Merge tag 'linux-kselftest-next-5.12-rc1' of git://git.kernel.org/pub/scm/linux/kerne...
[linux-2.6-microblaze.git] / fs / dcache.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * fs/dcache.c
4  *
5  * Complete reimplementation
6  * (C) 1997 Thomas Schoebel-Theuer,
7  * with heavy changes by Linus Torvalds
8  */
9
10 /*
11  * Notes on the allocation strategy:
12  *
13  * The dcache is a master of the icache - whenever a dcache entry
14  * exists, the inode will always exist. "iput()" is done either when
15  * the dcache entry is deleted or garbage collected.
16  */
17
18 #include <linux/ratelimit.h>
19 #include <linux/string.h>
20 #include <linux/mm.h>
21 #include <linux/fs.h>
22 #include <linux/fscrypt.h>
23 #include <linux/fsnotify.h>
24 #include <linux/slab.h>
25 #include <linux/init.h>
26 #include <linux/hash.h>
27 #include <linux/cache.h>
28 #include <linux/export.h>
29 #include <linux/security.h>
30 #include <linux/seqlock.h>
31 #include <linux/memblock.h>
32 #include <linux/bit_spinlock.h>
33 #include <linux/rculist_bl.h>
34 #include <linux/list_lru.h>
35 #include "internal.h"
36 #include "mount.h"
37
38 /*
39  * Usage:
40  * dcache->d_inode->i_lock protects:
41  *   - i_dentry, d_u.d_alias, d_inode of aliases
42  * dcache_hash_bucket lock protects:
43  *   - the dcache hash table
44  * s_roots bl list spinlock protects:
45  *   - the s_roots list (see __d_drop)
46  * dentry->d_sb->s_dentry_lru_lock protects:
47  *   - the dcache lru lists and counters
48  * d_lock protects:
49  *   - d_flags
50  *   - d_name
51  *   - d_lru
52  *   - d_count
53  *   - d_unhashed()
54  *   - d_parent and d_subdirs
55  *   - childrens' d_child and d_parent
56  *   - d_u.d_alias, d_inode
57  *
58  * Ordering:
59  * dentry->d_inode->i_lock
60  *   dentry->d_lock
61  *     dentry->d_sb->s_dentry_lru_lock
62  *     dcache_hash_bucket lock
63  *     s_roots lock
64  *
65  * If there is an ancestor relationship:
66  * dentry->d_parent->...->d_parent->d_lock
67  *   ...
68  *     dentry->d_parent->d_lock
69  *       dentry->d_lock
70  *
71  * If no ancestor relationship:
72  * arbitrary, since it's serialized on rename_lock
73  */
74 int sysctl_vfs_cache_pressure __read_mostly = 100;
75 EXPORT_SYMBOL_GPL(sysctl_vfs_cache_pressure);
76
77 __cacheline_aligned_in_smp DEFINE_SEQLOCK(rename_lock);
78
79 EXPORT_SYMBOL(rename_lock);
80
81 static struct kmem_cache *dentry_cache __read_mostly;
82
83 const struct qstr empty_name = QSTR_INIT("", 0);
84 EXPORT_SYMBOL(empty_name);
85 const struct qstr slash_name = QSTR_INIT("/", 1);
86 EXPORT_SYMBOL(slash_name);
87
88 /*
89  * This is the single most critical data structure when it comes
90  * to the dcache: the hashtable for lookups. Somebody should try
91  * to make this good - I've just made it work.
92  *
93  * This hash-function tries to avoid losing too many bits of hash
94  * information, yet avoid using a prime hash-size or similar.
95  */
96
97 static unsigned int d_hash_shift __read_mostly;
98
99 static struct hlist_bl_head *dentry_hashtable __read_mostly;
100
101 static inline struct hlist_bl_head *d_hash(unsigned int hash)
102 {
103         return dentry_hashtable + (hash >> d_hash_shift);
104 }
105
106 #define IN_LOOKUP_SHIFT 10
107 static struct hlist_bl_head in_lookup_hashtable[1 << IN_LOOKUP_SHIFT];
108
109 static inline struct hlist_bl_head *in_lookup_hash(const struct dentry *parent,
110                                         unsigned int hash)
111 {
112         hash += (unsigned long) parent / L1_CACHE_BYTES;
113         return in_lookup_hashtable + hash_32(hash, IN_LOOKUP_SHIFT);
114 }
115
116
117 /* Statistics gathering. */
118 struct dentry_stat_t dentry_stat = {
119         .age_limit = 45,
120 };
121
122 static DEFINE_PER_CPU(long, nr_dentry);
123 static DEFINE_PER_CPU(long, nr_dentry_unused);
124 static DEFINE_PER_CPU(long, nr_dentry_negative);
125
126 #if defined(CONFIG_SYSCTL) && defined(CONFIG_PROC_FS)
127
128 /*
129  * Here we resort to our own counters instead of using generic per-cpu counters
130  * for consistency with what the vfs inode code does. We are expected to harvest
131  * better code and performance by having our own specialized counters.
132  *
133  * Please note that the loop is done over all possible CPUs, not over all online
134  * CPUs. The reason for this is that we don't want to play games with CPUs going
135  * on and off. If one of them goes off, we will just keep their counters.
136  *
137  * glommer: See cffbc8a for details, and if you ever intend to change this,
138  * please update all vfs counters to match.
139  */
140 static long get_nr_dentry(void)
141 {
142         int i;
143         long sum = 0;
144         for_each_possible_cpu(i)
145                 sum += per_cpu(nr_dentry, i);
146         return sum < 0 ? 0 : sum;
147 }
148
149 static long get_nr_dentry_unused(void)
150 {
151         int i;
152         long sum = 0;
153         for_each_possible_cpu(i)
154                 sum += per_cpu(nr_dentry_unused, i);
155         return sum < 0 ? 0 : sum;
156 }
157
158 static long get_nr_dentry_negative(void)
159 {
160         int i;
161         long sum = 0;
162
163         for_each_possible_cpu(i)
164                 sum += per_cpu(nr_dentry_negative, i);
165         return sum < 0 ? 0 : sum;
166 }
167
168 int proc_nr_dentry(struct ctl_table *table, int write, void *buffer,
169                    size_t *lenp, loff_t *ppos)
170 {
171         dentry_stat.nr_dentry = get_nr_dentry();
172         dentry_stat.nr_unused = get_nr_dentry_unused();
173         dentry_stat.nr_negative = get_nr_dentry_negative();
174         return proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
175 }
176 #endif
177
178 /*
179  * Compare 2 name strings, return 0 if they match, otherwise non-zero.
180  * The strings are both count bytes long, and count is non-zero.
181  */
182 #ifdef CONFIG_DCACHE_WORD_ACCESS
183
184 #include <asm/word-at-a-time.h>
185 /*
186  * NOTE! 'cs' and 'scount' come from a dentry, so it has a
187  * aligned allocation for this particular component. We don't
188  * strictly need the load_unaligned_zeropad() safety, but it
189  * doesn't hurt either.
190  *
191  * In contrast, 'ct' and 'tcount' can be from a pathname, and do
192  * need the careful unaligned handling.
193  */
194 static inline int dentry_string_cmp(const unsigned char *cs, const unsigned char *ct, unsigned tcount)
195 {
196         unsigned long a,b,mask;
197
198         for (;;) {
199                 a = read_word_at_a_time(cs);
200                 b = load_unaligned_zeropad(ct);
201                 if (tcount < sizeof(unsigned long))
202                         break;
203                 if (unlikely(a != b))
204                         return 1;
205                 cs += sizeof(unsigned long);
206                 ct += sizeof(unsigned long);
207                 tcount -= sizeof(unsigned long);
208                 if (!tcount)
209                         return 0;
210         }
211         mask = bytemask_from_count(tcount);
212         return unlikely(!!((a ^ b) & mask));
213 }
214
215 #else
216
217 static inline int dentry_string_cmp(const unsigned char *cs, const unsigned char *ct, unsigned tcount)
218 {
219         do {
220                 if (*cs != *ct)
221                         return 1;
222                 cs++;
223                 ct++;
224                 tcount--;
225         } while (tcount);
226         return 0;
227 }
228
229 #endif
230
231 static inline int dentry_cmp(const struct dentry *dentry, const unsigned char *ct, unsigned tcount)
232 {
233         /*
234          * Be careful about RCU walk racing with rename:
235          * use 'READ_ONCE' to fetch the name pointer.
236          *
237          * NOTE! Even if a rename will mean that the length
238          * was not loaded atomically, we don't care. The
239          * RCU walk will check the sequence count eventually,
240          * and catch it. And we won't overrun the buffer,
241          * because we're reading the name pointer atomically,
242          * and a dentry name is guaranteed to be properly
243          * terminated with a NUL byte.
244          *
245          * End result: even if 'len' is wrong, we'll exit
246          * early because the data cannot match (there can
247          * be no NUL in the ct/tcount data)
248          */
249         const unsigned char *cs = READ_ONCE(dentry->d_name.name);
250
251         return dentry_string_cmp(cs, ct, tcount);
252 }
253
254 struct external_name {
255         union {
256                 atomic_t count;
257                 struct rcu_head head;
258         } u;
259         unsigned char name[];
260 };
261
262 static inline struct external_name *external_name(struct dentry *dentry)
263 {
264         return container_of(dentry->d_name.name, struct external_name, name[0]);
265 }
266
267 static void __d_free(struct rcu_head *head)
268 {
269         struct dentry *dentry = container_of(head, struct dentry, d_u.d_rcu);
270
271         kmem_cache_free(dentry_cache, dentry); 
272 }
273
274 static void __d_free_external(struct rcu_head *head)
275 {
276         struct dentry *dentry = container_of(head, struct dentry, d_u.d_rcu);
277         kfree(external_name(dentry));
278         kmem_cache_free(dentry_cache, dentry);
279 }
280
281 static inline int dname_external(const struct dentry *dentry)
282 {
283         return dentry->d_name.name != dentry->d_iname;
284 }
285
286 void take_dentry_name_snapshot(struct name_snapshot *name, struct dentry *dentry)
287 {
288         spin_lock(&dentry->d_lock);
289         name->name = dentry->d_name;
290         if (unlikely(dname_external(dentry))) {
291                 atomic_inc(&external_name(dentry)->u.count);
292         } else {
293                 memcpy(name->inline_name, dentry->d_iname,
294                        dentry->d_name.len + 1);
295                 name->name.name = name->inline_name;
296         }
297         spin_unlock(&dentry->d_lock);
298 }
299 EXPORT_SYMBOL(take_dentry_name_snapshot);
300
301 void release_dentry_name_snapshot(struct name_snapshot *name)
302 {
303         if (unlikely(name->name.name != name->inline_name)) {
304                 struct external_name *p;
305                 p = container_of(name->name.name, struct external_name, name[0]);
306                 if (unlikely(atomic_dec_and_test(&p->u.count)))
307                         kfree_rcu(p, u.head);
308         }
309 }
310 EXPORT_SYMBOL(release_dentry_name_snapshot);
311
312 static inline void __d_set_inode_and_type(struct dentry *dentry,
313                                           struct inode *inode,
314                                           unsigned type_flags)
315 {
316         unsigned flags;
317
318         dentry->d_inode = inode;
319         flags = READ_ONCE(dentry->d_flags);
320         flags &= ~(DCACHE_ENTRY_TYPE | DCACHE_FALLTHRU);
321         flags |= type_flags;
322         smp_store_release(&dentry->d_flags, flags);
323 }
324
325 static inline void __d_clear_type_and_inode(struct dentry *dentry)
326 {
327         unsigned flags = READ_ONCE(dentry->d_flags);
328
329         flags &= ~(DCACHE_ENTRY_TYPE | DCACHE_FALLTHRU);
330         WRITE_ONCE(dentry->d_flags, flags);
331         dentry->d_inode = NULL;
332         if (dentry->d_flags & DCACHE_LRU_LIST)
333                 this_cpu_inc(nr_dentry_negative);
334 }
335
336 static void dentry_free(struct dentry *dentry)
337 {
338         WARN_ON(!hlist_unhashed(&dentry->d_u.d_alias));
339         if (unlikely(dname_external(dentry))) {
340                 struct external_name *p = external_name(dentry);
341                 if (likely(atomic_dec_and_test(&p->u.count))) {
342                         call_rcu(&dentry->d_u.d_rcu, __d_free_external);
343                         return;
344                 }
345         }
346         /* if dentry was never visible to RCU, immediate free is OK */
347         if (dentry->d_flags & DCACHE_NORCU)
348                 __d_free(&dentry->d_u.d_rcu);
349         else
350                 call_rcu(&dentry->d_u.d_rcu, __d_free);
351 }
352
353 /*
354  * Release the dentry's inode, using the filesystem
355  * d_iput() operation if defined.
356  */
357 static void dentry_unlink_inode(struct dentry * dentry)
358         __releases(dentry->d_lock)
359         __releases(dentry->d_inode->i_lock)
360 {
361         struct inode *inode = dentry->d_inode;
362
363         raw_write_seqcount_begin(&dentry->d_seq);
364         __d_clear_type_and_inode(dentry);
365         hlist_del_init(&dentry->d_u.d_alias);
366         raw_write_seqcount_end(&dentry->d_seq);
367         spin_unlock(&dentry->d_lock);
368         spin_unlock(&inode->i_lock);
369         if (!inode->i_nlink)
370                 fsnotify_inoderemove(inode);
371         if (dentry->d_op && dentry->d_op->d_iput)
372                 dentry->d_op->d_iput(dentry, inode);
373         else
374                 iput(inode);
375 }
376
377 /*
378  * The DCACHE_LRU_LIST bit is set whenever the 'd_lru' entry
379  * is in use - which includes both the "real" per-superblock
380  * LRU list _and_ the DCACHE_SHRINK_LIST use.
381  *
382  * The DCACHE_SHRINK_LIST bit is set whenever the dentry is
383  * on the shrink list (ie not on the superblock LRU list).
384  *
385  * The per-cpu "nr_dentry_unused" counters are updated with
386  * the DCACHE_LRU_LIST bit.
387  *
388  * The per-cpu "nr_dentry_negative" counters are only updated
389  * when deleted from or added to the per-superblock LRU list, not
390  * from/to the shrink list. That is to avoid an unneeded dec/inc
391  * pair when moving from LRU to shrink list in select_collect().
392  *
393  * These helper functions make sure we always follow the
394  * rules. d_lock must be held by the caller.
