Merge tag 'linux-kselftest-next-5.12-rc1' of git://git.kernel.org/pub/scm/linux/kerne...
[linux-2.6-microblaze.git] / fs / ecryptfs / crypto.c
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /**
3  * eCryptfs: Linux filesystem encryption layer
4  *
5  * Copyright (C) 1997-2004 Erez Zadok
6  * Copyright (C) 2001-2004 Stony Brook University
7  * Copyright (C) 2004-2007 International Business Machines Corp.
8  *   Author(s): Michael A. Halcrow <mahalcro@us.ibm.com>
9  *              Michael C. Thompson <mcthomps@us.ibm.com>
10  */
11
12 #include <crypto/hash.h>
13 #include <crypto/skcipher.h>
14 #include <linux/fs.h>
15 #include <linux/mount.h>
16 #include <linux/pagemap.h>
17 #include <linux/random.h>
18 #include <linux/compiler.h>
19 #include <linux/key.h>
20 #include <linux/namei.h>
21 #include <linux/file.h>
22 #include <linux/scatterlist.h>
23 #include <linux/slab.h>
24 #include <asm/unaligned.h>
25 #include <linux/kernel.h>
26 #include <linux/xattr.h>
27 #include "ecryptfs_kernel.h"
28
29 #define DECRYPT         0
30 #define ENCRYPT         1
31
32 /**
33  * ecryptfs_from_hex
34  * @dst: Buffer to take the bytes from src hex; must be at least of
35  *       size (src_size / 2)
36  * @src: Buffer to be converted from a hex string representation to raw value
37  * @dst_size: size of dst buffer, or number of hex characters pairs to convert
38  */
39 void ecryptfs_from_hex(char *dst, char *src, int dst_size)
40 {
41         int x;
42         char tmp[3] = { 0, };
43
44         for (x = 0; x < dst_size; x++) {
45                 tmp[0] = src[x * 2];
46                 tmp[1] = src[x * 2 + 1];
47                 dst[x] = (unsigned char)simple_strtol(tmp, NULL, 16);
48         }
49 }
50
51 /**
52  * ecryptfs_calculate_md5 - calculates the md5 of @src
53  * @dst: Pointer to 16 bytes of allocated memory
54  * @crypt_stat: Pointer to crypt_stat struct for the current inode
55  * @src: Data to be md5'd
56  * @len: Length of @src
57  *
58  * Uses the allocated crypto context that crypt_stat references to
59  * generate the MD5 sum of the contents of src.
60  */
61 static int ecryptfs_calculate_md5(char *dst,
62                                   struct ecryptfs_crypt_stat *crypt_stat,
63                                   char *src, int len)
64 {
65         int rc = crypto_shash_tfm_digest(crypt_stat->hash_tfm, src, len, dst);
66
67         if (rc) {
68                 printk(KERN_ERR
69                        "%s: Error computing crypto hash; rc = [%d]\n",
70                        __func__, rc);
71                 goto out;
72         }
73 out:
74         return rc;
75 }
76
77 static int ecryptfs_crypto_api_algify_cipher_name(char **algified_name,
78                                                   char *cipher_name,
79                                                   char *chaining_modifier)
80 {
81         int cipher_name_len = strlen(cipher_name);
82         int chaining_modifier_len = strlen(chaining_modifier);
83         int algified_name_len;
84         int rc;
85
86         algified_name_len = (chaining_modifier_len + cipher_name_len + 3);
87         (*algified_name) = kmalloc(algified_name_len, GFP_KERNEL);
88         if (!(*algified_name)) {
89                 rc = -ENOMEM;
90                 goto out;
91         }
92         snprintf((*algified_name), algified_name_len, "%s(%s)",
93                  chaining_modifier, cipher_name);
94         rc = 0;
95 out:
96         return rc;
97 }
98
99 /**
100  * ecryptfs_derive_iv
101  * @iv: destination for the derived iv vale
102  * @crypt_stat: Pointer to crypt_stat struct for the current inode
103  * @offset: Offset of the extent whose IV we are to derive
104  *
105  * Generate the initialization vector from the given root IV and page
106  * offset.
107  *
108  * Returns zero on success; non-zero on error.
109  */
110 int ecryptfs_derive_iv(char *iv, struct ecryptfs_crypt_stat *crypt_stat,
111                        loff_t offset)
112 {
113         int rc = 0;
114         char dst[MD5_DIGEST_SIZE];
115         char src[ECRYPTFS_MAX_IV_BYTES + 16];
116
117         if (unlikely(ecryptfs_verbosity > 0)) {
118                 ecryptfs_printk(KERN_DEBUG, "root iv:\n");
119                 ecryptfs_dump_hex(crypt_stat->root_iv, crypt_stat->iv_bytes);
120         }
121         /* TODO: It is probably secure to just cast the least
122          * significant bits of the root IV into an unsigned long and
123          * add the offset to that rather than go through all this
124          * hashing business. -Halcrow */
125         memcpy(src, crypt_stat->root_iv, crypt_stat->iv_bytes);
126         memset((src + crypt_stat->iv_bytes), 0, 16);
127         snprintf((src + crypt_stat->iv_bytes), 16, "%lld", offset);
128         if (unlikely(ecryptfs_verbosity > 0)) {
129                 ecryptfs_printk(KERN_DEBUG, "source:\n");
130                 ecryptfs_dump_hex(src, (crypt_stat->iv_bytes + 16));
131         }
132         rc = ecryptfs_calculate_md5(dst, crypt_stat, src,
133                                     (crypt_stat->iv_bytes + 16));
134         if (rc) {
135                 ecryptfs_printk(KERN_WARNING, "Error attempting to compute "
136                                 "MD5 while generating IV for a page\n");
137                 goto out;
138         }
139         memcpy(iv, dst, crypt_stat->iv_bytes);
140         if (unlikely(ecryptfs_verbosity > 0)) {
141                 ecryptfs_printk(KERN_DEBUG, "derived iv:\n");
142                 ecryptfs_dump_hex(iv, crypt_stat->iv_bytes);
143         }
144 out:
145         return rc;
146 }
147
148 /**
149  * ecryptfs_init_crypt_stat
150  * @crypt_stat: Pointer to the crypt_stat struct to initialize.
151  *
152  * Initialize the crypt_stat structure.
153  */
154 int ecryptfs_init_crypt_stat(struct ecryptfs_crypt_stat *crypt_stat)
155 {
156         struct crypto_shash *tfm;
157         int rc;
158
159         tfm = crypto_alloc_shash(ECRYPTFS_DEFAULT_HASH, 0, 0);
160         if (IS_ERR(tfm)) {
161                 rc = PTR_ERR(tfm);
162                 ecryptfs_printk(KERN_ERR, "Error attempting to "
163                                 "allocate crypto context; rc = [%d]\n",
164                                 rc);
165                 return rc;
166         }
167
168         memset((void *)crypt_stat, 0, sizeof(struct ecryptfs_crypt_stat));
169         INIT_LIST_HEAD(&crypt_stat->keysig_list);
170         mutex_init(&crypt_stat->keysig_list_mutex);
171         mutex_init(&crypt_stat->cs_mutex);
172         mutex_init(&crypt_stat->cs_tfm_mutex);
173         crypt_stat->hash_tfm = tfm;
174         crypt_stat->flags |= ECRYPTFS_STRUCT_INITIALIZED;
175
176         return 0;
177 }
178
179 /**
180  * ecryptfs_destroy_crypt_stat
181  * @crypt_stat: Pointer to the crypt_stat struct to initialize.
182  *
183  * Releases all memory associated with a crypt_stat struct.
184  */
185 void ecryptfs_destroy_crypt_stat(struct ecryptfs_crypt_stat *crypt_stat)
186 {
187         struct ecryptfs_key_sig *key_sig, *key_sig_tmp;
188
189         crypto_free_skcipher(crypt_stat->tfm);
190         crypto_free_shash(crypt_stat->hash_tfm);
191         list_for_each_entry_safe(key_sig, key_sig_tmp,
192                                  &crypt_stat->keysig_list, crypt_stat_list) {
193                 list_del(&key_sig->crypt_stat_list);
194                 kmem_cache_free(ecryptfs_key_sig_cache, key_sig);
195         }
196         memset(crypt_stat, 0, sizeof(struct ecryptfs_crypt_stat));
197 }
198
199 void ecryptfs_destroy_mount_crypt_stat(
200         struct ecryptfs_mount_crypt_stat *mount_crypt_stat)
201 {
202         struct ecryptfs_global_auth_tok *auth_tok, *auth_tok_tmp;
203
204         if (!(mount_crypt_stat->flags & ECRYPTFS_MOUNT_CRYPT_STAT_INITIALIZED))
205                 return;
206         mutex_lock(&mount_crypt_stat->global_auth_tok_list_mutex);
207         list_for_each_entry_safe(auth_tok, auth_tok_tmp,
208                                  &mount_crypt_stat->global_auth_tok_list,
209                                  mount_crypt_stat_list) {
210                 list_del(&auth_tok->mount_crypt_stat_list);
211                 if (!(auth_tok->flags & ECRYPTFS_AUTH_TOK_INVALID))
212                         key_put(auth_tok->global_auth_tok_key);
213                 kmem_cache_free(ecryptfs_global_auth_tok_cache, auth_tok);
214         }
215         mutex_unlock(&mount_crypt_stat->global_auth_tok_list_mutex);
216         memset(mount_crypt_stat, 0, sizeof(struct ecryptfs_mount_crypt_stat));
217 }
218
219 /**
220  * virt_to_scatterlist
221  * @addr: Virtual address
222  * @size: Size of data; should be an even multiple of the block size
223  * @sg: Pointer to scatterlist array; set to NULL to obtain only
224  *      the number of scatterlist structs required in array
225  * @sg_size: Max array size
226  *
227  * Fills in a scatterlist array with page references for a passed
228  * virtual address.
229  *
230  * Returns the number of scatterlist structs in array used
231  */
232 int virt_to_scatterlist(const void *addr, int size, struct scatterlist *sg,
233                         int sg_size)
234 {
235         int i = 0;
236         struct page *pg;
237         int offset;
238         int remainder_of_page;
239
240         sg_init_table(sg, sg_size);
241
242         while (size > 0 && i < sg_size) {
243                 pg = virt_to_page(addr);
244                 offset = offset_in_page(addr);
245                 sg_set_page(&sg[i], pg, 0, offset);
246                 remainder_of_page = PAGE_SIZE - offset;
247                 if (size >= remainder_of_page) {
248                         sg[i].length = remainder_of_page;
249                         addr += remainder_of_page;
250                         size -= remainder_of_page;
251                 } else {
252                         sg[i].length = size;
253                         addr += size;
254                         size = 0;
255                 }
256                 i++;
257         }
258         if (size > 0)
259                 return -ENOMEM;
260         return i;
261 }
262
263 struct extent_crypt_result {
264         struct completion completion;
265         int rc;
266 };
267
268 static void extent_crypt_complete(struct crypto_async_request *req, int rc)
269 {
270         struct extent_crypt_result *ecr = req->data;
271
272         if (rc == -EINPROGRESS)
273                 return;
274
275         ecr->rc = rc;
276         complete(&ecr->completion);
277 }
278
279 /**
280  * crypt_scatterlist
281  * @crypt_stat: Pointer to the crypt_stat struct to initialize.
