Merge branch 'spi-5.4' into spi-next
[linux-2.6-microblaze.git] / fs / dax.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * fs/dax.c - Direct Access filesystem code
4  * Copyright (c) 2013-2014 Intel Corporation
5  * Author: Matthew Wilcox <matthew.r.wilcox@intel.com>
6  * Author: Ross Zwisler <ross.zwisler@linux.intel.com>
7  */
8
9 #include <linux/atomic.h>
10 #include <linux/blkdev.h>
11 #include <linux/buffer_head.h>
12 #include <linux/dax.h>
13 #include <linux/fs.h>
14 #include <linux/genhd.h>
15 #include <linux/highmem.h>
16 #include <linux/memcontrol.h>
17 #include <linux/mm.h>
18 #include <linux/mutex.h>
19 #include <linux/pagevec.h>
20 #include <linux/sched.h>
21 #include <linux/sched/signal.h>
22 #include <linux/uio.h>
23 #include <linux/vmstat.h>
24 #include <linux/pfn_t.h>
25 #include <linux/sizes.h>
26 #include <linux/mmu_notifier.h>
27 #include <linux/iomap.h>
28 #include <asm/pgalloc.h>
29
30 #define CREATE_TRACE_POINTS
31 #include <trace/events/fs_dax.h>
32
33 static inline unsigned int pe_order(enum page_entry_size pe_size)
34 {
35         if (pe_size == PE_SIZE_PTE)
36                 return PAGE_SHIFT - PAGE_SHIFT;
37         if (pe_size == PE_SIZE_PMD)
38                 return PMD_SHIFT - PAGE_SHIFT;
39         if (pe_size == PE_SIZE_PUD)
40                 return PUD_SHIFT - PAGE_SHIFT;
41         return ~0;
42 }
43
44 /* We choose 4096 entries - same as per-zone page wait tables */
45 #define DAX_WAIT_TABLE_BITS 12
46 #define DAX_WAIT_TABLE_ENTRIES (1 << DAX_WAIT_TABLE_BITS)
47
48 /* The 'colour' (ie low bits) within a PMD of a page offset.  */
49 #define PG_PMD_COLOUR   ((PMD_SIZE >> PAGE_SHIFT) - 1)
50 #define PG_PMD_NR       (PMD_SIZE >> PAGE_SHIFT)
51
52 /* The order of a PMD entry */
53 #define PMD_ORDER       (PMD_SHIFT - PAGE_SHIFT)
54
55 static wait_queue_head_t wait_table[DAX_WAIT_TABLE_ENTRIES];
56
57 static int __init init_dax_wait_table(void)
58 {
59         int i;
60
61         for (i = 0; i < DAX_WAIT_TABLE_ENTRIES; i++)
62                 init_waitqueue_head(wait_table + i);
63         return 0;
64 }
65 fs_initcall(init_dax_wait_table);
66
67 /*
68  * DAX pagecache entries use XArray value entries so they can't be mistaken
69  * for pages.  We use one bit for locking, one bit for the entry size (PMD)
70  * and two more to tell us if the entry is a zero page or an empty entry that
71  * is just used for locking.  In total four special bits.
72  *
73  * If the PMD bit isn't set the entry has size PAGE_SIZE, and if the ZERO_PAGE
74  * and EMPTY bits aren't set the entry is a normal DAX entry with a filesystem
75  * block allocation.
76  */
77 #define DAX_SHIFT       (4)
78 #define DAX_LOCKED      (1UL << 0)
79 #define DAX_PMD         (1UL << 1)
80 #define DAX_ZERO_PAGE   (1UL << 2)
81 #define DAX_EMPTY       (1UL << 3)
82
83 static unsigned long dax_to_pfn(void *entry)
84 {
85         return xa_to_value(entry) >> DAX_SHIFT;
86 }
87
88 static void *dax_make_entry(pfn_t pfn, unsigned long flags)
89 {
90         return xa_mk_value(flags | (pfn_t_to_pfn(pfn) << DAX_SHIFT));
91 }
92
93 static bool dax_is_locked(void *entry)
94 {
95         return xa_to_value(entry) & DAX_LOCKED;
96 }
97
98 static unsigned int dax_entry_order(void *entry)
99 {
100         if (xa_to_value(entry) & DAX_PMD)
101                 return PMD_ORDER;
102         return 0;
103 }
104
105 static unsigned long dax_is_pmd_entry(void *entry)
106 {
107         return xa_to_value(entry) & DAX_PMD;
108 }
109
110 static bool dax_is_pte_entry(void *entry)
111 {
112         return !(xa_to_value(entry) & DAX_PMD);
113 }
114
115 static int dax_is_zero_entry(void *entry)
116 {
117         return xa_to_value(entry) & DAX_ZERO_PAGE;
118 }
119
120 static int dax_is_empty_entry(void *entry)
121 {
122         return xa_to_value(entry) & DAX_EMPTY;
123 }
124
125 /*
126  * true if the entry that was found is of a smaller order than the entry
127  * we were looking for
128  */
129 static bool dax_is_conflict(void *entry)
130 {
131         return entry == XA_RETRY_ENTRY;
132 }
133
134 /*
135  * DAX page cache entry locking
136  */
137 struct exceptional_entry_key {
138         struct xarray *xa;
139         pgoff_t entry_start;
140 };
141
142 struct wait_exceptional_entry_queue {
143         wait_queue_entry_t wait;
144         struct exceptional_entry_key key;
145 };
146
147 static wait_queue_head_t *dax_entry_waitqueue(struct xa_state *xas,
148                 void *entry, struct exceptional_entry_key *key)
149 {
150         unsigned long hash;
151         unsigned long index = xas->xa_index;
152
153         /*
154          * If 'entry' is a PMD, align the 'index' that we use for the wait
155          * queue to the start of that PMD.  This ensures that all offsets in
156          * the range covered by the PMD map to the same bit lock.
157          */
158         if (dax_is_pmd_entry(entry))
159                 index &= ~PG_PMD_COLOUR;
160         key->xa = xas->xa;
161         key->entry_start = index;
162
163         hash = hash_long((unsigned long)xas->xa ^ index, DAX_WAIT_TABLE_BITS);
164         return wait_table + hash;
165 }
166
167 static int wake_exceptional_entry_func(wait_queue_entry_t *wait,
168                 unsigned int mode, int sync, void *keyp)
169 {
170         struct exceptional_entry_key *key = keyp;
171         struct wait_exceptional_entry_queue *ewait =
172                 container_of(wait, struct wait_exceptional_entry_queue, wait);
173
174         if (key->xa != ewait->key.xa ||
175             key->entry_start != ewait->key.entry_start)
176                 return 0;
177         return autoremove_wake_function(wait, mode, sync, NULL);
178 }
179
180 /*
181  * @entry may no longer be the entry at the index in the mapping.
182  * The important information it's conveying is whether the entry at
183  * this index used to be a PMD entry.
184  */
185 static void dax_wake_entry(struct xa_state *xas, void *entry, bool wake_all)
186 {
187         struct exceptional_entry_key key;
188         wait_queue_head_t *wq;
189
190         wq = dax_entry_waitqueue(xas, entry, &key);
191
192         /*
193          * Checking for locked entry and prepare_to_wait_exclusive() happens
194          * under the i_pages lock, ditto for entry handling in our callers.
195          * So at this point all tasks that could have seen our entry locked
196          * must be in the waitqueue and the following check will see them.
197          */
198         if (waitqueue_active(wq))
199                 __wake_up(wq, TASK_NORMAL, wake_all ? 0 : 1, &key);
200 }
201
202 /*
203  * Look up entry in page cache, wait for it to become unlocked if it
204  * is a DAX entry and return it.  The caller must subsequently call
205  * put_unlocked_entry() if it did not lock the entry or dax_unlock_entry()
206  * if it did.  The entry returned may have a larger order than @order.
207  * If @order is larger than the order of the entry found in i_pages, this
208  * function returns a dax_is_conflict entry.
209  *
210  * Must be called with the i_pages lock held.
