Merge branch 'next' into for-linus
[linux-2.6-microblaze.git] / fs / dax.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * fs/dax.c - Direct Access filesystem code
4  * Copyright (c) 2013-2014 Intel Corporation
5  * Author: Matthew Wilcox <matthew.r.wilcox@intel.com>
6  * Author: Ross Zwisler <ross.zwisler@linux.intel.com>
7  */
8
9 #include <linux/atomic.h>
10 #include <linux/blkdev.h>
11 #include <linux/buffer_head.h>
12 #include <linux/dax.h>
13 #include <linux/fs.h>
14 #include <linux/genhd.h>
15 #include <linux/highmem.h>
16 #include <linux/memcontrol.h>
17 #include <linux/mm.h>
18 #include <linux/mutex.h>
19 #include <linux/pagevec.h>
20 #include <linux/sched.h>
21 #include <linux/sched/signal.h>
22 #include <linux/uio.h>
23 #include <linux/vmstat.h>
24 #include <linux/pfn_t.h>
25 #include <linux/sizes.h>
26 #include <linux/mmu_notifier.h>
27 #include <linux/iomap.h>
28 #include <asm/pgalloc.h>
29
30 #define CREATE_TRACE_POINTS
31 #include <trace/events/fs_dax.h>
32
33 static inline unsigned int pe_order(enum page_entry_size pe_size)
34 {
35         if (pe_size == PE_SIZE_PTE)
36                 return PAGE_SHIFT - PAGE_SHIFT;
37         if (pe_size == PE_SIZE_PMD)
38                 return PMD_SHIFT - PAGE_SHIFT;
39         if (pe_size == PE_SIZE_PUD)
40                 return PUD_SHIFT - PAGE_SHIFT;
41         return ~0;
42 }
43
44 /* We choose 4096 entries - same as per-zone page wait tables */
45 #define DAX_WAIT_TABLE_BITS 12
46 #define DAX_WAIT_TABLE_ENTRIES (1 << DAX_WAIT_TABLE_BITS)
47
48 /* The 'colour' (ie low bits) within a PMD of a page offset.  */
49 #define PG_PMD_COLOUR   ((PMD_SIZE >> PAGE_SHIFT) - 1)
50 #define PG_PMD_NR       (PMD_SIZE >> PAGE_SHIFT)
51
52 /* The order of a PMD entry */
53 #define PMD_ORDER       (PMD_SHIFT - PAGE_SHIFT)
54
55 static wait_queue_head_t wait_table[DAX_WAIT_TABLE_ENTRIES];
56
57 static int __init init_dax_wait_table(void)
58 {
59         int i;
60
61         for (i = 0; i < DAX_WAIT_TABLE_ENTRIES; i++)
62                 init_waitqueue_head(wait_table + i);
63         return 0;
64 }
65 fs_initcall(init_dax_wait_table);
66
67 /*
68  * DAX pagecache entries use XArray value entries so they can't be mistaken
69  * for pages.  We use one bit for locking, one bit for the entry size (PMD)
70  * and two more to tell us if the entry is a zero page or an empty entry that
71  * is just used for locking.  In total four special bits.
72  *
73  * If the PMD bit isn't set the entry has size PAGE_SIZE, and if the ZERO_PAGE
74  * and EMPTY bits aren't set the entry is a normal DAX entry with a filesystem
75  * block allocation.
76  */
77 #define DAX_SHIFT       (4)
78 #define DAX_LOCKED      (1UL << 0)
79 #define DAX_PMD         (1UL << 1)
80 #define DAX_ZERO_PAGE   (1UL << 2)
81 #define DAX_EMPTY       (1UL << 3)
82
83 static unsigned long dax_to_pfn(void *entry)
84 {
85         return xa_to_value(entry) >> DAX_SHIFT;
86 }
87
88 static void *dax_make_entry(pfn_t pfn, unsigned long flags)
89 {
90         return xa_mk_value(flags | (pfn_t_to_pfn(pfn) << DAX_SHIFT));
91 }
92
93 static bool dax_is_locked(void *entry)
94 {
95         return xa_to_value(entry) & DAX_LOCKED;
96 }
97
98 static unsigned int dax_entry_order(void *entry)
99 {
100         if (xa_to_value(entry) & DAX_PMD)
101                 return PMD_ORDER;
102         return 0;
103 }
104
105 static unsigned long dax_is_pmd_entry(void *entry)
106 {
107         return xa_to_value(entry) & DAX_PMD;
108 }
109
110 static bool dax_is_pte_entry(void *entry)
111 {
112         return !(xa_to_value(entry) & DAX_PMD);
113 }
114
115 static int dax_is_zero_entry(void *entry)
116 {
117         return xa_to_value(entry) & DAX_ZERO_PAGE;
118 }
119
120 static int dax_is_empty_entry(void *entry)
121 {
122         return xa_to_value(entry) & DAX_EMPTY;
123 }
124
125 /*
126  * true if the entry that was found is of a smaller order than the entry
127  * we were looking for
128  */
129 static bool dax_is_conflict(void *entry)
130 {
131         return entry == XA_RETRY_ENTRY;
132 }
133
134 /*
135  * DAX page cache entry locking
136  */
137 struct exceptional_entry_key {
138         struct xarray *xa;
139         pgoff_t entry_start;
140 };
141
142 struct wait_exceptional_entry_queue {
143         wait_queue_entry_t wait;
144         struct exceptional_entry_key key;
145 };
146
147 static wait_queue_head_t *dax_entry_waitqueue(struct xa_state *xas,
148                 void *entry, struct exceptional_entry_key *key)
149 {
150         unsigned long hash;
151         unsigned long index = xas->xa_index;
152
153         /*
154          * If 'entry' is a PMD, align the 'index' that we use for the wait
155          * queue to the start of that PMD.  This ensures that all offsets in
156          * the range covered by the PMD map to the same bit lock.
157          */
158         if (dax_is_pmd_entry(entry))
159                 index &= ~PG_PMD_COLOUR;
160         key->xa = xas->xa;
161         key->entry_start = index;
162
163         hash = hash_long((unsigned long)xas->xa ^ index, DAX_WAIT_TABLE_BITS);
164         return wait_table + hash;
165 }
166
167 static int wake_exceptional_entry_func(wait_queue_entry_t *wait,
168                 unsigned int mode, int sync, void *keyp)
169 {
170         struct exceptional_entry_key *key = keyp;
171         struct wait_exceptional_entry_queue *ewait =
172                 container_of(wait, struct wait_exceptional_entry_queue, wait);
173
174         if (key->xa != ewait->key.xa ||
175             key->entry_start != ewait->key.entry_start)
176                 return 0;
177         return autoremove_wake_function(wait, mode, sync, NULL);
178 }
179
180 /*
181  * @entry may no longer be the entry at the index in the mapping.
182  * The important information it's conveying is whether the entry at
183  * this index used to be a PMD entry.
184  */
185 static void dax_wake_entry(struct xa_state *xas, void *entry, bool wake_all)
186 {
187         struct exceptional_entry_key key;
188         wait_queue_head_t *wq;
189
190         wq = dax_entry_waitqueue(xas, entry, &key);
191
192         /*
193          * Checking for locked entry and prepare_to_wait_exclusive() happens
194          * under the i_pages lock, ditto for entry handling in our callers.
195          * So at this point all tasks that could have seen our entry locked
196          * must be in the waitqueue and the following check will see them.
197          */
198         if (waitqueue_active(wq))
199                 __wake_up(wq, TASK_NORMAL, wake_all ? 0 : 1, &key);
200 }
201
202 /*
203  * Look up entry in page cache, wait for it to become unlocked if it
204  * is a DAX entry and return it.  The caller must subsequently call
205  * put_unlocked_entry() if it did not lock the entry or dax_unlock_entry()
206  * if it did.  The entry returned may have a larger order than @order.
207  * If @order is larger than the order of the entry found in i_pages, this
208  * function returns a dax_is_conflict entry.
209  *
210  * Must be called with the i_pages lock held.