282  * @dst_sg: Destination of the data after performing the crypto operation
283  * @src_sg: Data to be encrypted or decrypted
284  * @size: Length of data
285  * @iv: IV to use
286  * @op: ENCRYPT or DECRYPT to indicate the desired operation
287  *
288  * Returns the number of bytes encrypted or decrypted; negative value on error
289  */
290 static int crypt_scatterlist(struct ecryptfs_crypt_stat *crypt_stat,
291                              struct scatterlist *dst_sg,
292                              struct scatterlist *src_sg, int size,
293                              unsigned char *iv, int op)
294 {
295         struct skcipher_request *req = NULL;
296         struct extent_crypt_result ecr;
297         int rc = 0;
298
299         if (!crypt_stat || !crypt_stat->tfm
300                || !(crypt_stat->flags & ECRYPTFS_STRUCT_INITIALIZED))
301                 return -EINVAL;
302
303         if (unlikely(ecryptfs_verbosity > 0)) {
304                 ecryptfs_printk(KERN_DEBUG, "Key size [%zd]; key:\n",
305                                 crypt_stat->key_size);
306                 ecryptfs_dump_hex(crypt_stat->key,
307                                   crypt_stat->key_size);
308         }
309
310         init_completion(&ecr.completion);
311
312         mutex_lock(&crypt_stat->cs_tfm_mutex);
313         req = skcipher_request_alloc(crypt_stat->tfm, GFP_NOFS);
314         if (!req) {
315                 mutex_unlock(&crypt_stat->cs_tfm_mutex);
316                 rc = -ENOMEM;
317                 goto out;
318         }
319
320         skcipher_request_set_callback(req,
321                         CRYPTO_TFM_REQ_MAY_BACKLOG | CRYPTO_TFM_REQ_MAY_SLEEP,
322                         extent_crypt_complete, &ecr);
323         /* Consider doing this once, when the file is opened */
324         if (!(crypt_stat->flags & ECRYPTFS_KEY_SET)) {
325                 rc = crypto_skcipher_setkey(crypt_stat->tfm, crypt_stat->key,
326                                             crypt_stat->key_size);
327                 if (rc) {
328                         ecryptfs_printk(KERN_ERR,
329                                         "Error setting key; rc = [%d]\n",
330                                         rc);
331                         mutex_unlock(&crypt_stat->cs_tfm_mutex);
332                         rc = -EINVAL;
333                         goto out;
334                 }
335                 crypt_stat->flags |= ECRYPTFS_KEY_SET;
336         }
337         mutex_unlock(&crypt_stat->cs_tfm_mutex);
338         skcipher_request_set_crypt(req, src_sg, dst_sg, size, iv);
339         rc = op == ENCRYPT ? crypto_skcipher_encrypt(req) :
340                              crypto_skcipher_decrypt(req);
341         if (rc == -EINPROGRESS || rc == -EBUSY) {
342                 struct extent_crypt_result *ecr = req->base.data;
343
344                 wait_for_completion(&ecr->completion);
345                 rc = ecr->rc;
346                 reinit_completion(&ecr->completion);
347         }
348 out:
349         skcipher_request_free(req);
350         return rc;
351 }
352
353 /**
354  * lower_offset_for_page
355  *
356  * Convert an eCryptfs page index into a lower byte offset
357  */
358 static loff_t lower_offset_for_page(struct ecryptfs_crypt_stat *crypt_stat,
359                                     struct page *page)
360 {
361         return ecryptfs_lower_header_size(crypt_stat) +
362                ((loff_t)page->index << PAGE_SHIFT);
363 }
364
365 /**
366  * crypt_extent
367  * @crypt_stat: crypt_stat containing cryptographic context for the
368  *              encryption operation
369  * @dst_page: The page to write the result into
370  * @src_page: The page to read from
371  * @extent_offset: Page extent offset for use in generating IV
372  * @op: ENCRYPT or DECRYPT to indicate the desired operation
373  *
374  * Encrypts or decrypts one extent of data.
375  *
376  * Return zero on success; non-zero otherwise
377  */
378 static int crypt_extent(struct ecryptfs_crypt_stat *crypt_stat,
379                         struct page *dst_page,
380                         struct page *src_page,
381                         unsigned long extent_offset, int op)
382 {
383         pgoff_t page_index = op == ENCRYPT ? src_page->index : dst_page->index;
384         loff_t extent_base;
385         char extent_iv[ECRYPTFS_MAX_IV_BYTES];
386         struct scatterlist src_sg, dst_sg;
387         size_t extent_size = crypt_stat->extent_size;
388         int rc;
389
390         extent_base = (((loff_t)page_index) * (PAGE_SIZE / extent_size));
391         rc = ecryptfs_derive_iv(extent_iv, crypt_stat,
392                                 (extent_base + extent_offset));
393         if (rc) {
394                 ecryptfs_printk(KERN_ERR, "Error attempting to derive IV for "
395                         "extent [0x%.16llx]; rc = [%d]\n",
396                         (unsigned long long)(extent_base + extent_offset), rc);
397                 goto out;
398         }
399
400         sg_init_table(&src_sg, 1);
401         sg_init_table(&dst_sg, 1);
402
403         sg_set_page(&src_sg, src_page, extent_size,
404                     extent_offset * extent_size);
405         sg_set_page(&dst_sg, dst_page, extent_size,
406                     extent_offset * extent_size);
407
408         rc = crypt_scatterlist(crypt_stat, &dst_sg, &src_sg, extent_size,
409                                extent_iv, op);
410         if (rc < 0) {
411                 printk(KERN_ERR "%s: Error attempting to crypt page with "
412                        "page_index = [%ld], extent_offset = [%ld]; "
413                        "rc = [%d]\n", __func__, page_index, extent_offset, rc);
414                 goto out;
415         }
416         rc = 0;
417 out:
418         return rc;
419 }
420
421 /**
422  * ecryptfs_encrypt_page
423  * @page: Page mapped from the eCryptfs inode for the file; contains
424  *        decrypted content that needs to be encrypted (to a temporary
425  *        page; not in place) and written out to the lower file
426  *
427  * Encrypt an eCryptfs page. This is done on a per-extent basis. Note
428  * that eCryptfs pages may straddle the lower pages -- for instance,
429  * if the file was created on a machine with an 8K page size
430  * (resulting in an 8K header), and then the file is copied onto a
431  * host with a 32K page size, then when reading page 0 of the eCryptfs
432  * file, 24K of page 0 of the lower file will be read and decrypted,
433  * and then 8K of page 1 of the lower file will be read and decrypted.
434  *
435  * Returns zero on success; negative on error
436  */
437 int ecryptfs_encrypt_page(struct page *page)
438 {
439         struct inode *ecryptfs_inode;
440         struct ecryptfs_crypt_stat *crypt_stat;
441         char *enc_extent_virt;
442         struct page *enc_extent_page = NULL;
443         loff_t extent_offset;
444         loff_t lower_offset;
445         int rc = 0;
446
447         ecryptfs_inode = page->mapping->host;
448         crypt_stat =
449                 &(ecryptfs_inode_to_private(ecryptfs_inode)->crypt_stat);
450         BUG_ON(!(crypt_stat->flags & ECRYPTFS_ENCRYPTED));
451         enc_extent_page = alloc_page(GFP_USER);
452         if (!enc_extent_page) {
453                 rc = -ENOMEM;
454                 ecryptfs_printk(KERN_ERR, "Error allocating memory for "
455                                 "encrypted extent\n");
456                 goto out;
457         }
458
459         for (extent_offset = 0;
460              extent_offset < (PAGE_SIZE / crypt_stat->extent_size);
461              extent_offset++) {
462                 rc = crypt_extent(crypt_stat, enc_extent_page, page,
463                                   extent_offset, ENCRYPT);
464                 if (rc) {
465                         printk(KERN_ERR "%s: Error encrypting extent; "
466                                "rc = [%d]\n", __func__, rc);
467                         goto out;
468                 }
469         }
470
471         lower_offset = lower_offset_for_page(crypt_stat, page);
472         enc_extent_virt = kmap(enc_extent_page);
473         rc = ecryptfs_write_lower(ecryptfs_inode, enc_extent_virt, lower_offset,
474                                   PAGE_SIZE);
475         kunmap(enc_extent_page);
476         if (rc < 0) {
477                 ecryptfs_printk(KERN_ERR,
478                         "Error attempting to write lower page; rc = [%d]\n",
479                         rc);
480                 goto out;
481         }
482         rc = 0;
483 out:
484         if (enc_extent_page) {
485                 __free_page(enc_extent_page);
486         }
487         return rc;
488 }
489
490 /**
491  * ecryptfs_decrypt_page
492  * @page: Page mapped from the eCryptfs inode for the file; data read
493  *        and decrypted from the lower file will be written into this
494  *        page
495  *
496  * Decrypt an eCryptfs page. This is done on a per-extent basis. Note
497  * that eCryptfs pages may straddle the lower pages -- for instance,
498  * if the file was created on a machine with an 8K page size
499  * (resulting in an 8K header), and then the file is copied onto a
500  * host with a 32K page size, then when reading page 0 of the eCryptfs
501  * file, 24K of page 0 of the lower file will be read and decrypted,
502  * and then 8K of page 1 of the lower file will be read and decrypted.
503  *
504  * Returns zero on success; negative on error
505  */
506 int ecryptfs_decrypt_page(struct page *page)
507 {
508         struct inode *ecryptfs_inode;
509         struct ecryptfs_crypt_stat *crypt_stat;
510         char *page_virt;
511         unsigned long extent_offset;
512         loff_t lower_offset;
513         int rc = 0;
514
515         ecryptfs_inode = page->mapping->host;
516         crypt_stat =
517                 &(ecryptfs_inode_to_private(ecryptfs_inode)->crypt_stat);
518         BUG_ON(!(crypt_stat->flags & ECRYPTFS_ENCRYPTED));
519
520         lower_offset = lower_offset_for_page(crypt_stat, page);
521         page_virt = kmap(page);
522         rc = ecryptfs_read_lower(page_virt, lower_offset, PAGE_SIZE,
523                                  ecryptfs_inode);
524         kunmap(page);
525         if (rc < 0) {
526                 ecryptfs_printk(KERN_ERR,
527                         "Error attempting to read lower page; rc = [%d]\n",
528                         rc);
529                 goto out;
530         }
531
532         for (extent_offset = 0;
533              extent_offset < (PAGE_SIZE / crypt_stat->extent_size);
534              extent_offset++) {
535                 rc = crypt_extent(crypt_stat, page, page,
536                                   extent_offset, DECRYPT);
537                 if (rc) {
538                         printk(KERN_ERR "%s: Error encrypting extent; "
539                                "rc = [%d]\n", __func__, rc);
540                         goto out;
541                 }
542         }
543 out:
544         return rc;
545 }
546
547 #define ECRYPTFS_MAX_SCATTERLIST_LEN 4
548
549 /**
550  * ecryptfs_init_crypt_ctx
551  * @crypt_stat: Uninitialized crypt stats structure
552  *
553  * Initialize the crypto context.