211  */
212 static void *get_unlocked_entry(struct xa_state *xas, unsigned int order)
213 {
214         void *entry;
215         struct wait_exceptional_entry_queue ewait;
216         wait_queue_head_t *wq;
217
218         init_wait(&ewait.wait);
219         ewait.wait.func = wake_exceptional_entry_func;
220
221         for (;;) {
222                 entry = xas_find_conflict(xas);
223                 if (dax_entry_order(entry) < order)
224                         return XA_RETRY_ENTRY;
225                 if (!entry || WARN_ON_ONCE(!xa_is_value(entry)) ||
226                                 !dax_is_locked(entry))
227                         return entry;
228
229                 wq = dax_entry_waitqueue(xas, entry, &ewait.key);
230                 prepare_to_wait_exclusive(wq, &ewait.wait,
231                                           TASK_UNINTERRUPTIBLE);
232                 xas_unlock_irq(xas);
233                 xas_reset(xas);
234                 schedule();
235                 finish_wait(wq, &ewait.wait);
236                 xas_lock_irq(xas);
237         }
238 }
239
240 /*
241  * The only thing keeping the address space around is the i_pages lock
242  * (it's cycled in clear_inode() after removing the entries from i_pages)
243  * After we call xas_unlock_irq(), we cannot touch xas->xa.
244  */
245 static void wait_entry_unlocked(struct xa_state *xas, void *entry)
246 {
247         struct wait_exceptional_entry_queue ewait;
248         wait_queue_head_t *wq;
249
250         init_wait(&ewait.wait);
251         ewait.wait.func = wake_exceptional_entry_func;
252
253         wq = dax_entry_waitqueue(xas, entry, &ewait.key);
254         /*
255          * Unlike get_unlocked_entry() there is no guarantee that this
256          * path ever successfully retrieves an unlocked entry before an
257          * inode dies. Perform a non-exclusive wait in case this path
258          * never successfully performs its own wake up.
259          */
260         prepare_to_wait(wq, &ewait.wait, TASK_UNINTERRUPTIBLE);
261         xas_unlock_irq(xas);
262         schedule();
263         finish_wait(wq, &ewait.wait);
264 }
265
266 static void put_unlocked_entry(struct xa_state *xas, void *entry)
267 {
268         /* If we were the only waiter woken, wake the next one */
269         if (entry && !dax_is_conflict(entry))
270                 dax_wake_entry(xas, entry, false);
271 }
272
273 /*
274  * We used the xa_state to get the entry, but then we locked the entry and
275  * dropped the xa_lock, so we know the xa_state is stale and must be reset
276  * before use.
277  */
278 static void dax_unlock_entry(struct xa_state *xas, void *entry)
279 {
280         void *old;
281
282         BUG_ON(dax_is_locked(entry));
283         xas_reset(xas);
284         xas_lock_irq(xas);
285         old = xas_store(xas, entry);
286         xas_unlock_irq(xas);
287         BUG_ON(!dax_is_locked(old));
288         dax_wake_entry(xas, entry, false);
289 }
290
291 /*
292  * Return: The entry stored at this location before it was locked.
293  */
294 static void *dax_lock_entry(struct xa_state *xas, void *entry)
295 {
296         unsigned long v = xa_to_value(entry);
297         return xas_store(xas, xa_mk_value(v | DAX_LOCKED));
298 }
299
300 static unsigned long dax_entry_size(void *entry)
301 {
302         if (dax_is_zero_entry(entry))
303                 return 0;
304         else if (dax_is_empty_entry(entry))
305                 return 0;
306         else if (dax_is_pmd_entry(entry))
307                 return PMD_SIZE;
308         else
309                 return PAGE_SIZE;
310 }
311
312 static unsigned long dax_end_pfn(void *entry)
313 {
314         return dax_to_pfn(entry) + dax_entry_size(entry) / PAGE_SIZE;
315 }
316
317 /*
318  * Iterate through all mapped pfns represented by an entry, i.e. skip
319  * 'empty' and 'zero' entries.
320  */
321 #define for_each_mapped_pfn(entry, pfn) \
322         for (pfn = dax_to_pfn(entry); \
323                         pfn < dax_end_pfn(entry); pfn++)
324
325 /*
326  * TODO: for reflink+dax we need a way to associate a single page with
327  * multiple address_space instances at different linear_page_index()
328  * offsets.
329  */
330 static void dax_associate_entry(void *entry, struct address_space *mapping,
331                 struct vm_area_struct *vma, unsigned long address)
332 {
333         unsigned long size = dax_entry_size(entry), pfn, index;
334         int i = 0;
335
336         if (IS_ENABLED(CONFIG_FS_DAX_LIMITED))
337                 return;
338
339         index = linear_page_index(vma, address & ~(size - 1));
340         for_each_mapped_pfn(entry, pfn) {
341                 struct page *page = pfn_to_page(pfn);
342
343                 WARN_ON_ONCE(page->mapping);
344                 page->mapping = mapping;
345                 page->index = index + i++;
346         }
347 }
348
349 static void dax_disassociate_entry(void *entry, struct address_space *mapping,
350                 bool trunc)
351 {
352         unsigned long pfn;
353
354         if (IS_ENABLED(CONFIG_FS_DAX_LIMITED))
355                 return;
356
357         for_each_mapped_pfn(entry, pfn) {
358                 struct page *page = pfn_to_page(pfn);
359
360                 WARN_ON_ONCE(trunc && page_ref_count(page) > 1);
361                 WARN_ON_ONCE(page->mapping && page->mapping != mapping);
362                 page->mapping = NULL;
363                 page->index = 0;
364         }
365 }
366
367 static struct page *dax_busy_page(void *entry)
368 {
369         unsigned long pfn;
370
371         for_each_mapped_pfn(entry, pfn) {
372                 struct page *page = pfn_to_page(pfn);
373
374                 if (page_ref_count(page) > 1)
375                         return page;
376         }
377         return NULL;
378 }
379
380 /*
381  * dax_lock_mapping_entry - Lock the DAX entry corresponding to a page
382  * @page: The page whose entry we want to lock
383  *
384  * Context: Process context.
385  * Return: A cookie to pass to dax_unlock_page() or 0 if the entry could
386  * not be locked.
387  */
388 dax_entry_t dax_lock_page(struct page *page)
389 {
390         XA_STATE(xas, NULL, 0);
391         void *entry;
392
393         /* Ensure page->mapping isn't freed while we look at it */
394         rcu_read_lock();
395         for (;;) {
396                 struct address_space *mapping = READ_ONCE(page->mapping);
397
398                 entry = NULL;
399                 if (!mapping || !dax_mapping(mapping))
400                         break;
401
402                 /*
403                  * In the device-dax case there's no need to lock, a
404                  * struct dev_pagemap pin is sufficient to keep the
405                  * inode alive, and we assume we have dev_pagemap pin
406                  * otherwise we would not have a valid pfn_to_page()
407                  * translation.
408                  */
409                 entry = (void *)~0UL;
410                 if (S_ISCHR(mapping->host->i_mode))
411                         break;
412
413                 xas.xa = &mapping->i_pages;
414                 xas_lock_irq(&xas);
415                 if (mapping != page->mapping) {
416                         xas_unlock_irq(&xas);
417                         continue;
418                 }
419                 xas_set(&xas, page->index);
420                 entry = xas_load(&xas);
421                 if (dax_is_locked(entry)) {
422                         rcu_read_unlock();
423                         wait_entry_unlocked(&xas, entry);
424                         rcu_read_lock();
425                         continue;
426                 }
427                 dax_lock_entry(&xas, entry);
428                 xas_unlock_irq(&xas);
429                 break;
430         }
431         rcu_read_unlock();
432         return (dax_entry_t)entry;
433 }
434
435 void dax_unlock_page(struct page *page, dax_entry_t cookie)
436 {
437         struct address_space *mapping = page->mapping;
438         XA_STATE(xas, &mapping->i_pages, page->index);
439
440         if (S_ISCHR(mapping->host->i_mode))
441                 return;
442
443         dax_unlock_entry(&xas, (void *)cookie);
444 }
445
446 /*
447  * Find page cache entry at given index. If it is a DAX entry, return it
448  * with the entry locked. If the page cache doesn't contain an entry at
449  * that index, add a locked empty entry.
450  *
451  * When requesting an entry with size DAX_PMD, grab_mapping_entry() will
452  * either return that locked entry or will return VM_FAULT_FALLBACK.
453  * This will happen if there are any PTE entries within the PMD range
454  * that we are requesting.
455  *
456  * We always favor PTE entries over PMD entries. There isn't a flow where we
457  * evict PTE entries in order to 'upgrade' them to a PMD entry.  A PMD
458  * insertion will fail if it finds any PTE entries already in the tree, and a
459  * PTE insertion will cause an existing PMD entry to be unmapped and
460  * downgraded to PTE entries.  This happens for both PMD zero pages as
461  * well as PMD empty entries.
