptfs_printk(KERN_DEBUG, "(m_1 ^ MAGIC_ECRYPTFS_MARKER) = "
824                         "[0x%.8x]\n", (m_1 ^ MAGIC_ECRYPTFS_MARKER));
825         return -EINVAL;
826 }
827
828 struct ecryptfs_flag_map_elem {
829         u32 file_flag;
830         u32 local_flag;
831 };
832
833 /* Add support for additional flags by adding elements here. */
834 static struct ecryptfs_flag_map_elem ecryptfs_flag_map[] = {
835         {0x00000001, ECRYPTFS_ENABLE_HMAC},
836         {0x00000002, ECRYPTFS_ENCRYPTED},
837         {0x00000004, ECRYPTFS_METADATA_IN_XATTR},
838         {0x00000008, ECRYPTFS_ENCRYPT_FILENAMES}
839 };
840
841 /**
842  * ecryptfs_process_flags
843  * @crypt_stat: The cryptographic context
844  * @page_virt: Source data to be parsed
845  * @bytes_read: Updated with the number of bytes read
846  */
847 static void ecryptfs_process_flags(struct ecryptfs_crypt_stat *crypt_stat,
848                                   char *page_virt, int *bytes_read)
849 {
850         int i;
851         u32 flags;
852
853         flags = get_unaligned_be32(page_virt);
854         for (i = 0; i < ARRAY_SIZE(ecryptfs_flag_map); i++)
855                 if (flags & ecryptfs_flag_map[i].file_flag) {
856                         crypt_stat->flags |= ecryptfs_flag_map[i].local_flag;
857                 } else
858                         crypt_stat->flags &= ~(ecryptfs_flag_map[i].local_flag);
859         /* Version is in top 8 bits of the 32-bit flag vector */
860         crypt_stat->file_version = ((flags >> 24) & 0xFF);
861         (*bytes_read) = 4;
862 }
863
864 /**
865  * write_ecryptfs_marker
866  * @page_virt: The pointer to in a page to begin writing the marker
867  * @written: Number of bytes written
868  *
869  * Marker = 0x3c81b7f5
870  */
871 static void write_ecryptfs_marker(char *page_virt, size_t *written)
872 {
873         u32 m_1, m_2;
874
875         get_random_bytes(&m_1, (MAGIC_ECRYPTFS_MARKER_SIZE_BYTES / 2));
876         m_2 = (m_1 ^ MAGIC_ECRYPTFS_MARKER);
877         put_unaligned_be32(m_1, page_virt);
878         page_virt += (MAGIC_ECRYPTFS_MARKER_SIZE_BYTES / 2);
879         put_unaligned_be32(m_2, page_virt);
880         (*written) = MAGIC_ECRYPTFS_MARKER_SIZE_BYTES;
881 }
882
883 void ecryptfs_write_crypt_stat_flags(char *page_virt,
884                                      struct ecryptfs_crypt_stat *crypt_stat,
885                                      size_t *written)
886 {
887         u32 flags = 0;
888         int i;
889
890         for (i = 0; i < ARRAY_SIZE(ecryptfs_flag_map); i++)
891                 if (crypt_stat->flags & ecryptfs_flag_map[i].local_flag)
892                         flags |= ecryptfs_flag_map[i].file_flag;
893         /* Version is in top 8 bits of the 32-bit flag vector */
894         flags |= ((((u8)crypt_stat->file_version) << 24) & 0xFF000000);
895         put_unaligned_be32(flags, page_virt);
896         (*written) = 4;
897 }
898
899 struct ecryptfs_cipher_code_str_map_elem {
900         char cipher_str[16];
901         u8 cipher_code;
902 };
903
904 /* Add support for additional ciphers by adding elements here. The
905  * cipher_code is whatever OpenPGP applications use to identify the
906  * ciphers. List in order of probability. */
907 static struct ecryptfs_cipher_code_str_map_elem
908 ecryptfs_cipher_code_str_map[] = {
909         {"aes",RFC2440_CIPHER_AES_128 },
910         {"blowfish", RFC2440_CIPHER_BLOWFISH},
911         {"des3_ede", RFC2440_CIPHER_DES3_EDE},
912         {"cast5", RFC2440_CIPHER_CAST_5},
913         {"twofish", RFC2440_CIPHER_TWOFISH},
914         {"cast6", RFC2440_CIPHER_CAST_6},
915         {"aes", RFC2440_CIPHER_AES_192},
916         {"aes", RFC2440_CIPHER_AES_256}
917 };
918
919 /**
920  * ecryptfs_code_for_cipher_string
921  * @cipher_name: The string alias for the cipher
922  * @key_bytes: Length of key in bytes; used for AES code selection
923  *
924  * Returns zero on no match, or the cipher code on match
925  */
926 u8 ecryptfs_code_for_cipher_string(char *cipher_name, size_t key_bytes)
927 {
928         int i;
929         u8 code = 0;
930         struct ecryptfs_cipher_code_str_map_elem *map =
931                 ecryptfs_cipher_code_str_map;
932
933         if (strcmp(cipher_name, "aes") == 0) {
934                 switch (key_bytes) {
935                 case 16:
936                         code = RFC2440_CIPHER_AES_128;
937                         break;
938                 case 24:
939                         code = RFC2440_CIPHER_AES_192;
940                         break;
941                 case 32:
942                         code = RFC2440_CIPHER_AES_256;
943                 }
944         } else {
945                 for (i = 0; i < ARRAY_SIZE(ecryptfs_cipher_code_str_map); i++)
946                         if (strcmp(cipher_name, map[i].cipher_str) == 0) {
947                                 code = map[i].cipher_code;
948                                 break;
949                         }
950         }
951         return code;
952 }
953
954 /**
955  * ecryptfs_cipher_code_to_string
956  * @str: Destination to write out the cipher name
957  * @cipher_code: The code to convert to cipher name string
958  *
959  * Returns zero on success
960  */
961 int ecryptfs_cipher_code_to_string(char *str, u8 cipher_code)
962 {
963         int rc = 0;
964         int i;
965
966         str[0] = '\0';
967         for (i = 0; i < ARRAY_SIZE(ecryptfs_cipher_code_str_map); i++)
968                 if (cipher_code == ecryptfs_cipher_code_str_map[i].cipher_code)
969                         strcpy(str, ecryptfs_cipher_code_str_map[i].cipher_str);
970         if (str[0] == '\0') {
971                 ecryptfs_printk(KERN_WARNING, "Cipher code not recognized: "
972                                 "[%d]\n", cipher_code);
973                 rc = -EINVAL;
974         }
975         return rc;
976 }
977
978 int ecryptfs_read_and_validate_header_region(struct inode *inode)
979 {
980         u8 file_size[ECRYPTFS_SIZE_AND_MARKER_BYTES];
981         u8 *marker = file_size + ECRYPTFS_FILE_SIZE_BYTES;
982         int rc;
983
984         rc = ecryptfs_read_lower(file_size, 0, ECRYPTFS_SIZE_AND_MARKER_BYTES,
985                                  inode);
986         if (rc < 0)
987                 return rc;
988         else if (rc < ECRYPTFS_SIZE_AND_MARKER_BYTES)
989                 return -EINVAL;
990         rc = ecryptfs_validate_marker(marker);
991         if (!rc)
992                 ecryptfs_i_size_init(file_size, inode);
993         return rc;
994 }
995
996 void
997 ecryptfs_write_header_metadata(char *virt,
998                                struct ecryptfs_crypt_stat *crypt_stat,
999                                size_t *written)
1000 {
1001         u32 header_extent_size;
1002         u16 num_header_extents_at_front;
1003
1004         header_extent_size = (u32)crypt_stat->extent_size;
1005         num_header_extents_at_front =
1006                 (u16)(crypt_stat->metadata_size / crypt_stat->extent_size);
1007         put_unaligned_be32(header_extent_size, virt);
1008         virt += 4;
1009         put_unaligned_be16(num_header_extents_at_front, virt);
1010         (*written) = 6;
1011 }
1012
1013 struct kmem_cache *ecryptfs_header_cache;
1014
1015 /**
1016  * ecryptfs_write_headers_virt
1017  * @page_virt: The virtual address to write the headers to
1018  * @max: The size of memory allocated at page_virt
1019  * @size: Set to the number of bytes written by this function
1020  * @crypt_stat: The cryptographic context
1021  * @ecryptfs_dentry: The eCryptfs dentry
1022  *
1023  * Format version: 1
1024  *
1025  *   Header Extent:
1026  *     Octets 0-7:        Unencrypted file size (big-endian)
1027  *     Octets 8-15:       eCryptfs special marker
1028  *     Octets 16-19:      Flags
1029  *      Octet 16:         File format version number (between 0 and 255)
1030  *      Octets 17-18:     Reserved
1031  *      Octet 19:         Bit 1 (lsb): Reserved
1032  *                        Bit 2: Encrypted?