395  */
396 #define D_FLAG_VERIFY(dentry,x) WARN_ON_ONCE(((dentry)->d_flags & (DCACHE_LRU_LIST | DCACHE_SHRINK_LIST)) != (x))
397 static void d_lru_add(struct dentry *dentry)
398 {
399         D_FLAG_VERIFY(dentry, 0);
400         dentry->d_flags |= DCACHE_LRU_LIST;
401         this_cpu_inc(nr_dentry_unused);
402         if (d_is_negative(dentry))
403                 this_cpu_inc(nr_dentry_negative);
404         WARN_ON_ONCE(!list_lru_add(&dentry->d_sb->s_dentry_lru, &dentry->d_lru));
405 }
406
407 static void d_lru_del(struct dentry *dentry)
408 {
409         D_FLAG_VERIFY(dentry, DCACHE_LRU_LIST);
410         dentry->d_flags &= ~DCACHE_LRU_LIST;
411         this_cpu_dec(nr_dentry_unused);
412         if (d_is_negative(dentry))
413                 this_cpu_dec(nr_dentry_negative);
414         WARN_ON_ONCE(!list_lru_del(&dentry->d_sb->s_dentry_lru, &dentry->d_lru));
415 }
416
417 static void d_shrink_del(struct dentry *dentry)
418 {
419         D_FLAG_VERIFY(dentry, DCACHE_SHRINK_LIST | DCACHE_LRU_LIST);
420         list_del_init(&dentry->d_lru);
421         dentry->d_flags &= ~(DCACHE_SHRINK_LIST | DCACHE_LRU_LIST);
422         this_cpu_dec(nr_dentry_unused);
423 }
424
425 static void d_shrink_add(struct dentry *dentry, struct list_head *list)
426 {
427         D_FLAG_VERIFY(dentry, 0);
428         list_add(&dentry->d_lru, list);
429         dentry->d_flags |= DCACHE_SHRINK_LIST | DCACHE_LRU_LIST;
430         this_cpu_inc(nr_dentry_unused);
431 }
432
433 /*
434  * These can only be called under the global LRU lock, ie during the
435  * callback for freeing the LRU list. "isolate" removes it from the
436  * LRU lists entirely, while shrink_move moves it to the indicated
437  * private list.
438  */
439 static void d_lru_isolate(struct list_lru_one *lru, struct dentry *dentry)
440 {
441         D_FLAG_VERIFY(dentry, DCACHE_LRU_LIST);
442         dentry->d_flags &= ~DCACHE_LRU_LIST;
443         this_cpu_dec(nr_dentry_unused);
444         if (d_is_negative(dentry))
445                 this_cpu_dec(nr_dentry_negative);
446         list_lru_isolate(lru, &dentry->d_lru);
447 }
448
449 static void d_lru_shrink_move(struct list_lru_one *lru, struct dentry *dentry,
450                               struct list_head *list)
451 {
452         D_FLAG_VERIFY(dentry, DCACHE_LRU_LIST);
453         dentry->d_flags |= DCACHE_SHRINK_LIST;
454         if (d_is_negative(dentry))
455                 this_cpu_dec(nr_dentry_negative);
456         list_lru_isolate_move(lru, &dentry->d_lru, list);
457 }
458
459 static void ___d_drop(struct dentry *dentry)
460 {
461         struct hlist_bl_head *b;
462         /*
463          * Hashed dentries are normally on the dentry hashtable,
464          * with the exception of those newly allocated by
465          * d_obtain_root, which are always IS_ROOT:
466          */
467         if (unlikely(IS_ROOT(dentry)))
468                 b = &dentry->d_sb->s_roots;
469         else
470                 b = d_hash(dentry->d_name.hash);
471
472         hlist_bl_lock(b);
473         __hlist_bl_del(&dentry->d_hash);
474         hlist_bl_unlock(b);
475 }
476
477 void __d_drop(struct dentry *dentry)
478 {
479         if (!d_unhashed(dentry)) {
480                 ___d_drop(dentry);
481                 dentry->d_hash.pprev = NULL;
482                 write_seqcount_invalidate(&dentry->d_seq);
483         }
484 }
485 EXPORT_SYMBOL(__d_drop);
486
487 /**
488  * d_drop - drop a dentry
489  * @dentry: dentry to drop
490  *
491  * d_drop() unhashes the entry from the parent dentry hashes, so that it won't
492  * be found through a VFS lookup any more. Note that this is different from
493  * deleting the dentry - d_delete will try to mark the dentry negative if
494  * possible, giving a successful _negative_ lookup, while d_drop will
495  * just make the cache lookup fail.
496  *
497  * d_drop() is used mainly for stuff that wants to invalidate a dentry for some
498  * reason (NFS timeouts or autofs deletes).
499  *
500  * __d_drop requires dentry->d_lock
501  *
502  * ___d_drop doesn't mark dentry as "unhashed"
503  * (dentry->d_hash.pprev will be LIST_POISON2, not NULL).
504  */
505 void d_drop(struct dentry *dentry)
506 {
507         spin_lock(&dentry->d_lock);
508         __d_drop(dentry);
509         spin_unlock(&dentry->d_lock);
510 }
511 EXPORT_SYMBOL(d_drop);
512
513 static inline void dentry_unlist(struct dentry *dentry, struct dentry *parent)
514 {
515         struct dentry *next;
516         /*
517          * Inform d_walk() and shrink_dentry_list() that we are no longer
518          * attached to the dentry tree
519          */
520         dentry->d_flags |= DCACHE_DENTRY_KILLED;
521         if (unlikely(list_empty(&dentry->d_child)))
522                 return;
523         __list_del_entry(&dentry->d_child);
524         /*
525          * Cursors can move around the list of children.  While we'd been
526          * a normal list member, it didn't matter - ->d_child.next would've
527          * been updated.  However, from now on it won't be and for the
528          * things like d_walk() it might end up with a nasty surprise.
529          * Normally d_walk() doesn't care about cursors moving around -
530          * ->d_lock on parent prevents that and since a cursor has no children
531          * of its own, we get through it without ever unlocking the parent.
532          * There is one exception, though - if we ascend from a child that
533          * gets killed as soon as we unlock it, the next sibling is found
534          * using the value left in its ->d_child.next.  And if _that_
535          * pointed to a cursor, and cursor got moved (e.g. by lseek())
536          * before d_walk() regains parent->d_lock, we'll end up skipping
537          * everything the cursor had been moved past.
538          *
539          * Solution: make sure that the pointer left behind in ->d_child.next
540          * points to something that won't be moving around.  I.e. skip the
541          * cursors.
542          */
543         while (dentry->d_child.next != &parent->d_subdirs) {
544                 next = list_entry(dentry->d_child.next, struct dentry, d_child);
545                 if (likely(!(next->d_flags & DCACHE_DENTRY_CURSOR)))
546                         break;
547                 dentry->d_child.next = next->d_child.next;
548         }
549 }
550
551 static void __dentry_kill(struct dentry *dentry)
552 {
553         struct dentry *parent = NULL;
554         bool can_free = true;
555         if (!IS_ROOT(dentry))
556                 parent = dentry->d_parent;
557
558         /*
559          * The dentry is now unrecoverably dead to the world.
560          */
561         lockref_mark_dead(&dentry->d_lockref);
562
563         /*
564          * inform the fs via d_prune that this dentry is about to be
565          * unhashed and destroyed.
566          */
567         if (dentry->d_flags & DCACHE_OP_PRUNE)
568                 dentry->d_op->d_prune(dentry);
569
570         if (dentry->d_flags & DCACHE_LRU_LIST) {
571                 if (!(dentry->d_flags & DCACHE_SHRINK_LIST))
572                         d_lru_del(dentry);
573         }
574         /* if it was on the hash then remove it */
575         __d_drop(dentry);
576         dentry_unlist(dentry, parent);
577         if (parent)
578                 spin_unlock(&parent->d_lock);
579         if (dentry->d_inode)
580                 dentry_unlink_inode(dentry);
581         else
582                 spin_unlock(&dentry->d_lock);
583         this_cpu_dec(nr_dentry);
584         if (dentry->d_op && dentry->d_op->d_release)
585                 dentry->d_op->d_release(dentry);
586
587         spin_lock(&dentry->d_lock);
588         if (dentry->d_flags & DCACHE_SHRINK_LIST) {
589                 dentry->d_flags |= DCACHE_MAY_FREE;
590                 can_free = false;
591         }
592         spin_unlock(&dentry->d_lock);
593         if (likely(can_free))
594                 dentry_free(dentry);
595         cond_resched();
596 }
597
598 static struct dentry *__lock_parent(struct dentry *dentry)
599 {
600         struct dentry *parent;
601         rcu_read_lock();
602         spin_unlock(&dentry->d_lock);
603 again:
604         parent = READ_ONCE(dentry->d_parent);
605         spin_lock(&parent->d_lock);
606         /*
607          * We can't blindly lock dentry until we are sure
608          * that we won't violate the locking order.
609          * Any changes of dentry->d_parent must have
610          * been done with parent->d_lock held, so
611          * spin_lock() above is enough of a barrier
612          * for checking if it's still our child.
613          */
614         if (unlikely(parent != dentry->d_parent)) {
615                 spin_unlock(&parent->d_lock);
616                 goto again;
617         }
618         rcu_read_unlock();
619         if (parent != dentry)
620                 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
621         else
622                 parent = NULL;
623         return parent;
624 }
625
626 static inline struct dentry *lock_parent(struct dentry *dentry)
627 {
628         struct dentry *parent = dentry->d_parent;
629         if (IS_ROOT(dentry))
630                 return NULL;
631         if (likely(spin_trylock(&parent->d_lock)))
632                 return parent;
633         return __lock_parent(dentry);
634 }
635
636 static inline bool retain_dentry(struct dentry *dentry)
637 {
638         WARN_ON(d_in_lookup(dentry));
639
640         /* Unreachable? Get rid of it */
641         if (unlikely(d_unhashed(dentry)))
642                 return false;
643
644         if (unlikely(dentry->d_flags & DCACHE_DISCONNECTED))
645                 return false;
646
647         if (unlikely(dentry->d_flags & DCACHE_OP_DELETE)) {
648                 if (dentry->d_op->d_delete(dentry))
649                         return false;
650         }
651
652         if (unlikely(dentry->d_flags & DCACHE_DONTCACHE))
653                 return false;
654
655         /* retain; LRU fodder */
656         dentry->d_lockref.count--;
657         if (unlikely(!(dentry->d_flags & DCACHE_LRU_LIST)))
658                 d_lru_add(dentry);
659         else if (unlikely(!(dentry->d_flags & DCACHE_REFERENCED)))
660                 dentry->d_flags |= DCACHE_REFERENCED;
661         return true;
662 }
663
664 void d_mark_dontcache(struct inode *inode)
665 {
666         struct dentry *de;
667
668         spin_lock(&inode->i_lock);
669         hlist_for_each_entry(de, &inode->i_dentry, d_u.d_alias) {
670                 spin_lock(&de->d_lock);
671                 de->d_flags |= DCACHE_DONTCACHE;
672                 spin_unlock(&de->d_lock);
673         }
674         inode->i_state |= I_DONTCACHE;
675         spin_unlock(&inode->i_lock);
676 }
677 EXPORT_SYMBOL(d_mark_dontcache);
678
679 /*
680  * Finish off a dentry we've decided to kill.
681  * dentry->d_lock must be held, returns with it unlocked.
682  * Returns dentry requiring refcount drop, or NULL if we're done.
683  */
684 static struct dentry *dentry_kill(struct dentry *dentry)
685         __releases(dentry->d_lock)
686 {
687         struct inode *inode = dentry->d_inode;
688         struct dentry *parent = NULL;
689
690         if (inode && unlikely(!spin_trylock(&inode->i_lock)))
691                 goto slow_positive;
692
693         if (!IS_ROOT(dentry)) {
694                 parent = dentry->d_parent;
695                 if (unlikely(!spin_trylock(&parent->d_lock))) {
696                         parent = __lock_parent(dentry);
697                         if (likely(inode || !dentry->d_inode))
698                                 goto got_locks;
699                         /* negative that became positive */
700                         if (parent)
701                                 spin_unlock(&parent->d_lock);
702                         inode = dentry->d_inode;
703                         goto slow_positive;
704                 }
705         }
706         __dentry_kill(dentry);
707         return parent;
708
709 slow_positive:
710         spin_unlock(&dentry->d_lock);
711         spin_lock(&inode->i_lock);
712         spin_lock(&dentry->d_lock);
713         parent = lock_parent(dentry);
714 got_locks:
715         if (unlikely(dentry->d_lockref.count != 1)) {
716                 dentry->d_lockref.count--;
717         } else if (likely(!retain_dentry(dentry))) {
718                 __dentry_kill(dentry);
719                 return parent;
720         }
721         /* we are keeping it, after all */
722         if (inode)
723                 spin_unlock(&inode->i_lock);
724         if (parent)
725                 spin_unlock(&parent->d_lock);
726         spin_unlock(&dentry->d_lock);
727         return NULL;
728 }
729
730 /*
731  * Try to do a lockless dput(), and return whether that was successful.
732  *
733  * If unsuccessful, we return false, having already taken the dentry lock.
734  *
735  * The caller needs to hold the RCU read lock, so that the dentry is
736  * guaranteed to stay around even if the refcount goes down to zero!
737  */
738 static inline bool fast_dput(struct dentry *dentry)
739 {
740         int ret;
741         unsigned int d_flags;
742
743         /*
744          * If we have a d_op->d_delete() operation, we sould not
745          * let the dentry count go to zero, so use "put_or_lock".
746          */
747         if (unlikely(dentry->d_flags & DCACHE_OP_DELETE))
748                 return lockref_put_or_lock(&dentry->d_lockref);
749
750         /*
751          * .. otherwise, we can try to just decrement the
752          * lockref optimistically.
753          */
754         ret = lockref_put_return(&dentry->d_lockref);
755
756         /*
757          * If the lockref_put_return() failed due to the lock being held
758          * by somebody else, the fast path has failed. We will need to
759          * get the lock, and then check the count again.
760          */
761         if (unlikely(ret < 0)) {
762                 spin_lock(&dentry->d_lock);
763                 if (dentry->d_lockref.count > 1) {
764                         dentry->d_lockref.count--;
765                         spin_unlock(&dentry->d_lock);
766                         return true;
767                 }
768                 return false;
769         }
770
771         /*
772          * If we weren't the last ref, we're done.
773          */
774         if (ret)
775                 return true;
776
777         /*
778          * Careful, careful. The reference count went down
779          * to zero, but we don't hold the dentry lock, so
780          * somebody else could get it again, and do another
781          * dput(), and we need to not race with that.
782          *
783          * However, there is a very special and common case
784          * where we don't care, because there is nothing to
785          * do: the dentry is still hashed, it does not have
786          * a 'delete' op, and it's referenced and already on
787          * the LRU list.
788          *
789          * NOTE! Since we aren't locked, these values are
790          * not "stable". However, it is sufficient that at
791          * some point after we dropped the reference the
792          * dentry was hashed and the flags had the proper
793          * value. Other dentry users may have re-gotten
794          * a reference to the dentry and change that, but
795          * our work is done - we can leave the dentry
796          * around with a zero refcount.
797          *
798          * Nevertheless, there are two cases that we should kill
799          * the dentry anyway.
800          * 1. free disconnected dentries as soon as their refcount
801          *    reached zero.
802          * 2. free dentries if they should not be cached.
803          */
804         smp_rmb();
805         d_flags = READ_ONCE(dentry->d_flags);
806         d_flags &= DCACHE_REFERENCED | DCACHE_LRU_LIST |
807                         DCACHE_DISCONNECTED | DCACHE_DONTCACHE;
808
809         /* Nothing to do? Dropping the reference was all we needed? */
810         if (d_flags == (DCACHE_REFERENCED | DCACHE_LRU_LIST) && !d_unhashed(dentry))
811                 return true;
812
813         /*
814          * Not the fast normal case? Get the lock. We've already decremented
815          * the refcount, but we'll need to re-check the situation after
816          * getting the lock.