211  */
212 static void *get_unlocked_entry(struct xa_state *xas, unsigned int order)
213 {
214         void *entry;
215         struct wait_exceptional_entry_queue ewait;
216         wait_queue_head_t *wq;
217
218         init_wait(&ewait.wait);
219         ewait.wait.func = wake_exceptional_entry_func;
220
221         for (;;) {
222                 entry = xas_find_conflict(xas);
223                 if (!entry || WARN_ON_ONCE(!xa_is_value(entry)))
224                         return entry;
225                 if (dax_entry_order(entry) < order)
226                         return XA_RETRY_ENTRY;
227                 if (!dax_is_locked(entry))
228                         return entry;
229
230                 wq = dax_entry_waitqueue(xas, entry, &ewait.key);
231                 prepare_to_wait_exclusive(wq, &ewait.wait,
232                                           TASK_UNINTERRUPTIBLE);
233                 xas_unlock_irq(xas);
234                 xas_reset(xas);
235                 schedule();
236                 finish_wait(wq, &ewait.wait);
237                 xas_lock_irq(xas);
238         }
239 }
240
241 /*
242  * The only thing keeping the address space around is the i_pages lock
243  * (it's cycled in clear_inode() after removing the entries from i_pages)
244  * After we call xas_unlock_irq(), we cannot touch xas->xa.
245  */
246 static void wait_entry_unlocked(struct xa_state *xas, void *entry)
247 {
248         struct wait_exceptional_entry_queue ewait;
249         wait_queue_head_t *wq;
250
251         init_wait(&ewait.wait);
252         ewait.wait.func = wake_exceptional_entry_func;
253
254         wq = dax_entry_waitqueue(xas, entry, &ewait.key);
255         /*
256          * Unlike get_unlocked_entry() there is no guarantee that this
257          * path ever successfully retrieves an unlocked entry before an
258          * inode dies. Perform a non-exclusive wait in case this path
259          * never successfully performs its own wake up.
260          */
261         prepare_to_wait(wq, &ewait.wait, TASK_UNINTERRUPTIBLE);
262         xas_unlock_irq(xas);
263         schedule();
264         finish_wait(wq, &ewait.wait);
265 }
266
267 static void put_unlocked_entry(struct xa_state *xas, void *entry)
268 {
269         /* If we were the only waiter woken, wake the next one */
270         if (entry && !dax_is_conflict(entry))
271                 dax_wake_entry(xas, entry, false);
272 }
273
274 /*
275  * We used the xa_state to get the entry, but then we locked the entry and
276  * dropped the xa_lock, so we know the xa_state is stale and must be reset
277  * before use.
278  */
279 static void dax_unlock_entry(struct xa_state *xas, void *entry)
280 {
281         void *old;
282
283         BUG_ON(dax_is_locked(entry));
284         xas_reset(xas);
285         xas_lock_irq(xas);
286         old = xas_store(xas, entry);
287         xas_unlock_irq(xas);
288         BUG_ON(!dax_is_locked(old));
289         dax_wake_entry(xas, entry, false);
290 }
291
292 /*
293  * Return: The entry stored at this location before it was locked.
294  */
295 static void *dax_lock_entry(struct xa_state *xas, void *entry)
296 {
297         unsigned long v = xa_to_value(entry);
298         return xas_store(xas, xa_mk_value(v | DAX_LOCKED));
299 }
300
301 static unsigned long dax_entry_size(void *entry)
302 {
303         if (dax_is_zero_entry(entry))
304                 return 0;
305         else if (dax_is_empty_entry(entry))
306                 return 0;
307         else if (dax_is_pmd_entry(entry))
308                 return PMD_SIZE;
309         else
310                 return PAGE_SIZE;
311 }
312
313 static unsigned long dax_end_pfn(void *entry)
314 {
315         return dax_to_pfn(entry) + dax_entry_size(entry) / PAGE_SIZE;
316 }
317
318 /*
319  * Iterate through all mapped pfns represented by an entry, i.e. skip
320  * 'empty' and 'zero' entries.
321  */
322 #define for_each_mapped_pfn(entry, pfn) \
323         for (pfn = dax_to_pfn(entry); \
324                         pfn < dax_end_pfn(entry); pfn++)
325
326 /*
327  * TODO: for reflink+dax we need a way to associate a single page with
328  * multiple address_space instances at different linear_page_index()
329  * offsets.
330  */
331 static void dax_associate_entry(void *entry, struct address_space *mapping,
332                 struct vm_area_struct *vma, unsigned long address)
333 {
334         unsigned long size = dax_entry_size(entry), pfn, index;
335         int i = 0;
336
337         if (IS_ENABLED(CONFIG_FS_DAX_LIMITED))
338                 return;
339
340         index = linear_page_index(vma, address & ~(size - 1));
341         for_each_mapped_pfn(entry, pfn) {
342                 struct page *page = pfn_to_page(pfn);
343
344                 WARN_ON_ONCE(page->mapping);
345                 page->mapping = mapping;
346                 page->index = index + i++;
347         }
348 }
349
350 static void dax_disassociate_entry(void *entry, struct address_space *mapping,
351                 bool trunc)
352 {
353         unsigned long pfn;
354
355         if (IS_ENABLED(CONFIG_FS_DAX_LIMITED))
356                 return;
357
358         for_each_mapped_pfn(entry, pfn) {
359                 struct page *page = pfn_to_page(pfn);
360
361                 WARN_ON_ONCE(trunc && page_ref_count(page) > 1);
362                 WARN_ON_ONCE(page->mapping && page->mapping != mapping);
363                 page->mapping = NULL;
364                 page->index = 0;
365         }
366 }
367
368 static struct page *dax_busy_page(void *entry)
369 {
370         unsigned long pfn;
371
372         for_each_mapped_pfn(entry, pfn) {
373                 struct page *page = pfn_to_page(pfn);
374
375                 if (page_ref_count(page) > 1)
376                         return page;
377         }
378         return NULL;
379 }
380
381 /*
382  * dax_lock_mapping_entry - Lock the DAX entry corresponding to a page
383  * @page: The page whose entry we want to lock
384  *
385  * Context: Process context.
386  * Return: A cookie to pass to dax_unlock_page() or 0 if the entry could
387  * not be locked.
388  */
389 dax_entry_t dax_lock_page(struct page *page)
390 {
391         XA_STATE(xas, NULL, 0);
392         void *entry;
393
394         /* Ensure page->mapping isn't freed while we look at it */
395         rcu_read_lock();
396         for (;;) {
397                 struct address_space *mapping = READ_ONCE(page->mapping);
398
399                 entry = NULL;
400                 if (!mapping || !dax_mapping(mapping))
401                         break;
402
403                 /*
404                  * In the device-dax case there's no need to lock, a
405                  * struct dev_pagemap pin is sufficient to keep the
406                  * inode alive, and we assume we have dev_pagemap pin
407                  * otherwise we would not have a valid pfn_to_page()
408                  * translation.
409                  */
410                 entry = (void *)~0UL;
411                 if (S_ISCHR(mapping->host->i_mode))
412                         break;
413
414                 xas.xa = &mapping->i_pages;
415                 xas_lock_irq(&xas);
416                 if (mapping != page->mapping) {
417                         xas_unlock_irq(&xas);
418                         continue;
419                 }
420                 xas_set(&xas, page->index);
421                 entry = xas_load(&xas);
422                 if (dax_is_locked(entry)) {
423                         rcu_read_unlock();
424                         wait_entry_unlocked(&xas, entry);
425                         rcu_read_lock();
426                         continue;
427                 }
428                 dax_lock_entry(&xas, entry);
429                 xas_unlock_irq(&xas);
430                 break;
431         }
432         rcu_read_unlock();
433         return (dax_entry_t)entry;
434 }
435
436 void dax_unlock_page(struct page *page, dax_entry_t cookie)
437 {
438         struct address_space *mapping = page->mapping;
439         XA_STATE(xas, &mapping->i_pages, page->index);
440
441         if (S_ISCHR(mapping->host->i_mode))
442                 return;
443
444         dax_unlock_entry(&xas, (void *)cookie);
445 }
446
447 /*
448  * Find page cache entry at given index. If it is a DAX entry, return it
449  * with the entry locked. If the page cache doesn't contain an entry at
450  * that index, add a locked empty entry.
451  *
452  * When requesting an entry with size DAX_PMD, grab_mapping_entry() will
453  * either return that locked entry or will return VM_FAULT_FALLBACK.
454  * This will happen if there are any PTE entries within the PMD range
455  * that we are requesting.
456  *
457  * We always favor PTE entries over PMD entries. There isn't a flow where we
458  * evict PTE entries in order to 'upgrade' them to a PMD entry.  A PMD
459  * insertion will fail if it finds any PTE entries already in the tree, and a
460  * PTE insertion will cause an existing PMD entry to be unmapped and
461  * downgraded to PTE entries.  This happens for both PMD zero pages as
462  * well as PMD empty entries.