462  *
463  * The exception to this downgrade path is for PMD entries that have
464  * real storage backing them.  We will leave these real PMD entries in
465  * the tree, and PTE writes will simply dirty the entire PMD entry.
466  *
467  * Note: Unlike filemap_fault() we don't honor FAULT_FLAG_RETRY flags. For
468  * persistent memory the benefit is doubtful. We can add that later if we can
469  * show it helps.
470  *
471  * On error, this function does not return an ERR_PTR.  Instead it returns
472  * a VM_FAULT code, encoded as an xarray internal entry.  The ERR_PTR values
473  * overlap with xarray value entries.
474  */
475 static void *grab_mapping_entry(struct xa_state *xas,
476                 struct address_space *mapping, unsigned int order)
477 {
478         unsigned long index = xas->xa_index;
479         bool pmd_downgrade = false; /* splitting PMD entry into PTE entries? */
480         void *entry;
481
482 retry:
483         xas_lock_irq(xas);
484         entry = get_unlocked_entry(xas, order);
485
486         if (entry) {
487                 if (dax_is_conflict(entry))
488                         goto fallback;
489                 if (!xa_is_value(entry)) {
490                         xas_set_err(xas, EIO);
491                         goto out_unlock;
492                 }
493
494                 if (order == 0) {
495                         if (dax_is_pmd_entry(entry) &&
496                             (dax_is_zero_entry(entry) ||
497                              dax_is_empty_entry(entry))) {
498                                 pmd_downgrade = true;
499                         }
500                 }
501         }
502
503         if (pmd_downgrade) {
504                 /*
505                  * Make sure 'entry' remains valid while we drop
506                  * the i_pages lock.
507                  */
508                 dax_lock_entry(xas, entry);
509
510                 /*
511                  * Besides huge zero pages the only other thing that gets
512                  * downgraded are empty entries which don't need to be
513                  * unmapped.
514                  */
515                 if (dax_is_zero_entry(entry)) {
516                         xas_unlock_irq(xas);
517                         unmap_mapping_pages(mapping,
518                                         xas->xa_index & ~PG_PMD_COLOUR,
519                                         PG_PMD_NR, false);
520                         xas_reset(xas);
521                         xas_lock_irq(xas);
522                 }
523
524                 dax_disassociate_entry(entry, mapping, false);
525                 xas_store(xas, NULL);   /* undo the PMD join */
526                 dax_wake_entry(xas, entry, true);
527                 mapping->nrexceptional--;
528                 entry = NULL;
529                 xas_set(xas, index);
530         }
531
532         if (entry) {
533                 dax_lock_entry(xas, entry);
534         } else {
535                 unsigned long flags = DAX_EMPTY;
536
537                 if (order > 0)
538                         flags |= DAX_PMD;
539                 entry = dax_make_entry(pfn_to_pfn_t(0), flags);
540                 dax_lock_entry(xas, entry);
541                 if (xas_error(xas))
542                         goto out_unlock;
543                 mapping->nrexceptional++;
544         }
545
546 out_unlock:
547         xas_unlock_irq(xas);
548         if (xas_nomem(xas, mapping_gfp_mask(mapping) & ~__GFP_HIGHMEM))
549                 goto retry;
550         if (xas->xa_node == XA_ERROR(-ENOMEM))
551                 return xa_mk_internal(VM_FAULT_OOM);
552         if (xas_error(xas))
553                 return xa_mk_internal(VM_FAULT_SIGBUS);
554         return entry;
555 fallback:
556         xas_unlock_irq(xas);
557         return xa_mk_internal(VM_FAULT_FALLBACK);
558 }
559
560 /**
561  * dax_layout_busy_page - find first pinned page in @mapping
562  * @mapping: address space to scan for a page with ref count > 1
563  *
564  * DAX requires ZONE_DEVICE mapped pages. These pages are never
565  * 'onlined' to the page allocator so they are considered idle when
566  * page->count == 1. A filesystem uses this interface to determine if
567  * any page in the mapping is busy, i.e. for DMA, or other
568  * get_user_pages() usages.
569  *
570  * It is expected that the filesystem is holding locks to block the
571  * establishment of new mappings in this address_space. I.e. it expects
572  * to be able to run unmap_mapping_range() and subsequently not race
573  * mapping_mapped() becoming true.
574  */
575 struct page *dax_layout_busy_page(struct address_space *mapping)
576 {
577         XA_STATE(xas, &mapping->i_pages, 0);
578         void *entry;
579         unsigned int scanned = 0;
580         struct page *page = NULL;
581
582         /*
583          * In the 'limited' case get_user_pages() for dax is disabled.
584          */
585         if (IS_ENABLED(CONFIG_FS_DAX_LIMITED))
586                 return NULL;
587
588         if (!dax_mapping(mapping) || !mapping_mapped(mapping))
589                 return NULL;
590
591         /*
592          * If we race get_user_pages_fast() here either we'll see the
593          * elevated page count in the iteration and wait, or
594          * get_user_pages_fast() will see that the page it took a reference
595          * against is no longer mapped in the page tables and bail to the
596          * get_user_pages() slow path.  The slow path is protected by
597          * pte_lock() and pmd_lock(). New references are not taken without
598          * holding those locks, and unmap_mapping_range() will not zero the
599          * pte or pmd without holding the respective lock, so we are
600          * guaranteed to either see new references or prevent new
601          * references from being established.
602          */
603         unmap_mapping_range(mapping, 0, 0, 0);
604
605         xas_lock_irq(&xas);
606         xas_for_each(&xas, entry, ULONG_MAX) {
607                 if (WARN_ON_ONCE(!xa_is_value(entry)))
608                         continue;
609                 if (unlikely(dax_is_locked(entry)))
610                         entry = get_unlocked_entry(&xas, 0);
611                 if (entry)
612                         page = dax_busy_page(entry);
613                 put_unlocked_entry(&xas, entry);
614                 if (page)
615                         break;
616                 if (++scanned % XA_CHECK_SCHED)
617                         continue;
618
619                 xas_pause(&xas);
620                 xas_unlock_irq(&xas);
621                 cond_resched();
622                 xas_lock_irq(&xas);
623         }
624         xas_unlock_irq(&xas);
625         return page;
626 }
627 EXPORT_SYMBOL_GPL(dax_layout_busy_page);
628
629 static int __dax_invalidate_entry(struct address_space *mapping,
630                                           pgoff_t index, bool trunc)
631 {
632         XA_STATE(xas, &mapping->i_pages, index);
633         int ret = 0;
634         void *entry;
635
636         xas_lock_irq(&xas);
637         entry = get_unlocked_entry(&xas, 0);
638         if (!entry || WARN_ON_ONCE(!xa_is_value(entry)))
639                 goto out;
640         if (!trunc &&
641             (xas_get_mark(&xas, PAGECACHE_TAG_DIRTY) ||
642              xas_get_mark(&xas, PAGECACHE_TAG_TOWRITE)))
643                 goto out;
644         dax_disassociate_entry(entry, mapping, trunc);
645         xas_store(&xas, NULL);
646         mapping->nrexceptional--;
647         ret = 1;
648 out:
649         put_unlocked_entry(&xas, entry);
650         xas_unlock_irq(&xas);
651         return ret;
652 }
653
654 /*
655  * Delete DAX entry at @index from @mapping.  Wait for it
656  * to be unlocked before deleting it.
657  */
658 int dax_delete_mapping_entry(struct address_space *mapping, pgoff_t index)
659 {
660         int ret = __dax_invalidate_entry(mapping, index, true);
661
662         /*
663          * This gets called from truncate / punch_hole path. As such, the caller
664          * must hold locks protecting against concurrent modifications of the
665          * page cache (usually fs-private i_mmap_sem for writing). Since the
666          * caller has seen a DAX entry for this index, we better find it
667          * at that index as well...
668          */
669         WARN_ON_ONCE(!ret);
670         return ret;
671 }
672
673 /*
674  * Invalidate DAX entry if it is clean.
