orangefs: Adding new return type vm_fault_t
[linux-2.6-microblaze.git] / fs / dcache.c
1 /*
2  * fs/dcache.c
3  *
4  * Complete reimplementation
5  * (C) 1997 Thomas Schoebel-Theuer,
6  * with heavy changes by Linus Torvalds
7  */
8
9 /*
10  * Notes on the allocation strategy:
11  *
12  * The dcache is a master of the icache - whenever a dcache entry
13  * exists, the inode will always exist. "iput()" is done either when
14  * the dcache entry is deleted or garbage collected.
15  */
16
17 #include <linux/ratelimit.h>
18 #include <linux/string.h>
19 #include <linux/mm.h>
20 #include <linux/fs.h>
21 #include <linux/fsnotify.h>
22 #include <linux/slab.h>
23 #include <linux/init.h>
24 #include <linux/hash.h>
25 #include <linux/cache.h>
26 #include <linux/export.h>
27 #include <linux/security.h>
28 #include <linux/seqlock.h>
29 #include <linux/bootmem.h>
30 #include <linux/bit_spinlock.h>
31 #include <linux/rculist_bl.h>
32 #include <linux/list_lru.h>
33 #include "internal.h"
34 #include "mount.h"
35
36 /*
37  * Usage:
38  * dcache->d_inode->i_lock protects:
39  *   - i_dentry, d_u.d_alias, d_inode of aliases
40  * dcache_hash_bucket lock protects:
41  *   - the dcache hash table
42  * s_roots bl list spinlock protects:
43  *   - the s_roots list (see __d_drop)
44  * dentry->d_sb->s_dentry_lru_lock protects:
45  *   - the dcache lru lists and counters
46  * d_lock protects:
47  *   - d_flags
48  *   - d_name
49  *   - d_lru
50  *   - d_count
51  *   - d_unhashed()
52  *   - d_parent and d_subdirs
53  *   - childrens' d_child and d_parent
54  *   - d_u.d_alias, d_inode
55  *
56  * Ordering:
57  * dentry->d_inode->i_lock
58  *   dentry->d_lock
59  *     dentry->d_sb->s_dentry_lru_lock
60  *     dcache_hash_bucket lock
61  *     s_roots lock
62  *
63  * If there is an ancestor relationship:
64  * dentry->d_parent->...->d_parent->d_lock
65  *   ...
66  *     dentry->d_parent->d_lock
67  *       dentry->d_lock
68  *
69  * If no ancestor relationship:
70  * arbitrary, since it's serialized on rename_lock
71  */
72 int sysctl_vfs_cache_pressure __read_mostly = 100;
73 EXPORT_SYMBOL_GPL(sysctl_vfs_cache_pressure);
74
75 __cacheline_aligned_in_smp DEFINE_SEQLOCK(rename_lock);
76
77 EXPORT_SYMBOL(rename_lock);
78
79 static struct kmem_cache *dentry_cache __read_mostly;
80
81 const struct qstr empty_name = QSTR_INIT("", 0);
82 EXPORT_SYMBOL(empty_name);
83 const struct qstr slash_name = QSTR_INIT("/", 1);
84 EXPORT_SYMBOL(slash_name);
85
86 /*
87  * This is the single most critical data structure when it comes
88  * to the dcache: the hashtable for lookups. Somebody should try
89  * to make this good - I've just made it work.
90  *
91  * This hash-function tries to avoid losing too many bits of hash
92  * information, yet avoid using a prime hash-size or similar.
93  */
94
95 static unsigned int d_hash_shift __read_mostly;
96
97 static struct hlist_bl_head *dentry_hashtable __read_mostly;
98
99 static inline struct hlist_bl_head *d_hash(unsigned int hash)
100 {
101         return dentry_hashtable + (hash >> d_hash_shift);
102 }
103
104 #define IN_LOOKUP_SHIFT 10
105 static struct hlist_bl_head in_lookup_hashtable[1 << IN_LOOKUP_SHIFT];
106
107 static inline struct hlist_bl_head *in_lookup_hash(const struct dentry *parent,
108                                         unsigned int hash)
109 {
110         hash += (unsigned long) parent / L1_CACHE_BYTES;
111         return in_lookup_hashtable + hash_32(hash, IN_LOOKUP_SHIFT);
112 }
113
114
115 /* Statistics gathering. */
116 struct dentry_stat_t dentry_stat = {
117         .age_limit = 45,
118 };
119
120 static DEFINE_PER_CPU(long, nr_dentry);
121 static DEFINE_PER_CPU(long, nr_dentry_unused);
122
123 #if defined(CONFIG_SYSCTL) && defined(CONFIG_PROC_FS)
124
125 /*
126  * Here we resort to our own counters instead of using generic per-cpu counters
127  * for consistency with what the vfs inode code does. We are expected to harvest
128  * better code and performance by having our own specialized counters.
129  *
130  * Please note that the loop is done over all possible CPUs, not over all online
131  * CPUs. The reason for this is that we don't want to play games with CPUs going
132  * on and off. If one of them goes off, we will just keep their counters.
133  *
134  * glommer: See cffbc8a for details, and if you ever intend to change this,
135  * please update all vfs counters to match.
136  */
137 static long get_nr_dentry(void)
138 {
139         int i;
140         long sum = 0;
141         for_each_possible_cpu(i)
142                 sum += per_cpu(nr_dentry, i);
143         return sum < 0 ? 0 : sum;
144 }
145
146 static long get_nr_dentry_unused(void)
147 {
148         int i;
149         long sum = 0;
150         for_each_possible_cpu(i)
151                 sum += per_cpu(nr_dentry_unused, i);
152         return sum < 0 ? 0 : sum;
153 }
154
155 int proc_nr_dentry(struct ctl_table *table, int write, void __user *buffer,
156                    size_t *lenp, loff_t *ppos)
157 {
158         dentry_stat.nr_dentry = get_nr_dentry();
159         dentry_stat.nr_unused = get_nr_dentry_unused();
160         return proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
161 }
162 #endif
163
164 /*
165  * Compare 2 name strings, return 0 if they match, otherwise non-zero.
166  * The strings are both count bytes long, and count is non-zero.
167  */
168 #ifdef CONFIG_DCACHE_WORD_ACCESS
169
170 #include <asm/word-at-a-time.h>
171 /*
172  * NOTE! 'cs' and 'scount' come from a dentry, so it has a
173  * aligned allocation for this particular component. We don't
174  * strictly need the load_unaligned_zeropad() safety, but it
175  * doesn't hurt either.
176  *
177  * In contrast, 'ct' and 'tcount' can be from a pathname, and do
178  * need the careful unaligned handling.
179  */
180 static inline int dentry_string_cmp(const unsigned char *cs, const unsigned char *ct, unsigned tcount)
181 {
182         unsigned long a,b,mask;
183
184         for (;;) {
185                 a = read_word_at_a_time(cs);
186                 b = load_unaligned_zeropad(ct);
187                 if (tcount < sizeof(unsigned long))
188                         break;
189                 if (unlikely(a != b))
190                         return 1;
191                 cs += sizeof(unsigned long);
192                 ct += sizeof(unsigned long);
193                 tcount -= sizeof(unsigned long);
194                 if (!tcount)
195                         return 0;
196         }
197         mask = bytemask_from_count(tcount);
198         return unlikely(!!((a ^ b) & mask));
199 }
200
201 #else
202
203 static inline int dentry_string_cmp(const unsigned char *cs, const unsigned char *ct, unsigned tcount)
204 {
205         do {
206                 if (*cs != *ct)
207                         return 1;
208                 cs++;
209                 ct++;
210                 tcount--;
211         } while (tcount);
212         return 0;
213 }
214
215 #endif
216
217 static inline int dentry_cmp(const struct dentry *dentry, const unsigned char *ct, unsigned tcount)
218 {
219         /*
220          * Be careful about RCU walk racing with rename:
221          * use 'READ_ONCE' to fetch the name pointer.
222          *
223          * NOTE! Even if a rename will mean that the length
224          * was not loaded atomically, we don't care. The
225          * RCU walk will check the sequence count eventually,
226          * and catch it. And we won't overrun the buffer,
227          * because we're reading the name pointer atomically,
228          * and a dentry name is guaranteed to be properly
229          * terminated with a NUL byte.
230          *
231          * End result: even if 'len' is wrong, we'll exit
232          * early because the data cannot match (there can
233          * be no NUL in the ct/tcount data)
234          */
235         const unsigned char *cs = READ_ONCE(dentry->d_name.name);
236
237         return dentry_string_cmp(cs, ct, tcount);
238 }
239
240 struct external_name {
241         union {
242                 atomic_t count;
243                 struct rcu_head head;
244         } u;
245         unsigned char name[];
246 };
247
248 static inline struct external_name *external_name(struct dentry *dentry)
249 {
250         return container_of(dentry->d_name.name, struct external_name, name[0]);
251 }
252
253 static void __d_free(struct rcu_head *head)
254 {
255         struct dentry *dentry = container_of(head, struct dentry, d_u.d_rcu);
256
257         kmem_cache_free(dentry_cache, dentry); 
258 }
259
260 static void __d_free_external_name(struct rcu_head *head)
261 {
262         struct external_name *name = container_of(head, struct external_name,
263                                                   u.head);
264
265         mod_node_page_state(page_pgdat(virt_to_page(name)),
266                             NR_INDIRECTLY_RECLAIMABLE_BYTES,
267                             -ksize(name));
268
269         kfree(name);
270 }
271
272 static void __d_free_external(struct rcu_head *head)
273 {
274         struct dentry *dentry = container_of(head, struct dentry, d_u.d_rcu);
275
276         __d_free_external_name(&external_name(dentry)->u.head);
277
278         kmem_cache_free(dentry_cache, dentry);
279 }
280
281 static inline int dname_external(const struct dentry *dentry)
282 {
283         return dentry->d_name.name != dentry->d_iname;
284 }
285
286 void take_dentry_name_snapshot(struct name_snapshot *name, struct dentry *dentry)
287 {
288         spin_lock(&dentry->d_lock);
289         if (unlikely(dname_external(dentry))) {
290                 struct external_name *p = external_name(dentry);
291                 atomic_inc(&p->u.count);
292                 spin_unlock(&dentry->d_lock);
293                 name->name = p->name;
294         } else {
295                 memcpy(name->inline_name, dentry->d_iname, DNAME_INLINE_LEN);
296                 spin_unlock(&dentry->d_lock);
297                 name->name = name->inline_name;
298         }
299 }
300 EXPORT_SYMBOL(take_dentry_name_snapshot);
301
302 void release_dentry_name_snapshot(struct name_snapshot *name)
303 {
304         if (unlikely(name->name != name->inline_name)) {
305                 struct external_name *p;
306                 p = container_of(name->name, struct external_name, name[0]);
307                 if (unlikely(atomic_dec_and_test(&p->u.count)))
308                         call_rcu(&p->u.head, __d_free_external_name);
309         }
310 }
311 EXPORT_SYMBOL(release_dentry_name_snapshot);
312
313 static inline void __d_set_inode_and_type(struct dentry *dentry,
314                                           struct inode *inode,
315                                           unsigned type_flags)
316 {
317         unsigned flags;
318
319         dentry->d_inode = inode;
320         flags = READ_ONCE(dentry->d_flags);
321         flags &= ~(DCACHE_ENTRY_TYPE | DCACHE_FALLTHRU);
322         flags |= type_flags;
323         WRITE_ONCE(dentry->d_flags, flags);
324 }
325
326 static inline void __d_clear_type_and_inode(struct dentry *dentry)
327 {
328         unsigned flags = READ_ONCE(dentry->d_flags);
329
330         flags &= ~(DCACHE_ENTRY_TYPE | DCACHE_FALLTHRU);
331         WRITE_ONCE(dentry->d_flags, flags);
332         dentry->d_inode = NULL;
333 }
334
335 static void dentry_free(struct dentry *dentry)
336 {
337         WARN_ON(!hlist_unhashed(&dentry->d_u.d_alias));
338         if (unlikely(dname_external(dentry))) {
339                 struct external_name *p = external_name(dentry);
340                 if (likely(atomic_dec_and_test(&p->u.count))) {
341                         call_rcu(&dentry->d_u.d_rcu, __d_free_external);
342                         return;
343                 }
344         }
345         /* if dentry was never visible to RCU, immediate free is OK */
346         if (!(dentry->d_flags & DCACHE_RCUACCESS))
347                 __d_free(&dentry->d_u.d_rcu);
348         else
349                 call_rcu(&dentry->d_u.d_rcu, __d_free);
350 }
351
352 /*
353  * Release the dentry's inode, using the filesystem
354  * d_iput() operation if defined.
355  */
356 static void dentry_unlink_inode(struct dentry * dentry)
357         __releases(dentry->d_lock)
358         __releases(dentry->d_inode->i_lock)
359 {
360         struct inode *inode = dentry->d_inode;
361
362         raw_write_seqcount_begin(&dentry->d_seq);
363         __d_clear_type_and_inode(dentry);
364         hlist_del_init(&dentry->d_u.d_alias);
365         raw_write_seqcount_end(&dentry->d_seq);
366         spin_unlock(&dentry->d_lock);
367         spin_unlock(&inode->i_lock);
368         if (!inode->i_nlink)
369                 fsnotify_inoderemove(inode);
370         if (dentry->d_op && dentry->d_op->d_iput)
371                 dentry->d_op->d_iput(dentry, inode);
372         else
373                 iput(inode);
374 }
375
376 /*
377  * The DCACHE_LRU_LIST bit is set whenever the 'd_lru' entry
378  * is in use - which includes both the "real" per-superblock
379  * LRU list _and_ the DCACHE_SHRINK_LIST use.
380  *
381  * The DCACHE_SHRINK_LIST bit is set whenever the dentry is
382  * on the shrink list (ie not on the superblock LRU list).
383  *
384  * The per-cpu "nr_dentry_unused" counters are updated with
385  * the DCACHE_LRU_LIST bit.
386  *
387  * These helper functions make sure we always follow the
388  * rules. d_lock must be held by the caller.