1033  *                        Bits 3-8: Reserved
1034  *     Octets 20-23:      Header extent size (big-endian)
1035  *     Octets 24-25:      Number of header extents at front of file
1036  *                        (big-endian)
1037  *     Octet  26:         Begin RFC 2440 authentication token packet set
1038  *   Data Extent 0:
1039  *     Lower data (CBC encrypted)
1040  *   Data Extent 1:
1041  *     Lower data (CBC encrypted)
1042  *   ...
1043  *
1044  * Returns zero on success
1045  */
1046 static int ecryptfs_write_headers_virt(char *page_virt, size_t max,
1047                                        size_t *size,
1048                                        struct ecryptfs_crypt_stat *crypt_stat,
1049                                        struct dentry *ecryptfs_dentry)
1050 {
1051         int rc;
1052         size_t written;
1053         size_t offset;
1054
1055         offset = ECRYPTFS_FILE_SIZE_BYTES;
1056         write_ecryptfs_marker((page_virt + offset), &written);
1057         offset += written;
1058         ecryptfs_write_crypt_stat_flags((page_virt + offset), crypt_stat,
1059                                         &written);
1060         offset += written;
1061         ecryptfs_write_header_metadata((page_virt + offset), crypt_stat,
1062                                        &written);
1063         offset += written;
1064         rc = ecryptfs_generate_key_packet_set((page_virt + offset), crypt_stat,
1065                                               ecryptfs_dentry, &written,
1066                                               max - offset);
1067         if (rc)
1068                 ecryptfs_printk(KERN_WARNING, "Error generating key packet "
1069                                 "set; rc = [%d]\n", rc);
1070         if (size) {
1071                 offset += written;
1072                 *size = offset;
1073         }
1074         return rc;
1075 }
1076
1077 static int
1078 ecryptfs_write_metadata_to_contents(struct inode *ecryptfs_inode,
1079                                     char *virt, size_t virt_len)
1080 {
1081         int rc;
1082
1083         rc = ecryptfs_write_lower(ecryptfs_inode, virt,
1084                                   0, virt_len);
1085         if (rc < 0)
1086                 printk(KERN_ERR "%s: Error attempting to write header "
1087                        "information to lower file; rc = [%d]\n", __func__, rc);
1088         else
1089                 rc = 0;
1090         return rc;
1091 }
1092
1093 static int
1094 ecryptfs_write_metadata_to_xattr(struct dentry *ecryptfs_dentry,
1095                                  struct inode *ecryptfs_inode,
1096                                  char *page_virt, size_t size)
1097 {
1098         int rc;
1099         struct dentry *lower_dentry = ecryptfs_dentry_to_lower(ecryptfs_dentry);
1100         struct inode *lower_inode = d_inode(lower_dentry);
1101
1102         if (!(lower_inode->i_opflags & IOP_XATTR)) {
1103                 rc = -EOPNOTSUPP;
1104                 goto out;
1105         }
1106
1107         inode_lock(lower_inode);
1108         rc = __vfs_setxattr(&init_user_ns, lower_dentry, lower_inode,
1109                             ECRYPTFS_XATTR_NAME, page_virt, size, 0);
1110         if (!rc && ecryptfs_inode)
1111                 fsstack_copy_attr_all(ecryptfs_inode, lower_inode);
1112         inode_unlock(lower_inode);
1113 out:
1114         return rc;
1115 }
1116
1117 static unsigned long ecryptfs_get_zeroed_pages(gfp_t gfp_mask,
1118                                                unsigned int order)
1119 {
1120         struct page *page;
1121
1122         page = alloc_pages(gfp_mask | __GFP_ZERO, order);
1123         if (page)
1124                 return (unsigned long) page_address(page);
1125         return 0;
1126 }
1127
1128 /**
1129  * ecryptfs_write_metadata
1130  * @ecryptfs_dentry: The eCryptfs dentry, which should be negative
1131  * @ecryptfs_inode: The newly created eCryptfs inode
1132  *
1133  * Write the file headers out.  This will likely involve a userspace
1134  * callout, in which the session key is encrypted with one or more
1135  * public keys and/or the passphrase necessary to do the encryption is
1136  * retrieved via a prompt.  Exactly what happens at this point should
1137  * be policy-dependent.