675  */
676 int dax_invalidate_mapping_entry_sync(struct address_space *mapping,
677                                       pgoff_t index)
678 {
679         return __dax_invalidate_entry(mapping, index, false);
680 }
681
682 static int copy_user_dax(struct block_device *bdev, struct dax_device *dax_dev,
683                 sector_t sector, size_t size, struct page *to,
684                 unsigned long vaddr)
685 {
686         void *vto, *kaddr;
687         pgoff_t pgoff;
688         long rc;
689         int id;
690
691         rc = bdev_dax_pgoff(bdev, sector, size, &pgoff);
692         if (rc)
693                 return rc;
694
695         id = dax_read_lock();
696         rc = dax_direct_access(dax_dev, pgoff, PHYS_PFN(size), &kaddr, NULL);
697         if (rc < 0) {
698                 dax_read_unlock(id);
699                 return rc;
700         }
701         vto = kmap_atomic(to);
702         copy_user_page(vto, (void __force *)kaddr, vaddr, to);
703         kunmap_atomic(vto);
704         dax_read_unlock(id);
705         return 0;
706 }
707
708 /*
709  * By this point grab_mapping_entry() has ensured that we have a locked entry
710  * of the appropriate size so we don't have to worry about downgrading PMDs to
711  * PTEs.  If we happen to be trying to insert a PTE and there is a PMD
712  * already in the tree, we will skip the insertion and just dirty the PMD as
713  * appropriate.
714  */
715 static void *dax_insert_entry(struct xa_state *xas,
716                 struct address_space *mapping, struct vm_fault *vmf,
717                 void *entry, pfn_t pfn, unsigned long flags, bool dirty)
718 {
719         void *new_entry = dax_make_entry(pfn, flags);
720
721         if (dirty)
722                 __mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
723
724         if (dax_is_zero_entry(entry) && !(flags & DAX_ZERO_PAGE)) {
725                 unsigned long index = xas->xa_index;
726                 /* we are replacing a zero page with block mapping */
727                 if (dax_is_pmd_entry(entry))
728                         unmap_mapping_pages(mapping, index & ~PG_PMD_COLOUR,
729                                         PG_PMD_NR, false);
730                 else /* pte entry */
731                         unmap_mapping_pages(mapping, index, 1, false);
732         }
733
734         xas_reset(xas);
735         xas_lock_irq(xas);
736         if (dax_is_zero_entry(entry) || dax_is_empty_entry(entry)) {
737                 void *old;
738
739                 dax_disassociate_entry(entry, mapping, false);
740                 dax_associate_entry(new_entry, mapping, vmf->vma, vmf->address);
741                 /*
742                  * Only swap our new entry into the page cache if the current
743                  * entry is a zero page or an empty entry.  If a normal PTE or
744                  * PMD entry is already in the cache, we leave it alone.  This
745                  * means that if we are trying to insert a PTE and the
746                  * existing entry is a PMD, we will just leave the PMD in the
747                  * tree and dirty it if necessary.
748                  */
749                 old = dax_lock_entry(xas, new_entry);
750                 WARN_ON_ONCE(old != xa_mk_value(xa_to_value(entry) |
751                                         DAX_LOCKED));
752                 entry = new_entry;
753         } else {
754                 xas_load(xas);  /* Walk the xa_state */
755         }
756
757         if (dirty)
758                 xas_set_mark(xas, PAGECACHE_TAG_DIRTY);
759
760         xas_unlock_irq(xas);
761         return entry;
762 }
763
764 static inline
765 unsigned long pgoff_address(pgoff_t pgoff, struct vm_area_struct *vma)
766 {
767         unsigned long address;
768
769         address = vma->vm_start + ((pgoff - vma->vm_pgoff) << PAGE_SHIFT);
770         VM_BUG_ON_VMA(address < vma->vm_start || address >= vma->vm_end, vma);
771         return address;
772 }
773
774 /* Walk all mappings of a given index of a file and writeprotect them */
775 static void dax_entry_mkclean(struct address_space *mapping, pgoff_t index,
776                 unsigned long pfn)
777 {
778         struct vm_area_struct *vma;
779         pte_t pte, *ptep = NULL;
780         pmd_t *pmdp = NULL;
781         spinlock_t *ptl;
782
783         i_mmap_lock_read(mapping);
784         vma_interval_tree_foreach(vma, &mapping->i_mmap, index, index) {
785                 struct mmu_notifier_range range;
786                 unsigned long address;
787
788                 cond_resched();
789
790                 if (!(vma->vm_flags & VM_SHARED))
791                         continue;
792
793                 address = pgoff_address(index, vma);
794
795                 /*
796                  * Note because we provide range to follow_pte_pmd it will
797                  * call mmu_notifier_invalidate_range_start() on our behalf
798                  * before taking any lock.
799                  */
800                 if (follow_pte_pmd(vma->vm_mm, address, &range,
801                                    &ptep, &pmdp, &ptl))
802                         continue;
803
804                 /*
805                  * No need to call mmu_notifier_invalidate_range() as we are
806                  * downgrading page table protection not changing it to point
807                  * to a new page.
808                  *
809                  * See Documentation/vm/mmu_notifier.rst
810                  */
811                 if (pmdp) {
812 #ifdef CONFIG_FS_DAX_PMD
813                         pmd_t pmd;
814
815                         if (pfn != pmd_pfn(*pmdp))
816                                 goto unlock_pmd;
817                         if (!pmd_dirty(*pmdp) && !pmd_write(*pmdp))
818                                 goto unlock_pmd;
819
820                         flush_cache_page(vma, address, pfn);
821                         pmd = pmdp_invalidate(vma, address, pmdp);
822                         pmd = pmd_wrprotect(pmd);
823                         pmd = pmd_mkclean(pmd);
824                         set_pmd_at(vma->vm_mm, address, pmdp, pmd);
825 unlock_pmd:
826 #endif
827                         spin_unlock(ptl);
828                 } else {
829                         if (pfn != pte_pfn(*ptep))
830                                 goto unlock_pte;
831                         if (!pte_dirty(*ptep) && !pte_write(*ptep))
832                                 goto unlock_pte;
833
834                         flush_cache_page(vma, address, pfn);
835                         pte = ptep_clear_flush(vma, address, ptep);
836                         pte = pte_wrprotect(pte);
837                         pte = pte_mkclean(pte);
838                         set_pte_at(vma->vm_mm, address, ptep, pte);
839 unlock_pte:
840                         pte_unmap_unlock(ptep, ptl);
841                 }
842
843                 mmu_notifier_invalidate_range_end(&range);
844         }
845         i_mmap_unlock_read(mapping);
846 }
847
848 static int dax_writeback_one(struct xa_state *xas, struct dax_device *dax_dev,
849                 struct address_space *mapping, void *entry)
850 {
851         unsigned long pfn, index, count;
852         long ret = 0;
853
854         /*
855          * A page got tagged dirty in DAX mapping? Something is seriously
856          * wrong.
857          */
858         if (WARN_ON(!xa_is_value(entry)))
859                 return -EIO;
860
861         if (unlikely(dax_is_locked(entry))) {
862                 void *old_entry = entry;
863
864                 entry = get_unlocked_entry(xas, 0);
865
866                 /* Entry got punched out / reallocated? */
867                 if (!entry || WARN_ON_ONCE(!xa_is_value(entry)))
868                         goto put_unlocked;
869                 /*
870                  * Entry got reallocated elsewhere? No need to writeback.
871                  * We have to compare pfns as we must not bail out due to
872                  * difference in lockbit or entry type.
873                  */
874                 if (dax_to_pfn(old_entry) != dax_to_pfn(entry))
875                         goto put_unlocked;
876                 if (WARN_ON_ONCE(dax_is_empty_entry(entry) ||
877                                         dax_is_zero_entry(entry))) {
878                         ret = -EIO;
879                         goto put_unlocked;
880                 }
881
882                 /* Another fsync thread may have already done this entry */
883                 if (!xas_get_mark(xas, PAGECACHE_TAG_TOWRITE))
884                         goto put_unlocked;
885         }
886
887         /* Lock the entry to serialize with page faults */
888         dax_lock_entry(xas, entry);
889
890         /*
891          * We can clear the tag now but we have to be careful so that concurrent
892          * dax_writeback_one() calls for the same index cannot finish before we
893          * actually flush the caches. This is achieved as the calls will look
894          * at the entry only under the i_pages lock and once they do that
895          * they will see the entry locked and wait for it to unlock.
896          */
897         xas_clear_mark(xas, PAGECACHE_TAG_TOWRITE);
898         xas_unlock_irq(xas);
899
900         /*
901          * If dax_writeback_mapping_range() was given a wbc->range_start
902          * in the middle of a PMD, the 'index' we use needs to be
903          * aligned to the start of the PMD.
904          * This allows us to flush for PMD_SIZE and not have to worry about
905          * partial PMD writebacks.
