fs/buffer.c: use attach/detach_page_private
[linux-2.6-microblaze.git] / fs / dax.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * fs/dax.c - Direct Access filesystem code
4  * Copyright (c) 2013-2014 Intel Corporation
5  * Author: Matthew Wilcox <matthew.r.wilcox@intel.com>
6  * Author: Ross Zwisler <ross.zwisler@linux.intel.com>
7  */
8
9 #include <linux/atomic.h>
10 #include <linux/blkdev.h>
11 #include <linux/buffer_head.h>
12 #include <linux/dax.h>
13 #include <linux/fs.h>
14 #include <linux/genhd.h>
15 #include <linux/highmem.h>
16 #include <linux/memcontrol.h>
17 #include <linux/mm.h>
18 #include <linux/mutex.h>
19 #include <linux/pagevec.h>
20 #include <linux/sched.h>
21 #include <linux/sched/signal.h>
22 #include <linux/uio.h>
23 #include <linux/vmstat.h>
24 #include <linux/pfn_t.h>
25 #include <linux/sizes.h>
26 #include <linux/mmu_notifier.h>
27 #include <linux/iomap.h>
28 #include <asm/pgalloc.h>
29
30 #define CREATE_TRACE_POINTS
31 #include <trace/events/fs_dax.h>
32
33 static inline unsigned int pe_order(enum page_entry_size pe_size)
34 {
35         if (pe_size == PE_SIZE_PTE)
36                 return PAGE_SHIFT - PAGE_SHIFT;
37         if (pe_size == PE_SIZE_PMD)
38                 return PMD_SHIFT - PAGE_SHIFT;
39         if (pe_size == PE_SIZE_PUD)
40                 return PUD_SHIFT - PAGE_SHIFT;
41         return ~0;
42 }
43
44 /* We choose 4096 entries - same as per-zone page wait tables */
45 #define DAX_WAIT_TABLE_BITS 12
46 #define DAX_WAIT_TABLE_ENTRIES (1 << DAX_WAIT_TABLE_BITS)
47
48 /* The 'colour' (ie low bits) within a PMD of a page offset.  */
49 #define PG_PMD_COLOUR   ((PMD_SIZE >> PAGE_SHIFT) - 1)
50 #define PG_PMD_NR       (PMD_SIZE >> PAGE_SHIFT)
51
52 /* The order of a PMD entry */
53 #define PMD_ORDER       (PMD_SHIFT - PAGE_SHIFT)
54
55 static wait_queue_head_t wait_table[DAX_WAIT_TABLE_ENTRIES];
56
57 static int __init init_dax_wait_table(void)
58 {
59         int i;
60
61         for (i = 0; i < DAX_WAIT_TABLE_ENTRIES; i++)
62                 init_waitqueue_head(wait_table + i);
63         return 0;
64 }
65 fs_initcall(init_dax_wait_table);
66
67 /*
68  * DAX pagecache entries use XArray value entries so they can't be mistaken
69  * for pages.  We use one bit for locking, one bit for the entry size (PMD)
70  * and two more to tell us if the entry is a zero page or an empty entry that
71  * is just used for locking.  In total four special bits.
72  *
73  * If the PMD bit isn't set the entry has size PAGE_SIZE, and if the ZERO_PAGE
74  * and EMPTY bits aren't set the entry is a normal DAX entry with a filesystem
75  * block allocation.
76  */
77 #define DAX_SHIFT       (4)
78 #define DAX_LOCKED      (1UL << 0)
79 #define DAX_PMD         (1UL << 1)
80 #define DAX_ZERO_PAGE   (1UL << 2)
81 #define DAX_EMPTY       (1UL << 3)
82
83 static unsigned long dax_to_pfn(void *entry)
84 {
85         return xa_to_value(entry) >> DAX_SHIFT;
86 }
87
88 static void *dax_make_entry(pfn_t pfn, unsigned long flags)
89 {
90         return xa_mk_value(flags | (pfn_t_to_pfn(pfn) << DAX_SHIFT));
91 }
92
93 static bool dax_is_locked(void *entry)
94 {
95         return xa_to_value(entry) & DAX_LOCKED;
96 }
97
98 static unsigned int dax_entry_order(void *entry)
99 {
100         if (xa_to_value(entry) & DAX_PMD)
101                 return PMD_ORDER;
102         return 0;
103 }
104
105 static unsigned long dax_is_pmd_entry(void *entry)
106 {
107         return xa_to_value(entry) & DAX_PMD;
108 }
109
110 static bool dax_is_pte_entry(void *entry)
111 {
112         return !(xa_to_value(entry) & DAX_PMD);
113 }
114
115 static int dax_is_zero_entry(void *entry)
116 {
117         return xa_to_value(entry) & DAX_ZERO_PAGE;
118 }
119
120 static int dax_is_empty_entry(void *entry)
121 {
122         return xa_to_value(entry) & DAX_EMPTY;
123 }
124
125 /*
126  * true if the entry that was found is of a smaller order than the entry
127  * we were looking for
128  */
129 static bool dax_is_conflict(void *entry)
130 {
131         return entry == XA_RETRY_ENTRY;
132 }
133
134 /*
135  * DAX page cache entry locking
136  */
137 struct exceptional_entry_key {
138         struct xarray *xa;
139         pgoff_t entry_start;
140 };
141
142 struct wait_exceptional_entry_queue {
143         wait_queue_entry_t wait;
144         struct exceptional_entry_key key;
145 };
146
147 static wait_queue_head_t *dax_entry_waitqueue(struct xa_state *xas,
148                 void *entry, struct exceptional_entry_key *key)
149 {
150         unsigned long hash;
151         unsigned long index = xas->xa_index;
152
153         /*
154          * If 'entry' is a PMD, align the 'index' that we use for the wait
155          * queue to the start of that PMD.  This ensures that all offsets in
156          * the range covered by the PMD map to the same bit lock.
157          */
158         if (dax_is_pmd_entry(entry))
159                 index &= ~PG_PMD_COLOUR;
160         key->xa = xas->xa;
161         key->entry_start = index;
162
163         hash = hash_long((unsigned long)xas->xa ^ index, DAX_WAIT_TABLE_BITS);
164         return wait_table + hash;
165 }
166
167 static int wake_exceptional_entry_func(wait_queue_entry_t *wait,
168                 unsigned int mode, int sync, void *keyp)
169 {
170         struct exceptional_entry_key *key = keyp;
171         struct wait_exceptional_entry_queue *ewait =
172                 container_of(wait, struct wait_exceptional_entry_queue, wait);
173
174         if (key->xa != ewait->key.xa ||
175             key->entry_start != ewait->key.entry_start)
176                 return 0;
177         return autoremove_wake_function(wait, mode, sync, NULL);
178 }
179
180 /*
181  * @entry may no longer be the entry at the index in the mapping.
182  * The important information it's conveying is whether the entry at
183  * this index used to be a PMD entry.
184  */
185 static void dax_wake_entry(struct xa_state *xas, void *entry, bool wake_all)
186 {
187         struct exceptional_entry_key key;
188         wait_queue_head_t *wq;
189
190         wq = dax_entry_waitqueue(xas, entry, &key);
191
192         /*
193          * Checking for locked entry and prepare_to_wait_exclusive() happens
194          * under the i_pages lock, ditto for entry handling in our callers.