463  *
464  * The exception to this downgrade path is for PMD entries that have
465  * real storage backing them.  We will leave these real PMD entries in
466  * the tree, and PTE writes will simply dirty the entire PMD entry.
467  *
468  * Note: Unlike filemap_fault() we don't honor FAULT_FLAG_RETRY flags. For
469  * persistent memory the benefit is doubtful. We can add that later if we can
470  * show it helps.
471  *
472  * On error, this function does not return an ERR_PTR.  Instead it returns
473  * a VM_FAULT code, encoded as an xarray internal entry.  The ERR_PTR values
474  * overlap with xarray value entries.
475  */
476 static void *grab_mapping_entry(struct xa_state *xas,
477                 struct address_space *mapping, unsigned int order)
478 {
479         unsigned long index = xas->xa_index;
480         bool pmd_downgrade = false; /* splitting PMD entry into PTE entries? */
481         void *entry;
482
483 retry:
484         xas_lock_irq(xas);
485         entry = get_unlocked_entry(xas, order);
486
487         if (entry) {
488                 if (dax_is_conflict(entry))
489                         goto fallback;
490                 if (!xa_is_value(entry)) {
491                         xas_set_err(xas, -EIO);
492                         goto out_unlock;
493                 }
494
495                 if (order == 0) {
496                         if (dax_is_pmd_entry(entry) &&
497                             (dax_is_zero_entry(entry) ||
498                              dax_is_empty_entry(entry))) {
499                                 pmd_downgrade = true;
500                         }
501                 }
502         }
503
504         if (pmd_downgrade) {
505                 /*
506                  * Make sure 'entry' remains valid while we drop
507                  * the i_pages lock.
508                  */
509                 dax_lock_entry(xas, entry);
510
511                 /*
512                  * Besides huge zero pages the only other thing that gets
513                  * downgraded are empty entries which don't need to be
514                  * unmapped.
515                  */
516                 if (dax_is_zero_entry(entry)) {
517                         xas_unlock_irq(xas);
518                         unmap_mapping_pages(mapping,
519                                         xas->xa_index & ~PG_PMD_COLOUR,
520                                         PG_PMD_NR, false);
521                         xas_reset(xas);
522                         xas_lock_irq(xas);
523                 }
524
525                 dax_disassociate_entry(entry, mapping, false);
526                 xas_store(xas, NULL);   /* undo the PMD join */
527                 dax_wake_entry(xas, entry, true);
528                 mapping->nrexceptional--;
529                 entry = NULL;
530                 xas_set(xas, index);
531         }
532
533         if (entry) {
534                 dax_lock_entry(xas, entry);
535         } else {
536                 unsigned long flags = DAX_EMPTY;
537
538                 if (order > 0)
539                         flags |= DAX_PMD;
540                 entry = dax_make_entry(pfn_to_pfn_t(0), flags);
541                 dax_lock_entry(xas, entry);
542                 if (xas_error(xas))
543                         goto out_unlock;
544                 mapping->nrexceptional++;
545         }
546
547 out_unlock:
548         xas_unlock_irq(xas);
549         if (xas_nomem(xas, mapping_gfp_mask(mapping) & ~__GFP_HIGHMEM))
550                 goto retry;
551         if (xas->xa_node == XA_ERROR(-ENOMEM))
552                 return xa_mk_internal(VM_FAULT_OOM);
553         if (xas_error(xas))
554                 return xa_mk_internal(VM_FAULT_SIGBUS);
555         return entry;
556 fallback:
557         xas_unlock_irq(xas);
558         return xa_mk_internal(VM_FAULT_FALLBACK);
559 }
560
561 /**
562  * dax_layout_busy_page - find first pinned page in @mapping
563  * @mapping: address space to scan for a page with ref count > 1
564  *
565  * DAX requires ZONE_DEVICE mapped pages. These pages are never
566  * 'onlined' to the page allocator so they are considered idle when
567  * page->count == 1. A filesystem uses this interface to determine if
568  * any page in the mapping is busy, i.e. for DMA, or other
569  * get_user_pages() usages.
570  *
571  * It is expected that the filesystem is holding locks to block the
572  * establishment of new mappings in this address_space. I.e. it expects
573  * to be able to run unmap_mapping_range() and subsequently not race
574  * mapping_mapped() becoming true.
575  */
576 struct page *dax_layout_busy_page(struct address_space *mapping)
577 {
578         XA_STATE(xas, &mapping->i_pages, 0);
579         void *entry;
580         unsigned int scanned = 0;
581         struct page *page = NULL;
582
583         /*
584          * In the 'limited' case get_user_pages() for dax is disabled.
585          */
586         if (IS_ENABLED(CONFIG_FS_DAX_LIMITED))
587                 return NULL;
588
589         if (!dax_mapping(mapping) || !mapping_mapped(mapping))
590                 return NULL;
591
592         /*
593          * If we race get_user_pages_fast() here either we'll see the
594          * elevated page count in the iteration and wait, or
595          * get_user_pages_fast() will see that the page it took a reference
596          * against is no longer mapped in the page tables and bail to the
597          * get_user_pages() slow path.  The slow path is protected by
598          * pte_lock() and pmd_lock(). New references are not taken without
599          * holding those locks, and unmap_mapping_range() will not zero the
600          * pte or pmd without holding the respective lock, so we are
601          * guaranteed to either see new references or prevent new
602          * references from being established.
603          */
604         unmap_mapping_range(mapping, 0, 0, 0);
605
606         xas_lock_irq(&xas);
607         xas_for_each(&xas, entry, ULONG_MAX) {
608                 if (WARN_ON_ONCE(!xa_is_value(entry)))
609                         continue;
610                 if (unlikely(dax_is_locked(entry)))
611                         entry = get_unlocked_entry(&xas, 0);
612                 if (entry)
613                         page = dax_busy_page(entry);
614                 put_unlocked_entry(&xas, entry);
615                 if (page)
616                         break;
617                 if (++scanned % XA_CHECK_SCHED)
618                         continue;
619
620                 xas_pause(&xas);
621                 xas_unlock_irq(&xas);
622                 cond_resched();
623                 xas_lock_irq(&xas);
624         }
625         xas_unlock_irq(&xas);
626         return page;
627 }
628 EXPORT_SYMBOL_GPL(dax_layout_busy_page);
629
630 static int __dax_invalidate_entry(struct address_space *mapping,
631                                           pgoff_t index, bool trunc)
632 {
633         XA_STATE(xas, &mapping->i_pages, index);
634         int ret = 0;
635         void *entry;
636
637         xas_lock_irq(&xas);
638         entry = get_unlocked_entry(&xas, 0);
639         if (!entry || WARN_ON_ONCE(!xa_is_value(entry)))
640                 goto out;
641         if (!trunc &&
642             (xas_get_mark(&xas, PAGECACHE_TAG_DIRTY) ||
643              xas_get_mark(&xas, PAGECACHE_TAG_TOWRITE)))
644                 goto out;
645         dax_disassociate_entry(entry, mapping, trunc);
646         xas_store(&xas, NULL);
647         mapping->nrexceptional--;
648         ret = 1;
649 out:
650         put_unlocked_entry(&xas, entry);
651         xas_unlock_irq(&xas);
652         return ret;
653 }
654
655 /*
656  * Delete DAX entry at @index from @mapping.  Wait for it
657  * to be unlocked before deleting it.
658  */
659 int dax_delete_mapping_entry(struct address_space *mapping, pgoff_t index)
660 {
661         int ret = __dax_invalidate_entry(mapping, index, true);
662
663         /*
664          * This gets called from truncate / punch_hole path. As such, the caller
665          * must hold locks protecting against concurrent modifications of the
666          * page cache (usually fs-private i_mmap_sem for writing). Since the
667          * caller has seen a DAX entry for this index, we better find it
668          * at that index as well...
669          */
670         WARN_ON_ONCE(!ret);
671         return ret;
672 }
673
674 /*
675  * Invalidate DAX entry if it is clean.