1138  *
1139  * Returns zero on success; non-zero on error
1140  */
1141 int ecryptfs_write_metadata(struct dentry *ecryptfs_dentry,
1142                             struct inode *ecryptfs_inode)
1143 {
1144         struct ecryptfs_crypt_stat *crypt_stat =
1145                 &ecryptfs_inode_to_private(ecryptfs_inode)->crypt_stat;
1146         unsigned int order;
1147         char *virt;
1148         size_t virt_len;
1149         size_t size = 0;
1150         int rc = 0;
1151
1152         if (likely(crypt_stat->flags & ECRYPTFS_ENCRYPTED)) {
1153                 if (!(crypt_stat->flags & ECRYPTFS_KEY_VALID)) {
1154                         printk(KERN_ERR "Key is invalid; bailing out\n");
1155                         rc = -EINVAL;
1156                         goto out;
1157                 }
1158         } else {
1159                 printk(KERN_WARNING "%s: Encrypted flag not set\n",
1160                        __func__);
1161                 rc = -EINVAL;
1162                 goto out;
1163         }
1164         virt_len = crypt_stat->metadata_size;
1165         order = get_order(virt_len);
1166         /* Released in this function */
1167         virt = (char *)ecryptfs_get_zeroed_pages(GFP_KERNEL, order);
1168         if (!virt) {
1169                 printk(KERN_ERR "%s: Out of memory\n", __func__);
1170                 rc = -ENOMEM;
1171                 goto out;
1172         }
1173         /* Zeroed page ensures the in-header unencrypted i_size is set to 0 */
1174         rc = ecryptfs_write_headers_virt(virt, virt_len, &size, crypt_stat,
1175                                          ecryptfs_dentry);
1176         if (unlikely(rc)) {
1177                 printk(KERN_ERR "%s: Error whilst writing headers; rc = [%d]\n",
1178                        __func__, rc);
1179                 goto out_free;
1180         }
1181         if (crypt_stat->flags & ECRYPTFS_METADATA_IN_XATTR)
1182                 rc = ecryptfs_write_metadata_to_xattr(ecryptfs_dentry, ecryptfs_inode,
1183                                                       virt, size);
1184         else
1185                 rc = ecryptfs_write_metadata_to_contents(ecryptfs_inode, virt,
1186                                                          virt_len);
1187         if (rc) {
1188                 printk(KERN_ERR "%s: Error writing metadata out to lower file; "
1189                        "rc = [%d]\n", __func__, rc);
1190                 goto out_free;
1191         }
1192 out_free:
1193         free_pages((unsigned long)virt, order);
1194 out:
1195         return rc;
1196 }
1197
1198 #define ECRYPTFS_DONT_VALIDATE_HEADER_SIZE 0
1199 #define ECRYPTFS_VALIDATE_HEADER_SIZE 1
1200 static int parse_header_metadata(struct ecryptfs_crypt_stat *crypt_stat,
1201                                  char *virt, int *bytes_read,
1202                                  int validate_header_size)
1203 {
1204         int rc = 0;
1205         u32 header_extent_size;
1206         u16 num_header_extents_at_front;
1207
1208         header_extent_size = get_unaligned_be32(virt);
1209         virt += sizeof(__be32);
1210         num_header_extents_at_front = get_unaligned_be16(virt);
1211         crypt_stat->metadata_size = (((size_t)num_header_extents_at_front
1212                                      * (size_t)header_extent_size));
1213         (*bytes_read) = (sizeof(__be32) + sizeof(__be16));
1214         if ((validate_header_size == ECRYPTFS_VALIDATE_HEADER_SIZE)
1215             && (crypt_stat->metadata_size
1216                 < ECRYPTFS_MINIMUM_HEADER_EXTENT_SIZE)) {
1217                 rc = -EINVAL;
1218                 printk(KERN_WARNING "Invalid header size: [%zd]\n",
1219                        crypt_stat->metadata_size);
1220         }
1221         return rc;
1222 }
1223
1224 /**
1225  * set_default_header_data
1226  * @crypt_stat: The cryptographic context
1227  *
1228  * For version 0 file format; this function is only for backwards
1229  * compatibility for files created with the prior versions of
1230  * eCryptfs.
1231  */
1232 static void set_default_header_data(struct ecryptfs_crypt_stat *crypt_stat)
1233 {
1234         crypt_stat->metadata_size = ECRYPTFS_MINIMUM_HEADER_EXTENT_SIZE;
1235 }
1236
1237 void ecryptfs_i_size_init(const char *page_virt, struct inode *inode)
1238 {
1239         struct ecryptfs_mount_crypt_stat *mount_crypt_stat;
1240         struct ecryptfs_crypt_stat *crypt_stat;
1241         u64 file_size;
1242
1243         crypt_stat = &ecryptfs_inode_to_private(inode)->crypt_stat;
1244         mount_crypt_stat =
1245                 &ecryptfs_superblock_to_private(inode->i_sb)->mount_crypt_stat;
1246         if (mount_crypt_stat->flags & ECRYPTFS_ENCRYPTED_VIEW_ENABLED) {
1247                 file_size = i_size_read(ecryptfs_inode_to_lower(inode));
1248                 if (crypt_stat->flags & ECRYPTFS_METADATA_IN_XATTR)
1249                         file_size += crypt_stat->metadata_size;
1250         } else
1251                 file_size = get_unaligned_be64(page_virt);
1252         i_size_write(inode, (loff_t)file_size);
1253         crypt_stat->flags |= ECRYPTFS_I_SIZE_INITIALIZED;
1254 }
1255
1256 /**
1257  * ecryptfs_read_headers_virt
1258  * @page_virt: The virtual address into which to read the headers
1259  * @crypt_stat: The cryptographic context
1260  * @ecryptfs_dentry: The eCryptfs dentry
1261  * @validate_header_size: Whether to validate the header size while reading
1262  *
1263  * Read/parse the header data. The header format is detailed in the
1264  * comment block for the ecryptfs_write_headers_virt() function.
1265  *
1266  * Returns zero on success
1267  */
1268 static int ecryptfs_read_headers_virt(char *page_virt,
1269                                       struct ecryptfs_crypt_stat *crypt_stat,
1270                                       struct dentry *ecryptfs_dentry,
1271                                       int validate_header_size)
1272 {
1273         int rc = 0;
1274         int offset;
1275         int bytes_read;
1276
1277         ecryptfs_set_default_sizes(crypt_stat);
1278         crypt_stat->mount_crypt_stat = &ecryptfs_superblock_to_private(
1279                 ecryptfs_dentry->d_sb)->mount_crypt_stat;
1280         offset = ECRYPTFS_FILE_SIZE_BYTES;
1281         rc = ecryptfs_validate_marker(page_virt + offset);
1282         if (rc)
1283                 goto out;
1284         if (!(crypt_stat->flags & ECRYPTFS_I_SIZE_INITIALIZED))
1285                 ecryptfs_i_size_init(page_virt, d_inode(ecryptfs_dentry));
1286         offset += MAGIC_ECRYPTFS_MARKER_SIZE_BYTES;
1287         ecryptfs_process_flags(crypt_stat, (page_virt + offset), &bytes_read);
1288         if (crypt_stat->file_version > ECRYPTFS_SUPPORTED_FILE_VERSION) {
1289                 ecryptfs_printk(KERN_WARNING, "File version is [%d]; only "
1290                                 "file version [%d] is supported by this "
1291                                 "version of eCryptfs\n",
1292                                 crypt_stat->file_version,
1293                                 ECRYPTFS_SUPPORTED_FILE_VERSION);
1294                 rc = -EINVAL;
1295                 goto out;
1296         }
1297         offset += bytes_read;
1298         if (crypt_stat->file_version >= 1) {
1299                 rc = parse_header_metadata(crypt_stat, (page_virt + offset),
1300                                            &bytes_read, validate_header_size);
1301                 if (rc) {
1302                         ecryptfs_printk(KERN_WARNING, "Error reading header "
1303                                         "metadata; rc = [%d]\n", rc);
1304                 }
1305                 offset += bytes_read;
1306         } else
1307                 set_default_header_data(crypt_stat);
1308         rc = ecryptfs_parse_packet_set(crypt_stat, (page_virt + offset),
1309                                        ecryptfs_dentry);
1310 out:
1311         return rc;
1312 }
1313
1314 /**
1315  * ecryptfs_read_xattr_region
1316  * @page_virt: The vitual address into which to read the xattr data
1317  * @ecryptfs_inode: The eCryptfs inode
1318  *
1319  * Attempts to read the crypto metadata from the extended attribute
1320  * region of the lower file.