817          */
818         spin_lock(&dentry->d_lock);
819
820         /*
821          * Did somebody else grab a reference to it in the meantime, and
822          * we're no longer the last user after all? Alternatively, somebody
823          * else could have killed it and marked it dead. Either way, we
824          * don't need to do anything else.
825          */
826         if (dentry->d_lockref.count) {
827                 spin_unlock(&dentry->d_lock);
828                 return true;
829         }
830
831         /*
832          * Re-get the reference we optimistically dropped. We hold the
833          * lock, and we just tested that it was zero, so we can just
834          * set it to 1.
835          */
836         dentry->d_lockref.count = 1;
837         return false;
838 }
839
840
841 /* 
842  * This is dput
843  *
844  * This is complicated by the fact that we do not want to put
845  * dentries that are no longer on any hash chain on the unused
846  * list: we'd much rather just get rid of them immediately.
847  *
848  * However, that implies that we have to traverse the dentry
849  * tree upwards to the parents which might _also_ now be
850  * scheduled for deletion (it may have been only waiting for
851  * its last child to go away).
852  *
853  * This tail recursion is done by hand as we don't want to depend
854  * on the compiler to always get this right (gcc generally doesn't).
855  * Real recursion would eat up our stack space.
856  */
857
858 /*
859  * dput - release a dentry
860  * @dentry: dentry to release 
861  *
862  * Release a dentry. This will drop the usage count and if appropriate
863  * call the dentry unlink method as well as removing it from the queues and
864  * releasing its resources. If the parent dentries were scheduled for release
865  * they too may now get deleted.
866  */
867 void dput(struct dentry *dentry)
868 {
869         while (dentry) {
870                 might_sleep();
871
872                 rcu_read_lock();
873                 if (likely(fast_dput(dentry))) {
874                         rcu_read_unlock();
875                         return;
876                 }
877
878                 /* Slow case: now with the dentry lock held */
879                 rcu_read_unlock();
880
881                 if (likely(retain_dentry(dentry))) {
882                         spin_unlock(&dentry->d_lock);
883                         return;
884                 }
885
886                 dentry = dentry_kill(dentry);
887         }
888 }
889 EXPORT_SYMBOL(dput);
890
891 static void __dput_to_list(struct dentry *dentry, struct list_head *list)
892 __must_hold(&dentry->d_lock)
893 {
894         if (dentry->d_flags & DCACHE_SHRINK_LIST) {
895                 /* let the owner of the list it's on deal with it */
896                 --dentry->d_lockref.count;
897         } else {
898                 if (dentry->d_flags & DCACHE_LRU_LIST)
899                         d_lru_del(dentry);
900                 if (!--dentry->d_lockref.count)
901                         d_shrink_add(dentry, list);
902         }
903 }
904
905 void dput_to_list(struct dentry *dentry, struct list_head *list)
906 {
907         rcu_read_lock();
908         if (likely(fast_dput(dentry))) {
909                 rcu_read_unlock();
910                 return;
911         }
912         rcu_read_unlock();
913         if (!retain_dentry(dentry))
914                 __dput_to_list(dentry, list);
915         spin_unlock(&dentry->d_lock);
916 }
917
918 /* This must be called with d_lock held */
919 static inline void __dget_dlock(struct dentry *dentry)
920 {
921         dentry->d_lockref.count++;
922 }
923
924 static inline void __dget(struct dentry *dentry)
925 {
926         lockref_get(&dentry->d_lockref);
927 }
928
929 struct dentry *dget_parent(struct dentry *dentry)
930 {
931         int gotref;
932         struct dentry *ret;
933         unsigned seq;
934
935         /*
936          * Do optimistic parent lookup without any
937          * locking.
938          */
939         rcu_read_lock();
940         seq = raw_seqcount_begin(&dentry->d_seq);
941         ret = READ_ONCE(dentry->d_parent);
942         gotref = lockref_get_not_zero(&ret->d_lockref);
943         rcu_read_unlock();
944         if (likely(gotref)) {
945                 if (!read_seqcount_retry(&dentry->d_seq, seq))
946                         return ret;
947                 dput(ret);
948         }
949
950 repeat:
951         /*
952          * Don't need rcu_dereference because we re-check it was correct under
953          * the lock.
954          */
955         rcu_read_lock();
956         ret = dentry->d_parent;
957         spin_lock(&ret->d_lock);
958         if (unlikely(ret != dentry->d_parent)) {
959                 spin_unlock(&ret->d_lock);
960                 rcu_read_unlock();
961                 goto repeat;
962         }
963         rcu_read_unlock();
964         BUG_ON(!ret->d_lockref.count);
965         ret->d_lockref.count++;
966         spin_unlock(&ret->d_lock);
967         return ret;
968 }
969 EXPORT_SYMBOL(dget_parent);
970
971 static struct dentry * __d_find_any_alias(struct inode *inode)
972 {
973         struct dentry *alias;
974
975         if (hlist_empty(&inode->i_dentry))
976                 return NULL;
977         alias = hlist_entry(inode->i_dentry.first, struct dentry, d_u.d_alias);
978         __dget(alias);
979         return alias;
980 }
981
982 /**
983  * d_find_any_alias - find any alias for a given inode
984  * @inode: inode to find an alias for
985  *
986  * If any aliases exist for the given inode, take and return a
987  * reference for one of them.  If no aliases exist, return %NULL.
988  */
989 struct dentry *d_find_any_alias(struct inode *inode)
990 {
991         struct dentry *de;
992
993         spin_lock(&inode->i_lock);
994         de = __d_find_any_alias(inode);
995         spin_unlock(&inode->i_lock);
996         return de;
997 }
998 EXPORT_SYMBOL(d_find_any_alias);
999
1000 static struct dentry *__d_find_alias(struct inode *inode)
1001 {
1002         struct dentry *alias;
1003
1004         if (S_ISDIR(inode->i_mode))
1005                 return __d_find_any_alias(inode);
1006
1007         hlist_for_each_entry(alias, &inode->i_dentry, d_u.d_alias) {
1008                 spin_lock(&alias->d_lock);
1009                 if (!d_unhashed(alias)) {
1010                         __dget_dlock(alias);
1011                         spin_unlock(&alias->d_lock);
1012                         return alias;
1013                 }
1014                 spin_unlock(&alias->d_lock);
1015         }
1016         return NULL;
1017 }
1018
1019 /**
1020  * d_find_alias - grab a hashed alias of inode
1021  * @inode: inode in question
1022  *
1023  * If inode has a hashed alias, or is a directory and has any alias,
1024  * acquire the reference to alias and return it. Otherwise return NULL.
1025  * Notice that if inode is a directory there can be only one alias and
1026  * it can be unhashed only if it has no children, or if it is the root
1027  * of a filesystem, or if the directory was renamed and d_revalidate
1028  * was the first vfs operation to notice.
1029  *
1030  * If the inode has an IS_ROOT, DCACHE_DISCONNECTED alias, then prefer
1031  * any other hashed alias over that one.
1032  */
1033 struct dentry *d_find_alias(struct inode *inode)
1034 {
1035         struct dentry *de = NULL;
1036
1037         if (!hlist_empty(&inode->i_dentry)) {
1038                 spin_lock(&inode->i_lock);
1039                 de = __d_find_alias(inode);
1040                 spin_unlock(&inode->i_lock);
1041         }
1042         return de;
1043 }
1044 EXPORT_SYMBOL(d_find_alias);
1045
1046 /*
1047  *      Try to kill dentries associated with this inode.
1048  * WARNING: you must own a reference to inode.
1049  */
1050 void d_prune_aliases(struct inode *inode)
1051 {
1052         struct dentry *dentry;
1053 restart:
1054         spin_lock(&inode->i_lock);
1055         hlist_for_each_entry(dentry, &inode->i_dentry, d_u.d_alias) {
1056                 spin_lock(&dentry->d_lock);
1057                 if (!dentry->d_lockref.count) {
1058                         struct dentry *parent = lock_parent(dentry);
1059                         if (likely(!dentry->d_lockref.count)) {
1060                                 __dentry_kill(dentry);
1061                                 dput(parent);
1062                                 goto restart;
1063                         }
1064                         if (parent)
1065                                 spin_unlock(&parent->d_lock);
1066                 }
1067                 spin_unlock(&dentry->d_lock);
1068         }
1069         spin_unlock(&inode->i_lock);
1070 }
1071 EXPORT_SYMBOL(d_prune_aliases);
1072
1073 /*
1074  * Lock a dentry from shrink list.
1075  * Called under rcu_read_lock() and dentry->d_lock; the former
1076  * guarantees that nothing we access will be freed under us.
1077  * Note that dentry is *not* protected from concurrent dentry_kill(),
1078  * d_delete(), etc.
1079  *
1080  * Return false if dentry has been disrupted or grabbed, leaving
1081  * the caller to kick it off-list.  Otherwise, return true and have
1082  * that dentry's inode and parent both locked.
1083  */
1084 static bool shrink_lock_dentry(struct dentry *dentry)
1085 {
1086         struct inode *inode;
1087         struct dentry *parent;
1088
1089         if (dentry->d_lockref.count)
1090                 return false;
1091
1092         inode = dentry->d_inode;
1093         if (inode && unlikely(!spin_trylock(&inode->i_lock))) {
1094                 spin_unlock(&dentry->d_lock);
1095                 spin_lock(&inode->i_lock);
1096                 spin_lock(&dentry->d_lock);
1097                 if (unlikely(dentry->d_lockref.count))
1098                         goto out;
1099                 /* changed inode means that somebody had grabbed it */
1100                 if (unlikely(inode != dentry->d_inode))
1101                         goto out;
1102         }
1103
1104         parent = dentry->d_parent;
1105         if (IS_ROOT(dentry) || likely(spin_trylock(&parent->d_lock)))
1106                 return true;
1107
1108         spin_unlock(&dentry->d_lock);
1109         spin_lock(&parent->d_lock);
1110         if (unlikely(parent != dentry->d_parent)) {
1111                 spin_unlock(&parent->d_lock);
1112                 spin_lock(&dentry->d_lock);
1113                 goto out;
1114         }
1115         spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
1116         if (likely(!dentry->d_lockref.count))
1117                 return true;
1118         spin_unlock(&parent->d_lock);
1119 out:
1120         if (inode)
1121                 spin_unlock(&inode->i_lock);
1122         return false;
1123 }
1124
1125 void shrink_dentry_list(struct list_head *list)
1126 {
1127         while (!list_empty(list)) {
1128                 struct dentry *dentry, *parent;
1129
1130                 dentry = list_entry(list->prev, struct dentry, d_lru);
1131                 spin_lock(&dentry->d_lock);
1132                 rcu_read_lock();
1133                 if (!shrink_lock_dentry(dentry)) {
1134                         bool can_free = false;
1135                         rcu_read_unlock();
1136                         d_shrink_del(dentry);
1137                         if (dentry->d_lockref.count < 0)
1138                                 can_free = dentry->d_flags & DCACHE_MAY_FREE;
1139                         spin_unlock(&dentry->d_lock);
1140                         if (can_free)
1141                                 dentry_free(dentry);
1142                         continue;
1143                 }
1144                 rcu_read_unlock();
1145                 d_shrink_del(dentry);
1146                 parent = dentry->d_parent;
1147                 if (parent != dentry)
1148                         __dput_to_list(parent, list);
1149                 __dentry_kill(dentry);
1150         }
1151 }
1152
1153 static enum lru_status dentry_lru_isolate(struct list_head *item,
1154                 struct list_lru_one *lru, spinlock_t *lru_lock, void *arg)
1155 {
1156         struct list_head *freeable = arg;
1157         struct dentry   *dentry = container_of(item, struct dentry, d_lru);
1158
1159
1160         /*
1161          * we are inverting the lru lock/dentry->d_lock here,
1162          * so use a trylock. If we fail to get the lock, just skip
1163          * it
1164          */
1165         if (!spin_trylock(&dentry->d_lock))
1166                 return LRU_SKIP;
1167
1168         /*
1169          * Referenced dentries are still in use. If they have active
1170          * counts, just remove them from the LRU. Otherwise give them
1171          * another pass through the LRU.
1172          */
1173         if (dentry->d_lockref.count) {
1174                 d_lru_isolate(lru, dentry);
1175                 spin_unlock(&dentry->d_lock);
1176                 return LRU_REMOVED;
1177         }
1178
1179         if (dentry->d_flags & DCACHE_REFERENCED) {
1180                 dentry->d_flags &= ~DCACHE_REFERENCED;
1181                 spin_unlock(&dentry->d_lock);
1182
1183                 /*
1184                  * The list move itself will be made by the common LRU code. At
1185                  * this point, we've dropped the dentry->d_lock but keep the
1186                  * lru lock. This is safe to do, since every list movement is
1187                  * protected by the lru lock even if both locks are held.
1188                  *
1189                  * This is guaranteed by the fact that all LRU management
1190                  * functions are intermediated by the LRU API calls like
1191                  * list_lru_add and list_lru_del. List movement in this file
1192                  * only ever occur through this functions or through callbacks
1193                  * like this one, that are called from the LRU API.
1194                  *
1195                  * The only exceptions to this are functions like
1196                  * shrink_dentry_list, and code that first checks for the
1197                  * DCACHE_SHRINK_LIST flag.  Those are guaranteed to be
1198                  * operating only with stack provided lists after they are
1199                  * properly isolated from the main list.  It is thus, always a
1200                  * local access.
1201                  */
1202                 return LRU_ROTATE;
1203         }
1204
1205         d_lru_shrink_move(lru, dentry, freeable);
1206         spin_unlock(&dentry->d_lock);
1207
1208         return LRU_REMOVED;
1209 }
1210
1211 /**
1212  * prune_dcache_sb - shrink the dcache
1213  * @sb: superblock
1214  * @sc: shrink control, passed to list_lru_shrink_walk()
1215  *
1216  * Attempt to shrink the superblock dcache LRU by @sc->nr_to_scan entries. This
1217  * is done when we need more memory and called from the superblock shrinker
1218  * function.
1219  *
1220  * This function may fail to free any resources if all the dentries are in
1221  * use.
1222  */
1223 long prune_dcache_sb(struct super_block *sb, struct shrink_control *sc)
1224 {
1225         LIST_HEAD(dispose);
1226         long freed;
1227
1228         freed = list_lru_shrink_walk(&sb->s_dentry_lru, sc,
1229                                      dentry_lru_isolate, &dispose);
1230         shrink_dentry_list(&dispose);
1231         return freed;
1232 }
1233
1234 static enum lru_status dentry_lru_isolate_shrink(struct list_head *item,
1235                 struct list_lru_one *lru, spinlock_t *lru_lock, void *arg)
1236 {
1237         struct list_head *freeable = arg;
1238         struct dentry   *dentry = container_of(item, struct dentry, d_lru);
1239
1240         /*
1241          * we are inverting the lru lock/dentry->d_lock here,
1242          * so use a trylock. If we fail to get the lock, just skip
1243          * it
1244          */
1245         if (!spin_trylock(&dentry->d_lock))
1246                 return LRU_SKIP;
1247
1248         d_lru_shrink_move(lru, dentry, freeable);
1249         spin_unlock(&dentry->d_lock);
1250
1251         return LRU_REMOVED;
1252 }
1253
1254
1255 /**
1256  * shrink_dcache_sb - shrink dcache for a superblock
1257  * @sb: superblock
1258  *
1259  * Shrink the dcache for the specified super block. This is used to free
1260  * the dcache before unmounting a file system.