676  */
677 int dax_invalidate_mapping_entry_sync(struct address_space *mapping,
678                                       pgoff_t index)
679 {
680         return __dax_invalidate_entry(mapping, index, false);
681 }
682
683 static int copy_cow_page_dax(struct block_device *bdev, struct dax_device *dax_dev,
684                              sector_t sector, struct page *to, unsigned long vaddr)
685 {
686         void *vto, *kaddr;
687         pgoff_t pgoff;
688         long rc;
689         int id;
690
691         rc = bdev_dax_pgoff(bdev, sector, PAGE_SIZE, &pgoff);
692         if (rc)
693                 return rc;
694
695         id = dax_read_lock();
696         rc = dax_direct_access(dax_dev, pgoff, PHYS_PFN(PAGE_SIZE), &kaddr, NULL);
697         if (rc < 0) {
698                 dax_read_unlock(id);
699                 return rc;
700         }
701         vto = kmap_atomic(to);
702         copy_user_page(vto, (void __force *)kaddr, vaddr, to);
703         kunmap_atomic(vto);
704         dax_read_unlock(id);
705         return 0;
706 }
707
708 /*
709  * By this point grab_mapping_entry() has ensured that we have a locked entry
710  * of the appropriate size so we don't have to worry about downgrading PMDs to
711  * PTEs.  If we happen to be trying to insert a PTE and there is a PMD
712  * already in the tree, we will skip the insertion and just dirty the PMD as
713  * appropriate.
714  */
715 static void *dax_insert_entry(struct xa_state *xas,
716                 struct address_space *mapping, struct vm_fault *vmf,
717                 void *entry, pfn_t pfn, unsigned long flags, bool dirty)
718 {
719         void *new_entry = dax_make_entry(pfn, flags);
720
721         if (dirty)
722                 __mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
723
724         if (dax_is_zero_entry(entry) && !(flags & DAX_ZERO_PAGE)) {
725                 unsigned long index = xas->xa_index;
726                 /* we are replacing a zero page with block mapping */
727                 if (dax_is_pmd_entry(entry))
728                         unmap_mapping_pages(mapping, index & ~PG_PMD_COLOUR,
729                                         PG_PMD_NR, false);
730                 else /* pte entry */
731                         unmap_mapping_pages(mapping, index, 1, false);
732         }
733
734         xas_reset(xas);
735         xas_lock_irq(xas);
736         if (dax_is_zero_entry(entry) || dax_is_empty_entry(entry)) {
737                 void *old;
738
739                 dax_disassociate_entry(entry, mapping, false);
740                 dax_associate_entry(new_entry, mapping, vmf->vma, vmf->address);
741                 /*
742                  * Only swap our new entry into the page cache if the current
743                  * entry is a zero page or an empty entry.  If a normal PTE or
744                  * PMD entry is already in the cache, we leave it alone.  This
745                  * means that if we are trying to insert a PTE and the
746                  * existing entry is a PMD, we will just leave the PMD in the
747                  * tree and dirty it if necessary.
748                  */
749                 old = dax_lock_entry(xas, new_entry);
750                 WARN_ON_ONCE(old != xa_mk_value(xa_to_value(entry) |
751                                         DAX_LOCKED));
752                 entry = new_entry;
753         } else {
754                 xas_load(xas);  /* Walk the xa_state */
755         }
756
757         if (dirty)
758                 xas_set_mark(xas, PAGECACHE_TAG_DIRTY);
759
760         xas_unlock_irq(xas);
761         return entry;
762 }
763
764 static inline
765 unsigned long pgoff_address(pgoff_t pgoff, struct vm_area_struct *vma)
766 {
767         unsigned long address;
768
769         address = vma->vm_start + ((pgoff - vma->vm_pgoff) << PAGE_SHIFT);
770         VM_BUG_ON_VMA(address < vma->vm_start || address >= vma->vm_end, vma);
771         return address;
772 }
773
774 /* Walk all mappings of a given index of a file and writeprotect them */
775 static void dax_entry_mkclean(struct address_space *mapping, pgoff_t index,
776                 unsigned long pfn)
777 {
778         struct vm_area_struct *vma;
779         pte_t pte, *ptep = NULL;
780         pmd_t *pmdp = NULL;
781         spinlock_t *ptl;
782
783         i_mmap_lock_read(mapping);
784         vma_interval_tree_foreach(vma, &mapping->i_mmap, index, index) {
785                 struct mmu_notifier_range range;
786                 unsigned long address;
787
788                 cond_resched();
789
790                 if (!(vma->vm_flags & VM_SHARED))
791                         continue;
792
793                 address = pgoff_address(index, vma);
794
795                 /*
796                  * Note because we provide range to follow_pte_pmd it will
797                  * call mmu_notifier_invalidate_range_start() on our behalf
798                  * before taking any lock.
799                  */
800                 if (follow_pte_pmd(vma->vm_mm, address, &range,
801                                    &ptep, &pmdp, &ptl))
802                         continue;
803
804                 /*
805                  * No need to call mmu_notifier_invalidate_range() as we are
806                  * downgrading page table protection not changing it to point
807                  * to a new page.
808                  *
809                  * See Documentation/vm/mmu_notifier.rst
810                  */
811                 if (pmdp) {
812 #ifdef CONFIG_FS_DAX_PMD
813                         pmd_t pmd;
814
815                         if (pfn != pmd_pfn(*pmdp))
816                                 goto unlock_pmd;
817                         if (!pmd_dirty(*pmdp) && !pmd_write(*pmdp))
818                                 goto unlock_pmd;
819
820                         flush_cache_page(vma, address, pfn);
821                         pmd = pmdp_invalidate(vma, address, pmdp);
822                         pmd = pmd_wrprotect(pmd);
823                         pmd = pmd_mkclean(pmd);
824                         set_pmd_at(vma->vm_mm, address, pmdp, pmd);
825 unlock_pmd:
826 #endif
827                         spin_unlock(ptl);
828                 } else {
829                         if (pfn != pte_pfn(*ptep))
830                                 goto unlock_pte;
831                         if (!pte_dirty(*ptep) && !pte_write(*ptep))
832                                 goto unlock_pte;
833
834                         flush_cache_page(vma, address, pfn);
835                         pte = ptep_clear_flush(vma, address, ptep);
836                         pte = pte_wrprotect(pte);
837                         pte = pte_mkclean(pte);
838                         set_pte_at(vma->vm_mm, address, ptep, pte);
839 unlock_pte:
840                         pte_unmap_unlock(ptep, ptl);
841                 }
842
843                 mmu_notifier_invalidate_range_end(&range);
844         }
845         i_mmap_unlock_read(mapping);
846 }
847
848 static int dax_writeback_one(struct xa_state *xas, struct dax_device *dax_dev,
849                 struct address_space *mapping, void *entry)
850 {
851         unsigned long pfn, index, count;
852         long ret = 0;
853
854         /*
855          * A page got tagged dirty in DAX mapping? Something is seriously
856          * wrong.
857          */
858         if (WARN_ON(!xa_is_value(entry)))
859                 return -EIO;
860
861         if (unlikely(dax_is_locked(entry))) {
862                 void *old_entry = entry;
863
864                 entry = get_unlocked_entry(xas, 0);
865
866                 /* Entry got punched out / reallocated? */
867                 if (!entry || WARN_ON_ONCE(!xa_is_value(entry)))
868                         goto put_unlocked;
869                 /*
870                  * Entry got reallocated elsewhere? No need to writeback.
871                  * We have to compare pfns as we must not bail out due to
872                  * difference in lockbit or entry type.
873                  */
874                 if (dax_to_pfn(old_entry) != dax_to_pfn(entry))
875                         goto put_unlocked;
876                 if (WARN_ON_ONCE(dax_is_empty_entry(entry) ||
877                                         dax_is_zero_entry(entry))) {
878                         ret = -EIO;
879                         goto put_unlocked;
880                 }
881
882                 /* Another fsync thread may have already done this entry */
883                 if (!xas_get_mark(xas, PAGECACHE_TAG_TOWRITE))
884                         goto put_unlocked;
885         }
886
887         /* Lock the entry to serialize with page faults */
888         dax_lock_entry(xas, entry);
889
890         /*
891          * We can clear the tag now but we have to be careful so that concurrent
892          * dax_writeback_one() calls for the same index cannot finish before we
893          * actually flush the caches. This is achieved as the calls will look
894          * at the entry only under the i_pages lock and once they do that
895          * they will see the entry locked and wait for it to unlock.
896          */
897         xas_clear_mark(xas, PAGECACHE_TAG_TOWRITE);
898         xas_unlock_irq(xas);
899
900         /*
901          * If dax_writeback_mapping_range() was given a wbc->range_start
902          * in the middle of a PMD, the 'index' we use needs to be
903          * aligned to the start of the PMD.