389  */
390 #define D_FLAG_VERIFY(dentry,x) WARN_ON_ONCE(((dentry)->d_flags & (DCACHE_LRU_LIST | DCACHE_SHRINK_LIST)) != (x))
391 static void d_lru_add(struct dentry *dentry)
392 {
393         D_FLAG_VERIFY(dentry, 0);
394         dentry->d_flags |= DCACHE_LRU_LIST;
395         this_cpu_inc(nr_dentry_unused);
396         WARN_ON_ONCE(!list_lru_add(&dentry->d_sb->s_dentry_lru, &dentry->d_lru));
397 }
398
399 static void d_lru_del(struct dentry *dentry)
400 {
401         D_FLAG_VERIFY(dentry, DCACHE_LRU_LIST);
402         dentry->d_flags &= ~DCACHE_LRU_LIST;
403         this_cpu_dec(nr_dentry_unused);
404         WARN_ON_ONCE(!list_lru_del(&dentry->d_sb->s_dentry_lru, &dentry->d_lru));
405 }
406
407 static void d_shrink_del(struct dentry *dentry)
408 {
409         D_FLAG_VERIFY(dentry, DCACHE_SHRINK_LIST | DCACHE_LRU_LIST);
410         list_del_init(&dentry->d_lru);
411         dentry->d_flags &= ~(DCACHE_SHRINK_LIST | DCACHE_LRU_LIST);
412         this_cpu_dec(nr_dentry_unused);
413 }
414
415 static void d_shrink_add(struct dentry *dentry, struct list_head *list)
416 {
417         D_FLAG_VERIFY(dentry, 0);
418         list_add(&dentry->d_lru, list);
419         dentry->d_flags |= DCACHE_SHRINK_LIST | DCACHE_LRU_LIST;
420         this_cpu_inc(nr_dentry_unused);
421 }
422
423 /*
424  * These can only be called under the global LRU lock, ie during the
425  * callback for freeing the LRU list. "isolate" removes it from the
426  * LRU lists entirely, while shrink_move moves it to the indicated
427  * private list.
428  */
429 static void d_lru_isolate(struct list_lru_one *lru, struct dentry *dentry)
430 {
431         D_FLAG_VERIFY(dentry, DCACHE_LRU_LIST);
432         dentry->d_flags &= ~DCACHE_LRU_LIST;
433         this_cpu_dec(nr_dentry_unused);
434         list_lru_isolate(lru, &dentry->d_lru);
435 }
436
437 static void d_lru_shrink_move(struct list_lru_one *lru, struct dentry *dentry,
438                               struct list_head *list)
439 {
440         D_FLAG_VERIFY(dentry, DCACHE_LRU_LIST);
441         dentry->d_flags |= DCACHE_SHRINK_LIST;
442         list_lru_isolate_move(lru, &dentry->d_lru, list);
443 }
444
445 /**
446  * d_drop - drop a dentry
447  * @dentry: dentry to drop
448  *
449  * d_drop() unhashes the entry from the parent dentry hashes, so that it won't
450  * be found through a VFS lookup any more. Note that this is different from
451  * deleting the dentry - d_delete will try to mark the dentry negative if
452  * possible, giving a successful _negative_ lookup, while d_drop will
453  * just make the cache lookup fail.
454  *
455  * d_drop() is used mainly for stuff that wants to invalidate a dentry for some
456  * reason (NFS timeouts or autofs deletes).
457  *
458  * __d_drop requires dentry->d_lock
459  * ___d_drop doesn't mark dentry as "unhashed"
460  *   (dentry->d_hash.pprev will be LIST_POISON2, not NULL).
461  */
462 static void ___d_drop(struct dentry *dentry)
463 {
464         struct hlist_bl_head *b;
465         /*
466          * Hashed dentries are normally on the dentry hashtable,
467          * with the exception of those newly allocated by
468          * d_obtain_root, which are always IS_ROOT:
469          */
470         if (unlikely(IS_ROOT(dentry)))
471                 b = &dentry->d_sb->s_roots;
472         else
473                 b = d_hash(dentry->d_name.hash);
474
475         hlist_bl_lock(b);
476         __hlist_bl_del(&dentry->d_hash);
477         hlist_bl_unlock(b);
478 }
479
480 void __d_drop(struct dentry *dentry)
481 {
482         if (!d_unhashed(dentry)) {
483                 ___d_drop(dentry);
484                 dentry->d_hash.pprev = NULL;
485                 write_seqcount_invalidate(&dentry->d_seq);
486         }
487 }
488 EXPORT_SYMBOL(__d_drop);
489
490 void d_drop(struct dentry *dentry)
491 {
492         spin_lock(&dentry->d_lock);
493         __d_drop(dentry);
494         spin_unlock(&dentry->d_lock);
495 }
496 EXPORT_SYMBOL(d_drop);
497
498 static inline void dentry_unlist(struct dentry *dentry, struct dentry *parent)
499 {
500         struct dentry *next;
501         /*
502          * Inform d_walk() and shrink_dentry_list() that we are no longer
503          * attached to the dentry tree
504          */
505         dentry->d_flags |= DCACHE_DENTRY_KILLED;
506         if (unlikely(list_empty(&dentry->d_child)))
507                 return;
508         __list_del_entry(&dentry->d_child);
509         /*
510          * Cursors can move around the list of children.  While we'd been
511          * a normal list member, it didn't matter - ->d_child.next would've
512          * been updated.  However, from now on it won't be and for the
513          * things like d_walk() it might end up with a nasty surprise.
514          * Normally d_walk() doesn't care about cursors moving around -
515          * ->d_lock on parent prevents that and since a cursor has no children
516          * of its own, we get through it without ever unlocking the parent.
517          * There is one exception, though - if we ascend from a child that
518          * gets killed as soon as we unlock it, the next sibling is found
519          * using the value left in its ->d_child.next.  And if _that_
520          * pointed to a cursor, and cursor got moved (e.g. by lseek())
521          * before d_walk() regains parent->d_lock, we'll end up skipping
522          * everything the cursor had been moved past.
523          *
524          * Solution: make sure that the pointer left behind in ->d_child.next
525          * points to something that won't be moving around.  I.e. skip the
526          * cursors.
527          */
528         while (dentry->d_child.next != &parent->d_subdirs) {
529                 next = list_entry(dentry->d_child.next, struct dentry, d_child);
530                 if (likely(!(next->d_flags & DCACHE_DENTRY_CURSOR)))
531                         break;
532                 dentry->d_child.next = next->d_child.next;
533         }
534 }
535
536 static void __dentry_kill(struct dentry *dentry)
537 {
538         struct dentry *parent = NULL;
539         bool can_free = true;
540         if (!IS_ROOT(dentry))
541                 parent = dentry->d_parent;
542
543         /*
544          * The dentry is now unrecoverably dead to the world.
545          */
546         lockref_mark_dead(&dentry->d_lockref);
547
548         /*
549          * inform the fs via d_prune that this dentry is about to be
550          * unhashed and destroyed.
551          */
552         if (dentry->d_flags & DCACHE_OP_PRUNE)
553                 dentry->d_op->d_prune(dentry);
554
555         if (dentry->d_flags & DCACHE_LRU_LIST) {
556                 if (!(dentry->d_flags & DCACHE_SHRINK_LIST))
557                         d_lru_del(dentry);
558         }
559         /* if it was on the hash then remove it */
560         __d_drop(dentry);
561         dentry_unlist(dentry, parent);
562         if (parent)
563                 spin_unlock(&parent->d_lock);
564         if (dentry->d_inode)
565                 dentry_unlink_inode(dentry);
566         else
567                 spin_unlock(&dentry->d_lock);
568         this_cpu_dec(nr_dentry);
569         if (dentry->d_op && dentry->d_op->d_release)
570                 dentry->d_op->d_release(dentry);
571
572         spin_lock(&dentry->d_lock);
573         if (dentry->d_flags & DCACHE_SHRINK_LIST) {
574                 dentry->d_flags |= DCACHE_MAY_FREE;
575                 can_free = false;
576         }
577         spin_unlock(&dentry->d_lock);
578         if (likely(can_free))
579                 dentry_free(dentry);
580         cond_resched();
581 }
582
583 static struct dentry *__lock_parent(struct dentry *dentry)
584 {
585         struct dentry *parent;
586         rcu_read_lock();
587         spin_unlock(&dentry->d_lock);
588 again:
589         parent = READ_ONCE(dentry->d_parent);
590         spin_lock(&parent->d_lock);
591         /*
592          * We can't blindly lock dentry until we are sure
593          * that we won't violate the locking order.
594          * Any changes of dentry->d_parent must have
595          * been done with parent->d_lock held, so
596          * spin_lock() above is enough of a barrier
597          * for checking if it's still our child.
598          */
599         if (unlikely(parent != dentry->d_parent)) {
600                 spin_unlock(&parent->d_lock);
601                 goto again;
602         }
603         rcu_read_unlock();
604         if (parent != dentry)
605                 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
606         else
607                 parent = NULL;
608         return parent;
609 }
610
611 static inline struct dentry *lock_parent(struct dentry *dentry)
612 {
613         struct dentry *parent = dentry->d_parent;
614         if (IS_ROOT(dentry))
615                 return NULL;
616         if (likely(spin_trylock(&parent->d_lock)))
617                 return parent;
618         return __lock_parent(dentry);
619 }
620
621 static inline bool retain_dentry(struct dentry *dentry)
622 {
623         WARN_ON(d_in_lookup(dentry));
624
625         /* Unreachable? Get rid of it */
626         if (unlikely(d_unhashed(dentry)))
627                 return false;
628
629         if (unlikely(dentry->d_flags & DCACHE_DISCONNECTED))
630                 return false;
631
632         if (unlikely(dentry->d_flags & DCACHE_OP_DELETE)) {
633                 if (dentry->d_op->d_delete(dentry))
634                         return false;
635         }
636         /* retain; LRU fodder */
637         dentry->d_lockref.count--;
638         if (unlikely(!(dentry->d_flags & DCACHE_LRU_LIST)))
639                 d_lru_add(dentry);
640         else if (unlikely(!(dentry->d_flags & DCACHE_REFERENCED)))
641                 dentry->d_flags |= DCACHE_REFERENCED;
642         return true;
643 }
644
645 /*
646  * Finish off a dentry we've decided to kill.
647  * dentry->d_lock must be held, returns with it unlocked.
648  * Returns dentry requiring refcount drop, or NULL if we're done.
649  */
650 static struct dentry *dentry_kill(struct dentry *dentry)
651         __releases(dentry->d_lock)
652 {
653         struct inode *inode = dentry->d_inode;
654         struct dentry *parent = NULL;
655
656         if (inode && unlikely(!spin_trylock(&inode->i_lock)))
657                 goto slow_positive;
658
659         if (!IS_ROOT(dentry)) {
660                 parent = dentry->d_parent;
661                 if (unlikely(!spin_trylock(&parent->d_lock))) {
662                         parent = __lock_parent(dentry);
663                         if (likely(inode || !dentry->d_inode))
664                                 goto got_locks;
665                         /* negative that became positive */
666                         if (parent)
667                                 spin_unlock(&parent->d_lock);
668                         inode = dentry->d_inode;
669                         goto slow_positive;
670                 }
671         }
672         __dentry_kill(dentry);
673         return parent;
674
675 slow_positive:
676         spin_unlock(&dentry->d_lock);
677         spin_lock(&inode->i_lock);
678         spin_lock(&dentry->d_lock);
679         parent = lock_parent(dentry);
680 got_locks:
681         if (unlikely(dentry->d_lockref.count != 1)) {
682                 dentry->d_lockref.count--;
683         } else if (likely(!retain_dentry(dentry))) {
684                 __dentry_kill(dentry);
685                 return parent;
686         }
687         /* we are keeping it, after all */
688         if (inode)
689                 spin_unlock(&inode->i_lock);
690         if (parent)
691                 spin_unlock(&parent->d_lock);
692         spin_unlock(&dentry->d_lock);
693         return NULL;
694 }
695
696 /*
697  * Try to do a lockless dput(), and return whether that was successful.
698  *
699  * If unsuccessful, we return false, having already taken the dentry lock.
700  *
701  * The caller needs to hold the RCU read lock, so that the dentry is
702  * guaranteed to stay around even if the refcount goes down to zero!
703  */
704 static inline bool fast_dput(struct dentry *dentry)
705 {
706         int ret;
707         unsigned int d_flags;
708
709         /*
710          * If we have a d_op->d_delete() operation, we sould not
711          * let the dentry count go to zero, so use "put_or_lock".
712          */
713         if (unlikely(dentry->d_flags & DCACHE_OP_DELETE))
714                 return lockref_put_or_lock(&dentry->d_lockref);
715
716         /*
717          * .. otherwise, we can try to just decrement the
718          * lockref optimistically.
719          */
720         ret = lockref_put_return(&dentry->d_lockref);
721
722         /*
723          * If the lockref_put_return() failed due to the lock being held
724          * by somebody else, the fast path has failed. We will need to
725          * get the lock, and then check the count again.
726          */
727         if (unlikely(ret < 0)) {
728                 spin_lock(&dentry->d_lock);
729                 if (dentry->d_lockref.count > 1) {
730                         dentry->d_lockref.count--;
731                         spin_unlock(&dentry->d_lock);
732                         return 1;
733                 }
734                 return 0;
735         }
736
737         /*
738          * If we weren't the last ref, we're done.
739          */
740         if (ret)
741                 return 1;
742
743         /*
744          * Careful, careful. The reference count went down
745          * to zero, but we don't hold the dentry lock, so
746          * somebody else could get it again, and do another
747          * dput(), and we need to not race with that.
748          *
749          * However, there is a very special and common case
750          * where we don't care, because there is nothing to
751          * do: the dentry is still hashed, it does not have
752          * a 'delete' op, and it's referenced and already on
753          * the LRU list.
754          *
755          * NOTE! Since we aren't locked, these values are
756          * not "stable". However, it is sufficient that at
757          * some point after we dropped the reference the
758          * dentry was hashed and the flags had the proper
759          * value. Other dentry users may have re-gotten
760          * a reference to the dentry and change that, but
761          * our work is done - we can leave the dentry
762          * around with a zero refcount.
763          */
764         smp_rmb();
765         d_flags = READ_ONCE(dentry->d_flags);
766         d_flags &= DCACHE_REFERENCED | DCACHE_LRU_LIST | DCACHE_DISCONNECTED;
767
768         /* Nothing to do? Dropping the reference was all we needed? */
769         if (d_flags == (DCACHE_REFERENCED | DCACHE_LRU_LIST) && !d_unhashed(dentry))
770                 return 1;
771
772         /*
773          * Not the fast normal case? Get the lock. We've already decremented
774          * the refcount, but we'll need to re-check the situation after
775          * getting the lock.
776          */
777         spin_lock(&dentry->d_lock);
778
779         /*
780          * Did somebody else grab a reference to it in the meantime, and
781          * we're no longer the last user after all? Alternatively, somebody
782          * else could have killed it and marked it dead. Either way, we
783          * don't need to do anything else.
784          */
785         if (dentry->d_lockref.count) {
786                 spin_unlock(&dentry->d_lock);
787                 return 1;
788         }
789
790         /*
791          * Re-get the reference we optimistically dropped. We hold the
792          * lock, and we just tested that it was zero, so we can just
793          * set it to 1.
794          */
795         dentry->d_lockref.count = 1;
796         return 0;
797 }
798
799
800 /* 
801  * This is dput
802  *
803  * This is complicated by the fact that we do not want to put
804  * dentries that are no longer on any hash chain on the unused
805  * list: we'd much rather just get rid of them immediately.