1321  *
1322  * Returns zero on success; non-zero on error
1323  */
1324 int ecryptfs_read_xattr_region(char *page_virt, struct inode *ecryptfs_inode)
1325 {
1326         struct dentry *lower_dentry =
1327                 ecryptfs_inode_to_private(ecryptfs_inode)->lower_file->f_path.dentry;
1328         ssize_t size;
1329         int rc = 0;
1330
1331         size = ecryptfs_getxattr_lower(lower_dentry,
1332                                        ecryptfs_inode_to_lower(ecryptfs_inode),
1333                                        ECRYPTFS_XATTR_NAME,
1334                                        page_virt, ECRYPTFS_DEFAULT_EXTENT_SIZE);
1335         if (size < 0) {
1336                 if (unlikely(ecryptfs_verbosity > 0))
1337                         printk(KERN_INFO "Error attempting to read the [%s] "
1338                                "xattr from the lower file; return value = "
1339                                "[%zd]\n", ECRYPTFS_XATTR_NAME, size);
1340                 rc = -EINVAL;
1341                 goto out;
1342         }
1343 out:
1344         return rc;
1345 }
1346
1347 int ecryptfs_read_and_validate_xattr_region(struct dentry *dentry,
1348                                             struct inode *inode)
1349 {
1350         u8 file_size[ECRYPTFS_SIZE_AND_MARKER_BYTES];
1351         u8 *marker = file_size + ECRYPTFS_FILE_SIZE_BYTES;
1352         int rc;
1353
1354         rc = ecryptfs_getxattr_lower(ecryptfs_dentry_to_lower(dentry),
1355                                      ecryptfs_inode_to_lower(inode),
1356                                      ECRYPTFS_XATTR_NAME, file_size,
1357                                      ECRYPTFS_SIZE_AND_MARKER_BYTES);
1358         if (rc < 0)
1359                 return rc;
1360         else if (rc < ECRYPTFS_SIZE_AND_MARKER_BYTES)
1361                 return -EINVAL;
1362         rc = ecryptfs_validate_marker(marker);
1363         if (!rc)
1364                 ecryptfs_i_size_init(file_size, inode);
1365         return rc;
1366 }
1367
1368 /*
1369  * ecryptfs_read_metadata
1370  *
1371  * Common entry point for reading file metadata. From here, we could
1372  * retrieve the header information from the header region of the file,
1373  * the xattr region of the file, or some other repository that is
1374  * stored separately from the file itself. The current implementation
1375  * supports retrieving the metadata information from the file contents
1376  * and from the xattr region.
1377  *
1378  * Returns zero if valid headers found and parsed; non-zero otherwise
1379  */
1380 int ecryptfs_read_metadata(struct dentry *ecryptfs_dentry)
1381 {
1382         int rc;
1383         char *page_virt;
1384         struct inode *ecryptfs_inode = d_inode(ecryptfs_dentry);
1385         struct ecryptfs_crypt_stat *crypt_stat =
1386             &ecryptfs_inode_to_private(ecryptfs_inode)->crypt_stat;
1387         struct ecryptfs_mount_crypt_stat *mount_crypt_stat =
1388                 &ecryptfs_superblock_to_private(
1389                         ecryptfs_dentry->d_sb)->mount_crypt_stat;
1390
1391         ecryptfs_copy_mount_wide_flags_to_inode_flags(crypt_stat,
1392                                                       mount_crypt_stat);
1393         /* Read the first page from the underlying file */
1394         page_virt = kmem_cache_alloc(ecryptfs_header_cache, GFP_USER);
1395         if (!page_virt) {
1396                 rc = -ENOMEM;
1397                 goto out;
1398         }
1399         rc = ecryptfs_read_lower(page_virt, 0, crypt_stat->extent_size,
1400                                  ecryptfs_inode);
1401         if (rc >= 0)
1402                 rc = ecryptfs_read_headers_virt(page_virt, crypt_stat,
1403                                                 ecryptfs_dentry,
1404                                                 ECRYPTFS_VALIDATE_HEADER_SIZE);
1405         if (rc) {
1406                 /* metadata is not in the file header, so try xattrs */
1407                 memset(page_virt, 0, PAGE_SIZE);
1408                 rc = ecryptfs_read_xattr_region(page_virt, ecryptfs_inode);
1409                 if (rc) {
1410                         printk(KERN_DEBUG "Valid eCryptfs headers not found in "
1411                                "file header region or xattr region, inode %lu\n",
1412                                 ecryptfs_inode->i_ino);
1413                         rc = -EINVAL;
1414                         goto out;
1415                 }
1416                 rc = ecryptfs_read_headers_virt(page_virt, crypt_stat,
1417                                                 ecryptfs_dentry,
1418                                                 ECRYPTFS_DONT_VALIDATE_HEADER_SIZE);
1419                 if (rc) {
1420                         printk(KERN_DEBUG "Valid eCryptfs headers not found in "
1421                                "file xattr region either, inode %lu\n",
1422                                 ecryptfs_inode->i_ino);
1423                         rc = -EINVAL;
1424                 }
1425                 if (crypt_stat->mount_crypt_stat->flags
1426                     & ECRYPTFS_XATTR_METADATA_ENABLED) {
1427                         crypt_stat->flags |= ECRYPTFS_METADATA_IN_XATTR;
1428                 } else {
1429                         printk(KERN_WARNING "Attempt to access file with "
1430                                "crypto metadata only in the extended attribute "
1431                                "region, but eCryptfs was mounted without "
1432                                "xattr support enabled. eCryptfs will not treat "
1433                                "this like an encrypted file, inode %lu\n",
1434                                 ecryptfs_inode->i_ino);
1435                         rc = -EINVAL;
1436                 }
1437         }
1438 out:
1439         if (page_virt) {
1440                 memset(page_virt, 0, PAGE_SIZE);
1441                 kmem_cache_free(ecryptfs_header_cache, page_virt);
1442         }
1443         return rc;
1444 }
1445
1446 /*
1447  * ecryptfs_encrypt_filename - encrypt filename
1448  *
1449  * CBC-encrypts the filename. We do not want to encrypt the same
1450  * filename with the same key and IV, which may happen with hard
1451  * links, so we prepend random bits to each filename.