1261  */
1262 void shrink_dcache_sb(struct super_block *sb)
1263 {
1264         do {
1265                 LIST_HEAD(dispose);
1266
1267                 list_lru_walk(&sb->s_dentry_lru,
1268                         dentry_lru_isolate_shrink, &dispose, 1024);
1269                 shrink_dentry_list(&dispose);
1270         } while (list_lru_count(&sb->s_dentry_lru) > 0);
1271 }
1272 EXPORT_SYMBOL(shrink_dcache_sb);
1273
1274 /**
1275  * enum d_walk_ret - action to talke during tree walk
1276  * @D_WALK_CONTINUE:    contrinue walk
1277  * @D_WALK_QUIT:        quit walk
1278  * @D_WALK_NORETRY:     quit when retry is needed
1279  * @D_WALK_SKIP:        skip this dentry and its children
1280  */
1281 enum d_walk_ret {
1282         D_WALK_CONTINUE,
1283         D_WALK_QUIT,
1284         D_WALK_NORETRY,
1285         D_WALK_SKIP,
1286 };
1287
1288 /**
1289  * d_walk - walk the dentry tree
1290  * @parent:     start of walk
1291  * @data:       data passed to @enter() and @finish()
1292  * @enter:      callback when first entering the dentry
1293  *
1294  * The @enter() callbacks are called with d_lock held.
1295  */
1296 static void d_walk(struct dentry *parent, void *data,
1297                    enum d_walk_ret (*enter)(void *, struct dentry *))
1298 {
1299         struct dentry *this_parent;
1300         struct list_head *next;
1301         unsigned seq = 0;
1302         enum d_walk_ret ret;
1303         bool retry = true;
1304
1305 again:
1306         read_seqbegin_or_lock(&rename_lock, &seq);
1307         this_parent = parent;
1308         spin_lock(&this_parent->d_lock);
1309
1310         ret = enter(data, this_parent);
1311         switch (ret) {
1312         case D_WALK_CONTINUE:
1313                 break;
1314         case D_WALK_QUIT:
1315         case D_WALK_SKIP:
1316                 goto out_unlock;
1317         case D_WALK_NORETRY:
1318                 retry = false;
1319                 break;
1320         }
1321 repeat:
1322         next = this_parent->d_subdirs.next;
1323 resume:
1324         while (next != &this_parent->d_subdirs) {
1325                 struct list_head *tmp = next;
1326                 struct dentry *dentry = list_entry(tmp, struct dentry, d_child);
1327                 next = tmp->next;
1328
1329                 if (unlikely(dentry->d_flags & DCACHE_DENTRY_CURSOR))
1330                         continue;
1331
1332                 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
1333
1334                 ret = enter(data, dentry);
1335                 switch (ret) {
1336                 case D_WALK_CONTINUE:
1337                         break;
1338                 case D_WALK_QUIT:
1339                         spin_unlock(&dentry->d_lock);
1340                         goto out_unlock;
1341                 case D_WALK_NORETRY:
1342                         retry = false;
1343                         break;
1344                 case D_WALK_SKIP:
1345                         spin_unlock(&dentry->d_lock);
1346                         continue;
1347                 }
1348
1349                 if (!list_empty(&dentry->d_subdirs)) {
1350                         spin_unlock(&this_parent->d_lock);
1351                         spin_release(&dentry->d_lock.dep_map, _RET_IP_);
1352                         this_parent = dentry;
1353                         spin_acquire(&this_parent->d_lock.dep_map, 0, 1, _RET_IP_);
1354                         goto repeat;
1355                 }
1356                 spin_unlock(&dentry->d_lock);
1357         }
1358         /*
1359          * All done at this level ... ascend and resume the search.
1360          */
1361         rcu_read_lock();
1362 ascend:
1363         if (this_parent != parent) {
1364                 struct dentry *child = this_parent;
1365                 this_parent = child->d_parent;
1366
1367                 spin_unlock(&child->d_lock);
1368                 spin_lock(&this_parent->d_lock);
1369
1370                 /* might go back up the wrong parent if we have had a rename. */
1371                 if (need_seqretry(&rename_lock, seq))
1372                         goto rename_retry;
1373                 /* go into the first sibling still alive */
1374                 do {
1375                         next = child->d_child.next;
1376                         if (next == &this_parent->d_subdirs)
1377                                 goto ascend;
1378                         child = list_entry(next, struct dentry, d_child);
1379                 } while (unlikely(child->d_flags & DCACHE_DENTRY_KILLED));
1380                 rcu_read_unlock();
1381                 goto resume;
1382         }
1383         if (need_seqretry(&rename_lock, seq))
1384                 goto rename_retry;
1385         rcu_read_unlock();
1386
1387 out_unlock:
1388         spin_unlock(&this_parent->d_lock);
1389         done_seqretry(&rename_lock, seq);
1390         return;
1391
1392 rename_retry:
1393         spin_unlock(&this_parent->d_lock);
1394         rcu_read_unlock();
1395         BUG_ON(seq & 1);
1396         if (!retry)
1397                 return;
1398         seq = 1;
1399         goto again;
1400 }
1401
1402 struct check_mount {
1403         struct vfsmount *mnt;
1404         unsigned int mounted;
1405 };
1406
1407 static enum d_walk_ret path_check_mount(void *data, struct dentry *dentry)
1408 {
1409         struct check_mount *info = data;
1410         struct path path = { .mnt = info->mnt, .dentry = dentry };
1411
1412         if (likely(!d_mountpoint(dentry)))
1413                 return D_WALK_CONTINUE;
1414         if (__path_is_mountpoint(&path)) {
1415                 info->mounted = 1;
1416                 return D_WALK_QUIT;
1417         }
1418         return D_WALK_CONTINUE;
1419 }
1420
1421 /**
1422  * path_has_submounts - check for mounts over a dentry in the
1423  *                      current namespace.
1424  * @parent: path to check.
1425  *
1426  * Return true if the parent or its subdirectories contain
1427  * a mount point in the current namespace.
1428  */
1429 int path_has_submounts(const struct path *parent)
1430 {
1431         struct check_mount data = { .mnt = parent->mnt, .mounted = 0 };
1432
1433         read_seqlock_excl(&mount_lock);
1434         d_walk(parent->dentry, &data, path_check_mount);
1435         read_sequnlock_excl(&mount_lock);
1436
1437         return data.mounted;
1438 }
1439 EXPORT_SYMBOL(path_has_submounts);
1440
1441 /*
1442  * Called by mount code to set a mountpoint and check if the mountpoint is
1443  * reachable (e.g. NFS can unhash a directory dentry and then the complete
1444  * subtree can become unreachable).
1445  *
1446  * Only one of d_invalidate() and d_set_mounted() must succeed.  For
1447  * this reason take rename_lock and d_lock on dentry and ancestors.
1448  */
1449 int d_set_mounted(struct dentry *dentry)
1450 {
1451         struct dentry *p;
1452         int ret = -ENOENT;
1453         write_seqlock(&rename_lock);
1454         for (p = dentry->d_parent; !IS_ROOT(p); p = p->d_parent) {
1455                 /* Need exclusion wrt. d_invalidate() */
1456                 spin_lock(&p->d_lock);
1457                 if (unlikely(d_unhashed(p))) {
1458                         spin_unlock(&p->d_lock);
1459                         goto out;
1460                 }
1461                 spin_unlock(&p->d_lock);
1462         }
1463         spin_lock(&dentry->d_lock);
1464         if (!d_unlinked(dentry)) {
1465                 ret = -EBUSY;
1466                 if (!d_mountpoint(dentry)) {
1467                         dentry->d_flags |= DCACHE_MOUNTED;
1468                         ret = 0;
1469                 }
1470         }
1471         spin_unlock(&dentry->d_lock);
1472 out:
1473         write_sequnlock(&rename_lock);
1474         return ret;
1475 }
1476
1477 /*
1478  * Search the dentry child list of the specified parent,
1479  * and move any unused dentries to the end of the unused
1480  * list for prune_dcache(). We descend to the next level
1481  * whenever the d_subdirs list is non-empty and continue
1482  * searching.
1483  *
1484  * It returns zero iff there are no unused children,
1485  * otherwise  it returns the number of children moved to
1486  * the end of the unused list. This may not be the total
1487  * number of unused children, because select_parent can
1488  * drop the lock and return early due to latency
1489  * constraints.
1490  */
1491
1492 struct select_data {
1493         struct dentry *start;
1494         union {
1495                 long found;
1496                 struct dentry *victim;
1497         };
1498         struct list_head dispose;
1499 };
1500
1501 static enum d_walk_ret select_collect(void *_data, struct dentry *dentry)
1502 {
1503         struct select_data *data = _data;
1504         enum d_walk_ret ret = D_WALK_CONTINUE;
1505
1506         if (data->start == dentry)
1507                 goto out;
1508
1509         if (dentry->d_flags & DCACHE_SHRINK_LIST) {
1510                 data->found++;
1511         } else {
1512                 if (dentry->d_flags & DCACHE_LRU_LIST)
1513                         d_lru_del(dentry);
1514                 if (!dentry->d_lockref.count) {
1515                         d_shrink_add(dentry, &data->dispose);
1516                         data->found++;
1517                 }
1518         }
1519         /*
1520          * We can return to the caller if we have found some (this
1521          * ensures forward progress). We'll be coming back to find
1522          * the rest.
1523          */
1524         if (!list_empty(&data->dispose))
1525                 ret = need_resched() ? D_WALK_QUIT : D_WALK_NORETRY;
1526 out:
1527         return ret;
1528 }
1529
1530 static enum d_walk_ret select_collect2(void *_data, struct dentry *dentry)
1531 {
1532         struct select_data *data = _data;
1533         enum d_walk_ret ret = D_WALK_CONTINUE;
1534
1535         if (data->start == dentry)
1536                 goto out;
1537
1538         if (dentry->d_flags & DCACHE_SHRINK_LIST) {
1539                 if (!dentry->d_lockref.count) {
1540                         rcu_read_lock();
1541                         data->victim = dentry;
1542                         return D_WALK_QUIT;
1543                 }
1544         } else {
1545                 if (dentry->d_flags & DCACHE_LRU_LIST)
1546                         d_lru_del(dentry);
1547                 if (!dentry->d_lockref.count)
1548                         d_shrink_add(dentry, &data->dispose);
1549         }
1550         /*
1551          * We can return to the caller if we have found some (this
1552          * ensures forward progress). We'll be coming back to find
1553          * the rest.
1554          */
1555         if (!list_empty(&data->dispose))
1556                 ret = need_resched() ? D_WALK_QUIT : D_WALK_NORETRY;
1557 out:
1558         return ret;
1559 }
1560
1561 /**
1562  * shrink_dcache_parent - prune dcache
1563  * @parent: parent of entries to prune
1564  *
1565  * Prune the dcache to remove unused children of the parent dentry.
1566  */
1567 void shrink_dcache_parent(struct dentry *parent)
1568 {
1569         for (;;) {
1570                 struct select_data data = {.start = parent};
1571
1572                 INIT_LIST_HEAD(&data.dispose);
1573                 d_walk(parent, &data, select_collect);
1574
1575                 if (!list_empty(&data.dispose)) {
1576                         shrink_dentry_list(&data.dispose);
1577                         continue;
1578                 }
1579
1580                 cond_resched();
1581                 if (!data.found)
1582                         break;
1583                 data.victim = NULL;
1584                 d_walk(parent, &data, select_collect2);
1585                 if (data.victim) {
1586                         struct dentry *parent;
1587                         spin_lock(&data.victim->d_lock);
1588                         if (!shrink_lock_dentry(data.victim)) {
1589                                 spin_unlock(&data.victim->d_lock);
1590                                 rcu_read_unlock();
1591                         } else {
1592                                 rcu_read_unlock();
1593                                 parent = data.victim->d_parent;
1594                                 if (parent != data.victim)
1595                                         __dput_to_list(parent, &data.dispose);
1596                                 __dentry_kill(data.victim);
1597                         }
1598                 }
1599                 if (!list_empty(&data.dispose))
1600                         shrink_dentry_list(&data.dispose);
1601         }
1602 }
1603 EXPORT_SYMBOL(shrink_dcache_parent);
1604
1605 static enum d_walk_ret umount_check(void *_data, struct dentry *dentry)
1606 {
1607         /* it has busy descendents; complain about those instead */
1608         if (!list_empty(&dentry->d_subdirs))
1609                 return D_WALK_CONTINUE;
1610
1611         /* root with refcount 1 is fine */
1612         if (dentry == _data && dentry->d_lockref.count == 1)
1613                 return D_WALK_CONTINUE;
1614
1615         printk(KERN_ERR "BUG: Dentry %p{i=%lx,n=%pd} "
1616                         " still in use (%d) [unmount of %s %s]\n",
1617                        dentry,
1618                        dentry->d_inode ?
1619                        dentry->d_inode->i_ino : 0UL,
1620                        dentry,
1621                        dentry->d_lockref.count,
1622                        dentry->d_sb->s_type->name,
1623                        dentry->d_sb->s_id);
1624         WARN_ON(1);
1625         return D_WALK_CONTINUE;
1626 }
1627
1628 static void do_one_tree(struct dentry *dentry)
1629 {
1630         shrink_dcache_parent(dentry);
1631         d_walk(dentry, dentry, umount_check);
1632         d_drop(dentry);
1633         dput(dentry);
1634 }
1635
1636 /*
1637  * destroy the dentries attached to a superblock on unmounting
1638  */
1639 void shrink_dcache_for_umount(struct super_block *sb)
1640 {
1641         struct dentry *dentry;
1642
1643         WARN(down_read_trylock(&sb->s_umount), "s_umount should've been locked");
1644
1645         dentry = sb->s_root;
1646         sb->s_root = NULL;
1647         do_one_tree(dentry);
1648
1649         while (!hlist_bl_empty(&sb->s_roots)) {
1650                 dentry = dget(hlist_bl_entry(hlist_bl_first(&sb->s_roots), struct dentry, d_hash));
1651                 do_one_tree(dentry);
1652         }
1653 }
1654
1655 static enum d_walk_ret find_submount(void *_data, struct dentry *dentry)
1656 {
1657         struct dentry **victim = _data;
1658         if (d_mountpoint(dentry)) {
1659                 __dget_dlock(dentry);
1660                 *victim = dentry;
1661                 return D_WALK_QUIT;
1662         }
1663         return D_WALK_CONTINUE;
1664 }
1665
1666 /**
1667  * d_invalidate - detach submounts, prune dcache, and drop
1668  * @dentry: dentry to invalidate (aka detach, prune and drop)
1669  */
1670 void d_invalidate(struct dentry *dentry)
1671 {
1672         bool had_submounts = false;
1673         spin_lock(&dentry->d_lock);
1674         if (d_unhashed(dentry)) {
1675                 spin_unlock(&dentry->d_lock);
1676                 return;
1677         }
1678         __d_drop(dentry);
1679         spin_unlock(&dentry->d_lock);
1680
1681         /* Negative dentries can be dropped without further checks */
1682         if (!dentry->d_inode)
1683                 return;
1684
1685         shrink_dcache_parent(dentry);
1686         for (;;) {
1687                 struct dentry *victim = NULL;
1688                 d_walk(dentry, &victim, find_submount);
1689                 if (!victim) {
1690                         if (had_submounts)
1691                                 shrink_dcache_parent(dentry);
1692                         return;
1693                 }
1694                 had_submounts = true;
1695                 detach_mounts(victim);
1696                 dput(victim);
1697         }
1698 }
1699 EXPORT_SYMBOL(d_invalidate);
1700
1701 /**
1702  * __d_alloc    -       allocate a dcache entry
1703  * @sb: filesystem it will belong to
1704  * @name: qstr of the name
1705  *
1706  * Allocates a dentry. It returns %NULL if there is insufficient memory
1707  * available. On a success the dentry is returned. The name passed in is
1708  * copied and the copy passed in may be reused after this call.