195          * So at this point all tasks that could have seen our entry locked
196          * must be in the waitqueue and the following check will see them.
197          */
198         if (waitqueue_active(wq))
199                 __wake_up(wq, TASK_NORMAL, wake_all ? 0 : 1, &key);
200 }
201
202 /*
203  * Look up entry in page cache, wait for it to become unlocked if it
204  * is a DAX entry and return it.  The caller must subsequently call
205  * put_unlocked_entry() if it did not lock the entry or dax_unlock_entry()
206  * if it did.  The entry returned may have a larger order than @order.
207  * If @order is larger than the order of the entry found in i_pages, this
208  * function returns a dax_is_conflict entry.
209  *
210  * Must be called with the i_pages lock held.
211  */
212 static void *get_unlocked_entry(struct xa_state *xas, unsigned int order)
213 {
214         void *entry;
215         struct wait_exceptional_entry_queue ewait;
216         wait_queue_head_t *wq;
217
218         init_wait(&ewait.wait);
219         ewait.wait.func = wake_exceptional_entry_func;
220
221         for (;;) {
222                 entry = xas_find_conflict(xas);
223                 if (!entry || WARN_ON_ONCE(!xa_is_value(entry)))
224                         return entry;
225                 if (dax_entry_order(entry) < order)
226                         return XA_RETRY_ENTRY;
227                 if (!dax_is_locked(entry))
228                         return entry;
229
230                 wq = dax_entry_waitqueue(xas, entry, &ewait.key);
231                 prepare_to_wait_exclusive(wq, &ewait.wait,
232                                           TASK_UNINTERRUPTIBLE);
233                 xas_unlock_irq(xas);
234                 xas_reset(xas);
235                 schedule();
236                 finish_wait(wq, &ewait.wait);
237                 xas_lock_irq(xas);
238         }
239 }
240
241 /*
242  * The only thing keeping the address space around is the i_pages lock
243  * (it's cycled in clear_inode() after removing the entries from i_pages)
244  * After we call xas_unlock_irq(), we cannot touch xas->xa.
245  */
246 static void wait_entry_unlocked(struct xa_state *xas, void *entry)
247 {
248         struct wait_exceptional_entry_queue ewait;
249         wait_queue_head_t *wq;
250
251         init_wait(&ewait.wait);
252         ewait.wait.func = wake_exceptional_entry_func;
253
254         wq = dax_entry_waitqueue(xas, entry, &ewait.key);
255         /*
256          * Unlike get_unlocked_entry() there is no guarantee that this
257          * path ever successfully retrieves an unlocked entry before an
258          * inode dies. Perform a non-exclusive wait in case this path
259          * never successfully performs its own wake up.
260          */
261         prepare_to_wait(wq, &ewait.wait, TASK_UNINTERRUPTIBLE);
262         xas_unlock_irq(xas);
263         schedule();
264         finish_wait(wq, &ewait.wait);
265 }
266
267 static void put_unlocked_entry(struct xa_state *xas, void *entry)
268 {
269         /* If we were the only waiter woken, wake the next one */
270         if (entry && !dax_is_conflict(entry))
271                 dax_wake_entry(xas, entry, false);
272 }
273
274 /*
275  * We used the xa_state to get the entry, but then we locked the entry and
276  * dropped the xa_lock, so we know the xa_state is stale and must be reset
277  * before use.
278  */
279 static void dax_unlock_entry(struct xa_state *xas, void *entry)
280 {
281         void *old;
282
283         BUG_ON(dax_is_locked(entry));
284         xas_reset(xas);
285         xas_lock_irq(xas);
286         old = xas_store(xas, entry);
287         xas_unlock_irq(xas);
288         BUG_ON(!dax_is_locked(old));
289         dax_wake_entry(xas, entry, false);
290 }
291
292 /*
293  * Return: The entry stored at this location before it was locked.
294  */
295 static void *dax_lock_entry(struct xa_state *xas, void *entry)
296 {
297         unsigned long v = xa_to_value(entry);
298         return xas_store(xas, xa_mk_value(v | DAX_LOCKED));
299 }
300
301 static unsigned long dax_entry_size(void *entry)
302 {
303         if (dax_is_zero_entry(entry))
304                 return 0;
305         else if (dax_is_empty_entry(entry))
306                 return 0;
307         else if (dax_is_pmd_entry(entry))
308                 return PMD_SIZE;
309         else
310                 return PAGE_SIZE;
311 }
312
313 static unsigned long dax_end_pfn(void *entry)
314 {
315         return dax_to_pfn(entry) + dax_entry_size(entry) / PAGE_SIZE;
316 }
317
318 /*
319  * Iterate through all mapped pfns represented by an entry, i.e. skip
320  * 'empty' and 'zero' entries.
321  */
322 #define for_each_mapped_pfn(entry, pfn) \
323         for (pfn = dax_to_pfn(entry); \
324                         pfn < dax_end_pfn(entry); pfn++)
325
326 /*
327  * TODO: for reflink+dax we need a way to associate a single page with
328  * multiple address_space instances at different linear_page_index()
329  * offsets.
330  */
331 static void dax_associate_entry(void *entry, struct address_space *mapping,
332                 struct vm_area_struct *vma, unsigned long address)
333 {
334         unsigned long size = dax_entry_size(entry), pfn, index;
335         int i = 0;
336
337         if (IS_ENABLED(CONFIG_FS_DAX_LIMITED))
338                 return;
339
340         index = linear_page_index(vma, address & ~(size - 1));
341         for_each_mapped_pfn(entry, pfn) {
342                 struct page *page = pfn_to_page(pfn);
343
344                 WARN_ON_ONCE(page->mapping);
345                 page->mapping = mapping;
346                 page->index = index + i++;
347         }
348 }
349
350 static void dax_disassociate_entry(void *entry, struct address_space *mapping,
351                 bool trunc)
352 {
353         unsigned long pfn;
354
355         if (IS_ENABLED(CONFIG_FS_DAX_LIMITED))
356                 return;
357
358         for_each_mapped_pfn(entry, pfn) {
359                 struct page *page = pfn_to_page(pfn);
360
361                 WARN_ON_ONCE(trunc && page_ref_count(page) > 1);
362                 WARN_ON_ONCE(page->mapping && page->mapping != mapping);
363                 page->mapping = NULL;
364                 page->index = 0;
365         }
366 }
367
368 static struct page *dax_busy_page(void *entry)
369 {
370         unsigned long pfn;
371
372         for_each_mapped_pfn(entry, pfn) {
373                 struct page *page = pfn_to_page(pfn);
374
375                 if (page_ref_count(page) > 1)
376                         return page;
377         }
378         return NULL;
379 }
380
381 /*
382  * dax_lock_mapping_entry - Lock the DAX entry corresponding to a page
383  * @page: The page whose entry we want to lock
384  *
385  * Context: Process context.
386  * Return: A cookie to pass to dax_unlock_page() or 0 if the entry could
387  * not be locked.