1452  *
1453  * Returns zero on success; non-zero otherwise
1454  */
1455 static int
1456 ecryptfs_encrypt_filename(struct ecryptfs_filename *filename,
1457                           struct ecryptfs_mount_crypt_stat *mount_crypt_stat)
1458 {
1459         int rc = 0;
1460
1461         filename->encrypted_filename = NULL;
1462         filename->encrypted_filename_size = 0;
1463         if (mount_crypt_stat && (mount_crypt_stat->flags
1464                                      & ECRYPTFS_GLOBAL_ENCFN_USE_MOUNT_FNEK)) {
1465                 size_t packet_size;
1466                 size_t remaining_bytes;
1467
1468                 rc = ecryptfs_write_tag_70_packet(
1469                         NULL, NULL,
1470                         &filename->encrypted_filename_size,
1471                         mount_crypt_stat, NULL,
1472                         filename->filename_size);
1473                 if (rc) {
1474                         printk(KERN_ERR "%s: Error attempting to get packet "
1475                                "size for tag 72; rc = [%d]\n", __func__,
1476                                rc);
1477                         filename->encrypted_filename_size = 0;
1478                         goto out;
1479                 }
1480                 filename->encrypted_filename =
1481                         kmalloc(filename->encrypted_filename_size, GFP_KERNEL);
1482                 if (!filename->encrypted_filename) {
1483                         rc = -ENOMEM;
1484                         goto out;
1485                 }
1486                 remaining_bytes = filename->encrypted_filename_size;
1487                 rc = ecryptfs_write_tag_70_packet(filename->encrypted_filename,
1488                                                   &remaining_bytes,
1489                                                   &packet_size,
1490                                                   mount_crypt_stat,
1491                                                   filename->filename,
1492                                                   filename->filename_size);
1493                 if (rc) {
1494                         printk(KERN_ERR "%s: Error attempting to generate "
1495                                "tag 70 packet; rc = [%d]\n", __func__,
1496                                rc);
1497                         kfree(filename->encrypted_filename);
1498                         filename->encrypted_filename = NULL;
1499                         filename->encrypted_filename_size = 0;
1500                         goto out;
1501                 }
1502                 filename->encrypted_filename_size = packet_size;
1503         } else {
1504                 printk(KERN_ERR "%s: No support for requested filename "
1505                        "encryption method in this release\n", __func__);
1506                 rc = -EOPNOTSUPP;
1507                 goto out;
1508         }
1509 out:
1510         return rc;
1511 }
1512
1513 static int ecryptfs_copy_filename(char **copied_name, size_t *copied_name_size,
1514                                   const char *name, size_t name_size)
1515 {
1516         int rc = 0;
1517
1518         (*copied_name) = kmalloc((name_size + 1), GFP_KERNEL);
1519         if (!(*copied_name)) {
1520                 rc = -ENOMEM;
1521                 goto out;
1522         }
1523         memcpy((void *)(*copied_name), (void *)name, name_size);
1524         (*copied_name)[(name_size)] = '\0';     /* Only for convenience
1525                                                  * in printing out the
1526                                                  * string in debug
1527                                                  * messages */
1528         (*copied_name_size) = name_size;
1529 out:
1530         return rc;
1531 }
1532
1533 /**
1534  * ecryptfs_process_key_cipher - Perform key cipher initialization.
1535  * @key_tfm: Crypto context for key material, set by this function
1536  * @cipher_name: Name of the cipher
1537  * @key_size: Size of the key in bytes
1538  *
1539  * Returns zero on success. Any crypto_tfm structs allocated here
1540  * should be released by other functions, such as on a superblock put
1541  * event, regardless of whether this function succeeds for fails.
1542  */
1543 static int
1544 ecryptfs_process_key_cipher(struct crypto_skcipher **key_tfm,
1545                             char *cipher_name, size_t *key_size)
1546 {
1547         char dummy_key[ECRYPTFS_MAX_KEY_BYTES];
1548         char *full_alg_name = NULL;
1549         int rc;
1550
1551         *key_tfm = NULL;
1552         if (*key_size > ECRYPTFS_MAX_KEY_BYTES) {
1553                 rc = -EINVAL;
1554                 printk(KERN_ERR "Requested key size is [%zd] bytes; maximum "
1555                       "allowable is [%d]\n", *key_size, ECRYPTFS_MAX_KEY_BYTES);
1556                 goto out;
1557         }
1558         rc = ecryptfs_crypto_api_algify_cipher_name(&full_alg_name, cipher_name,
1559                                                     "ecb");
1560         if (rc)
1561                 goto out;
1562         *key_tfm = crypto_alloc_skcipher(full_alg_name, 0, CRYPTO_ALG_ASYNC);
1563         if (IS_ERR(*key_tfm)) {
1564                 rc = PTR_ERR(*key_tfm);
1565                 printk(KERN_ERR "Unable to allocate crypto cipher with name "
1566                        "[%s]; rc = [%d]\n", full_alg_name, rc);
1567                 goto out;
1568         }
1569         crypto_skcipher_set_flags(*key_tfm, CRYPTO_TFM_REQ_FORBID_WEAK_KEYS);
1570         if (*key_size == 0)
1571                 *key_size = crypto_skcipher_max_keysize(*key_tfm);
1572         get_random_bytes(dummy_key, *key_size);
1573         rc = crypto_skcipher_setkey(*key_tfm, dummy_key, *key_size);
1574         if (rc) {
1575                 printk(KERN_ERR "Error attempting to set key of size [%zd] for "
1576                        "cipher [%s]; rc = [%d]\n", *key_size, full_alg_name,
1577                        rc);
1578                 rc = -EINVAL;
1579                 goto out;
1580         }
1581 out:
1582         kfree(full_alg_name);
1583         return rc;
1584 }
1585
1586 struct kmem_cache *ecryptfs_key_tfm_cache;
1587 static struct list_head key_tfm_list;
1588 DEFINE_MUTEX(key_tfm_list_mutex);
1589
1590 int __init ecryptfs_init_crypto(void)
1591 {
1592         INIT_LIST_HEAD(&key_tfm_list);
1593         return 0;
1594 }
1595
1596 /**
1597  * ecryptfs_destroy_crypto - free all cached key_tfms on key_tfm_list
1598  *
1599  * Called only at module unload time
1600  */
1601 int ecryptfs_destroy_crypto(void)
1602 {
1603         struct ecryptfs_key_tfm *key_tfm, *key_tfm_tmp;
1604
1605         mutex_lock(&key_tfm_list_mutex);
1606         list_for_each_entry_safe(key_tfm, key_tfm_tmp, &key_tfm_list,
1607                                  key_tfm_list) {
1608                 list_del(&key_tfm->key_tfm_list);
1609                 crypto_free_skcipher(key_tfm->key_tfm);
1610                 kmem_cache_free(ecryptfs_key_tfm_cache, key_tfm);
1611         }
1612         mutex_unlock(&key_tfm_list_mutex);
1613         return 0;
1614 }
1615
1616 int
1617 ecryptfs_add_new_key_tfm(struct ecryptfs_key_tfm **key_tfm, char *cipher_name,
1618                          size_t key_size)
1619 {
1620         struct ecryptfs_key_tfm *tmp_tfm;
1621         int rc = 0;
1622
1623         BUG_ON(!mutex_is_locked(&key_tfm_list_mutex));
1624
1625         tmp_tfm = kmem_cache_alloc(ecryptfs_key_tfm_cache, GFP_KERNEL);
1626         if (key_tfm)
1627                 (*key_tfm) = tmp_tfm;
1628         if (!tmp_tfm) {
1629                 rc = -ENOMEM;
1630                 goto out;
1631         }
1632         mutex_init(&tmp_tfm->key_tfm_mutex);
1633         strncpy(tmp_tfm->cipher_name, cipher_name,
1634                 ECRYPTFS_MAX_CIPHER_NAME_SIZE);
1635         tmp_tfm->cipher_name[ECRYPTFS_MAX_CIPHER_NAME_SIZE] = '\0';
1636         tmp_tfm->key_size = key_size;
1637         rc = ecryptfs_process_key_cipher(&tmp_tfm->key_tfm,
1638                                          tmp_tfm->cipher_name,
1639                                          &tmp_tfm->key_size);
1640         if (rc) {
1641                 printk(KERN_ERR "Error attempting to initialize key TFM "
1642                        "cipher with name = [%s]; rc = [%d]\n",
1643                        tmp_tfm->cipher_name, rc);
1644                 kmem_cache_free(ecryptfs_key_tfm_cache, tmp_tfm);
1645                 if (key_tfm)
1646                         (*key_tfm) = NULL;
1647                 goto out;
1648         }
1649         list_add(&tmp_tfm->key_tfm_list, &key_tfm_list);
1650 out:
1651         return rc;
1652 }
1653
1654 /**
1655  * ecryptfs_tfm_exists - Search for existing tfm for cipher_name.