806  *
807  * However, that implies that we have to traverse the dentry
808  * tree upwards to the parents which might _also_ now be
809  * scheduled for deletion (it may have been only waiting for
810  * its last child to go away).
811  *
812  * This tail recursion is done by hand as we don't want to depend
813  * on the compiler to always get this right (gcc generally doesn't).
814  * Real recursion would eat up our stack space.
815  */
816
817 /*
818  * dput - release a dentry
819  * @dentry: dentry to release 
820  *
821  * Release a dentry. This will drop the usage count and if appropriate
822  * call the dentry unlink method as well as removing it from the queues and
823  * releasing its resources. If the parent dentries were scheduled for release
824  * they too may now get deleted.
825  */
826 void dput(struct dentry *dentry)
827 {
828         while (dentry) {
829                 might_sleep();
830
831                 rcu_read_lock();
832                 if (likely(fast_dput(dentry))) {
833                         rcu_read_unlock();
834                         return;
835                 }
836
837                 /* Slow case: now with the dentry lock held */
838                 rcu_read_unlock();
839
840                 if (likely(retain_dentry(dentry))) {
841                         spin_unlock(&dentry->d_lock);
842                         return;
843                 }
844
845                 dentry = dentry_kill(dentry);
846         }
847 }
848 EXPORT_SYMBOL(dput);
849
850
851 /* This must be called with d_lock held */
852 static inline void __dget_dlock(struct dentry *dentry)
853 {
854         dentry->d_lockref.count++;
855 }
856
857 static inline void __dget(struct dentry *dentry)
858 {
859         lockref_get(&dentry->d_lockref);
860 }
861
862 struct dentry *dget_parent(struct dentry *dentry)
863 {
864         int gotref;
865         struct dentry *ret;
866
867         /*
868          * Do optimistic parent lookup without any
869          * locking.
870          */
871         rcu_read_lock();
872         ret = READ_ONCE(dentry->d_parent);
873         gotref = lockref_get_not_zero(&ret->d_lockref);
874         rcu_read_unlock();
875         if (likely(gotref)) {
876                 if (likely(ret == READ_ONCE(dentry->d_parent)))
877                         return ret;
878                 dput(ret);
879         }
880
881 repeat:
882         /*
883          * Don't need rcu_dereference because we re-check it was correct under
884          * the lock.
885          */
886         rcu_read_lock();
887         ret = dentry->d_parent;
888         spin_lock(&ret->d_lock);
889         if (unlikely(ret != dentry->d_parent)) {
890                 spin_unlock(&ret->d_lock);
891                 rcu_read_unlock();
892                 goto repeat;
893         }
894         rcu_read_unlock();
895         BUG_ON(!ret->d_lockref.count);
896         ret->d_lockref.count++;
897         spin_unlock(&ret->d_lock);
898         return ret;
899 }
900 EXPORT_SYMBOL(dget_parent);
901
902 static struct dentry * __d_find_any_alias(struct inode *inode)
903 {
904         struct dentry *alias;
905
906         if (hlist_empty(&inode->i_dentry))
907                 return NULL;
908         alias = hlist_entry(inode->i_dentry.first, struct dentry, d_u.d_alias);
909         __dget(alias);
910         return alias;
911 }
912
913 /**
914  * d_find_any_alias - find any alias for a given inode
915  * @inode: inode to find an alias for
916  *
917  * If any aliases exist for the given inode, take and return a
918  * reference for one of them.  If no aliases exist, return %NULL.
919  */
920 struct dentry *d_find_any_alias(struct inode *inode)
921 {
922         struct dentry *de;
923
924         spin_lock(&inode->i_lock);
925         de = __d_find_any_alias(inode);
926         spin_unlock(&inode->i_lock);
927         return de;
928 }
929 EXPORT_SYMBOL(d_find_any_alias);
930
931 /**
932  * d_find_alias - grab a hashed alias of inode
933  * @inode: inode in question
934  *
935  * If inode has a hashed alias, or is a directory and has any alias,
936  * acquire the reference to alias and return it. Otherwise return NULL.
937  * Notice that if inode is a directory there can be only one alias and
938  * it can be unhashed only if it has no children, or if it is the root
939  * of a filesystem, or if the directory was renamed and d_revalidate
940  * was the first vfs operation to notice.
941  *
942  * If the inode has an IS_ROOT, DCACHE_DISCONNECTED alias, then prefer
943  * any other hashed alias over that one.
944  */
945 static struct dentry *__d_find_alias(struct inode *inode)
946 {
947         struct dentry *alias;
948
949         if (S_ISDIR(inode->i_mode))
950                 return __d_find_any_alias(inode);
951
952         hlist_for_each_entry(alias, &inode->i_dentry, d_u.d_alias) {
953                 spin_lock(&alias->d_lock);
954                 if (!d_unhashed(alias)) {
955                         __dget_dlock(alias);
956                         spin_unlock(&alias->d_lock);
957                         return alias;
958                 }
959                 spin_unlock(&alias->d_lock);
960         }
961         return NULL;
962 }
963
964 struct dentry *d_find_alias(struct inode *inode)
965 {
966         struct dentry *de = NULL;
967
968         if (!hlist_empty(&inode->i_dentry)) {
969                 spin_lock(&inode->i_lock);
970                 de = __d_find_alias(inode);
971                 spin_unlock(&inode->i_lock);
972         }
973         return de;
974 }
975 EXPORT_SYMBOL(d_find_alias);
976
977 /*
978  *      Try to kill dentries associated with this inode.
979  * WARNING: you must own a reference to inode.
980  */
981 void d_prune_aliases(struct inode *inode)
982 {
983         struct dentry *dentry;
984 restart:
985         spin_lock(&inode->i_lock);
986         hlist_for_each_entry(dentry, &inode->i_dentry, d_u.d_alias) {
987                 spin_lock(&dentry->d_lock);
988                 if (!dentry->d_lockref.count) {
989                         struct dentry *parent = lock_parent(dentry);
990                         if (likely(!dentry->d_lockref.count)) {
991                                 __dentry_kill(dentry);
992                                 dput(parent);
993                                 goto restart;
994                         }
995                         if (parent)
996                                 spin_unlock(&parent->d_lock);
997                 }
998                 spin_unlock(&dentry->d_lock);
999         }
1000         spin_unlock(&inode->i_lock);
1001 }
1002 EXPORT_SYMBOL(d_prune_aliases);
1003
1004 /*
1005  * Lock a dentry from shrink list.
1006  * Called under rcu_read_lock() and dentry->d_lock; the former
1007  * guarantees that nothing we access will be freed under us.
1008  * Note that dentry is *not* protected from concurrent dentry_kill(),
1009  * d_delete(), etc.
1010  *
1011  * Return false if dentry has been disrupted or grabbed, leaving
1012  * the caller to kick it off-list.  Otherwise, return true and have
1013  * that dentry's inode and parent both locked.
1014  */
1015 static bool shrink_lock_dentry(struct dentry *dentry)
1016 {
1017         struct inode *inode;
1018         struct dentry *parent;
1019
1020         if (dentry->d_lockref.count)
1021                 return false;
1022
1023         inode = dentry->d_inode;
1024         if (inode && unlikely(!spin_trylock(&inode->i_lock))) {
1025                 spin_unlock(&dentry->d_lock);
1026                 spin_lock(&inode->i_lock);
1027                 spin_lock(&dentry->d_lock);
1028                 if (unlikely(dentry->d_lockref.count))
1029                         goto out;
1030                 /* changed inode means that somebody had grabbed it */
1031                 if (unlikely(inode != dentry->d_inode))
1032                         goto out;
1033         }
1034
1035         parent = dentry->d_parent;
1036         if (IS_ROOT(dentry) || likely(spin_trylock(&parent->d_lock)))
1037                 return true;
1038
1039         spin_unlock(&dentry->d_lock);
1040         spin_lock(&parent->d_lock);
1041         if (unlikely(parent != dentry->d_parent)) {
1042                 spin_unlock(&parent->d_lock);
1043                 spin_lock(&dentry->d_lock);
1044                 goto out;
1045         }
1046         spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
1047         if (likely(!dentry->d_lockref.count))
1048                 return true;
1049         spin_unlock(&parent->d_lock);
1050 out:
1051         if (inode)
1052                 spin_unlock(&inode->i_lock);
1053         return false;
1054 }
1055
1056 static void shrink_dentry_list(struct list_head *list)
1057 {
1058         while (!list_empty(list)) {
1059                 struct dentry *dentry, *parent;
1060
1061                 dentry = list_entry(list->prev, struct dentry, d_lru);
1062                 spin_lock(&dentry->d_lock);
1063                 rcu_read_lock();
1064                 if (!shrink_lock_dentry(dentry)) {
1065                         bool can_free = false;
1066                         rcu_read_unlock();
1067                         d_shrink_del(dentry);
1068                         if (dentry->d_lockref.count < 0)
1069                                 can_free = dentry->d_flags & DCACHE_MAY_FREE;
1070                         spin_unlock(&dentry->d_lock);
1071                         if (can_free)
1072                                 dentry_free(dentry);
1073                         continue;
1074                 }
1075                 rcu_read_unlock();
1076                 d_shrink_del(dentry);
1077                 parent = dentry->d_parent;
1078                 __dentry_kill(dentry);
1079                 if (parent == dentry)
1080                         continue;
1081                 /*
1082                  * We need to prune ancestors too. This is necessary to prevent
1083                  * quadratic behavior of shrink_dcache_parent(), but is also
1084                  * expected to be beneficial in reducing dentry cache
1085                  * fragmentation.
1086                  */
1087                 dentry = parent;
1088                 while (dentry && !lockref_put_or_lock(&dentry->d_lockref))
1089                         dentry = dentry_kill(dentry);
1090         }
1091 }
1092
1093 static enum lru_status dentry_lru_isolate(struct list_head *item,
1094                 struct list_lru_one *lru, spinlock_t *lru_lock, void *arg)
1095 {
1096         struct list_head *freeable = arg;
1097         struct dentry   *dentry = container_of(item, struct dentry, d_lru);
1098
1099
1100         /*
1101          * we are inverting the lru lock/dentry->d_lock here,
1102          * so use a trylock. If we fail to get the lock, just skip
1103          * it
1104          */
1105         if (!spin_trylock(&dentry->d_lock))
1106                 return LRU_SKIP;
1107
1108         /*
1109          * Referenced dentries are still in use. If they have active
1110          * counts, just remove them from the LRU. Otherwise give them
1111          * another pass through the LRU.
1112          */
1113         if (dentry->d_lockref.count) {
1114                 d_lru_isolate(lru, dentry);
1115                 spin_unlock(&dentry->d_lock);
1116                 return LRU_REMOVED;
1117         }
1118
1119         if (dentry->d_flags & DCACHE_REFERENCED) {
1120                 dentry->d_flags &= ~DCACHE_REFERENCED;
1121                 spin_unlock(&dentry->d_lock);
1122
1123                 /*
1124                  * The list move itself will be made by the common LRU code. At
1125                  * this point, we've dropped the dentry->d_lock but keep the
1126                  * lru lock. This is safe to do, since every list movement is
1127                  * protected by the lru lock even if both locks are held.
1128                  *
1129                  * This is guaranteed by the fact that all LRU management
1130                  * functions are intermediated by the LRU API calls like
1131                  * list_lru_add and list_lru_del. List movement in this file
1132                  * only ever occur through this functions or through callbacks
1133                  * like this one, that are called from the LRU API.
1134                  *
1135                  * The only exceptions to this are functions like
1136                  * shrink_dentry_list, and code that first checks for the
1137                  * DCACHE_SHRINK_LIST flag.  Those are guaranteed to be
1138                  * operating only with stack provided lists after they are
1139                  * properly isolated from the main list.  It is thus, always a
1140                  * local access.
1141                  */
1142                 return LRU_ROTATE;
1143         }
1144
1145         d_lru_shrink_move(lru, dentry, freeable);
1146         spin_unlock(&dentry->d_lock);
1147
1148         return LRU_REMOVED;
1149 }
1150
1151 /**
1152  * prune_dcache_sb - shrink the dcache
1153  * @sb: superblock
1154  * @sc: shrink control, passed to list_lru_shrink_walk()
1155  *
1156  * Attempt to shrink the superblock dcache LRU by @sc->nr_to_scan entries. This
1157  * is done when we need more memory and called from the superblock shrinker
1158  * function.
1159  *
1160  * This function may fail to free any resources if all the dentries are in
1161  * use.
1162  */
1163 long prune_dcache_sb(struct super_block *sb, struct shrink_control *sc)
1164 {
1165         LIST_HEAD(dispose);
1166         long freed;
1167
1168         freed = list_lru_shrink_walk(&sb->s_dentry_lru, sc,
1169                                      dentry_lru_isolate, &dispose);
1170         shrink_dentry_list(&dispose);
1171         return freed;
1172 }
1173
1174 static enum lru_status dentry_lru_isolate_shrink(struct list_head *item,
1175                 struct list_lru_one *lru, spinlock_t *lru_lock, void *arg)
1176 {
1177         struct list_head *freeable = arg;
1178         struct dentry   *dentry = container_of(item, struct dentry, d_lru);
1179
1180         /*
1181          * we are inverting the lru lock/dentry->d_lock here,
1182          * so use a trylock. If we fail to get the lock, just skip
1183          * it
1184          */
1185         if (!spin_trylock(&dentry->d_lock))
1186                 return LRU_SKIP;
1187
1188         d_lru_shrink_move(lru, dentry, freeable);
1189         spin_unlock(&dentry->d_lock);
1190
1191         return LRU_REMOVED;
1192 }
1193
1194
1195 /**
1196  * shrink_dcache_sb - shrink dcache for a superblock
1197  * @sb: superblock
1198  *
1199  * Shrink the dcache for the specified super block. This is used to free
1200  * the dcache before unmounting a file system.
1201  */
1202 void shrink_dcache_sb(struct super_block *sb)
1203 {
1204         long freed;
1205
1206         do {
1207                 LIST_HEAD(dispose);
1208
1209                 freed = list_lru_walk(&sb->s_dentry_lru,
1210                         dentry_lru_isolate_shrink, &dispose, 1024);
1211
1212                 this_cpu_sub(nr_dentry_unused, freed);
1213                 shrink_dentry_list(&dispose);
1214         } while (list_lru_count(&sb->s_dentry_lru) > 0);
1215 }
1216 EXPORT_SYMBOL(shrink_dcache_sb);
1217
1218 /**
1219  * enum d_walk_ret - action to talke during tree walk
1220  * @D_WALK_CONTINUE:    contrinue walk
1221  * @D_WALK_QUIT:        quit walk
1222  * @D_WALK_NORETRY:     quit when retry is needed
1223  * @D_WALK_SKIP:        skip this dentry and its children
1224  */
1225 enum d_walk_ret {
1226         D_WALK_CONTINUE,
1227         D_WALK_QUIT,
1228         D_WALK_NORETRY,
1229         D_WALK_SKIP,
1230 };
1231
1232 /**
1233  * d_walk - walk the dentry tree
1234  * @parent:     start of walk
1235  * @data:       data passed to @enter() and @finish()
1236  * @enter:      callback when first entering the dentry
1237  *
1238  * The @enter() callbacks are called with d_lock held.