904          * This allows us to flush for PMD_SIZE and not have to worry about
905          * partial PMD writebacks.
906          */
907         pfn = dax_to_pfn(entry);
908         count = 1UL << dax_entry_order(entry);
909         index = xas->xa_index & ~(count - 1);
910
911         dax_entry_mkclean(mapping, index, pfn);
912         dax_flush(dax_dev, page_address(pfn_to_page(pfn)), count * PAGE_SIZE);
913         /*
914          * After we have flushed the cache, we can clear the dirty tag. There
915          * cannot be new dirty data in the pfn after the flush has completed as
916          * the pfn mappings are writeprotected and fault waits for mapping
917          * entry lock.
918          */
919         xas_reset(xas);
920         xas_lock_irq(xas);
921         xas_store(xas, entry);
922         xas_clear_mark(xas, PAGECACHE_TAG_DIRTY);
923         dax_wake_entry(xas, entry, false);
924
925         trace_dax_writeback_one(mapping->host, index, count);
926         return ret;
927
928  put_unlocked:
929         put_unlocked_entry(xas, entry);
930         return ret;
931 }
932
933 /*
934  * Flush the mapping to the persistent domain within the byte range of [start,
935  * end]. This is required by data integrity operations to ensure file data is
936  * on persistent storage prior to completion of the operation.
937  */
938 int dax_writeback_mapping_range(struct address_space *mapping,
939                 struct dax_device *dax_dev, struct writeback_control *wbc)
940 {
941         XA_STATE(xas, &mapping->i_pages, wbc->range_start >> PAGE_SHIFT);
942         struct inode *inode = mapping->host;
943         pgoff_t end_index = wbc->range_end >> PAGE_SHIFT;
944         void *entry;
945         int ret = 0;
946         unsigned int scanned = 0;
947
948         if (WARN_ON_ONCE(inode->i_blkbits != PAGE_SHIFT))
949                 return -EIO;
950
951         if (!mapping->nrexceptional || wbc->sync_mode != WB_SYNC_ALL)
952                 return 0;
953
954         trace_dax_writeback_range(inode, xas.xa_index, end_index);
955
956         tag_pages_for_writeback(mapping, xas.xa_index, end_index);
957
958         xas_lock_irq(&xas);
959         xas_for_each_marked(&xas, entry, end_index, PAGECACHE_TAG_TOWRITE) {
960                 ret = dax_writeback_one(&xas, dax_dev, mapping, entry);
961                 if (ret < 0) {
962                         mapping_set_error(mapping, ret);
963                         break;
964                 }
965                 if (++scanned % XA_CHECK_SCHED)
966                         continue;
967
968                 xas_pause(&xas);
969                 xas_unlock_irq(&xas);
970                 cond_resched();
971                 xas_lock_irq(&xas);
972         }
973         xas_unlock_irq(&xas);
974         trace_dax_writeback_range_done(inode, xas.xa_index, end_index);
975         return ret;
976 }
977 EXPORT_SYMBOL_GPL(dax_writeback_mapping_range);
978
979 static sector_t dax_iomap_sector(struct iomap *iomap, loff_t pos)
980 {
981         return (iomap->addr + (pos & PAGE_MASK) - iomap->offset) >> 9;
982 }
983
984 static int dax_iomap_pfn(struct iomap *iomap, loff_t pos, size_t size,
985                          pfn_t *pfnp)
986 {
987         const sector_t sector = dax_iomap_sector(iomap, pos);
988         pgoff_t pgoff;
989         int id, rc;
990         long length;
991
992         rc = bdev_dax_pgoff(iomap->bdev, sector, size, &pgoff);
993         if (rc)
994                 return rc;
995         id = dax_read_lock();
996         length = dax_direct_access(iomap->dax_dev, pgoff, PHYS_PFN(size),
997                                    NULL, pfnp);
998         if (length < 0) {
999                 rc = length;
1000                 goto out;
1001         }
1002         rc = -EINVAL;
1003         if (PFN_PHYS(length) < size)
1004                 goto out;
1005         if (pfn_t_to_pfn(*pfnp) & (PHYS_PFN(size)-1))
1006                 goto out;
1007         /* For larger pages we need devmap */
1008         if (length > 1 && !pfn_t_devmap(*pfnp))
1009                 goto out;
1010         rc = 0;
1011 out:
1012         dax_read_unlock(id);
1013         return rc;
1014 }
1015
1016 /*
1017  * The user has performed a load from a hole in the file.  Allocating a new
1018  * page in the file would cause excessive storage usage for workloads with
1019  * sparse files.  Instead we insert a read-only mapping of the 4k zero page.
1020  * If this page is ever written to we will re-fault and change the mapping to
1021  * point to real DAX storage instead.
1022  */
1023 static vm_fault_t dax_load_hole(struct xa_state *xas,
1024                 struct address_space *mapping, void **entry,
1025                 struct vm_fault *vmf)
1026 {
1027         struct inode *inode = mapping->host;
1028         unsigned long vaddr = vmf->address;
1029         pfn_t pfn = pfn_to_pfn_t(my_zero_pfn(vaddr));
1030         vm_fault_t ret;
1031
1032         *entry = dax_insert_entry(xas, mapping, vmf, *entry, pfn,
1033                         DAX_ZERO_PAGE, false);
1034
1035         ret = vmf_insert_mixed(vmf->vma, vaddr, pfn);
1036         trace_dax_load_hole(inode, vmf, ret);
1037         return ret;
1038 }
1039
1040 int dax_iomap_zero(loff_t pos, unsigned offset, unsigned size,
1041                    struct iomap *iomap)
1042 {
1043         sector_t sector = iomap_sector(iomap, pos & PAGE_MASK);
1044         pgoff_t pgoff;
1045         long rc, id;
1046         void *kaddr;
1047         bool page_aligned = false;
1048
1049
1050         if (IS_ALIGNED(sector << SECTOR_SHIFT, PAGE_SIZE) &&
1051             IS_ALIGNED(size, PAGE_SIZE))
1052                 page_aligned = true;
1053
1054         rc = bdev_dax_pgoff(iomap->bdev, sector, PAGE_SIZE, &pgoff);
1055         if (rc)
1056                 return rc;
1057
1058         id = dax_read_lock();
1059
1060         if (page_aligned)
1061                 rc = dax_zero_page_range(iomap->dax_dev, pgoff,
1062                                          size >> PAGE_SHIFT);
1063         else
1064                 rc = dax_direct_access(iomap->dax_dev, pgoff, 1, &kaddr, NULL);
1065         if (rc < 0) {
1066                 dax_read_unlock(id);
1067                 return rc;
1068         }
1069
1070         if (!page_aligned) {
1071                 memset(kaddr + offset, 0, size);
1072                 dax_flush(iomap->dax_dev, kaddr + offset, size);
1073         }
1074         dax_read_unlock(id);
1075         return 0;
1076 }
1077
1078 static loff_t
1079 dax_iomap_actor(struct inode *inode, loff_t pos, loff_t length, void *data,
1080                 struct iomap *iomap, struct iomap *srcmap)
1081 {
1082         struct block_device *bdev = iomap->bdev;
1083         struct dax_device *dax_dev = iomap->dax_dev;
1084         struct iov_iter *iter = data;
1085         loff_t end = pos + length, done = 0;
1086         ssize_t ret = 0;
1087         size_t xfer;
1088         int id;
1089
1090         if (iov_iter_rw(iter) == READ) {
1091                 end = min(end, i_size_read(inode));
1092                 if (pos >= end)
1093                         return 0;
1094
1095                 if (iomap->type == IOMAP_HOLE || iomap->type == IOMAP_UNWRITTEN)
1096                         return iov_iter_zero(min(length, end - pos), iter);
1097         }
1098
1099         if (WARN_ON_ONCE(iomap->type != IOMAP_MAPPED))
1100                 return -EIO;
1101
1102         /*
1103          * Write can allocate block for an area which has a hole page mapped
1104          * into page tables. We have to tear down these mappings so that data
1105          * written by write(2) is visible in mmap.