1656  * @cipher_name: the name of the cipher to search for
1657  * @key_tfm: set to corresponding tfm if found
1658  *
1659  * Searches for cached key_tfm matching @cipher_name
1660  * Must be called with &key_tfm_list_mutex held
1661  * Returns 1 if found, with @key_tfm set
1662  * Returns 0 if not found, with @key_tfm set to NULL
1663  */
1664 int ecryptfs_tfm_exists(char *cipher_name, struct ecryptfs_key_tfm **key_tfm)
1665 {
1666         struct ecryptfs_key_tfm *tmp_key_tfm;
1667
1668         BUG_ON(!mutex_is_locked(&key_tfm_list_mutex));
1669
1670         list_for_each_entry(tmp_key_tfm, &key_tfm_list, key_tfm_list) {
1671                 if (strcmp(tmp_key_tfm->cipher_name, cipher_name) == 0) {
1672                         if (key_tfm)
1673                                 (*key_tfm) = tmp_key_tfm;
1674                         return 1;
1675                 }
1676         }
1677         if (key_tfm)
1678                 (*key_tfm) = NULL;
1679         return 0;
1680 }
1681
1682 /**
1683  * ecryptfs_get_tfm_and_mutex_for_cipher_name
1684  *
1685  * @tfm: set to cached tfm found, or new tfm created
1686  * @tfm_mutex: set to mutex for cached tfm found, or new tfm created
1687  * @cipher_name: the name of the cipher to search for and/or add
1688  *
1689  * Sets pointers to @tfm & @tfm_mutex matching @cipher_name.
1690  * Searches for cached item first, and creates new if not found.
1691  * Returns 0 on success, non-zero if adding new cipher failed
1692  */
1693 int ecryptfs_get_tfm_and_mutex_for_cipher_name(struct crypto_skcipher **tfm,
1694                                                struct mutex **tfm_mutex,
1695                                                char *cipher_name)
1696 {
1697         struct ecryptfs_key_tfm *key_tfm;
1698         int rc = 0;
1699
1700         (*tfm) = NULL;
1701         (*tfm_mutex) = NULL;
1702
1703         mutex_lock(&key_tfm_list_mutex);
1704         if (!ecryptfs_tfm_exists(cipher_name, &key_tfm)) {
1705                 rc = ecryptfs_add_new_key_tfm(&key_tfm, cipher_name, 0);
1706                 if (rc) {
1707                         printk(KERN_ERR "Error adding new key_tfm to list; "
1708                                         "rc = [%d]\n", rc);
1709                         goto out;
1710                 }
1711         }
1712         (*tfm) = key_tfm->key_tfm;
1713         (*tfm_mutex) = &key_tfm->key_tfm_mutex;
1714 out:
1715         mutex_unlock(&key_tfm_list_mutex);
1716         return rc;
1717 }
1718
1719 /* 64 characters forming a 6-bit target field */
1720 static unsigned char *portable_filename_chars = ("-.0123456789ABCD"
1721                                                  "EFGHIJKLMNOPQRST"
1722                                                  "UVWXYZabcdefghij"
1723                                                  "klmnopqrstuvwxyz");
1724
1725 /* We could either offset on every reverse map or just pad some 0x00's
1726  * at the front here */
1727 static const unsigned char filename_rev_map[256] = {
1728         0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* 7 */
1729         0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* 15 */
1730         0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* 23 */
1731         0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* 31 */
1732         0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* 39 */
1733         0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x01, 0x00, /* 47 */
1734         0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08, 0x09, /* 55 */
1735         0x0A, 0x0B, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* 63 */
1736         0x00, 0x0C, 0x0D, 0x0E, 0x0F, 0x10, 0x11, 0x12, /* 71 */
1737         0x13, 0x14, 0x15, 0x16, 0x17, 0x18, 0x19, 0x1A, /* 79 */
1738         0x1B, 0x1C, 0x1D, 0x1E, 0x1F, 0x20, 0x21, 0x22, /* 87 */
1739         0x23, 0x24, 0x25, 0x00, 0x00, 0x00, 0x00, 0x00, /* 95 */
1740         0x00, 0x26, 0x27, 0x28, 0x29, 0x2A, 0x2B, 0x2C, /* 103 */
1741         0x2D, 0x2E, 0x2F, 0x30, 0x31, 0x32, 0x33, 0x34, /* 111 */
1742         0x35, 0x36, 0x37, 0x38, 0x39, 0x3A, 0x3B, 0x3C, /* 119 */
1743         0x3D, 0x3E, 0x3F /* 123 - 255 initialized to 0x00 */
1744 };
1745
1746 /**
1747  * ecryptfs_encode_for_filename
1748  * @dst: Destination location for encoded filename
1749  * @dst_size: Size of the encoded filename in bytes
1750  * @src: Source location for the filename to encode
1751  * @src_size: Size of the source in bytes
1752  */
1753 static void ecryptfs_encode_for_filename(unsigned char *dst, size_t *dst_size,
1754                                   unsigned char *src, size_t src_size)
1755 {
1756         size_t num_blocks;
1757         size_t block_num = 0;
1758         size_t dst_offset = 0;
1759         unsigned char last_block[3];
1760
1761         if (src_size == 0) {
1762                 (*dst_size) = 0;
1763                 goto out;
1764         }
1765         num_blocks = (src_size / 3);
1766         if ((src_size % 3) == 0) {
1767                 memcpy(last_block, (&src[src_size - 3]), 3);
1768         } else {
1769                 num_blocks++;
1770                 last_block[2] = 0x00;
1771                 switch (src_size % 3) {
1772                 case 1:
1773                         last_block[0] = src[src_size - 1];
1774                         last_block[1] = 0x00;
1775                         break;
1776                 case 2:
1777                         last_block[0] = src[src_size - 2];
1778                         last_block[1] = src[src_size - 1];
1779                 }
1780         }
1781         (*dst_size) = (num_blocks * 4);
1782         if (!dst)
1783                 goto out;
1784         while (block_num < num_blocks) {
1785                 unsigned char *src_block;
1786                 unsigned char dst_block[4];
1787
1788                 if (block_num == (num_blocks - 1))
1789                         src_block = last_block;
1790                 else
1791                         src_block = &src[block_num * 3];
1792                 dst_block[0] = ((src_block[0] >> 2) & 0x3F);
1793                 dst_block[1] = (((src_block[0] << 4) & 0x30)
1794                                 | ((src_block[1] >> 4) & 0x0F));
1795                 dst_block[2] = (((src_block[1] << 2) & 0x3C)
1796                                 | ((src_block[2] >> 6) & 0x03));
1797                 dst_block[3] = (src_block[2] & 0x3F);
1798                 dst[dst_offset++] = portable_filename_chars[dst_block[0]];
1799                 dst[dst_offset++] = portable_filename_chars[dst_block[1]];
1800                 dst[dst_offset++] = portable_filename_chars[dst_block[2]];
1801                 dst[dst_offset++] = portable_filename_chars[dst_block[3]];
1802                 block_num++;
1803         }
1804 out:
1805         return;
1806 }
1807
1808 static size_t ecryptfs_max_decoded_size(size_t encoded_size)
1809 {
1810         /* Not exact; conservatively long. Every block of 4
1811          * encoded characters decodes into a block of 3
1812          * decoded characters. This segment of code provides
1813          * the caller with the maximum amount of allocated
1814          * space that @dst will need to point to in a
1815          * subsequent call. */
1816         return ((encoded_size + 1) * 3) / 4;
1817 }
1818
1819 /**
1820  * ecryptfs_decode_from_filename
1821  * @dst: If NULL, this function only sets @dst_size and returns. If