388  */
389 dax_entry_t dax_lock_page(struct page *page)
390 {
391         XA_STATE(xas, NULL, 0);
392         void *entry;
393
394         /* Ensure page->mapping isn't freed while we look at it */
395         rcu_read_lock();
396         for (;;) {
397                 struct address_space *mapping = READ_ONCE(page->mapping);
398
399                 entry = NULL;
400                 if (!mapping || !dax_mapping(mapping))
401                         break;
402
403                 /*
404                  * In the device-dax case there's no need to lock, a
405                  * struct dev_pagemap pin is sufficient to keep the
406                  * inode alive, and we assume we have dev_pagemap pin
407                  * otherwise we would not have a valid pfn_to_page()
408                  * translation.
409                  */
410                 entry = (void *)~0UL;
411                 if (S_ISCHR(mapping->host->i_mode))
412                         break;
413
414                 xas.xa = &mapping->i_pages;
415                 xas_lock_irq(&xas);
416                 if (mapping != page->mapping) {
417                         xas_unlock_irq(&xas);
418                         continue;
419                 }
420                 xas_set(&xas, page->index);
421                 entry = xas_load(&xas);
422                 if (dax_is_locked(entry)) {
423                         rcu_read_unlock();
424                         wait_entry_unlocked(&xas, entry);
425                         rcu_read_lock();
426                         continue;
427                 }
428                 dax_lock_entry(&xas, entry);
429                 xas_unlock_irq(&xas);
430                 break;
431         }
432         rcu_read_unlock();
433         return (dax_entry_t)entry;
434 }
435
436 void dax_unlock_page(struct page *page, dax_entry_t cookie)
437 {
438         struct address_space *mapping = page->mapping;
439         XA_STATE(xas, &mapping->i_pages, page->index);
440
441         if (S_ISCHR(mapping->host->i_mode))
442                 return;
443
444         dax_unlock_entry(&xas, (void *)cookie);
445 }
446
447 /*
448  * Find page cache entry at given index. If it is a DAX entry, return it
449  * with the entry locked. If the page cache doesn't contain an entry at
450  * that index, add a locked empty entry.
451  *
452  * When requesting an entry with size DAX_PMD, grab_mapping_entry() will
453  * either return that locked entry or will return VM_FAULT_FALLBACK.
454  * This will happen if there are any PTE entries within the PMD range
455  * that we are requesting.
456  *
457  * We always favor PTE entries over PMD entries. There isn't a flow where we
458  * evict PTE entries in order to 'upgrade' them to a PMD entry.  A PMD
459  * insertion will fail if it finds any PTE entries already in the tree, and a
460  * PTE insertion will cause an existing PMD entry to be unmapped and
461  * downgraded to PTE entries.  This happens for both PMD zero pages as
462  * well as PMD empty entries.
463  *
464  * The exception to this downgrade path is for PMD entries that have
465  * real storage backing them.  We will leave these real PMD entries in
466  * the tree, and PTE writes will simply dirty the entire PMD entry.
467  *
468  * Note: Unlike filemap_fault() we don't honor FAULT_FLAG_RETRY flags. For
469  * persistent memory the benefit is doubtful. We can add that later if we can
470  * show it helps.
471  *
472  * On error, this function does not return an ERR_PTR.  Instead it returns
473  * a VM_FAULT code, encoded as an xarray internal entry.  The ERR_PTR values
474  * overlap with xarray value entries.
475  */
476 static void *grab_mapping_entry(struct xa_state *xas,
477                 struct address_space *mapping, unsigned int order)
478 {
479         unsigned long index = xas->xa_index;
480         bool pmd_downgrade = false; /* splitting PMD entry into PTE entries? */
481         void *entry;
482
483 retry:
484         xas_lock_irq(xas);
485         entry = get_unlocked_entry(xas, order);
486
487         if (entry) {
488                 if (dax_is_conflict(entry))
489                         goto fallback;
490                 if (!xa_is_value(entry)) {
491                         xas_set_err(xas, EIO);
492                         goto out_unlock;
493                 }
494
495                 if (order == 0) {
496                         if (dax_is_pmd_entry(entry) &&
497                             (dax_is_zero_entry(entry) ||
498                              dax_is_empty_entry(entry))) {
499                                 pmd_downgrade = true;
500                         }
501                 }
502         }
503
504         if (pmd_downgrade) {
505                 /*
506                  * Make sure 'entry' remains valid while we drop
507                  * the i_pages lock.
508                  */
509                 dax_lock_entry(xas, entry);
510
511                 /*
512                  * Besides huge zero pages the only other thing that gets
513                  * downgraded are empty entries which don't need to be
514                  * unmapped.
515                  */
516                 if (dax_is_zero_entry(entry)) {
517                         xas_unlock_irq(xas);
518                         unmap_mapping_pages(mapping,
519                                         xas->xa_index & ~PG_PMD_COLOUR,
520                                         PG_PMD_NR, false);
521                         xas_reset(xas);
522                         xas_lock_irq(xas);
523                 }
524
525                 dax_disassociate_entry(entry, mapping, false);
526                 xas_store(xas, NULL);   /* undo the PMD join */
527                 dax_wake_entry(xas, entry, true);
528                 mapping->nrexceptional--;
529                 entry = NULL;
530                 xas_set(xas, index);
531         }
532
533         if (entry) {
534                 dax_lock_entry(xas, entry);
535         } else {
536                 unsigned long flags = DAX_EMPTY;
537
538                 if (order > 0)
539                         flags |= DAX_PMD;
540                 entry = dax_make_entry(pfn_to_pfn_t(0), flags);
541                 dax_lock_entry(xas, entry);
542                 if (xas_error(xas))
543                         goto out_unlock;
544                 mapping->nrexceptional++;
545         }
546
547 out_unlock:
548         xas_unlock_irq(xas);
549         if (xas_nomem(xas, mapping_gfp_mask(mapping) & ~__GFP_HIGHMEM))
550                 goto retry;
551         if (xas->xa_node == XA_ERROR(-ENOMEM))
552                 return xa_mk_internal(VM_FAULT_OOM);
553         if (xas_error(xas))
554                 return xa_mk_internal(VM_FAULT_SIGBUS);
555         return entry;
556 fallback:
557         xas_unlock_irq(xas);
558         return xa_mk_internal(VM_FAULT_FALLBACK);
559 }
560
561 /**
562  * dax_layout_busy_page - find first pinned page in @mapping
563  * @mapping: address space to scan for a page with ref count > 1
564  *
565  * DAX requires ZONE_DEVICE mapped pages. These pages are never
566  * 'onlined' to the page allocator so they are considered idle when
567  * page->count == 1. A filesystem uses this interface to determine if
568  * any page in the mapping is busy, i.e. for DMA, or other
569  * get_user_pages() usages.
570  *
571  * It is expected that the filesystem is holding locks to block the
572  * establishment of new mappings in this address_space. I.e. it expects
573  * to be able to run unmap_mapping_range() and subsequently not race
574  * mapping_mapped() becoming true.