1239  */
1240 static void d_walk(struct dentry *parent, void *data,
1241                    enum d_walk_ret (*enter)(void *, struct dentry *))
1242 {
1243         struct dentry *this_parent;
1244         struct list_head *next;
1245         unsigned seq = 0;
1246         enum d_walk_ret ret;
1247         bool retry = true;
1248
1249 again:
1250         read_seqbegin_or_lock(&rename_lock, &seq);
1251         this_parent = parent;
1252         spin_lock(&this_parent->d_lock);
1253
1254         ret = enter(data, this_parent);
1255         switch (ret) {
1256         case D_WALK_CONTINUE:
1257                 break;
1258         case D_WALK_QUIT:
1259         case D_WALK_SKIP:
1260                 goto out_unlock;
1261         case D_WALK_NORETRY:
1262                 retry = false;
1263                 break;
1264         }
1265 repeat:
1266         next = this_parent->d_subdirs.next;
1267 resume:
1268         while (next != &this_parent->d_subdirs) {
1269                 struct list_head *tmp = next;
1270                 struct dentry *dentry = list_entry(tmp, struct dentry, d_child);
1271                 next = tmp->next;
1272
1273                 if (unlikely(dentry->d_flags & DCACHE_DENTRY_CURSOR))
1274                         continue;
1275
1276                 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
1277
1278                 ret = enter(data, dentry);
1279                 switch (ret) {
1280                 case D_WALK_CONTINUE:
1281                         break;
1282                 case D_WALK_QUIT:
1283                         spin_unlock(&dentry->d_lock);
1284                         goto out_unlock;
1285                 case D_WALK_NORETRY:
1286                         retry = false;
1287                         break;
1288                 case D_WALK_SKIP:
1289                         spin_unlock(&dentry->d_lock);
1290                         continue;
1291                 }
1292
1293                 if (!list_empty(&dentry->d_subdirs)) {
1294                         spin_unlock(&this_parent->d_lock);
1295                         spin_release(&dentry->d_lock.dep_map, 1, _RET_IP_);
1296                         this_parent = dentry;
1297                         spin_acquire(&this_parent->d_lock.dep_map, 0, 1, _RET_IP_);
1298                         goto repeat;
1299                 }
1300                 spin_unlock(&dentry->d_lock);
1301         }
1302         /*
1303          * All done at this level ... ascend and resume the search.
1304          */
1305         rcu_read_lock();
1306 ascend:
1307         if (this_parent != parent) {
1308                 struct dentry *child = this_parent;
1309                 this_parent = child->d_parent;
1310
1311                 spin_unlock(&child->d_lock);
1312                 spin_lock(&this_parent->d_lock);
1313
1314                 /* might go back up the wrong parent if we have had a rename. */
1315                 if (need_seqretry(&rename_lock, seq))
1316                         goto rename_retry;
1317                 /* go into the first sibling still alive */
1318                 do {
1319                         next = child->d_child.next;
1320                         if (next == &this_parent->d_subdirs)
1321                                 goto ascend;
1322                         child = list_entry(next, struct dentry, d_child);
1323                 } while (unlikely(child->d_flags & DCACHE_DENTRY_KILLED));
1324                 rcu_read_unlock();
1325                 goto resume;
1326         }
1327         if (need_seqretry(&rename_lock, seq))
1328                 goto rename_retry;
1329         rcu_read_unlock();
1330
1331 out_unlock:
1332         spin_unlock(&this_parent->d_lock);
1333         done_seqretry(&rename_lock, seq);
1334         return;
1335
1336 rename_retry:
1337         spin_unlock(&this_parent->d_lock);
1338         rcu_read_unlock();
1339         BUG_ON(seq & 1);
1340         if (!retry)
1341                 return;
1342         seq = 1;
1343         goto again;
1344 }
1345
1346 struct check_mount {
1347         struct vfsmount *mnt;
1348         unsigned int mounted;
1349 };
1350
1351 static enum d_walk_ret path_check_mount(void *data, struct dentry *dentry)
1352 {
1353         struct check_mount *info = data;
1354         struct path path = { .mnt = info->mnt, .dentry = dentry };
1355
1356         if (likely(!d_mountpoint(dentry)))
1357                 return D_WALK_CONTINUE;
1358         if (__path_is_mountpoint(&path)) {
1359                 info->mounted = 1;
1360                 return D_WALK_QUIT;
1361         }
1362         return D_WALK_CONTINUE;
1363 }
1364
1365 /**
1366  * path_has_submounts - check for mounts over a dentry in the
1367  *                      current namespace.
1368  * @parent: path to check.
1369  *
1370  * Return true if the parent or its subdirectories contain
1371  * a mount point in the current namespace.
1372  */
1373 int path_has_submounts(const struct path *parent)
1374 {
1375         struct check_mount data = { .mnt = parent->mnt, .mounted = 0 };
1376
1377         read_seqlock_excl(&mount_lock);
1378         d_walk(parent->dentry, &data, path_check_mount);
1379         read_sequnlock_excl(&mount_lock);
1380
1381         return data.mounted;
1382 }
1383 EXPORT_SYMBOL(path_has_submounts);
1384
1385 /*
1386  * Called by mount code to set a mountpoint and check if the mountpoint is
1387  * reachable (e.g. NFS can unhash a directory dentry and then the complete
1388  * subtree can become unreachable).
1389  *
1390  * Only one of d_invalidate() and d_set_mounted() must succeed.  For
1391  * this reason take rename_lock and d_lock on dentry and ancestors.
1392  */
1393 int d_set_mounted(struct dentry *dentry)
1394 {
1395         struct dentry *p;
1396         int ret = -ENOENT;
1397         write_seqlock(&rename_lock);
1398         for (p = dentry->d_parent; !IS_ROOT(p); p = p->d_parent) {
1399                 /* Need exclusion wrt. d_invalidate() */
1400                 spin_lock(&p->d_lock);
1401                 if (unlikely(d_unhashed(p))) {
1402                         spin_unlock(&p->d_lock);
1403                         goto out;
1404                 }
1405                 spin_unlock(&p->d_lock);
1406         }
1407         spin_lock(&dentry->d_lock);
1408         if (!d_unlinked(dentry)) {
1409                 ret = -EBUSY;
1410                 if (!d_mountpoint(dentry)) {
1411                         dentry->d_flags |= DCACHE_MOUNTED;
1412                         ret = 0;
1413                 }
1414         }
1415         spin_unlock(&dentry->d_lock);
1416 out:
1417         write_sequnlock(&rename_lock);
1418         return ret;
1419 }
1420
1421 /*
1422  * Search the dentry child list of the specified parent,
1423  * and move any unused dentries to the end of the unused
1424  * list for prune_dcache(). We descend to the next level
1425  * whenever the d_subdirs list is non-empty and continue
1426  * searching.
1427  *
1428  * It returns zero iff there are no unused children,
1429  * otherwise  it returns the number of children moved to
1430  * the end of the unused list. This may not be the total
1431  * number of unused children, because select_parent can
1432  * drop the lock and return early due to latency
1433  * constraints.
1434  */
1435
1436 struct select_data {
1437         struct dentry *start;
1438         struct list_head dispose;
1439         int found;
1440 };
1441
1442 static enum d_walk_ret select_collect(void *_data, struct dentry *dentry)
1443 {
1444         struct select_data *data = _data;
1445         enum d_walk_ret ret = D_WALK_CONTINUE;
1446
1447         if (data->start == dentry)
1448                 goto out;
1449
1450         if (dentry->d_flags & DCACHE_SHRINK_LIST) {
1451                 data->found++;
1452         } else {
1453                 if (dentry->d_flags & DCACHE_LRU_LIST)
1454                         d_lru_del(dentry);
1455                 if (!dentry->d_lockref.count) {
1456                         d_shrink_add(dentry, &data->dispose);
1457                         data->found++;
1458                 }
1459         }
1460         /*
1461          * We can return to the caller if we have found some (this
1462          * ensures forward progress). We'll be coming back to find
1463          * the rest.
1464          */
1465         if (!list_empty(&data->dispose))
1466                 ret = need_resched() ? D_WALK_QUIT : D_WALK_NORETRY;
1467 out:
1468         return ret;
1469 }
1470
1471 /**
1472  * shrink_dcache_parent - prune dcache
1473  * @parent: parent of entries to prune
1474  *
1475  * Prune the dcache to remove unused children of the parent dentry.
1476  */
1477 void shrink_dcache_parent(struct dentry *parent)
1478 {
1479         for (;;) {
1480                 struct select_data data;
1481
1482                 INIT_LIST_HEAD(&data.dispose);
1483                 data.start = parent;
1484                 data.found = 0;
1485
1486                 d_walk(parent, &data, select_collect);
1487
1488                 if (!list_empty(&data.dispose)) {
1489                         shrink_dentry_list(&data.dispose);
1490                         continue;
1491                 }
1492
1493                 cond_resched();
1494                 if (!data.found)
1495                         break;
1496         }
1497 }
1498 EXPORT_SYMBOL(shrink_dcache_parent);
1499
1500 static enum d_walk_ret umount_check(void *_data, struct dentry *dentry)
1501 {
1502         /* it has busy descendents; complain about those instead */
1503         if (!list_empty(&dentry->d_subdirs))
1504                 return D_WALK_CONTINUE;
1505
1506         /* root with refcount 1 is fine */
1507         if (dentry == _data && dentry->d_lockref.count == 1)
1508                 return D_WALK_CONTINUE;
1509
1510         printk(KERN_ERR "BUG: Dentry %p{i=%lx,n=%pd} "
1511                         " still in use (%d) [unmount of %s %s]\n",
1512                        dentry,
1513                        dentry->d_inode ?
1514                        dentry->d_inode->i_ino : 0UL,
1515                        dentry,
1516                        dentry->d_lockref.count,
1517                        dentry->d_sb->s_type->name,
1518                        dentry->d_sb->s_id);
1519         WARN_ON(1);
1520         return D_WALK_CONTINUE;
1521 }
1522
1523 static void do_one_tree(struct dentry *dentry)
1524 {
1525         shrink_dcache_parent(dentry);
1526         d_walk(dentry, dentry, umount_check);
1527         d_drop(dentry);
1528         dput(dentry);
1529 }
1530
1531 /*
1532  * destroy the dentries attached to a superblock on unmounting
1533  */
1534 void shrink_dcache_for_umount(struct super_block *sb)
1535 {
1536         struct dentry *dentry;
1537
1538         WARN(down_read_trylock(&sb->s_umount), "s_umount should've been locked");
1539
1540         dentry = sb->s_root;
1541         sb->s_root = NULL;
1542         do_one_tree(dentry);
1543
1544         while (!hlist_bl_empty(&sb->s_roots)) {
1545                 dentry = dget(hlist_bl_entry(hlist_bl_first(&sb->s_roots), struct dentry, d_hash));
1546                 do_one_tree(dentry);
1547         }
1548 }
1549
1550 static enum d_walk_ret find_submount(void *_data, struct dentry *dentry)
1551 {
1552         struct dentry **victim = _data;
1553         if (d_mountpoint(dentry)) {
1554                 __dget_dlock(dentry);
1555                 *victim = dentry;
1556                 return D_WALK_QUIT;
1557         }
1558         return D_WALK_CONTINUE;
1559 }
1560
1561 /**
1562  * d_invalidate - detach submounts, prune dcache, and drop
1563  * @dentry: dentry to invalidate (aka detach, prune and drop)
1564  */
1565 void d_invalidate(struct dentry *dentry)
1566 {
1567         bool had_submounts = false;
1568         spin_lock(&dentry->d_lock);
1569         if (d_unhashed(dentry)) {
1570                 spin_unlock(&dentry->d_lock);
1571                 return;
1572         }
1573         __d_drop(dentry);
1574         spin_unlock(&dentry->d_lock);
1575
1576         /* Negative dentries can be dropped without further checks */
1577         if (!dentry->d_inode)
1578                 return;
1579
1580         shrink_dcache_parent(dentry);
1581         for (;;) {
1582                 struct dentry *victim = NULL;
1583                 d_walk(dentry, &victim, find_submount);
1584                 if (!victim) {
1585                         if (had_submounts)
1586                                 shrink_dcache_parent(dentry);
1587                         return;
1588                 }
1589                 had_submounts = true;
1590                 detach_mounts(victim);
1591                 dput(victim);
1592         }
1593 }
1594 EXPORT_SYMBOL(d_invalidate);
1595
1596 /**
1597  * __d_alloc    -       allocate a dcache entry
1598  * @sb: filesystem it will belong to
1599  * @name: qstr of the name
1600  *
1601  * Allocates a dentry. It returns %NULL if there is insufficient memory
1602  * available. On a success the dentry is returned. The name passed in is
1603  * copied and the copy passed in may be reused after this call.
1604  */
1605  
1606 struct dentry *__d_alloc(struct super_block *sb, const struct qstr *name)
1607 {
1608         struct external_name *ext = NULL;
1609         struct dentry *dentry;
1610         char *dname;
1611         int err;
1612
1613         dentry = kmem_cache_alloc(dentry_cache, GFP_KERNEL);
1614         if (!dentry)
1615                 return NULL;
1616
1617         /*
1618          * We guarantee that the inline name is always NUL-terminated.