554  *
555  * TODO: Performance: Keep a cache of initialized cipher contexts;
556  * only init if needed
557  */
558 int ecryptfs_init_crypt_ctx(struct ecryptfs_crypt_stat *crypt_stat)
559 {
560         char *full_alg_name;
561         int rc = -EINVAL;
562
563         ecryptfs_printk(KERN_DEBUG,
564                         "Initializing cipher [%s]; strlen = [%d]; "
565                         "key_size_bits = [%zd]\n",
566                         crypt_stat->cipher, (int)strlen(crypt_stat->cipher),
567                         crypt_stat->key_size << 3);
568         mutex_lock(&crypt_stat->cs_tfm_mutex);
569         if (crypt_stat->tfm) {
570                 rc = 0;
571                 goto out_unlock;
572         }
573         rc = ecryptfs_crypto_api_algify_cipher_name(&full_alg_name,
574                                                     crypt_stat->cipher, "cbc");
575         if (rc)
576                 goto out_unlock;
577         crypt_stat->tfm = crypto_alloc_skcipher(full_alg_name, 0, 0);
578         if (IS_ERR(crypt_stat->tfm)) {
579                 rc = PTR_ERR(crypt_stat->tfm);
580                 crypt_stat->tfm = NULL;
581                 ecryptfs_printk(KERN_ERR, "cryptfs: init_crypt_ctx(): "
582                                 "Error initializing cipher [%s]\n",
583                                 full_alg_name);
584                 goto out_free;
585         }
586         crypto_skcipher_set_flags(crypt_stat->tfm,
587                                   CRYPTO_TFM_REQ_FORBID_WEAK_KEYS);
588         rc = 0;
589 out_free:
590         kfree(full_alg_name);
591 out_unlock:
592         mutex_unlock(&crypt_stat->cs_tfm_mutex);
593         return rc;
594 }
595
596 static void set_extent_mask_and_shift(struct ecryptfs_crypt_stat *crypt_stat)
597 {
598         int extent_size_tmp;
599
600         crypt_stat->extent_mask = 0xFFFFFFFF;
601         crypt_stat->extent_shift = 0;
602         if (crypt_stat->extent_size == 0)
603                 return;
604         extent_size_tmp = crypt_stat->extent_size;
605         while ((extent_size_tmp & 0x01) == 0) {
606                 extent_size_tmp >>= 1;
607                 crypt_stat->extent_mask <<= 1;
608                 crypt_stat->extent_shift++;
609         }
610 }
611
612 void ecryptfs_set_default_sizes(struct ecryptfs_crypt_stat *crypt_stat)
613 {
614         /* Default values; may be overwritten as we are parsing the
615          * packets. */
616         crypt_stat->extent_size = ECRYPTFS_DEFAULT_EXTENT_SIZE;
617         set_extent_mask_and_shift(crypt_stat);
618         crypt_stat->iv_bytes = ECRYPTFS_DEFAULT_IV_BYTES;
619         if (crypt_stat->flags & ECRYPTFS_METADATA_IN_XATTR)
620                 crypt_stat->metadata_size = ECRYPTFS_MINIMUM_HEADER_EXTENT_SIZE;
621         else {
622                 if (PAGE_SIZE <= ECRYPTFS_MINIMUM_HEADER_EXTENT_SIZE)
623                         crypt_stat->metadata_size =
624                                 ECRYPTFS_MINIMUM_HEADER_EXTENT_SIZE;
625                 else
626                         crypt_stat->metadata_size = PAGE_SIZE;
627         }
628 }
629
630 /**
631  * ecryptfs_compute_root_iv
632  * @crypt_stats
633  *
634  * On error, sets the root IV to all 0's.
635  */
636 int ecryptfs_compute_root_iv(struct ecryptfs_crypt_stat *crypt_stat)
637 {
638         int rc = 0;
639         char dst[MD5_DIGEST_SIZE];
640
641         BUG_ON(crypt_stat->iv_bytes > MD5_DIGEST_SIZE);
642         BUG_ON(crypt_stat->iv_bytes <= 0);
643         if (!(crypt_stat->flags & ECRYPTFS_KEY_VALID)) {
644                 rc = -EINVAL;
645                 ecryptfs_printk(KERN_WARNING, "Session key not valid; "
646                                 "cannot generate root IV\n");
647                 goto out;
648         }
649         rc = ecryptfs_calculate_md5(dst, crypt_stat, crypt_stat->key,
650                                     crypt_stat->key_size);
651         if (rc) {
652                 ecryptfs_printk(KERN_WARNING, "Error attempting to compute "
653                                 "MD5 while generating root IV\n");
654                 goto out;
655         }
656         memcpy(crypt_stat->root_iv, dst, crypt_stat->iv_bytes);
657 out:
658         if (rc) {
659                 memset(crypt_stat->root_iv, 0, crypt_stat->iv_bytes);
660                 crypt_stat->flags |= ECRYPTFS_SECURITY_WARNING;
661         }
662         return rc;
663 }
664
665 static void ecryptfs_generate_new_key(struct ecryptfs_crypt_stat *crypt_stat)
666 {
667         get_random_bytes(crypt_stat->key, crypt_stat->key_size);
668         crypt_stat->flags |= ECRYPTFS_KEY_VALID;
669         ecryptfs_compute_root_iv(crypt_stat);
670         if (unlikely(ecryptfs_verbosity > 0)) {
671                 ecryptfs_printk(KERN_DEBUG, "Generated new session key:\n");
672                 ecryptfs_dump_hex(crypt_stat->key,
673                                   crypt_stat->key_size);
674         }
675 }
676
677 /**
678  * ecryptfs_copy_mount_wide_flags_to_inode_flags
679  * @crypt_stat: The inode's cryptographic context
680  * @mount_crypt_stat: The mount point's cryptographic context
681  *
682  * This function propagates the mount-wide flags to individual inode
683  * flags.
684  */
685 static void ecryptfs_copy_mount_wide_flags_to_inode_flags(
686         struct ecryptfs_crypt_stat *crypt_stat,
687         struct ecryptfs_mount_crypt_stat *mount_crypt_stat)
688 {
689         if (mount_crypt_stat->flags & ECRYPTFS_XATTR_METADATA_ENABLED)
690                 crypt_stat->flags |= ECRYPTFS_METADATA_IN_XATTR;
691         if (mount_crypt_stat->flags & ECRYPTFS_ENCRYPTED_VIEW_ENABLED)
692                 crypt_stat->flags |= ECRYPTFS_VIEW_AS_ENCRYPTED;
693         if (mount_crypt_stat->flags & ECRYPTFS_GLOBAL_ENCRYPT_FILENAMES) {
694                 crypt_stat->flags |= ECRYPTFS_ENCRYPT_FILENAMES;
695                 if (mount_crypt_stat->flags
696                     & ECRYPTFS_GLOBAL_ENCFN_USE_MOUNT_FNEK)
697                         crypt_stat->flags |= ECRYPTFS_ENCFN_USE_MOUNT_FNEK;
698                 else if (mount_crypt_stat->flags
699                          & ECRYPTFS_GLOBAL_ENCFN_USE_FEK)
700                         crypt_stat->flags |= ECRYPTFS_ENCFN_USE_FEK;
701         }
702 }
703
704 static int ecryptfs_copy_mount_wide_sigs_to_inode_sigs(
705         struct ecryptfs_crypt_stat *crypt_stat,
706         struct ecryptfs_mount_crypt_stat *mount_crypt_stat)
707 {
708         struct ecryptfs_global_auth_tok *global_auth_tok;
709         int rc = 0;
710
711         mutex_lock(&crypt_stat->keysig_list_mutex);
712         mutex_lock(&mount_crypt_stat->global_auth_tok_list_mutex);
713
714         list_for_each_entry(global_auth_tok,
715                             &mount_crypt_stat->global_auth_tok_list,
716                             mount_crypt_stat_list) {
717                 if (global_auth_tok->flags & ECRYPTFS_AUTH_TOK_FNEK)
718                         continue;
719                 rc = ecryptfs_add_keysig(crypt_stat, global_auth_tok->sig);
720                 if (rc) {
721                         printk(KERN_ERR "Error adding keysig; rc = [%d]\n", rc);
722                         goto out;
723                 }
724         }
725
726 out:
727         mutex_unlock(&mount_crypt_stat->global_auth_tok_list_mutex);
728         mutex_unlock(&crypt_stat->keysig_list_mutex);
729         return rc;
730 }
731
732 /**
733  * ecryptfs_set_default_crypt_stat_vals
734  * @crypt_stat: The inode's cryptographic context
735  * @mount_crypt_stat: The mount point's cryptographic context
736  *
737  * Default values in the event that policy does not override them.
738  */
739 static void ecryptfs_set_default_crypt_stat_vals(
740         struct ecryptfs_crypt_stat *crypt_stat,
741         struct ecryptfs_mount_crypt_stat *mount_crypt_stat)
742 {
743         ecryptfs_copy_mount_wide_flags_to_inode_flags(crypt_stat,
744                                                       mount_crypt_stat);
745         ecryptfs_set_default_sizes(crypt_stat);
746         strcpy(crypt_stat->cipher, ECRYPTFS_DEFAULT_CIPHER);
747         crypt_stat->key_size = ECRYPTFS_DEFAULT_KEY_BYTES;
748         crypt_stat->flags &= ~(ECRYPTFS_KEY_VALID);
749         crypt_stat->file_version = ECRYPTFS_FILE_VERSION;
750         crypt_stat->mount_crypt_stat = mount_crypt_stat;
751 }
752
753 /**
754  * ecryptfs_new_file_context
755  * @ecryptfs_inode: The eCryptfs inode
756  *
757  * If the crypto context for the file has not yet been established,
758  * this is where we do that.  Establishing a new crypto context
759  * involves the following decisions:
760  *  - What cipher to use?
761  *  - What set of authentication tokens to use?
762  * Here we just worry about getting enough information into the
763  * authentication tokens so that we know that they are available.
764  * We associate the available authentication tokens with the new file
765  * via the set of signatures in the crypt_stat struct.  Later, when
766  * the headers are actually written out, we may again defer to
767  * userspace to perform the encryption of the session key; for the
768  * foreseeable future, this will be the case with public key packets.
