Revert "ecryptfs: replace BUG_ON with error handling code"
[linux-2.6-microblaze.git] / fs / ecryptfs / crypto.c
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * eCryptfs: Linux filesystem encryption layer
4  *
5  * Copyright (C) 1997-2004 Erez Zadok
6  * Copyright (C) 2001-2004 Stony Brook University
7  * Copyright (C) 2004-2007 International Business Machines Corp.
8  *   Author(s): Michael A. Halcrow <mahalcro@us.ibm.com>
9  *              Michael C. Thompson <mcthomps@us.ibm.com>
10  */
11
12 #include <crypto/hash.h>
13 #include <crypto/skcipher.h>
14 #include <linux/fs.h>
15 #include <linux/mount.h>
16 #include <linux/pagemap.h>
17 #include <linux/random.h>
18 #include <linux/compiler.h>
19 #include <linux/key.h>
20 #include <linux/namei.h>
21 #include <linux/file.h>
22 #include <linux/scatterlist.h>
23 #include <linux/slab.h>
24 #include <asm/unaligned.h>
25 #include <linux/kernel.h>
26 #include <linux/xattr.h>
27 #include "ecryptfs_kernel.h"
28
29 #define DECRYPT         0
30 #define ENCRYPT         1
31
32 /**
33  * ecryptfs_from_hex
34  * @dst: Buffer to take the bytes from src hex; must be at least of
35  *       size (src_size / 2)
36  * @src: Buffer to be converted from a hex string representation to raw value
37  * @dst_size: size of dst buffer, or number of hex characters pairs to convert
38  */
39 void ecryptfs_from_hex(char *dst, char *src, int dst_size)
40 {
41         int x;
42         char tmp[3] = { 0, };
43
44         for (x = 0; x < dst_size; x++) {
45                 tmp[0] = src[x * 2];
46                 tmp[1] = src[x * 2 + 1];
47                 dst[x] = (unsigned char)simple_strtol(tmp, NULL, 16);
48         }
49 }
50
51 /**
52  * ecryptfs_calculate_md5 - calculates the md5 of @src
53  * @dst: Pointer to 16 bytes of allocated memory
54  * @crypt_stat: Pointer to crypt_stat struct for the current inode
55  * @src: Data to be md5'd
56  * @len: Length of @src
57  *
58  * Uses the allocated crypto context that crypt_stat references to
59  * generate the MD5 sum of the contents of src.
60  */
61 static int ecryptfs_calculate_md5(char *dst,
62                                   struct ecryptfs_crypt_stat *crypt_stat,
63                                   char *src, int len)
64 {
65         int rc = crypto_shash_tfm_digest(crypt_stat->hash_tfm, src, len, dst);
66
67         if (rc) {
68                 printk(KERN_ERR
69                        "%s: Error computing crypto hash; rc = [%d]\n",
70                        __func__, rc);
71                 goto out;
72         }
73 out:
74         return rc;
75 }
76
77 static int ecryptfs_crypto_api_algify_cipher_name(char **algified_name,
78                                                   char *cipher_name,
79                                                   char *chaining_modifier)
80 {
81         int cipher_name_len = strlen(cipher_name);
82         int chaining_modifier_len = strlen(chaining_modifier);
83         int algified_name_len;
84         int rc;
85
86         algified_name_len = (chaining_modifier_len + cipher_name_len + 3);
87         (*algified_name) = kmalloc(algified_name_len, GFP_KERNEL);
88         if (!(*algified_name)) {
89                 rc = -ENOMEM;
90                 goto out;
91         }
92         snprintf((*algified_name), algified_name_len, "%s(%s)",
93                  chaining_modifier, cipher_name);
94         rc = 0;
95 out:
96         return rc;
97 }
98
99 /**
100  * ecryptfs_derive_iv
101  * @iv: destination for the derived iv vale
102  * @crypt_stat: Pointer to crypt_stat struct for the current inode
103  * @offset: Offset of the extent whose IV we are to derive
104  *
105  * Generate the initialization vector from the given root IV and page
106  * offset.
107  *
108  * Returns zero on success; non-zero on error.
109  */
110 int ecryptfs_derive_iv(char *iv, struct ecryptfs_crypt_stat *crypt_stat,
111                        loff_t offset)
112 {
113         int rc = 0;
114         char dst[MD5_DIGEST_SIZE];
115         char src[ECRYPTFS_MAX_IV_BYTES + 16];
116
117         if (unlikely(ecryptfs_verbosity > 0)) {
118                 ecryptfs_printk(KERN_DEBUG, "root iv:\n");
119                 ecryptfs_dump_hex(crypt_stat->root_iv, crypt_stat->iv_bytes);
120         }
121         /* TODO: It is probably secure to just cast the least
122          * significant bits of the root IV into an unsigned long and
123          * add the offset to that rather than go through all this
124          * hashing business. -Halcrow */
125         memcpy(src, crypt_stat->root_iv, crypt_stat->iv_bytes);
126         memset((src + crypt_stat->iv_bytes), 0, 16);
127         snprintf((src + crypt_stat->iv_bytes), 16, "%lld", offset);
128         if (unlikely(ecryptfs_verbosity > 0)) {
129                 ecryptfs_printk(KERN_DEBUG, "source:\n");
130                 ecryptfs_dump_hex(src, (crypt_stat->iv_bytes + 16));
131         }
132         rc = ecryptfs_calculate_md5(dst, crypt_stat, src,
133                                     (crypt_stat->iv_bytes + 16));
134         if (rc) {
135                 ecryptfs_printk(KERN_WARNING, "Error attempting to compute "
136                                 "MD5 while generating IV for a page\n");
137                 goto out;
138         }
139         memcpy(iv, dst, crypt_stat->iv_bytes);
140         if (unlikely(ecryptfs_verbosity > 0)) {
141                 ecryptfs_printk(KERN_DEBUG, "derived iv:\n");
142                 ecryptfs_dump_hex(iv, crypt_stat->iv_bytes);
143         }
144 out:
145         return rc;
146 }
147
148 /**
149  * ecryptfs_init_crypt_stat
150  * @crypt_stat: Pointer to the crypt_stat struct to initialize.
151  *
152  * Initialize the crypt_stat structure.
153  */
154 int ecryptfs_init_crypt_stat(struct ecryptfs_crypt_stat *crypt_stat)
155 {
156         struct crypto_shash *tfm;
157         int rc;
158
159         tfm = crypto_alloc_shash(ECRYPTFS_DEFAULT_HASH, 0, 0);
160         if (IS_ERR(tfm)) {
161                 rc = PTR_ERR(tfm);
162                 ecryptfs_printk(KERN_ERR, "Error attempting to "
163                                 "allocate crypto context; rc = [%d]\n",
164                                 rc);
165                 return rc;
166         }
167
168         memset((void *)crypt_stat, 0, sizeof(struct ecryptfs_crypt_stat));
169         INIT_LIST_HEAD(&crypt_stat->keysig_list);
170         mutex_init(&crypt_stat->keysig_list_mutex);
171         mutex_init(&crypt_stat->cs_mutex);
172         mutex_init(&crypt_stat->cs_tfm_mutex);
173         crypt_stat->hash_tfm = tfm;
174         crypt_stat->flags |= ECRYPTFS_STRUCT_INITIALIZED;
175
176         return 0;
177 }
178
179 /**
180  * ecryptfs_destroy_crypt_stat
181  * @crypt_stat: Pointer to the crypt_stat struct to initialize.
182  *
183  * Releases all memory associated with a crypt_stat struct.
184  */
185 void ecryptfs_destroy_crypt_stat(struct ecryptfs_crypt_stat *crypt_stat)
186 {
187         struct ecryptfs_key_sig *key_sig, *key_sig_tmp;
188
189         crypto_free_skcipher(crypt_stat->tfm);
190         crypto_free_shash(crypt_stat->hash_tfm);
191         list_for_each_entry_safe(key_sig, key_sig_tmp,
192                                  &crypt_stat->keysig_list, crypt_stat_list) {
193                 list_del(&key_sig->crypt_stat_list);
194                 kmem_cache_free(ecryptfs_key_sig_cache, key_sig);
195         }
196         memset(crypt_stat, 0, sizeof(struct ecryptfs_crypt_stat));
197 }
198
199 void ecryptfs_destroy_mount_crypt_stat(
200         struct ecryptfs_mount_crypt_stat *mount_crypt_stat)
201 {
202         struct ecryptfs_global_auth_tok *auth_tok, *auth_tok_tmp;
203
204         if (!(mount_crypt_stat->flags & ECRYPTFS_MOUNT_CRYPT_STAT_INITIALIZED))
205                 return;
206         mutex_lock(&mount_crypt_stat->global_auth_tok_list_mutex);
207         list_for_each_entry_safe(auth_tok, auth_tok_tmp,
208                                  &mount_crypt_stat->global_auth_tok_list,
209                                  mount_crypt_stat_list) {
210                 list_del(&auth_tok->mount_crypt_stat_list);
211                 if (!(auth_tok->flags & ECRYPTFS_AUTH_TOK_INVALID))
212                         key_put(auth_tok->global_auth_tok_key);
213                 kmem_cache_free(ecryptfs_global_auth_tok_cache, auth_tok);
214         }
215         mutex_unlock(&mount_crypt_stat->global_auth_tok_list_mutex);
216         memset(mount_crypt_stat, 0, sizeof(struct ecryptfs_mount_crypt_stat));
217 }
218
219 /**
220  * virt_to_scatterlist
221  * @addr: Virtual address
222  * @size: Size of data; should be an even multiple of the block size
223  * @sg: Pointer to scatterlist array; set to NULL to obtain only
224  *      the number of scatterlist structs required in array
225  * @sg_size: Max array size
226  *
227  * Fills in a scatterlist array with page references for a passed
228  * virtual address.
229  *
230  * Returns the number of scatterlist structs in array used
231  */
232 int virt_to_scatterlist(const void *addr, int size, struct scatterlist *sg,
233                         int sg_size)
234 {
235         int i = 0;
236         struct page *pg;
237         int offset;
238         int remainder_of_page;
239
240         sg_init_table(sg, sg_size);
241
242         while (size > 0 && i < sg_size) {
243                 pg = virt_to_page(addr);
244                 offset = offset_in_page(addr);
245                 sg_set_page(&sg[i], pg, 0, offset);
246                 remainder_of_page = PAGE_SIZE - offset;
247                 if (size >= remainder_of_page) {
248                         sg[i].length = remainder_of_page;
249                         addr += remainder_of_page;
250                         size -= remainder_of_page;
251                 } else {
252                         sg[i].length = size;
253                         addr += size;
254                         size = 0;
255                 }
256                 i++;
257         }
258         if (size > 0)
259                 return -ENOMEM;
260         return i;
261 }
262
263 struct extent_crypt_result {
264         struct completion completion;
265         int rc;
266 };
267
268 static void extent_crypt_complete(struct crypto_async_request *req, int rc)
269 {
270         struct extent_crypt_result *ecr = req->data;
271
272         if (rc == -EINPROGRESS)
273                 return;
274
275         ecr->rc = rc;
276         complete(&ecr->completion);
277 }
278
279 /**
280  * crypt_scatterlist
281  * @crypt_stat: Pointer to the crypt_stat struct to initialize.
