Merge tag 'platform-drivers-x86-v5.13-2' of git://git.kernel.org/pub/scm/linux/kernel...
[linux-2.6-microblaze.git] / fs / dax.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * fs/dax.c - Direct Access filesystem code
4  * Copyright (c) 2013-2014 Intel Corporation
5  * Author: Matthew Wilcox <matthew.r.wilcox@intel.com>
6  * Author: Ross Zwisler <ross.zwisler@linux.intel.com>
7  */
8
9 #include <linux/atomic.h>
10 #include <linux/blkdev.h>
11 #include <linux/buffer_head.h>
12 #include <linux/dax.h>
13 #include <linux/fs.h>
14 #include <linux/genhd.h>
15 #include <linux/highmem.h>
16 #include <linux/memcontrol.h>
17 #include <linux/mm.h>
18 #include <linux/mutex.h>
19 #include <linux/pagevec.h>
20 #include <linux/sched.h>
21 #include <linux/sched/signal.h>
22 #include <linux/uio.h>
23 #include <linux/vmstat.h>
24 #include <linux/pfn_t.h>
25 #include <linux/sizes.h>
26 #include <linux/mmu_notifier.h>
27 #include <linux/iomap.h>
28 #include <asm/pgalloc.h>
29
30 #define CREATE_TRACE_POINTS
31 #include <trace/events/fs_dax.h>
32
33 static inline unsigned int pe_order(enum page_entry_size pe_size)
34 {
35         if (pe_size == PE_SIZE_PTE)
36                 return PAGE_SHIFT - PAGE_SHIFT;
37         if (pe_size == PE_SIZE_PMD)
38                 return PMD_SHIFT - PAGE_SHIFT;
39         if (pe_size == PE_SIZE_PUD)
40                 return PUD_SHIFT - PAGE_SHIFT;
41         return ~0;
42 }
43
44 /* We choose 4096 entries - same as per-zone page wait tables */
45 #define DAX_WAIT_TABLE_BITS 12
46 #define DAX_WAIT_TABLE_ENTRIES (1 << DAX_WAIT_TABLE_BITS)
47
48 /* The 'colour' (ie low bits) within a PMD of a page offset.  */
49 #define PG_PMD_COLOUR   ((PMD_SIZE >> PAGE_SHIFT) - 1)
50 #define PG_PMD_NR       (PMD_SIZE >> PAGE_SHIFT)
51
52 /* The order of a PMD entry */
53 #define PMD_ORDER       (PMD_SHIFT - PAGE_SHIFT)
54
55 static wait_queue_head_t wait_table[DAX_WAIT_TABLE_ENTRIES];
56
57 static int __init init_dax_wait_table(void)
58 {
59         int i;
60
61         for (i = 0; i < DAX_WAIT_TABLE_ENTRIES; i++)
62                 init_waitqueue_head(wait_table + i);
63         return 0;
64 }
65 fs_initcall(init_dax_wait_table);
66
67 /*
68  * DAX pagecache entries use XArray value entries so they can't be mistaken
69  * for pages.  We use one bit for locking, one bit for the entry size (PMD)
70  * and two more to tell us if the entry is a zero page or an empty entry that
71  * is just used for locking.  In total four special bits.
72  *
73  * If the PMD bit isn't set the entry has size PAGE_SIZE, and if the ZERO_PAGE
74  * and EMPTY bits aren't set the entry is a normal DAX entry with a filesystem
75  * block allocation.
76  */
77 #define DAX_SHIFT       (4)
78 #define DAX_LOCKED      (1UL << 0)
79 #define DAX_PMD         (1UL << 1)
80 #define DAX_ZERO_PAGE   (1UL << 2)
81 #define DAX_EMPTY       (1UL << 3)
82
83 static unsigned long dax_to_pfn(void *entry)
84 {
85         return xa_to_value(entry) >> DAX_SHIFT;
86 }
87
88 static void *dax_make_entry(pfn_t pfn, unsigned long flags)
89 {
90         return xa_mk_value(flags | (pfn_t_to_pfn(pfn) << DAX_SHIFT));
91 }
92
93 static bool dax_is_locked(void *entry)
94 {
95         return xa_to_value(entry) & DAX_LOCKED;
96 }
97
98 static unsigned int dax_entry_order(void *entry)
99 {
100         if (xa_to_value(entry) & DAX_PMD)
101                 return PMD_ORDER;
102         return 0;
103 }
104
105 static unsigned long dax_is_pmd_entry(void *entry)
106 {
107         return xa_to_value(entry) & DAX_PMD;
108 }
109
110 static bool dax_is_pte_entry(void *entry)
111 {
112         return !(xa_to_value(entry) & DAX_PMD);
113 }
114
115 static int dax_is_zero_entry(void *entry)
116 {
117         return xa_to_value(entry) & DAX_ZERO_PAGE;
118 }
119
120 static int dax_is_empty_entry(void *entry)
121 {
122         return xa_to_value(entry) & DAX_EMPTY;
123 }
124
125 /*
126  * true if the entry that was found is of a smaller order than the entry
127  * we were looking for
128  */
129 static bool dax_is_conflict(void *entry)
130 {
131         return entry == XA_RETRY_ENTRY;
132 }
133
134 /*
135  * DAX page cache entry locking
136  */
137 struct exceptional_entry_key {
138         struct xarray *xa;
139         pgoff_t entry_start;
140 };
141
142 struct wait_exceptional_entry_queue {
143         wait_queue_entry_t wait;
144         struct exceptional_entry_key key;
145 };
146
147 /**
148  * enum dax_wake_mode: waitqueue wakeup behaviour
149  * @WAKE_ALL: wake all waiters in the waitqueue
150  * @WAKE_NEXT: wake only the first waiter in the waitqueue
151  */
152 enum dax_wake_mode {
153         WAKE_ALL,
154         WAKE_NEXT,
155 };
156
157 static wait_queue_head_t *dax_entry_waitqueue(struct xa_state *xas,
158                 void *entry, struct exceptional_entry_key *key)
159 {
160         unsigned long hash;
161         unsigned long index = xas->xa_index;
162
163         /*
164          * If 'entry' is a PMD, align the 'index' that we use for the wait
165          * queue to the start of that PMD.  This ensures that all offsets in
166          * the range covered by the PMD map to the same bit lock.
167          */
168         if (dax_is_pmd_entry(entry))
169                 index &= ~PG_PMD_COLOUR;
170         key->xa = xas->xa;
171         key->entry_start = index;
172
173         hash = hash_long((unsigned long)xas->xa ^ index, DAX_WAIT_TABLE_BITS);
174         return wait_table + hash;
175 }
176
177 static int wake_exceptional_entry_func(wait_queue_entry_t *wait,
178                 unsigned int mode, int sync, void *keyp)
179 {
180         struct exceptional_entry_key *key = keyp;
181         struct wait_exceptional_entry_queue *ewait =
182                 container_of(wait, struct wait_exceptional_entry_queue, wait);
183
184         if (key->xa != ewait->key.xa ||
185             key->entry_start != ewait->key.entry_start)
186                 return 0;
187         return autoremove_wake_function(wait, mode, sync, NULL);
188 }
189
190 /*
191  * @entry may no longer be the entry at the index in the mapping.
192  * The important information it's conveying is whether the entry at
193  * this index used to be a PMD entry.
194  */
195 static void dax_wake_entry(struct xa_state *xas, void *entry,
196                            enum dax_wake_mode mode)
197 {
198         struct exceptional_entry_key key;
199         wait_queue_head_t *wq;
200
201         wq = dax_entry_waitqueue(xas, entry, &key);
202
203         /*
204          * Checking for locked entry and prepare_to_wait_exclusive() happens
205          * under the i_pages lock, ditto for entry handling in our callers.
206          * So at this point all tasks that could have seen our entry locked
207          * must be in the waitqueue and the following check will see them.
208          */
209         if (waitqueue_active(wq))
210                 __wake_up(wq, TASK_NORMAL, mode == WAKE_ALL ? 0 : 1, &key);
211 }
212
213 /*
214  * Look up entry in page cache, wait for it to become unlocked if it
215  * is a DAX entry and return it.  The caller must subsequently call
216  * put_unlocked_entry() if it did not lock the entry or dax_unlock_entry()
217  * if it did.  The entry returned may have a larger order than @order.
218  * If @order is larger than the order of the entry found in i_pages, this
219  * function returns a dax_is_conflict entry.
220  *
221  * Must be called with the i_pages lock held.