769  *
770  * Returns zero on success; non-zero otherwise
771  */
772 int ecryptfs_new_file_context(struct inode *ecryptfs_inode)
773 {
774         struct ecryptfs_crypt_stat *crypt_stat =
775             &ecryptfs_inode_to_private(ecryptfs_inode)->crypt_stat;
776         struct ecryptfs_mount_crypt_stat *mount_crypt_stat =
777             &ecryptfs_superblock_to_private(
778                     ecryptfs_inode->i_sb)->mount_crypt_stat;
779         int cipher_name_len;
780         int rc = 0;
781
782         ecryptfs_set_default_crypt_stat_vals(crypt_stat, mount_crypt_stat);
783         crypt_stat->flags |= (ECRYPTFS_ENCRYPTED | ECRYPTFS_KEY_VALID);
784         ecryptfs_copy_mount_wide_flags_to_inode_flags(crypt_stat,
785                                                       mount_crypt_stat);
786         rc = ecryptfs_copy_mount_wide_sigs_to_inode_sigs(crypt_stat,
787                                                          mount_crypt_stat);
788         if (rc) {
789                 printk(KERN_ERR "Error attempting to copy mount-wide key sigs "
790                        "to the inode key sigs; rc = [%d]\n", rc);
791                 goto out;
792         }
793         cipher_name_len =
794                 strlen(mount_crypt_stat->global_default_cipher_name);
795         memcpy(crypt_stat->cipher,
796                mount_crypt_stat->global_default_cipher_name,
797                cipher_name_len);
798         crypt_stat->cipher[cipher_name_len] = '\0';
799         crypt_stat->key_size =
800                 mount_crypt_stat->global_default_cipher_key_size;
801         ecryptfs_generate_new_key(crypt_stat);
802         rc = ecryptfs_init_crypt_ctx(crypt_stat);
803         if (rc)
804                 ecryptfs_printk(KERN_ERR, "Error initializing cryptographic "
805                                 "context for cipher [%s]: rc = [%d]\n",
806                                 crypt_stat->cipher, rc);
807 out:
808         return rc;
809 }
810
811 /**
812  * ecryptfs_validate_marker - check for the ecryptfs marker
813  * @data: The data block in which to check
814  *
815  * Returns zero if marker found; -EINVAL if not found
816  */
817 static int ecryptfs_validate_marker(char *data)
818 {
819         u32 m_1, m_2;
820
821         m_1 = get_unaligned_be32(data);
822         m_2 = get_unaligned_be32(data + 4);
823         if ((m_1 ^ MAGIC_ECRYPTFS_MARKER) == m_2)
824                 return 0;
825         ecryptfs_printk(KERN_DEBUG, "m_1 = [0x%.8x]; m_2 = [0x%.8x]; "
826                         "MAGIC_ECRYPTFS_MARKER = [0x%.8x]\n", m_1, m_2,
827                         MAGIC_ECRYPTFS_MARKER);
828         ecryptfs_printk(KERN_DEBUG, "(m_1 ^ MAGIC_ECRYPTFS_MARKER) = "
829                         "[0x%.8x]\n", (m_1 ^ MAGIC_ECRYPTFS_MARKER));
830         return -EINVAL;
831 }
832
833 struct ecryptfs_flag_map_elem {
834         u32 file_flag;
835         u32 local_flag;
836 };
837
838 /* Add support for additional flags by adding elements here. */
839 static struct ecryptfs_flag_map_elem ecryptfs_flag_map[] = {
840         {0x00000001, ECRYPTFS_ENABLE_HMAC},
841         {0x00000002, ECRYPTFS_ENCRYPTED},
842         {0x00000004, ECRYPTFS_METADATA_IN_XATTR},
843         {0x00000008, ECRYPTFS_ENCRYPT_FILENAMES}
844 };
845
846 /**
847  * ecryptfs_process_flags
848  * @crypt_stat: The cryptographic context
849  * @page_virt: Source data to be parsed
850  * @bytes_read: Updated with the number of bytes read
851  */
852 static void ecryptfs_process_flags(struct ecryptfs_crypt_stat *crypt_stat,
853                                   char *page_virt, int *bytes_read)
854 {
855         int i;
856         u32 flags;
857
858         flags = get_unaligned_be32(page_virt);
859         for (i = 0; i < ARRAY_SIZE(ecryptfs_flag_map); i++)
860                 if (flags & ecryptfs_flag_map[i].file_flag) {
861                         crypt_stat->flags |= ecryptfs_flag_map[i].local_flag;
862                 } else
863                         crypt_stat->flags &= ~(ecryptfs_flag_map[i].local_flag);
864         /* Version is in top 8 bits of the 32-bit flag vector */
865         crypt_stat->file_version = ((flags >> 24) & 0xFF);
866         (*bytes_read) = 4;
867 }
868
869 /**
870  * write_ecryptfs_marker
871  * @page_virt: The pointer to in a page to begin writing the marker
872  * @written: Number of bytes written
873  *
874  * Marker = 0x3c81b7f5
875  */
876 static void write_ecryptfs_marker(char *page_virt, size_t *written)
877 {
878         u32 m_1, m_2;
879
880         get_random_bytes(&m_1, (MAGIC_ECRYPTFS_MARKER_SIZE_BYTES / 2));
881         m_2 = (m_1 ^ MAGIC_ECRYPTFS_MARKER);
882         put_unaligned_be32(m_1, page_virt);
883         page_virt += (MAGIC_ECRYPTFS_MARKER_SIZE_BYTES / 2);
884         put_unaligned_be32(m_2, page_virt);
885         (*written) = MAGIC_ECRYPTFS_MARKER_SIZE_BYTES;
886 }
887
888 void ecryptfs_write_crypt_stat_flags(char *page_virt,
889                                      struct ecryptfs_crypt_stat *crypt_stat,
890                                      size_t *written)
891 {
892         u32 flags = 0;
893         int i;
894
895         for (i = 0; i < ARRAY_SIZE(ecryptfs_flag_map); i++)
896                 if (crypt_stat->flags & ecryptfs_flag_map[i].local_flag)
897                         flags |= ecryptfs_flag_map[i].file_flag;
898         /* Version is in top 8 bits of the 32-bit flag vector */
899         flags |= ((((u8)crypt_stat->file_version) << 24) & 0xFF000000);
900         put_unaligned_be32(flags, page_virt);
901         (*written) = 4;
902 }
903
904 struct ecryptfs_cipher_code_str_map_elem {
905         char cipher_str[16];
906         u8 cipher_code;
907 };
908
909 /* Add support for additional ciphers by adding elements here. The
910  * cipher_code is whatever OpenPGP applications use to identify the
911  * ciphers. List in order of probability. */
912 static struct ecryptfs_cipher_code_str_map_elem
913 ecryptfs_cipher_code_str_map[] = {
914         {"aes",RFC2440_CIPHER_AES_128 },
915         {"blowfish", RFC2440_CIPHER_BLOWFISH},
916         {"des3_ede", RFC2440_CIPHER_DES3_EDE},
917         {"cast5", RFC2440_CIPHER_CAST_5},
918         {"twofish", RFC2440_CIPHER_TWOFISH},
919         {"cast6", RFC2440_CIPHER_CAST_6},
920         {"aes", RFC2440_CIPHER_AES_192},
921         {"aes", RFC2440_CIPHER_AES_256}
922 };
923
924 /**
925  * ecryptfs_code_for_cipher_string
926  * @cipher_name: The string alias for the cipher
927  * @key_bytes: Length of key in bytes; used for AES code selection
928  *
929  * Returns zero on no match, or the cipher code on match
930  */
931 u8 ecryptfs_code_for_cipher_string(char *cipher_name, size_t key_bytes)
932 {
933         int i;
934         u8 code = 0;
935         struct ecryptfs_cipher_code_str_map_elem *map =
936                 ecryptfs_cipher_code_str_map;
937
938         if (strcmp(cipher_name, "aes") == 0) {
939                 switch (key_bytes) {
940                 case 16:
941                         code = RFC2440_CIPHER_AES_128;
942                         break;
943                 case 24:
944                         code = RFC2440_CIPHER_AES_192;
945                         break;
946                 case 32:
947                         code = RFC2440_CIPHER_AES_256;
948                 }
949         } else {
950                 for (i = 0; i < ARRAY_SIZE(ecryptfs_cipher_code_str_map); i++)
951                         if (strcmp(cipher_name, map[i].cipher_str) == 0) {
952                                 code = map[i].cipher_code;
953                                 break;
954                         }
955         }
956         return code;
957 }
958
959 /**
960  * ecryptfs_cipher_code_to_string
961  * @str: Destination to write out the cipher name
962  * @cipher_code: The code to convert to cipher name string
963  *
964  * Returns zero on success
965  */
966 int ecryptfs_cipher_code_to_string(char *str, u8 cipher_code)
967 {
968         int rc = 0;
969         int i;
970
971         str[0] = '\0';
972         for (i = 0; i < ARRAY_SIZE(ecryptfs_cipher_code_str_map); i++)
973                 if (cipher_code == ecryptfs_cipher_code_str_map[i].cipher_code)
974                         strcpy(str, ecryptfs_cipher_code_str_map[i].cipher_str);
975         if (str[0] == '\0') {
976                 ecryptfs_printk(KERN_WARNING, "Cipher code not recognized: "
977                                 "[%d]\n", cipher_code);
978                 rc = -EINVAL;
979         }
980         return rc;
981 }
982
983 int ecryptfs_read_and_validate_header_region(struct inode *inode)
984 {
985         u8 file_size[ECRYPTFS_SIZE_AND_MARKER_BYTES];
986         u8 *marker = file_size + ECRYPTFS_FILE_SIZE_BYTES;
987         int rc;
988
989         rc = ecryptfs_read_lower(file_size, 0, ECRYPTFS_SIZE_AND_MARKER_BYTES,
990                                  inode);
991         if (rc < 0)
992                 return rc;
993         else if (rc < ECRYPTFS_SIZE_AND_MARKER_BYTES)
994                 return -EINVAL;
995         rc = ecryptfs_validate_marker(marker);
996         if (!rc)
997                 ecryptfs_i_size_init(file_size, inode);
998         return rc;
999 }
1000
1001 void
1002 ecryptfs_write_header_metadata(char *virt,
1003                                struct ecryptfs_crypt_stat *crypt_stat,
1004                                size_t *written)
1005 {
1006         u32 header_extent_size;
1007         u16 num_header_extents_at_front;
1008
1009         header_extent_size = (u32)crypt_stat->extent_size;
1010         num_header_extents_at_front =
1011                 (u16)(crypt_stat->metadata_size / crypt_stat->extent_size);
1012         put_unaligned_be32(header_extent_size, virt);
1013         virt += 4;
1014         put_unaligned_be16(num_header_extents_at_front, virt);
1015         (*written) = 6;
1016 }
1017
1018 struct kmem_cache *ecryptfs_header_cache;
1019
1020 /**
1021  * ecryptfs_write_headers_virt
1022  * @page_virt: The virtual address to write the headers to
1023  * @max: The size of memory allocated at page_virt
1024  * @size: Set to the number of bytes written by this function
1025  * @crypt_stat: The cryptographic context
1026  * @ecryptfs_dentry: The eCryptfs dentry
1027  *
1028  * Format version: 1
1029  *
1030  *   Header Extent:
1031  *     Octets 0-7:        Unencrypted file size (big-endian)
1032  *     Octets 8-15:       eCryptfs special marker
1033  *     Octets 16-19:      Flags
1034  *      Octet 16:         File format version number (between 0 and 255)
1035  *      Octets 17-18:     Reserved
1036  *      Octet 19:         Bit 1 (lsb): Reserved
1037  *                        Bit 2: Encrypted?
1038  *                        Bits 3-8: Reserved
1039  *     Octets 20-23:      Header extent size (big-endian)
1040  *     Octets 24-25:      Number of header extents at front of file
1041  *                        (big-endian)
1042  *     Octet  26:         Begin RFC 2440 authentication token packet set
1043  *   Data Extent 0:
1044  *     Lower data (CBC encrypted)
1045  *   Data Extent 1:
1046  *     Lower data (CBC encrypted)
1047  *   ...