282  * @dst_sg: Destination of the data after performing the crypto operation
283  * @src_sg: Data to be encrypted or decrypted
284  * @size: Length of data
285  * @iv: IV to use
286  * @op: ENCRYPT or DECRYPT to indicate the desired operation
287  *
288  * Returns the number of bytes encrypted or decrypted; negative value on error
289  */
290 static int crypt_scatterlist(struct ecryptfs_crypt_stat *crypt_stat,
291                              struct scatterlist *dst_sg,
292                              struct scatterlist *src_sg, int size,
293                              unsigned char *iv, int op)
294 {
295         struct skcipher_request *req = NULL;
296         struct extent_crypt_result ecr;
297         int rc = 0;
298
299         BUG_ON(!crypt_stat || !crypt_stat->tfm
300                || !(crypt_stat->flags & ECRYPTFS_STRUCT_INITIALIZED));
301         if (unlikely(ecryptfs_verbosity > 0)) {
302                 ecryptfs_printk(KERN_DEBUG, "Key size [%zd]; key:\n",
303                                 crypt_stat->key_size);
304                 ecryptfs_dump_hex(crypt_stat->key,
305                                   crypt_stat->key_size);
306         }
307
308         init_completion(&ecr.completion);
309
310         mutex_lock(&crypt_stat->cs_tfm_mutex);
311         req = skcipher_request_alloc(crypt_stat->tfm, GFP_NOFS);
312         if (!req) {
313                 mutex_unlock(&crypt_stat->cs_tfm_mutex);
314                 rc = -ENOMEM;
315                 goto out;
316         }
317
318         skcipher_request_set_callback(req,
319                         CRYPTO_TFM_REQ_MAY_BACKLOG | CRYPTO_TFM_REQ_MAY_SLEEP,
320                         extent_crypt_complete, &ecr);
321         /* Consider doing this once, when the file is opened */
322         if (!(crypt_stat->flags & ECRYPTFS_KEY_SET)) {
323                 rc = crypto_skcipher_setkey(crypt_stat->tfm, crypt_stat->key,
324                                             crypt_stat->key_size);
325                 if (rc) {
326                         ecryptfs_printk(KERN_ERR,
327                                         "Error setting key; rc = [%d]\n",
328                                         rc);
329                         mutex_unlock(&crypt_stat->cs_tfm_mutex);
330                         rc = -EINVAL;
331                         goto out;
332                 }
333                 crypt_stat->flags |= ECRYPTFS_KEY_SET;
334         }
335         mutex_unlock(&crypt_stat->cs_tfm_mutex);
336         skcipher_request_set_crypt(req, src_sg, dst_sg, size, iv);
337         rc = op == ENCRYPT ? crypto_skcipher_encrypt(req) :
338                              crypto_skcipher_decrypt(req);
339         if (rc == -EINPROGRESS || rc == -EBUSY) {
340                 struct extent_crypt_result *ecr = req->base.data;
341
342                 wait_for_completion(&ecr->completion);
343                 rc = ecr->rc;
344                 reinit_completion(&ecr->completion);
345         }
346 out:
347         skcipher_request_free(req);
348         return rc;
349 }
350
351 /*
352  * lower_offset_for_page
353  *
354  * Convert an eCryptfs page index into a lower byte offset
355  */
356 static loff_t lower_offset_for_page(struct ecryptfs_crypt_stat *crypt_stat,
357                                     struct page *page)
358 {
359         return ecryptfs_lower_header_size(crypt_stat) +
360                ((loff_t)page->index << PAGE_SHIFT);
361 }
362
363 /**
364  * crypt_extent
365  * @crypt_stat: crypt_stat containing cryptographic context for the
366  *              encryption operation
367  * @dst_page: The page to write the result into
368  * @src_page: The page to read from
369  * @extent_offset: Page extent offset for use in generating IV
370  * @op: ENCRYPT or DECRYPT to indicate the desired operation
371  *
372  * Encrypts or decrypts one extent of data.
373  *
374  * Return zero on success; non-zero otherwise
375  */
376 static int crypt_extent(struct ecryptfs_crypt_stat *crypt_stat,
377                         struct page *dst_page,
378                         struct page *src_page,
379                         unsigned long extent_offset, int op)
380 {
381         pgoff_t page_index = op == ENCRYPT ? src_page->index : dst_page->index;
382         loff_t extent_base;
383         char extent_iv[ECRYPTFS_MAX_IV_BYTES];
384         struct scatterlist src_sg, dst_sg;
385         size_t extent_size = crypt_stat->extent_size;
386         int rc;
387
388         extent_base = (((loff_t)page_index) * (PAGE_SIZE / extent_size));
389         rc = ecryptfs_derive_iv(extent_iv, crypt_stat,
390                                 (extent_base + extent_offset));
391         if (rc) {
392                 ecryptfs_printk(KERN_ERR, "Error attempting to derive IV for "
393                         "extent [0x%.16llx]; rc = [%d]\n",
394                         (unsigned long long)(extent_base + extent_offset), rc);
395                 goto out;
396         }
397
398         sg_init_table(&src_sg, 1);
399         sg_init_table(&dst_sg, 1);
400
401         sg_set_page(&src_sg, src_page, extent_size,
402                     extent_offset * extent_size);
403         sg_set_page(&dst_sg, dst_page, extent_size,
404                     extent_offset * extent_size);
405
406         rc = crypt_scatterlist(crypt_stat, &dst_sg, &src_sg, extent_size,
407                                extent_iv, op);
408         if (rc < 0) {
409                 printk(KERN_ERR "%s: Error attempting to crypt page with "
410                        "page_index = [%ld], extent_offset = [%ld]; "
411                        "rc = [%d]\n", __func__, page_index, extent_offset, rc);
412                 goto out;
413         }
414         rc = 0;
415 out:
416         return rc;
417 }
418
419 /**
420  * ecryptfs_encrypt_page
421  * @page: Page mapped from the eCryptfs inode for the file; contains
422  *        decrypted content that needs to be encrypted (to a temporary
423  *        page; not in place) and written out to the lower file
424  *
425  * Encrypt an eCryptfs page. This is done on a per-extent basis. Note
426  * that eCryptfs pages may straddle the lower pages -- for instance,
427  * if the file was created on a machine with an 8K page size
428  * (resulting in an 8K header), and then the file is copied onto a
429  * host with a 32K page size, then when reading page 0 of the eCryptfs
430  * file, 24K of page 0 of the lower file will be read and decrypted,
431  * and then 8K of page 1 of the lower file will be read and decrypted.
432  *
433  * Returns zero on success; negative on error
434  */
435 int ecryptfs_encrypt_page(struct page *page)
436 {
437         struct inode *ecryptfs_inode;
438         struct ecryptfs_crypt_stat *crypt_stat;
439         char *enc_extent_virt;
440         struct page *enc_extent_page = NULL;
441         loff_t extent_offset;
442         loff_t lower_offset;
443         int rc = 0;
444
445         ecryptfs_inode = page->mapping->host;
446         crypt_stat =
447                 &(ecryptfs_inode_to_private(ecryptfs_inode)->crypt_stat);
448         BUG_ON(!(crypt_stat->flags & ECRYPTFS_ENCRYPTED));
449         enc_extent_page = alloc_page(GFP_USER);
450         if (!enc_extent_page) {
451                 rc = -ENOMEM;
452                 ecryptfs_printk(KERN_ERR, "Error allocating memory for "
453                                 "encrypted extent\n");
454                 goto out;
455         }
456
457         for (extent_offset = 0;
458              extent_offset < (PAGE_SIZE / crypt_stat->extent_size);
459              extent_offset++) {
460                 rc = crypt_extent(crypt_stat, enc_extent_page, page,
461                                   extent_offset, ENCRYPT);
462                 if (rc) {
463                         printk(KERN_ERR "%s: Error encrypting extent; "
464                                "rc = [%d]\n", __func__, rc);
465                         goto out;
466                 }
467         }
468
469         lower_offset = lower_offset_for_page(crypt_stat, page);
470         enc_extent_virt = kmap(enc_extent_page);
471         rc = ecryptfs_write_lower(ecryptfs_inode, enc_extent_virt, lower_offset,
472                                   PAGE_SIZE);
473         kunmap(enc_extent_page);
474         if (rc < 0) {
475                 ecryptfs_printk(KERN_ERR,
476                         "Error attempting to write lower page; rc = [%d]\n",
477                         rc);
478                 goto out;
479         }
480         rc = 0;
481 out:
482         if (enc_extent_page) {
483                 __free_page(enc_extent_page);
484         }
485         return rc;
486 }
487
488 /**
489  * ecryptfs_decrypt_page
490  * @page: Page mapped from the eCryptfs inode for the file; data read
491  *        and decrypted from the lower file will be written into this
492  *        page
493  *
494  * Decrypt an eCryptfs page. This is done on a per-extent basis. Note
495  * that eCryptfs pages may straddle the lower pages -- for instance,
496  * if the file was created on a machine with an 8K page size
497  * (resulting in an 8K header), and then the file is copied onto a
498  * host with a 32K page size, then when reading page 0 of the eCryptfs
499  * file, 24K of page 0 of the lower file will be read and decrypted,
500  * and then 8K of page 1 of the lower file will be read and decrypted.
501  *
502  * Returns zero on success; negative on error
503  */
504 int ecryptfs_decrypt_page(struct page *page)
505 {
506         struct inode *ecryptfs_inode;
507         struct ecryptfs_crypt_stat *crypt_stat;
508         char *page_virt;
509         unsigned long extent_offset;
510         loff_t lower_offset;
511         int rc = 0;
512
513         ecryptfs_inode = page->mapping->host;
514         crypt_stat =
515                 &(ecryptfs_inode_to_private(ecryptfs_inode)->crypt_stat);
516         BUG_ON(!(crypt_stat->flags & ECRYPTFS_ENCRYPTED));
517
518         lower_offset = lower_offset_for_page(crypt_stat, page);
519         page_virt = kmap(page);
520         rc = ecryptfs_read_lower(page_virt, lower_offset, PAGE_SIZE,
521                                  ecryptfs_inode);
522         kunmap(page);
523         if (rc < 0) {
524                 ecryptfs_printk(KERN_ERR,
525                         "Error attempting to read lower page; rc = [%d]\n",
526                         rc);
527                 goto out;
528         }
529
530         for (extent_offset = 0;
531              extent_offset < (PAGE_SIZE / crypt_stat->extent_size);
532              extent_offset++) {
533                 rc = crypt_extent(crypt_stat, page, page,
534                                   extent_offset, DECRYPT);
535                 if (rc) {
536                         printk(KERN_ERR "%s: Error decrypting extent; "
537                                "rc = [%d]\n", __func__, rc);
538                         goto out;
539                 }
540         }
541 out:
542         return rc;
543 }
544
545 #define ECRYPTFS_MAX_SCATTERLIST_LEN 4
546
547 /**
548  * ecryptfs_init_crypt_ctx
549  * @crypt_stat: Uninitialized crypt stats structure
550  *
551  * Initialize the crypto context.