1106          */
1107         if (iomap->flags & IOMAP_F_NEW) {
1108                 invalidate_inode_pages2_range(inode->i_mapping,
1109                                               pos >> PAGE_SHIFT,
1110                                               (end - 1) >> PAGE_SHIFT);
1111         }
1112
1113         id = dax_read_lock();
1114         while (pos < end) {
1115                 unsigned offset = pos & (PAGE_SIZE - 1);
1116                 const size_t size = ALIGN(length + offset, PAGE_SIZE);
1117                 const sector_t sector = dax_iomap_sector(iomap, pos);
1118                 ssize_t map_len;
1119                 pgoff_t pgoff;
1120                 void *kaddr;
1121
1122                 if (fatal_signal_pending(current)) {
1123                         ret = -EINTR;
1124                         break;
1125                 }
1126
1127                 ret = bdev_dax_pgoff(bdev, sector, size, &pgoff);
1128                 if (ret)
1129                         break;
1130
1131                 map_len = dax_direct_access(dax_dev, pgoff, PHYS_PFN(size),
1132                                 &kaddr, NULL);
1133                 if (map_len < 0) {
1134                         ret = map_len;
1135                         break;
1136                 }
1137
1138                 map_len = PFN_PHYS(map_len);
1139                 kaddr += offset;
1140                 map_len -= offset;
1141                 if (map_len > end - pos)
1142                         map_len = end - pos;
1143
1144                 /*
1145                  * The userspace address for the memory copy has already been
1146                  * validated via access_ok() in either vfs_read() or
1147                  * vfs_write(), depending on which operation we are doing.
1148                  */
1149                 if (iov_iter_rw(iter) == WRITE)
1150                         xfer = dax_copy_from_iter(dax_dev, pgoff, kaddr,
1151                                         map_len, iter);
1152                 else
1153                         xfer = dax_copy_to_iter(dax_dev, pgoff, kaddr,
1154                                         map_len, iter);
1155
1156                 pos += xfer;
1157                 length -= xfer;
1158                 done += xfer;
1159
1160                 if (xfer == 0)
1161                         ret = -EFAULT;
1162                 if (xfer < map_len)
1163                         break;
1164         }
1165         dax_read_unlock(id);
1166
1167         return done ? done : ret;
1168 }
1169
1170 /**
1171  * dax_iomap_rw - Perform I/O to a DAX file
1172  * @iocb:       The control block for this I/O
1173  * @iter:       The addresses to do I/O from or to
1174  * @ops:        iomap ops passed from the file system
1175  *
1176  * This function performs read and write operations to directly mapped
1177  * persistent memory.  The callers needs to take care of read/write exclusion
1178  * and evicting any page cache pages in the region under I/O.
1179  */
1180 ssize_t
1181 dax_iomap_rw(struct kiocb *iocb, struct iov_iter *iter,
1182                 const struct iomap_ops *ops)
1183 {
1184         struct address_space *mapping = iocb->ki_filp->f_mapping;
1185         struct inode *inode = mapping->host;
1186         loff_t pos = iocb->ki_pos, ret = 0, done = 0;
1187         unsigned flags = 0;
1188
1189         if (iov_iter_rw(iter) == WRITE) {
1190                 lockdep_assert_held_write(&inode->i_rwsem);
1191                 flags |= IOMAP_WRITE;
1192         } else {
1193                 lockdep_assert_held(&inode->i_rwsem);
1194         }
1195
1196         if (iocb->ki_flags & IOCB_NOWAIT)
1197                 flags |= IOMAP_NOWAIT;
1198
1199         while (iov_iter_count(iter)) {
1200                 ret = iomap_apply(inode, pos, iov_iter_count(iter), flags, ops,
1201                                 iter, dax_iomap_actor);
1202                 if (ret <= 0)
1203                         break;
1204                 pos += ret;
1205                 done += ret;
1206         }
1207
1208         iocb->ki_pos += done;
1209         return done ? done : ret;
1210 }
1211 EXPORT_SYMBOL_GPL(dax_iomap_rw);
1212
1213 static vm_fault_t dax_fault_return(int error)
1214 {
1215         if (error == 0)
1216                 return VM_FAULT_NOPAGE;
1217         return vmf_error(error);
1218 }
1219
1220 /*
1221  * MAP_SYNC on a dax mapping guarantees dirty metadata is
1222  * flushed on write-faults (non-cow), but not read-faults.
1223  */
1224 static bool dax_fault_is_synchronous(unsigned long flags,
1225                 struct vm_area_struct *vma, struct iomap *iomap)
1226 {
1227         return (flags & IOMAP_WRITE) && (vma->vm_flags & VM_SYNC)
1228                 && (iomap->flags & IOMAP_F_DIRTY);
1229 }
1230
1231 static vm_fault_t dax_iomap_pte_fault(struct vm_fault *vmf, pfn_t *pfnp,
1232                                int *iomap_errp, const struct iomap_ops *ops)
1233 {
1234         struct vm_area_struct *vma = vmf->vma;
1235         struct address_space *mapping = vma->vm_file->f_mapping;
1236         XA_STATE(xas, &mapping->i_pages, vmf->pgoff);
1237         struct inode *inode = mapping->host;
1238         unsigned long vaddr = vmf->address;
1239         loff_t pos = (loff_t)vmf->pgoff << PAGE_SHIFT;
1240         struct iomap iomap = { .type = IOMAP_HOLE };
1241         struct iomap srcmap = { .type = IOMAP_HOLE };
1242         unsigned flags = IOMAP_FAULT;
1243         int error, major = 0;
1244         bool write = vmf->flags & FAULT_FLAG_WRITE;
1245         bool sync;
1246         vm_fault_t ret = 0;
1247         void *entry;
1248         pfn_t pfn;
1249
1250         trace_dax_pte_fault(inode, vmf, ret);
1251         /*
1252          * Check whether offset isn't beyond end of file now. Caller is supposed
1253          * to hold locks serializing us with truncate / punch hole so this is
1254          * a reliable test.
1255          */
1256         if (pos >= i_size_read(inode)) {
1257                 ret = VM_FAULT_SIGBUS;
1258                 goto out;
1259         }
1260
1261         if (write && !vmf->cow_page)
1262                 flags |= IOMAP_WRITE;
1263
1264         entry = grab_mapping_entry(&xas, mapping, 0);
1265         if (xa_is_internal(entry)) {
1266                 ret = xa_to_internal(entry);
1267                 goto out;
1268         }
1269
1270         /*
1271          * It is possible, particularly with mixed reads & writes to private
1272          * mappings, that we have raced with a PMD fault that overlaps with
1273          * the PTE we need to set up.  If so just return and the fault will be
1274          * retried.
1275          */
1276         if (pmd_trans_huge(*vmf->pmd) || pmd_devmap(*vmf->pmd)) {
1277                 ret = VM_FAULT_NOPAGE;
1278                 goto unlock_entry;
1279         }
1280
1281         /*
1282          * Note that we don't bother to use iomap_apply here: DAX required
1283          * the file system block size to be equal the page size, which means
1284          * that we never have to deal with more than a single extent here.
1285          */
1286         error = ops->iomap_begin(inode, pos, PAGE_SIZE, flags, &iomap, &srcmap);
1287         if (iomap_errp)
1288                 *iomap_errp = error;
1289         if (error) {
1290                 ret = dax_fault_return(error);
1291                 goto unlock_entry;
1292         }
1293         if (WARN_ON_ONCE(iomap.offset + iomap.length < pos + PAGE_SIZE)) {
1294                 error = -EIO;   /* fs corruption? */
1295                 goto error_finish_iomap;
1296         }
1297
1298         if (vmf->cow_page) {
1299                 sector_t sector = dax_iomap_sector(&iomap, pos);
1300
1301                 switch (iomap.type) {
1302                 case IOMAP_HOLE:
1303                 case IOMAP_UNWRITTEN:
1304                         clear_user_highpage(vmf->cow_page, vaddr);
1305                         break;
1306                 case IOMAP_MAPPED:
1307                         error = copy_cow_page_dax(iomap.bdev, iomap.dax_dev,
1308                                                   sector, vmf->cow_page, vaddr);
1309                         break;
1310                 default:
1311                         WARN_ON_ONCE(1);
1312                         error = -EIO;
1313                         break;
1314                 }
1315
1316                 if (error)
1317                         goto error_finish_iomap;
1318
1319                 __SetPageUptodate(vmf->cow_page);
1320                 ret = finish_fault(vmf);
1321                 if (!ret)
1322                         ret = VM_FAULT_DONE_COW;
1323                 goto finish_iomap;
1324         }
1325
1326         sync = dax_fault_is_synchronous(flags, vma, &iomap);
1327
1328         switch (iomap.type) {
1329         case IOMAP_MAPPED:
1330                 if (iomap.flags & IOMAP_F_NEW) {
1331                         count_vm_event(PGMAJFAULT);
1332                         count_memcg_event_mm(vma->vm_mm, PGMAJFAULT);
1333                         major = VM_FAULT_MAJOR;
1334                 }
1335                 error = dax_iomap_pfn(&iomap, pos, PAGE_SIZE, &pfn);
1336                 if (error < 0)
1337                         goto error_finish_iomap;
1338
1339                 entry = dax_insert_entry(&xas, mapping, vmf, entry, pfn,
1340                                                  0, write && !sync);
1341
1342                 /*
1343                  * If we are doing synchronous page fault and inode needs fsync,
1344                  * we can insert PTE into page tables only after that happens.