1048  *
1049  * Returns zero on success
1050  */
1051 static int ecryptfs_write_headers_virt(char *page_virt, size_t max,
1052                                        size_t *size,
1053                                        struct ecryptfs_crypt_stat *crypt_stat,
1054                                        struct dentry *ecryptfs_dentry)
1055 {
1056         int rc;
1057         size_t written;
1058         size_t offset;
1059
1060         offset = ECRYPTFS_FILE_SIZE_BYTES;
1061         write_ecryptfs_marker((page_virt + offset), &written);
1062         offset += written;
1063         ecryptfs_write_crypt_stat_flags((page_virt + offset), crypt_stat,
1064                                         &written);
1065         offset += written;
1066         ecryptfs_write_header_metadata((page_virt + offset), crypt_stat,
1067                                        &written);
1068         offset += written;
1069         rc = ecryptfs_generate_key_packet_set((page_virt + offset), crypt_stat,
1070                                               ecryptfs_dentry, &written,
1071                                               max - offset);
1072         if (rc)
1073                 ecryptfs_printk(KERN_WARNING, "Error generating key packet "
1074                                 "set; rc = [%d]\n", rc);
1075         if (size) {
1076                 offset += written;
1077                 *size = offset;
1078         }
1079         return rc;
1080 }
1081
1082 static int
1083 ecryptfs_write_metadata_to_contents(struct inode *ecryptfs_inode,
1084                                     char *virt, size_t virt_len)
1085 {
1086         int rc;
1087
1088         rc = ecryptfs_write_lower(ecryptfs_inode, virt,
1089                                   0, virt_len);
1090         if (rc < 0)
1091                 printk(KERN_ERR "%s: Error attempting to write header "
1092                        "information to lower file; rc = [%d]\n", __func__, rc);
1093         else
1094                 rc = 0;
1095         return rc;
1096 }
1097
1098 static int
1099 ecryptfs_write_metadata_to_xattr(struct dentry *ecryptfs_dentry,
1100                                  struct inode *ecryptfs_inode,
1101                                  char *page_virt, size_t size)
1102 {
1103         int rc;
1104         struct dentry *lower_dentry = ecryptfs_dentry_to_lower(ecryptfs_dentry);
1105         struct inode *lower_inode = d_inode(lower_dentry);
1106
1107         if (!(lower_inode->i_opflags & IOP_XATTR)) {
1108                 rc = -EOPNOTSUPP;
1109                 goto out;
1110         }
1111
1112         inode_lock(lower_inode);
1113         rc = __vfs_setxattr(lower_dentry, lower_inode, ECRYPTFS_XATTR_NAME,
1114                             page_virt, size, 0);
1115         if (!rc && ecryptfs_inode)
1116                 fsstack_copy_attr_all(ecryptfs_inode, lower_inode);
1117         inode_unlock(lower_inode);
1118 out:
1119         return rc;
1120 }
1121
1122 static unsigned long ecryptfs_get_zeroed_pages(gfp_t gfp_mask,
1123                                                unsigned int order)
1124 {
1125         struct page *page;
1126
1127         page = alloc_pages(gfp_mask | __GFP_ZERO, order);
1128         if (page)
1129                 return (unsigned long) page_address(page);
1130         return 0;
1131 }
1132
1133 /**
1134  * ecryptfs_write_metadata
1135  * @ecryptfs_dentry: The eCryptfs dentry, which should be negative
1136  * @ecryptfs_inode: The newly created eCryptfs inode
1137  *
1138  * Write the file headers out.  This will likely involve a userspace
1139  * callout, in which the session key is encrypted with one or more
1140  * public keys and/or the passphrase necessary to do the encryption is
1141  * retrieved via a prompt.  Exactly what happens at this point should
1142  * be policy-dependent.
1143  *
1144  * Returns zero on success; non-zero on error
1145  */
1146 int ecryptfs_write_metadata(struct dentry *ecryptfs_dentry,
1147                             struct inode *ecryptfs_inode)
1148 {
1149         struct ecryptfs_crypt_stat *crypt_stat =
1150                 &ecryptfs_inode_to_private(ecryptfs_inode)->crypt_stat;
1151         unsigned int order;
1152         char *virt;
1153         size_t virt_len;
1154         size_t size = 0;
1155         int rc = 0;
1156
1157         if (likely(crypt_stat->flags & ECRYPTFS_ENCRYPTED)) {
1158                 if (!(crypt_stat->flags & ECRYPTFS_KEY_VALID)) {
1159                         printk(KERN_ERR "Key is invalid; bailing out\n");
1160                         rc = -EINVAL;
1161                         goto out;
1162                 }
1163         } else {
1164                 printk(KERN_WARNING "%s: Encrypted flag not set\n",
1165                        __func__);
1166                 rc = -EINVAL;
1167                 goto out;
1168         }
1169         virt_len = crypt_stat->metadata_size;
1170         order = get_order(virt_len);
1171         /* Released in this function */
1172         virt = (char *)ecryptfs_get_zeroed_pages(GFP_KERNEL, order);
1173         if (!virt) {
1174                 printk(KERN_ERR "%s: Out of memory\n", __func__);
1175                 rc = -ENOMEM;
1176                 goto out;
1177         }
1178         /* Zeroed page ensures the in-header unencrypted i_size is set to 0 */
1179         rc = ecryptfs_write_headers_virt(virt, virt_len, &size, crypt_stat,
1180                                          ecryptfs_dentry);
1181         if (unlikely(rc)) {
1182                 printk(KERN_ERR "%s: Error whilst writing headers; rc = [%d]\n",
1183                        __func__, rc);
1184                 goto out_free;
1185         }
1186         if (crypt_stat->flags & ECRYPTFS_METADATA_IN_XATTR)
1187                 rc = ecryptfs_write_metadata_to_xattr(ecryptfs_dentry, ecryptfs_inode,
1188                                                       virt, size);
1189         else
1190                 rc = ecryptfs_write_metadata_to_contents(ecryptfs_inode, virt,
1191                                                          virt_len);
1192         if (rc) {
1193                 printk(KERN_ERR "%s: Error writing metadata out to lower file; "
1194                        "rc = [%d]\n", __func__, rc);
1195                 goto out_free;
1196         }
1197 out_free:
1198         free_pages((unsigned long)virt, order);
1199 out:
1200         return rc;
1201 }
1202
1203 #define ECRYPTFS_DONT_VALIDATE_HEADER_SIZE 0
1204 #define ECRYPTFS_VALIDATE_HEADER_SIZE 1
1205 static int parse_header_metadata(struct ecryptfs_crypt_stat *crypt_stat,
1206                                  char *virt, int *bytes_read,
1207                                  int validate_header_size)
1208 {
1209         int rc = 0;
1210         u32 header_extent_size;
1211         u16 num_header_extents_at_front;
1212
1213         header_extent_size = get_unaligned_be32(virt);
1214         virt += sizeof(__be32);
1215         num_header_extents_at_front = get_unaligned_be16(virt);
1216         crypt_stat->metadata_size = (((size_t)num_header_extents_at_front
1217                                      * (size_t)header_extent_size));
1218         (*bytes_read) = (sizeof(__be32) + sizeof(__be16));
1219         if ((validate_header_size == ECRYPTFS_VALIDATE_HEADER_SIZE)
1220             && (crypt_stat->metadata_size
1221                 < ECRYPTFS_MINIMUM_HEADER_EXTENT_SIZE)) {
1222                 rc = -EINVAL;
1223                 printk(KERN_WARNING "Invalid header size: [%zd]\n",
1224                        crypt_stat->metadata_size);
1225         }
1226         return rc;
1227 }
1228
1229 /**
1230  * set_default_header_data
1231  * @crypt_stat: The cryptographic context
1232  *
1233  * For version 0 file format; this function is only for backwards
1234  * compatibility for files created with the prior versions of
1235  * eCryptfs.
1236  */
1237 static void set_default_header_data(struct ecryptfs_crypt_stat *crypt_stat)
1238 {
1239         crypt_stat->metadata_size = ECRYPTFS_MINIMUM_HEADER_EXTENT_SIZE;
1240 }
1241
1242 void ecryptfs_i_size_init(const char *page_virt, struct inode *inode)
1243 {
1244         struct ecryptfs_mount_crypt_stat *mount_crypt_stat;
1245         struct ecryptfs_crypt_stat *crypt_stat;
1246         u64 file_size;
1247
1248         crypt_stat = &ecryptfs_inode_to_private(inode)->crypt_stat;
1249         mount_crypt_stat =
1250                 &ecryptfs_superblock_to_private(inode->i_sb)->mount_crypt_stat;
1251         if (mount_crypt_stat->flags & ECRYPTFS_ENCRYPTED_VIEW_ENABLED) {
1252                 file_size = i_size_read(ecryptfs_inode_to_lower(inode));
1253                 if (crypt_stat->flags & ECRYPTFS_METADATA_IN_XATTR)
1254                         file_size += crypt_stat->metadata_size;
1255         } else
1256                 file_size = get_unaligned_be64(page_virt);
1257         i_size_write(inode, (loff_t)file_size);
1258         crypt_stat->flags |= ECRYPTFS_I_SIZE_INITIALIZED;
1259 }
1260
1261 /**
1262  * ecryptfs_read_headers_virt
1263  * @page_virt: The virtual address into which to read the headers
1264  * @crypt_stat: The cryptographic context
1265  * @ecryptfs_dentry: The eCryptfs dentry
1266  * @validate_header_size: Whether to validate the header size while reading
1267  *
1268  * Read/parse the header data. The header format is detailed in the
1269  * comment block for the ecryptfs_write_headers_virt() function.
1270  *
1271  * Returns zero on success
1272  */
1273 static int ecryptfs_read_headers_virt(char *page_virt,
1274                                       struct ecryptfs_crypt_stat *crypt_stat,
1275                                       struct dentry *ecryptfs_dentry,
1276                                       int validate_header_size)
1277 {
1278         int rc = 0;
1279         int offset;
1280         int bytes_read;
1281
1282         ecryptfs_set_default_sizes(crypt_stat);
1283         crypt_stat->mount_crypt_stat = &ecryptfs_superblock_to_private(
1284                 ecryptfs_dentry->d_sb)->mount_crypt_stat;
1285         offset = ECRYPTFS_FILE_SIZE_BYTES;
1286         rc = ecryptfs_validate_marker(page_virt + offset);
1287         if (rc)
1288                 goto out;
1289         if (!(crypt_stat->flags & ECRYPTFS_I_SIZE_INITIALIZED))
1290                 ecryptfs_i_size_init(page_virt, d_inode(ecryptfs_dentry));
1291         offset += MAGIC_ECRYPTFS_MARKER_SIZE_BYTES;
1292         ecryptfs_process_flags(crypt_stat, (page_virt + offset), &bytes_read);
1293         if (crypt_stat->file_version > ECRYPTFS_SUPPORTED_FILE_VERSION) {
1294                 ecryptfs_printk(KERN_WARNING, "File version is [%d]; only "
1295                                 "file version [%d] is supported by this "
1296                                 "version of eCryptfs\n",
1297                                 crypt_stat->file_version,
1298                                 ECRYPTFS_SUPPORTED_FILE_VERSION);
1299                 rc = -EINVAL;
1300                 goto out;
1301         }
1302         offset += bytes_read;
1303         if (crypt_stat->file_version >= 1) {
1304                 rc = parse_header_metadata(crypt_stat, (page_virt + offset),
1305                                            &bytes_read, validate_header_size);
1306                 if (rc) {
1307                         ecryptfs_printk(KERN_WARNING, "Error reading header "
1308                                         "metadata; rc = [%d]\n", rc);
1309                 }
1310                 offset += bytes_read;
1311         } else
1312                 set_default_header_data(crypt_stat);
1313         rc = ecryptfs_parse_packet_set(crypt_stat, (page_virt + offset),
1314                                        ecryptfs_dentry);
1315 out:
1316         return rc;
1317 }
1318
1319 /**
1320  * ecryptfs_read_xattr_region
1321  * @page_virt: The vitual address into which to read the xattr data
1322  * @ecryptfs_inode: The eCryptfs inode
1323  *
1324  * Attempts to read the crypto metadata from the extended attribute
1325  * region of the lower file.