1619          * This way the memcpy() done by the name switching in rename
1620          * will still always have a NUL at the end, even if we might
1621          * be overwriting an internal NUL character
1622          */
1623         dentry->d_iname[DNAME_INLINE_LEN-1] = 0;
1624         if (unlikely(!name)) {
1625                 name = &slash_name;
1626                 dname = dentry->d_iname;
1627         } else if (name->len > DNAME_INLINE_LEN-1) {
1628                 size_t size = offsetof(struct external_name, name[1]);
1629
1630                 ext = kmalloc(size + name->len, GFP_KERNEL_ACCOUNT);
1631                 if (!ext) {
1632                         kmem_cache_free(dentry_cache, dentry); 
1633                         return NULL;
1634                 }
1635                 atomic_set(&ext->u.count, 1);
1636                 dname = ext->name;
1637         } else  {
1638                 dname = dentry->d_iname;
1639         }       
1640
1641         dentry->d_name.len = name->len;
1642         dentry->d_name.hash = name->hash;
1643         memcpy(dname, name->name, name->len);
1644         dname[name->len] = 0;
1645
1646         /* Make sure we always see the terminating NUL character */
1647         smp_store_release(&dentry->d_name.name, dname); /* ^^^ */
1648
1649         dentry->d_lockref.count = 1;
1650         dentry->d_flags = 0;
1651         spin_lock_init(&dentry->d_lock);
1652         seqcount_init(&dentry->d_seq);
1653         dentry->d_inode = NULL;
1654         dentry->d_parent = dentry;
1655         dentry->d_sb = sb;
1656         dentry->d_op = NULL;
1657         dentry->d_fsdata = NULL;
1658         INIT_HLIST_BL_NODE(&dentry->d_hash);
1659         INIT_LIST_HEAD(&dentry->d_lru);
1660         INIT_LIST_HEAD(&dentry->d_subdirs);
1661         INIT_HLIST_NODE(&dentry->d_u.d_alias);
1662         INIT_LIST_HEAD(&dentry->d_child);
1663         d_set_d_op(dentry, dentry->d_sb->s_d_op);
1664
1665         if (dentry->d_op && dentry->d_op->d_init) {
1666                 err = dentry->d_op->d_init(dentry);
1667                 if (err) {
1668                         if (dname_external(dentry))
1669                                 kfree(external_name(dentry));
1670                         kmem_cache_free(dentry_cache, dentry);
1671                         return NULL;
1672                 }
1673         }
1674
1675         if (unlikely(ext)) {
1676                 pg_data_t *pgdat = page_pgdat(virt_to_page(ext));
1677                 mod_node_page_state(pgdat, NR_INDIRECTLY_RECLAIMABLE_BYTES,
1678                                     ksize(ext));
1679         }
1680
1681         this_cpu_inc(nr_dentry);
1682
1683         return dentry;
1684 }
1685
1686 /**
1687  * d_alloc      -       allocate a dcache entry
1688  * @parent: parent of entry to allocate
1689  * @name: qstr of the name
1690  *
1691  * Allocates a dentry. It returns %NULL if there is insufficient memory
1692  * available. On a success the dentry is returned. The name passed in is
1693  * copied and the copy passed in may be reused after this call.
1694  */
1695 struct dentry *d_alloc(struct dentry * parent, const struct qstr *name)
1696 {
1697         struct dentry *dentry = __d_alloc(parent->d_sb, name);
1698         if (!dentry)
1699                 return NULL;
1700         dentry->d_flags |= DCACHE_RCUACCESS;
1701         spin_lock(&parent->d_lock);
1702         /*
1703          * don't need child lock because it is not subject
1704          * to concurrency here
1705          */
1706         __dget_dlock(parent);
1707         dentry->d_parent = parent;
1708         list_add(&dentry->d_child, &parent->d_subdirs);
1709         spin_unlock(&parent->d_lock);
1710
1711         return dentry;
1712 }
1713 EXPORT_SYMBOL(d_alloc);
1714
1715 struct dentry *d_alloc_anon(struct super_block *sb)
1716 {
1717         return __d_alloc(sb, NULL);
1718 }
1719 EXPORT_SYMBOL(d_alloc_anon);
1720
1721 struct dentry *d_alloc_cursor(struct dentry * parent)
1722 {
1723         struct dentry *dentry = d_alloc_anon(parent->d_sb);
1724         if (dentry) {
1725                 dentry->d_flags |= DCACHE_RCUACCESS | DCACHE_DENTRY_CURSOR;
1726                 dentry->d_parent = dget(parent);
1727         }
1728         return dentry;
1729 }
1730
1731 /**
1732  * d_alloc_pseudo - allocate a dentry (for lookup-less filesystems)
1733  * @sb: the superblock
1734  * @name: qstr of the name
1735  *
1736  * For a filesystem that just pins its dentries in memory and never
1737  * performs lookups at all, return an unhashed IS_ROOT dentry.
1738  */
1739 struct dentry *d_alloc_pseudo(struct super_block *sb, const struct qstr *name)
1740 {
1741         return __d_alloc(sb, name);
1742 }
1743 EXPORT_SYMBOL(d_alloc_pseudo);
1744
1745 struct dentry *d_alloc_name(struct dentry *parent, const char *name)
1746 {
1747         struct qstr q;
1748
1749         q.name = name;
1750         q.hash_len = hashlen_string(parent, name);
1751         return d_alloc(parent, &q);
1752 }
1753 EXPORT_SYMBOL(d_alloc_name);
1754
1755 void d_set_d_op(struct dentry *dentry, const struct dentry_operations *op)
1756 {
1757         WARN_ON_ONCE(dentry->d_op);
1758         WARN_ON_ONCE(dentry->d_flags & (DCACHE_OP_HASH  |
1759                                 DCACHE_OP_COMPARE       |
1760                                 DCACHE_OP_REVALIDATE    |
1761                                 DCACHE_OP_WEAK_REVALIDATE       |
1762                                 DCACHE_OP_DELETE        |
1763                                 DCACHE_OP_REAL));
1764         dentry->d_op = op;
1765         if (!op)
1766                 return;
1767         if (op->d_hash)
1768                 dentry->d_flags |= DCACHE_OP_HASH;
1769         if (op->d_compare)
1770                 dentry->d_flags |= DCACHE_OP_COMPARE;
1771         if (op->d_revalidate)
1772                 dentry->d_flags |= DCACHE_OP_REVALIDATE;
1773         if (op->d_weak_revalidate)
1774                 dentry->d_flags |= DCACHE_OP_WEAK_REVALIDATE;
1775         if (op->d_delete)
1776                 dentry->d_flags |= DCACHE_OP_DELETE;
1777         if (op->d_prune)
1778                 dentry->d_flags |= DCACHE_OP_PRUNE;
1779         if (op->d_real)
1780                 dentry->d_flags |= DCACHE_OP_REAL;
1781
1782 }
1783 EXPORT_SYMBOL(d_set_d_op);
1784
1785
1786 /*
1787  * d_set_fallthru - Mark a dentry as falling through to a lower layer
1788  * @dentry - The dentry to mark
1789  *
1790  * Mark a dentry as falling through to the lower layer (as set with
1791  * d_pin_lower()).  This flag may be recorded on the medium.
1792  */
1793 void d_set_fallthru(struct dentry *dentry)
1794 {
1795         spin_lock(&dentry->d_lock);
1796         dentry->d_flags |= DCACHE_FALLTHRU;
1797         spin_unlock(&dentry->d_lock);
1798 }
1799 EXPORT_SYMBOL(d_set_fallthru);
1800
1801 static unsigned d_flags_for_inode(struct inode *inode)
1802 {
1803         unsigned add_flags = DCACHE_REGULAR_TYPE;
1804
1805         if (!inode)
1806                 return DCACHE_MISS_TYPE;
1807
1808         if (S_ISDIR(inode->i_mode)) {
1809                 add_flags = DCACHE_DIRECTORY_TYPE;
1810                 if (unlikely(!(inode->i_opflags & IOP_LOOKUP))) {
1811                         if (unlikely(!inode->i_op->lookup))
1812                                 add_flags = DCACHE_AUTODIR_TYPE;
1813                         else
1814                                 inode->i_opflags |= IOP_LOOKUP;
1815                 }
1816                 goto type_determined;
1817         }
1818
1819         if (unlikely(!(inode->i_opflags & IOP_NOFOLLOW))) {
1820                 if (unlikely(inode->i_op->get_link)) {
1821                         add_flags = DCACHE_SYMLINK_TYPE;
1822                         goto type_determined;
1823                 }
1824                 inode->i_opflags |= IOP_NOFOLLOW;
1825         }
1826
1827         if (unlikely(!S_ISREG(inode->i_mode)))
1828                 add_flags = DCACHE_SPECIAL_TYPE;
1829
1830 type_determined:
1831         if (unlikely(IS_AUTOMOUNT(inode)))
1832                 add_flags |= DCACHE_NEED_AUTOMOUNT;
1833         return add_flags;
1834 }
1835
1836 static void __d_instantiate(struct dentry *dentry, struct inode *inode)
1837 {
1838         unsigned add_flags = d_flags_for_inode(inode);
1839         WARN_ON(d_in_lookup(dentry));
1840
1841         spin_lock(&dentry->d_lock);
1842         hlist_add_head(&dentry->d_u.d_alias, &inode->i_dentry);
1843         raw_write_seqcount_begin(&dentry->d_seq);
1844         __d_set_inode_and_type(dentry, inode, add_flags);
1845         raw_write_seqcount_end(&dentry->d_seq);
1846         fsnotify_update_flags(dentry);
1847         spin_unlock(&dentry->d_lock);
1848 }
1849
1850 /**
1851  * d_instantiate - fill in inode information for a dentry
1852  * @entry: dentry to complete
1853  * @inode: inode to attach to this dentry
1854  *
1855  * Fill in inode information in the entry.
1856  *
1857  * This turns negative dentries into productive full members
1858  * of society.
1859  *
1860  * NOTE! This assumes that the inode count has been incremented
1861  * (or otherwise set) by the caller to indicate that it is now
1862  * in use by the dcache.
1863  */
1864  
1865 void d_instantiate(struct dentry *entry, struct inode * inode)
1866 {
1867         BUG_ON(!hlist_unhashed(&entry->d_u.d_alias));
1868         if (inode) {
1869                 security_d_instantiate(entry, inode);
1870                 spin_lock(&inode->i_lock);
1871                 __d_instantiate(entry, inode);
1872                 spin_unlock(&inode->i_lock);
1873         }
1874 }
1875 EXPORT_SYMBOL(d_instantiate);
1876
1877 /*
1878  * This should be equivalent to d_instantiate() + unlock_new_inode(),
1879  * with lockdep-related part of unlock_new_inode() done before
1880  * anything else.  Use that instead of open-coding d_instantiate()/
1881  * unlock_new_inode() combinations.
1882  */
1883 void d_instantiate_new(struct dentry *entry, struct inode *inode)
1884 {
1885         BUG_ON(!hlist_unhashed(&entry->d_u.d_alias));
1886         BUG_ON(!inode);
1887         lockdep_annotate_inode_mutex_key(inode);
1888         security_d_instantiate(entry, inode);
1889         spin_lock(&inode->i_lock);
1890         __d_instantiate(entry, inode);
1891         WARN_ON(!(inode->i_state & I_NEW));
1892         inode->i_state &= ~I_NEW;
1893         smp_mb();
1894         wake_up_bit(&inode->i_state, __I_NEW);
1895         spin_unlock(&inode->i_lock);
1896 }
1897 EXPORT_SYMBOL(d_instantiate_new);
1898
1899 /**
1900  * d_instantiate_no_diralias - instantiate a non-aliased dentry
1901  * @entry: dentry to complete
1902  * @inode: inode to attach to this dentry
1903  *
1904  * Fill in inode information in the entry.  If a directory alias is found, then
1905  * return an error (and drop inode).  Together with d_materialise_unique() this
1906  * guarantees that a directory inode may never have more than one alias.
1907  */
1908 int d_instantiate_no_diralias(struct dentry *entry, struct inode *inode)
1909 {
1910         BUG_ON(!hlist_unhashed(&entry->d_u.d_alias));
1911
1912         security_d_instantiate(entry, inode);
1913         spin_lock(&inode->i_lock);
1914         if (S_ISDIR(inode->i_mode) && !hlist_empty(&inode->i_dentry)) {
1915                 spin_unlock(&inode->i_lock);
1916                 iput(inode);
1917                 return -EBUSY;
1918         }
1919         __d_instantiate(entry, inode);
1920         spin_unlock(&inode->i_lock);
1921
1922         return 0;
1923 }
1924 EXPORT_SYMBOL(d_instantiate_no_diralias);
1925
1926 struct dentry *d_make_root(struct inode *root_inode)
1927 {
1928         struct dentry *res = NULL;
1929
1930         if (root_inode) {
1931                 res = d_alloc_anon(root_inode->i_sb);
1932                 if (res) {
1933                         res->d_flags |= DCACHE_RCUACCESS;
1934                         d_instantiate(res, root_inode);
1935                 } else {
1936                         iput(root_inode);
1937                 }
1938         }
1939         return res;
1940 }
1941 EXPORT_SYMBOL(d_make_root);
1942
1943 static struct dentry *__d_instantiate_anon(struct dentry *dentry,
1944                                            struct inode *inode,
1945                                            bool disconnected)
1946 {
1947         struct dentry *res;
1948         unsigned add_flags;
1949
1950         security_d_instantiate(dentry, inode);
1951         spin_lock(&inode->i_lock);
1952         res = __d_find_any_alias(inode);
1953         if (res) {
1954                 spin_unlock(&inode->i_lock);
1955                 dput(dentry);
1956                 goto out_iput;
1957         }
1958
1959         /* attach a disconnected dentry */
1960         add_flags = d_flags_for_inode(inode);
1961
1962         if (disconnected)
1963                 add_flags |= DCACHE_DISCONNECTED;
1964
1965         spin_lock(&dentry->d_lock);
1966         __d_set_inode_and_type(dentry, inode, add_flags);
1967         hlist_add_head(&dentry->d_u.d_alias, &inode->i_dentry);
1968         if (!disconnected) {
1969                 hlist_bl_lock(&dentry->d_sb->s_roots);
1970                 hlist_bl_add_head(&dentry->d_hash, &dentry->d_sb->s_roots);
1971                 hlist_bl_unlock(&dentry->d_sb->s_roots);
1972         }
1973         spin_unlock(&dentry->d_lock);
1974         spin_unlock(&inode->i_lock);
1975
1976         return dentry;
1977
1978  out_iput:
1979         iput(inode);
1980         return res;
1981 }
1982
1983 struct dentry *d_instantiate_anon(struct dentry *dentry, struct inode *inode)
1984 {
1985         return __d_instantiate_anon(dentry, inode, true);
1986 }
1987 EXPORT_SYMBOL(d_instantiate_anon);
1988
1989 static struct dentry *__d_obtain_alias(struct inode *inode, bool disconnected)
1990 {
1991         struct dentry *tmp;
1992         struct dentry *res;
1993
1994         if (!inode)
1995                 return ERR_PTR(-ESTALE);
1996         if (IS_ERR(inode))
1997                 return ERR_CAST(inode);
1998
1999         res = d_find_any_alias(inode);
2000         if (res)
2001                 goto out_iput;
2002
2003         tmp = d_alloc_anon(inode->i_sb);
2004         if (!tmp) {
2005                 res = ERR_PTR(-ENOMEM);
2006                 goto out_iput;
2007         }
2008
2009         return __d_instantiate_anon(tmp, inode, disconnected);
2010
2011 out_iput:
2012         iput(inode);
2013         return res;
2014 }
2015
2016 /**
2017  * d_obtain_alias - find or allocate a DISCONNECTED dentry for a given inode
2018  * @inode: inode to allocate the dentry for
2019  *
2020  * Obtain a dentry for an inode resulting from NFS filehandle conversion or
2021  * similar open by handle operations.  The returned dentry may be anonymous,
2022  * or may have a full name (if the inode was already in the cache).
2023  *
2024  * When called on a directory inode, we must ensure that the inode only ever
2025  * has one dentry.  If a dentry is found, that is returned instead of
2026  * allocating a new one.