552  *
553  * TODO: Performance: Keep a cache of initialized cipher contexts;
554  * only init if needed
555  */
556 int ecryptfs_init_crypt_ctx(struct ecryptfs_crypt_stat *crypt_stat)
557 {
558         char *full_alg_name;
559         int rc = -EINVAL;
560
561         ecryptfs_printk(KERN_DEBUG,
562                         "Initializing cipher [%s]; strlen = [%d]; "
563                         "key_size_bits = [%zd]\n",
564                         crypt_stat->cipher, (int)strlen(crypt_stat->cipher),
565                         crypt_stat->key_size << 3);
566         mutex_lock(&crypt_stat->cs_tfm_mutex);
567         if (crypt_stat->tfm) {
568                 rc = 0;
569                 goto out_unlock;
570         }
571         rc = ecryptfs_crypto_api_algify_cipher_name(&full_alg_name,
572                                                     crypt_stat->cipher, "cbc");
573         if (rc)
574                 goto out_unlock;
575         crypt_stat->tfm = crypto_alloc_skcipher(full_alg_name, 0, 0);
576         if (IS_ERR(crypt_stat->tfm)) {
577                 rc = PTR_ERR(crypt_stat->tfm);
578                 crypt_stat->tfm = NULL;
579                 ecryptfs_printk(KERN_ERR, "cryptfs: init_crypt_ctx(): "
580                                 "Error initializing cipher [%s]\n",
581                                 full_alg_name);
582                 goto out_free;
583         }
584         crypto_skcipher_set_flags(crypt_stat->tfm,
585                                   CRYPTO_TFM_REQ_FORBID_WEAK_KEYS);
586         rc = 0;
587 out_free:
588         kfree(full_alg_name);
589 out_unlock:
590         mutex_unlock(&crypt_stat->cs_tfm_mutex);
591         return rc;
592 }
593
594 static void set_extent_mask_and_shift(struct ecryptfs_crypt_stat *crypt_stat)
595 {
596         int extent_size_tmp;
597
598         crypt_stat->extent_mask = 0xFFFFFFFF;
599         crypt_stat->extent_shift = 0;
600         if (crypt_stat->extent_size == 0)
601                 return;
602         extent_size_tmp = crypt_stat->extent_size;
603         while ((extent_size_tmp & 0x01) == 0) {
604                 extent_size_tmp >>= 1;
605                 crypt_stat->extent_mask <<= 1;
606                 crypt_stat->extent_shift++;
607         }
608 }
609
610 void ecryptfs_set_default_sizes(struct ecryptfs_crypt_stat *crypt_stat)
611 {
612         /* Default values; may be overwritten as we are parsing the
613          * packets. */
614         crypt_stat->extent_size = ECRYPTFS_DEFAULT_EXTENT_SIZE;
615         set_extent_mask_and_shift(crypt_stat);
616         crypt_stat->iv_bytes = ECRYPTFS_DEFAULT_IV_BYTES;
617         if (crypt_stat->flags & ECRYPTFS_METADATA_IN_XATTR)
618                 crypt_stat->metadata_size = ECRYPTFS_MINIMUM_HEADER_EXTENT_SIZE;
619         else {
620                 if (PAGE_SIZE <= ECRYPTFS_MINIMUM_HEADER_EXTENT_SIZE)
621                         crypt_stat->metadata_size =
622                                 ECRYPTFS_MINIMUM_HEADER_EXTENT_SIZE;
623                 else
624                         crypt_stat->metadata_size = PAGE_SIZE;
625         }
626 }
627
628 /*
629  * ecryptfs_compute_root_iv
630  *
631  * On error, sets the root IV to all 0's.
632  */
633 int ecryptfs_compute_root_iv(struct ecryptfs_crypt_stat *crypt_stat)
634 {
635         int rc = 0;
636         char dst[MD5_DIGEST_SIZE];
637
638         BUG_ON(crypt_stat->iv_bytes > MD5_DIGEST_SIZE);
639         BUG_ON(crypt_stat->iv_bytes <= 0);
640         if (!(crypt_stat->flags & ECRYPTFS_KEY_VALID)) {
641                 rc = -EINVAL;
642                 ecryptfs_printk(KERN_WARNING, "Session key not valid; "
643                                 "cannot generate root IV\n");
644                 goto out;
645         }
646         rc = ecryptfs_calculate_md5(dst, crypt_stat, crypt_stat->key,
647                                     crypt_stat->key_size);
648         if (rc) {
649                 ecryptfs_printk(KERN_WARNING, "Error attempting to compute "
650                                 "MD5 while generating root IV\n");
651                 goto out;
652         }
653         memcpy(crypt_stat->root_iv, dst, crypt_stat->iv_bytes);
654 out:
655         if (rc) {
656                 memset(crypt_stat->root_iv, 0, crypt_stat->iv_bytes);
657                 crypt_stat->flags |= ECRYPTFS_SECURITY_WARNING;
658         }
659         return rc;
660 }
661
662 static void ecryptfs_generate_new_key(struct ecryptfs_crypt_stat *crypt_stat)
663 {
664         get_random_bytes(crypt_stat->key, crypt_stat->key_size);
665         crypt_stat->flags |= ECRYPTFS_KEY_VALID;
666         ecryptfs_compute_root_iv(crypt_stat);
667         if (unlikely(ecryptfs_verbosity > 0)) {
668                 ecryptfs_printk(KERN_DEBUG, "Generated new session key:\n");
669                 ecryptfs_dump_hex(crypt_stat->key,
670                                   crypt_stat->key_size);
671         }
672 }
673
674 /**
675  * ecryptfs_copy_mount_wide_flags_to_inode_flags
676  * @crypt_stat: The inode's cryptographic context
677  * @mount_crypt_stat: The mount point's cryptographic context
678  *
679  * This function propagates the mount-wide flags to individual inode
680  * flags.
681  */
682 static void ecryptfs_copy_mount_wide_flags_to_inode_flags(
683         struct ecryptfs_crypt_stat *crypt_stat,
684         struct ecryptfs_mount_crypt_stat *mount_crypt_stat)
685 {
686         if (mount_crypt_stat->flags & ECRYPTFS_XATTR_METADATA_ENABLED)
687                 crypt_stat->flags |= ECRYPTFS_METADATA_IN_XATTR;
688         if (mount_crypt_stat->flags & ECRYPTFS_ENCRYPTED_VIEW_ENABLED)
689                 crypt_stat->flags |= ECRYPTFS_VIEW_AS_ENCRYPTED;
690         if (mount_crypt_stat->flags & ECRYPTFS_GLOBAL_ENCRYPT_FILENAMES) {
691                 crypt_stat->flags |= ECRYPTFS_ENCRYPT_FILENAMES;
692                 if (mount_crypt_stat->flags
693                     & ECRYPTFS_GLOBAL_ENCFN_USE_MOUNT_FNEK)
694                         crypt_stat->flags |= ECRYPTFS_ENCFN_USE_MOUNT_FNEK;
695                 else if (mount_crypt_stat->flags
696                          & ECRYPTFS_GLOBAL_ENCFN_USE_FEK)
697                         crypt_stat->flags |= ECRYPTFS_ENCFN_USE_FEK;
698         }
699 }
700
701 static int ecryptfs_copy_mount_wide_sigs_to_inode_sigs(
702         struct ecryptfs_crypt_stat *crypt_stat,
703         struct ecryptfs_mount_crypt_stat *mount_crypt_stat)
704 {
705         struct ecryptfs_global_auth_tok *global_auth_tok;
706         int rc = 0;
707
708         mutex_lock(&crypt_stat->keysig_list_mutex);
709         mutex_lock(&mount_crypt_stat->global_auth_tok_list_mutex);
710
711         list_for_each_entry(global_auth_tok,
712                             &mount_crypt_stat->global_auth_tok_list,
713                             mount_crypt_stat_list) {
714                 if (global_auth_tok->flags & ECRYPTFS_AUTH_TOK_FNEK)
715                         continue;
716                 rc = ecryptfs_add_keysig(crypt_stat, global_auth_tok->sig);
717                 if (rc) {
718                         printk(KERN_ERR "Error adding keysig; rc = [%d]\n", rc);
719                         goto out;
720                 }
721         }
722
723 out:
724         mutex_unlock(&mount_crypt_stat->global_auth_tok_list_mutex);
725         mutex_unlock(&crypt_stat->keysig_list_mutex);
726         return rc;
727 }
728
729 /**
730  * ecryptfs_set_default_crypt_stat_vals
731  * @crypt_stat: The inode's cryptographic context
732  * @mount_crypt_stat: The mount point's cryptographic context
733  *
734  * Default values in the event that policy does not override them.
735  */
736 static void ecryptfs_set_default_crypt_stat_vals(
737         struct ecryptfs_crypt_stat *crypt_stat,
738         struct ecryptfs_mount_crypt_stat *mount_crypt_stat)
739 {
740         ecryptfs_copy_mount_wide_flags_to_inode_flags(crypt_stat,
741                                                       mount_crypt_stat);
742         ecryptfs_set_default_sizes(crypt_stat);
743         strcpy(crypt_stat->cipher, ECRYPTFS_DEFAULT_CIPHER);
744         crypt_stat->key_size = ECRYPTFS_DEFAULT_KEY_BYTES;
745         crypt_stat->flags &= ~(ECRYPTFS_KEY_VALID);
746         crypt_stat->file_version = ECRYPTFS_FILE_VERSION;
747         crypt_stat->mount_crypt_stat = mount_crypt_stat;
748 }
749
750 /**
751  * ecryptfs_new_file_context
752  * @ecryptfs_inode: The eCryptfs inode
753  *
754  * If the crypto context for the file has not yet been established,
755  * this is where we do that.  Establishing a new crypto context
756  * involves the following decisions:
757  *  - What cipher to use?
758  *  - What set of authentication tokens to use?
759  * Here we just worry about getting enough information into the
760  * authentication tokens so that we know that they are available.
761  * We associate the available authentication tokens with the new file
762  * via the set of signatures in the crypt_stat struct.  Later, when
763  * the headers are actually written out, we may again defer to
764  * userspace to perform the encryption of the session key; for the
765  * foreseeable future, this will be the case with public key packets.