1326  *
1327  * Returns zero on success; non-zero on error
1328  */
1329 int ecryptfs_read_xattr_region(char *page_virt, struct inode *ecryptfs_inode)
1330 {
1331         struct dentry *lower_dentry =
1332                 ecryptfs_inode_to_private(ecryptfs_inode)->lower_file->f_path.dentry;
1333         ssize_t size;
1334         int rc = 0;
1335
1336         size = ecryptfs_getxattr_lower(lower_dentry,
1337                                        ecryptfs_inode_to_lower(ecryptfs_inode),
1338                                        ECRYPTFS_XATTR_NAME,
1339                                        page_virt, ECRYPTFS_DEFAULT_EXTENT_SIZE);
1340         if (size < 0) {
1341                 if (unlikely(ecryptfs_verbosity > 0))
1342                         printk(KERN_INFO "Error attempting to read the [%s] "
1343                                "xattr from the lower file; return value = "
1344                                "[%zd]\n", ECRYPTFS_XATTR_NAME, size);
1345                 rc = -EINVAL;
1346                 goto out;
1347         }
1348 out:
1349         return rc;
1350 }
1351
1352 int ecryptfs_read_and_validate_xattr_region(struct dentry *dentry,
1353                                             struct inode *inode)
1354 {
1355         u8 file_size[ECRYPTFS_SIZE_AND_MARKER_BYTES];
1356         u8 *marker = file_size + ECRYPTFS_FILE_SIZE_BYTES;
1357         int rc;
1358
1359         rc = ecryptfs_getxattr_lower(ecryptfs_dentry_to_lower(dentry),
1360                                      ecryptfs_inode_to_lower(inode),
1361                                      ECRYPTFS_XATTR_NAME, file_size,
1362                                      ECRYPTFS_SIZE_AND_MARKER_BYTES);
1363         if (rc < 0)
1364                 return rc;
1365         else if (rc < ECRYPTFS_SIZE_AND_MARKER_BYTES)
1366                 return -EINVAL;
1367         rc = ecryptfs_validate_marker(marker);
1368         if (!rc)
1369                 ecryptfs_i_size_init(file_size, inode);
1370         return rc;
1371 }
1372
1373 /**
1374  * ecryptfs_read_metadata
1375  *
1376  * Common entry point for reading file metadata. From here, we could
1377  * retrieve the header information from the header region of the file,
1378  * the xattr region of the file, or some other repository that is
1379  * stored separately from the file itself. The current implementation
1380  * supports retrieving the metadata information from the file contents
1381  * and from the xattr region.
1382  *
1383  * Returns zero if valid headers found and parsed; non-zero otherwise
1384  */
1385 int ecryptfs_read_metadata(struct dentry *ecryptfs_dentry)
1386 {
1387         int rc;
1388         char *page_virt;
1389         struct inode *ecryptfs_inode = d_inode(ecryptfs_dentry);
1390         struct ecryptfs_crypt_stat *crypt_stat =
1391             &ecryptfs_inode_to_private(ecryptfs_inode)->crypt_stat;
1392         struct ecryptfs_mount_crypt_stat *mount_crypt_stat =
1393                 &ecryptfs_superblock_to_private(
1394                         ecryptfs_dentry->d_sb)->mount_crypt_stat;
1395
1396         ecryptfs_copy_mount_wide_flags_to_inode_flags(crypt_stat,
1397                                                       mount_crypt_stat);
1398         /* Read the first page from the underlying file */
1399         page_virt = kmem_cache_alloc(ecryptfs_header_cache, GFP_USER);
1400         if (!page_virt) {
1401                 rc = -ENOMEM;
1402                 goto out;
1403         }
1404         rc = ecryptfs_read_lower(page_virt, 0, crypt_stat->extent_size,
1405                                  ecryptfs_inode);
1406         if (rc >= 0)
1407                 rc = ecryptfs_read_headers_virt(page_virt, crypt_stat,
1408                                                 ecryptfs_dentry,
1409                                                 ECRYPTFS_VALIDATE_HEADER_SIZE);
1410         if (rc) {
1411                 /* metadata is not in the file header, so try xattrs */
1412                 memset(page_virt, 0, PAGE_SIZE);
1413                 rc = ecryptfs_read_xattr_region(page_virt, ecryptfs_inode);
1414                 if (rc) {
1415                         printk(KERN_DEBUG "Valid eCryptfs headers not found in "
1416                                "file header region or xattr region, inode %lu\n",
1417                                 ecryptfs_inode->i_ino);
1418                         rc = -EINVAL;
1419                         goto out;
1420                 }
1421                 rc = ecryptfs_read_headers_virt(page_virt, crypt_stat,
1422                                                 ecryptfs_dentry,
1423                                                 ECRYPTFS_DONT_VALIDATE_HEADER_SIZE);
1424                 if (rc) {
1425                         printk(KERN_DEBUG "Valid eCryptfs headers not found in "
1426                                "file xattr region either, inode %lu\n",
1427                                 ecryptfs_inode->i_ino);
1428                         rc = -EINVAL;
1429                 }
1430                 if (crypt_stat->mount_crypt_stat->flags
1431                     & ECRYPTFS_XATTR_METADATA_ENABLED) {
1432                         crypt_stat->flags |= ECRYPTFS_METADATA_IN_XATTR;
1433                 } else {
1434                         printk(KERN_WARNING "Attempt to access file with "
1435                                "crypto metadata only in the extended attribute "
1436                                "region, but eCryptfs was mounted without "
1437                                "xattr support enabled. eCryptfs will not treat "
1438                                "this like an encrypted file, inode %lu\n",
1439                                 ecryptfs_inode->i_ino);
1440                         rc = -EINVAL;
1441                 }
1442         }
1443 out:
1444         if (page_virt) {
1445                 memset(page_virt, 0, PAGE_SIZE);
1446                 kmem_cache_free(ecryptfs_header_cache, page_virt);
1447         }
1448         return rc;
1449 }
1450
1451 /**
1452  * ecryptfs_encrypt_filename - encrypt filename
1453  *
1454  * CBC-encrypts the filename. We do not want to encrypt the same
1455  * filename with the same key and IV, which may happen with hard
1456  * links, so we prepend random bits to each filename.
1457  *
1458  * Returns zero on success; non-zero otherwise
1459  */
1460 static int
1461 ecryptfs_encrypt_filename(struct ecryptfs_filename *filename,
1462                           struct ecryptfs_mount_crypt_stat *mount_crypt_stat)
1463 {
1464         int rc = 0;
1465
1466         filename->encrypted_filename = NULL;
1467         filename->encrypted_filename_size = 0;
1468         if (mount_crypt_stat && (mount_crypt_stat->flags
1469                                      & ECRYPTFS_GLOBAL_ENCFN_USE_MOUNT_FNEK)) {
1470                 size_t packet_size;
1471                 size_t remaining_bytes;
1472
1473                 rc = ecryptfs_write_tag_70_packet(
1474                         NULL, NULL,
1475                         &filename->encrypted_filename_size,
1476                         mount_crypt_stat, NULL,
1477                         filename->filename_size);
1478                 if (rc) {
1479                         printk(KERN_ERR "%s: Error attempting to get packet "
1480                                "size for tag 72; rc = [%d]\n", __func__,
1481                                rc);
1482                         filename->encrypted_filename_size = 0;
1483                         goto out;
1484                 }
1485                 filename->encrypted_filename =
1486                         kmalloc(filename->encrypted_filename_size, GFP_KERNEL);
1487                 if (!filename->encrypted_filename) {
1488                         rc = -ENOMEM;
1489                         goto out;
1490                 }
1491                 remaining_bytes = filename->encrypted_filename_size;
1492                 rc = ecryptfs_write_tag_70_packet(filename->encrypted_filename,
1493                                                   &remaining_bytes,
1494                                                   &packet_size,
1495                                                   mount_crypt_stat,
1496                                                   filename->filename,
1497                                                   filename->filename_size);
1498                 if (rc) {
1499                         printk(KERN_ERR "%s: Error attempting to generate "
1500                                "tag 70 packet; rc = [%d]\n", __func__,
1501                                rc);
1502                         kfree(filename->encrypted_filename);
1503                         filename->encrypted_filename = NULL;
1504                         filename->encrypted_filename_size = 0;
1505                         goto out;
1506                 }
1507                 filename->encrypted_filename_size = packet_size;
1508         } else {
1509                 printk(KERN_ERR "%s: No support for requested filename "
1510                        "encryption method in this release\n", __func__);
1511                 rc = -EOPNOTSUPP;
1512                 goto out;
1513         }
1514 out:
1515         return rc;
1516 }
1517
1518 static int ecryptfs_copy_filename(char **copied_name, size_t *copied_name_size,
1519                                   const char *name, size_t name_size)
1520 {
1521         int rc = 0;
1522
1523         (*copied_name) = kmalloc((name_size + 1), GFP_KERNEL);
1524         if (!(*copied_name)) {
1525                 rc = -ENOMEM;
1526                 goto out;
1527         }
1528         memcpy((void *)(*copied_name), (void *)name, name_size);
1529         (*copied_name)[(name_size)] = '\0';     /* Only for convenience
1530                                                  * in printing out the
1531                                                  * string in debug
1532                                                  * messages */
1533         (*copied_name_size) = name_size;
1534 out:
1535         return rc;
1536 }
1537
1538 /**
1539  * ecryptfs_process_key_cipher - Perform key cipher initialization.
1540  * @key_tfm: Crypto context for key material, set by this function
1541  * @cipher_name: Name of the cipher
1542  * @key_size: Size of the key in bytes
1543  *
1544  * Returns zero on success. Any crypto_tfm structs allocated here
1545  * should be released by other functions, such as on a superblock put
1546  * event, regardless of whether this function succeeds for fails.