2027  *
2028  * On successful return, the reference to the inode has been transferred
2029  * to the dentry.  In case of an error the reference on the inode is released.
2030  * To make it easier to use in export operations a %NULL or IS_ERR inode may
2031  * be passed in and the error will be propagated to the return value,
2032  * with a %NULL @inode replaced by ERR_PTR(-ESTALE).
2033  */
2034 struct dentry *d_obtain_alias(struct inode *inode)
2035 {
2036         return __d_obtain_alias(inode, true);
2037 }
2038 EXPORT_SYMBOL(d_obtain_alias);
2039
2040 /**
2041  * d_obtain_root - find or allocate a dentry for a given inode
2042  * @inode: inode to allocate the dentry for
2043  *
2044  * Obtain an IS_ROOT dentry for the root of a filesystem.
2045  *
2046  * We must ensure that directory inodes only ever have one dentry.  If a
2047  * dentry is found, that is returned instead of allocating a new one.
2048  *
2049  * On successful return, the reference to the inode has been transferred
2050  * to the dentry.  In case of an error the reference on the inode is
2051  * released.  A %NULL or IS_ERR inode may be passed in and will be the
2052  * error will be propagate to the return value, with a %NULL @inode
2053  * replaced by ERR_PTR(-ESTALE).
2054  */
2055 struct dentry *d_obtain_root(struct inode *inode)
2056 {
2057         return __d_obtain_alias(inode, false);
2058 }
2059 EXPORT_SYMBOL(d_obtain_root);
2060
2061 /**
2062  * d_add_ci - lookup or allocate new dentry with case-exact name
2063  * @inode:  the inode case-insensitive lookup has found
2064  * @dentry: the negative dentry that was passed to the parent's lookup func
2065  * @name:   the case-exact name to be associated with the returned dentry
2066  *
2067  * This is to avoid filling the dcache with case-insensitive names to the
2068  * same inode, only the actual correct case is stored in the dcache for
2069  * case-insensitive filesystems.
2070  *
2071  * For a case-insensitive lookup match and if the the case-exact dentry
2072  * already exists in in the dcache, use it and return it.
2073  *
2074  * If no entry exists with the exact case name, allocate new dentry with
2075  * the exact case, and return the spliced entry.
2076  */
2077 struct dentry *d_add_ci(struct dentry *dentry, struct inode *inode,
2078                         struct qstr *name)
2079 {
2080         struct dentry *found, *res;
2081
2082         /*
2083          * First check if a dentry matching the name already exists,
2084          * if not go ahead and create it now.
2085          */
2086         found = d_hash_and_lookup(dentry->d_parent, name);
2087         if (found) {
2088                 iput(inode);
2089                 return found;
2090         }
2091         if (d_in_lookup(dentry)) {
2092                 found = d_alloc_parallel(dentry->d_parent, name,
2093                                         dentry->d_wait);
2094                 if (IS_ERR(found) || !d_in_lookup(found)) {
2095                         iput(inode);
2096                         return found;
2097                 }
2098         } else {
2099                 found = d_alloc(dentry->d_parent, name);
2100                 if (!found) {
2101                         iput(inode);
2102                         return ERR_PTR(-ENOMEM);
2103                 } 
2104         }
2105         res = d_splice_alias(inode, found);
2106         if (res) {
2107                 dput(found);
2108                 return res;
2109         }
2110         return found;
2111 }
2112 EXPORT_SYMBOL(d_add_ci);
2113
2114
2115 static inline bool d_same_name(const struct dentry *dentry,
2116                                 const struct dentry *parent,
2117                                 const struct qstr *name)
2118 {
2119         if (likely(!(parent->d_flags & DCACHE_OP_COMPARE))) {
2120                 if (dentry->d_name.len != name->len)
2121                         return false;
2122                 return dentry_cmp(dentry, name->name, name->len) == 0;
2123         }
2124         return parent->d_op->d_compare(dentry,
2125                                        dentry->d_name.len, dentry->d_name.name,
2126                                        name) == 0;
2127 }
2128
2129 /**
2130  * __d_lookup_rcu - search for a dentry (racy, store-free)
2131  * @parent: parent dentry
2132  * @name: qstr of name we wish to find
2133  * @seqp: returns d_seq value at the point where the dentry was found
2134  * Returns: dentry, or NULL
2135  *
2136  * __d_lookup_rcu is the dcache lookup function for rcu-walk name
2137  * resolution (store-free path walking) design described in
2138  * Documentation/filesystems/path-lookup.txt.
2139  *
2140  * This is not to be used outside core vfs.
2141  *
2142  * __d_lookup_rcu must only be used in rcu-walk mode, ie. with vfsmount lock
2143  * held, and rcu_read_lock held. The returned dentry must not be stored into
2144  * without taking d_lock and checking d_seq sequence count against @seq
2145  * returned here.
2146  *
2147  * A refcount may be taken on the found dentry with the d_rcu_to_refcount
2148  * function.
2149  *
2150  * Alternatively, __d_lookup_rcu may be called again to look up the child of
2151  * the returned dentry, so long as its parent's seqlock is checked after the
2152  * child is looked up. Thus, an interlocking stepping of sequence lock checks
2153  * is formed, giving integrity down the path walk.
2154  *
2155  * NOTE! The caller *has* to check the resulting dentry against the sequence
2156  * number we've returned before using any of the resulting dentry state!
2157  */
2158 struct dentry *__d_lookup_rcu(const struct dentry *parent,
2159                                 const struct qstr *name,
2160                                 unsigned *seqp)
2161 {
2162         u64 hashlen = name->hash_len;
2163         const unsigned char *str = name->name;
2164         struct hlist_bl_head *b = d_hash(hashlen_hash(hashlen));
2165         struct hlist_bl_node *node;
2166         struct dentry *dentry;
2167
2168         /*
2169          * Note: There is significant duplication with __d_lookup_rcu which is
2170          * required to prevent single threaded performance regressions
2171          * especially on architectures where smp_rmb (in seqcounts) are costly.
2172          * Keep the two functions in sync.
2173          */
2174
2175         /*
2176          * The hash list is protected using RCU.
2177          *
2178          * Carefully use d_seq when comparing a candidate dentry, to avoid
2179          * races with d_move().
2180          *
2181          * It is possible that concurrent renames can mess up our list
2182          * walk here and result in missing our dentry, resulting in the
2183          * false-negative result. d_lookup() protects against concurrent
2184          * renames using rename_lock seqlock.
2185          *
2186          * See Documentation/filesystems/path-lookup.txt for more details.
2187          */
2188         hlist_bl_for_each_entry_rcu(dentry, node, b, d_hash) {
2189                 unsigned seq;
2190
2191 seqretry:
2192                 /*
2193                  * The dentry sequence count protects us from concurrent
2194                  * renames, and thus protects parent and name fields.
2195                  *
2196                  * The caller must perform a seqcount check in order
2197                  * to do anything useful with the returned dentry.
2198                  *
2199                  * NOTE! We do a "raw" seqcount_begin here. That means that
2200                  * we don't wait for the sequence count to stabilize if it
2201                  * is in the middle of a sequence change. If we do the slow
2202                  * dentry compare, we will do seqretries until it is stable,
2203                  * and if we end up with a successful lookup, we actually
2204                  * want to exit RCU lookup anyway.
2205                  *
2206                  * Note that raw_seqcount_begin still *does* smp_rmb(), so
2207                  * we are still guaranteed NUL-termination of ->d_name.name.
2208                  */
2209                 seq = raw_seqcount_begin(&dentry->d_seq);
2210                 if (dentry->d_parent != parent)
2211                         continue;
2212                 if (d_unhashed(dentry))
2213                         continue;
2214
2215                 if (unlikely(parent->d_flags & DCACHE_OP_COMPARE)) {
2216                         int tlen;
2217                         const char *tname;
2218                         if (dentry->d_name.hash != hashlen_hash(hashlen))
2219                                 continue;
2220                         tlen = dentry->d_name.len;
2221                         tname = dentry->d_name.name;
2222                         /* we want a consistent (name,len) pair */
2223                         if (read_seqcount_retry(&dentry->d_seq, seq)) {
2224                                 cpu_relax();
2225                                 goto seqretry;
2226                         }
2227                         if (parent->d_op->d_compare(dentry,
2228                                                     tlen, tname, name) != 0)
2229                                 continue;
2230                 } else {
2231                         if (dentry->d_name.hash_len != hashlen)
2232                                 continue;
2233                         if (dentry_cmp(dentry, str, hashlen_len(hashlen)) != 0)
2234                                 continue;
2235                 }
2236                 *seqp = seq;
2237                 return dentry;
2238         }
2239         return NULL;
2240 }
2241
2242 /**
2243  * d_lookup - search for a dentry
2244  * @parent: parent dentry
2245  * @name: qstr of name we wish to find
2246  * Returns: dentry, or NULL
2247  *
2248  * d_lookup searches the children of the parent dentry for the name in
2249  * question. If the dentry is found its reference count is incremented and the
2250  * dentry is returned. The caller must use dput to free the entry when it has
2251  * finished using it. %NULL is returned if the dentry does not exist.
2252  */
2253 struct dentry *d_lookup(const struct dentry *parent, const struct qstr *name)
2254 {
2255         struct dentry *dentry;
2256         unsigned seq;
2257
2258         do {
2259                 seq = read_seqbegin(&rename_lock);
2260                 dentry = __d_lookup(parent, name);
2261                 if (dentry)
2262                         break;
2263         } while (read_seqretry(&rename_lock, seq));
2264         return dentry;
2265 }
2266 EXPORT_SYMBOL(d_lookup);
2267
2268 /**
2269  * __d_lookup - search for a dentry (racy)
2270  * @parent: parent dentry
2271  * @name: qstr of name we wish to find
2272  * Returns: dentry, or NULL
2273  *
2274  * __d_lookup is like d_lookup, however it may (rarely) return a
2275  * false-negative result due to unrelated rename activity.
2276  *
2277  * __d_lookup is slightly faster by avoiding rename_lock read seqlock,
2278  * however it must be used carefully, eg. with a following d_lookup in
2279  * the case of failure.
2280  *
2281  * __d_lookup callers must be commented.
2282  */
2283 struct dentry *__d_lookup(const struct dentry *parent, const struct qstr *name)
2284 {
2285         unsigned int hash = name->hash;
2286         struct hlist_bl_head *b = d_hash(hash);
2287         struct hlist_bl_node *node;
2288         struct dentry *found = NULL;
2289         struct dentry *dentry;
2290
2291         /*
2292          * Note: There is significant duplication with __d_lookup_rcu which is
2293          * required to prevent single threaded performance regressions
2294          * especially on architectures where smp_rmb (in seqcounts) are costly.
2295          * Keep the two functions in sync.
2296          */
2297
2298         /*
2299          * The hash list is protected using RCU.
2300          *
2301          * Take d_lock when comparing a candidate dentry, to avoid races
2302          * with d_move().
2303          *
2304          * It is possible that concurrent renames can mess up our list
2305          * walk here and result in missing our dentry, resulting in the
2306          * false-negative result. d_lookup() protects against concurrent
2307          * renames using rename_lock seqlock.
2308          *
2309          * See Documentation/filesystems/path-lookup.txt for more details.
2310          */
2311         rcu_read_lock();
2312         
2313         hlist_bl_for_each_entry_rcu(dentry, node, b, d_hash) {
2314
2315                 if (dentry->d_name.hash != hash)
2316                         continue;
2317
2318                 spin_lock(&dentry->d_lock);
2319                 if (dentry->d_parent != parent)
2320                         goto next;
2321                 if (d_unhashed(dentry))
2322                         goto next;
2323
2324                 if (!d_same_name(dentry, parent, name))
2325                         goto next;
2326
2327                 dentry->d_lockref.count++;
2328                 found = dentry;
2329                 spin_unlock(&dentry->d_lock);
2330                 break;
2331 next:
2332                 spin_unlock(&dentry->d_lock);
2333         }
2334         rcu_read_unlock();
2335
2336         return found;
2337 }
2338
2339 /**
2340  * d_hash_and_lookup - hash the qstr then search for a dentry
2341  * @dir: Directory to search in
2342  * @name: qstr of name we wish to find
2343  *
2344  * On lookup failure NULL is returned; on bad name - ERR_PTR(-error)
2345  */
2346 struct dentry *d_hash_and_lookup(struct dentry *dir, struct qstr *name)
2347 {
2348         /*
2349          * Check for a fs-specific hash function. Note that we must
2350          * calculate the standard hash first, as the d_op->d_hash()
2351          * routine may choose to leave the hash value unchanged.
2352          */
2353         name->hash = full_name_hash(dir, name->name, name->len);
2354         if (dir->d_flags & DCACHE_OP_HASH) {
2355                 int err = dir->d_op->d_hash(dir, name);
2356                 if (unlikely(err < 0))
2357                         return ERR_PTR(err);
2358         }
2359         return d_lookup(dir, name);
2360 }
2361 EXPORT_SYMBOL(d_hash_and_lookup);
2362
2363 /*
2364  * When a file is deleted, we have two options:
2365  * - turn this dentry into a negative dentry
2366  * - unhash this dentry and free it.
2367  *
2368  * Usually, we want to just turn this into
2369  * a negative dentry, but if anybody else is
2370  * currently using the dentry or the inode
2371  * we can't do that and we fall back on removing
2372  * it from the hash queues and waiting for
2373  * it to be deleted later when it has no users
2374  */
2375  
2376 /**
2377  * d_delete - delete a dentry
2378  * @dentry: The dentry to delete
2379  *
2380  * Turn the dentry into a negative dentry if possible, otherwise
2381  * remove it from the hash queues so it can be deleted later
2382  */
2383  
2384 void d_delete(struct dentry * dentry)
2385 {
2386         struct inode *inode = dentry->d_inode;
2387         int isdir = d_is_dir(dentry);
2388
2389         spin_lock(&inode->i_lock);
2390         spin_lock(&dentry->d_lock);
2391         /*
2392          * Are we the only user?
2393          */
2394         if (dentry->d_lockref.count == 1) {
2395                 dentry->d_flags &= ~DCACHE_CANT_MOUNT;
2396                 dentry_unlink_inode(dentry);
2397         } else {
2398                 __d_drop(dentry);
2399                 spin_unlock(&dentry->d_lock);
2400                 spin_unlock(&inode->i_lock);
2401         }
2402         fsnotify_nameremove(dentry, isdir);
2403 }
2404 EXPORT_SYMBOL(d_delete);
2405
2406 static void __d_rehash(struct dentry *entry)
2407 {
2408         struct hlist_bl_head *b = d_hash(entry->d_name.hash);
2409
2410         hlist_bl_lock(b);
2411         hlist_bl_add_head_rcu(&entry->d_hash, b);
2412         hlist_bl_unlock(b);
2413 }
2414
2415 /**
2416  * d_rehash     - add an entry back to the hash
2417  * @entry: dentry to add to the hash
2418  *
2419  * Adds a dentry to the hash according to its name.