1709  */
1710  
1711 static struct dentry *__d_alloc(struct super_block *sb, const struct qstr *name)
1712 {
1713         struct dentry *dentry;
1714         char *dname;
1715         int err;
1716
1717         dentry = kmem_cache_alloc(dentry_cache, GFP_KERNEL);
1718         if (!dentry)
1719                 return NULL;
1720
1721         /*
1722          * We guarantee that the inline name is always NUL-terminated.
1723          * This way the memcpy() done by the name switching in rename
1724          * will still always have a NUL at the end, even if we might
1725          * be overwriting an internal NUL character
1726          */
1727         dentry->d_iname[DNAME_INLINE_LEN-1] = 0;
1728         if (unlikely(!name)) {
1729                 name = &slash_name;
1730                 dname = dentry->d_iname;
1731         } else if (name->len > DNAME_INLINE_LEN-1) {
1732                 size_t size = offsetof(struct external_name, name[1]);
1733                 struct external_name *p = kmalloc(size + name->len,
1734                                                   GFP_KERNEL_ACCOUNT |
1735                                                   __GFP_RECLAIMABLE);
1736                 if (!p) {
1737                         kmem_cache_free(dentry_cache, dentry); 
1738                         return NULL;
1739                 }
1740                 atomic_set(&p->u.count, 1);
1741                 dname = p->name;
1742         } else  {
1743                 dname = dentry->d_iname;
1744         }       
1745
1746         dentry->d_name.len = name->len;
1747         dentry->d_name.hash = name->hash;
1748         memcpy(dname, name->name, name->len);
1749         dname[name->len] = 0;
1750
1751         /* Make sure we always see the terminating NUL character */
1752         smp_store_release(&dentry->d_name.name, dname); /* ^^^ */
1753
1754         dentry->d_lockref.count = 1;
1755         dentry->d_flags = 0;
1756         spin_lock_init(&dentry->d_lock);
1757         seqcount_spinlock_init(&dentry->d_seq, &dentry->d_lock);
1758         dentry->d_inode = NULL;
1759         dentry->d_parent = dentry;
1760         dentry->d_sb = sb;
1761         dentry->d_op = NULL;
1762         dentry->d_fsdata = NULL;
1763         INIT_HLIST_BL_NODE(&dentry->d_hash);
1764         INIT_LIST_HEAD(&dentry->d_lru);
1765         INIT_LIST_HEAD(&dentry->d_subdirs);
1766         INIT_HLIST_NODE(&dentry->d_u.d_alias);
1767         INIT_LIST_HEAD(&dentry->d_child);
1768         d_set_d_op(dentry, dentry->d_sb->s_d_op);
1769
1770         if (dentry->d_op && dentry->d_op->d_init) {
1771                 err = dentry->d_op->d_init(dentry);
1772                 if (err) {
1773                         if (dname_external(dentry))
1774                                 kfree(external_name(dentry));
1775                         kmem_cache_free(dentry_cache, dentry);
1776                         return NULL;
1777                 }
1778         }
1779
1780         this_cpu_inc(nr_dentry);
1781
1782         return dentry;
1783 }
1784
1785 /**
1786  * d_alloc      -       allocate a dcache entry
1787  * @parent: parent of entry to allocate
1788  * @name: qstr of the name
1789  *
1790  * Allocates a dentry. It returns %NULL if there is insufficient memory
1791  * available. On a success the dentry is returned. The name passed in is
1792  * copied and the copy passed in may be reused after this call.
1793  */
1794 struct dentry *d_alloc(struct dentry * parent, const struct qstr *name)
1795 {
1796         struct dentry *dentry = __d_alloc(parent->d_sb, name);
1797         if (!dentry)
1798                 return NULL;
1799         spin_lock(&parent->d_lock);
1800         /*
1801          * don't need child lock because it is not subject
1802          * to concurrency here
1803          */
1804         __dget_dlock(parent);
1805         dentry->d_parent = parent;
1806         list_add(&dentry->d_child, &parent->d_subdirs);
1807         spin_unlock(&parent->d_lock);
1808
1809         return dentry;
1810 }
1811 EXPORT_SYMBOL(d_alloc);
1812
1813 struct dentry *d_alloc_anon(struct super_block *sb)
1814 {
1815         return __d_alloc(sb, NULL);
1816 }
1817 EXPORT_SYMBOL(d_alloc_anon);
1818
1819 struct dentry *d_alloc_cursor(struct dentry * parent)
1820 {
1821         struct dentry *dentry = d_alloc_anon(parent->d_sb);
1822         if (dentry) {
1823                 dentry->d_flags |= DCACHE_DENTRY_CURSOR;
1824                 dentry->d_parent = dget(parent);
1825         }
1826         return dentry;
1827 }
1828
1829 /**
1830  * d_alloc_pseudo - allocate a dentry (for lookup-less filesystems)
1831  * @sb: the superblock
1832  * @name: qstr of the name
1833  *
1834  * For a filesystem that just pins its dentries in memory and never
1835  * performs lookups at all, return an unhashed IS_ROOT dentry.
1836  * This is used for pipes, sockets et.al. - the stuff that should
1837  * never be anyone's children or parents.  Unlike all other
1838  * dentries, these will not have RCU delay between dropping the
1839  * last reference and freeing them.
1840  *
1841  * The only user is alloc_file_pseudo() and that's what should
1842  * be considered a public interface.  Don't use directly.
1843  */
1844 struct dentry *d_alloc_pseudo(struct super_block *sb, const struct qstr *name)
1845 {
1846         struct dentry *dentry = __d_alloc(sb, name);
1847         if (likely(dentry))
1848                 dentry->d_flags |= DCACHE_NORCU;
1849         return dentry;
1850 }
1851
1852 struct dentry *d_alloc_name(struct dentry *parent, const char *name)
1853 {
1854         struct qstr q;
1855
1856         q.name = name;
1857         q.hash_len = hashlen_string(parent, name);
1858         return d_alloc(parent, &q);
1859 }
1860 EXPORT_SYMBOL(d_alloc_name);
1861
1862 void d_set_d_op(struct dentry *dentry, const struct dentry_operations *op)
1863 {
1864         WARN_ON_ONCE(dentry->d_op);
1865         WARN_ON_ONCE(dentry->d_flags & (DCACHE_OP_HASH  |
1866                                 DCACHE_OP_COMPARE       |
1867                                 DCACHE_OP_REVALIDATE    |
1868                                 DCACHE_OP_WEAK_REVALIDATE       |
1869                                 DCACHE_OP_DELETE        |
1870                                 DCACHE_OP_REAL));
1871         dentry->d_op = op;
1872         if (!op)
1873                 return;
1874         if (op->d_hash)
1875                 dentry->d_flags |= DCACHE_OP_HASH;
1876         if (op->d_compare)
1877                 dentry->d_flags |= DCACHE_OP_COMPARE;
1878         if (op->d_revalidate)
1879                 dentry->d_flags |= DCACHE_OP_REVALIDATE;
1880         if (op->d_weak_revalidate)
1881                 dentry->d_flags |= DCACHE_OP_WEAK_REVALIDATE;
1882         if (op->d_delete)
1883                 dentry->d_flags |= DCACHE_OP_DELETE;
1884         if (op->d_prune)
1885                 dentry->d_flags |= DCACHE_OP_PRUNE;
1886         if (op->d_real)
1887                 dentry->d_flags |= DCACHE_OP_REAL;
1888
1889 }
1890 EXPORT_SYMBOL(d_set_d_op);
1891
1892
1893 /*
1894  * d_set_fallthru - Mark a dentry as falling through to a lower layer
1895  * @dentry - The dentry to mark
1896  *
1897  * Mark a dentry as falling through to the lower layer (as set with
1898  * d_pin_lower()).  This flag may be recorded on the medium.
1899  */
1900 void d_set_fallthru(struct dentry *dentry)
1901 {
1902         spin_lock(&dentry->d_lock);
1903         dentry->d_flags |= DCACHE_FALLTHRU;
1904         spin_unlock(&dentry->d_lock);
1905 }
1906 EXPORT_SYMBOL(d_set_fallthru);
1907
1908 static unsigned d_flags_for_inode(struct inode *inode)
1909 {
1910         unsigned add_flags = DCACHE_REGULAR_TYPE;
1911
1912         if (!inode)
1913                 return DCACHE_MISS_TYPE;
1914
1915         if (S_ISDIR(inode->i_mode)) {
1916                 add_flags = DCACHE_DIRECTORY_TYPE;
1917                 if (unlikely(!(inode->i_opflags & IOP_LOOKUP))) {
1918                         if (unlikely(!inode->i_op->lookup))
1919                                 add_flags = DCACHE_AUTODIR_TYPE;
1920                         else
1921                                 inode->i_opflags |= IOP_LOOKUP;
1922                 }
1923                 goto type_determined;
1924         }
1925
1926         if (unlikely(!(inode->i_opflags & IOP_NOFOLLOW))) {
1927                 if (unlikely(inode->i_op->get_link)) {
1928                         add_flags = DCACHE_SYMLINK_TYPE;
1929                         goto type_determined;
1930                 }
1931                 inode->i_opflags |= IOP_NOFOLLOW;
1932         }
1933
1934         if (unlikely(!S_ISREG(inode->i_mode)))
1935                 add_flags = DCACHE_SPECIAL_TYPE;
1936
1937 type_determined:
1938         if (unlikely(IS_AUTOMOUNT(inode)))
1939                 add_flags |= DCACHE_NEED_AUTOMOUNT;
1940         return add_flags;
1941 }
1942
1943 static void __d_instantiate(struct dentry *dentry, struct inode *inode)
1944 {
1945         unsigned add_flags = d_flags_for_inode(inode);
1946         WARN_ON(d_in_lookup(dentry));
1947
1948         spin_lock(&dentry->d_lock);
1949         /*
1950          * Decrement negative dentry count if it was in the LRU list.
1951          */
1952         if (dentry->d_flags & DCACHE_LRU_LIST)
1953                 this_cpu_dec(nr_dentry_negative);
1954         hlist_add_head(&dentry->d_u.d_alias, &inode->i_dentry);
1955         raw_write_seqcount_begin(&dentry->d_seq);
1956         __d_set_inode_and_type(dentry, inode, add_flags);
1957         raw_write_seqcount_end(&dentry->d_seq);
1958         fsnotify_update_flags(dentry);
1959         spin_unlock(&dentry->d_lock);
1960 }
1961
1962 /**
1963  * d_instantiate - fill in inode information for a dentry
1964  * @entry: dentry to complete
1965  * @inode: inode to attach to this dentry
1966  *
1967  * Fill in inode information in the entry.
1968  *
1969  * This turns negative dentries into productive full members
1970  * of society.
1971  *
1972  * NOTE! This assumes that the inode count has been incremented
1973  * (or otherwise set) by the caller to indicate that it is now
1974  * in use by the dcache.
1975  */
1976  
1977 void d_instantiate(struct dentry *entry, struct inode * inode)
1978 {
1979         BUG_ON(!hlist_unhashed(&entry->d_u.d_alias));
1980         if (inode) {
1981                 security_d_instantiate(entry, inode);
1982                 spin_lock(&inode->i_lock);
1983                 __d_instantiate(entry, inode);
1984                 spin_unlock(&inode->i_lock);
1985         }
1986 }
1987 EXPORT_SYMBOL(d_instantiate);
1988
1989 /*
1990  * This should be equivalent to d_instantiate() + unlock_new_inode(),
1991  * with lockdep-related part of unlock_new_inode() done before
1992  * anything else.  Use that instead of open-coding d_instantiate()/
1993  * unlock_new_inode() combinations.
1994  */
1995 void d_instantiate_new(struct dentry *entry, struct inode *inode)
1996 {
1997         BUG_ON(!hlist_unhashed(&entry->d_u.d_alias));
1998         BUG_ON(!inode);
1999         lockdep_annotate_inode_mutex_key(inode);
2000         security_d_instantiate(entry, inode);
2001         spin_lock(&inode->i_lock);
2002         __d_instantiate(entry, inode);
2003         WARN_ON(!(inode->i_state & I_NEW));
2004         inode->i_state &= ~I_NEW & ~I_CREATING;
2005         smp_mb();
2006         wake_up_bit(&inode->i_state, __I_NEW);
2007         spin_unlock(&inode->i_lock);
2008 }
2009 EXPORT_SYMBOL(d_instantiate_new);
2010
2011 struct dentry *d_make_root(struct inode *root_inode)
2012 {
2013         struct dentry *res = NULL;
2014
2015         if (root_inode) {
2016                 res = d_alloc_anon(root_inode->i_sb);
2017                 if (res)
2018                         d_instantiate(res, root_inode);
2019                 else
2020                         iput(root_inode);
2021         }
2022         return res;
2023 }
2024 EXPORT_SYMBOL(d_make_root);
2025
2026 static struct dentry *__d_instantiate_anon(struct dentry *dentry,
2027                                            struct inode *inode,
2028                                            bool disconnected)
2029 {
2030         struct dentry *res;
2031         unsigned add_flags;
2032
2033         security_d_instantiate(dentry, inode);
2034         spin_lock(&inode->i_lock);
2035         res = __d_find_any_alias(inode);
2036         if (res) {
2037                 spin_unlock(&inode->i_lock);
2038                 dput(dentry);
2039                 goto out_iput;
2040         }
2041
2042         /* attach a disconnected dentry */
2043         add_flags = d_flags_for_inode(inode);
2044
2045         if (disconnected)
2046                 add_flags |= DCACHE_DISCONNECTED;
2047
2048         spin_lock(&dentry->d_lock);
2049         __d_set_inode_and_type(dentry, inode, add_flags);
2050         hlist_add_head(&dentry->d_u.d_alias, &inode->i_dentry);
2051         if (!disconnected) {
2052                 hlist_bl_lock(&dentry->d_sb->s_roots);
2053                 hlist_bl_add_head(&dentry->d_hash, &dentry->d_sb->s_roots);
2054                 hlist_bl_unlock(&dentry->d_sb->s_roots);
2055         }
2056         spin_unlock(&dentry->d_lock);
2057         spin_unlock(&inode->i_lock);
2058
2059         return dentry;
2060
2061  out_iput:
2062         iput(inode);
2063         return res;
2064 }
2065
2066 struct dentry *d_instantiate_anon(struct dentry *dentry, struct inode *inode)
2067 {
2068         return __d_instantiate_anon(dentry, inode, true);
2069 }
2070 EXPORT_SYMBOL(d_instantiate_anon);
2071
2072 static struct dentry *__d_obtain_alias(struct inode *inode, bool disconnected)
2073 {
2074         struct dentry *tmp;
2075         struct dentry *res;
2076
2077         if (!inode)
2078                 return ERR_PTR(-ESTALE);
2079         if (IS_ERR(inode))
2080                 return ERR_CAST(inode);
2081
2082         res = d_find_any_alias(inode);
2083         if (res)
2084                 goto out_iput;
2085
2086         tmp = d_alloc_anon(inode->i_sb);
2087         if (!tmp) {
2088                 res = ERR_PTR(-ENOMEM);
2089                 goto out_iput;
2090         }
2091
2092         return __d_instantiate_anon(tmp, inode, disconnected);
2093
2094 out_iput:
2095         iput(inode);
2096         return res;
2097 }
2098
2099 /**
2100  * d_obtain_alias - find or allocate a DISCONNECTED dentry for a given inode
2101  * @inode: inode to allocate the dentry for
2102  *
2103  * Obtain a dentry for an inode resulting from NFS filehandle conversion or
2104  * similar open by handle operations.  The returned dentry may be anonymous,
2105  * or may have a full name (if the inode was already in the cache).