575  */
576 struct page *dax_layout_busy_page(struct address_space *mapping)
577 {
578         XA_STATE(xas, &mapping->i_pages, 0);
579         void *entry;
580         unsigned int scanned = 0;
581         struct page *page = NULL;
582
583         /*
584          * In the 'limited' case get_user_pages() for dax is disabled.
585          */
586         if (IS_ENABLED(CONFIG_FS_DAX_LIMITED))
587                 return NULL;
588
589         if (!dax_mapping(mapping) || !mapping_mapped(mapping))
590                 return NULL;
591
592         /*
593          * If we race get_user_pages_fast() here either we'll see the
594          * elevated page count in the iteration and wait, or
595          * get_user_pages_fast() will see that the page it took a reference
596          * against is no longer mapped in the page tables and bail to the
597          * get_user_pages() slow path.  The slow path is protected by
598          * pte_lock() and pmd_lock(). New references are not taken without
599          * holding those locks, and unmap_mapping_range() will not zero the
600          * pte or pmd without holding the respective lock, so we are
601          * guaranteed to either see new references or prevent new
602          * references from being established.
603          */
604         unmap_mapping_range(mapping, 0, 0, 0);
605
606         xas_lock_irq(&xas);
607         xas_for_each(&xas, entry, ULONG_MAX) {
608                 if (WARN_ON_ONCE(!xa_is_value(entry)))
609                         continue;
610                 if (unlikely(dax_is_locked(entry)))
611                         entry = get_unlocked_entry(&xas, 0);
612                 if (entry)
613                         page = dax_busy_page(entry);
614                 put_unlocked_entry(&xas, entry);
615                 if (page)
616                         break;
617                 if (++scanned % XA_CHECK_SCHED)
618                         continue;
619
620                 xas_pause(&xas);
621                 xas_unlock_irq(&xas);
622                 cond_resched();
623                 xas_lock_irq(&xas);
624         }
625         xas_unlock_irq(&xas);
626         return page;
627 }
628 EXPORT_SYMBOL_GPL(dax_layout_busy_page);
629
630 static int __dax_invalidate_entry(struct address_space *mapping,
631                                           pgoff_t index, bool trunc)
632 {
633         XA_STATE(xas, &mapping->i_pages, index);
634         int ret = 0;
635         void *entry;
636
637         xas_lock_irq(&xas);
638         entry = get_unlocked_entry(&xas, 0);
639         if (!entry || WARN_ON_ONCE(!xa_is_value(entry)))
640                 goto out;
641         if (!trunc &&
642             (xas_get_mark(&xas, PAGECACHE_TAG_DIRTY) ||
643              xas_get_mark(&xas, PAGECACHE_TAG_TOWRITE)))
644                 goto out;
645         dax_disassociate_entry(entry, mapping, trunc);
646         xas_store(&xas, NULL);
647         mapping->nrexceptional--;
648         ret = 1;
649 out:
650         put_unlocked_entry(&xas, entry);
651         xas_unlock_irq(&xas);
652         return ret;
653 }
654
655 /*
656  * Delete DAX entry at @index from @mapping.  Wait for it
657  * to be unlocked before deleting it.
658  */
659 int dax_delete_mapping_entry(struct address_space *mapping, pgoff_t index)
660 {
661         int ret = __dax_invalidate_entry(mapping, index, true);
662
663         /*
664          * This gets called from truncate / punch_hole path. As such, the caller
665          * must hold locks protecting against concurrent modifications of the
666          * page cache (usually fs-private i_mmap_sem for writing). Since the
667          * caller has seen a DAX entry for this index, we better find it
668          * at that index as well...
669          */
670         WARN_ON_ONCE(!ret);
671         return ret;
672 }
673
674 /*
675  * Invalidate DAX entry if it is clean.
676  */
677 int dax_invalidate_mapping_entry_sync(struct address_space *mapping,
678                                       pgoff_t index)
679 {
680         return __dax_invalidate_entry(mapping, index, false);
681 }
682
683 static int copy_user_dax(struct block_device *bdev, struct dax_device *dax_dev,
684                 sector_t sector, size_t size, struct page *to,
685                 unsigned long vaddr)
686 {
687         void *vto, *kaddr;
688         pgoff_t pgoff;
689         long rc;
690         int id;
691
692         rc = bdev_dax_pgoff(bdev, sector, size, &pgoff);
693         if (rc)
694                 return rc;
695
696         id = dax_read_lock();
697         rc = dax_direct_access(dax_dev, pgoff, PHYS_PFN(size), &kaddr, NULL);
698         if (rc < 0) {
699                 dax_read_unlock(id);
700                 return rc;
701         }
702         vto = kmap_atomic(to);
703         copy_user_page(vto, (void __force *)kaddr, vaddr, to);
704         kunmap_atomic(vto);
705         dax_read_unlock(id);
706         return 0;
707 }
708
709 /*
710  * By this point grab_mapping_entry() has ensured that we have a locked entry
711  * of the appropriate size so we don't have to worry about downgrading PMDs to
712  * PTEs.  If we happen to be trying to insert a PTE and there is a PMD
713  * already in the tree, we will skip the insertion and just dirty the PMD as
714  * appropriate.
715  */
716 static void *dax_insert_entry(struct xa_state *xas,
717                 struct address_space *mapping, struct vm_fault *vmf,
718                 void *entry, pfn_t pfn, unsigned long flags, bool dirty)
719 {
720         void *new_entry = dax_make_entry(pfn, flags);
721
722         if (dirty)
723                 __mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
724
725         if (dax_is_zero_entry(entry) && !(flags & DAX_ZERO_PAGE)) {
726                 unsigned long index = xas->xa_index;
727                 /* we are replacing a zero page with block mapping */
728                 if (dax_is_pmd_entry(entry))
729                         unmap_mapping_pages(mapping, index & ~PG_PMD_COLOUR,
730                                         PG_PMD_NR, false);
731                 else /* pte entry */
732                         unmap_mapping_pages(mapping, index, 1, false);
733         }
734
735         xas_reset(xas);
736         xas_lock_irq(xas);
737         if (dax_is_zero_entry(entry) || dax_is_empty_entry(entry)) {
738                 void *old;
739
740                 dax_disassociate_entry(entry, mapping, false);
741                 dax_associate_entry(new_entry, mapping, vmf->vma, vmf->address);
742                 /*
743                  * Only swap our new entry into the page cache if the current
744                  * entry is a zero page or an empty entry.  If a normal PTE or
745                  * PMD entry is already in the cache, we leave it alone.  This
746                  * means that if we are trying to insert a PTE and the
747                  * existing entry is a PMD, we will just leave the PMD in the
748                  * tree and dirty it if necessary.