2420  */
2421  
2422 void d_rehash(struct dentry * entry)
2423 {
2424         spin_lock(&entry->d_lock);
2425         __d_rehash(entry);
2426         spin_unlock(&entry->d_lock);
2427 }
2428 EXPORT_SYMBOL(d_rehash);
2429
2430 static inline unsigned start_dir_add(struct inode *dir)
2431 {
2432
2433         for (;;) {
2434                 unsigned n = dir->i_dir_seq;
2435                 if (!(n & 1) && cmpxchg(&dir->i_dir_seq, n, n + 1) == n)
2436                         return n;
2437                 cpu_relax();
2438         }
2439 }
2440
2441 static inline void end_dir_add(struct inode *dir, unsigned n)
2442 {
2443         smp_store_release(&dir->i_dir_seq, n + 2);
2444 }
2445
2446 static void d_wait_lookup(struct dentry *dentry)
2447 {
2448         if (d_in_lookup(dentry)) {
2449                 DECLARE_WAITQUEUE(wait, current);
2450                 add_wait_queue(dentry->d_wait, &wait);
2451                 do {
2452                         set_current_state(TASK_UNINTERRUPTIBLE);
2453                         spin_unlock(&dentry->d_lock);
2454                         schedule();
2455                         spin_lock(&dentry->d_lock);
2456                 } while (d_in_lookup(dentry));
2457         }
2458 }
2459
2460 struct dentry *d_alloc_parallel(struct dentry *parent,
2461                                 const struct qstr *name,
2462                                 wait_queue_head_t *wq)
2463 {
2464         unsigned int hash = name->hash;
2465         struct hlist_bl_head *b = in_lookup_hash(parent, hash);
2466         struct hlist_bl_node *node;
2467         struct dentry *new = d_alloc(parent, name);
2468         struct dentry *dentry;
2469         unsigned seq, r_seq, d_seq;
2470
2471         if (unlikely(!new))
2472                 return ERR_PTR(-ENOMEM);
2473
2474 retry:
2475         rcu_read_lock();
2476         seq = smp_load_acquire(&parent->d_inode->i_dir_seq);
2477         r_seq = read_seqbegin(&rename_lock);
2478         dentry = __d_lookup_rcu(parent, name, &d_seq);
2479         if (unlikely(dentry)) {
2480                 if (!lockref_get_not_dead(&dentry->d_lockref)) {
2481                         rcu_read_unlock();
2482                         goto retry;
2483                 }
2484                 if (read_seqcount_retry(&dentry->d_seq, d_seq)) {
2485                         rcu_read_unlock();
2486                         dput(dentry);
2487                         goto retry;
2488                 }
2489                 rcu_read_unlock();
2490                 dput(new);
2491                 return dentry;
2492         }
2493         if (unlikely(read_seqretry(&rename_lock, r_seq))) {
2494                 rcu_read_unlock();
2495                 goto retry;
2496         }
2497
2498         if (unlikely(seq & 1)) {
2499                 rcu_read_unlock();
2500                 goto retry;
2501         }
2502
2503         hlist_bl_lock(b);
2504         if (unlikely(READ_ONCE(parent->d_inode->i_dir_seq) != seq)) {
2505                 hlist_bl_unlock(b);
2506                 rcu_read_unlock();
2507                 goto retry;
2508         }
2509         /*
2510          * No changes for the parent since the beginning of d_lookup().
2511          * Since all removals from the chain happen with hlist_bl_lock(),
2512          * any potential in-lookup matches are going to stay here until
2513          * we unlock the chain.  All fields are stable in everything
2514          * we encounter.
2515          */
2516         hlist_bl_for_each_entry(dentry, node, b, d_u.d_in_lookup_hash) {
2517                 if (dentry->d_name.hash != hash)
2518                         continue;
2519                 if (dentry->d_parent != parent)
2520                         continue;
2521                 if (!d_same_name(dentry, parent, name))
2522                         continue;
2523                 hlist_bl_unlock(b);
2524                 /* now we can try to grab a reference */
2525                 if (!lockref_get_not_dead(&dentry->d_lockref)) {
2526                         rcu_read_unlock();
2527                         goto retry;
2528                 }
2529
2530                 rcu_read_unlock();
2531                 /*
2532                  * somebody is likely to be still doing lookup for it;
2533                  * wait for them to finish
2534                  */
2535                 spin_lock(&dentry->d_lock);
2536                 d_wait_lookup(dentry);
2537                 /*
2538                  * it's not in-lookup anymore; in principle we should repeat
2539                  * everything from dcache lookup, but it's likely to be what
2540                  * d_lookup() would've found anyway.  If it is, just return it;
2541                  * otherwise we really have to repeat the whole thing.
2542                  */
2543                 if (unlikely(dentry->d_name.hash != hash))
2544                         goto mismatch;
2545                 if (unlikely(dentry->d_parent != parent))
2546                         goto mismatch;
2547                 if (unlikely(d_unhashed(dentry)))
2548                         goto mismatch;
2549                 if (unlikely(!d_same_name(dentry, parent, name)))
2550                         goto mismatch;
2551                 /* OK, it *is* a hashed match; return it */
2552                 spin_unlock(&dentry->d_lock);
2553                 dput(new);
2554                 return dentry;
2555         }
2556         rcu_read_unlock();
2557         /* we can't take ->d_lock here; it's OK, though. */
2558         new->d_flags |= DCACHE_PAR_LOOKUP;
2559         new->d_wait = wq;
2560         hlist_bl_add_head_rcu(&new->d_u.d_in_lookup_hash, b);
2561         hlist_bl_unlock(b);
2562         return new;
2563 mismatch:
2564         spin_unlock(&dentry->d_lock);
2565         dput(dentry);
2566         goto retry;
2567 }
2568 EXPORT_SYMBOL(d_alloc_parallel);
2569
2570 void __d_lookup_done(struct dentry *dentry)
2571 {
2572         struct hlist_bl_head *b = in_lookup_hash(dentry->d_parent,
2573                                                  dentry->d_name.hash);
2574         hlist_bl_lock(b);
2575         dentry->d_flags &= ~DCACHE_PAR_LOOKUP;
2576         __hlist_bl_del(&dentry->d_u.d_in_lookup_hash);
2577         wake_up_all(dentry->d_wait);
2578         dentry->d_wait = NULL;
2579         hlist_bl_unlock(b);
2580         INIT_HLIST_NODE(&dentry->d_u.d_alias);
2581         INIT_LIST_HEAD(&dentry->d_lru);
2582 }
2583 EXPORT_SYMBOL(__d_lookup_done);
2584
2585 /* inode->i_lock held if inode is non-NULL */
2586
2587 static inline void __d_add(struct dentry *dentry, struct inode *inode)
2588 {
2589         struct inode *dir = NULL;
2590         unsigned n;
2591         spin_lock(&dentry->d_lock);
2592         if (unlikely(d_in_lookup(dentry))) {
2593                 dir = dentry->d_parent->d_inode;
2594                 n = start_dir_add(dir);
2595                 __d_lookup_done(dentry);
2596         }
2597         if (inode) {
2598                 unsigned add_flags = d_flags_for_inode(inode);
2599                 hlist_add_head(&dentry->d_u.d_alias, &inode->i_dentry);
2600                 raw_write_seqcount_begin(&dentry->d_seq);
2601                 __d_set_inode_and_type(dentry, inode, add_flags);
2602                 raw_write_seqcount_end(&dentry->d_seq);
2603                 fsnotify_update_flags(dentry);
2604         }
2605         __d_rehash(dentry);
2606         if (dir)
2607                 end_dir_add(dir, n);
2608         spin_unlock(&dentry->d_lock);
2609         if (inode)
2610                 spin_unlock(&inode->i_lock);
2611 }
2612
2613 /**
2614  * d_add - add dentry to hash queues
2615  * @entry: dentry to add
2616  * @inode: The inode to attach to this dentry
2617  *
2618  * This adds the entry to the hash queues and initializes @inode.
2619  * The entry was actually filled in earlier during d_alloc().
2620  */
2621
2622 void d_add(struct dentry *entry, struct inode *inode)
2623 {
2624         if (inode) {
2625                 security_d_instantiate(entry, inode);
2626                 spin_lock(&inode->i_lock);
2627         }
2628         __d_add(entry, inode);
2629 }
2630 EXPORT_SYMBOL(d_add);
2631
2632 /**
2633  * d_exact_alias - find and hash an exact unhashed alias
2634  * @entry: dentry to add
2635  * @inode: The inode to go with this dentry
2636  *
2637  * If an unhashed dentry with the same name/parent and desired
2638  * inode already exists, hash and return it.  Otherwise, return
2639  * NULL.
2640  *
2641  * Parent directory should be locked.
2642  */
2643 struct dentry *d_exact_alias(struct dentry *entry, struct inode *inode)
2644 {
2645         struct dentry *alias;
2646         unsigned int hash = entry->d_name.hash;
2647
2648         spin_lock(&inode->i_lock);
2649         hlist_for_each_entry(alias, &inode->i_dentry, d_u.d_alias) {
2650                 /*
2651                  * Don't need alias->d_lock here, because aliases with
2652                  * d_parent == entry->d_parent are not subject to name or
2653                  * parent changes, because the parent inode i_mutex is held.
2654                  */
2655                 if (alias->d_name.hash != hash)
2656                         continue;
2657                 if (alias->d_parent != entry->d_parent)
2658                         continue;
2659                 if (!d_same_name(alias, entry->d_parent, &entry->d_name))
2660                         continue;
2661                 spin_lock(&alias->d_lock);
2662                 if (!d_unhashed(alias)) {
2663                         spin_unlock(&alias->d_lock);
2664                         alias = NULL;
2665                 } else {
2666                         __dget_dlock(alias);
2667                         __d_rehash(alias);
2668                         spin_unlock(&alias->d_lock);
2669                 }
2670                 spin_unlock(&inode->i_lock);
2671                 return alias;
2672         }
2673         spin_unlock(&inode->i_lock);
2674         return NULL;
2675 }
2676 EXPORT_SYMBOL(d_exact_alias);
2677
2678 /**
2679  * dentry_update_name_case - update case insensitive dentry with a new name
2680  * @dentry: dentry to be updated
2681  * @name: new name
2682  *
2683  * Update a case insensitive dentry with new case of name.
2684  *
2685  * dentry must have been returned by d_lookup with name @name. Old and new
2686  * name lengths must match (ie. no d_compare which allows mismatched name
2687  * lengths).
2688  *
2689  * Parent inode i_mutex must be held over d_lookup and into this call (to
2690  * keep renames and concurrent inserts, and readdir(2) away).
2691  */
2692 void dentry_update_name_case(struct dentry *dentry, const struct qstr *name)
2693 {
2694         BUG_ON(!inode_is_locked(dentry->d_parent->d_inode));
2695         BUG_ON(dentry->d_name.len != name->len); /* d_lookup gives this */
2696
2697         spin_lock(&dentry->d_lock);
2698         write_seqcount_begin(&dentry->d_seq);
2699         memcpy((unsigned char *)dentry->d_name.name, name->name, name->len);
2700         write_seqcount_end(&dentry->d_seq);
2701         spin_unlock(&dentry->d_lock);
2702 }
2703 EXPORT_SYMBOL(dentry_update_name_case);
2704
2705 static void swap_names(struct dentry *dentry, struct dentry *target)
2706 {
2707         if (unlikely(dname_external(target))) {
2708                 if (unlikely(dname_external(dentry))) {
2709                         /*
2710                          * Both external: swap the pointers
2711                          */
2712                         swap(target->d_name.name, dentry->d_name.name);
2713                 } else {
2714                         /*
2715                          * dentry:internal, target:external.  Steal target's
2716                          * storage and make target internal.
2717                          */
2718                         memcpy(target->d_iname, dentry->d_name.name,
2719                                         dentry->d_name.len + 1);
2720                         dentry->d_name.name = target->d_name.name;
2721                         target->d_name.name = target->d_iname;
2722                 }
2723         } else {
2724                 if (unlikely(dname_external(dentry))) {
2725                         /*
2726                          * dentry:external, target:internal.  Give dentry's
2727                          * storage to target and make dentry internal
2728                          */
2729                         memcpy(dentry->d_iname, target->d_name.name,
2730                                         target->d_name.len + 1);
2731                         target->d_name.name = dentry->d_name.name;
2732                         dentry->d_name.name = dentry->d_iname;
2733                 } else {
2734                         /*
2735                          * Both are internal.
2736                          */
2737                         unsigned int i;
2738                         BUILD_BUG_ON(!IS_ALIGNED(DNAME_INLINE_LEN, sizeof(long)));
2739                         for (i = 0; i < DNAME_INLINE_LEN / sizeof(long); i++) {
2740                                 swap(((long *) &dentry->d_iname)[i],
2741                                      ((long *) &target->d_iname)[i]);
2742                         }
2743                 }
2744         }
2745         swap(dentry->d_name.hash_len, target->d_name.hash_len);
2746 }
2747
2748 static void copy_name(struct dentry *dentry, struct dentry *target)
2749 {
2750         struct external_name *old_name = NULL;
2751         if (unlikely(dname_external(dentry)))
2752                 old_name = external_name(dentry);
2753         if (unlikely(dname_external(target))) {
2754                 atomic_inc(&external_name(target)->u.count);
2755                 dentry->d_name = target->d_name;
2756         } else {
2757                 memcpy(dentry->d_iname, target->d_name.name,
2758                                 target->d_name.len + 1);
2759                 dentry->d_name.name = dentry->d_iname;
2760                 dentry->d_name.hash_len = target->d_name.hash_len;
2761         }
2762         if (old_name && likely(atomic_dec_and_test(&old_name->u.count)))
2763                 call_rcu(&old_name->u.head, __d_free_external_name);
2764 }
2765
2766 /*
2767  * __d_move - move a dentry
2768  * @dentry: entry to move
2769  * @target: new dentry
2770  * @exchange: exchange the two dentries
2771  *
2772  * Update the dcache to reflect the move of a file name. Negative
2773  * dcache entries should not be moved in this way. Caller must hold
2774  * rename_lock, the i_mutex of the source and target directories,
2775  * and the sb->s_vfs_rename_mutex if they differ. See lock_rename().