2106  *
2107  * When called on a directory inode, we must ensure that the inode only ever
2108  * has one dentry.  If a dentry is found, that is returned instead of
2109  * allocating a new one.
2110  *
2111  * On successful return, the reference to the inode has been transferred
2112  * to the dentry.  In case of an error the reference on the inode is released.
2113  * To make it easier to use in export operations a %NULL or IS_ERR inode may
2114  * be passed in and the error will be propagated to the return value,
2115  * with a %NULL @inode replaced by ERR_PTR(-ESTALE).
2116  */
2117 struct dentry *d_obtain_alias(struct inode *inode)
2118 {
2119         return __d_obtain_alias(inode, true);
2120 }
2121 EXPORT_SYMBOL(d_obtain_alias);
2122
2123 /**
2124  * d_obtain_root - find or allocate a dentry for a given inode
2125  * @inode: inode to allocate the dentry for
2126  *
2127  * Obtain an IS_ROOT dentry for the root of a filesystem.
2128  *
2129  * We must ensure that directory inodes only ever have one dentry.  If a
2130  * dentry is found, that is returned instead of allocating a new one.
2131  *
2132  * On successful return, the reference to the inode has been transferred
2133  * to the dentry.  In case of an error the reference on the inode is
2134  * released.  A %NULL or IS_ERR inode may be passed in and will be the
2135  * error will be propagate to the return value, with a %NULL @inode
2136  * replaced by ERR_PTR(-ESTALE).
2137  */
2138 struct dentry *d_obtain_root(struct inode *inode)
2139 {
2140         return __d_obtain_alias(inode, false);
2141 }
2142 EXPORT_SYMBOL(d_obtain_root);
2143
2144 /**
2145  * d_add_ci - lookup or allocate new dentry with case-exact name
2146  * @inode:  the inode case-insensitive lookup has found
2147  * @dentry: the negative dentry that was passed to the parent's lookup func
2148  * @name:   the case-exact name to be associated with the returned dentry
2149  *
2150  * This is to avoid filling the dcache with case-insensitive names to the
2151  * same inode, only the actual correct case is stored in the dcache for
2152  * case-insensitive filesystems.
2153  *
2154  * For a case-insensitive lookup match and if the the case-exact dentry
2155  * already exists in in the dcache, use it and return it.
2156  *
2157  * If no entry exists with the exact case name, allocate new dentry with
2158  * the exact case, and return the spliced entry.
2159  */
2160 struct dentry *d_add_ci(struct dentry *dentry, struct inode *inode,
2161                         struct qstr *name)
2162 {
2163         struct dentry *found, *res;
2164
2165         /*
2166          * First check if a dentry matching the name already exists,
2167          * if not go ahead and create it now.
2168          */
2169         found = d_hash_and_lookup(dentry->d_parent, name);
2170         if (found) {
2171                 iput(inode);
2172                 return found;
2173         }
2174         if (d_in_lookup(dentry)) {
2175                 found = d_alloc_parallel(dentry->d_parent, name,
2176                                         dentry->d_wait);
2177                 if (IS_ERR(found) || !d_in_lookup(found)) {
2178                         iput(inode);
2179                         return found;
2180                 }
2181         } else {
2182                 found = d_alloc(dentry->d_parent, name);
2183                 if (!found) {
2184                         iput(inode);
2185                         return ERR_PTR(-ENOMEM);
2186                 } 
2187         }
2188         res = d_splice_alias(inode, found);
2189         if (res) {
2190                 dput(found);
2191                 return res;
2192         }
2193         return found;
2194 }
2195 EXPORT_SYMBOL(d_add_ci);
2196
2197
2198 static inline bool d_same_name(const struct dentry *dentry,
2199                                 const struct dentry *parent,
2200                                 const struct qstr *name)
2201 {
2202         if (likely(!(parent->d_flags & DCACHE_OP_COMPARE))) {
2203                 if (dentry->d_name.len != name->len)
2204                         return false;
2205                 return dentry_cmp(dentry, name->name, name->len) == 0;
2206         }
2207         return parent->d_op->d_compare(dentry,
2208                                        dentry->d_name.len, dentry->d_name.name,
2209                                        name) == 0;
2210 }
2211
2212 /**
2213  * __d_lookup_rcu - search for a dentry (racy, store-free)
2214  * @parent: parent dentry
2215  * @name: qstr of name we wish to find
2216  * @seqp: returns d_seq value at the point where the dentry was found
2217  * Returns: dentry, or NULL
2218  *
2219  * __d_lookup_rcu is the dcache lookup function for rcu-walk name
2220  * resolution (store-free path walking) design described in
2221  * Documentation/filesystems/path-lookup.txt.
2222  *
2223  * This is not to be used outside core vfs.
2224  *
2225  * __d_lookup_rcu must only be used in rcu-walk mode, ie. with vfsmount lock
2226  * held, and rcu_read_lock held. The returned dentry must not be stored into
2227  * without taking d_lock and checking d_seq sequence count against @seq
2228  * returned here.
2229  *
2230  * A refcount may be taken on the found dentry with the d_rcu_to_refcount
2231  * function.
2232  *
2233  * Alternatively, __d_lookup_rcu may be called again to look up the child of
2234  * the returned dentry, so long as its parent's seqlock is checked after the
2235  * child is looked up. Thus, an interlocking stepping of sequence lock checks
2236  * is formed, giving integrity down the path walk.
2237  *
2238  * NOTE! The caller *has* to check the resulting dentry against the sequence
2239  * number we've returned before using any of the resulting dentry state!
2240  */
2241 struct dentry *__d_lookup_rcu(const struct dentry *parent,
2242                                 const struct qstr *name,
2243                                 unsigned *seqp)
2244 {
2245         u64 hashlen = name->hash_len;
2246         const unsigned char *str = name->name;
2247         struct hlist_bl_head *b = d_hash(hashlen_hash(hashlen));
2248         struct hlist_bl_node *node;
2249         struct dentry *dentry;
2250
2251         /*
2252          * Note: There is significant duplication with __d_lookup_rcu which is
2253          * required to prevent single threaded performance regressions
2254          * especially on architectures where smp_rmb (in seqcounts) are costly.
2255          * Keep the two functions in sync.
2256          */
2257
2258         /*
2259          * The hash list is protected using RCU.
2260          *
2261          * Carefully use d_seq when comparing a candidate dentry, to avoid
2262          * races with d_move().
2263          *
2264          * It is possible that concurrent renames can mess up our list
2265          * walk here and result in missing our dentry, resulting in the
2266          * false-negative result. d_lookup() protects against concurrent
2267          * renames using rename_lock seqlock.
2268          *
2269          * See Documentation/filesystems/path-lookup.txt for more details.
2270          */
2271         hlist_bl_for_each_entry_rcu(dentry, node, b, d_hash) {
2272                 unsigned seq;
2273
2274 seqretry:
2275                 /*
2276                  * The dentry sequence count protects us from concurrent
2277                  * renames, and thus protects parent and name fields.
2278                  *
2279                  * The caller must perform a seqcount check in order
2280                  * to do anything useful with the returned dentry.
2281                  *
2282                  * NOTE! We do a "raw" seqcount_begin here. That means that
2283                  * we don't wait for the sequence count to stabilize if it
2284                  * is in the middle of a sequence change. If we do the slow
2285                  * dentry compare, we will do seqretries until it is stable,
2286                  * and if we end up with a successful lookup, we actually
2287                  * want to exit RCU lookup anyway.
2288                  *
2289                  * Note that raw_seqcount_begin still *does* smp_rmb(), so
2290                  * we are still guaranteed NUL-termination of ->d_name.name.
2291                  */
2292                 seq = raw_seqcount_begin(&dentry->d_seq);
2293                 if (dentry->d_parent != parent)
2294                         continue;
2295                 if (d_unhashed(dentry))
2296                         continue;
2297
2298                 if (unlikely(parent->d_flags & DCACHE_OP_COMPARE)) {
2299                         int tlen;
2300                         const char *tname;
2301                         if (dentry->d_name.hash != hashlen_hash(hashlen))
2302                                 continue;
2303                         tlen = dentry->d_name.len;
2304                         tname = dentry->d_name.name;
2305                         /* we want a consistent (name,len) pair */
2306                         if (read_seqcount_retry(&dentry->d_seq, seq)) {
2307                                 cpu_relax();
2308                                 goto seqretry;
2309                         }
2310                         if (parent->d_op->d_compare(dentry,
2311                                                     tlen, tname, name) != 0)
2312                                 continue;
2313                 } else {
2314                         if (dentry->d_name.hash_len != hashlen)
2315                                 continue;
2316                         if (dentry_cmp(dentry, str, hashlen_len(hashlen)) != 0)
2317                                 continue;
2318                 }
2319                 *seqp = seq;
2320                 return dentry;
2321         }
2322         return NULL;
2323 }
2324
2325 /**
2326  * d_lookup - search for a dentry
2327  * @parent: parent dentry
2328  * @name: qstr of name we wish to find
2329  * Returns: dentry, or NULL
2330  *
2331  * d_lookup searches the children of the parent dentry for the name in
2332  * question. If the dentry is found its reference count is incremented and the
2333  * dentry is returned. The caller must use dput to free the entry when it has
2334  * finished using it. %NULL is returned if the dentry does not exist.
2335  */
2336 struct dentry *d_lookup(const struct dentry *parent, const struct qstr *name)
2337 {
2338         struct dentry *dentry;
2339         unsigned seq;
2340
2341         do {
2342                 seq = read_seqbegin(&rename_lock);
2343                 dentry = __d_lookup(parent, name);
2344                 if (dentry)
2345                         break;
2346         } while (read_seqretry(&rename_lock, seq));
2347         return dentry;
2348 }
2349 EXPORT_SYMBOL(d_lookup);
2350
2351 /**
2352  * __d_lookup - search for a dentry (racy)
2353  * @parent: parent dentry
2354  * @name: qstr of name we wish to find
2355  * Returns: dentry, or NULL
2356  *
2357  * __d_lookup is like d_lookup, however it may (rarely) return a
2358  * false-negative result due to unrelated rename activity.
2359  *
2360  * __d_lookup is slightly faster by avoiding rename_lock read seqlock,
2361  * however it must be used carefully, eg. with a following d_lookup in
2362  * the case of failure.
2363  *
2364  * __d_lookup callers must be commented.
2365  */
2366 struct dentry *__d_lookup(const struct dentry *parent, const struct qstr *name)
2367 {
2368         unsigned int hash = name->hash;
2369         struct hlist_bl_head *b = d_hash(hash);
2370         struct hlist_bl_node *node;
2371         struct dentry *found = NULL;
2372         struct dentry *dentry;
2373
2374         /*
2375          * Note: There is significant duplication with __d_lookup_rcu which is
2376          * required to prevent single threaded performance regressions
2377          * especially on architectures where smp_rmb (in seqcounts) are costly.
2378          * Keep the two functions in sync.
2379          */
2380
2381         /*
2382          * The hash list is protected using RCU.
2383          *
2384          * Take d_lock when comparing a candidate dentry, to avoid races
2385          * with d_move().
2386          *
2387          * It is possible that concurrent renames can mess up our list
2388          * walk here and result in missing our dentry, resulting in the
2389          * false-negative result. d_lookup() protects against concurrent
2390          * renames using rename_lock seqlock.
2391          *
2392          * See Documentation/filesystems/path-lookup.txt for more details.
2393          */
2394         rcu_read_lock();
2395         
2396         hlist_bl_for_each_entry_rcu(dentry, node, b, d_hash) {
2397
2398                 if (dentry->d_name.hash != hash)
2399                         continue;
2400
2401                 spin_lock(&dentry->d_lock);
2402                 if (dentry->d_parent != parent)
2403                         goto next;
2404                 if (d_unhashed(dentry))
2405                         goto next;
2406
2407                 if (!d_same_name(dentry, parent, name))
2408                         goto next;
2409
2410                 dentry->d_lockref.count++;
2411                 found = dentry;
2412                 spin_unlock(&dentry->d_lock);
2413                 break;
2414 next:
2415                 spin_unlock(&dentry->d_lock);
2416         }
2417         rcu_read_unlock();
2418
2419         return found;
2420 }
2421
2422 /**
2423  * d_hash_and_lookup - hash the qstr then search for a dentry
2424  * @dir: Directory to search in
2425  * @name: qstr of name we wish to find
2426  *
2427  * On lookup failure NULL is returned; on bad name - ERR_PTR(-error)
2428  */
2429 struct dentry *d_hash_and_lookup(struct dentry *dir, struct qstr *name)
2430 {
2431         /*
2432          * Check for a fs-specific hash function. Note that we must
2433          * calculate the standard hash first, as the d_op->d_hash()
2434          * routine may choose to leave the hash value unchanged.
2435          */
2436         name->hash = full_name_hash(dir, name->name, name->len);
2437         if (dir->d_flags & DCACHE_OP_HASH) {
2438                 int err = dir->d_op->d_hash(dir, name);
2439                 if (unlikely(err < 0))
2440                         return ERR_PTR(err);
2441         }
2442         return d_lookup(dir, name);
2443 }
2444 EXPORT_SYMBOL(d_hash_and_lookup);
2445
2446 /*
2447  * When a file is deleted, we have two options:
2448  * - turn this dentry into a negative dentry
2449  * - unhash this dentry and free it.