906          */
907         pfn = dax_to_pfn(entry);
908         count = 1UL << dax_entry_order(entry);
909         index = xas->xa_index & ~(count - 1);
910
911         dax_entry_mkclean(mapping, index, pfn);
912         dax_flush(dax_dev, page_address(pfn_to_page(pfn)), count * PAGE_SIZE);
913         /*
914          * After we have flushed the cache, we can clear the dirty tag. There
915          * cannot be new dirty data in the pfn after the flush has completed as
916          * the pfn mappings are writeprotected and fault waits for mapping
917          * entry lock.
918          */
919         xas_reset(xas);
920         xas_lock_irq(xas);
921         xas_store(xas, entry);
922         xas_clear_mark(xas, PAGECACHE_TAG_DIRTY);
923         dax_wake_entry(xas, entry, false);
924
925         trace_dax_writeback_one(mapping->host, index, count);
926         return ret;
927
928  put_unlocked:
929         put_unlocked_entry(xas, entry);
930         return ret;
931 }
932
933 /*
934  * Flush the mapping to the persistent domain within the byte range of [start,
935  * end]. This is required by data integrity operations to ensure file data is
936  * on persistent storage prior to completion of the operation.
937  */
938 int dax_writeback_mapping_range(struct address_space *mapping,
939                 struct block_device *bdev, struct writeback_control *wbc)
940 {
941         XA_STATE(xas, &mapping->i_pages, wbc->range_start >> PAGE_SHIFT);
942         struct inode *inode = mapping->host;
943         pgoff_t end_index = wbc->range_end >> PAGE_SHIFT;
944         struct dax_device *dax_dev;
945         void *entry;
946         int ret = 0;
947         unsigned int scanned = 0;
948
949         if (WARN_ON_ONCE(inode->i_blkbits != PAGE_SHIFT))
950                 return -EIO;
951
952         if (!mapping->nrexceptional || wbc->sync_mode != WB_SYNC_ALL)
953                 return 0;
954
955         dax_dev = dax_get_by_host(bdev->bd_disk->disk_name);
956         if (!dax_dev)
957                 return -EIO;
958
959         trace_dax_writeback_range(inode, xas.xa_index, end_index);
960
961         tag_pages_for_writeback(mapping, xas.xa_index, end_index);
962
963         xas_lock_irq(&xas);
964         xas_for_each_marked(&xas, entry, end_index, PAGECACHE_TAG_TOWRITE) {
965                 ret = dax_writeback_one(&xas, dax_dev, mapping, entry);
966                 if (ret < 0) {
967                         mapping_set_error(mapping, ret);
968                         break;
969                 }
970                 if (++scanned % XA_CHECK_SCHED)
971                         continue;
972
973                 xas_pause(&xas);
974                 xas_unlock_irq(&xas);
975                 cond_resched();
976                 xas_lock_irq(&xas);
977         }
978         xas_unlock_irq(&xas);
979         put_dax(dax_dev);
980         trace_dax_writeback_range_done(inode, xas.xa_index, end_index);
981         return ret;
982 }
983 EXPORT_SYMBOL_GPL(dax_writeback_mapping_range);
984
985 static sector_t dax_iomap_sector(struct iomap *iomap, loff_t pos)
986 {
987         return (iomap->addr + (pos & PAGE_MASK) - iomap->offset) >> 9;
988 }
989
990 static int dax_iomap_pfn(struct iomap *iomap, loff_t pos, size_t size,
991                          pfn_t *pfnp)
992 {
993         const sector_t sector = dax_iomap_sector(iomap, pos);
994         pgoff_t pgoff;
995         int id, rc;
996         long length;
997
998         rc = bdev_dax_pgoff(iomap->bdev, sector, size, &pgoff);
999         if (rc)
1000                 return rc;
1001         id = dax_read_lock();
1002         length = dax_direct_access(iomap->dax_dev, pgoff, PHYS_PFN(size),
1003                                    NULL, pfnp);
1004         if (length < 0) {
1005                 rc = length;
1006                 goto out;
1007         }
1008         rc = -EINVAL;
1009         if (PFN_PHYS(length) < size)
1010                 goto out;
1011         if (pfn_t_to_pfn(*pfnp) & (PHYS_PFN(size)-1))
1012                 goto out;
1013         /* For larger pages we need devmap */
1014         if (length > 1 && !pfn_t_devmap(*pfnp))
1015                 goto out;
1016         rc = 0;
1017 out:
1018         dax_read_unlock(id);
1019         return rc;
1020 }
1021
1022 /*
1023  * The user has performed a load from a hole in the file.  Allocating a new
1024  * page in the file would cause excessive storage usage for workloads with
1025  * sparse files.  Instead we insert a read-only mapping of the 4k zero page.
1026  * If this page is ever written to we will re-fault and change the mapping to
1027  * point to real DAX storage instead.
1028  */
1029 static vm_fault_t dax_load_hole(struct xa_state *xas,
1030                 struct address_space *mapping, void **entry,
1031                 struct vm_fault *vmf)
1032 {
1033         struct inode *inode = mapping->host;
1034         unsigned long vaddr = vmf->address;
1035         pfn_t pfn = pfn_to_pfn_t(my_zero_pfn(vaddr));
1036         vm_fault_t ret;
1037
1038         *entry = dax_insert_entry(xas, mapping, vmf, *entry, pfn,
1039                         DAX_ZERO_PAGE, false);
1040
1041         ret = vmf_insert_mixed(vmf->vma, vaddr, pfn);
1042         trace_dax_load_hole(inode, vmf, ret);
1043         return ret;
1044 }
1045
1046 static bool dax_range_is_aligned(struct block_device *bdev,
1047                                  unsigned int offset, unsigned int length)
1048 {
1049         unsigned short sector_size = bdev_logical_block_size(bdev);
1050
1051         if (!IS_ALIGNED(offset, sector_size))
1052                 return false;
1053         if (!IS_ALIGNED(length, sector_size))
1054                 return false;
1055
1056         return true;
1057 }
1058
1059 int __dax_zero_page_range(struct block_device *bdev,
1060                 struct dax_device *dax_dev, sector_t sector,
1061                 unsigned int offset, unsigned int size)
1062 {
1063         if (dax_range_is_aligned(bdev, offset, size)) {
1064                 sector_t start_sector = sector + (offset >> 9);
1065
1066                 return blkdev_issue_zeroout(bdev, start_sector,
1067                                 size >> 9, GFP_NOFS, 0);
1068         } else {
1069                 pgoff_t pgoff;
1070                 long rc, id;
1071                 void *kaddr;
1072
1073                 rc = bdev_dax_pgoff(bdev, sector, PAGE_SIZE, &pgoff);
1074                 if (rc)
1075                         return rc;
1076
1077                 id = dax_read_lock();
1078                 rc = dax_direct_access(dax_dev, pgoff, 1, &kaddr, NULL);
1079                 if (rc < 0) {
1080                         dax_read_unlock(id);
1081                         return rc;
1082                 }
1083                 memset(kaddr + offset, 0, size);
1084                 dax_flush(dax_dev, kaddr + offset, size);
1085                 dax_read_unlock(id);
1086         }
1087         return 0;
1088 }
1089 EXPORT_SYMBOL_GPL(__dax_zero_page_range);
1090
1091 static loff_t
1092 dax_iomap_actor(struct inode *inode, loff_t pos, loff_t length, void *data,
1093                 struct iomap *iomap)
1094 {
1095         struct block_device *bdev = iomap->bdev;
1096         struct dax_device *dax_dev = iomap->dax_dev;
1097         struct iov_iter *iter = data;
1098         loff_t end = pos + length, done = 0;
1099         ssize_t ret = 0;
1100         size_t xfer;
1101         int id;
1102
1103         if (iov_iter_rw(iter) == READ) {
1104                 end = min(end, i_size_read(inode));
1105                 if (pos >= end)
1106                         return 0;
1107
1108                 if (iomap->type == IOMAP_HOLE || iomap->type == IOMAP_UNWRITTEN)
1109                         return iov_iter_zero(min(length, end - pos), iter);
1110         }
1111
1112         if (WARN_ON_ONCE(iomap->type != IOMAP_MAPPED))
1113                 return -EIO;
1114
1115         /*
1116          * Write can allocate block for an area which has a hole page mapped
1117          * into page tables. We have to tear down these mappings so that data
1118          * written by write(2) is visible in mmap.