2776  */
2777 static void __d_move(struct dentry *dentry, struct dentry *target,
2778                      bool exchange)
2779 {
2780         struct dentry *old_parent, *p;
2781         struct inode *dir = NULL;
2782         unsigned n;
2783
2784         WARN_ON(!dentry->d_inode);
2785         if (WARN_ON(dentry == target))
2786                 return;
2787
2788         BUG_ON(d_ancestor(target, dentry));
2789         old_parent = dentry->d_parent;
2790         p = d_ancestor(old_parent, target);
2791         if (IS_ROOT(dentry)) {
2792                 BUG_ON(p);
2793                 spin_lock(&target->d_parent->d_lock);
2794         } else if (!p) {
2795                 /* target is not a descendent of dentry->d_parent */
2796                 spin_lock(&target->d_parent->d_lock);
2797                 spin_lock_nested(&old_parent->d_lock, DENTRY_D_LOCK_NESTED);
2798         } else {
2799                 BUG_ON(p == dentry);
2800                 spin_lock(&old_parent->d_lock);
2801                 if (p != target)
2802                         spin_lock_nested(&target->d_parent->d_lock,
2803                                         DENTRY_D_LOCK_NESTED);
2804         }
2805         spin_lock_nested(&dentry->d_lock, 2);
2806         spin_lock_nested(&target->d_lock, 3);
2807
2808         if (unlikely(d_in_lookup(target))) {
2809                 dir = target->d_parent->d_inode;
2810                 n = start_dir_add(dir);
2811                 __d_lookup_done(target);
2812         }
2813
2814         write_seqcount_begin(&dentry->d_seq);
2815         write_seqcount_begin_nested(&target->d_seq, DENTRY_D_LOCK_NESTED);
2816
2817         /* unhash both */
2818         if (!d_unhashed(dentry))
2819                 ___d_drop(dentry);
2820         if (!d_unhashed(target))
2821                 ___d_drop(target);
2822
2823         /* ... and switch them in the tree */
2824         dentry->d_parent = target->d_parent;
2825         if (!exchange) {
2826                 copy_name(dentry, target);
2827                 target->d_hash.pprev = NULL;
2828                 dentry->d_parent->d_lockref.count++;
2829                 if (dentry == old_parent)
2830                         dentry->d_flags |= DCACHE_RCUACCESS;
2831                 else
2832                         WARN_ON(!--old_parent->d_lockref.count);
2833         } else {
2834                 target->d_parent = old_parent;
2835                 swap_names(dentry, target);
2836                 list_move(&target->d_child, &target->d_parent->d_subdirs);
2837                 __d_rehash(target);
2838                 fsnotify_update_flags(target);
2839         }
2840         list_move(&dentry->d_child, &dentry->d_parent->d_subdirs);
2841         __d_rehash(dentry);
2842         fsnotify_update_flags(dentry);
2843
2844         write_seqcount_end(&target->d_seq);
2845         write_seqcount_end(&dentry->d_seq);
2846
2847         if (dir)
2848                 end_dir_add(dir, n);
2849
2850         if (dentry->d_parent != old_parent)
2851                 spin_unlock(&dentry->d_parent->d_lock);
2852         if (dentry != old_parent)
2853                 spin_unlock(&old_parent->d_lock);
2854         spin_unlock(&target->d_lock);
2855         spin_unlock(&dentry->d_lock);
2856 }
2857
2858 /*
2859  * d_move - move a dentry
2860  * @dentry: entry to move
2861  * @target: new dentry
2862  *
2863  * Update the dcache to reflect the move of a file name. Negative
2864  * dcache entries should not be moved in this way. See the locking
2865  * requirements for __d_move.
2866  */
2867 void d_move(struct dentry *dentry, struct dentry *target)
2868 {
2869         write_seqlock(&rename_lock);
2870         __d_move(dentry, target, false);
2871         write_sequnlock(&rename_lock);
2872 }
2873 EXPORT_SYMBOL(d_move);
2874
2875 /*
2876  * d_exchange - exchange two dentries
2877  * @dentry1: first dentry
2878  * @dentry2: second dentry
2879  */
2880 void d_exchange(struct dentry *dentry1, struct dentry *dentry2)
2881 {
2882         write_seqlock(&rename_lock);
2883
2884         WARN_ON(!dentry1->d_inode);
2885         WARN_ON(!dentry2->d_inode);
2886         WARN_ON(IS_ROOT(dentry1));
2887         WARN_ON(IS_ROOT(dentry2));
2888
2889         __d_move(dentry1, dentry2, true);
2890
2891         write_sequnlock(&rename_lock);
2892 }
2893
2894 /**
2895  * d_ancestor - search for an ancestor
2896  * @p1: ancestor dentry
2897  * @p2: child dentry
2898  *
2899  * Returns the ancestor dentry of p2 which is a child of p1, if p1 is
2900  * an ancestor of p2, else NULL.
2901  */
2902 struct dentry *d_ancestor(struct dentry *p1, struct dentry *p2)
2903 {
2904         struct dentry *p;
2905
2906         for (p = p2; !IS_ROOT(p); p = p->d_parent) {
2907                 if (p->d_parent == p1)
2908                         return p;
2909         }
2910         return NULL;
2911 }
2912
2913 /*
2914  * This helper attempts to cope with remotely renamed directories
2915  *
2916  * It assumes that the caller is already holding
2917  * dentry->d_parent->d_inode->i_mutex, and rename_lock
2918  *
2919  * Note: If ever the locking in lock_rename() changes, then please
2920  * remember to update this too...
2921  */
2922 static int __d_unalias(struct inode *inode,
2923                 struct dentry *dentry, struct dentry *alias)
2924 {
2925         struct mutex *m1 = NULL;
2926         struct rw_semaphore *m2 = NULL;
2927         int ret = -ESTALE;
2928
2929         /* If alias and dentry share a parent, then no extra locks required */
2930         if (alias->d_parent == dentry->d_parent)
2931                 goto out_unalias;
2932
2933         /* See lock_rename() */
2934         if (!mutex_trylock(&dentry->d_sb->s_vfs_rename_mutex))
2935                 goto out_err;
2936         m1 = &dentry->d_sb->s_vfs_rename_mutex;
2937         if (!inode_trylock_shared(alias->d_parent->d_inode))
2938                 goto out_err;
2939         m2 = &alias->d_parent->d_inode->i_rwsem;
2940 out_unalias:
2941         __d_move(alias, dentry, false);
2942         ret = 0;
2943 out_err:
2944         if (m2)
2945                 up_read(m2);
2946         if (m1)
2947                 mutex_unlock(m1);
2948         return ret;
2949 }
2950
2951 /**
2952  * d_splice_alias - splice a disconnected dentry into the tree if one exists
2953  * @inode:  the inode which may have a disconnected dentry
2954  * @dentry: a negative dentry which we want to point to the inode.
2955  *
2956  * If inode is a directory and has an IS_ROOT alias, then d_move that in
2957  * place of the given dentry and return it, else simply d_add the inode
2958  * to the dentry and return NULL.
2959  *
2960  * If a non-IS_ROOT directory is found, the filesystem is corrupt, and
2961  * we should error out: directories can't have multiple aliases.
2962  *
2963  * This is needed in the lookup routine of any filesystem that is exportable
2964  * (via knfsd) so that we can build dcache paths to directories effectively.
2965  *
2966  * If a dentry was found and moved, then it is returned.  Otherwise NULL
2967  * is returned.  This matches the expected return value of ->lookup.
2968  *
2969  * Cluster filesystems may call this function with a negative, hashed dentry.
2970  * In that case, we know that the inode will be a regular file, and also this
2971  * will only occur during atomic_open. So we need to check for the dentry
2972  * being already hashed only in the final case.
2973  */
2974 struct dentry *d_splice_alias(struct inode *inode, struct dentry *dentry)
2975 {
2976         if (IS_ERR(inode))
2977                 return ERR_CAST(inode);
2978
2979         BUG_ON(!d_unhashed(dentry));
2980
2981         if (!inode)
2982                 goto out;
2983
2984         security_d_instantiate(dentry, inode);
2985         spin_lock(&inode->i_lock);
2986         if (S_ISDIR(inode->i_mode)) {
2987                 struct dentry *new = __d_find_any_alias(inode);
2988                 if (unlikely(new)) {
2989                         /* The reference to new ensures it remains an alias */
2990                         spin_unlock(&inode->i_lock);
2991                         write_seqlock(&rename_lock);
2992                         if (unlikely(d_ancestor(new, dentry))) {
2993                                 write_sequnlock(&rename_lock);
2994                                 dput(new);
2995                                 new = ERR_PTR(-ELOOP);
2996                                 pr_warn_ratelimited(
2997                                         "VFS: Lookup of '%s' in %s %s"
2998                                         " would have caused loop\n",
2999                                         dentry->d_name.name,
3000                                         inode->i_sb->s_type->name,
3001                                         inode->i_sb->s_id);
3002                         } else if (!IS_ROOT(new)) {
3003                                 struct dentry *old_parent = dget(new->d_parent);
3004                                 int err = __d_unalias(inode, dentry, new);
3005                                 write_sequnlock(&rename_lock);
3006                                 if (err) {
3007                                         dput(new);
3008                                         new = ERR_PTR(err);
3009                                 }
3010                                 dput(old_parent);
3011                         } else {
3012                                 __d_move(new, dentry, false);
3013                                 write_sequnlock(&rename_lock);
3014                         }
3015                         iput(inode);
3016                         return new;
3017                 }
3018         }
3019 out:
3020         __d_add(dentry, inode);
3021         return NULL;
3022 }
3023 EXPORT_SYMBOL(d_splice_alias);
3024
3025 /*
3026  * Test whether new_dentry is a subdirectory of old_dentry.
3027  *
3028  * Trivially implemented using the dcache structure
3029  */
3030
3031 /**
3032  * is_subdir - is new dentry a subdirectory of old_dentry
3033  * @new_dentry: new dentry
3034  * @old_dentry: old dentry
3035  *
3036  * Returns true if new_dentry is a subdirectory of the parent (at any depth).
3037  * Returns false otherwise.
3038  * Caller must ensure that "new_dentry" is pinned before calling is_subdir()
3039  */
3040   
3041 bool is_subdir(struct dentry *new_dentry, struct dentry *old_dentry)
3042 {
3043         bool result;
3044         unsigned seq;
3045
3046         if (new_dentry == old_dentry)
3047                 return true;
3048
3049         do {
3050                 /* for restarting inner loop in case of seq retry */
3051                 seq = read_seqbegin(&rename_lock);
3052                 /*
3053                  * Need rcu_readlock to protect against the d_parent trashing
3054                  * due to d_move
3055                  */
3056                 rcu_read_lock();
3057                 if (d_ancestor(old_dentry, new_dentry))
3058                         result = true;
3059                 else
3060                         result = false;
3061                 rcu_read_unlock();
3062         } while (read_seqretry(&rename_lock, seq));
3063
3064         return result;
3065 }
3066 EXPORT_SYMBOL(is_subdir);
3067
3068 static enum d_walk_ret d_genocide_kill(void *data, struct dentry *dentry)
3069 {
3070         struct dentry *root = data;
3071         if (dentry != root) {
3072                 if (d_unhashed(dentry) || !dentry->d_inode)
3073                         return D_WALK_SKIP;
3074
3075                 if (!(dentry->d_flags & DCACHE_GENOCIDE)) {
3076                         dentry->d_flags |= DCACHE_GENOCIDE;
3077                         dentry->d_lockref.count--;
3078                 }
3079         }
3080         return D_WALK_CONTINUE;
3081 }
3082
3083 void d_genocide(struct dentry *parent)
3084 {
3085         d_walk(parent, parent, d_genocide_kill);
3086 }
3087
3088 EXPORT_SYMBOL(d_genocide);
3089
3090 void d_tmpfile(struct dentry *dentry, struct inode *inode)
3091 {
3092         inode_dec_link_count(inode);
3093         BUG_ON(dentry->d_name.name != dentry->d_iname ||
3094                 !hlist_unhashed(&dentry->d_u.d_alias) ||
3095                 !d_unlinked(dentry));
3096         spin_lock(&dentry->d_parent->d_lock);
3097         spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
3098         dentry->d_name.len = sprintf(dentry->d_iname, "#%llu",
3099                                 (unsigned long long)inode->i_ino);
3100         spin_unlock(&dentry->d_lock);
3101         spin_unlock(&dentry->d_parent->d_lock);
3102         d_instantiate(dentry, inode);
3103 }
3104 EXPORT_SYMBOL(d_tmpfile);
3105
3106 static __initdata unsigned long dhash_entries;
3107 static int __init set_dhash_entries(char *str)
3108 {
3109         if (!str)
3110                 return 0;
3111         dhash_entries = simple_strtoul(str, &str, 0);
3112         return 1;
3113 }
3114 __setup("dhash_entries=", set_dhash_entries);
3115
3116 static void __init dcache_init_early(void)
3117 {
3118         /* If hashes are distributed across NUMA nodes, defer
3119          * hash allocation until vmalloc space is available.
3120          */
3121         if (hashdist)
3122                 return;
3123
3124         dentry_hashtable =
3125                 alloc_large_system_hash("Dentry cache",
3126                                         sizeof(struct hlist_bl_head),
3127                                         dhash_entries,
3128                                         13,
3129                                         HASH_EARLY | HASH_ZERO,
3130                                         &d_hash_shift,
3131                                         NULL,
3132                                         0,
3133                                         0);
3134         d_hash_shift = 32 - d_hash_shift;
3135 }
3136
3137 static void __init dcache_init(void)
3138 {
3139         /*
3140          * A constructor could be added for stable state like the lists,
3141          * but it is probably not worth it because of the cache nature
3142          * of the dcache.
3143          */
3144         dentry_cache = KMEM_CACHE_USERCOPY(dentry,
3145                 SLAB_RECLAIM_ACCOUNT|SLAB_PANIC|SLAB_MEM_SPREAD|SLAB_ACCOUNT,
3146                 d_iname);
3147
3148         /* Hash may have been set up in dcache_init_early */
3149         if (!hashdist)
3150                 return;
3151
3152         dentry_hashtable =
3153                 alloc_large_system_hash("Dentry cache",
3154                                         sizeof(struct hlist_bl_head),
3155                                         dhash_entries,
3156                                         13,
3157                                         HASH_ZERO,
3158                                         &d_hash_shift,
3159                                         NULL,
3160                                         0,
3161                                         0);
3162         d_hash_shift = 32 - d_hash_shift;
3163 }
3164
3165 /* SLAB cache for __getname() consumers */
3166 struct kmem_cache *names_cachep __read_mostly;
3167 EXPORT_SYMBOL(names_cachep);
3168
3169 void __init vfs_caches_init_early(void)
3170 {
3171         int i;
3172
3173         for (i = 0; i < ARRAY_SIZE(in_lookup_hashtable); i++)
3174                 INIT_HLIST_BL_HEAD(&in_lookup_hashtable[i]);
3175
3176         dcache_init_early();
3177         inode_init_early();
3178 }
3179
3180 void __init vfs_caches_init(void)
3181 {
3182         names_cachep = kmem_cache_create_usercopy("names_cache", PATH_MAX, 0,
3183                         SLAB_HWCACHE_ALIGN|SLAB_PANIC, 0, PATH_MAX, NULL);
3184
3185         dcache_init();
3186         inode_init();
3187         files_init();
3188         files_maxfiles_init();
3189         mnt_init();
3190         bdev_cache_init();
3191         chrdev_init();
3192 }