222  */
223 static void *get_unlocked_entry(struct xa_state *xas, unsigned int order)
224 {
225         void *entry;
226         struct wait_exceptional_entry_queue ewait;
227         wait_queue_head_t *wq;
228
229         init_wait(&ewait.wait);
230         ewait.wait.func = wake_exceptional_entry_func;
231
232         for (;;) {
233                 entry = xas_find_conflict(xas);
234                 if (!entry || WARN_ON_ONCE(!xa_is_value(entry)))
235                         return entry;
236                 if (dax_entry_order(entry) < order)
237                         return XA_RETRY_ENTRY;
238                 if (!dax_is_locked(entry))
239                         return entry;
240
241                 wq = dax_entry_waitqueue(xas, entry, &ewait.key);
242                 prepare_to_wait_exclusive(wq, &ewait.wait,
243                                           TASK_UNINTERRUPTIBLE);
244                 xas_unlock_irq(xas);
245                 xas_reset(xas);
246                 schedule();
247                 finish_wait(wq, &ewait.wait);
248                 xas_lock_irq(xas);
249         }
250 }
251
252 /*
253  * The only thing keeping the address space around is the i_pages lock
254  * (it's cycled in clear_inode() after removing the entries from i_pages)
255  * After we call xas_unlock_irq(), we cannot touch xas->xa.
256  */
257 static void wait_entry_unlocked(struct xa_state *xas, void *entry)
258 {
259         struct wait_exceptional_entry_queue ewait;
260         wait_queue_head_t *wq;
261
262         init_wait(&ewait.wait);
263         ewait.wait.func = wake_exceptional_entry_func;
264
265         wq = dax_entry_waitqueue(xas, entry, &ewait.key);
266         /*
267          * Unlike get_unlocked_entry() there is no guarantee that this
268          * path ever successfully retrieves an unlocked entry before an
269          * inode dies. Perform a non-exclusive wait in case this path
270          * never successfully performs its own wake up.
271          */
272         prepare_to_wait(wq, &ewait.wait, TASK_UNINTERRUPTIBLE);
273         xas_unlock_irq(xas);
274         schedule();
275         finish_wait(wq, &ewait.wait);
276 }
277
278 static void put_unlocked_entry(struct xa_state *xas, void *entry,
279                                enum dax_wake_mode mode)
280 {
281         if (entry && !dax_is_conflict(entry))
282                 dax_wake_entry(xas, entry, mode);
283 }
284
285 /*
286  * We used the xa_state to get the entry, but then we locked the entry and
287  * dropped the xa_lock, so we know the xa_state is stale and must be reset
288  * before use.
289  */
290 static void dax_unlock_entry(struct xa_state *xas, void *entry)
291 {
292         void *old;
293
294         BUG_ON(dax_is_locked(entry));
295         xas_reset(xas);
296         xas_lock_irq(xas);
297         old = xas_store(xas, entry);
298         xas_unlock_irq(xas);
299         BUG_ON(!dax_is_locked(old));
300         dax_wake_entry(xas, entry, WAKE_NEXT);
301 }
302
303 /*
304  * Return: The entry stored at this location before it was locked.
305  */
306 static void *dax_lock_entry(struct xa_state *xas, void *entry)
307 {
308         unsigned long v = xa_to_value(entry);
309         return xas_store(xas, xa_mk_value(v | DAX_LOCKED));
310 }
311
312 static unsigned long dax_entry_size(void *entry)
313 {
314         if (dax_is_zero_entry(entry))
315                 return 0;
316         else if (dax_is_empty_entry(entry))
317                 return 0;
318         else if (dax_is_pmd_entry(entry))
319                 return PMD_SIZE;
320         else
321                 return PAGE_SIZE;
322 }
323
324 static unsigned long dax_end_pfn(void *entry)
325 {
326         return dax_to_pfn(entry) + dax_entry_size(entry) / PAGE_SIZE;
327 }
328
329 /*
330  * Iterate through all mapped pfns represented by an entry, i.e. skip
331  * 'empty' and 'zero' entries.
332  */
333 #define for_each_mapped_pfn(entry, pfn) \
334         for (pfn = dax_to_pfn(entry); \
335                         pfn < dax_end_pfn(entry); pfn++)
336
337 /*
338  * TODO: for reflink+dax we need a way to associate a single page with
339  * multiple address_space instances at different linear_page_index()
340  * offsets.
341  */
342 static void dax_associate_entry(void *entry, struct address_space *mapping,
343                 struct vm_area_struct *vma, unsigned long address)
344 {
345         unsigned long size = dax_entry_size(entry), pfn, index;
346         int i = 0;
347
348         if (IS_ENABLED(CONFIG_FS_DAX_LIMITED))
349                 return;
350
351         index = linear_page_index(vma, address & ~(size - 1));
352         for_each_mapped_pfn(entry, pfn) {
353                 struct page *page = pfn_to_page(pfn);
354
355                 WARN_ON_ONCE(page->mapping);
356                 page->mapping = mapping;
357                 page->index = index + i++;
358         }
359 }
360
361 static void dax_disassociate_entry(void *entry, struct address_space *mapping,
362                 bool trunc)
363 {
364         unsigned long pfn;
365
366         if (IS_ENABLED(CONFIG_FS_DAX_LIMITED))
367                 return;
368
369         for_each_mapped_pfn(entry, pfn) {
370                 struct page *page = pfn_to_page(pfn);
371
372                 WARN_ON_ONCE(trunc && page_ref_count(page) > 1);
373                 WARN_ON_ONCE(page->mapping && page->mapping != mapping);
374                 page->mapping = NULL;
375                 page->index = 0;
376         }
377 }
378
379 static struct page *dax_busy_page(void *entry)
380 {
381         unsigned long pfn;
382
383         for_each_mapped_pfn(entry, pfn) {
384                 struct page *page = pfn_to_page(pfn);
385
386                 if (page_ref_count(page) > 1)
387                         return page;
388         }
389         return NULL;
390 }
391
392 /*
393  * dax_lock_mapping_entry - Lock the DAX entry corresponding to a page
394  * @page: The page whose entry we want to lock
395  *
396  * Context: Process context.
397  * Return: A cookie to pass to dax_unlock_page() or 0 if the entry could
398  * not be locked.
399  */
400 dax_entry_t dax_lock_page(struct page *page)
401 {
402         XA_STATE(xas, NULL, 0);
403         void *entry;
404
405         /* Ensure page->mapping isn't freed while we look at it */
406         rcu_read_lock();
407         for (;;) {
408                 struct address_space *mapping = READ_ONCE(page->mapping);
409
410                 entry = NULL;
411                 if (!mapping || !dax_mapping(mapping))
412                         break;
413
414                 /*
415                  * In the device-dax case there's no need to lock, a
416                  * struct dev_pagemap pin is sufficient to keep the
417                  * inode alive, and we assume we have dev_pagemap pin
418                  * otherwise we would not have a valid pfn_to_page()
419                  * translation.
420                  */
421                 entry = (void *)~0UL;
422                 if (S_ISCHR(mapping->host->i_mode))
423                         break;
424
425                 xas.xa = &mapping->i_pages;
426                 xas_lock_irq(&xas);
427                 if (mapping != page->mapping) {
428                         xas_unlock_irq(&xas);
429                         continue;
430                 }
431                 xas_set(&xas, page->index);
432                 entry = xas_load(&xas);
433                 if (dax_is_locked(entry)) {
434                         rcu_read_unlock();
435                         wait_entry_unlocked(&xas, entry);
436                         rcu_read_lock();
437                         continue;
438                 }
439                 dax_lock_entry(&xas, entry);
440                 xas_unlock_irq(&xas);
441                 break;
442         }
443         rcu_read_unlock();
444         return (dax_entry_t)entry;
445 }
446
447 void dax_unlock_page(struct page *page, dax_entry_t cookie)
448 {
449         struct address_space *mapping = page->mapping;
450         XA_STATE(xas, &mapping->i_pages, page->index);
451
452         if (S_ISCHR(mapping->host->i_mode))
453                 return;
454
455         dax_unlock_entry(&xas, (void *)cookie);
456 }
457
458 /*
459  * Find page cache entry at given index. If it is a DAX entry, return it
460  * with the entry locked. If the page cache doesn't contain an entry at
461  * that index, add a locked empty entry.
462  *
463  * When requesting an entry with size DAX_PMD, grab_mapping_entry() will
464  * either return that locked entry or will return VM_FAULT_FALLBACK.
465  * This will happen if there are any PTE entries within the PMD range
466  * that we are requesting.
467  *
468  * We always favor PTE entries over PMD entries. There isn't a flow where we
469  * evict PTE entries in order to 'upgrade' them to a PMD entry.  A PMD
470  * insertion will fail if it finds any PTE entries already in the tree, and a
471  * PTE insertion will cause an existing PMD entry to be unmapped and
472  * downgraded to PTE entries.  This happens for both PMD zero pages as
473  * well as PMD empty entries.