1119          */
1120         if (iomap->flags & IOMAP_F_NEW) {
1121                 invalidate_inode_pages2_range(inode->i_mapping,
1122                                               pos >> PAGE_SHIFT,
1123                                               (end - 1) >> PAGE_SHIFT);
1124         }
1125
1126         id = dax_read_lock();
1127         while (pos < end) {
1128                 unsigned offset = pos & (PAGE_SIZE - 1);
1129                 const size_t size = ALIGN(length + offset, PAGE_SIZE);
1130                 const sector_t sector = dax_iomap_sector(iomap, pos);
1131                 ssize_t map_len;
1132                 pgoff_t pgoff;
1133                 void *kaddr;
1134
1135                 if (fatal_signal_pending(current)) {
1136                         ret = -EINTR;
1137                         break;
1138                 }
1139
1140                 ret = bdev_dax_pgoff(bdev, sector, size, &pgoff);
1141                 if (ret)
1142                         break;
1143
1144                 map_len = dax_direct_access(dax_dev, pgoff, PHYS_PFN(size),
1145                                 &kaddr, NULL);
1146                 if (map_len < 0) {
1147                         ret = map_len;
1148                         break;
1149                 }
1150
1151                 map_len = PFN_PHYS(map_len);
1152                 kaddr += offset;
1153                 map_len -= offset;
1154                 if (map_len > end - pos)
1155                         map_len = end - pos;
1156
1157                 /*
1158                  * The userspace address for the memory copy has already been
1159                  * validated via access_ok() in either vfs_read() or
1160                  * vfs_write(), depending on which operation we are doing.
1161                  */
1162                 if (iov_iter_rw(iter) == WRITE)
1163                         xfer = dax_copy_from_iter(dax_dev, pgoff, kaddr,
1164                                         map_len, iter);
1165                 else
1166                         xfer = dax_copy_to_iter(dax_dev, pgoff, kaddr,
1167                                         map_len, iter);
1168
1169                 pos += xfer;
1170                 length -= xfer;
1171                 done += xfer;
1172
1173                 if (xfer == 0)
1174                         ret = -EFAULT;
1175                 if (xfer < map_len)
1176                         break;
1177         }
1178         dax_read_unlock(id);
1179
1180         return done ? done : ret;
1181 }
1182
1183 /**
1184  * dax_iomap_rw - Perform I/O to a DAX file
1185  * @iocb:       The control block for this I/O
1186  * @iter:       The addresses to do I/O from or to
1187  * @ops:        iomap ops passed from the file system
1188  *
1189  * This function performs read and write operations to directly mapped
1190  * persistent memory.  The callers needs to take care of read/write exclusion
1191  * and evicting any page cache pages in the region under I/O.
1192  */
1193 ssize_t
1194 dax_iomap_rw(struct kiocb *iocb, struct iov_iter *iter,
1195                 const struct iomap_ops *ops)
1196 {
1197         struct address_space *mapping = iocb->ki_filp->f_mapping;
1198         struct inode *inode = mapping->host;
1199         loff_t pos = iocb->ki_pos, ret = 0, done = 0;
1200         unsigned flags = 0;
1201
1202         if (iov_iter_rw(iter) == WRITE) {
1203                 lockdep_assert_held_write(&inode->i_rwsem);
1204                 flags |= IOMAP_WRITE;
1205         } else {
1206                 lockdep_assert_held(&inode->i_rwsem);
1207         }
1208
1209         while (iov_iter_count(iter)) {
1210                 ret = iomap_apply(inode, pos, iov_iter_count(iter), flags, ops,
1211                                 iter, dax_iomap_actor);
1212                 if (ret <= 0)
1213                         break;
1214                 pos += ret;
1215                 done += ret;
1216         }
1217
1218         iocb->ki_pos += done;
1219         return done ? done : ret;
1220 }
1221 EXPORT_SYMBOL_GPL(dax_iomap_rw);
1222
1223 static vm_fault_t dax_fault_return(int error)
1224 {
1225         if (error == 0)
1226                 return VM_FAULT_NOPAGE;
1227         return vmf_error(error);
1228 }
1229
1230 /*
1231  * MAP_SYNC on a dax mapping guarantees dirty metadata is
1232  * flushed on write-faults (non-cow), but not read-faults.
1233  */
1234 static bool dax_fault_is_synchronous(unsigned long flags,
1235                 struct vm_area_struct *vma, struct iomap *iomap)
1236 {
1237         return (flags & IOMAP_WRITE) && (vma->vm_flags & VM_SYNC)
1238                 && (iomap->flags & IOMAP_F_DIRTY);
1239 }
1240
1241 static vm_fault_t dax_iomap_pte_fault(struct vm_fault *vmf, pfn_t *pfnp,
1242                                int *iomap_errp, const struct iomap_ops *ops)
1243 {
1244         struct vm_area_struct *vma = vmf->vma;
1245         struct address_space *mapping = vma->vm_file->f_mapping;
1246         XA_STATE(xas, &mapping->i_pages, vmf->pgoff);
1247         struct inode *inode = mapping->host;
1248         unsigned long vaddr = vmf->address;
1249         loff_t pos = (loff_t)vmf->pgoff << PAGE_SHIFT;
1250         struct iomap iomap = { 0 };
1251         unsigned flags = IOMAP_FAULT;
1252         int error, major = 0;
1253         bool write = vmf->flags & FAULT_FLAG_WRITE;
1254         bool sync;
1255         vm_fault_t ret = 0;
1256         void *entry;
1257         pfn_t pfn;
1258
1259         trace_dax_pte_fault(inode, vmf, ret);
1260         /*
1261          * Check whether offset isn't beyond end of file now. Caller is supposed
1262          * to hold locks serializing us with truncate / punch hole so this is
1263          * a reliable test.
1264          */
1265         if (pos >= i_size_read(inode)) {
1266                 ret = VM_FAULT_SIGBUS;
1267                 goto out;
1268         }
1269
1270         if (write && !vmf->cow_page)
1271                 flags |= IOMAP_WRITE;
1272
1273         entry = grab_mapping_entry(&xas, mapping, 0);
1274         if (xa_is_internal(entry)) {
1275                 ret = xa_to_internal(entry);
1276                 goto out;
1277         }
1278
1279         /*
1280          * It is possible, particularly with mixed reads & writes to private
1281          * mappings, that we have raced with a PMD fault that overlaps with
1282          * the PTE we need to set up.  If so just return and the fault will be
1283          * retried.
1284          */
1285         if (pmd_trans_huge(*vmf->pmd) || pmd_devmap(*vmf->pmd)) {
1286                 ret = VM_FAULT_NOPAGE;
1287                 goto unlock_entry;
1288         }
1289
1290         /*
1291          * Note that we don't bother to use iomap_apply here: DAX required
1292          * the file system block size to be equal the page size, which means
1293          * that we never have to deal with more than a single extent here.
1294          */
1295         error = ops->iomap_begin(inode, pos, PAGE_SIZE, flags, &iomap);
1296         if (iomap_errp)
1297                 *iomap_errp = error;
1298         if (error) {
1299                 ret = dax_fault_return(error);
1300                 goto unlock_entry;
1301         }
1302         if (WARN_ON_ONCE(iomap.offset + iomap.length < pos + PAGE_SIZE)) {
1303                 error = -EIO;   /* fs corruption? */
1304                 goto error_finish_iomap;
1305         }
1306
1307         if (vmf->cow_page) {
1308                 sector_t sector = dax_iomap_sector(&iomap, pos);
1309
1310                 switch (iomap.type) {
1311                 case IOMAP_HOLE:
1312                 case IOMAP_UNWRITTEN:
1313                         clear_user_highpage(vmf->cow_page, vaddr);
1314                         break;
1315                 case IOMAP_MAPPED:
1316                         error = copy_user_dax(iomap.bdev, iomap.dax_dev,
1317                                         sector, PAGE_SIZE, vmf->cow_page, vaddr);
1318                         break;
1319                 default:
1320                         WARN_ON_ONCE(1);
1321                         error = -EIO;
1322                         break;
1323                 }
1324
1325                 if (error)
1326                         goto error_finish_iomap;
1327
1328                 __SetPageUptodate(vmf->cow_page);
1329                 ret = finish_fault(vmf);
1330                 if (!ret)
1331                         ret = VM_FAULT_DONE_COW;
1332                 goto finish_iomap;
1333         }
1334
1335         sync = dax_fault_is_synchronous(flags, vma, &iomap);
1336
1337         switch (iomap.type) {
1338         case IOMAP_MAPPED:
1339                 if (iomap.flags & IOMAP_F_NEW) {
1340                         count_vm_event(PGMAJFAULT);
1341                         count_memcg_event_mm(vma->vm_mm, PGMAJFAULT);
1342                         major = VM_FAULT_MAJOR;
1343                 }
1344                 error = dax_iomap_pfn(&iomap, pos, PAGE_SIZE, &pfn);
1345                 if (error < 0)
1346                         goto error_finish_iomap;
1347
1348                 entry = dax_insert_entry(&xas, mapping, vmf, entry, pfn,
1349                                                  0, write && !sync);
1350
1351                 /*
1352                  * If we are doing synchronous page fault and inode needs fsync,
1353                  * we can insert PTE into page tables only after that happens.