766  *
767  * Returns zero on success; non-zero otherwise
768  */
769 int ecryptfs_new_file_context(struct inode *ecryptfs_inode)
770 {
771         struct ecryptfs_crypt_stat *crypt_stat =
772             &ecryptfs_inode_to_private(ecryptfs_inode)->crypt_stat;
773         struct ecryptfs_mount_crypt_stat *mount_crypt_stat =
774             &ecryptfs_superblock_to_private(
775                     ecryptfs_inode->i_sb)->mount_crypt_stat;
776         int cipher_name_len;
777         int rc = 0;
778
779         ecryptfs_set_default_crypt_stat_vals(crypt_stat, mount_crypt_stat);
780         crypt_stat->flags |= (ECRYPTFS_ENCRYPTED | ECRYPTFS_KEY_VALID);
781         ecryptfs_copy_mount_wide_flags_to_inode_flags(crypt_stat,
782                                                       mount_crypt_stat);
783         rc = ecryptfs_copy_mount_wide_sigs_to_inode_sigs(crypt_stat,
784                                                          mount_crypt_stat);
785         if (rc) {
786                 printk(KERN_ERR "Error attempting to copy mount-wide key sigs "
787                        "to the inode key sigs; rc = [%d]\n", rc);
788                 goto out;
789         }
790         cipher_name_len =
791                 strlen(mount_crypt_stat->global_default_cipher_name);
792         memcpy(crypt_stat->cipher,
793                mount_crypt_stat->global_default_cipher_name,
794                cipher_name_len);
795         crypt_stat->cipher[cipher_name_len] = '\0';
796         crypt_stat->key_size =
797                 mount_crypt_stat->global_default_cipher_key_size;
798         ecryptfs_generate_new_key(crypt_stat);
799         rc = ecryptfs_init_crypt_ctx(crypt_stat);
800         if (rc)
801                 ecryptfs_printk(KERN_ERR, "Error initializing cryptographic "
802                                 "context for cipher [%s]: rc = [%d]\n",
803                                 crypt_stat->cipher, rc);
804 out:
805         return rc;
806 }
807
808 /**
809  * ecryptfs_validate_marker - check for the ecryptfs marker
810  * @data: The data block in which to check
811  *
812  * Returns zero if marker found; -EINVAL if not found
813  */
814 static int ecryptfs_validate_marker(char *data)
815 {
816         u32 m_1, m_2;
817
818         m_1 = get_unaligned_be32(data);
819         m_2 = get_unaligned_be32(data + 4);
820         if ((m_1 ^ MAGIC_ECRYPTFS_MARKER) == m_2)
821                 return 0;
822         ecryptfs_printk(KERN_DEBUG, "m_1 = [0x%.8x]; m_2 = [0x%.8x]; "
823                         "MAGIC_ECRYPTFS_MARKER = [0x%.8x]\n", m_1, m_2,
824                         MAGIC_ECRYPTFS_MARKER);
825         ecryptfs_printk(KERN_DEBUG, "(m_1 ^ MAGIC_ECRYPTFS_MARKER) = "
826                         "[0x%.8x]\n", (m_1 ^ MAGIC_ECRYPTFS_MARKER));
827         return -EINVAL;
828 }
829
830 struct ecryptfs_flag_map_elem {
831         u32 file_flag;
832         u32 local_flag;
833 };
834
835 /* Add support for additional flags by adding elements here. */
836 static struct ecryptfs_flag_map_elem ecryptfs_flag_map[] = {
837         {0x00000001, ECRYPTFS_ENABLE_HMAC},
838         {0x00000002, ECRYPTFS_ENCRYPTED},
839         {0x00000004, ECRYPTFS_METADATA_IN_XATTR},
840         {0x00000008, ECRYPTFS_ENCRYPT_FILENAMES}
841 };
842
843 /**
844  * ecryptfs_process_flags
845  * @crypt_stat: The cryptographic context
846  * @page_virt: Source data to be parsed
847  * @bytes_read: Updated with the number of bytes read
848  */
849 static void ecryptfs_process_flags(struct ecryptfs_crypt_stat *crypt_stat,
850                                   char *page_virt, int *bytes_read)
851 {
852         int i;
853         u32 flags;
854
855         flags = get_unaligned_be32(page_virt);
856         for (i = 0; i < ARRAY_SIZE(ecryptfs_flag_map); i++)
857                 if (flags & ecryptfs_flag_map[i].file_flag) {
858                         crypt_stat->flags |= ecryptfs_flag_map[i].local_flag;
859                 } else
860                         crypt_stat->flags &= ~(ecryptfs_flag_map[i].local_flag);
861         /* Version is in top 8 bits of the 32-bit flag vector */
862         crypt_stat->file_version = ((flags >> 24) & 0xFF);
863         (*bytes_read) = 4;
864 }
865
866 /**
867  * write_ecryptfs_marker
868  * @page_virt: The pointer to in a page to begin writing the marker
869  * @written: Number of bytes written
870  *
871  * Marker = 0x3c81b7f5
872  */
873 static void write_ecryptfs_marker(char *page_virt, size_t *written)
874 {
875         u32 m_1, m_2;
876
877         get_random_bytes(&m_1, (MAGIC_ECRYPTFS_MARKER_SIZE_BYTES / 2));
878         m_2 = (m_1 ^ MAGIC_ECRYPTFS_MARKER);
879         put_unaligned_be32(m_1, page_virt);
880         page_virt += (MAGIC_ECRYPTFS_MARKER_SIZE_BYTES / 2);
881         put_unaligned_be32(m_2, page_virt);
882         (*written) = MAGIC_ECRYPTFS_MARKER_SIZE_BYTES;
883 }
884
885 void ecryptfs_write_crypt_stat_flags(char *page_virt,
886                                      struct ecryptfs_crypt_stat *crypt_stat,
887                                      size_t *written)
888 {
889         u32 flags = 0;
890         int i;
891
892         for (i = 0; i < ARRAY_SIZE(ecryptfs_flag_map); i++)
893                 if (crypt_stat->flags & ecryptfs_flag_map[i].local_flag)
894                         flags |= ecryptfs_flag_map[i].file_flag;
895         /* Version is in top 8 bits of the 32-bit flag vector */
896         flags |= ((((u8)crypt_stat->file_version) << 24) & 0xFF000000);
897         put_unaligned_be32(flags, page_virt);
898         (*written) = 4;
899 }
900
901 struct ecryptfs_cipher_code_str_map_elem {
902         char cipher_str[16];
903         u8 cipher_code;
904 };
905
906 /* Add support for additional ciphers by adding elements here. The
907  * cipher_code is whatever OpenPGP applications use to identify the
908  * ciphers. List in order of probability. */
909 static struct ecryptfs_cipher_code_str_map_elem
910 ecryptfs_cipher_code_str_map[] = {
911         {"aes",RFC2440_CIPHER_AES_128 },
912         {"blowfish", RFC2440_CIPHER_BLOWFISH},
913         {"des3_ede", RFC2440_CIPHER_DES3_EDE},
914         {"cast5", RFC2440_CIPHER_CAST_5},
915         {"twofish", RFC2440_CIPHER_TWOFISH},
916         {"cast6", RFC2440_CIPHER_CAST_6},
917         {"aes", RFC2440_CIPHER_AES_192},
918         {"aes", RFC2440_CIPHER_AES_256}
919 };
920
921 /**
922  * ecryptfs_code_for_cipher_string
923  * @cipher_name: The string alias for the cipher
924  * @key_bytes: Length of key in bytes; used for AES code selection
925  *
926  * Returns zero on no match, or the cipher code on match
927  */
928 u8 ecryptfs_code_for_cipher_string(char *cipher_name, size_t key_bytes)
929 {
930         int i;
931         u8 code = 0;
932         struct ecryptfs_cipher_code_str_map_elem *map =
933                 ecryptfs_cipher_code_str_map;
934
935         if (strcmp(cipher_name, "aes") == 0) {
936                 switch (key_bytes) {
937                 case 16:
938                         code = RFC2440_CIPHER_AES_128;
939                         break;
940                 case 24:
941                         code = RFC2440_CIPHER_AES_192;
942                         break;
943                 case 32:
944                         code = RFC2440_CIPHER_AES_256;
945                 }
946         } else {
947                 for (i = 0; i < ARRAY_SIZE(ecryptfs_cipher_code_str_map); i++)
948                         if (strcmp(cipher_name, map[i].cipher_str) == 0) {
949                                 code = map[i].cipher_code;
950                                 break;
951                         }
952         }
953         return code;
954 }
955
956 /**
957  * ecryptfs_cipher_code_to_string
958  * @str: Destination to write out the cipher name
959  * @cipher_code: The code to convert to cipher name string
960  *
961  * Returns zero on success
962  */
963 int ecryptfs_cipher_code_to_string(char *str, u8 cipher_code)
964 {
965         int rc = 0;
966         int i;
967
968         str[0] = '\0';
969         for (i = 0; i < ARRAY_SIZE(ecryptfs_cipher_code_str_map); i++)
970                 if (cipher_code == ecryptfs_cipher_code_str_map[i].cipher_code)
971                         strcpy(str, ecryptfs_cipher_code_str_map[i].cipher_str);
972         if (str[0] == '\0') {
973                 ecryptfs_printk(KERN_WARNING, "Cipher code not recognized: "
974                                 "[%d]\n", cipher_code);
975                 rc = -EINVAL;
976         }
977         return rc;
978 }
979
980 int ecryptfs_read_and_validate_header_region(struct inode *inode)
981 {
982         u8 file_size[ECRYPTFS_SIZE_AND_MARKER_BYTES];
983         u8 *marker = file_size + ECRYPTFS_FILE_SIZE_BYTES;
984         int rc;
985
986         rc = ecryptfs_read_lower(file_size, 0, ECRYPTFS_SIZE_AND_MARKER_BYTES,
987                                  inode);
988         if (rc < 0)
989                 return rc;
990         else if (rc < ECRYPTFS_SIZE_AND_MARKER_BYTES)
991                 return -EINVAL;
992         rc = ecryptfs_validate_marker(marker);
993         if (!rc)
994                 ecryptfs_i_size_init(file_size, inode);
995         return rc;
996 }
997
998 void
999 ecryptfs_write_header_metadata(char *virt,
1000                                struct ecryptfs_crypt_stat *crypt_stat,
1001                                size_t *written)
1002 {
1003         u32 header_extent_size;
1004         u16 num_header_extents_at_front;
1005
1006         header_extent_size = (u32)crypt_stat->extent_size;
1007         num_header_extents_at_front =
1008                 (u16)(crypt_stat->metadata_size / crypt_stat->extent_size);
1009         put_unaligned_be32(header_extent_size, virt);
1010         virt += 4;
1011         put_unaligned_be16(num_header_extents_at_front, virt);
1012         (*written) = 6;
1013 }
1014
1015 struct kmem_cache *ecryptfs_header_cache;
1016
1017 /**
1018  * ecryptfs_write_headers_virt
1019  * @page_virt: The virtual address to write the headers to
1020  * @max: The size of memory allocated at page_virt
1021  * @size: Set to the number of bytes written by this function
1022  * @crypt_stat: The cryptographic context
1023  * @ecryptfs_dentry: The eCryptfs dentry
1024  *
1025  * Format version: 1
1026  *
1027  *   Header Extent:
1028  *     Octets 0-7:        Unencrypted file size (big-endian)
1029  *     Octets 8-15:       eCryptfs special marker
1030  *     Octets 16-19:      Flags
1031  *      Octet 16:         File format version number (between 0 and 255)
1032  *      Octets 17-18:     Reserved
1033  *      Octet 19:         Bit 1 (lsb): Reserved
1034  *                        Bit 2: Encrypted?
1035  *                        Bits 3-8: Reserved
1036  *     Octets 20-23:      Header extent size (big-endian)
1037  *     Octets 24-25:      Number of header extents at front of file
1038  *                        (big-endian)
1039  *     Octet  26:         Begin RFC 2440 authentication token packet set
1040  *   Data Extent 0:
1041  *     Lower data (CBC encrypted)
1042  *   Data Extent 1:
1043  *     Lower data (CBC encrypted)
1044  *   ...