474  *
475  * The exception to this downgrade path is for PMD entries that have
476  * real storage backing them.  We will leave these real PMD entries in
477  * the tree, and PTE writes will simply dirty the entire PMD entry.
478  *
479  * Note: Unlike filemap_fault() we don't honor FAULT_FLAG_RETRY flags. For
480  * persistent memory the benefit is doubtful. We can add that later if we can
481  * show it helps.
482  *
483  * On error, this function does not return an ERR_PTR.  Instead it returns
484  * a VM_FAULT code, encoded as an xarray internal entry.  The ERR_PTR values
485  * overlap with xarray value entries.
486  */
487 static void *grab_mapping_entry(struct xa_state *xas,
488                 struct address_space *mapping, unsigned int order)
489 {
490         unsigned long index = xas->xa_index;
491         bool pmd_downgrade = false; /* splitting PMD entry into PTE entries? */
492         void *entry;
493
494 retry:
495         xas_lock_irq(xas);
496         entry = get_unlocked_entry(xas, order);
497
498         if (entry) {
499                 if (dax_is_conflict(entry))
500                         goto fallback;
501                 if (!xa_is_value(entry)) {
502                         xas_set_err(xas, -EIO);
503                         goto out_unlock;
504                 }
505
506                 if (order == 0) {
507                         if (dax_is_pmd_entry(entry) &&
508                             (dax_is_zero_entry(entry) ||
509                              dax_is_empty_entry(entry))) {
510                                 pmd_downgrade = true;
511                         }
512                 }
513         }
514
515         if (pmd_downgrade) {
516                 /*
517                  * Make sure 'entry' remains valid while we drop
518                  * the i_pages lock.
519                  */
520                 dax_lock_entry(xas, entry);
521
522                 /*
523                  * Besides huge zero pages the only other thing that gets
524                  * downgraded are empty entries which don't need to be
525                  * unmapped.
526                  */
527                 if (dax_is_zero_entry(entry)) {
528                         xas_unlock_irq(xas);
529                         unmap_mapping_pages(mapping,
530                                         xas->xa_index & ~PG_PMD_COLOUR,
531                                         PG_PMD_NR, false);
532                         xas_reset(xas);
533                         xas_lock_irq(xas);
534                 }
535
536                 dax_disassociate_entry(entry, mapping, false);
537                 xas_store(xas, NULL);   /* undo the PMD join */
538                 dax_wake_entry(xas, entry, WAKE_ALL);
539                 mapping->nrpages -= PG_PMD_NR;
540                 entry = NULL;
541                 xas_set(xas, index);
542         }
543
544         if (entry) {
545                 dax_lock_entry(xas, entry);
546         } else {
547                 unsigned long flags = DAX_EMPTY;
548
549                 if (order > 0)
550                         flags |= DAX_PMD;
551                 entry = dax_make_entry(pfn_to_pfn_t(0), flags);
552                 dax_lock_entry(xas, entry);
553                 if (xas_error(xas))
554                         goto out_unlock;
555                 mapping->nrpages += 1UL << order;
556         }
557
558 out_unlock:
559         xas_unlock_irq(xas);
560         if (xas_nomem(xas, mapping_gfp_mask(mapping) & ~__GFP_HIGHMEM))
561                 goto retry;
562         if (xas->xa_node == XA_ERROR(-ENOMEM))
563                 return xa_mk_internal(VM_FAULT_OOM);
564         if (xas_error(xas))
565                 return xa_mk_internal(VM_FAULT_SIGBUS);
566         return entry;
567 fallback:
568         xas_unlock_irq(xas);
569         return xa_mk_internal(VM_FAULT_FALLBACK);
570 }
571
572 /**
573  * dax_layout_busy_page_range - find first pinned page in @mapping
574  * @mapping: address space to scan for a page with ref count > 1
575  * @start: Starting offset. Page containing 'start' is included.
576  * @end: End offset. Page containing 'end' is included. If 'end' is LLONG_MAX,
577  *       pages from 'start' till the end of file are included.
578  *
579  * DAX requires ZONE_DEVICE mapped pages. These pages are never
580  * 'onlined' to the page allocator so they are considered idle when
581  * page->count == 1. A filesystem uses this interface to determine if
582  * any page in the mapping is busy, i.e. for DMA, or other
583  * get_user_pages() usages.
584  *
585  * It is expected that the filesystem is holding locks to block the
586  * establishment of new mappings in this address_space. I.e. it expects
587  * to be able to run unmap_mapping_range() and subsequently not race
588  * mapping_mapped() becoming true.
589  */
590 struct page *dax_layout_busy_page_range(struct address_space *mapping,
591                                         loff_t start, loff_t end)
592 {
593         void *entry;
594         unsigned int scanned = 0;
595         struct page *page = NULL;
596         pgoff_t start_idx = start >> PAGE_SHIFT;
597         pgoff_t end_idx;
598         XA_STATE(xas, &mapping->i_pages, start_idx);
599
600         /*
601          * In the 'limited' case get_user_pages() for dax is disabled.
602          */
603         if (IS_ENABLED(CONFIG_FS_DAX_LIMITED))
604                 return NULL;
605
606         if (!dax_mapping(mapping) || !mapping_mapped(mapping))
607                 return NULL;
608
609         /* If end == LLONG_MAX, all pages from start to till end of file */
610         if (end == LLONG_MAX)
611                 end_idx = ULONG_MAX;
612         else
613                 end_idx = end >> PAGE_SHIFT;
614         /*
615          * If we race get_user_pages_fast() here either we'll see the
616          * elevated page count in the iteration and wait, or
617          * get_user_pages_fast() will see that the page it took a reference
618          * against is no longer mapped in the page tables and bail to the
619          * get_user_pages() slow path.  The slow path is protected by
620          * pte_lock() and pmd_lock(). New references are not taken without
621          * holding those locks, and unmap_mapping_pages() will not zero the
622          * pte or pmd without holding the respective lock, so we are
623          * guaranteed to either see new references or prevent new
624          * references from being established.
625          */
626         unmap_mapping_pages(mapping, start_idx, end_idx - start_idx + 1, 0);
627
628         xas_lock_irq(&xas);
629         xas_for_each(&xas, entry, end_idx) {
630                 if (WARN_ON_ONCE(!xa_is_value(entry)))
631                         continue;
632                 if (unlikely(dax_is_locked(entry)))
633                         entry = get_unlocked_entry(&xas, 0);
634                 if (entry)
635                         page = dax_busy_page(entry);
636                 put_unlocked_entry(&xas, entry, WAKE_NEXT);
637                 if (page)
638                         break;
639                 if (++scanned % XA_CHECK_SCHED)
640                         continue;
641
642                 xas_pause(&xas);
643                 xas_unlock_irq(&xas);
644                 cond_resched();
645                 xas_lock_irq(&xas);
646         }
647         xas_unlock_irq(&xas);
648         return page;
649 }
650 EXPORT_SYMBOL_GPL(dax_layout_busy_page_range);
651
652 struct page *dax_layout_busy_page(struct address_space *mapping)
653 {
654         return dax_layout_busy_page_range(mapping, 0, LLONG_MAX);
655 }
656 EXPORT_SYMBOL_GPL(dax_layout_busy_page);
657
658 static int __dax_invalidate_entry(struct address_space *mapping,
659                                           pgoff_t index, bool trunc)
660 {
661         XA_STATE(xas, &mapping->i_pages, index);
662         int ret = 0;
663         void *entry;
664
665         xas_lock_irq(&xas);
666         entry = get_unlocked_entry(&xas, 0);
667         if (!entry || WARN_ON_ONCE(!xa_is_value(entry)))
668                 goto out;
669         if (!trunc &&
670             (xas_get_mark(&xas, PAGECACHE_TAG_DIRTY) ||
671              xas_get_mark(&xas, PAGECACHE_TAG_TOWRITE)))
672                 goto out;
673         dax_disassociate_entry(entry, mapping, trunc);
674         xas_store(&xas, NULL);
675         mapping->nrpages -= 1UL << dax_entry_order(entry);
676         ret = 1;
677 out:
678         put_unlocked_entry(&xas, entry, WAKE_ALL);
679         xas_unlock_irq(&xas);
680         return ret;
681 }
682
683 /*
684  * Delete DAX entry at @index from @mapping.  Wait for it
685  * to be unlocked before deleting it.