749                  */
750                 old = dax_lock_entry(xas, new_entry);
751                 WARN_ON_ONCE(old != xa_mk_value(xa_to_value(entry) |
752                                         DAX_LOCKED));
753                 entry = new_entry;
754         } else {
755                 xas_load(xas);  /* Walk the xa_state */
756         }
757
758         if (dirty)
759                 xas_set_mark(xas, PAGECACHE_TAG_DIRTY);
760
761         xas_unlock_irq(xas);
762         return entry;
763 }
764
765 static inline
766 unsigned long pgoff_address(pgoff_t pgoff, struct vm_area_struct *vma)
767 {
768         unsigned long address;
769
770         address = vma->vm_start + ((pgoff - vma->vm_pgoff) << PAGE_SHIFT);
771         VM_BUG_ON_VMA(address < vma->vm_start || address >= vma->vm_end, vma);
772         return address;
773 }
774
775 /* Walk all mappings of a given index of a file and writeprotect them */
776 static void dax_entry_mkclean(struct address_space *mapping, pgoff_t index,
777                 unsigned long pfn)
778 {
779         struct vm_area_struct *vma;
780         pte_t pte, *ptep = NULL;
781         pmd_t *pmdp = NULL;
782         spinlock_t *ptl;
783
784         i_mmap_lock_read(mapping);
785         vma_interval_tree_foreach(vma, &mapping->i_mmap, index, index) {
786                 struct mmu_notifier_range range;
787                 unsigned long address;
788
789                 cond_resched();
790
791                 if (!(vma->vm_flags & VM_SHARED))
792                         continue;
793
794                 address = pgoff_address(index, vma);
795
796                 /*
797                  * Note because we provide range to follow_pte_pmd it will
798                  * call mmu_notifier_invalidate_range_start() on our behalf
799                  * before taking any lock.
800                  */
801                 if (follow_pte_pmd(vma->vm_mm, address, &range,
802                                    &ptep, &pmdp, &ptl))
803                         continue;
804
805                 /*
806                  * No need to call mmu_notifier_invalidate_range() as we are
807                  * downgrading page table protection not changing it to point
808                  * to a new page.
809                  *
810                  * See Documentation/vm/mmu_notifier.rst
811                  */
812                 if (pmdp) {
813 #ifdef CONFIG_FS_DAX_PMD
814                         pmd_t pmd;
815
816                         if (pfn != pmd_pfn(*pmdp))
817                                 goto unlock_pmd;
818                         if (!pmd_dirty(*pmdp) && !pmd_write(*pmdp))
819                                 goto unlock_pmd;
820
821                         flush_cache_page(vma, address, pfn);
822                         pmd = pmdp_invalidate(vma, address, pmdp);
823                         pmd = pmd_wrprotect(pmd);
824                         pmd = pmd_mkclean(pmd);
825                         set_pmd_at(vma->vm_mm, address, pmdp, pmd);
826 unlock_pmd:
827 #endif
828                         spin_unlock(ptl);
829                 } else {
830                         if (pfn != pte_pfn(*ptep))
831                                 goto unlock_pte;
832                         if (!pte_dirty(*ptep) && !pte_write(*ptep))
833                                 goto unlock_pte;
834
835                         flush_cache_page(vma, address, pfn);
836                         pte = ptep_clear_flush(vma, address, ptep);
837                         pte = pte_wrprotect(pte);
838                         pte = pte_mkclean(pte);
839                         set_pte_at(vma->vm_mm, address, ptep, pte);
840 unlock_pte:
841                         pte_unmap_unlock(ptep, ptl);
842                 }
843
844                 mmu_notifier_invalidate_range_end(&range);
845         }
846         i_mmap_unlock_read(mapping);
847 }
848
849 static int dax_writeback_one(struct xa_state *xas, struct dax_device *dax_dev,
850                 struct address_space *mapping, void *entry)
851 {
852         unsigned long pfn, index, count;
853         long ret = 0;
854
855         /*
856          * A page got tagged dirty in DAX mapping? Something is seriously
857          * wrong.
858          */
859         if (WARN_ON(!xa_is_value(entry)))
860                 return -EIO;
861
862         if (unlikely(dax_is_locked(entry))) {
863                 void *old_entry = entry;
864
865                 entry = get_unlocked_entry(xas, 0);
866
867                 /* Entry got punched out / reallocated? */
868                 if (!entry || WARN_ON_ONCE(!xa_is_value(entry)))
869                         goto put_unlocked;
870                 /*
871                  * Entry got reallocated elsewhere? No need to writeback.
872                  * We have to compare pfns as we must not bail out due to
873                  * difference in lockbit or entry type.
874                  */
875                 if (dax_to_pfn(old_entry) != dax_to_pfn(entry))
876                         goto put_unlocked;
877                 if (WARN_ON_ONCE(dax_is_empty_entry(entry) ||
878                                         dax_is_zero_entry(entry))) {
879                         ret = -EIO;
880                         goto put_unlocked;
881                 }
882
883                 /* Another fsync thread may have already done this entry */
884                 if (!xas_get_mark(xas, PAGECACHE_TAG_TOWRITE))
885                         goto put_unlocked;
886         }
887
888         /* Lock the entry to serialize with page faults */
889         dax_lock_entry(xas, entry);
890
891         /*
892          * We can clear the tag now but we have to be careful so that concurrent
893          * dax_writeback_one() calls for the same index cannot finish before we
894          * actually flush the caches. This is achieved as the calls will look
895          * at the entry only under the i_pages lock and once they do that
896          * they will see the entry locked and wait for it to unlock.
897          */
898         xas_clear_mark(xas, PAGECACHE_TAG_TOWRITE);
899         xas_unlock_irq(xas);
900
901         /*
902          * If dax_writeback_mapping_range() was given a wbc->range_start
903          * in the middle of a PMD, the 'index' we use needs to be
904          * aligned to the start of the PMD.
905          * This allows us to flush for PMD_SIZE and not have to worry about
906          * partial PMD writebacks.
907          */
908         pfn = dax_to_pfn(entry);
909         count = 1UL << dax_entry_order(entry);
910         index = xas->xa_index & ~(count - 1);
911
912         dax_entry_mkclean(mapping, index, pfn);
913         dax_flush(dax_dev, page_address(pfn_to_page(pfn)), count * PAGE_SIZE);
914         /*
915          * After we have flushed the cache, we can clear the dirty tag. There
916          * cannot be new dirty data in the pfn after the flush has completed as
917          * the pfn mappings are writeprotected and fault waits for mapping
918          * entry lock.
919          */
920         xas_reset(xas);
921         xas_lock_irq(xas);
922         xas_store(xas, entry);
923         xas_clear_mark(xas, PAGECACHE_TAG_DIRTY);
924         dax_wake_entry(xas, entry, false);
925
926         trace_dax_writeback_one(mapping->host, index, count);
927         return ret;
928
929  put_unlocked:
930         put_unlocked_entry(xas, entry);
931         return ret;
932 }
933
934 /*
935  * Flush the mapping to the persistent domain within the byte range of [start,
936  * end]. This is required by data integrity operations to ensure file data is
937  * on persistent storage prior to completion of the operation.