1822  *       non-NULL, this function decodes the encoded octets in @src
1823  *       into the memory that @dst points to.
1824  * @dst_size: Set to the size of the decoded string.
1825  * @src: The encoded set of octets to decode.
1826  * @src_size: The size of the encoded set of octets to decode.
1827  */
1828 static void
1829 ecryptfs_decode_from_filename(unsigned char *dst, size_t *dst_size,
1830                               const unsigned char *src, size_t src_size)
1831 {
1832         u8 current_bit_offset = 0;
1833         size_t src_byte_offset = 0;
1834         size_t dst_byte_offset = 0;
1835
1836         if (!dst) {
1837                 (*dst_size) = ecryptfs_max_decoded_size(src_size);
1838                 goto out;
1839         }
1840         while (src_byte_offset < src_size) {
1841                 unsigned char src_byte =
1842                                 filename_rev_map[(int)src[src_byte_offset]];
1843
1844                 switch (current_bit_offset) {
1845                 case 0:
1846                         dst[dst_byte_offset] = (src_byte << 2);
1847                         current_bit_offset = 6;
1848                         break;
1849                 case 6:
1850                         dst[dst_byte_offset++] |= (src_byte >> 4);
1851                         dst[dst_byte_offset] = ((src_byte & 0xF)
1852                                                  << 4);
1853                         current_bit_offset = 4;
1854                         break;
1855                 case 4:
1856                         dst[dst_byte_offset++] |= (src_byte >> 2);
1857                         dst[dst_byte_offset] = (src_byte << 6);
1858                         current_bit_offset = 2;
1859                         break;
1860                 case 2:
1861                         dst[dst_byte_offset++] |= (src_byte);
1862                         current_bit_offset = 0;
1863                         break;
1864                 }
1865                 src_byte_offset++;
1866         }
1867         (*dst_size) = dst_byte_offset;
1868 out:
1869         return;
1870 }
1871
1872 /**
1873  * ecryptfs_encrypt_and_encode_filename - converts a plaintext file name to cipher text
1874  * @encoded_name: The encrypted name
1875  * @encoded_name_size: Length of the encrypted name
1876  * @mount_crypt_stat: The crypt_stat struct associated with the file name to encode
1877  * @name: The plaintext name
1878  * @name_size: The length of the plaintext name
1879  *
1880  * Encrypts and encodes a filename into something that constitutes a
1881  * valid filename for a filesystem, with printable characters.
1882  *
1883  * We assume that we have a properly initialized crypto context,
1884  * pointed to by crypt_stat->tfm.
1885  *
1886  * Returns zero on success; non-zero on otherwise
1887  */
1888 int ecryptfs_encrypt_and_encode_filename(
1889         char **encoded_name,
1890         size_t *encoded_name_size,
1891         struct ecryptfs_mount_crypt_stat *mount_crypt_stat,
1892         const char *name, size_t name_size)
1893 {
1894         size_t encoded_name_no_prefix_size;
1895         int rc = 0;
1896
1897         (*encoded_name) = NULL;
1898         (*encoded_name_size) = 0;
1899         if (mount_crypt_stat && (mount_crypt_stat->flags
1900                                      & ECRYPTFS_GLOBAL_ENCRYPT_FILENAMES)) {
1901                 struct ecryptfs_filename *filename;
1902
1903                 filename = kzalloc(sizeof(*filename), GFP_KERNEL);
1904                 if (!filename) {
1905                         rc = -ENOMEM;
1906                         goto out;
1907                 }
1908                 filename->filename = (char *)name;
1909                 filename->filename_size = name_size;
1910                 rc = ecryptfs_encrypt_filename(filename, mount_crypt_stat);
1911                 if (rc) {
1912                         printk(KERN_ERR "%s: Error attempting to encrypt "
1913                                "filename; rc = [%d]\n", __func__, rc);
1914                         kfree(filename);
1915                         goto out;
1916                 }
1917                 ecryptfs_encode_for_filename(
1918                         NULL, &encoded_name_no_prefix_size,
1919                         filename->encrypted_filename,
1920                         filename->encrypted_filename_size);
1921                 if (mount_crypt_stat
1922                         && (mount_crypt_stat->flags
1923                             & ECRYPTFS_GLOBAL_ENCFN_USE_MOUNT_FNEK))
1924                         (*encoded_name_size) =
1925                                 (ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE
1926                                  + encoded_name_no_prefix_size);
1927                 else
1928                         (*encoded_name_size) =
1929                                 (ECRYPTFS_FEK_ENCRYPTED_FILENAME_PREFIX_SIZE
1930                                  + encoded_name_no_prefix_size);
1931                 (*encoded_name) = kmalloc((*encoded_name_size) + 1, GFP_KERNEL);
1932                 if (!(*encoded_name)) {
1933                         rc = -ENOMEM;
1934                         kfree(filename->encrypted_filename);
1935                         kfree(filename);
1936                         goto out;
1937                 }
1938                 if (mount_crypt_stat
1939                         && (mount_crypt_stat->flags
1940                             & ECRYPTFS_GLOBAL_ENCFN_USE_MOUNT_FNEK)) {
1941                         memcpy((*encoded_name),
1942                                ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX,
1943                                ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE);
1944                         ecryptfs_encode_for_filename(
1945                             ((*encoded_name)
1946                              + ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE),
1947                             &encoded_name_no_prefix_size,
1948                             filename->encrypted_filename,
1949                             filename->encrypted_filename_size);
1950                         (*encoded_name_size) =
1951                                 (ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE
1952                                  + encoded_name_no_prefix_size);
1953                         (*encoded_name)[(*encoded_name_size)] = '\0';
1954                 } else {
1955                         rc = -EOPNOTSUPP;
1956                 }
1957                 if (rc) {
1958                         printk(KERN_ERR "%s: Error attempting to encode "
1959                                "encrypted filename; rc = [%d]\n", __func__,
1960                                rc);
1961                         kfree((*encoded_name));
1962                         (*encoded_name) = NULL;
1963                         (*encoded_name_size) = 0;
1964                 }
1965                 kfree(filename->encrypted_filename);
1966                 kfree(filename);
1967         } else {
1968                 rc = ecryptfs_copy_filename(encoded_name,
1969                                             encoded_name_size,
1970                                             name, name_size);
1971         }
1972 out:
1973         return rc;
1974 }
1975
1976 static bool is_dot_dotdot(const char *name, size_t name_size)
1977 {
1978         if (name_size == 1 && name[0] == '.')