686  */
687 int dax_delete_mapping_entry(struct address_space *mapping, pgoff_t index)
688 {
689         int ret = __dax_invalidate_entry(mapping, index, true);
690
691         /*
692          * This gets called from truncate / punch_hole path. As such, the caller
693          * must hold locks protecting against concurrent modifications of the
694          * page cache (usually fs-private i_mmap_sem for writing). Since the
695          * caller has seen a DAX entry for this index, we better find it
696          * at that index as well...
697          */
698         WARN_ON_ONCE(!ret);
699         return ret;
700 }
701
702 /*
703  * Invalidate DAX entry if it is clean.
704  */
705 int dax_invalidate_mapping_entry_sync(struct address_space *mapping,
706                                       pgoff_t index)
707 {
708         return __dax_invalidate_entry(mapping, index, false);
709 }
710
711 static int copy_cow_page_dax(struct block_device *bdev, struct dax_device *dax_dev,
712                              sector_t sector, struct page *to, unsigned long vaddr)
713 {
714         void *vto, *kaddr;
715         pgoff_t pgoff;
716         long rc;
717         int id;
718
719         rc = bdev_dax_pgoff(bdev, sector, PAGE_SIZE, &pgoff);
720         if (rc)
721                 return rc;
722
723         id = dax_read_lock();
724         rc = dax_direct_access(dax_dev, pgoff, PHYS_PFN(PAGE_SIZE), &kaddr, NULL);
725         if (rc < 0) {
726                 dax_read_unlock(id);
727                 return rc;
728         }
729         vto = kmap_atomic(to);
730         copy_user_page(vto, (void __force *)kaddr, vaddr, to);
731         kunmap_atomic(vto);
732         dax_read_unlock(id);
733         return 0;
734 }
735
736 /*
737  * By this point grab_mapping_entry() has ensured that we have a locked entry
738  * of the appropriate size so we don't have to worry about downgrading PMDs to
739  * PTEs.  If we happen to be trying to insert a PTE and there is a PMD
740  * already in the tree, we will skip the insertion and just dirty the PMD as
741  * appropriate.
742  */
743 static void *dax_insert_entry(struct xa_state *xas,
744                 struct address_space *mapping, struct vm_fault *vmf,
745                 void *entry, pfn_t pfn, unsigned long flags, bool dirty)
746 {
747         void *new_entry = dax_make_entry(pfn, flags);
748
749         if (dirty)
750                 __mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
751
752         if (dax_is_zero_entry(entry) && !(flags & DAX_ZERO_PAGE)) {
753                 unsigned long index = xas->xa_index;
754                 /* we are replacing a zero page with block mapping */
755                 if (dax_is_pmd_entry(entry))
756                         unmap_mapping_pages(mapping, index & ~PG_PMD_COLOUR,
757                                         PG_PMD_NR, false);
758                 else /* pte entry */
759                         unmap_mapping_pages(mapping, index, 1, false);
760         }
761
762         xas_reset(xas);
763         xas_lock_irq(xas);
764         if (dax_is_zero_entry(entry) || dax_is_empty_entry(entry)) {
765                 void *old;
766
767                 dax_disassociate_entry(entry, mapping, false);
768                 dax_associate_entry(new_entry, mapping, vmf->vma, vmf->address);
769                 /*
770                  * Only swap our new entry into the page cache if the current
771                  * entry is a zero page or an empty entry.  If a normal PTE or
772                  * PMD entry is already in the cache, we leave it alone.  This
773                  * means that if we are trying to insert a PTE and the
774                  * existing entry is a PMD, we will just leave the PMD in the
775                  * tree and dirty it if necessary.
776                  */
777                 old = dax_lock_entry(xas, new_entry);
778                 WARN_ON_ONCE(old != xa_mk_value(xa_to_value(entry) |
779                                         DAX_LOCKED));
780                 entry = new_entry;
781         } else {
782                 xas_load(xas);  /* Walk the xa_state */
783         }
784
785         if (dirty)
786                 xas_set_mark(xas, PAGECACHE_TAG_DIRTY);
787
788         xas_unlock_irq(xas);
789         return entry;
790 }
791
792 static inline
793 unsigned long pgoff_address(pgoff_t pgoff, struct vm_area_struct *vma)
794 {
795         unsigned long address;
796
797         address = vma->vm_start + ((pgoff - vma->vm_pgoff) << PAGE_SHIFT);
798         VM_BUG_ON_VMA(address < vma->vm_start || address >= vma->vm_end, vma);
799         return address;
800 }
801
802 /* Walk all mappings of a given index of a file and writeprotect them */
803 static void dax_entry_mkclean(struct address_space *mapping, pgoff_t index,
804                 unsigned long pfn)
805 {
806         struct vm_area_struct *vma;
807         pte_t pte, *ptep = NULL;
808         pmd_t *pmdp = NULL;
809         spinlock_t *ptl;
810
811         i_mmap_lock_read(mapping);
812         vma_interval_tree_foreach(vma, &mapping->i_mmap, index, index) {
813                 struct mmu_notifier_range range;
814                 unsigned long address;
815
816                 cond_resched();
817
818                 if (!(vma->vm_flags & VM_SHARED))
819                         continue;
820
821                 address = pgoff_address(index, vma);
822
823                 /*
824                  * follow_invalidate_pte() will use the range to call
825                  * mmu_notifier_invalidate_range_start() on our behalf before
826                  * taking any lock.
827                  */
828                 if (follow_invalidate_pte(vma->vm_mm, address, &range, &ptep,
829                                           &pmdp, &ptl))
830                         continue;
831
832                 /*
833                  * No need to call mmu_notifier_invalidate_range() as we are
834                  * downgrading page table protection not changing it to point
835                  * to a new page.
836                  *
837                  * See Documentation/vm/mmu_notifier.rst
838                  */
839                 if (pmdp) {
840 #ifdef CONFIG_FS_DAX_PMD
841                         pmd_t pmd;
842
843                         if (pfn != pmd_pfn(*pmdp))
844                                 goto unlock_pmd;
845                         if (!pmd_dirty(*pmdp) && !pmd_write(*pmdp))
846                                 goto unlock_pmd;
847
848                         flush_cache_page(vma, address, pfn);
849                         pmd = pmdp_invalidate(vma, address, pmdp);
850                         pmd = pmd_wrprotect(pmd);
851                         pmd = pmd_mkclean(pmd);
852                         set_pmd_at(vma->vm_mm, address, pmdp, pmd);
853 unlock_pmd:
854 #endif
855                         spin_unlock(ptl);
856                 } else {
857                         if (pfn != pte_pfn(*ptep))
858                                 goto unlock_pte;
859                         if (!pte_dirty(*ptep) && !pte_write(*ptep))
860                                 goto unlock_pte;
861
862                         flush_cache_page(vma, address, pfn);
863                         pte = ptep_clear_flush(vma, address, ptep);
864                         pte = pte_wrprotect(pte);
865                         pte = pte_mkclean(pte);
866                         set_pte_at(vma->vm_mm, address, ptep, pte);
867 unlock_pte:
868                         pte_unmap_unlock(ptep, ptl);
869                 }
870
871                 mmu_notifier_invalidate_range_end(&range);
872         }
873         i_mmap_unlock_read(mapping);
874 }
875
876 static int dax_writeback_one(struct xa_state *xas, struct dax_device *dax_dev,
877                 struct address_space *mapping, void *entry)
878 {
879         unsigned long pfn, index, count;
880         long ret = 0;
881
882         /*
883          * A page got tagged dirty in DAX mapping? Something is seriously
884          * wrong.
885          */
886         if (WARN_ON(!xa_is_value(entry)))
887                 return -EIO;
888
889         if (unlikely(dax_is_locked(entry))) {
890                 void *old_entry = entry;
891
892                 entry = get_unlocked_entry(xas, 0);
893
894                 /* Entry got punched out / reallocated? */
895                 if (!entry || WARN_ON_ONCE(!xa_is_value(entry)))
896                         goto put_unlocked;
897                 /*
898                  * Entry got reallocated elsewhere? No need to writeback.
899                  * We have to compare pfns as we must not bail out due to
900                  * difference in lockbit or entry type.
901                  */
902                 if (dax_to_pfn(old_entry) != dax_to_pfn(entry))
903                         goto put_unlocked;
904                 if (WARN_ON_ONCE(dax_is_empty_entry(entry) ||
905                                         dax_is_zero_entry(entry))) {
906                         ret = -EIO;
907                         goto put_unlocked;
908                 }
909
910                 /* Another fsync thread may have already done this entry */
911                 if (!xas_get_mark(xas, PAGECACHE_TAG_TOWRITE))
912                         goto put_unlocked;
913         }
914
915         /* Lock the entry to serialize with page faults */
916         dax_lock_entry(xas, entry);
917
918         /*
919          * We can clear the tag now but we have to be careful so that concurrent
920          * dax_writeback_one() calls for the same index cannot finish before we
921          * actually flush the caches. This is achieved as the calls will look
922          * at the entry only under the i_pages lock and once they do that
923          * they will see the entry locked and wait for it to unlock.