1547  */
1548 static int
1549 ecryptfs_process_key_cipher(struct crypto_skcipher **key_tfm,
1550                             char *cipher_name, size_t *key_size)
1551 {
1552         char dummy_key[ECRYPTFS_MAX_KEY_BYTES];
1553         char *full_alg_name = NULL;
1554         int rc;
1555
1556         *key_tfm = NULL;
1557         if (*key_size > ECRYPTFS_MAX_KEY_BYTES) {
1558                 rc = -EINVAL;
1559                 printk(KERN_ERR "Requested key size is [%zd] bytes; maximum "
1560                       "allowable is [%d]\n", *key_size, ECRYPTFS_MAX_KEY_BYTES);
1561                 goto out;
1562         }
1563         rc = ecryptfs_crypto_api_algify_cipher_name(&full_alg_name, cipher_name,
1564                                                     "ecb");
1565         if (rc)
1566                 goto out;
1567         *key_tfm = crypto_alloc_skcipher(full_alg_name, 0, CRYPTO_ALG_ASYNC);
1568         if (IS_ERR(*key_tfm)) {
1569                 rc = PTR_ERR(*key_tfm);
1570                 printk(KERN_ERR "Unable to allocate crypto cipher with name "
1571                        "[%s]; rc = [%d]\n", full_alg_name, rc);
1572                 goto out;
1573         }
1574         crypto_skcipher_set_flags(*key_tfm, CRYPTO_TFM_REQ_FORBID_WEAK_KEYS);
1575         if (*key_size == 0)
1576                 *key_size = crypto_skcipher_max_keysize(*key_tfm);
1577         get_random_bytes(dummy_key, *key_size);
1578         rc = crypto_skcipher_setkey(*key_tfm, dummy_key, *key_size);
1579         if (rc) {
1580                 printk(KERN_ERR "Error attempting to set key of size [%zd] for "
1581                        "cipher [%s]; rc = [%d]\n", *key_size, full_alg_name,
1582                        rc);
1583                 rc = -EINVAL;
1584                 goto out;
1585         }
1586 out:
1587         kfree(full_alg_name);
1588         return rc;
1589 }
1590
1591 struct kmem_cache *ecryptfs_key_tfm_cache;
1592 static struct list_head key_tfm_list;
1593 struct mutex key_tfm_list_mutex;
1594
1595 int __init ecryptfs_init_crypto(void)
1596 {
1597         mutex_init(&key_tfm_list_mutex);
1598         INIT_LIST_HEAD(&key_tfm_list);
1599         return 0;
1600 }
1601
1602 /**
1603  * ecryptfs_destroy_crypto - free all cached key_tfms on key_tfm_list
1604  *
1605  * Called only at module unload time
1606  */
1607 int ecryptfs_destroy_crypto(void)
1608 {
1609         struct ecryptfs_key_tfm *key_tfm, *key_tfm_tmp;
1610
1611         mutex_lock(&key_tfm_list_mutex);
1612         list_for_each_entry_safe(key_tfm, key_tfm_tmp, &key_tfm_list,
1613                                  key_tfm_list) {
1614                 list_del(&key_tfm->key_tfm_list);
1615                 crypto_free_skcipher(key_tfm->key_tfm);
1616                 kmem_cache_free(ecryptfs_key_tfm_cache, key_tfm);
1617         }
1618         mutex_unlock(&key_tfm_list_mutex);
1619         return 0;
1620 }
1621
1622 int
1623 ecryptfs_add_new_key_tfm(struct ecryptfs_key_tfm **key_tfm, char *cipher_name,
1624                          size_t key_size)
1625 {
1626         struct ecryptfs_key_tfm *tmp_tfm;
1627         int rc = 0;
1628
1629         BUG_ON(!mutex_is_locked(&key_tfm_list_mutex));
1630
1631         tmp_tfm = kmem_cache_alloc(ecryptfs_key_tfm_cache, GFP_KERNEL);
1632         if (key_tfm)
1633                 (*key_tfm) = tmp_tfm;
1634         if (!tmp_tfm) {
1635                 rc = -ENOMEM;
1636                 goto out;
1637         }
1638         mutex_init(&tmp_tfm->key_tfm_mutex);
1639         strncpy(tmp_tfm->cipher_name, cipher_name,
1640                 ECRYPTFS_MAX_CIPHER_NAME_SIZE);
1641         tmp_tfm->cipher_name[ECRYPTFS_MAX_CIPHER_NAME_SIZE] = '\0';
1642         tmp_tfm->key_size = key_size;
1643         rc = ecryptfs_process_key_cipher(&tmp_tfm->key_tfm,
1644                                          tmp_tfm->cipher_name,
1645                                          &tmp_tfm->key_size);
1646         if (rc) {
1647                 printk(KERN_ERR "Error attempting to initialize key TFM "
1648                        "cipher with name = [%s]; rc = [%d]\n",
1649                        tmp_tfm->cipher_name, rc);
1650                 kmem_cache_free(ecryptfs_key_tfm_cache, tmp_tfm);
1651                 if (key_tfm)
1652                         (*key_tfm) = NULL;
1653                 goto out;
1654         }
1655         list_add(&tmp_tfm->key_tfm_list, &key_tfm_list);
1656 out:
1657         return rc;
1658 }
1659
1660 /**
1661  * ecryptfs_tfm_exists - Search for existing tfm for cipher_name.
1662  * @cipher_name: the name of the cipher to search for
1663  * @key_tfm: set to corresponding tfm if found
1664  *
1665  * Searches for cached key_tfm matching @cipher_name
1666  * Must be called with &key_tfm_list_mutex held
1667  * Returns 1 if found, with @key_tfm set
1668  * Returns 0 if not found, with @key_tfm set to NULL
1669  */
1670 int ecryptfs_tfm_exists(char *cipher_name, struct ecryptfs_key_tfm **key_tfm)
1671 {
1672         struct ecryptfs_key_tfm *tmp_key_tfm;
1673
1674         BUG_ON(!mutex_is_locked(&key_tfm_list_mutex));
1675
1676         list_for_each_entry(tmp_key_tfm, &key_tfm_list, key_tfm_list) {
1677                 if (strcmp(tmp_key_tfm->cipher_name, cipher_name) == 0) {
1678                         if (key_tfm)
1679                                 (*key_tfm) = tmp_key_tfm;
1680                         return 1;
1681                 }
1682         }
1683         if (key_tfm)
1684                 (*key_tfm) = NULL;
1685         return 0;
1686 }
1687
1688 /**
1689  * ecryptfs_get_tfm_and_mutex_for_cipher_name
1690  *
1691  * @tfm: set to cached tfm found, or new tfm created
1692  * @tfm_mutex: set to mutex for cached tfm found, or new tfm created
1693  * @cipher_name: the name of the cipher to search for and/or add
1694  *
1695  * Sets pointers to @tfm & @tfm_mutex matching @cipher_name.
1696  * Searches for cached item first, and creates new if not found.
1697  * Returns 0 on success, non-zero if adding new cipher failed
1698  */
1699 int ecryptfs_get_tfm_and_mutex_for_cipher_name(struct crypto_skcipher **tfm,
1700                                                struct mutex **tfm_mutex,
1701                                                char *cipher_name)
1702 {
1703         struct ecryptfs_key_tfm *key_tfm;
1704         int rc = 0;
1705
1706         (*tfm) = NULL;
1707         (*tfm_mutex) = NULL;
1708
1709         mutex_lock(&key_tfm_list_mutex);
1710         if (!ecryptfs_tfm_exists(cipher_name, &key_tfm)) {
1711                 rc = ecryptfs_add_new_key_tfm(&key_tfm, cipher_name, 0);
1712                 if (rc) {
1713                         printk(KERN_ERR "Error adding new key_tfm to list; "
1714                                         "rc = [%d]\n", rc);
1715                         goto out;
1716                 }
1717         }
1718         (*tfm) = key_tfm->key_tfm;
1719         (*tfm_mutex) = &key_tfm->key_tfm_mutex;
1720 out:
1721         mutex_unlock(&key_tfm_list_mutex);
1722         return rc;
1723 }
1724
1725 /* 64 characters forming a 6-bit target field */
1726 static unsigned char *portable_filename_chars = ("-.0123456789ABCD"
1727                                                  "EFGHIJKLMNOPQRST"
1728                                                  "UVWXYZabcdefghij"
1729                                                  "klmnopqrstuvwxyz");
1730
1731 /* We could either offset on every reverse map or just pad some 0x00's
1732  * at the front here */
1733 static const unsigned char filename_rev_map[256] = {
1734         0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* 7 */
1735         0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* 15 */
1736         0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* 23 */
1737         0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* 31 */
1738         0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* 39 */
1739         0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x01, 0x00, /* 47 */
1740         0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08, 0x09, /* 55 */
1741         0x0A, 0x0B, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* 63 */
1742         0x00, 0x0C, 0x0D, 0x0E, 0x0F, 0x10, 0x11, 0x12, /* 71 */
1743         0x13, 0x14, 0x15, 0x16, 0x17, 0x18, 0x19, 0x1A, /* 79 */
1744         0x1B, 0x1C, 0x1D, 0x1E, 0x1F, 0x20, 0x21, 0x22, /* 87 */
1745         0x23, 0x24, 0x25, 0x00, 0x00, 0x00, 0x00, 0x00, /* 95 */
1746         0x00, 0x26, 0x27, 0x28, 0x29, 0x2A, 0x2B, 0x2C, /* 103 */
1747         0x2D, 0x2E, 0x2F, 0x30, 0x31, 0x32, 0x33, 0x34, /* 111 */
1748         0x35, 0x36, 0x37, 0x38, 0x39, 0x3A, 0x3B, 0x3C, /* 119 */
1749         0x3D, 0x3E, 0x3F /* 123 - 255 initialized to 0x00 */
1750 };
1751
1752 /**
1753  * ecryptfs_encode_for_filename
1754  * @dst: Destination location for encoded filename
1755  * @dst_size: Size of the encoded filename in bytes
1756  * @src: Source location for the filename to encode
1757  * @src_size: Size of the source in bytes
1758  */
1759 static void ecryptfs_encode_for_filename(unsigned char *dst, size_t *dst_size,
1760                                   unsigned char *src, size_t src_size)
1761 {
1762         size_t num_blocks;
1763         size_t block_num = 0;
1764         size_t dst_offset = 0;
1765         unsigned char last_block[3];
1766
1767         if (src_size == 0) {
1768                 (*dst_size) = 0;
1769                 goto out;
1770         }
1771         num_blocks = (src_size / 3);
1772         if ((src_size % 3) == 0) {
1773                 memcpy(last_block, (&src[src_size - 3]), 3);
1774         } else {
1775                 num_blocks++;
1776                 last_block[2] = 0x00;
1777                 switch (src_size % 3) {
1778                 case 1:
1779                         last_block[0] = src[src_size - 1];
1780                         last_block[1] = 0x00;
1781                         break;
1782                 case 2:
1783                         last_block[0] = src[src_size - 2];
1784                         last_block[1] = src[src_size - 1];
1785                 }
1786         }
1787         (*dst_size) = (num_blocks * 4);
1788         if (!dst)
1789                 goto out;
1790         while (block_num < num_blocks) {
1791                 unsigned char *src_block;
1792                 unsigned char dst_block[4];
1793
1794                 if (block_num == (num_blocks - 1))
1795                         src_block = last_block;
1796                 else
1797                         src_block = &src[block_num * 3];
1798                 dst_block[0] = ((src_block[0] >> 2) & 0x3F);
1799                 dst_block[1] = (((src_block[0] << 4) & 0x30)
1800                                 | ((src_block[1] >> 4) & 0x0F));
1801                 dst_block[2] = (((src_block[1] << 2) & 0x3C)
1802                                 | ((src_block[2] >> 6) & 0x03));
1803                 dst_block[3] = (src_block[2] & 0x3F);
1804                 dst[dst_offset++] = portable_filename_chars[dst_block[0]];
1805                 dst[dst_offset++] = portable_filename_chars[dst_block[1]];
1806                 dst[dst_offset++] = portable_filename_chars[dst_block[2]];
1807                 dst[dst_offset++] = portable_filename_chars[dst_block[3]];
1808                 block_num++;
1809         }
1810 out:
1811         return;
1812 }
1813
1814 static size_t ecryptfs_max_decoded_size(size_t encoded_size)
1815 {
1816         /* Not exact; conservatively long. Every block of 4
1817          * encoded characters decodes into a block of 3
1818          * decoded characters. This segment of code provides
1819          * the caller with the maximum amount of allocated
1820          * space that @dst will need to point to in a
1821          * subsequent call. */
1822         return ((encoded_size + 1) * 3) / 4;
1823 }
1824
1825 /**
1826  * ecryptfs_decode_from_filename
1827  * @dst: If NULL, this function only sets @dst_size and returns. If
1828  *       non-NULL, this function decodes the encoded octets in @src
1829  *       into the memory that @dst points to.
1830  * @dst_size: Set to the size of the decoded string.
1831  * @src: The encoded set of octets to decode.
1832  * @src_size: The size of the encoded set of octets to decode.