1354                  * Skip insertion for now and return the pfn so that caller can
1355                  * insert it after fsync is done.
1356                  */
1357                 if (sync) {
1358                         if (WARN_ON_ONCE(!pfnp)) {
1359                                 error = -EIO;
1360                                 goto error_finish_iomap;
1361                         }
1362                         *pfnp = pfn;
1363                         ret = VM_FAULT_NEEDDSYNC | major;
1364                         goto finish_iomap;
1365                 }
1366                 trace_dax_insert_mapping(inode, vmf, entry);
1367                 if (write)
1368                         ret = vmf_insert_mixed_mkwrite(vma, vaddr, pfn);
1369                 else
1370                         ret = vmf_insert_mixed(vma, vaddr, pfn);
1371
1372                 goto finish_iomap;
1373         case IOMAP_UNWRITTEN:
1374         case IOMAP_HOLE:
1375                 if (!write) {
1376                         ret = dax_load_hole(&xas, mapping, &entry, vmf);
1377                         goto finish_iomap;
1378                 }
1379                 /*FALLTHRU*/
1380         default:
1381                 WARN_ON_ONCE(1);
1382                 error = -EIO;
1383                 break;
1384         }
1385
1386  error_finish_iomap:
1387         ret = dax_fault_return(error);
1388  finish_iomap:
1389         if (ops->iomap_end) {
1390                 int copied = PAGE_SIZE;
1391
1392                 if (ret & VM_FAULT_ERROR)
1393                         copied = 0;
1394                 /*
1395                  * The fault is done by now and there's no way back (other
1396                  * thread may be already happily using PTE we have installed).
1397                  * Just ignore error from ->iomap_end since we cannot do much
1398                  * with it.
1399                  */
1400                 ops->iomap_end(inode, pos, PAGE_SIZE, copied, flags, &iomap);
1401         }
1402  unlock_entry:
1403         dax_unlock_entry(&xas, entry);
1404  out:
1405         trace_dax_pte_fault_done(inode, vmf, ret);
1406         return ret | major;
1407 }
1408
1409 #ifdef CONFIG_FS_DAX_PMD
1410 static vm_fault_t dax_pmd_load_hole(struct xa_state *xas, struct vm_fault *vmf,
1411                 struct iomap *iomap, void **entry)
1412 {
1413         struct address_space *mapping = vmf->vma->vm_file->f_mapping;
1414         unsigned long pmd_addr = vmf->address & PMD_MASK;
1415         struct vm_area_struct *vma = vmf->vma;
1416         struct inode *inode = mapping->host;
1417         pgtable_t pgtable = NULL;
1418         struct page *zero_page;
1419         spinlock_t *ptl;
1420         pmd_t pmd_entry;
1421         pfn_t pfn;
1422
1423         zero_page = mm_get_huge_zero_page(vmf->vma->vm_mm);
1424
1425         if (unlikely(!zero_page))
1426                 goto fallback;
1427
1428         pfn = page_to_pfn_t(zero_page);
1429         *entry = dax_insert_entry(xas, mapping, vmf, *entry, pfn,
1430                         DAX_PMD | DAX_ZERO_PAGE, false);
1431
1432         if (arch_needs_pgtable_deposit()) {
1433                 pgtable = pte_alloc_one(vma->vm_mm);
1434                 if (!pgtable)
1435                         return VM_FAULT_OOM;
1436         }
1437
1438         ptl = pmd_lock(vmf->vma->vm_mm, vmf->pmd);
1439         if (!pmd_none(*(vmf->pmd))) {
1440                 spin_unlock(ptl);
1441                 goto fallback;
1442         }
1443
1444         if (pgtable) {
1445                 pgtable_trans_huge_deposit(vma->vm_mm, vmf->pmd, pgtable);
1446                 mm_inc_nr_ptes(vma->vm_mm);
1447         }
1448         pmd_entry = mk_pmd(zero_page, vmf->vma->vm_page_prot);
1449         pmd_entry = pmd_mkhuge(pmd_entry);
1450         set_pmd_at(vmf->vma->vm_mm, pmd_addr, vmf->pmd, pmd_entry);
1451         spin_unlock(ptl);
1452         trace_dax_pmd_load_hole(inode, vmf, zero_page, *entry);
1453         return VM_FAULT_NOPAGE;
1454
1455 fallback:
1456         if (pgtable)
1457                 pte_free(vma->vm_mm, pgtable);
1458         trace_dax_pmd_load_hole_fallback(inode, vmf, zero_page, *entry);
1459         return VM_FAULT_FALLBACK;
1460 }
1461
1462 static vm_fault_t dax_iomap_pmd_fault(struct vm_fault *vmf, pfn_t *pfnp,
1463                                const struct iomap_ops *ops)
1464 {
1465         struct vm_area_struct *vma = vmf->vma;
1466         struct address_space *mapping = vma->vm_file->f_mapping;
1467         XA_STATE_ORDER(xas, &mapping->i_pages, vmf->pgoff, PMD_ORDER);
1468         unsigned long pmd_addr = vmf->address & PMD_MASK;
1469         bool write = vmf->flags & FAULT_FLAG_WRITE;
1470         bool sync;
1471         unsigned int iomap_flags = (write ? IOMAP_WRITE : 0) | IOMAP_FAULT;
1472         struct inode *inode = mapping->host;
1473         vm_fault_t result = VM_FAULT_FALLBACK;
1474         struct iomap iomap = { 0 };
1475         pgoff_t max_pgoff;
1476         void *entry;
1477         loff_t pos;
1478         int error;
1479         pfn_t pfn;
1480
1481         /*
1482          * Check whether offset isn't beyond end of file now. Caller is
1483          * supposed to hold locks serializing us with truncate / punch hole so
1484          * this is a reliable test.
1485          */
1486         max_pgoff = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
1487
1488         trace_dax_pmd_fault(inode, vmf, max_pgoff, 0);
1489
1490         /*
1491          * Make sure that the faulting address's PMD offset (color) matches
1492          * the PMD offset from the start of the file.  This is necessary so
1493          * that a PMD range in the page table overlaps exactly with a PMD
1494          * range in the page cache.
1495          */
1496         if ((vmf->pgoff & PG_PMD_COLOUR) !=
1497             ((vmf->address >> PAGE_SHIFT) & PG_PMD_COLOUR))
1498                 goto fallback;
1499
1500         /* Fall back to PTEs if we're going to COW */
1501         if (write && !(vma->vm_flags & VM_SHARED))
1502                 goto fallback;
1503
1504         /* If the PMD would extend outside the VMA */
1505         if (pmd_addr < vma->vm_start)
1506                 goto fallback;
1507         if ((pmd_addr + PMD_SIZE) > vma->vm_end)
1508                 goto fallback;
1509
1510         if (xas.xa_index >= max_pgoff) {
1511                 result = VM_FAULT_SIGBUS;
1512                 goto out;
1513         }
1514
1515         /* If the PMD would extend beyond the file size */
1516         if ((xas.xa_index | PG_PMD_COLOUR) >= max_pgoff)
1517                 goto fallback;
1518
1519         /*
1520          * grab_mapping_entry() will make sure we get an empty PMD entry,
1521          * a zero PMD entry or a DAX PMD.  If it can't (because a PTE
1522          * entry is already in the array, for instance), it will return
1523          * VM_FAULT_FALLBACK.
1524          */
1525         entry = grab_mapping_entry(&xas, mapping, PMD_ORDER);
1526         if (xa_is_internal(entry)) {
1527                 result = xa_to_internal(entry);
1528                 goto fallback;
1529         }
1530
1531         /*
1532          * It is possible, particularly with mixed reads & writes to private
1533          * mappings, that we have raced with a PTE fault that overlaps with
1534          * the PMD we need to set up.  If so just return and the fault will be
1535          * retried.