1345                  * Skip insertion for now and return the pfn so that caller can
1346                  * insert it after fsync is done.
1347                  */
1348                 if (sync) {
1349                         if (WARN_ON_ONCE(!pfnp)) {
1350                                 error = -EIO;
1351                                 goto error_finish_iomap;
1352                         }
1353                         *pfnp = pfn;
1354                         ret = VM_FAULT_NEEDDSYNC | major;
1355                         goto finish_iomap;
1356                 }
1357                 trace_dax_insert_mapping(inode, vmf, entry);
1358                 if (write)
1359                         ret = vmf_insert_mixed_mkwrite(vma, vaddr, pfn);
1360                 else
1361                         ret = vmf_insert_mixed(vma, vaddr, pfn);
1362
1363                 goto finish_iomap;
1364         case IOMAP_UNWRITTEN:
1365         case IOMAP_HOLE:
1366                 if (!write) {
1367                         ret = dax_load_hole(&xas, mapping, &entry, vmf);
1368                         goto finish_iomap;
1369                 }
1370                 fallthrough;
1371         default:
1372                 WARN_ON_ONCE(1);
1373                 error = -EIO;
1374                 break;
1375         }
1376
1377  error_finish_iomap:
1378         ret = dax_fault_return(error);
1379  finish_iomap:
1380         if (ops->iomap_end) {
1381                 int copied = PAGE_SIZE;
1382
1383                 if (ret & VM_FAULT_ERROR)
1384                         copied = 0;
1385                 /*
1386                  * The fault is done by now and there's no way back (other
1387                  * thread may be already happily using PTE we have installed).
1388                  * Just ignore error from ->iomap_end since we cannot do much
1389                  * with it.
1390                  */
1391                 ops->iomap_end(inode, pos, PAGE_SIZE, copied, flags, &iomap);
1392         }
1393  unlock_entry:
1394         dax_unlock_entry(&xas, entry);
1395  out:
1396         trace_dax_pte_fault_done(inode, vmf, ret);
1397         return ret | major;
1398 }
1399
1400 #ifdef CONFIG_FS_DAX_PMD
1401 static vm_fault_t dax_pmd_load_hole(struct xa_state *xas, struct vm_fault *vmf,
1402                 struct iomap *iomap, void **entry)
1403 {
1404         struct address_space *mapping = vmf->vma->vm_file->f_mapping;
1405         unsigned long pmd_addr = vmf->address & PMD_MASK;
1406         struct vm_area_struct *vma = vmf->vma;
1407         struct inode *inode = mapping->host;
1408         pgtable_t pgtable = NULL;
1409         struct page *zero_page;
1410         spinlock_t *ptl;
1411         pmd_t pmd_entry;
1412         pfn_t pfn;
1413
1414         zero_page = mm_get_huge_zero_page(vmf->vma->vm_mm);
1415
1416         if (unlikely(!zero_page))
1417                 goto fallback;
1418
1419         pfn = page_to_pfn_t(zero_page);
1420         *entry = dax_insert_entry(xas, mapping, vmf, *entry, pfn,
1421                         DAX_PMD | DAX_ZERO_PAGE, false);
1422
1423         if (arch_needs_pgtable_deposit()) {
1424                 pgtable = pte_alloc_one(vma->vm_mm);
1425                 if (!pgtable)
1426                         return VM_FAULT_OOM;
1427         }
1428
1429         ptl = pmd_lock(vmf->vma->vm_mm, vmf->pmd);
1430         if (!pmd_none(*(vmf->pmd))) {
1431                 spin_unlock(ptl);
1432                 goto fallback;
1433         }
1434
1435         if (pgtable) {
1436                 pgtable_trans_huge_deposit(vma->vm_mm, vmf->pmd, pgtable);
1437                 mm_inc_nr_ptes(vma->vm_mm);
1438         }
1439         pmd_entry = mk_pmd(zero_page, vmf->vma->vm_page_prot);
1440         pmd_entry = pmd_mkhuge(pmd_entry);
1441         set_pmd_at(vmf->vma->vm_mm, pmd_addr, vmf->pmd, pmd_entry);
1442         spin_unlock(ptl);
1443         trace_dax_pmd_load_hole(inode, vmf, zero_page, *entry);
1444         return VM_FAULT_NOPAGE;
1445
1446 fallback:
1447         if (pgtable)
1448                 pte_free(vma->vm_mm, pgtable);
1449         trace_dax_pmd_load_hole_fallback(inode, vmf, zero_page, *entry);
1450         return VM_FAULT_FALLBACK;
1451 }
1452
1453 static vm_fault_t dax_iomap_pmd_fault(struct vm_fault *vmf, pfn_t *pfnp,
1454                                const struct iomap_ops *ops)
1455 {
1456         struct vm_area_struct *vma = vmf->vma;
1457         struct address_space *mapping = vma->vm_file->f_mapping;
1458         XA_STATE_ORDER(xas, &mapping->i_pages, vmf->pgoff, PMD_ORDER);
1459         unsigned long pmd_addr = vmf->address & PMD_MASK;
1460         bool write = vmf->flags & FAULT_FLAG_WRITE;
1461         bool sync;
1462         unsigned int iomap_flags = (write ? IOMAP_WRITE : 0) | IOMAP_FAULT;
1463         struct inode *inode = mapping->host;
1464         vm_fault_t result = VM_FAULT_FALLBACK;
1465         struct iomap iomap = { .type = IOMAP_HOLE };
1466         struct iomap srcmap = { .type = IOMAP_HOLE };
1467         pgoff_t max_pgoff;
1468         void *entry;
1469         loff_t pos;
1470         int error;
1471         pfn_t pfn;
1472
1473         /*
1474          * Check whether offset isn't beyond end of file now. Caller is
1475          * supposed to hold locks serializing us with truncate / punch hole so
1476          * this is a reliable test.
1477          */
1478         max_pgoff = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
1479
1480         trace_dax_pmd_fault(inode, vmf, max_pgoff, 0);
1481
1482         /*
1483          * Make sure that the faulting address's PMD offset (color) matches
1484          * the PMD offset from the start of the file.  This is necessary so
1485          * that a PMD range in the page table overlaps exactly with a PMD
1486          * range in the page cache.
1487          */
1488         if ((vmf->pgoff & PG_PMD_COLOUR) !=
1489             ((vmf->address >> PAGE_SHIFT) & PG_PMD_COLOUR))
1490                 goto fallback;
1491
1492         /* Fall back to PTEs if we're going to COW */
1493         if (write && !(vma->vm_flags & VM_SHARED))
1494                 goto fallback;
1495
1496         /* If the PMD would extend outside the VMA */
1497         if (pmd_addr < vma->vm_start)
1498                 goto fallback;
1499         if ((pmd_addr + PMD_SIZE) > vma->vm_end)
1500                 goto fallback;
1501
1502         if (xas.xa_index >= max_pgoff) {
1503                 result = VM_FAULT_SIGBUS;
1504                 goto out;
1505         }
1506
1507         /* If the PMD would extend beyond the file size */
1508         if ((xas.xa_index | PG_PMD_COLOUR) >= max_pgoff)
1509                 goto fallback;
1510
1511         /*
1512          * grab_mapping_entry() will make sure we get an empty PMD entry,
1513          * a zero PMD entry or a DAX PMD.  If it can't (because a PTE
1514          * entry is already in the array, for instance), it will return
1515          * VM_FAULT_FALLBACK.
1516          */
1517         entry = grab_mapping_entry(&xas, mapping, PMD_ORDER);
1518         if (xa_is_internal(entry)) {
1519                 result = xa_to_internal(entry);
1520                 goto fallback;
1521         }
1522
1523         /*
1524          * It is possible, particularly with mixed reads & writes to private
1525          * mappings, that we have raced with a PTE fault that overlaps with
1526          * the PMD we need to set up.  If so just return and the fault will be
1527          * retried.