938  */
939 int dax_writeback_mapping_range(struct address_space *mapping,
940                 struct dax_device *dax_dev, struct writeback_control *wbc)
941 {
942         XA_STATE(xas, &mapping->i_pages, wbc->range_start >> PAGE_SHIFT);
943         struct inode *inode = mapping->host;
944         pgoff_t end_index = wbc->range_end >> PAGE_SHIFT;
945         void *entry;
946         int ret = 0;
947         unsigned int scanned = 0;
948
949         if (WARN_ON_ONCE(inode->i_blkbits != PAGE_SHIFT))
950                 return -EIO;
951
952         if (!mapping->nrexceptional || wbc->sync_mode != WB_SYNC_ALL)
953                 return 0;
954
955         trace_dax_writeback_range(inode, xas.xa_index, end_index);
956
957         tag_pages_for_writeback(mapping, xas.xa_index, end_index);
958
959         xas_lock_irq(&xas);
960         xas_for_each_marked(&xas, entry, end_index, PAGECACHE_TAG_TOWRITE) {
961                 ret = dax_writeback_one(&xas, dax_dev, mapping, entry);
962                 if (ret < 0) {
963                         mapping_set_error(mapping, ret);
964                         break;
965                 }
966                 if (++scanned % XA_CHECK_SCHED)
967                         continue;
968
969                 xas_pause(&xas);
970                 xas_unlock_irq(&xas);
971                 cond_resched();
972                 xas_lock_irq(&xas);
973         }
974         xas_unlock_irq(&xas);
975         trace_dax_writeback_range_done(inode, xas.xa_index, end_index);
976         return ret;
977 }
978 EXPORT_SYMBOL_GPL(dax_writeback_mapping_range);
979
980 static sector_t dax_iomap_sector(struct iomap *iomap, loff_t pos)
981 {
982         return (iomap->addr + (pos & PAGE_MASK) - iomap->offset) >> 9;
983 }
984
985 static int dax_iomap_pfn(struct iomap *iomap, loff_t pos, size_t size,
986                          pfn_t *pfnp)
987 {
988         const sector_t sector = dax_iomap_sector(iomap, pos);
989         pgoff_t pgoff;
990         int id, rc;
991         long length;
992
993         rc = bdev_dax_pgoff(iomap->bdev, sector, size, &pgoff);
994         if (rc)
995                 return rc;
996         id = dax_read_lock();
997         length = dax_direct_access(iomap->dax_dev, pgoff, PHYS_PFN(size),
998                                    NULL, pfnp);
999         if (length < 0) {
1000                 rc = length;
1001                 goto out;
1002         }
1003         rc = -EINVAL;
1004         if (PFN_PHYS(length) < size)
1005                 goto out;
1006         if (pfn_t_to_pfn(*pfnp) & (PHYS_PFN(size)-1))
1007                 goto out;
1008         /* For larger pages we need devmap */
1009         if (length > 1 && !pfn_t_devmap(*pfnp))
1010                 goto out;
1011         rc = 0;
1012 out:
1013         dax_read_unlock(id);
1014         return rc;
1015 }
1016
1017 /*
1018  * The user has performed a load from a hole in the file.  Allocating a new
1019  * page in the file would cause excessive storage usage for workloads with
1020  * sparse files.  Instead we insert a read-only mapping of the 4k zero page.
1021  * If this page is ever written to we will re-fault and change the mapping to
1022  * point to real DAX storage instead.
1023  */
1024 static vm_fault_t dax_load_hole(struct xa_state *xas,
1025                 struct address_space *mapping, void **entry,
1026                 struct vm_fault *vmf)
1027 {
1028         struct inode *inode = mapping->host;
1029         unsigned long vaddr = vmf->address;
1030         pfn_t pfn = pfn_to_pfn_t(my_zero_pfn(vaddr));
1031         vm_fault_t ret;
1032
1033         *entry = dax_insert_entry(xas, mapping, vmf, *entry, pfn,
1034                         DAX_ZERO_PAGE, false);
1035
1036         ret = vmf_insert_mixed(vmf->vma, vaddr, pfn);
1037         trace_dax_load_hole(inode, vmf, ret);
1038         return ret;
1039 }
1040
1041 int dax_iomap_zero(loff_t pos, unsigned offset, unsigned size,
1042                    struct iomap *iomap)
1043 {
1044         sector_t sector = iomap_sector(iomap, pos & PAGE_MASK);
1045         pgoff_t pgoff;
1046         long rc, id;
1047         void *kaddr;
1048         bool page_aligned = false;
1049
1050
1051         if (IS_ALIGNED(sector << SECTOR_SHIFT, PAGE_SIZE) &&
1052             IS_ALIGNED(size, PAGE_SIZE))
1053                 page_aligned = true;
1054
1055         rc = bdev_dax_pgoff(iomap->bdev, sector, PAGE_SIZE, &pgoff);
1056         if (rc)
1057                 return rc;
1058
1059         id = dax_read_lock();
1060
1061         if (page_aligned)
1062                 rc = dax_zero_page_range(iomap->dax_dev, pgoff,
1063                                          size >> PAGE_SHIFT);
1064         else
1065                 rc = dax_direct_access(iomap->dax_dev, pgoff, 1, &kaddr, NULL);
1066         if (rc < 0) {
1067                 dax_read_unlock(id);
1068                 return rc;
1069         }
1070
1071         if (!page_aligned) {
1072                 memset(kaddr + offset, 0, size);
1073                 dax_flush(iomap->dax_dev, kaddr + offset, size);
1074         }
1075         dax_read_unlock(id);
1076         return 0;
1077 }
1078
1079 static loff_t
1080 dax_iomap_actor(struct inode *inode, loff_t pos, loff_t length, void *data,
1081                 struct iomap *iomap, struct iomap *srcmap)
1082 {
1083         struct block_device *bdev = iomap->bdev;
1084         struct dax_device *dax_dev = iomap->dax_dev;
1085         struct iov_iter *iter = data;
1086         loff_t end = pos + length, done = 0;
1087         ssize_t ret = 0;
1088         size_t xfer;
1089         int id;
1090
1091         if (iov_iter_rw(iter) == READ) {
1092                 end = min(end, i_size_read(inode));
1093                 if (pos >= end)
1094                         return 0;
1095
1096                 if (iomap->type == IOMAP_HOLE || iomap->type == IOMAP_UNWRITTEN)
1097                         return iov_iter_zero(min(length, end - pos), iter);
1098         }
1099
1100         if (WARN_ON_ONCE(iomap->type != IOMAP_MAPPED))
1101                 return -EIO;
1102
1103         /*
1104          * Write can allocate block for an area which has a hole page mapped
1105          * into page tables. We have to tear down these mappings so that data
1106          * written by write(2) is visible in mmap.
1107          */
1108         if (iomap->flags & IOMAP_F_NEW) {
1109                 invalidate_inode_pages2_range(inode->i_mapping,
1110                                               pos >> PAGE_SHIFT,
1111                                               (end - 1) >> PAGE_SHIFT);
1112         }
1113
1114         id = dax_read_lock();
1115         while (pos < end) {
1116                 unsigned offset = pos & (PAGE_SIZE - 1);
1117                 const size_t size = ALIGN(length + offset, PAGE_SIZE);
1118                 const sector_t sector = dax_iomap_sector(iomap, pos);
1119                 ssize_t map_len;
1120                 pgoff_t pgoff;
1121                 void *kaddr;
1122
1123                 if (fatal_signal_pending(current)) {
1124                         ret = -EINTR;
1125                         break;
1126                 }
1127
1128                 ret = bdev_dax_pgoff(bdev, sector, size, &pgoff);
1129                 if (ret)
1130                         break;
1131
1132                 map_len = dax_direct_access(dax_dev, pgoff, PHYS_PFN(size),
1133                                 &kaddr, NULL);
1134                 if (map_len < 0) {
1135                         ret = map_len;
1136                         break;
1137                 }
1138
1139                 map_len = PFN_PHYS(map_len);
1140                 kaddr += offset;
1141                 map_len -= offset;
1142                 if (map_len > end - pos)
1143                         map_len = end - pos;
1144
1145                 /*
1146                  * The userspace address for the memory copy has already been
1147                  * validated via access_ok() in either vfs_read() or
1148                  * vfs_write(), depending on which operation we are doing.