1045  *
1046  * Returns zero on success
1047  */
1048 static int ecryptfs_write_headers_virt(char *page_virt, size_t max,
1049                                        size_t *size,
1050                                        struct ecryptfs_crypt_stat *crypt_stat,
1051                                        struct dentry *ecryptfs_dentry)
1052 {
1053         int rc;
1054         size_t written;
1055         size_t offset;
1056
1057         offset = ECRYPTFS_FILE_SIZE_BYTES;
1058         write_ecryptfs_marker((page_virt + offset), &written);
1059         offset += written;
1060         ecryptfs_write_crypt_stat_flags((page_virt + offset), crypt_stat,
1061                                         &written);
1062         offset += written;
1063         ecryptfs_write_header_metadata((page_virt + offset), crypt_stat,
1064                                        &written);
1065         offset += written;
1066         rc = ecryptfs_generate_key_packet_set((page_virt + offset), crypt_stat,
1067                                               ecryptfs_dentry, &written,
1068                                               max - offset);
1069         if (rc)
1070                 ecryptfs_printk(KERN_WARNING, "Error generating key packet "
1071                                 "set; rc = [%d]\n", rc);
1072         if (size) {
1073                 offset += written;
1074                 *size = offset;
1075         }
1076         return rc;
1077 }
1078
1079 static int
1080 ecryptfs_write_metadata_to_contents(struct inode *ecryptfs_inode,
1081                                     char *virt, size_t virt_len)
1082 {
1083         int rc;
1084
1085         rc = ecryptfs_write_lower(ecryptfs_inode, virt,
1086                                   0, virt_len);
1087         if (rc < 0)
1088                 printk(KERN_ERR "%s: Error attempting to write header "
1089                        "information to lower file; rc = [%d]\n", __func__, rc);
1090         else
1091                 rc = 0;
1092         return rc;
1093 }
1094
1095 static int
1096 ecryptfs_write_metadata_to_xattr(struct dentry *ecryptfs_dentry,
1097                                  struct inode *ecryptfs_inode,
1098                                  char *page_virt, size_t size)
1099 {
1100         int rc;
1101         struct dentry *lower_dentry = ecryptfs_dentry_to_lower(ecryptfs_dentry);
1102         struct inode *lower_inode = d_inode(lower_dentry);
1103
1104         if (!(lower_inode->i_opflags & IOP_XATTR)) {
1105                 rc = -EOPNOTSUPP;
1106                 goto out;
1107         }
1108
1109         inode_lock(lower_inode);
1110         rc = __vfs_setxattr(&init_user_ns, lower_dentry, lower_inode,
1111                             ECRYPTFS_XATTR_NAME, page_virt, size, 0);
1112         if (!rc && ecryptfs_inode)
1113                 fsstack_copy_attr_all(ecryptfs_inode, lower_inode);
1114         inode_unlock(lower_inode);
1115 out:
1116         return rc;
1117 }
1118
1119 static unsigned long ecryptfs_get_zeroed_pages(gfp_t gfp_mask,
1120                                                unsigned int order)
1121 {
1122         struct page *page;
1123
1124         page = alloc_pages(gfp_mask | __GFP_ZERO, order);
1125         if (page)
1126                 return (unsigned long) page_address(page);
1127         return 0;
1128 }
1129
1130 /**
1131  * ecryptfs_write_metadata
1132  * @ecryptfs_dentry: The eCryptfs dentry, which should be negative
1133  * @ecryptfs_inode: The newly created eCryptfs inode
1134  *
1135  * Write the file headers out.  This will likely involve a userspace
1136  * callout, in which the session key is encrypted with one or more
1137  * public keys and/or the passphrase necessary to do the encryption is
1138  * retrieved via a prompt.  Exactly what happens at this point should
1139  * be policy-dependent.
1140  *
1141  * Returns zero on success; non-zero on error
1142  */
1143 int ecryptfs_write_metadata(struct dentry *ecryptfs_dentry,
1144                             struct inode *ecryptfs_inode)
1145 {
1146         struct ecryptfs_crypt_stat *crypt_stat =
1147                 &ecryptfs_inode_to_private(ecryptfs_inode)->crypt_stat;
1148         unsigned int order;
1149         char *virt;
1150         size_t virt_len;
1151         size_t size = 0;
1152         int rc = 0;
1153
1154         if (likely(crypt_stat->flags & ECRYPTFS_ENCRYPTED)) {
1155                 if (!(crypt_stat->flags & ECRYPTFS_KEY_VALID)) {
1156                         printk(KERN_ERR "Key is invalid; bailing out\n");
1157                         rc = -EINVAL;
1158                         goto out;
1159                 }
1160         } else {
1161                 printk(KERN_WARNING "%s: Encrypted flag not set\n",
1162                        __func__);
1163                 rc = -EINVAL;
1164                 goto out;
1165         }
1166         virt_len = crypt_stat->metadata_size;
1167         order = get_order(virt_len);
1168         /* Released in this function */
1169         virt = (char *)ecryptfs_get_zeroed_pages(GFP_KERNEL, order);
1170         if (!virt) {
1171                 printk(KERN_ERR "%s: Out of memory\n", __func__);
1172                 rc = -ENOMEM;
1173                 goto out;
1174         }
1175         /* Zeroed page ensures the in-header unencrypted i_size is set to 0 */
1176         rc = ecryptfs_write_headers_virt(virt, virt_len, &size, crypt_stat,
1177                                          ecryptfs_dentry);
1178         if (unlikely(rc)) {
1179                 printk(KERN_ERR "%s: Error whilst writing headers; rc = [%d]\n",
1180                        __func__, rc);
1181                 goto out_free;
1182         }
1183         if (crypt_stat->flags & ECRYPTFS_METADATA_IN_XATTR)
1184                 rc = ecryptfs_write_metadata_to_xattr(ecryptfs_dentry, ecryptfs_inode,
1185                                                       virt, size);
1186         else
1187                 rc = ecryptfs_write_metadata_to_contents(ecryptfs_inode, virt,
1188                                                          virt_len);
1189         if (rc) {
1190                 printk(KERN_ERR "%s: Error writing metadata out to lower file; "
1191                        "rc = [%d]\n", __func__, rc);
1192                 goto out_free;
1193         }
1194 out_free:
1195         free_pages((unsigned long)virt, order);
1196 out:
1197         return rc;
1198 }
1199
1200 #define ECRYPTFS_DONT_VALIDATE_HEADER_SIZE 0
1201 #define ECRYPTFS_VALIDATE_HEADER_SIZE 1
1202 static int parse_header_metadata(struct ecryptfs_crypt_stat *crypt_stat,
1203                                  char *virt, int *bytes_read,
1204                                  int validate_header_size)
1205 {
1206         int rc = 0;
1207         u32 header_extent_size;
1208         u16 num_header_extents_at_front;
1209
1210         header_extent_size = get_unaligned_be32(virt);
1211         virt += sizeof(__be32);
1212         num_header_extents_at_front = get_unaligned_be16(virt);
1213         crypt_stat->metadata_size = (((size_t)num_header_extents_at_front
1214                                      * (size_t)header_extent_size));
1215         (*bytes_read) = (sizeof(__be32) + sizeof(__be16));
1216         if ((validate_header_size == ECRYPTFS_VALIDATE_HEADER_SIZE)
1217             && (crypt_stat->metadata_size
1218                 < ECRYPTFS_MINIMUM_HEADER_EXTENT_SIZE)) {
1219                 rc = -EINVAL;
1220                 printk(KERN_WARNING "Invalid header size: [%zd]\n",
1221                        crypt_stat->metadata_size);
1222         }
1223         return rc;
1224 }
1225
1226 /**
1227  * set_default_header_data
1228  * @crypt_stat: The cryptographic context
1229  *
1230  * For version 0 file format; this function is only for backwards
1231  * compatibility for files created with the prior versions of
1232  * eCryptfs.
1233  */
1234 static void set_default_header_data(struct ecryptfs_crypt_stat *crypt_stat)
1235 {
1236         crypt_stat->metadata_size = ECRYPTFS_MINIMUM_HEADER_EXTENT_SIZE;
1237 }
1238
1239 void ecryptfs_i_size_init(const char *page_virt, struct inode *inode)
1240 {
1241         struct ecryptfs_mount_crypt_stat *mount_crypt_stat;
1242         struct ecryptfs_crypt_stat *crypt_stat;
1243         u64 file_size;
1244
1245         crypt_stat = &ecryptfs_inode_to_private(inode)->crypt_stat;
1246         mount_crypt_stat =
1247                 &ecryptfs_superblock_to_private(inode->i_sb)->mount_crypt_stat;
1248         if (mount_crypt_stat->flags & ECRYPTFS_ENCRYPTED_VIEW_ENABLED) {
1249                 file_size = i_size_read(ecryptfs_inode_to_lower(inode));
1250                 if (crypt_stat->flags & ECRYPTFS_METADATA_IN_XATTR)
1251                         file_size += crypt_stat->metadata_size;
1252         } else
1253                 file_size = get_unaligned_be64(page_virt);
1254         i_size_write(inode, (loff_t)file_size);
1255         crypt_stat->flags |= ECRYPTFS_I_SIZE_INITIALIZED;
1256 }
1257
1258 /**
1259  * ecryptfs_read_headers_virt
1260  * @page_virt: The virtual address into which to read the headers
1261  * @crypt_stat: The cryptographic context
1262  * @ecryptfs_dentry: The eCryptfs dentry
1263  * @validate_header_size: Whether to validate the header size while reading
1264  *
1265  * Read/parse the header data. The header format is detailed in the
1266  * comment block for the ecryptfs_write_headers_virt() function.
1267  *
1268  * Returns zero on success
1269  */
1270 static int ecryptfs_read_headers_virt(char *page_virt,
1271                                       struct ecryptfs_crypt_stat *crypt_stat,
1272                                       struct dentry *ecryptfs_dentry,
1273                                       int validate_header_size)
1274 {
1275         int rc = 0;
1276         int offset;
1277         int bytes_read;
1278
1279         ecryptfs_set_default_sizes(crypt_stat);
1280         crypt_stat->mount_crypt_stat = &ecryptfs_superblock_to_private(
1281                 ecryptfs_dentry->d_sb)->mount_crypt_stat;
1282         offset = ECRYPTFS_FILE_SIZE_BYTES;
1283         rc = ecryptfs_validate_marker(page_virt + offset);
1284         if (rc)
1285                 goto out;
1286         if (!(crypt_stat->flags & ECRYPTFS_I_SIZE_INITIALIZED))
1287                 ecryptfs_i_size_init(page_virt, d_inode(ecryptfs_dentry));
1288         offset += MAGIC_ECRYPTFS_MARKER_SIZE_BYTES;
1289         ecryptfs_process_flags(crypt_stat, (page_virt + offset), &bytes_read);
1290         if (crypt_stat->file_version > ECRYPTFS_SUPPORTED_FILE_VERSION) {
1291                 ecryptfs_printk(KERN_WARNING, "File version is [%d]; only "
1292                                 "file version [%d] is supported by this "
1293                                 "version of eCryptfs\n",
1294                                 crypt_stat->file_version,
1295                                 ECRYPTFS_SUPPORTED_FILE_VERSION);
1296                 rc = -EINVAL;
1297                 goto out;
1298         }
1299         offset += bytes_read;
1300         if (crypt_stat->file_version >= 1) {
1301                 rc = parse_header_metadata(crypt_stat, (page_virt + offset),
1302                                            &bytes_read, validate_header_size);
1303                 if (rc) {
1304                         ecryptfs_printk(KERN_WARNING, "Error reading header "
1305                                         "metadata; rc = [%d]\n", rc);
1306                 }
1307                 offset += bytes_read;
1308         } else
1309                 set_default_header_data(crypt_stat);
1310         rc = ecryptfs_parse_packet_set(crypt_stat, (page_virt + offset),
1311                                        ecryptfs_dentry);
1312 out:
1313         return rc;
1314 }
1315
1316 /**
1317  * ecryptfs_read_xattr_region
1318  * @page_virt: The vitual address into which to read the xattr data
1319  * @ecryptfs_inode: The eCryptfs inode
1320  *
1321  * Attempts to read the crypto metadata from the extended attribute
1322  * region of the lower file.