1979                 return true;
1980         else if (name_size == 2 && name[0] == '.' && name[1] == '.')
1981                 return true;
1982
1983         return false;
1984 }
1985
1986 /**
1987  * ecryptfs_decode_and_decrypt_filename - converts the encoded cipher text name to decoded plaintext
1988  * @plaintext_name: The plaintext name
1989  * @plaintext_name_size: The plaintext name size
1990  * @sb: Ecryptfs's super_block
1991  * @name: The filename in cipher text
1992  * @name_size: The cipher text name size
1993  *
1994  * Decrypts and decodes the filename.
1995  *
1996  * Returns zero on error; non-zero otherwise
1997  */
1998 int ecryptfs_decode_and_decrypt_filename(char **plaintext_name,
1999                                          size_t *plaintext_name_size,
2000                                          struct super_block *sb,
2001                                          const char *name, size_t name_size)
2002 {
2003         struct ecryptfs_mount_crypt_stat *mount_crypt_stat =
2004                 &ecryptfs_superblock_to_private(sb)->mount_crypt_stat;
2005         char *decoded_name;
2006         size_t decoded_name_size;
2007         size_t packet_size;
2008         int rc = 0;
2009
2010         if ((mount_crypt_stat->flags & ECRYPTFS_GLOBAL_ENCRYPT_FILENAMES) &&
2011             !(mount_crypt_stat->flags & ECRYPTFS_ENCRYPTED_VIEW_ENABLED)) {
2012                 if (is_dot_dotdot(name, name_size)) {
2013                         rc = ecryptfs_copy_filename(plaintext_name,
2014                                                     plaintext_name_size,
2015                                                     name, name_size);
2016                         goto out;
2017                 }
2018
2019                 if (name_size <= ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE ||
2020                     strncmp(name, ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX,
2021                             ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE)) {
2022                         rc = -EINVAL;
2023                         goto out;
2024                 }
2025
2026                 name += ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE;
2027                 name_size -= ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE;
2028                 ecryptfs_decode_from_filename(NULL, &decoded_name_size,
2029                                               name, name_size);
2030                 decoded_name = kmalloc(decoded_name_size, GFP_KERNEL);
2031                 if (!decoded_name) {
2032                         rc = -ENOMEM;
2033                         goto out;
2034                 }
2035                 ecryptfs_decode_from_filename(decoded_name, &decoded_name_size,
2036                                               name, name_size);
2037                 rc = ecryptfs_parse_tag_70_packet(plaintext_name,
2038                                                   plaintext_name_size,
2039                                                   &packet_size,
2040                                                   mount_crypt_stat,
2041                                                   decoded_name,
2042                                                   decoded_name_size);
2043                 if (rc) {
2044                         ecryptfs_printk(KERN_DEBUG,
2045                                         "%s: Could not parse tag 70 packet from filename\n",
2046                                         __func__);
2047                         goto out_free;
2048                 }
2049         } else {
2050                 rc = ecryptfs_copy_filename(plaintext_name,
2051                                             plaintext_name_size,
2052                                             name, name_size);
2053                 goto out;
2054         }
2055 out_free:
2056         kfree(decoded_name);
2057 out:
2058         return rc;
2059 }
2060
2061 #define ENC_NAME_MAX_BLOCKLEN_8_OR_16   143
2062
2063 int ecryptfs_set_f_namelen(long *namelen, long lower_namelen,
2064                            struct ecryptfs_mount_crypt_stat *mount_crypt_stat)
2065 {
2066         struct crypto_skcipher *tfm;
2067         struct mutex *tfm_mutex;
2068         size_t cipher_blocksize;
2069         int rc;
2070
2071         if (!(mount_crypt_stat->flags & ECRYPTFS_GLOBAL_ENCRYPT_FILENAMES)) {
2072                 (*namelen) = lower_namelen;
2073                 return 0;
2074         }
2075
2076         rc = ecryptfs_get_tfm_and_mutex_for_cipher_name(&tfm, &tfm_mutex,
2077                         mount_crypt_stat->global_default_fn_cipher_name);
2078         if (unlikely(rc)) {
2079                 (*namelen) = 0;
2080                 return rc;
2081         }
2082
2083         mutex_lock(tfm_mutex);
2084         cipher_blocksize = crypto_skcipher_blocksize(tfm);
2085         mutex_unlock(tfm_mutex);
2086
2087         /* Return an exact amount for the common cases */
2088         if (lower_namelen == NAME_MAX
2089             && (cipher_blocksize == 8 || cipher_blocksize == 16)) {
2090                 (*namelen) = ENC_NAME_MAX_BLOCKLEN_8_OR_16;
2091                 return 0;
2092         }
2093
2094         /* Return a safe estimate for the uncommon cases */
2095         (*namelen) = lower_namelen;
2096         (*namelen) -= ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE;
2097         /* Since this is the max decoded size, subtract 1 "decoded block" len */
2098         (*namelen) = ecryptfs_max_decoded_size(*namelen) - 3;
2099         (*namelen) -= ECRYPTFS_TAG_70_MAX_METADATA_SIZE;
2100         (*namelen) -= ECRYPTFS_FILENAME_MIN_RANDOM_PREPEND_BYTES;
2101         /* Worst case is that the filename is padded nearly a full block size */
2102         (*namelen) -= cipher_blocksize - 1;
2103
2104         if ((*namelen) < 0)
2105                 (*namelen) = 0;
2106
2107         return 0;
2108 }