1536          */
1537         if (!pmd_none(*vmf->pmd) && !pmd_trans_huge(*vmf->pmd) &&
1538                         !pmd_devmap(*vmf->pmd)) {
1539                 result = 0;
1540                 goto unlock_entry;
1541         }
1542
1543         /*
1544          * Note that we don't use iomap_apply here.  We aren't doing I/O, only
1545          * setting up a mapping, so really we're using iomap_begin() as a way
1546          * to look up our filesystem block.
1547          */
1548         pos = (loff_t)xas.xa_index << PAGE_SHIFT;
1549         error = ops->iomap_begin(inode, pos, PMD_SIZE, iomap_flags, &iomap);
1550         if (error)
1551                 goto unlock_entry;
1552
1553         if (iomap.offset + iomap.length < pos + PMD_SIZE)
1554                 goto finish_iomap;
1555
1556         sync = dax_fault_is_synchronous(iomap_flags, vma, &iomap);
1557
1558         switch (iomap.type) {
1559         case IOMAP_MAPPED:
1560                 error = dax_iomap_pfn(&iomap, pos, PMD_SIZE, &pfn);
1561                 if (error < 0)
1562                         goto finish_iomap;
1563
1564                 entry = dax_insert_entry(&xas, mapping, vmf, entry, pfn,
1565                                                 DAX_PMD, write && !sync);
1566
1567                 /*
1568                  * If we are doing synchronous page fault and inode needs fsync,
1569                  * we can insert PMD into page tables only after that happens.
1570                  * Skip insertion for now and return the pfn so that caller can
1571                  * insert it after fsync is done.
1572                  */
1573                 if (sync) {
1574                         if (WARN_ON_ONCE(!pfnp))
1575                                 goto finish_iomap;
1576                         *pfnp = pfn;
1577                         result = VM_FAULT_NEEDDSYNC;
1578                         goto finish_iomap;
1579                 }
1580
1581                 trace_dax_pmd_insert_mapping(inode, vmf, PMD_SIZE, pfn, entry);
1582                 result = vmf_insert_pfn_pmd(vmf, pfn, write);
1583                 break;
1584         case IOMAP_UNWRITTEN:
1585         case IOMAP_HOLE:
1586                 if (WARN_ON_ONCE(write))
1587                         break;
1588                 result = dax_pmd_load_hole(&xas, vmf, &iomap, &entry);
1589                 break;
1590         default:
1591                 WARN_ON_ONCE(1);
1592                 break;
1593         }
1594
1595  finish_iomap:
1596         if (ops->iomap_end) {
1597                 int copied = PMD_SIZE;
1598
1599                 if (result == VM_FAULT_FALLBACK)
1600                         copied = 0;
1601                 /*
1602                  * The fault is done by now and there's no way back (other
1603                  * thread may be already happily using PMD we have installed).
1604                  * Just ignore error from ->iomap_end since we cannot do much
1605                  * with it.
1606                  */
1607                 ops->iomap_end(inode, pos, PMD_SIZE, copied, iomap_flags,
1608                                 &iomap);
1609         }
1610  unlock_entry:
1611         dax_unlock_entry(&xas, entry);
1612  fallback:
1613         if (result == VM_FAULT_FALLBACK) {
1614                 split_huge_pmd(vma, vmf->pmd, vmf->address);
1615                 count_vm_event(THP_FAULT_FALLBACK);
1616         }
1617 out:
1618         trace_dax_pmd_fault_done(inode, vmf, max_pgoff, result);
1619         return result;
1620 }
1621 #else
1622 static vm_fault_t dax_iomap_pmd_fault(struct vm_fault *vmf, pfn_t *pfnp,
1623                                const struct iomap_ops *ops)
1624 {
1625         return VM_FAULT_FALLBACK;
1626 }
1627 #endif /* CONFIG_FS_DAX_PMD */
1628
1629 /**
1630  * dax_iomap_fault - handle a page fault on a DAX file
1631  * @vmf: The description of the fault
1632  * @pe_size: Size of the page to fault in
1633  * @pfnp: PFN to insert for synchronous faults if fsync is required
1634  * @iomap_errp: Storage for detailed error code in case of error
1635  * @ops: Iomap ops passed from the file system
1636  *
1637  * When a page fault occurs, filesystems may call this helper in
1638  * their fault handler for DAX files. dax_iomap_fault() assumes the caller
1639  * has done all the necessary locking for page fault to proceed
1640  * successfully.
1641  */
1642 vm_fault_t dax_iomap_fault(struct vm_fault *vmf, enum page_entry_size pe_size,
1643                     pfn_t *pfnp, int *iomap_errp, const struct iomap_ops *ops)
1644 {
1645         switch (pe_size) {
1646         case PE_SIZE_PTE:
1647                 return dax_iomap_pte_fault(vmf, pfnp, iomap_errp, ops);
1648         case PE_SIZE_PMD:
1649                 return dax_iomap_pmd_fault(vmf, pfnp, ops);
1650         default:
1651                 return VM_FAULT_FALLBACK;
1652         }
1653 }
1654 EXPORT_SYMBOL_GPL(dax_iomap_fault);
1655
1656 /*
1657  * dax_insert_pfn_mkwrite - insert PTE or PMD entry into page tables
1658  * @vmf: The description of the fault
1659  * @pfn: PFN to insert
1660  * @order: Order of entry to insert.
1661  *
1662  * This function inserts a writeable PTE or PMD entry into the page tables
1663  * for an mmaped DAX file.  It also marks the page cache entry as dirty.
1664  */
1665 static vm_fault_t
1666 dax_insert_pfn_mkwrite(struct vm_fault *vmf, pfn_t pfn, unsigned int order)
1667 {
1668         struct address_space *mapping = vmf->vma->vm_file->f_mapping;
1669         XA_STATE_ORDER(xas, &mapping->i_pages, vmf->pgoff, order);
1670         void *entry;
1671         vm_fault_t ret;
1672
1673         xas_lock_irq(&xas);
1674         entry = get_unlocked_entry(&xas, order);
1675         /* Did we race with someone splitting entry or so? */
1676         if (!entry || dax_is_conflict(entry) ||
1677             (order == 0 && !dax_is_pte_entry(entry))) {
1678                 put_unlocked_entry(&xas, entry);
1679                 xas_unlock_irq(&xas);
1680                 trace_dax_insert_pfn_mkwrite_no_entry(mapping->host, vmf,
1681                                                       VM_FAULT_NOPAGE);
1682                 return VM_FAULT_NOPAGE;
1683         }
1684         xas_set_mark(&xas, PAGECACHE_TAG_DIRTY);
1685         dax_lock_entry(&xas, entry);
1686         xas_unlock_irq(&xas);
1687         if (order == 0)
1688                 ret = vmf_insert_mixed_mkwrite(vmf->vma, vmf->address, pfn);
1689 #ifdef CONFIG_FS_DAX_PMD
1690         else if (order == PMD_ORDER)
1691                 ret = vmf_insert_pfn_pmd(vmf, pfn, FAULT_FLAG_WRITE);
1692 #endif
1693         else
1694                 ret = VM_FAULT_FALLBACK;
1695         dax_unlock_entry(&xas, entry);
1696         trace_dax_insert_pfn_mkwrite(mapping->host, vmf, ret);
1697         return ret;
1698 }
1699
1700 /**
1701  * dax_finish_sync_fault - finish synchronous page fault
1702  * @vmf: The description of the fault
1703  * @pe_size: Size of entry to be inserted
1704  * @pfn: PFN to insert
1705  *
1706  * This function ensures that the file range touched by the page fault is
1707  * stored persistently on the media and handles inserting of appropriate page
1708  * table entry.
1709  */
1710 vm_fault_t dax_finish_sync_fault(struct vm_fault *vmf,
1711                 enum page_entry_size pe_size, pfn_t pfn)
1712 {
1713         int err;
1714         loff_t start = ((loff_t)vmf->pgoff) << PAGE_SHIFT;
1715         unsigned int order = pe_order(pe_size);
1716         size_t len = PAGE_SIZE << order;
1717
1718         err = vfs_fsync_range(vmf->vma->vm_file, start, start + len - 1, 1);
1719         if (err)
1720                 return VM_FAULT_SIGBUS;
1721         return dax_insert_pfn_mkwrite(vmf, pfn, order);
1722 }
1723 EXPORT_SYMBOL_GPL(dax_finish_sync_fault);