1833  */
1834 static void
1835 ecryptfs_decode_from_filename(unsigned char *dst, size_t *dst_size,
1836                               const unsigned char *src, size_t src_size)
1837 {
1838         u8 current_bit_offset = 0;
1839         size_t src_byte_offset = 0;
1840         size_t dst_byte_offset = 0;
1841
1842         if (!dst) {
1843                 (*dst_size) = ecryptfs_max_decoded_size(src_size);
1844                 goto out;
1845         }
1846         while (src_byte_offset < src_size) {
1847                 unsigned char src_byte =
1848                                 filename_rev_map[(int)src[src_byte_offset]];
1849
1850                 switch (current_bit_offset) {
1851                 case 0:
1852                         dst[dst_byte_offset] = (src_byte << 2);
1853                         current_bit_offset = 6;
1854                         break;
1855                 case 6:
1856                         dst[dst_byte_offset++] |= (src_byte >> 4);
1857                         dst[dst_byte_offset] = ((src_byte & 0xF)
1858                                                  << 4);
1859                         current_bit_offset = 4;
1860                         break;
1861                 case 4:
1862                         dst[dst_byte_offset++] |= (src_byte >> 2);
1863                         dst[dst_byte_offset] = (src_byte << 6);
1864                         current_bit_offset = 2;
1865                         break;
1866                 case 2:
1867                         dst[dst_byte_offset++] |= (src_byte);
1868                         current_bit_offset = 0;
1869                         break;
1870                 }
1871                 src_byte_offset++;
1872         }
1873         (*dst_size) = dst_byte_offset;
1874 out:
1875         return;
1876 }
1877
1878 /**
1879  * ecryptfs_encrypt_and_encode_filename - converts a plaintext file name to cipher text
1880  * @crypt_stat: The crypt_stat struct associated with the file anem to encode
1881  * @name: The plaintext name
1882  * @length: The length of the plaintext
1883  * @encoded_name: The encypted name
1884  *
1885  * Encrypts and encodes a filename into something that constitutes a
1886  * valid filename for a filesystem, with printable characters.
1887  *
1888  * We assume that we have a properly initialized crypto context,
1889  * pointed to by crypt_stat->tfm.
1890  *
1891  * Returns zero on success; non-zero on otherwise
1892  */
1893 int ecryptfs_encrypt_and_encode_filename(
1894         char **encoded_name,
1895         size_t *encoded_name_size,
1896         struct ecryptfs_mount_crypt_stat *mount_crypt_stat,
1897         const char *name, size_t name_size)
1898 {
1899         size_t encoded_name_no_prefix_size;
1900         int rc = 0;
1901
1902         (*encoded_name) = NULL;
1903         (*encoded_name_size) = 0;
1904         if (mount_crypt_stat && (mount_crypt_stat->flags
1905                                      & ECRYPTFS_GLOBAL_ENCRYPT_FILENAMES)) {
1906                 struct ecryptfs_filename *filename;
1907
1908                 filename = kzalloc(sizeof(*filename), GFP_KERNEL);
1909                 if (!filename) {
1910                         rc = -ENOMEM;
1911                         goto out;
1912                 }
1913                 filename->filename = (char *)name;
1914                 filename->filename_size = name_size;
1915                 rc = ecryptfs_encrypt_filename(filename, mount_crypt_stat);
1916                 if (rc) {
1917                         printk(KERN_ERR "%s: Error attempting to encrypt "
1918                                "filename; rc = [%d]\n", __func__, rc);
1919                         kfree(filename);
1920                         goto out;
1921                 }
1922                 ecryptfs_encode_for_filename(
1923                         NULL, &encoded_name_no_prefix_size,
1924                         filename->encrypted_filename,
1925                         filename->encrypted_filename_size);
1926                 if (mount_crypt_stat
1927                         && (mount_crypt_stat->flags
1928                             & ECRYPTFS_GLOBAL_ENCFN_USE_MOUNT_FNEK))
1929                         (*encoded_name_size) =
1930                                 (ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE
1931                                  + encoded_name_no_prefix_size);
1932                 else
1933                         (*encoded_name_size) =
1934                                 (ECRYPTFS_FEK_ENCRYPTED_FILENAME_PREFIX_SIZE
1935                                  + encoded_name_no_prefix_size);
1936                 (*encoded_name) = kmalloc((*encoded_name_size) + 1, GFP_KERNEL);
1937                 if (!(*encoded_name)) {
1938                         rc = -ENOMEM;
1939                         kfree(filename->encrypted_filename);
1940                         kfree(filename);
1941                         goto out;
1942                 }
1943                 if (mount_crypt_stat
1944                         && (mount_crypt_stat->flags
1945                             & ECRYPTFS_GLOBAL_ENCFN_USE_MOUNT_FNEK)) {
1946                         memcpy((*encoded_name),
1947                                ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX,
1948                                ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE);
1949                         ecryptfs_encode_for_filename(
1950                             ((*encoded_name)
1951                              + ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE),
1952                             &encoded_name_no_prefix_size,
1953                             filename->encrypted_filename,
1954                             filename->encrypted_filename_size);
1955                         (*encoded_name_size) =
1956                                 (ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE
1957                                  + encoded_name_no_prefix_size);
1958                         (*encoded_name)[(*encoded_name_size)] = '\0';
1959                 } else {
1960                         rc = -EOPNOTSUPP;
1961                 }
1962                 if (rc) {
1963                         printk(KERN_ERR "%s: Error attempting to encode "
1964                                "encrypted filename; rc = [%d]\n", __func__,
1965                                rc);
1966                         kfree((*encoded_name));
1967                         (*encoded_name) = NULL;
1968                         (*encoded_name_size) = 0;
1969                 }
1970                 kfree(filename->encrypted_filename);
1971                 kfree(filename);
1972         } else {
1973                 rc = ecryptfs_copy_filename(encoded_name,
1974                                             encoded_name_size,
1975                                             name, name_size);
1976         }
1977 out:
1978         return rc;
1979 }
1980
1981 static bool is_dot_dotdot(const char *name, size_t name_size)
1982 {
1983         if (name_size == 1 && name[0] == '.')
1984                 return true;
1985         else if (name_size == 2 && name[0] == '.' && name[1] == '.')
1986                 return true;
1987
1988         return false;
1989 }
1990
1991 /**
1992  * ecryptfs_decode_and_decrypt_filename - converts the encoded cipher text name to decoded plaintext
1993  * @plaintext_name: The plaintext name
1994  * @plaintext_name_size: The plaintext name size
1995  * @ecryptfs_dir_dentry: eCryptfs directory dentry
1996  * @name: The filename in cipher text
1997  * @name_size: The cipher text name size
1998  *
1999  * Decrypts and decodes the filename.
2000  *
2001  * Returns zero on error; non-zero otherwise
2002  */
2003 int ecryptfs_decode_and_decrypt_filename(char **plaintext_name,
2004                                          size_t *plaintext_name_size,
2005                                          struct super_block *sb,
2006                                          const char *name, size_t name_size)
2007 {
2008         struct ecryptfs_mount_crypt_stat *mount_crypt_stat =
2009                 &ecryptfs_superblock_to_private(sb)->mount_crypt_stat;
2010         char *decoded_name;
2011         size_t decoded_name_size;
2012         size_t packet_size;
2013         int rc = 0;
2014
2015         if ((mount_crypt_stat->flags & ECRYPTFS_GLOBAL_ENCRYPT_FILENAMES) &&
2016             !(mount_crypt_stat->flags & ECRYPTFS_ENCRYPTED_VIEW_ENABLED)) {
2017                 if (is_dot_dotdot(name, name_size)) {
2018                         rc = ecryptfs_copy_filename(plaintext_name,
2019                                                     plaintext_name_size,
2020                                                     name, name_size);
2021                         goto out;
2022                 }
2023
2024                 if (name_size <= ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE ||
2025                     strncmp(name, ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX,
2026                             ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE)) {
2027                         rc = -EINVAL;
2028                         goto out;
2029                 }
2030
2031                 name += ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE;
2032                 name_size -= ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE;
2033                 ecryptfs_decode_from_filename(NULL, &decoded_name_size,
2034                                               name, name_size);
2035                 decoded_name = kmalloc(decoded_name_size, GFP_KERNEL);
2036                 if (!decoded_name) {
2037                         rc = -ENOMEM;
2038                         goto out;
2039                 }
2040                 ecryptfs_decode_from_filename(decoded_name, &decoded_name_size,
2041                                               name, name_size);
2042                 rc = ecryptfs_parse_tag_70_packet(plaintext_name,
2043                                                   plaintext_name_size,
2044                                                   &packet_size,
2045                                                   mount_crypt_stat,
2046                                                   decoded_name,
2047                                                   decoded_name_size);
2048                 if (rc) {
2049                         ecryptfs_printk(KERN_DEBUG,
2050                                         "%s: Could not parse tag 70 packet from filename\n",
2051                                         __func__);
2052                         goto out_free;
2053                 }
2054         } else {
2055                 rc = ecryptfs_copy_filename(plaintext_name,
2056                                             plaintext_name_size,
2057                                             name, name_size);
2058                 goto out;
2059         }
2060 out_free:
2061         kfree(decoded_name);
2062 out:
2063         return rc;
2064 }
2065
2066 #define ENC_NAME_MAX_BLOCKLEN_8_OR_16   143
2067
2068 int ecryptfs_set_f_namelen(long *namelen, long lower_namelen,
2069                            struct ecryptfs_mount_crypt_stat *mount_crypt_stat)
2070 {
2071         struct crypto_skcipher *tfm;
2072         struct mutex *tfm_mutex;
2073         size_t cipher_blocksize;
2074         int rc;
2075
2076         if (!(mount_crypt_stat->flags & ECRYPTFS_GLOBAL_ENCRYPT_FILENAMES)) {
2077                 (*namelen) = lower_namelen;
2078                 return 0;
2079         }
2080
2081         rc = ecryptfs_get_tfm_and_mutex_for_cipher_name(&tfm, &tfm_mutex,
2082                         mount_crypt_stat->global_default_fn_cipher_name);
2083         if (unlikely(rc)) {
2084                 (*namelen) = 0;
2085                 return rc;
2086         }
2087
2088         mutex_lock(tfm_mutex);
2089         cipher_blocksize = crypto_skcipher_blocksize(tfm);
2090         mutex_unlock(tfm_mutex);
2091
2092         /* Return an exact amount for the common cases */
2093         if (lower_namelen == NAME_MAX
2094             && (cipher_blocksize == 8 || cipher_blocksize == 16)) {
2095                 (*namelen) = ENC_NAME_MAX_BLOCKLEN_8_OR_16;
2096                 return 0;
2097         }
2098
2099         /* Return a safe estimate for the uncommon cases */
2100         (*namelen) = lower_namelen;
2101         (*namelen) -= ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE;
2102         /* Since this is the max decoded size, subtract 1 "decoded block" len */
2103         (*namelen) = ecryptfs_max_decoded_size(*namelen) - 3;
2104         (*namelen) -= ECRYPTFS_TAG_70_MAX_METADATA_SIZE;
2105         (*namelen) -= ECRYPTFS_FILENAME_MIN_RANDOM_PREPEND_BYTES;
2106         /* Worst case is that the filename is padded nearly a full block size */
2107         (*namelen) -= cipher_blocksize - 1;
2108
2109         if ((*namelen) < 0)
2110                 (*namelen) = 0;
2111
2112         return 0;
2113 }