924          */
925         xas_clear_mark(xas, PAGECACHE_TAG_TOWRITE);
926         xas_unlock_irq(xas);
927
928         /*
929          * If dax_writeback_mapping_range() was given a wbc->range_start
930          * in the middle of a PMD, the 'index' we use needs to be
931          * aligned to the start of the PMD.
932          * This allows us to flush for PMD_SIZE and not have to worry about
933          * partial PMD writebacks.
934          */
935         pfn = dax_to_pfn(entry);
936         count = 1UL << dax_entry_order(entry);
937         index = xas->xa_index & ~(count - 1);
938
939         dax_entry_mkclean(mapping, index, pfn);
940         dax_flush(dax_dev, page_address(pfn_to_page(pfn)), count * PAGE_SIZE);
941         /*
942          * After we have flushed the cache, we can clear the dirty tag. There
943          * cannot be new dirty data in the pfn after the flush has completed as
944          * the pfn mappings are writeprotected and fault waits for mapping
945          * entry lock.
946          */
947         xas_reset(xas);
948         xas_lock_irq(xas);
949         xas_store(xas, entry);
950         xas_clear_mark(xas, PAGECACHE_TAG_DIRTY);
951         dax_wake_entry(xas, entry, WAKE_NEXT);
952
953         trace_dax_writeback_one(mapping->host, index, count);
954         return ret;
955
956  put_unlocked:
957         put_unlocked_entry(xas, entry, WAKE_NEXT);
958         return ret;
959 }
960
961 /*
962  * Flush the mapping to the persistent domain within the byte range of [start,
963  * end]. This is required by data integrity operations to ensure file data is
964  * on persistent storage prior to completion of the operation.
965  */
966 int dax_writeback_mapping_range(struct address_space *mapping,
967                 struct dax_device *dax_dev, struct writeback_control *wbc)
968 {
969         XA_STATE(xas, &mapping->i_pages, wbc->range_start >> PAGE_SHIFT);
970         struct inode *inode = mapping->host;
971         pgoff_t end_index = wbc->range_end >> PAGE_SHIFT;
972         void *entry;
973         int ret = 0;
974         unsigned int scanned = 0;
975
976         if (WARN_ON_ONCE(inode->i_blkbits != PAGE_SHIFT))
977                 return -EIO;
978
979         if (mapping_empty(mapping) || wbc->sync_mode != WB_SYNC_ALL)
980                 return 0;
981
982         trace_dax_writeback_range(inode, xas.xa_index, end_index);
983
984         tag_pages_for_writeback(mapping, xas.xa_index, end_index);
985
986         xas_lock_irq(&xas);
987         xas_for_each_marked(&xas, entry, end_index, PAGECACHE_TAG_TOWRITE) {
988                 ret = dax_writeback_one(&xas, dax_dev, mapping, entry);
989                 if (ret < 0) {
990                         mapping_set_error(mapping, ret);
991                         break;
992                 }
993                 if (++scanned % XA_CHECK_SCHED)
994                         continue;
995
996                 xas_pause(&xas);
997                 xas_unlock_irq(&xas);
998                 cond_resched();
999                 xas_lock_irq(&xas);
1000         }
1001         xas_unlock_irq(&xas);
1002         trace_dax_writeback_range_done(inode, xas.xa_index, end_index);
1003         return ret;
1004 }
1005 EXPORT_SYMBOL_GPL(dax_writeback_mapping_range);
1006
1007 static sector_t dax_iomap_sector(struct iomap *iomap, loff_t pos)
1008 {
1009         return (iomap->addr + (pos & PAGE_MASK) - iomap->offset) >> 9;
1010 }
1011
1012 static int dax_iomap_pfn(struct iomap *iomap, loff_t pos, size_t size,
1013                          pfn_t *pfnp)
1014 {
1015         const sector_t sector = dax_iomap_sector(iomap, pos);
1016         pgoff_t pgoff;
1017         int id, rc;
1018         long length;
1019
1020         rc = bdev_dax_pgoff(iomap->bdev, sector, size, &pgoff);
1021         if (rc)
1022                 return rc;
1023         id = dax_read_lock();
1024         length = dax_direct_access(iomap->dax_dev, pgoff, PHYS_PFN(size),
1025                                    NULL, pfnp);
1026         if (length < 0) {
1027                 rc = length;
1028                 goto out;
1029         }
1030         rc = -EINVAL;
1031         if (PFN_PHYS(length) < size)
1032                 goto out;
1033         if (pfn_t_to_pfn(*pfnp) & (PHYS_PFN(size)-1))
1034                 goto out;
1035         /* For larger pages we need devmap */
1036         if (length > 1 && !pfn_t_devmap(*pfnp))
1037                 goto out;
1038         rc = 0;
1039 out:
1040         dax_read_unlock(id);
1041         return rc;
1042 }
1043
1044 /*
1045  * The user has performed a load from a hole in the file.  Allocating a new
1046  * page in the file would cause excessive storage usage for workloads with
1047  * sparse files.  Instead we insert a read-only mapping of the 4k zero page.
1048  * If this page is ever written to we will re-fault and change the mapping to
1049  * point to real DAX storage instead.
1050  */
1051 static vm_fault_t dax_load_hole(struct xa_state *xas,
1052                 struct address_space *mapping, void **entry,
1053                 struct vm_fault *vmf)
1054 {
1055         struct inode *inode = mapping->host;
1056         unsigned long vaddr = vmf->address;
1057         pfn_t pfn = pfn_to_pfn_t(my_zero_pfn(vaddr));
1058         vm_fault_t ret;
1059
1060         *entry = dax_insert_entry(xas, mapping, vmf, *entry, pfn,
1061                         DAX_ZERO_PAGE, false);
1062
1063         ret = vmf_insert_mixed(vmf->vma, vaddr, pfn);
1064         trace_dax_load_hole(inode, vmf, ret);
1065         return ret;
1066 }
1067
1068 s64 dax_iomap_zero(loff_t pos, u64 length, struct iomap *iomap)
1069 {
1070         sector_t sector = iomap_sector(iomap, pos & PAGE_MASK);
1071         pgoff_t pgoff;
1072         long rc, id;
1073         void *kaddr;
1074         bool page_aligned = false;
1075         unsigned offset = offset_in_page(pos);
1076         unsigned size = min_t(u64, PAGE_SIZE - offset, length);
1077
1078         if (IS_ALIGNED(sector << SECTOR_SHIFT, PAGE_SIZE) &&
1079             (size == PAGE_SIZE))
1080                 page_aligned = true;
1081
1082         rc = bdev_dax_pgoff(iomap->bdev, sector, PAGE_SIZE, &pgoff);
1083         if (rc)
1084                 return rc;
1085
1086         id = dax_read_lock();
1087
1088         if (page_aligned)
1089                 rc = dax_zero_page_range(iomap->dax_dev, pgoff, 1);
1090         else
1091                 rc = dax_direct_access(iomap->dax_dev, pgoff, 1, &kaddr, NULL);
1092         if (rc < 0) {
1093                 dax_read_unlock(id);
1094                 return rc;
1095         }
1096
1097         if (!page_aligned) {
1098                 memset(kaddr + offset, 0, size);
1099                 dax_flush(iomap->dax_dev, kaddr + offset, size);
1100         }
1101         dax_read_unlock(id);
1102         return size;
1103 }
1104
1105 static loff_t
1106 dax_iomap_actor(struct inode *inode, loff_t pos, loff_t length, void *data,
1107                 struct iomap *iomap, struct iomap *srcmap)
1108 {
1109         struct block_device *bdev = iomap->bdev;
1110         struct dax_device *dax_dev = iomap->dax_dev;
1111         struct iov_iter *iter = data;
1112         loff_t end = pos + length, done = 0;
1113         ssize_t ret = 0;
1114         size_t xfer;
1115         int id;
1116
1117         if (iov_iter_rw(iter) == READ) {
1118                 end = min(end, i_size_read(inode));
1119                 if (pos >= end)
1120                         return 0;
1121
1122                 if (iomap->type == IOMAP_HOLE || iomap->type == IOMAP_UNWRITTEN)
1123                         return iov_iter_zero(min(length, end - pos), iter);
1124         }
1125
1126         if (WARN_ON_ONCE(iomap->type != IOMAP_MAPPED))
1127                 return -EIO;
1128
1129         /*
1130          * Write can allocate block for an area which has a hole page mapped
1131          * into page tables. We have to tear down these mappings so that data
1132          * written by write(2) is visible in mmap.