1528          */
1529         if (!pmd_none(*vmf->pmd) && !pmd_trans_huge(*vmf->pmd) &&
1530                         !pmd_devmap(*vmf->pmd)) {
1531                 result = 0;
1532                 goto unlock_entry;
1533         }
1534
1535         /*
1536          * Note that we don't use iomap_apply here.  We aren't doing I/O, only
1537          * setting up a mapping, so really we're using iomap_begin() as a way
1538          * to look up our filesystem block.
1539          */
1540         pos = (loff_t)xas.xa_index << PAGE_SHIFT;
1541         error = ops->iomap_begin(inode, pos, PMD_SIZE, iomap_flags, &iomap,
1542                         &srcmap);
1543         if (error)
1544                 goto unlock_entry;
1545
1546         if (iomap.offset + iomap.length < pos + PMD_SIZE)
1547                 goto finish_iomap;
1548
1549         sync = dax_fault_is_synchronous(iomap_flags, vma, &iomap);
1550
1551         switch (iomap.type) {
1552         case IOMAP_MAPPED:
1553                 error = dax_iomap_pfn(&iomap, pos, PMD_SIZE, &pfn);
1554                 if (error < 0)
1555                         goto finish_iomap;
1556
1557                 entry = dax_insert_entry(&xas, mapping, vmf, entry, pfn,
1558                                                 DAX_PMD, write && !sync);
1559
1560                 /*
1561                  * If we are doing synchronous page fault and inode needs fsync,
1562                  * we can insert PMD into page tables only after that happens.
1563                  * Skip insertion for now and return the pfn so that caller can
1564                  * insert it after fsync is done.
1565                  */
1566                 if (sync) {
1567                         if (WARN_ON_ONCE(!pfnp))
1568                                 goto finish_iomap;
1569                         *pfnp = pfn;
1570                         result = VM_FAULT_NEEDDSYNC;
1571                         goto finish_iomap;
1572                 }
1573
1574                 trace_dax_pmd_insert_mapping(inode, vmf, PMD_SIZE, pfn, entry);
1575                 result = vmf_insert_pfn_pmd(vmf, pfn, write);
1576                 break;
1577         case IOMAP_UNWRITTEN:
1578         case IOMAP_HOLE:
1579                 if (WARN_ON_ONCE(write))
1580                         break;
1581                 result = dax_pmd_load_hole(&xas, vmf, &iomap, &entry);
1582                 break;
1583         default:
1584                 WARN_ON_ONCE(1);
1585                 break;
1586         }
1587
1588  finish_iomap:
1589         if (ops->iomap_end) {
1590                 int copied = PMD_SIZE;
1591
1592                 if (result == VM_FAULT_FALLBACK)
1593                         copied = 0;
1594                 /*
1595                  * The fault is done by now and there's no way back (other
1596                  * thread may be already happily using PMD we have installed).
1597                  * Just ignore error from ->iomap_end since we cannot do much
1598                  * with it.
1599                  */
1600                 ops->iomap_end(inode, pos, PMD_SIZE, copied, iomap_flags,
1601                                 &iomap);
1602         }
1603  unlock_entry:
1604         dax_unlock_entry(&xas, entry);
1605  fallback:
1606         if (result == VM_FAULT_FALLBACK) {
1607                 split_huge_pmd(vma, vmf->pmd, vmf->address);
1608                 count_vm_event(THP_FAULT_FALLBACK);
1609         }
1610 out:
1611         trace_dax_pmd_fault_done(inode, vmf, max_pgoff, result);
1612         return result;
1613 }
1614 #else
1615 static vm_fault_t dax_iomap_pmd_fault(struct vm_fault *vmf, pfn_t *pfnp,
1616                                const struct iomap_ops *ops)
1617 {
1618         return VM_FAULT_FALLBACK;
1619 }
1620 #endif /* CONFIG_FS_DAX_PMD */
1621
1622 /**
1623  * dax_iomap_fault - handle a page fault on a DAX file
1624  * @vmf: The description of the fault
1625  * @pe_size: Size of the page to fault in
1626  * @pfnp: PFN to insert for synchronous faults if fsync is required
1627  * @iomap_errp: Storage for detailed error code in case of error
1628  * @ops: Iomap ops passed from the file system
1629  *
1630  * When a page fault occurs, filesystems may call this helper in
1631  * their fault handler for DAX files. dax_iomap_fault() assumes the caller
1632  * has done all the necessary locking for page fault to proceed
1633  * successfully.
1634  */
1635 vm_fault_t dax_iomap_fault(struct vm_fault *vmf, enum page_entry_size pe_size,
1636                     pfn_t *pfnp, int *iomap_errp, const struct iomap_ops *ops)
1637 {
1638         switch (pe_size) {
1639         case PE_SIZE_PTE:
1640                 return dax_iomap_pte_fault(vmf, pfnp, iomap_errp, ops);
1641         case PE_SIZE_PMD:
1642                 return dax_iomap_pmd_fault(vmf, pfnp, ops);
1643         default:
1644                 return VM_FAULT_FALLBACK;
1645         }
1646 }
1647 EXPORT_SYMBOL_GPL(dax_iomap_fault);
1648
1649 /*
1650  * dax_insert_pfn_mkwrite - insert PTE or PMD entry into page tables
1651  * @vmf: The description of the fault
1652  * @pfn: PFN to insert
1653  * @order: Order of entry to insert.
1654  *
1655  * This function inserts a writeable PTE or PMD entry into the page tables
1656  * for an mmaped DAX file.  It also marks the page cache entry as dirty.
1657  */
1658 static vm_fault_t
1659 dax_insert_pfn_mkwrite(struct vm_fault *vmf, pfn_t pfn, unsigned int order)
1660 {
1661         struct address_space *mapping = vmf->vma->vm_file->f_mapping;
1662         XA_STATE_ORDER(xas, &mapping->i_pages, vmf->pgoff, order);
1663         void *entry;
1664         vm_fault_t ret;
1665
1666         xas_lock_irq(&xas);
1667         entry = get_unlocked_entry(&xas, order);
1668         /* Did we race with someone splitting entry or so? */
1669         if (!entry || dax_is_conflict(entry) ||
1670             (order == 0 && !dax_is_pte_entry(entry))) {
1671                 put_unlocked_entry(&xas, entry);
1672                 xas_unlock_irq(&xas);
1673                 trace_dax_insert_pfn_mkwrite_no_entry(mapping->host, vmf,
1674                                                       VM_FAULT_NOPAGE);
1675                 return VM_FAULT_NOPAGE;
1676         }
1677         xas_set_mark(&xas, PAGECACHE_TAG_DIRTY);
1678         dax_lock_entry(&xas, entry);
1679         xas_unlock_irq(&xas);
1680         if (order == 0)
1681                 ret = vmf_insert_mixed_mkwrite(vmf->vma, vmf->address, pfn);
1682 #ifdef CONFIG_FS_DAX_PMD
1683         else if (order == PMD_ORDER)
1684                 ret = vmf_insert_pfn_pmd(vmf, pfn, FAULT_FLAG_WRITE);
1685 #endif
1686         else
1687                 ret = VM_FAULT_FALLBACK;
1688         dax_unlock_entry(&xas, entry);
1689         trace_dax_insert_pfn_mkwrite(mapping->host, vmf, ret);
1690         return ret;
1691 }
1692
1693 /**
1694  * dax_finish_sync_fault - finish synchronous page fault
1695  * @vmf: The description of the fault
1696  * @pe_size: Size of entry to be inserted
1697  * @pfn: PFN to insert
1698  *
1699  * This function ensures that the file range touched by the page fault is
1700  * stored persistently on the media and handles inserting of appropriate page
1701  * table entry.
1702  */
1703 vm_fault_t dax_finish_sync_fault(struct vm_fault *vmf,
1704                 enum page_entry_size pe_size, pfn_t pfn)
1705 {
1706         int err;
1707         loff_t start = ((loff_t)vmf->pgoff) << PAGE_SHIFT;
1708         unsigned int order = pe_order(pe_size);
1709         size_t len = PAGE_SIZE << order;
1710
1711         err = vfs_fsync_range(vmf->vma->vm_file, start, start + len - 1, 1);
1712         if (err)
1713                 return VM_FAULT_SIGBUS;
1714         return dax_insert_pfn_mkwrite(vmf, pfn, order);
1715 }
1716 EXPORT_SYMBOL_GPL(dax_finish_sync_fault);