1323  *
1324  * Returns zero on success; non-zero on error
1325  */
1326 int ecryptfs_read_xattr_region(char *page_virt, struct inode *ecryptfs_inode)
1327 {
1328         struct dentry *lower_dentry =
1329                 ecryptfs_inode_to_private(ecryptfs_inode)->lower_file->f_path.dentry;
1330         ssize_t size;
1331         int rc = 0;
1332
1333         size = ecryptfs_getxattr_lower(lower_dentry,
1334                                        ecryptfs_inode_to_lower(ecryptfs_inode),
1335                                        ECRYPTFS_XATTR_NAME,
1336                                        page_virt, ECRYPTFS_DEFAULT_EXTENT_SIZE);
1337         if (size < 0) {
1338                 if (unlikely(ecryptfs_verbosity > 0))
1339                         printk(KERN_INFO "Error attempting to read the [%s] "
1340                                "xattr from the lower file; return value = "
1341                                "[%zd]\n", ECRYPTFS_XATTR_NAME, size);
1342                 rc = -EINVAL;
1343                 goto out;
1344         }
1345 out:
1346         return rc;
1347 }
1348
1349 int ecryptfs_read_and_validate_xattr_region(struct dentry *dentry,
1350                                             struct inode *inode)
1351 {
1352         u8 file_size[ECRYPTFS_SIZE_AND_MARKER_BYTES];
1353         u8 *marker = file_size + ECRYPTFS_FILE_SIZE_BYTES;
1354         int rc;
1355
1356         rc = ecryptfs_getxattr_lower(ecryptfs_dentry_to_lower(dentry),
1357                                      ecryptfs_inode_to_lower(inode),
1358                                      ECRYPTFS_XATTR_NAME, file_size,
1359                                      ECRYPTFS_SIZE_AND_MARKER_BYTES);
1360         if (rc < 0)
1361                 return rc;
1362         else if (rc < ECRYPTFS_SIZE_AND_MARKER_BYTES)
1363                 return -EINVAL;
1364         rc = ecryptfs_validate_marker(marker);
1365         if (!rc)
1366                 ecryptfs_i_size_init(file_size, inode);
1367         return rc;
1368 }
1369
1370 /*
1371  * ecryptfs_read_metadata
1372  *
1373  * Common entry point for reading file metadata. From here, we could
1374  * retrieve the header information from the header region of the file,
1375  * the xattr region of the file, or some other repository that is
1376  * stored separately from the file itself. The current implementation
1377  * supports retrieving the metadata information from the file contents
1378  * and from the xattr region.
1379  *
1380  * Returns zero if valid headers found and parsed; non-zero otherwise
1381  */
1382 int ecryptfs_read_metadata(struct dentry *ecryptfs_dentry)
1383 {
1384         int rc;
1385         char *page_virt;
1386         struct inode *ecryptfs_inode = d_inode(ecryptfs_dentry);
1387         struct ecryptfs_crypt_stat *crypt_stat =
1388             &ecryptfs_inode_to_private(ecryptfs_inode)->crypt_stat;
1389         struct ecryptfs_mount_crypt_stat *mount_crypt_stat =
1390                 &ecryptfs_superblock_to_private(
1391                         ecryptfs_dentry->d_sb)->mount_crypt_stat;
1392
1393         ecryptfs_copy_mount_wide_flags_to_inode_flags(crypt_stat,
1394                                                       mount_crypt_stat);
1395         /* Read the first page from the underlying file */
1396         page_virt = kmem_cache_alloc(ecryptfs_header_cache, GFP_USER);
1397         if (!page_virt) {
1398                 rc = -ENOMEM;
1399                 goto out;
1400         }
1401         rc = ecryptfs_read_lower(page_virt, 0, crypt_stat->extent_size,
1402                                  ecryptfs_inode);
1403         if (rc >= 0)
1404                 rc = ecryptfs_read_headers_virt(page_virt, crypt_stat,
1405                                                 ecryptfs_dentry,
1406                                                 ECRYPTFS_VALIDATE_HEADER_SIZE);
1407         if (rc) {
1408                 /* metadata is not in the file header, so try xattrs */
1409                 memset(page_virt, 0, PAGE_SIZE);
1410                 rc = ecryptfs_read_xattr_region(page_virt, ecryptfs_inode);
1411                 if (rc) {
1412                         printk(KERN_DEBUG "Valid eCryptfs headers not found in "
1413                                "file header region or xattr region, inode %lu\n",
1414                                 ecryptfs_inode->i_ino);
1415                         rc = -EINVAL;
1416                         goto out;
1417                 }
1418                 rc = ecryptfs_read_headers_virt(page_virt, crypt_stat,
1419                                                 ecryptfs_dentry,
1420                                                 ECRYPTFS_DONT_VALIDATE_HEADER_SIZE);
1421                 if (rc) {
1422                         printk(KERN_DEBUG "Valid eCryptfs headers not found in "
1423                                "file xattr region either, inode %lu\n",
1424                                 ecryptfs_inode->i_ino);
1425                         rc = -EINVAL;
1426                 }
1427                 if (crypt_stat->mount_crypt_stat->flags
1428                     & ECRYPTFS_XATTR_METADATA_ENABLED) {
1429                         crypt_stat->flags |= ECRYPTFS_METADATA_IN_XATTR;
1430                 } else {
1431                         printk(KERN_WARNING "Attempt to access file with "
1432                                "crypto metadata only in the extended attribute "
1433                                "region, but eCryptfs was mounted without "
1434                                "xattr support enabled. eCryptfs will not treat "
1435                                "this like an encrypted file, inode %lu\n",
1436                                 ecryptfs_inode->i_ino);
1437                         rc = -EINVAL;
1438                 }
1439         }
1440 out:
1441         if (page_virt) {
1442                 memset(page_virt, 0, PAGE_SIZE);
1443                 kmem_cache_free(ecryptfs_header_cache, page_virt);
1444         }
1445         return rc;
1446 }
1447
1448 /*
1449  * ecryptfs_encrypt_filename - encrypt filename
1450  *
1451  * CBC-encrypts the filename. We do not want to encrypt the same
1452  * filename with the same key and IV, which may happen with hard
1453  * links, so we prepend random bits to each filename.
1454  *
1455  * Returns zero on success; non-zero otherwise
1456  */
1457 static int
1458 ecryptfs_encrypt_filename(struct ecryptfs_filename *filename,
1459                           struct ecryptfs_mount_crypt_stat *mount_crypt_stat)
1460 {
1461         int rc = 0;
1462
1463         filename->encrypted_filename = NULL;
1464         filename->encrypted_filename_size = 0;
1465         if (mount_crypt_stat && (mount_crypt_stat->flags
1466                                      & ECRYPTFS_GLOBAL_ENCFN_USE_MOUNT_FNEK)) {
1467                 size_t packet_size;
1468                 size_t remaining_bytes;
1469
1470                 rc = ecryptfs_write_tag_70_packet(
1471                         NULL, NULL,
1472                         &filename->encrypted_filename_size,
1473                         mount_crypt_stat, NULL,
1474                         filename->filename_size);
1475                 if (rc) {
1476                         printk(KERN_ERR "%s: Error attempting to get packet "
1477                                "size for tag 72; rc = [%d]\n", __func__,
1478                                rc);
1479                         filename->encrypted_filename_size = 0;
1480                         goto out;
1481                 }
1482                 filename->encrypted_filename =
1483                         kmalloc(filename->encrypted_filename_size, GFP_KERNEL);
1484                 if (!filename->encrypted_filename) {
1485                         rc = -ENOMEM;
1486                         goto out;
1487                 }
1488                 remaining_bytes = filename->encrypted_filename_size;
1489                 rc = ecryptfs_write_tag_70_packet(filename->encrypted_filename,
1490                                                   &remaining_bytes,
1491                                                   &packet_size,
1492                                                   mount_crypt_stat,
1493                                                   filename->filename,
1494                                                   filename->filename_size);
1495                 if (rc) {
1496                         printk(KERN_ERR "%s: Error attempting to generate "
1497                                "tag 70 packet; rc = [%d]\n", __func__,
1498                                rc);
1499                         kfree(filename->encrypted_filename);
1500                         filename->encrypted_filename = NULL;
1501                         filename->encrypted_filename_size = 0;
1502                         goto out;
1503                 }
1504                 filename->encrypted_filename_size = packet_size;
1505         } else {
1506                 printk(KERN_ERR "%s: No support for requested filename "
1507                        "encryption method in this release\n", __func__);
1508                 rc = -EOPNOTSUPP;
1509                 goto out;
1510         }
1511 out:
1512         return rc;
1513 }
1514
1515 static int ecryptfs_copy_filename(char **copied_name, size_t *copied_name_size,
1516                                   const char *name, size_t name_size)
1517 {
1518         int rc = 0;
1519
1520         (*copied_name) = kmalloc((name_size + 1), GFP_KERNEL);
1521         if (!(*copied_name)) {
1522                 rc = -ENOMEM;
1523                 goto out;
1524         }
1525         memcpy((void *)(*copied_name), (void *)name, name_size);
1526         (*copied_name)[(name_size)] = '\0';     /* Only for convenience
1527                                                  * in printing out the
1528                                                  * string in debug
1529                                                  * messages */
1530         (*copied_name_size) = name_size;
1531 out:
1532         return rc;
1533 }
1534
1535 /**
1536  * ecryptfs_process_key_cipher - Perform key cipher initialization.
1537  * @key_tfm: Crypto context for key material, set by this function
1538  * @cipher_name: Name of the cipher
1539  * @key_size: Size of the key in bytes
1540  *
1541  * Returns zero on success. Any crypto_tfm structs allocated here
1542  * should be released by other functions, such as on a superblock put
1543  * event, regardless of whether this function succeeds for fails.