1149                  */
1150                 if (iov_iter_rw(iter) == WRITE)
1151                         xfer = dax_copy_from_iter(dax_dev, pgoff, kaddr,
1152                                         map_len, iter);
1153                 else
1154                         xfer = dax_copy_to_iter(dax_dev, pgoff, kaddr,
1155                                         map_len, iter);
1156
1157                 pos += xfer;
1158                 length -= xfer;
1159                 done += xfer;
1160
1161                 if (xfer == 0)
1162                         ret = -EFAULT;
1163                 if (xfer < map_len)
1164                         break;
1165         }
1166         dax_read_unlock(id);
1167
1168         return done ? done : ret;
1169 }
1170
1171 /**
1172  * dax_iomap_rw - Perform I/O to a DAX file
1173  * @iocb:       The control block for this I/O
1174  * @iter:       The addresses to do I/O from or to
1175  * @ops:        iomap ops passed from the file system
1176  *
1177  * This function performs read and write operations to directly mapped
1178  * persistent memory.  The callers needs to take care of read/write exclusion
1179  * and evicting any page cache pages in the region under I/O.
1180  */
1181 ssize_t
1182 dax_iomap_rw(struct kiocb *iocb, struct iov_iter *iter,
1183                 const struct iomap_ops *ops)
1184 {
1185         struct address_space *mapping = iocb->ki_filp->f_mapping;
1186         struct inode *inode = mapping->host;
1187         loff_t pos = iocb->ki_pos, ret = 0, done = 0;
1188         unsigned flags = 0;
1189
1190         if (iov_iter_rw(iter) == WRITE) {
1191                 lockdep_assert_held_write(&inode->i_rwsem);
1192                 flags |= IOMAP_WRITE;
1193         } else {
1194                 lockdep_assert_held(&inode->i_rwsem);
1195         }
1196
1197         if (iocb->ki_flags & IOCB_NOWAIT)
1198                 flags |= IOMAP_NOWAIT;
1199
1200         while (iov_iter_count(iter)) {
1201                 ret = iomap_apply(inode, pos, iov_iter_count(iter), flags, ops,
1202                                 iter, dax_iomap_actor);
1203                 if (ret <= 0)
1204                         break;
1205                 pos += ret;
1206                 done += ret;
1207         }
1208
1209         iocb->ki_pos += done;
1210         return done ? done : ret;
1211 }
1212 EXPORT_SYMBOL_GPL(dax_iomap_rw);
1213
1214 static vm_fault_t dax_fault_return(int error)
1215 {
1216         if (error == 0)
1217                 return VM_FAULT_NOPAGE;
1218         return vmf_error(error);
1219 }
1220
1221 /*
1222  * MAP_SYNC on a dax mapping guarantees dirty metadata is
1223  * flushed on write-faults (non-cow), but not read-faults.
1224  */
1225 static bool dax_fault_is_synchronous(unsigned long flags,
1226                 struct vm_area_struct *vma, struct iomap *iomap)
1227 {
1228         return (flags & IOMAP_WRITE) && (vma->vm_flags & VM_SYNC)
1229                 && (iomap->flags & IOMAP_F_DIRTY);
1230 }
1231
1232 static vm_fault_t dax_iomap_pte_fault(struct vm_fault *vmf, pfn_t *pfnp,
1233                                int *iomap_errp, const struct iomap_ops *ops)
1234 {
1235         struct vm_area_struct *vma = vmf->vma;
1236         struct address_space *mapping = vma->vm_file->f_mapping;
1237         XA_STATE(xas, &mapping->i_pages, vmf->pgoff);
1238         struct inode *inode = mapping->host;
1239         unsigned long vaddr = vmf->address;
1240         loff_t pos = (loff_t)vmf->pgoff << PAGE_SHIFT;
1241         struct iomap iomap = { .type = IOMAP_HOLE };
1242         struct iomap srcmap = { .type = IOMAP_HOLE };
1243         unsigned flags = IOMAP_FAULT;
1244         int error, major = 0;
1245         bool write = vmf->flags & FAULT_FLAG_WRITE;
1246         bool sync;
1247         vm_fault_t ret = 0;
1248         void *entry;
1249         pfn_t pfn;
1250
1251         trace_dax_pte_fault(inode, vmf, ret);
1252         /*
1253          * Check whether offset isn't beyond end of file now. Caller is supposed
1254          * to hold locks serializing us with truncate / punch hole so this is
1255          * a reliable test.
1256          */
1257         if (pos >= i_size_read(inode)) {
1258                 ret = VM_FAULT_SIGBUS;
1259                 goto out;
1260         }
1261
1262         if (write && !vmf->cow_page)
1263                 flags |= IOMAP_WRITE;
1264
1265         entry = grab_mapping_entry(&xas, mapping, 0);
1266         if (xa_is_internal(entry)) {
1267                 ret = xa_to_internal(entry);
1268                 goto out;
1269         }
1270
1271         /*
1272          * It is possible, particularly with mixed reads & writes to private
1273          * mappings, that we have raced with a PMD fault that overlaps with
1274          * the PTE we need to set up.  If so just return and the fault will be
1275          * retried.
1276          */
1277         if (pmd_trans_huge(*vmf->pmd) || pmd_devmap(*vmf->pmd)) {
1278                 ret = VM_FAULT_NOPAGE;
1279                 goto unlock_entry;
1280         }
1281
1282         /*
1283          * Note that we don't bother to use iomap_apply here: DAX required
1284          * the file system block size to be equal the page size, which means
1285          * that we never have to deal with more than a single extent here.