1133          */
1134         if (iomap->flags & IOMAP_F_NEW) {
1135                 invalidate_inode_pages2_range(inode->i_mapping,
1136                                               pos >> PAGE_SHIFT,
1137                                               (end - 1) >> PAGE_SHIFT);
1138         }
1139
1140         id = dax_read_lock();
1141         while (pos < end) {
1142                 unsigned offset = pos & (PAGE_SIZE - 1);
1143                 const size_t size = ALIGN(length + offset, PAGE_SIZE);
1144                 const sector_t sector = dax_iomap_sector(iomap, pos);
1145                 ssize_t map_len;
1146                 pgoff_t pgoff;
1147                 void *kaddr;
1148
1149                 if (fatal_signal_pending(current)) {
1150                         ret = -EINTR;
1151                         break;
1152                 }
1153
1154                 ret = bdev_dax_pgoff(bdev, sector, size, &pgoff);
1155                 if (ret)
1156                         break;
1157
1158                 map_len = dax_direct_access(dax_dev, pgoff, PHYS_PFN(size),
1159                                 &kaddr, NULL);
1160                 if (map_len < 0) {
1161                         ret = map_len;
1162                         break;
1163                 }
1164
1165                 map_len = PFN_PHYS(map_len);
1166                 kaddr += offset;
1167                 map_len -= offset;
1168                 if (map_len > end - pos)
1169                         map_len = end - pos;
1170
1171                 /*
1172                  * The userspace address for the memory copy has already been
1173                  * validated via access_ok() in either vfs_read() or
1174                  * vfs_write(), depending on which operation we are doing.
1175                  */
1176                 if (iov_iter_rw(iter) == WRITE)
1177                         xfer = dax_copy_from_iter(dax_dev, pgoff, kaddr,
1178                                         map_len, iter);
1179                 else
1180                         xfer = dax_copy_to_iter(dax_dev, pgoff, kaddr,
1181                                         map_len, iter);
1182
1183                 pos += xfer;
1184                 length -= xfer;
1185                 done += xfer;
1186
1187                 if (xfer == 0)
1188                         ret = -EFAULT;
1189                 if (xfer < map_len)
1190                         break;
1191         }
1192         dax_read_unlock(id);
1193
1194         return done ? done : ret;
1195 }
1196
1197 /**
1198  * dax_iomap_rw - Perform I/O to a DAX file
1199  * @iocb:       The control block for this I/O
1200  * @iter:       The addresses to do I/O from or to
1201  * @ops:        iomap ops passed from the file system
1202  *
1203  * This function performs read and write operations to directly mapped
1204  * persistent memory.  The callers needs to take care of read/write exclusion
1205  * and evicting any page cache pages in the region under I/O.
1206  */
1207 ssize_t
1208 dax_iomap_rw(struct kiocb *iocb, struct iov_iter *iter,
1209                 const struct iomap_ops *ops)
1210 {
1211         struct address_space *mapping = iocb->ki_filp->f_mapping;
1212         struct inode *inode = mapping->host;
1213         loff_t pos = iocb->ki_pos, ret = 0, done = 0;
1214         unsigned flags = 0;
1215
1216         if (iov_iter_rw(iter) == WRITE) {
1217                 lockdep_assert_held_write(&inode->i_rwsem);
1218                 flags |= IOMAP_WRITE;
1219         } else {
1220                 lockdep_assert_held(&inode->i_rwsem);
1221         }
1222
1223         if (iocb->ki_flags & IOCB_NOWAIT)
1224                 flags |= IOMAP_NOWAIT;
1225
1226         while (iov_iter_count(iter)) {
1227                 ret = iomap_apply(inode, pos, iov_iter_count(iter), flags, ops,
1228                                 iter, dax_iomap_actor);
1229                 if (ret <= 0)
1230                         break;
1231                 pos += ret;
1232                 done += ret;
1233         }
1234
1235         iocb->ki_pos += done;
1236         return done ? done : ret;
1237 }
1238 EXPORT_SYMBOL_GPL(dax_iomap_rw);
1239
1240 static vm_fault_t dax_fault_return(int error)
1241 {
1242         if (error == 0)
1243                 return VM_FAULT_NOPAGE;
1244         return vmf_error(error);
1245 }
1246
1247 /*
1248  * MAP_SYNC on a dax mapping guarantees dirty metadata is
1249  * flushed on write-faults (non-cow), but not read-faults.
1250  */
1251 static bool dax_fault_is_synchronous(unsigned long flags,
1252                 struct vm_area_struct *vma, struct iomap *iomap)
1253 {
1254         return (flags & IOMAP_WRITE) && (vma->vm_flags & VM_SYNC)
1255                 && (iomap->flags & IOMAP_F_DIRTY);
1256 }
1257
1258 static vm_fault_t dax_iomap_pte_fault(struct vm_fault *vmf, pfn_t *pfnp,
1259                                int *iomap_errp, const struct iomap_ops *ops)
1260 {
1261         struct vm_area_struct *vma = vmf->vma;
1262         struct address_space *mapping = vma->vm_file->f_mapping;
1263         XA_STATE(xas, &mapping->i_pages, vmf->pgoff);
1264         struct inode *inode = mapping->host;
1265         unsigned long vaddr = vmf->address;
1266         loff_t pos = (loff_t)vmf->pgoff << PAGE_SHIFT;
1267         struct iomap iomap = { .type = IOMAP_HOLE };
1268         struct iomap srcmap = { .type = IOMAP_HOLE };
1269         unsigned flags = IOMAP_FAULT;
1270         int error, major = 0;
1271         bool write = vmf->flags & FAULT_FLAG_WRITE;
1272         bool sync;
1273         vm_fault_t ret = 0;
1274         void *entry;
1275         pfn_t pfn;
1276
1277         trace_dax_pte_fault(inode, vmf, ret);
1278         /*
1279          * Check whether offset isn't beyond end of file now. Caller is supposed
1280          * to hold locks serializing us with truncate / punch hole so this is
1281          * a reliable test.
1282          */
1283         if (pos >= i_size_read(inode)) {
1284                 ret = VM_FAULT_SIGBUS;
1285                 goto out;
1286         }
1287
1288         if (write && !vmf->cow_page)
1289                 flags |= IOMAP_WRITE;
1290
1291         entry = grab_mapping_entry(&xas, mapping, 0);
1292         if (xa_is_internal(entry)) {
1293                 ret = xa_to_internal(entry);
1294                 goto out;
1295         }
1296
1297         /*
1298          * It is possible, particularly with mixed reads & writes to private
1299          * mappings, that we have raced with a PMD fault that overlaps with
1300          * the PTE we need to set up.  If so just return and the fault will be
1301          * retried.
1302          */
1303         if (pmd_trans_huge(*vmf->pmd) || pmd_devmap(*vmf->pmd)) {
1304                 ret = VM_FAULT_NOPAGE;
1305                 goto unlock_entry;
1306         }
1307
1308         /*
1309          * Note that we don't bother to use iomap_apply here: DAX required
1310          * the file system block size to be equal the page size, which means
1311          * that we never have to deal with more than a single extent here.
1312          */
1313         error = ops->iomap_begin(inode, pos, PAGE_SIZE, flags, &iomap, &srcmap);
1314         if (iomap_errp)
1315                 *iomap_errp = error;
1316         if (error) {
1317                 ret = dax_fault_return(error);
1318                 goto unlock_entry;
1319         }
1320         if (WARN_ON_ONCE(iomap.offset + iomap.length < pos + PAGE_SIZE)) {
1321                 error = -EIO;   /* fs corruption? */
1322                 goto error_finish_iomap;
1323         }
1324
1325         if (vmf->cow_page) {
1326                 sector_t sector = dax_iomap_sector(&iomap, pos);
1327
1328                 switch (iomap.type) {
1329                 case IOMAP_HOLE:
1330                 case IOMAP_UNWRITTEN:
1331                         clear_user_highpage(vmf->cow_page, vaddr);
1332                         break;
1333                 case IOMAP_MAPPED:
1334                         error = copy_cow_page_dax(iomap.bdev, iomap.dax_dev,
1335                                                   sector, vmf->cow_page, vaddr);
1336                         break;
1337                 default:
1338                         WARN_ON_ONCE(1);
1339                         error = -EIO;
1340                         break;
1341                 }
1342
1343                 if (error)
1344                         goto error_finish_iomap;
1345
1346                 __SetPageUptodate(vmf->cow_page);
1347                 ret = finish_fault(vmf);
1348                 if (!ret)
1349                         ret = VM_FAULT_DONE_COW;
1350                 goto finish_iomap;
1351         }
1352
1353         sync = dax_fault_is_synchronous(flags, vma, &iomap);
1354
1355         switch (iomap.type) {
1356         case IOMAP_MAPPED:
1357                 if (iomap.flags & IOMAP_F_NEW) {
1358                         count_vm_event(PGMAJFAULT);
1359                         count_memcg_event_mm(vma->vm_mm, PGMAJFAULT);
1360                         major = VM_FAULT_MAJOR;
1361                 }
1362                 error = dax_iomap_pfn(&iomap, pos, PAGE_SIZE, &pfn);
1363                 if (error < 0)
1364                         goto error_finish_iomap;
1365
1366                 entry = dax_insert_entry(&xas, mapping, vmf, entry, pfn,
1367                                                  0, write && !sync);
1368
1369                 /*
1370                  * If we are doing synchronous page fault and inode needs fsync,
1371                  * we can insert PTE into page tables only after that happens.