1544  */
1545 static int
1546 ecryptfs_process_key_cipher(struct crypto_skcipher **key_tfm,
1547                             char *cipher_name, size_t *key_size)
1548 {
1549         char dummy_key[ECRYPTFS_MAX_KEY_BYTES];
1550         char *full_alg_name = NULL;
1551         int rc;
1552
1553         *key_tfm = NULL;
1554         if (*key_size > ECRYPTFS_MAX_KEY_BYTES) {
1555                 rc = -EINVAL;
1556                 printk(KERN_ERR "Requested key size is [%zd] bytes; maximum "
1557                       "allowable is [%d]\n", *key_size, ECRYPTFS_MAX_KEY_BYTES);
1558                 goto out;
1559         }
1560         rc = ecryptfs_crypto_api_algify_cipher_name(&full_alg_name, cipher_name,
1561                                                     "ecb");
1562         if (rc)
1563                 goto out;
1564         *key_tfm = crypto_alloc_skcipher(full_alg_name, 0, CRYPTO_ALG_ASYNC);
1565         if (IS_ERR(*key_tfm)) {
1566                 rc = PTR_ERR(*key_tfm);
1567                 printk(KERN_ERR "Unable to allocate crypto cipher with name "
1568                        "[%s]; rc = [%d]\n", full_alg_name, rc);
1569                 goto out;
1570         }
1571         crypto_skcipher_set_flags(*key_tfm, CRYPTO_TFM_REQ_FORBID_WEAK_KEYS);
1572         if (*key_size == 0)
1573                 *key_size = crypto_skcipher_max_keysize(*key_tfm);
1574         get_random_bytes(dummy_key, *key_size);
1575         rc = crypto_skcipher_setkey(*key_tfm, dummy_key, *key_size);
1576         if (rc) {
1577                 printk(KERN_ERR "Error attempting to set key of size [%zd] for "
1578                        "cipher [%s]; rc = [%d]\n", *key_size, full_alg_name,
1579                        rc);
1580                 rc = -EINVAL;
1581                 goto out;
1582         }
1583 out:
1584         kfree(full_alg_name);
1585         return rc;
1586 }
1587
1588 struct kmem_cache *ecryptfs_key_tfm_cache;
1589 static struct list_head key_tfm_list;
1590 DEFINE_MUTEX(key_tfm_list_mutex);
1591
1592 int __init ecryptfs_init_crypto(void)
1593 {
1594         INIT_LIST_HEAD(&key_tfm_list);
1595         return 0;
1596 }
1597
1598 /**
1599  * ecryptfs_destroy_crypto - free all cached key_tfms on key_tfm_list
1600  *
1601  * Called only at module unload time
1602  */
1603 int ecryptfs_destroy_crypto(void)
1604 {
1605         struct ecryptfs_key_tfm *key_tfm, *key_tfm_tmp;
1606
1607         mutex_lock(&key_tfm_list_mutex);
1608         list_for_each_entry_safe(key_tfm, key_tfm_tmp, &key_tfm_list,
1609                                  key_tfm_list) {
1610                 list_del(&key_tfm->key_tfm_list);
1611                 crypto_free_skcipher(key_tfm->key_tfm);
1612                 kmem_cache_free(ecryptfs_key_tfm_cache, key_tfm);
1613         }
1614         mutex_unlock(&key_tfm_list_mutex);
1615         return 0;
1616 }
1617
1618 int
1619 ecryptfs_add_new_key_tfm(struct ecryptfs_key_tfm **key_tfm, char *cipher_name,
1620                          size_t key_size)
1621 {
1622         struct ecryptfs_key_tfm *tmp_tfm;
1623         int rc = 0;
1624
1625         BUG_ON(!mutex_is_locked(&key_tfm_list_mutex));
1626
1627         tmp_tfm = kmem_cache_alloc(ecryptfs_key_tfm_cache, GFP_KERNEL);
1628         if (key_tfm)
1629                 (*key_tfm) = tmp_tfm;
1630         if (!tmp_tfm) {
1631                 rc = -ENOMEM;
1632                 goto out;
1633         }
1634         mutex_init(&tmp_tfm->key_tfm_mutex);
1635         strncpy(tmp_tfm->cipher_name, cipher_name,
1636                 ECRYPTFS_MAX_CIPHER_NAME_SIZE);
1637         tmp_tfm->cipher_name[ECRYPTFS_MAX_CIPHER_NAME_SIZE] = '\0';
1638         tmp_tfm->key_size = key_size;
1639         rc = ecryptfs_process_key_cipher(&tmp_tfm->key_tfm,
1640                                          tmp_tfm->cipher_name,
1641                                          &tmp_tfm->key_size);
1642         if (rc) {
1643                 printk(KERN_ERR "Error attempting to initialize key TFM "
1644                        "cipher with name = [%s]; rc = [%d]\n",
1645                        tmp_tfm->cipher_name, rc);
1646                 kmem_cache_free(ecryptfs_key_tfm_cache, tmp_tfm);
1647                 if (key_tfm)
1648                         (*key_tfm) = NULL;
1649                 goto out;
1650         }
1651         list_add(&tmp_tfm->key_tfm_list, &key_tfm_list);
1652 out:
1653         return rc;
1654 }
1655
1656 /**
1657  * ecryptfs_tfm_exists - Search for existing tfm for cipher_name.
1658  * @cipher_name: the name of the cipher to search for
1659  * @key_tfm: set to corresponding tfm if found
1660  *
1661  * Searches for cached key_tfm matching @cipher_name
1662  * Must be called with &key_tfm_list_mutex held
1663  * Returns 1 if found, with @key_tfm set
1664  * Returns 0 if not found, with @key_tfm set to NULL
1665  */
1666 int ecryptfs_tfm_exists(char *cipher_name, struct ecryptfs_key_tfm **key_tfm)
1667 {
1668         struct ecryptfs_key_tfm *tmp_key_tfm;
1669
1670         BUG_ON(!mutex_is_locked(&key_tfm_list_mutex));
1671
1672         list_for_each_entry(tmp_key_tfm, &key_tfm_list, key_tfm_list) {
1673                 if (strcmp(tmp_key_tfm->cipher_name, cipher_name) == 0) {
1674                         if (key_tfm)
1675                                 (*key_tfm) = tmp_key_tfm;
1676                         return 1;
1677                 }
1678         }
1679         if (key_tfm)
1680                 (*key_tfm) = NULL;
1681         return 0;
1682 }
1683
1684 /**
1685  * ecryptfs_get_tfm_and_mutex_for_cipher_name
1686  *
1687  * @tfm: set to cached tfm found, or new tfm created
1688  * @tfm_mutex: set to mutex for cached tfm found, or new tfm created
1689  * @cipher_name: the name of the cipher to search for and/or add
1690  *
1691  * Sets pointers to @tfm & @tfm_mutex matching @cipher_name.
1692  * Searches for cached item first, and creates new if not found.
1693  * Returns 0 on success, non-zero if adding new cipher failed
1694  */
1695 int ecryptfs_get_tfm_and_mutex_for_cipher_name(struct crypto_skcipher **tfm,
1696                                                struct mutex **tfm_mutex,
1697                                                char *cipher_name)
1698 {
1699         struct ecryptfs_key_tfm *key_tfm;
1700         int rc = 0;
1701
1702         (*tfm) = NULL;
1703         (*tfm_mutex) = NULL;
1704
1705         mutex_lock(&key_tfm_list_mutex);
1706         if (!ecryptfs_tfm_exists(cipher_name, &key_tfm)) {
1707                 rc = ecryptfs_add_new_key_tfm(&key_tfm, cipher_name, 0);
1708                 if (rc) {
1709                         printk(KERN_ERR "Error adding new key_tfm to list; "
1710                                         "rc = [%d]\n", rc);
1711                         goto out;
1712                 }
1713         }
1714         (*tfm) = key_tfm->key_tfm;
1715         (*tfm_mutex) = &key_tfm->key_tfm_mutex;
1716 out:
1717         mutex_unlock(&key_tfm_list_mutex);
1718         return rc;
1719 }
1720
1721 /* 64 characters forming a 6-bit target field */
1722 static unsigned char *portable_filename_chars = ("-.0123456789ABCD"
1723                                                  "EFGHIJKLMNOPQRST"
1724                                                  "UVWXYZabcdefghij"
1725                                                  "klmnopqrstuvwxyz");
1726
1727 /* We could either offset on every reverse map or just pad some 0x00's
1728  * at the front here */
1729 static const unsigned char filename_rev_map[256] = {
1730         0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* 7 */
1731         0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* 15 */
1732         0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* 23 */
1733         0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* 31 */
1734         0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* 39 */
1735         0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x01, 0x00, /* 47 */
1736         0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08, 0x09, /* 55 */
1737         0x0A, 0x0B, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* 63 */
1738         0x00, 0x0C, 0x0D, 0x0E, 0x0F, 0x10, 0x11, 0x12, /* 71 */
1739         0x13, 0x14, 0x15, 0x16, 0x17, 0x18, 0x19, 0x1A, /* 79 */
1740         0x1B, 0x1C, 0x1D, 0x1E, 0x1F, 0x20, 0x21, 0x22, /* 87 */
1741         0x23, 0x24, 0x25, 0x00, 0x00, 0x00, 0x00, 0x00, /* 95 */
1742         0x00, 0x26, 0x27, 0x28, 0x29, 0x2A, 0x2B, 0x2C, /* 103 */
1743         0x2D, 0x2E, 0x2F, 0x30, 0x31, 0x32, 0x33, 0x34, /* 111 */
1744         0x35, 0x36, 0x37, 0x38, 0x39, 0x3A, 0x3B, 0x3C, /* 119 */
1745         0x3D, 0x3E, 0x3F /* 123 - 255 initialized to 0x00 */
1746 };
1747
1748 /**
1749  * ecryptfs_encode_for_filename
1750  * @dst: Destination location for encoded filename
1751  * @dst_size: Size of the encoded filename in bytes
1752  * @src: Source location for the filename to encode
1753  * @src_size: Size of the source in bytes
1754  */
1755 static void ecryptfs_encode_for_filename(unsigned char *dst, size_t *dst_size,
1756                                   unsigned char *src, size_t src_size)
1757 {
1758         size_t num_blocks;
1759         size_t block_num = 0;
1760         size_t dst_offset = 0;
1761         unsigned char last_block[3];
1762
1763         if (src_size == 0) {
1764                 (*dst_size) = 0;
1765                 goto out;
1766         }
1767         num_blocks = (src_size / 3);
1768         if ((src_size % 3) == 0) {
1769                 memcpy(last_block, (&src[src_size - 3]), 3);
1770         } else {
1771                 num_blocks++;
1772                 last_block[2] = 0x00;
1773                 switch (src_size % 3) {
1774                 case 1:
1775                         last_block[0] = src[src_size - 1];
1776                         last_block[1] = 0x00;
1777                         break;
1778                 case 2:
1779                         last_block[0] = src[src_size - 2];
1780                         last_block[1] = src[src_size - 1];
1781                 }
1782         }
1783         (*dst_size) = (num_blocks * 4);
1784         if (!dst)
1785                 goto out;
1786         while (block_num < num_blocks) {
1787                 unsigned char *src_block;
1788                 unsigned char dst_block[4];
1789
1790                 if (block_num == (num_blocks - 1))
1791                         src_block = last_block;
1792                 else
1793                         src_block = &src[block_num * 3];
1794                 dst_block[0] = ((src_block[0] >> 2) & 0x3F);
1795                 dst_block[1] = (((src_block[0] << 4) & 0x30)
1796                                 | ((src_block[1] >> 4) & 0x0F));
1797                 dst_block[2] = (((src_block[1] << 2) & 0x3C)
1798                                 | ((src_block[2] >> 6) & 0x03));
1799                 dst_block[3] = (src_block[2] & 0x3F);
1800                 dst[dst_offset++] = portable_filename_chars[dst_block[0]];
1801                 dst[dst_offset++] = portable_filename_chars[dst_block[1]];
1802                 dst[dst_offset++] = portable_filename_chars[dst_block[2]];
1803                 dst[dst_offset++] = portable_filename_chars[dst_block[3]];
1804                 block_num++;
1805         }
1806 out:
1807         return;
1808 }
1809
1810 static size_t ecryptfs_max_decoded_size(size_t encoded_size)
1811 {
1812         /* Not exact; conservatively long. Every block of 4
1813          * encoded characters decodes into a block of 3
1814          * decoded characters. This segment of code provides
1815          * the caller with the maximum amount of allocated
1816          * space that @dst will need to point to in a
1817          * subsequent call. */
1818         return ((encoded_size + 1) * 3) / 4;
1819 }
1820
1821 /**
1822  * ecryptfs_decode_from_filename
1823  * @dst: If NULL, this function only sets @dst_size and returns. If
1824  *       non-NULL, this function decodes the encoded octets in @src
1825  *       into the memory that @dst points to.
1826  * @dst_size: Set to the size of the decoded string.
1827  * @src: The encoded set of octets to decode.
1828  * @src_size: The size of the encoded set of octets to decode.