2450  *
2451  * Usually, we want to just turn this into
2452  * a negative dentry, but if anybody else is
2453  * currently using the dentry or the inode
2454  * we can't do that and we fall back on removing
2455  * it from the hash queues and waiting for
2456  * it to be deleted later when it has no users
2457  */
2458  
2459 /**
2460  * d_delete - delete a dentry
2461  * @dentry: The dentry to delete
2462  *
2463  * Turn the dentry into a negative dentry if possible, otherwise
2464  * remove it from the hash queues so it can be deleted later
2465  */
2466  
2467 void d_delete(struct dentry * dentry)
2468 {
2469         struct inode *inode = dentry->d_inode;
2470
2471         spin_lock(&inode->i_lock);
2472         spin_lock(&dentry->d_lock);
2473         /*
2474          * Are we the only user?
2475          */
2476         if (dentry->d_lockref.count == 1) {
2477                 dentry->d_flags &= ~DCACHE_CANT_MOUNT;
2478                 dentry_unlink_inode(dentry);
2479         } else {
2480                 __d_drop(dentry);
2481                 spin_unlock(&dentry->d_lock);
2482                 spin_unlock(&inode->i_lock);
2483         }
2484 }
2485 EXPORT_SYMBOL(d_delete);
2486
2487 static void __d_rehash(struct dentry *entry)
2488 {
2489         struct hlist_bl_head *b = d_hash(entry->d_name.hash);
2490
2491         hlist_bl_lock(b);
2492         hlist_bl_add_head_rcu(&entry->d_hash, b);
2493         hlist_bl_unlock(b);
2494 }
2495
2496 /**
2497  * d_rehash     - add an entry back to the hash
2498  * @entry: dentry to add to the hash
2499  *
2500  * Adds a dentry to the hash according to its name.
2501  */
2502  
2503 void d_rehash(struct dentry * entry)
2504 {
2505         spin_lock(&entry->d_lock);
2506         __d_rehash(entry);
2507         spin_unlock(&entry->d_lock);
2508 }
2509 EXPORT_SYMBOL(d_rehash);
2510
2511 static inline unsigned start_dir_add(struct inode *dir)
2512 {
2513
2514         for (;;) {
2515                 unsigned n = dir->i_dir_seq;
2516                 if (!(n & 1) && cmpxchg(&dir->i_dir_seq, n, n + 1) == n)
2517                         return n;
2518                 cpu_relax();
2519         }
2520 }
2521
2522 static inline void end_dir_add(struct inode *dir, unsigned n)
2523 {
2524         smp_store_release(&dir->i_dir_seq, n + 2);
2525 }
2526
2527 static void d_wait_lookup(struct dentry *dentry)
2528 {
2529         if (d_in_lookup(dentry)) {
2530                 DECLARE_WAITQUEUE(wait, current);
2531                 add_wait_queue(dentry->d_wait, &wait);
2532                 do {
2533                         set_current_state(TASK_UNINTERRUPTIBLE);
2534                         spin_unlock(&dentry->d_lock);
2535                         schedule();
2536                         spin_lock(&dentry->d_lock);
2537                 } while (d_in_lookup(dentry));
2538         }
2539 }
2540
2541 struct dentry *d_alloc_parallel(struct dentry *parent,
2542                                 const struct qstr *name,
2543                                 wait_queue_head_t *wq)
2544 {
2545         unsigned int hash = name->hash;
2546         struct hlist_bl_head *b = in_lookup_hash(parent, hash);
2547         struct hlist_bl_node *node;
2548         struct dentry *new = d_alloc(parent, name);
2549         struct dentry *dentry;
2550         unsigned seq, r_seq, d_seq;
2551
2552         if (unlikely(!new))
2553                 return ERR_PTR(-ENOMEM);
2554
2555 retry:
2556         rcu_read_lock();
2557         seq = smp_load_acquire(&parent->d_inode->i_dir_seq);
2558         r_seq = read_seqbegin(&rename_lock);
2559         dentry = __d_lookup_rcu(parent, name, &d_seq);
2560         if (unlikely(dentry)) {
2561                 if (!lockref_get_not_dead(&dentry->d_lockref)) {
2562                         rcu_read_unlock();
2563                         goto retry;
2564                 }
2565                 if (read_seqcount_retry(&dentry->d_seq, d_seq)) {
2566                         rcu_read_unlock();
2567                         dput(dentry);
2568                         goto retry;
2569                 }
2570                 rcu_read_unlock();
2571                 dput(new);
2572                 return dentry;
2573         }
2574         if (unlikely(read_seqretry(&rename_lock, r_seq))) {
2575                 rcu_read_unlock();
2576                 goto retry;
2577         }
2578
2579         if (unlikely(seq & 1)) {
2580                 rcu_read_unlock();
2581                 goto retry;
2582         }
2583
2584         hlist_bl_lock(b);
2585         if (unlikely(READ_ONCE(parent->d_inode->i_dir_seq) != seq)) {
2586                 hlist_bl_unlock(b);
2587                 rcu_read_unlock();
2588                 goto retry;
2589         }
2590         /*
2591          * No changes for the parent since the beginning of d_lookup().
2592          * Since all removals from the chain happen with hlist_bl_lock(),
2593          * any potential in-lookup matches are going to stay here until
2594          * we unlock the chain.  All fields are stable in everything
2595          * we encounter.
2596          */
2597         hlist_bl_for_each_entry(dentry, node, b, d_u.d_in_lookup_hash) {
2598                 if (dentry->d_name.hash != hash)
2599                         continue;
2600                 if (dentry->d_parent != parent)
2601                         continue;
2602                 if (!d_same_name(dentry, parent, name))
2603                         continue;
2604                 hlist_bl_unlock(b);
2605                 /* now we can try to grab a reference */
2606                 if (!lockref_get_not_dead(&dentry->d_lockref)) {
2607                         rcu_read_unlock();
2608                         goto retry;
2609                 }
2610
2611                 rcu_read_unlock();
2612                 /*
2613                  * somebody is likely to be still doing lookup for it;
2614                  * wait for them to finish
2615                  */
2616                 spin_lock(&dentry->d_lock);
2617                 d_wait_lookup(dentry);
2618                 /*
2619                  * it's not in-lookup anymore; in principle we should repeat
2620                  * everything from dcache lookup, but it's likely to be what
2621                  * d_lookup() would've found anyway.  If it is, just return it;
2622                  * otherwise we really have to repeat the whole thing.
2623                  */
2624                 if (unlikely(dentry->d_name.hash != hash))
2625                         goto mismatch;
2626                 if (unlikely(dentry->d_parent != parent))
2627                         goto mismatch;
2628                 if (unlikely(d_unhashed(dentry)))
2629                         goto mismatch;
2630                 if (unlikely(!d_same_name(dentry, parent, name)))
2631                         goto mismatch;
2632                 /* OK, it *is* a hashed match; return it */
2633                 spin_unlock(&dentry->d_lock);
2634                 dput(new);
2635                 return dentry;
2636         }
2637         rcu_read_unlock();
2638         /* we can't take ->d_lock here; it's OK, though. */
2639         new->d_flags |= DCACHE_PAR_LOOKUP;
2640         new->d_wait = wq;
2641         hlist_bl_add_head_rcu(&new->d_u.d_in_lookup_hash, b);
2642         hlist_bl_unlock(b);
2643         return new;
2644 mismatch:
2645         spin_unlock(&dentry->d_lock);
2646         dput(dentry);
2647         goto retry;
2648 }
2649 EXPORT_SYMBOL(d_alloc_parallel);
2650
2651 void __d_lookup_done(struct dentry *dentry)
2652 {
2653         struct hlist_bl_head *b = in_lookup_hash(dentry->d_parent,
2654                                                  dentry->d_name.hash);
2655         hlist_bl_lock(b);
2656         dentry->d_flags &= ~DCACHE_PAR_LOOKUP;
2657         __hlist_bl_del(&dentry->d_u.d_in_lookup_hash);
2658         wake_up_all(dentry->d_wait);
2659         dentry->d_wait = NULL;
2660         hlist_bl_unlock(b);
2661         INIT_HLIST_NODE(&dentry->d_u.d_alias);
2662         INIT_LIST_HEAD(&dentry->d_lru);
2663 }
2664 EXPORT_SYMBOL(__d_lookup_done);
2665
2666 /* inode->i_lock held if inode is non-NULL */
2667
2668 static inline void __d_add(struct dentry *dentry, struct inode *inode)
2669 {
2670         struct inode *dir = NULL;
2671         unsigned n;
2672         spin_lock(&dentry->d_lock);
2673         if (unlikely(d_in_lookup(dentry))) {
2674                 dir = dentry->d_parent->d_inode;
2675                 n = start_dir_add(dir);
2676                 __d_lookup_done(dentry);
2677         }
2678         if (inode) {
2679                 unsigned add_flags = d_flags_for_inode(inode);
2680                 hlist_add_head(&dentry->d_u.d_alias, &inode->i_dentry);
2681                 raw_write_seqcount_begin(&dentry->d_seq);
2682                 __d_set_inode_and_type(dentry, inode, add_flags);
2683                 raw_write_seqcount_end(&dentry->d_seq);
2684                 fsnotify_update_flags(dentry);
2685         }
2686         __d_rehash(dentry);
2687         if (dir)
2688                 end_dir_add(dir, n);
2689         spin_unlock(&dentry->d_lock);
2690         if (inode)
2691                 spin_unlock(&inode->i_lock);
2692 }
2693
2694 /**
2695  * d_add - add dentry to hash queues
2696  * @entry: dentry to add
2697  * @inode: The inode to attach to this dentry
2698  *
2699  * This adds the entry to the hash queues and initializes @inode.
2700  * The entry was actually filled in earlier during d_alloc().
2701  */
2702
2703 void d_add(struct dentry *entry, struct inode *inode)
2704 {
2705         if (inode) {
2706                 security_d_instantiate(entry, inode);
2707                 spin_lock(&inode->i_lock);
2708         }
2709         __d_add(entry, inode);
2710 }
2711 EXPORT_SYMBOL(d_add);
2712
2713 /**
2714  * d_exact_alias - find and hash an exact unhashed alias
2715  * @entry: dentry to add
2716  * @inode: The inode to go with this dentry
2717  *
2718  * If an unhashed dentry with the same name/parent and desired
2719  * inode already exists, hash and return it.  Otherwise, return
2720  * NULL.
2721  *
2722  * Parent directory should be locked.
2723  */
2724 struct dentry *d_exact_alias(struct dentry *entry, struct inode *inode)
2725 {
2726         struct dentry *alias;
2727         unsigned int hash = entry->d_name.hash;
2728
2729         spin_lock(&inode->i_lock);
2730         hlist_for_each_entry(alias, &inode->i_dentry, d_u.d_alias) {
2731                 /*
2732                  * Don't need alias->d_lock here, because aliases with
2733                  * d_parent == entry->d_parent are not subject to name or
2734                  * parent changes, because the parent inode i_mutex is held.
2735                  */
2736                 if (alias->d_name.hash != hash)
2737                         continue;
2738                 if (alias->d_parent != entry->d_parent)
2739                         continue;
2740                 if (!d_same_name(alias, entry->d_parent, &entry->d_name))
2741                         continue;
2742                 spin_lock(&alias->d_lock);
2743                 if (!d_unhashed(alias)) {
2744                         spin_unlock(&alias->d_lock);
2745                         alias = NULL;
2746                 } else {
2747                         __dget_dlock(alias);
2748                         __d_rehash(alias);
2749                         spin_unlock(&alias->d_lock);
2750                 }
2751                 spin_unlock(&inode->i_lock);
2752                 return alias;
2753         }
2754         spin_unlock(&inode->i_lock);
2755         return NULL;
2756 }
2757 EXPORT_SYMBOL(d_exact_alias);
2758
2759 static void swap_names(struct dentry *dentry, struct dentry *target)
2760 {
2761         if (unlikely(dname_external(target))) {
2762                 if (unlikely(dname_external(dentry))) {
2763                         /*
2764                          * Both external: swap the pointers
2765                          */
2766                         swap(target->d_name.name, dentry->d_name.name);
2767                 } else {
2768                         /*
2769                          * dentry:internal, target:external.  Steal target's
2770                          * storage and make target internal.
2771                          */
2772                         memcpy(target->d_iname, dentry->d_name.name,
2773                                         dentry->d_name.len + 1);
2774                         dentry->d_name.name = target->d_name.name;
2775                         target->d_name.name = target->d_iname;
2776                 }
2777         } else {
2778                 if (unlikely(dname_external(dentry))) {
2779                         /*
2780                          * dentry:external, target:internal.  Give dentry's
2781                          * storage to target and make dentry internal
2782                          */
2783                         memcpy(dentry->d_iname, target->d_name.name,
2784                                         target->d_name.len + 1);
2785                         target->d_name.name = dentry->d_name.name;
2786                         dentry->d_name.name = dentry->d_iname;
2787                 } else {
2788                         /*
2789                          * Both are internal.
2790                          */
2791                         unsigned int i;
2792                         BUILD_BUG_ON(!IS_ALIGNED(DNAME_INLINE_LEN, sizeof(long)));
2793                         for (i = 0; i < DNAME_INLINE_LEN / sizeof(long); i++) {
2794                                 swap(((long *) &dentry->d_iname)[i],
2795                                      ((long *) &target->d_iname)[i]);
2796                         }
2797                 }
2798         }
2799         swap(dentry->d_name.hash_len, target->d_name.hash_len);
2800 }
2801
2802 static void copy_name(struct dentry *dentry, struct dentry *target)
2803 {
2804         struct external_name *old_name = NULL;
2805         if (unlikely(dname_external(dentry)))
2806                 old_name = external_name(dentry);
2807         if (unlikely(dname_external(target))) {
2808                 atomic_inc(&external_name(target)->u.count);
2809                 dentry->d_name = target->d_name;
2810         } else {
2811                 memcpy(dentry->d_iname, target->d_name.name,
2812                                 target->d_name.len + 1);
2813                 dentry->d_name.name = dentry->d_iname;
2814                 dentry->d_name.hash_len = target->d_name.hash_len;
2815         }
2816         if (old_name && likely(atomic_dec_and_test(&old_name->u.count)))
2817                 kfree_rcu(old_name, u.head);
2818 }
2819
2820 /*
2821  * __d_move - move a dentry
2822  * @dentry: entry to move
2823  * @target: new dentry
2824  * @exchange: exchange the two dentries
2825  *
2826  * Update the dcache to reflect the move of a file name. Negative
2827  * dcache entries should not be moved in this way. Caller must hold
2828  * rename_lock, the i_mutex of the source and target directories,
2829  * and the sb->s_vfs_rename_mutex if they differ. See lock_rename().