1372                  * Skip insertion for now and return the pfn so that caller can
1373                  * insert it after fsync is done.
1374                  */
1375                 if (sync) {
1376                         if (WARN_ON_ONCE(!pfnp)) {
1377                                 error = -EIO;
1378                                 goto error_finish_iomap;
1379                         }
1380                         *pfnp = pfn;
1381                         ret = VM_FAULT_NEEDDSYNC | major;
1382                         goto finish_iomap;
1383                 }
1384                 trace_dax_insert_mapping(inode, vmf, entry);
1385                 if (write)
1386                         ret = vmf_insert_mixed_mkwrite(vma, vaddr, pfn);
1387                 else
1388                         ret = vmf_insert_mixed(vma, vaddr, pfn);
1389
1390                 goto finish_iomap;
1391         case IOMAP_UNWRITTEN:
1392         case IOMAP_HOLE:
1393                 if (!write) {
1394                         ret = dax_load_hole(&xas, mapping, &entry, vmf);
1395                         goto finish_iomap;
1396                 }
1397                 fallthrough;
1398         default:
1399                 WARN_ON_ONCE(1);
1400                 error = -EIO;
1401                 break;
1402         }
1403
1404  error_finish_iomap:
1405         ret = dax_fault_return(error);
1406  finish_iomap:
1407         if (ops->iomap_end) {
1408                 int copied = PAGE_SIZE;
1409
1410                 if (ret & VM_FAULT_ERROR)
1411                         copied = 0;
1412                 /*
1413                  * The fault is done by now and there's no way back (other
1414                  * thread may be already happily using PTE we have installed).
1415                  * Just ignore error from ->iomap_end since we cannot do much
1416                  * with it.
1417                  */
1418                 ops->iomap_end(inode, pos, PAGE_SIZE, copied, flags, &iomap);
1419         }
1420  unlock_entry:
1421         dax_unlock_entry(&xas, entry);
1422  out:
1423         trace_dax_pte_fault_done(inode, vmf, ret);
1424         return ret | major;
1425 }
1426
1427 #ifdef CONFIG_FS_DAX_PMD
1428 static vm_fault_t dax_pmd_load_hole(struct xa_state *xas, struct vm_fault *vmf,
1429                 struct iomap *iomap, void **entry)
1430 {
1431         struct address_space *mapping = vmf->vma->vm_file->f_mapping;
1432         unsigned long pmd_addr = vmf->address & PMD_MASK;
1433         struct vm_area_struct *vma = vmf->vma;
1434         struct inode *inode = mapping->host;
1435         pgtable_t pgtable = NULL;
1436         struct page *zero_page;
1437         spinlock_t *ptl;
1438         pmd_t pmd_entry;
1439         pfn_t pfn;
1440
1441         zero_page = mm_get_huge_zero_page(vmf->vma->vm_mm);
1442
1443         if (unlikely(!zero_page))
1444                 goto fallback;
1445
1446         pfn = page_to_pfn_t(zero_page);
1447         *entry = dax_insert_entry(xas, mapping, vmf, *entry, pfn,
1448                         DAX_PMD | DAX_ZERO_PAGE, false);
1449
1450         if (arch_needs_pgtable_deposit()) {
1451                 pgtable = pte_alloc_one(vma->vm_mm);
1452                 if (!pgtable)
1453                         return VM_FAULT_OOM;
1454         }
1455
1456         ptl = pmd_lock(vmf->vma->vm_mm, vmf->pmd);
1457         if (!pmd_none(*(vmf->pmd))) {
1458                 spin_unlock(ptl);
1459                 goto fallback;
1460         }
1461
1462         if (pgtable) {
1463                 pgtable_trans_huge_deposit(vma->vm_mm, vmf->pmd, pgtable);
1464                 mm_inc_nr_ptes(vma->vm_mm);
1465         }
1466         pmd_entry = mk_pmd(zero_page, vmf->vma->vm_page_prot);
1467         pmd_entry = pmd_mkhuge(pmd_entry);
1468         set_pmd_at(vmf->vma->vm_mm, pmd_addr, vmf->pmd, pmd_entry);
1469         spin_unlock(ptl);
1470         trace_dax_pmd_load_hole(inode, vmf, zero_page, *entry);
1471         return VM_FAULT_NOPAGE;
1472
1473 fallback:
1474         if (pgtable)
1475                 pte_free(vma->vm_mm, pgtable);
1476         trace_dax_pmd_load_hole_fallback(inode, vmf, zero_page, *entry);
1477         return VM_FAULT_FALLBACK;
1478 }
1479
1480 static vm_fault_t dax_iomap_pmd_fault(struct vm_fault *vmf, pfn_t *pfnp,
1481                                const struct iomap_ops *ops)
1482 {
1483         struct vm_area_struct *vma = vmf->vma;
1484         struct address_space *mapping = vma->vm_file->f_mapping;
1485         XA_STATE_ORDER(xas, &mapping->i_pages, vmf->pgoff, PMD_ORDER);
1486         unsigned long pmd_addr = vmf->address & PMD_MASK;
1487         bool write = vmf->flags & FAULT_FLAG_WRITE;
1488         bool sync;
1489         unsigned int iomap_flags = (write ? IOMAP_WRITE : 0) | IOMAP_FAULT;
1490         struct inode *inode = mapping->host;
1491         vm_fault_t result = VM_FAULT_FALLBACK;
1492         struct iomap iomap = { .type = IOMAP_HOLE };
1493         struct iomap srcmap = { .type = IOMAP_HOLE };
1494         pgoff_t max_pgoff;
1495         void *entry;
1496         loff_t pos;
1497         int error;
1498         pfn_t pfn;
1499
1500         /*
1501          * Check whether offset isn't beyond end of file now. Caller is
1502          * supposed to hold locks serializing us with truncate / punch hole so
1503          * this is a reliable test.
1504          */
1505         max_pgoff = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
1506
1507         trace_dax_pmd_fault(inode, vmf, max_pgoff, 0);
1508
1509         /*
1510          * Make sure that the faulting address's PMD offset (color) matches
1511          * the PMD offset from the start of the file.  This is necessary so
1512          * that a PMD range in the page table overlaps exactly with a PMD
1513          * range in the page cache.
1514          */
1515         if ((vmf->pgoff & PG_PMD_COLOUR) !=
1516             ((vmf->address >> PAGE_SHIFT) & PG_PMD_COLOUR))
1517                 goto fallback;
1518
1519         /* Fall back to PTEs if we're going to COW */
1520         if (write && !(vma->vm_flags & VM_SHARED))
1521                 goto fallback;
1522
1523         /* If the PMD would extend outside the VMA */
1524         if (pmd_addr < vma->vm_start)
1525                 goto fallback;
1526         if ((pmd_addr + PMD_SIZE) > vma->vm_end)
1527                 goto fallback;
1528
1529         if (xas.xa_index >= max_pgoff) {
1530                 result = VM_FAULT_SIGBUS;
1531                 goto out;
1532         }
1533
1534         /* If the PMD would extend beyond the file size */
1535         if ((xas.xa_index | PG_PMD_COLOUR) >= max_pgoff)
1536                 goto fallback;
1537
1538         /*
1539          * grab_mapping_entry() will make sure we get an empty PMD entry,
1540          * a zero PMD entry or a DAX PMD.  If it can't (because a PTE
1541          * entry is already in the array, for instance), it will return
1542          * VM_FAULT_FALLBACK.
1543          */
1544         entry = grab_mapping_entry(&xas, mapping, PMD_ORDER);
1545         if (xa_is_internal(entry)) {
1546                 result = xa_to_internal(entry);
1547                 goto fallback;
1548         }
1549
1550         /*
1551          * It is possible, particularly with mixed reads & writes to private
1552          * mappings, that we have raced with a PTE fault that overlaps with
1553          * the PMD we need to set up.  If so just return and the fault will be
1554          * retried.