1829  */
1830 static void
1831 ecryptfs_decode_from_filename(unsigned char *dst, size_t *dst_size,
1832                               const unsigned char *src, size_t src_size)
1833 {
1834         u8 current_bit_offset = 0;
1835         size_t src_byte_offset = 0;
1836         size_t dst_byte_offset = 0;
1837
1838         if (!dst) {
1839                 (*dst_size) = ecryptfs_max_decoded_size(src_size);
1840                 goto out;
1841         }
1842         while (src_byte_offset < src_size) {
1843                 unsigned char src_byte =
1844                                 filename_rev_map[(int)src[src_byte_offset]];
1845
1846                 switch (current_bit_offset) {
1847                 case 0:
1848                         dst[dst_byte_offset] = (src_byte << 2);
1849                         current_bit_offset = 6;
1850                         break;
1851                 case 6:
1852                         dst[dst_byte_offset++] |= (src_byte >> 4);
1853                         dst[dst_byte_offset] = ((src_byte & 0xF)
1854                                                  << 4);
1855                         current_bit_offset = 4;
1856                         break;
1857                 case 4:
1858                         dst[dst_byte_offset++] |= (src_byte >> 2);
1859                         dst[dst_byte_offset] = (src_byte << 6);
1860                         current_bit_offset = 2;
1861                         break;
1862                 case 2:
1863                         dst[dst_byte_offset++] |= (src_byte);
1864                         current_bit_offset = 0;
1865                         break;
1866                 }
1867                 src_byte_offset++;
1868         }
1869         (*dst_size) = dst_byte_offset;
1870 out:
1871         return;
1872 }
1873
1874 /**
1875  * ecryptfs_encrypt_and_encode_filename - converts a plaintext file name to cipher text
1876  * @encoded_name: The encrypted name
1877  * @encoded_name_size: Length of the encrypted name
1878  * @mount_crypt_stat: The crypt_stat struct associated with the file name to encode
1879  * @name: The plaintext name
1880  * @name_size: The length of the plaintext name
1881  *
1882  * Encrypts and encodes a filename into something that constitutes a
1883  * valid filename for a filesystem, with printable characters.
1884  *
1885  * We assume that we have a properly initialized crypto context,
1886  * pointed to by crypt_stat->tfm.
1887  *
1888  * Returns zero on success; non-zero on otherwise
1889  */
1890 int ecryptfs_encrypt_and_encode_filename(
1891         char **encoded_name,
1892         size_t *encoded_name_size,
1893         struct ecryptfs_mount_crypt_stat *mount_crypt_stat,
1894         const char *name, size_t name_size)
1895 {
1896         size_t encoded_name_no_prefix_size;
1897         int rc = 0;
1898
1899         (*encoded_name) = NULL;
1900         (*encoded_name_size) = 0;
1901         if (mount_crypt_stat && (mount_crypt_stat->flags
1902                                      & ECRYPTFS_GLOBAL_ENCRYPT_FILENAMES)) {
1903                 struct ecryptfs_filename *filename;
1904
1905                 filename = kzalloc(sizeof(*filename), GFP_KERNEL);
1906                 if (!filename) {
1907                         rc = -ENOMEM;
1908                         goto out;
1909                 }
1910                 filename->filename = (char *)name;
1911                 filename->filename_size = name_size;
1912                 rc = ecryptfs_encrypt_filename(filename, mount_crypt_stat);
1913                 if (rc) {
1914                         printk(KERN_ERR "%s: Error attempting to encrypt "
1915                                "filename; rc = [%d]\n", __func__, rc);
1916                         kfree(filename);
1917                         goto out;
1918                 }
1919                 ecryptfs_encode_for_filename(
1920                         NULL, &encoded_name_no_prefix_size,
1921                         filename->encrypted_filename,
1922                         filename->encrypted_filename_size);
1923                 if (mount_crypt_stat
1924                         && (mount_crypt_stat->flags
1925                             & ECRYPTFS_GLOBAL_ENCFN_USE_MOUNT_FNEK))
1926                         (*encoded_name_size) =
1927                                 (ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE
1928                                  + encoded_name_no_prefix_size);
1929                 else
1930                         (*encoded_name_size) =
1931                                 (ECRYPTFS_FEK_ENCRYPTED_FILENAME_PREFIX_SIZE
1932                                  + encoded_name_no_prefix_size);
1933                 (*encoded_name) = kmalloc((*encoded_name_size) + 1, GFP_KERNEL);
1934                 if (!(*encoded_name)) {
1935                         rc = -ENOMEM;
1936                         kfree(filename->encrypted_filename);
1937                         kfree(filename);
1938                         goto out;
1939                 }
1940                 if (mount_crypt_stat
1941                         && (mount_crypt_stat->flags
1942                             & ECRYPTFS_GLOBAL_ENCFN_USE_MOUNT_FNEK)) {
1943                         memcpy((*encoded_name),
1944                                ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX,
1945                                ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE);
1946                         ecryptfs_encode_for_filename(
1947                             ((*encoded_name)
1948                              + ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE),
1949                             &encoded_name_no_prefix_size,
1950                             filename->encrypted_filename,
1951                             filename->encrypted_filename_size);
1952                         (*encoded_name_size) =
1953                                 (ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE
1954                                  + encoded_name_no_prefix_size);
1955                         (*encoded_name)[(*encoded_name_size)] = '\0';
1956                 } else {
1957                         rc = -EOPNOTSUPP;
1958                 }
1959                 if (rc) {
1960                         printk(KERN_ERR "%s: Error attempting to encode "
1961                                "encrypted filename; rc = [%d]\n", __func__,
1962                                rc);
1963                         kfree((*encoded_name));
1964                         (*encoded_name) = NULL;
1965                         (*encoded_name_size) = 0;
1966                 }
1967                 kfree(filename->encrypted_filename);
1968                 kfree(filename);
1969         } else {
1970                 rc = ecryptfs_copy_filename(encoded_name,
1971                                             encoded_name_size,
1972                                             name, name_size);
1973         }
1974 out:
1975         return rc;
1976 }
1977
1978 static bool is_dot_dotdot(const char *name, size_t name_size)
1979 {
1980         if (name_size == 1 && name[0] == '.')
1981                 return true;
1982         else if (name_size == 2 && name[0] == '.' && name[1] == '.')
1983                 return true;
1984
1985         return false;
1986 }
1987
1988 /**
1989  * ecryptfs_decode_and_decrypt_filename - converts the encoded cipher text name to decoded plaintext
1990  * @plaintext_name: The plaintext name
1991  * @plaintext_name_size: The plaintext name size
1992  * @sb: Ecryptfs's super_block
1993  * @name: The filename in cipher text
1994  * @name_size: The cipher text name size
1995  *
1996  * Decrypts and decodes the filename.
1997  *
1998  * Returns zero on error; non-zero otherwise
1999  */
2000 int ecryptfs_decode_and_decrypt_filename(char **plaintext_name,
2001                                          size_t *plaintext_name_size,
2002                                          struct super_block *sb,
2003                                          const char *name, size_t name_size)
2004 {
2005         struct ecryptfs_mount_crypt_stat *mount_crypt_stat =
2006                 &ecryptfs_superblock_to_private(sb)->mount_crypt_stat;
2007         char *decoded_name;
2008         size_t decoded_name_size;
2009         size_t packet_size;
2010         int rc = 0;
2011
2012         if ((mount_crypt_stat->flags & ECRYPTFS_GLOBAL_ENCRYPT_FILENAMES) &&
2013             !(mount_crypt_stat->flags & ECRYPTFS_ENCRYPTED_VIEW_ENABLED)) {
2014                 if (is_dot_dotdot(name, name_size)) {
2015                         rc = ecryptfs_copy_filename(plaintext_name,
2016                                                     plaintext_name_size,
2017                                                     name, name_size);
2018                         goto out;
2019                 }
2020
2021                 if (name_size <= ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE ||
2022                     strncmp(name, ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX,
2023                             ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE)) {
2024                         rc = -EINVAL;
2025                         goto out;
2026                 }
2027
2028                 name += ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE;
2029                 name_size -= ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE;
2030                 ecryptfs_decode_from_filename(NULL, &decoded_name_size,
2031                                               name, name_size);
2032                 decoded_name = kmalloc(decoded_name_size, GFP_KERNEL);
2033                 if (!decoded_name) {
2034                         rc = -ENOMEM;
2035                         goto out;
2036                 }
2037                 ecryptfs_decode_from_filename(decoded_name, &decoded_name_size,
2038                                               name, name_size);
2039                 rc = ecryptfs_parse_tag_70_packet(plaintext_name,
2040                                                   plaintext_name_size,
2041                                                   &packet_size,
2042                                                   mount_crypt_stat,
2043                                                   decoded_name,
2044                                                   decoded_name_size);
2045                 if (rc) {
2046                         ecryptfs_printk(KERN_DEBUG,
2047                                         "%s: Could not parse tag 70 packet from filename\n",
2048                                         __func__);
2049                         goto out_free;
2050                 }
2051         } else {
2052                 rc = ecryptfs_copy_filename(plaintext_name,
2053                                             plaintext_name_size,
2054                                             name, name_size);
2055                 goto out;
2056         }
2057 out_free:
2058         kfree(decoded_name);
2059 out:
2060         return rc;
2061 }
2062
2063 #define ENC_NAME_MAX_BLOCKLEN_8_OR_16   143
2064
2065 int ecryptfs_set_f_namelen(long *namelen, long lower_namelen,
2066                            struct ecryptfs_mount_crypt_stat *mount_crypt_stat)
2067 {
2068         struct crypto_skcipher *tfm;
2069         struct mutex *tfm_mutex;
2070         size_t cipher_blocksize;
2071         int rc;
2072
2073         if (!(mount_crypt_stat->flags & ECRYPTFS_GLOBAL_ENCRYPT_FILENAMES)) {
2074                 (*namelen) = lower_namelen;
2075                 return 0;
2076         }
2077
2078         rc = ecryptfs_get_tfm_and_mutex_for_cipher_name(&tfm, &tfm_mutex,
2079                         mount_crypt_stat->global_default_fn_cipher_name);
2080         if (unlikely(rc)) {
2081                 (*namelen) = 0;
2082                 return rc;
2083         }
2084
2085         mutex_lock(tfm_mutex);
2086         cipher_blocksize = crypto_skcipher_blocksize(tfm);
2087         mutex_unlock(tfm_mutex);
2088
2089         /* Return an exact amount for the common cases */
2090         if (lower_namelen == NAME_MAX
2091             && (cipher_blocksize == 8 || cipher_blocksize == 16)) {
2092                 (*namelen) = ENC_NAME_MAX_BLOCKLEN_8_OR_16;
2093                 return 0;
2094         }
2095
2096         /* Return a safe estimate for the uncommon cases */
2097         (*namelen) = lower_namelen;
2098         (*namelen) -= ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE;
2099         /* Since this is the max decoded size, subtract 1 "decoded block" len */
2100         (*namelen) = ecryptfs_max_decoded_size(*namelen) - 3;
2101         (*namelen) -= ECRYPTFS_TAG_70_MAX_METADATA_SIZE;
2102         (*namelen) -= ECRYPTFS_FILENAME_MIN_RANDOM_PREPEND_BYTES;
2103         /* Worst case is that the filename is padded nearly a full block size */
2104         (*namelen) -= cipher_blocksize - 1;
2105
2106         if ((*namelen) < 0)
2107                 (*namelen) = 0;
2108
2109         return 0;
2110 }