2830  */
2831 static void __d_move(struct dentry *dentry, struct dentry *target,
2832                      bool exchange)
2833 {
2834         struct dentry *old_parent, *p;
2835         struct inode *dir = NULL;
2836         unsigned n;
2837
2838         WARN_ON(!dentry->d_inode);
2839         if (WARN_ON(dentry == target))
2840                 return;
2841
2842         BUG_ON(d_ancestor(target, dentry));
2843         old_parent = dentry->d_parent;
2844         p = d_ancestor(old_parent, target);
2845         if (IS_ROOT(dentry)) {
2846                 BUG_ON(p);
2847                 spin_lock(&target->d_parent->d_lock);
2848         } else if (!p) {
2849                 /* target is not a descendent of dentry->d_parent */
2850                 spin_lock(&target->d_parent->d_lock);
2851                 spin_lock_nested(&old_parent->d_lock, DENTRY_D_LOCK_NESTED);
2852         } else {
2853                 BUG_ON(p == dentry);
2854                 spin_lock(&old_parent->d_lock);
2855                 if (p != target)
2856                         spin_lock_nested(&target->d_parent->d_lock,
2857                                         DENTRY_D_LOCK_NESTED);
2858         }
2859         spin_lock_nested(&dentry->d_lock, 2);
2860         spin_lock_nested(&target->d_lock, 3);
2861
2862         if (unlikely(d_in_lookup(target))) {
2863                 dir = target->d_parent->d_inode;
2864                 n = start_dir_add(dir);
2865                 __d_lookup_done(target);
2866         }
2867
2868         write_seqcount_begin(&dentry->d_seq);
2869         write_seqcount_begin_nested(&target->d_seq, DENTRY_D_LOCK_NESTED);
2870
2871         /* unhash both */
2872         if (!d_unhashed(dentry))
2873                 ___d_drop(dentry);
2874         if (!d_unhashed(target))
2875                 ___d_drop(target);
2876
2877         /* ... and switch them in the tree */
2878         dentry->d_parent = target->d_parent;
2879         if (!exchange) {
2880                 copy_name(dentry, target);
2881                 target->d_hash.pprev = NULL;
2882                 dentry->d_parent->d_lockref.count++;
2883                 if (dentry != old_parent) /* wasn't IS_ROOT */
2884                         WARN_ON(!--old_parent->d_lockref.count);
2885         } else {
2886                 target->d_parent = old_parent;
2887                 swap_names(dentry, target);
2888                 list_move(&target->d_child, &target->d_parent->d_subdirs);
2889                 __d_rehash(target);
2890                 fsnotify_update_flags(target);
2891         }
2892         list_move(&dentry->d_child, &dentry->d_parent->d_subdirs);
2893         __d_rehash(dentry);
2894         fsnotify_update_flags(dentry);
2895         fscrypt_handle_d_move(dentry);
2896
2897         write_seqcount_end(&target->d_seq);
2898         write_seqcount_end(&dentry->d_seq);
2899
2900         if (dir)
2901                 end_dir_add(dir, n);
2902
2903         if (dentry->d_parent != old_parent)
2904                 spin_unlock(&dentry->d_parent->d_lock);
2905         if (dentry != old_parent)
2906                 spin_unlock(&old_parent->d_lock);
2907         spin_unlock(&target->d_lock);
2908         spin_unlock(&dentry->d_lock);
2909 }
2910
2911 /*
2912  * d_move - move a dentry
2913  * @dentry: entry to move
2914  * @target: new dentry
2915  *
2916  * Update the dcache to reflect the move of a file name. Negative
2917  * dcache entries should not be moved in this way. See the locking
2918  * requirements for __d_move.
2919  */
2920 void d_move(struct dentry *dentry, struct dentry *target)
2921 {
2922         write_seqlock(&rename_lock);
2923         __d_move(dentry, target, false);
2924         write_sequnlock(&rename_lock);
2925 }
2926 EXPORT_SYMBOL(d_move);
2927
2928 /*
2929  * d_exchange - exchange two dentries
2930  * @dentry1: first dentry
2931  * @dentry2: second dentry
2932  */
2933 void d_exchange(struct dentry *dentry1, struct dentry *dentry2)
2934 {
2935         write_seqlock(&rename_lock);
2936
2937         WARN_ON(!dentry1->d_inode);
2938         WARN_ON(!dentry2->d_inode);
2939         WARN_ON(IS_ROOT(dentry1));
2940         WARN_ON(IS_ROOT(dentry2));
2941
2942         __d_move(dentry1, dentry2, true);
2943
2944         write_sequnlock(&rename_lock);
2945 }
2946
2947 /**
2948  * d_ancestor - search for an ancestor
2949  * @p1: ancestor dentry
2950  * @p2: child dentry
2951  *
2952  * Returns the ancestor dentry of p2 which is a child of p1, if p1 is
2953  * an ancestor of p2, else NULL.
2954  */
2955 struct dentry *d_ancestor(struct dentry *p1, struct dentry *p2)
2956 {
2957         struct dentry *p;
2958
2959         for (p = p2; !IS_ROOT(p); p = p->d_parent) {
2960                 if (p->d_parent == p1)
2961                         return p;
2962         }
2963         return NULL;
2964 }
2965
2966 /*
2967  * This helper attempts to cope with remotely renamed directories
2968  *
2969  * It assumes that the caller is already holding
2970  * dentry->d_parent->d_inode->i_mutex, and rename_lock
2971  *
2972  * Note: If ever the locking in lock_rename() changes, then please
2973  * remember to update this too...
2974  */
2975 static int __d_unalias(struct inode *inode,
2976                 struct dentry *dentry, struct dentry *alias)
2977 {
2978         struct mutex *m1 = NULL;
2979         struct rw_semaphore *m2 = NULL;
2980         int ret = -ESTALE;
2981
2982         /* If alias and dentry share a parent, then no extra locks required */
2983         if (alias->d_parent == dentry->d_parent)
2984                 goto out_unalias;
2985
2986         /* See lock_rename() */
2987         if (!mutex_trylock(&dentry->d_sb->s_vfs_rename_mutex))
2988                 goto out_err;
2989         m1 = &dentry->d_sb->s_vfs_rename_mutex;
2990         if (!inode_trylock_shared(alias->d_parent->d_inode))
2991                 goto out_err;
2992         m2 = &alias->d_parent->d_inode->i_rwsem;
2993 out_unalias:
2994         __d_move(alias, dentry, false);
2995         ret = 0;
2996 out_err:
2997         if (m2)
2998                 up_read(m2);
2999         if (m1)
3000                 mutex_unlock(m1);
3001         return ret;
3002 }
3003
3004 /**
3005  * d_splice_alias - splice a disconnected dentry into the tree if one exists
3006  * @inode:  the inode which may have a disconnected dentry
3007  * @dentry: a negative dentry which we want to point to the inode.
3008  *
3009  * If inode is a directory and has an IS_ROOT alias, then d_move that in
3010  * place of the given dentry and return it, else simply d_add the inode
3011  * to the dentry and return NULL.
3012  *
3013  * If a non-IS_ROOT directory is found, the filesystem is corrupt, and
3014  * we should error out: directories can't have multiple aliases.
3015  *
3016  * This is needed in the lookup routine of any filesystem that is exportable
3017  * (via knfsd) so that we can build dcache paths to directories effectively.
3018  *
3019  * If a dentry was found and moved, then it is returned.  Otherwise NULL
3020  * is returned.  This matches the expected return value of ->lookup.
3021  *
3022  * Cluster filesystems may call this function with a negative, hashed dentry.
3023  * In that case, we know that the inode will be a regular file, and also this
3024  * will only occur during atomic_open. So we need to check for the dentry
3025  * being already hashed only in the final case.
3026  */
3027 struct dentry *d_splice_alias(struct inode *inode, struct dentry *dentry)
3028 {
3029         if (IS_ERR(inode))
3030                 return ERR_CAST(inode);
3031
3032         BUG_ON(!d_unhashed(dentry));
3033
3034         if (!inode)
3035                 goto out;
3036
3037         security_d_instantiate(dentry, inode);
3038         spin_lock(&inode->i_lock);
3039         if (S_ISDIR(inode->i_mode)) {
3040                 struct dentry *new = __d_find_any_alias(inode);
3041                 if (unlikely(new)) {
3042                         /* The reference to new ensures it remains an alias */
3043                         spin_unlock(&inode->i_lock);
3044                         write_seqlock(&rename_lock);
3045                         if (unlikely(d_ancestor(new, dentry))) {
3046                                 write_sequnlock(&rename_lock);
3047                                 dput(new);
3048                                 new = ERR_PTR(-ELOOP);
3049                                 pr_warn_ratelimited(
3050                                         "VFS: Lookup of '%s' in %s %s"
3051                                         " would have caused loop\n",
3052                                         dentry->d_name.name,
3053                                         inode->i_sb->s_type->name,
3054                                         inode->i_sb->s_id);
3055                         } else if (!IS_ROOT(new)) {
3056                                 struct dentry *old_parent = dget(new->d_parent);
3057                                 int err = __d_unalias(inode, dentry, new);
3058                                 write_sequnlock(&rename_lock);
3059                                 if (err) {
3060                                         dput(new);
3061                                         new = ERR_PTR(err);
3062                                 }
3063                                 dput(old_parent);
3064                         } else {
3065                                 __d_move(new, dentry, false);
3066                                 write_sequnlock(&rename_lock);
3067                         }
3068                         iput(inode);
3069                         return new;
3070                 }
3071         }
3072 out:
3073         __d_add(dentry, inode);
3074         return NULL;
3075 }
3076 EXPORT_SYMBOL(d_splice_alias);
3077
3078 /*
3079  * Test whether new_dentry is a subdirectory of old_dentry.
3080  *
3081  * Trivially implemented using the dcache structure
3082  */
3083
3084 /**
3085  * is_subdir - is new dentry a subdirectory of old_dentry
3086  * @new_dentry: new dentry
3087  * @old_dentry: old dentry
3088  *
3089  * Returns true if new_dentry is a subdirectory of the parent (at any depth).
3090  * Returns false otherwise.
3091  * Caller must ensure that "new_dentry" is pinned before calling is_subdir()
3092  */
3093   
3094 bool is_subdir(struct dentry *new_dentry, struct dentry *old_dentry)
3095 {
3096         bool result;
3097         unsigned seq;
3098
3099         if (new_dentry == old_dentry)
3100                 return true;
3101
3102         do {
3103                 /* for restarting inner loop in case of seq retry */
3104                 seq = read_seqbegin(&rename_lock);
3105                 /*
3106                  * Need rcu_readlock to protect against the d_parent trashing
3107                  * due to d_move
3108                  */
3109                 rcu_read_lock();
3110                 if (d_ancestor(old_dentry, new_dentry))
3111                         result = true;
3112                 else
3113                         result = false;
3114                 rcu_read_unlock();
3115         } while (read_seqretry(&rename_lock, seq));
3116
3117         return result;
3118 }
3119 EXPORT_SYMBOL(is_subdir);
3120
3121 static enum d_walk_ret d_genocide_kill(void *data, struct dentry *dentry)
3122 {
3123         struct dentry *root = data;
3124         if (dentry != root) {
3125                 if (d_unhashed(dentry) || !dentry->d_inode)
3126                         return D_WALK_SKIP;
3127
3128                 if (!(dentry->d_flags & DCACHE_GENOCIDE)) {
3129                         dentry->d_flags |= DCACHE_GENOCIDE;
3130                         dentry->d_lockref.count--;
3131                 }
3132         }
3133         return D_WALK_CONTINUE;
3134 }
3135
3136 void d_genocide(struct dentry *parent)
3137 {
3138         d_walk(parent, parent, d_genocide_kill);
3139 }
3140
3141 EXPORT_SYMBOL(d_genocide);
3142
3143 void d_tmpfile(struct dentry *dentry, struct inode *inode)
3144 {
3145         inode_dec_link_count(inode);
3146         BUG_ON(dentry->d_name.name != dentry->d_iname ||
3147                 !hlist_unhashed(&dentry->d_u.d_alias) ||
3148                 !d_unlinked(dentry));
3149         spin_lock(&dentry->d_parent->d_lock);
3150         spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
3151         dentry->d_name.len = sprintf(dentry->d_iname, "#%llu",
3152                                 (unsigned long long)inode->i_ino);
3153         spin_unlock(&dentry->d_lock);
3154         spin_unlock(&dentry->d_parent->d_lock);
3155         d_instantiate(dentry, inode);
3156 }
3157 EXPORT_SYMBOL(d_tmpfile);
3158
3159 static __initdata unsigned long dhash_entries;
3160 static int __init set_dhash_entries(char *str)
3161 {
3162         if (!str)
3163                 return 0;
3164         dhash_entries = simple_strtoul(str, &str, 0);
3165         return 1;
3166 }
3167 __setup("dhash_entries=", set_dhash_entries);
3168
3169 static void __init dcache_init_early(void)
3170 {
3171         /* If hashes are distributed across NUMA nodes, defer
3172          * hash allocation until vmalloc space is available.
3173          */
3174         if (hashdist)
3175                 return;
3176
3177         dentry_hashtable =
3178                 alloc_large_system_hash("Dentry cache",
3179                                         sizeof(struct hlist_bl_head),
3180                                         dhash_entries,
3181                                         13,
3182                                         HASH_EARLY | HASH_ZERO,
3183                                         &d_hash_shift,
3184                                         NULL,
3185                                         0,
3186                                         0);
3187         d_hash_shift = 32 - d_hash_shift;
3188 }
3189
3190 static void __init dcache_init(void)
3191 {
3192         /*
3193          * A constructor could be added for stable state like the lists,
3194          * but it is probably not worth it because of the cache nature
3195          * of the dcache.
3196          */
3197         dentry_cache = KMEM_CACHE_USERCOPY(dentry,
3198                 SLAB_RECLAIM_ACCOUNT|SLAB_PANIC|SLAB_MEM_SPREAD|SLAB_ACCOUNT,
3199                 d_iname);
3200
3201         /* Hash may have been set up in dcache_init_early */
3202         if (!hashdist)
3203                 return;
3204
3205         dentry_hashtable =
3206                 alloc_large_system_hash("Dentry cache",
3207                                         sizeof(struct hlist_bl_head),
3208                                         dhash_entries,
3209                                         13,
3210                                         HASH_ZERO,
3211                                         &d_hash_shift,
3212                                         NULL,
3213                                         0,
3214                                         0);
3215         d_hash_shift = 32 - d_hash_shift;
3216 }
3217
3218 /* SLAB cache for __getname() consumers */
3219 struct kmem_cache *names_cachep __read_mostly;
3220 EXPORT_SYMBOL(names_cachep);
3221
3222 void __init vfs_caches_init_early(void)
3223 {
3224         int i;
3225
3226         for (i = 0; i < ARRAY_SIZE(in_lookup_hashtable); i++)
3227                 INIT_HLIST_BL_HEAD(&in_lookup_hashtable[i]);
3228
3229         dcache_init_early();
3230         inode_init_early();
3231 }
3232
3233 void __init vfs_caches_init(void)
3234 {
3235         names_cachep = kmem_cache_create_usercopy("names_cache", PATH_MAX, 0,
3236                         SLAB_HWCACHE_ALIGN|SLAB_PANIC, 0, PATH_MAX, NULL);
3237
3238         dcache_init();
3239         inode_init();
3240         files_init();
3241         files_maxfiles_init();
3242         mnt_init();
3243         bdev_cache_init();
3244         chrdev_init();
3245 }