1555          */
1556         if (!pmd_none(*vmf->pmd) && !pmd_trans_huge(*vmf->pmd) &&
1557                         !pmd_devmap(*vmf->pmd)) {
1558                 result = 0;
1559                 goto unlock_entry;
1560         }
1561
1562         /*
1563          * Note that we don't use iomap_apply here.  We aren't doing I/O, only
1564          * setting up a mapping, so really we're using iomap_begin() as a way
1565          * to look up our filesystem block.
1566          */
1567         pos = (loff_t)xas.xa_index << PAGE_SHIFT;
1568         error = ops->iomap_begin(inode, pos, PMD_SIZE, iomap_flags, &iomap,
1569                         &srcmap);
1570         if (error)
1571                 goto unlock_entry;
1572
1573         if (iomap.offset + iomap.length < pos + PMD_SIZE)
1574                 goto finish_iomap;
1575
1576         sync = dax_fault_is_synchronous(iomap_flags, vma, &iomap);
1577
1578         switch (iomap.type) {
1579         case IOMAP_MAPPED:
1580                 error = dax_iomap_pfn(&iomap, pos, PMD_SIZE, &pfn);
1581                 if (error < 0)
1582                         goto finish_iomap;
1583
1584                 entry = dax_insert_entry(&xas, mapping, vmf, entry, pfn,
1585                                                 DAX_PMD, write && !sync);
1586
1587                 /*
1588                  * If we are doing synchronous page fault and inode needs fsync,
1589                  * we can insert PMD into page tables only after that happens.
1590                  * Skip insertion for now and return the pfn so that caller can
1591                  * insert it after fsync is done.
1592                  */
1593                 if (sync) {
1594                         if (WARN_ON_ONCE(!pfnp))
1595                                 goto finish_iomap;
1596                         *pfnp = pfn;
1597                         result = VM_FAULT_NEEDDSYNC;
1598                         goto finish_iomap;
1599                 }
1600
1601                 trace_dax_pmd_insert_mapping(inode, vmf, PMD_SIZE, pfn, entry);
1602                 result = vmf_insert_pfn_pmd(vmf, pfn, write);
1603                 break;
1604         case IOMAP_UNWRITTEN:
1605         case IOMAP_HOLE:
1606                 if (WARN_ON_ONCE(write))
1607                         break;
1608                 result = dax_pmd_load_hole(&xas, vmf, &iomap, &entry);
1609                 break;
1610         default:
1611                 WARN_ON_ONCE(1);
1612                 break;
1613         }
1614
1615  finish_iomap:
1616         if (ops->iomap_end) {
1617                 int copied = PMD_SIZE;
1618
1619                 if (result == VM_FAULT_FALLBACK)
1620                         copied = 0;
1621                 /*
1622                  * The fault is done by now and there's no way back (other
1623                  * thread may be already happily using PMD we have installed).
1624                  * Just ignore error from ->iomap_end since we cannot do much
1625                  * with it.
1626                  */
1627                 ops->iomap_end(inode, pos, PMD_SIZE, copied, iomap_flags,
1628                                 &iomap);
1629         }
1630  unlock_entry:
1631         dax_unlock_entry(&xas, entry);
1632  fallback:
1633         if (result == VM_FAULT_FALLBACK) {
1634                 split_huge_pmd(vma, vmf->pmd, vmf->address);
1635                 count_vm_event(THP_FAULT_FALLBACK);
1636         }
1637 out:
1638         trace_dax_pmd_fault_done(inode, vmf, max_pgoff, result);
1639         return result;
1640 }
1641 #else
1642 static vm_fault_t dax_iomap_pmd_fault(struct vm_fault *vmf, pfn_t *pfnp,
1643                                const struct iomap_ops *ops)
1644 {
1645         return VM_FAULT_FALLBACK;
1646 }
1647 #endif /* CONFIG_FS_DAX_PMD */
1648
1649 /**
1650  * dax_iomap_fault - handle a page fault on a DAX file
1651  * @vmf: The description of the fault
1652  * @pe_size: Size of the page to fault in
1653  * @pfnp: PFN to insert for synchronous faults if fsync is required
1654  * @iomap_errp: Storage for detailed error code in case of error
1655  * @ops: Iomap ops passed from the file system
1656  *
1657  * When a page fault occurs, filesystems may call this helper in
1658  * their fault handler for DAX files. dax_iomap_fault() assumes the caller
1659  * has done all the necessary locking for page fault to proceed
1660  * successfully.
1661  */
1662 vm_fault_t dax_iomap_fault(struct vm_fault *vmf, enum page_entry_size pe_size,
1663                     pfn_t *pfnp, int *iomap_errp, const struct iomap_ops *ops)
1664 {
1665         switch (pe_size) {
1666         case PE_SIZE_PTE:
1667                 return dax_iomap_pte_fault(vmf, pfnp, iomap_errp, ops);
1668         case PE_SIZE_PMD:
1669                 return dax_iomap_pmd_fault(vmf, pfnp, ops);
1670         default:
1671                 return VM_FAULT_FALLBACK;
1672         }
1673 }
1674 EXPORT_SYMBOL_GPL(dax_iomap_fault);
1675
1676 /*
1677  * dax_insert_pfn_mkwrite - insert PTE or PMD entry into page tables
1678  * @vmf: The description of the fault
1679  * @pfn: PFN to insert
1680  * @order: Order of entry to insert.
1681  *
1682  * This function inserts a writeable PTE or PMD entry into the page tables
1683  * for an mmaped DAX file.  It also marks the page cache entry as dirty.
1684  */
1685 static vm_fault_t
1686 dax_insert_pfn_mkwrite(struct vm_fault *vmf, pfn_t pfn, unsigned int order)
1687 {
1688         struct address_space *mapping = vmf->vma->vm_file->f_mapping;
1689         XA_STATE_ORDER(xas, &mapping->i_pages, vmf->pgoff, order);
1690         void *entry;
1691         vm_fault_t ret;
1692
1693         xas_lock_irq(&xas);
1694         entry = get_unlocked_entry(&xas, order);
1695         /* Did we race with someone splitting entry or so? */
1696         if (!entry || dax_is_conflict(entry) ||
1697             (order == 0 && !dax_is_pte_entry(entry))) {
1698                 put_unlocked_entry(&xas, entry, WAKE_NEXT);
1699                 xas_unlock_irq(&xas);
1700                 trace_dax_insert_pfn_mkwrite_no_entry(mapping->host, vmf,
1701                                                       VM_FAULT_NOPAGE);
1702                 return VM_FAULT_NOPAGE;
1703         }
1704         xas_set_mark(&xas, PAGECACHE_TAG_DIRTY);
1705         dax_lock_entry(&xas, entry);
1706         xas_unlock_irq(&xas);
1707         if (order == 0)
1708                 ret = vmf_insert_mixed_mkwrite(vmf->vma, vmf->address, pfn);
1709 #ifdef CONFIG_FS_DAX_PMD
1710         else if (order == PMD_ORDER)
1711                 ret = vmf_insert_pfn_pmd(vmf, pfn, FAULT_FLAG_WRITE);
1712 #endif
1713         else
1714                 ret = VM_FAULT_FALLBACK;
1715         dax_unlock_entry(&xas, entry);
1716         trace_dax_insert_pfn_mkwrite(mapping->host, vmf, ret);
1717         return ret;
1718 }
1719
1720 /**
1721  * dax_finish_sync_fault - finish synchronous page fault
1722  * @vmf: The description of the fault
1723  * @pe_size: Size of entry to be inserted
1724  * @pfn: PFN to insert
1725  *
1726  * This function ensures that the file range touched by the page fault is
1727  * stored persistently on the media and handles inserting of appropriate page
1728  * table entry.
1729  */
1730 vm_fault_t dax_finish_sync_fault(struct vm_fault *vmf,
1731                 enum page_entry_size pe_size, pfn_t pfn)
1732 {
1733         int err;
1734         loff_t start = ((loff_t)vmf->pgoff) << PAGE_SHIFT;
1735         unsigned int order = pe_order(pe_size);
1736         size_t len = PAGE_SIZE << order;
1737
1738         err = vfs_fsync_range(vmf->vma->vm_file, start, start + len - 1, 1);
1739         if (err)
1740                 return VM_FAULT_SIGBUS;
1741         return dax_insert_pfn_mkwrite(vmf, pfn, order);
1742 }
1743 EXPORT_SYMBOL_GPL(dax_finish_sync_fault);