1286          */
1287         error = ops->iomap_begin(inode, pos, PAGE_SIZE, flags, &iomap, &srcmap);
1288         if (iomap_errp)
1289                 *iomap_errp = error;
1290         if (error) {
1291                 ret = dax_fault_return(error);
1292                 goto unlock_entry;
1293         }
1294         if (WARN_ON_ONCE(iomap.offset + iomap.length < pos + PAGE_SIZE)) {
1295                 error = -EIO;   /* fs corruption? */
1296                 goto error_finish_iomap;
1297         }
1298
1299         if (vmf->cow_page) {
1300                 sector_t sector = dax_iomap_sector(&iomap, pos);
1301
1302                 switch (iomap.type) {
1303                 case IOMAP_HOLE:
1304                 case IOMAP_UNWRITTEN:
1305                         clear_user_highpage(vmf->cow_page, vaddr);
1306                         break;
1307                 case IOMAP_MAPPED:
1308                         error = copy_user_dax(iomap.bdev, iomap.dax_dev,
1309                                         sector, PAGE_SIZE, vmf->cow_page, vaddr);
1310                         break;
1311                 default:
1312                         WARN_ON_ONCE(1);
1313                         error = -EIO;
1314                         break;
1315                 }
1316
1317                 if (error)
1318                         goto error_finish_iomap;
1319
1320                 __SetPageUptodate(vmf->cow_page);
1321                 ret = finish_fault(vmf);
1322                 if (!ret)
1323                         ret = VM_FAULT_DONE_COW;
1324                 goto finish_iomap;
1325         }
1326
1327         sync = dax_fault_is_synchronous(flags, vma, &iomap);
1328
1329         switch (iomap.type) {
1330         case IOMAP_MAPPED:
1331                 if (iomap.flags & IOMAP_F_NEW) {
1332                         count_vm_event(PGMAJFAULT);
1333                         count_memcg_event_mm(vma->vm_mm, PGMAJFAULT);
1334                         major = VM_FAULT_MAJOR;
1335                 }
1336                 error = dax_iomap_pfn(&iomap, pos, PAGE_SIZE, &pfn);
1337                 if (error < 0)
1338                         goto error_finish_iomap;
1339
1340                 entry = dax_insert_entry(&xas, mapping, vmf, entry, pfn,
1341                                                  0, write && !sync);
1342
1343                 /*
1344                  * If we are doing synchronous page fault and inode needs fsync,
1345                  * we can insert PTE into page tables only after that happens.
1346                  * Skip insertion for now and return the pfn so that caller can
1347                  * insert it after fsync is done.
1348                  */
1349                 if (sync) {
1350                         if (WARN_ON_ONCE(!pfnp)) {
1351                                 error = -EIO;
1352                                 goto error_finish_iomap;
1353                         }
1354                         *pfnp = pfn;
1355                         ret = VM_FAULT_NEEDDSYNC | major;
1356                         goto finish_iomap;
1357                 }
1358                 trace_dax_insert_mapping(inode, vmf, entry);
1359                 if (write)
1360                         ret = vmf_insert_mixed_mkwrite(vma, vaddr, pfn);
1361                 else
1362                         ret = vmf_insert_mixed(vma, vaddr, pfn);
1363
1364                 goto finish_iomap;
1365         case IOMAP_UNWRITTEN:
1366         case IOMAP_HOLE:
1367                 if (!write) {
1368                         ret = dax_load_hole(&xas, mapping, &entry, vmf);
1369                         goto finish_iomap;
1370                 }
1371                 /*FALLTHRU*/
1372         default:
1373                 WARN_ON_ONCE(1);
1374                 error = -EIO;
1375                 break;
1376         }
1377
1378  error_finish_iomap:
1379         ret = dax_fault_return(error);
1380  finish_iomap:
1381         if (ops->iomap_end) {
1382                 int copied = PAGE_SIZE;
1383
1384                 if (ret & VM_FAULT_ERROR)
1385                         copied = 0;
1386                 /*
1387                  * The fault is done by now and there's no way back (other
1388                  * thread may be already happily using PTE we have installed).
1389                  * Just ignore error from ->iomap_end since we cannot do much
1390                  * with it.
1391                  */
1392                 ops->iomap_end(inode, pos, PAGE_SIZE, copied, flags, &iomap);
1393         }
1394  unlock_entry:
1395         dax_unlock_entry(&xas, entry);
1396  out:
1397         trace_dax_pte_fault_done(inode, vmf, ret);
1398         return ret | major;
1399 }
1400
1401 #ifdef CONFIG_FS_DAX_PMD
1402 static vm_fault_t dax_pmd_load_hole(struct xa_state *xas, struct vm_fault *vmf,
1403                 struct iomap *iomap, void **entry)
1404 {
1405         struct address_space *mapping = vmf->vma->vm_file->f_mapping;
1406         unsigned long pmd_addr = vmf->address & PMD_MASK;
1407         struct vm_area_struct *vma = vmf->vma;
1408         struct inode *inode = mapping->host;
1409         pgtable_t pgtable = NULL;
1410         struct page *zero_page;
1411         spinlock_t *ptl;
1412         pmd_t pmd_entry;
1413         pfn_t pfn;
1414
1415         zero_page = mm_get_huge_zero_page(vmf->vma->vm_mm);
1416
1417         if (unlikely(!zero_page))
1418                 goto fallback;
1419
1420         pfn = page_to_pfn_t(zero_page);
1421         *entry = dax_insert_entry(xas, mapping, vmf, *entry, pfn,
1422                         DAX_PMD | DAX_ZERO_PAGE, false);
1423
1424         if (arch_needs_pgtable_deposit()) {
1425                 pgtable = pte_alloc_one(vma->vm_mm);
1426                 if (!pgtable)
1427                         return VM_FAULT_OOM;
1428         }
1429
1430         ptl = pmd_lock(vmf->vma->vm_mm, vmf->pmd);
1431         if (!pmd_none(*(vmf->pmd))) {
1432                 spin_unlock(ptl);
1433                 goto fallback;
1434         }
1435
1436         if (pgtable) {
1437                 pgtable_trans_huge_deposit(vma->vm_mm, vmf->pmd, pgtable);
1438                 mm_inc_nr_ptes(vma->vm_mm);
1439         }
1440         pmd_entry = mk_pmd(zero_page, vmf->vma->vm_page_prot);
1441         pmd_entry = pmd_mkhuge(pmd_entry);
1442         set_pmd_at(vmf->vma->vm_mm, pmd_addr, vmf->pmd, pmd_entry);
1443         spin_unlock(ptl);
1444         trace_dax_pmd_load_hole(inode, vmf, zero_page, *entry);
1445         return VM_FAULT_NOPAGE;
1446
1447 fallback:
1448         if (pgtable)
1449                 pte_free(vma->vm_mm, pgtable);
1450         trace_dax_pmd_load_hole_fallback(inode, vmf, zero_page, *entry);
1451         return VM_FAULT_FALLBACK;
1452 }
1453
1454 static vm_fault_t dax_iomap_pmd_fault(struct vm_fault *vmf, pfn_t *pfnp,
1455                                const struct iomap_ops *ops)
1456 {
1457         struct vm_area_struct *vma = vmf->vma;
1458         struct address_space *mapping = vma->vm_file->f_mapping;
1459         XA_STATE_ORDER(xas, &mapping->i_pages, vmf->pgoff, PMD_ORDER);
1460         unsigned long pmd_addr = vmf->address & PMD_MASK;
1461         bool write = vmf->flags & FAULT_FLAG_WRITE;
1462         bool sync;
1463         unsigned int iomap_flags = (write ? IOMAP_WRITE : 0) | IOMAP_FAULT;
1464         struct inode *inode = mapping->host;
1465         vm_fault_t result = VM_FAULT_FALLBACK;
1466         struct iomap iomap = { .type = IOMAP_HOLE };
1467         struct iomap srcmap = { .type = IOMAP_HOLE };
1468         pgoff_t max_pgoff;
1469         void *entry;
1470         loff_t pos;
1471         int error;
1472         pfn_t pfn;
1473
1474         /*
1475          * Check whether offset isn't beyond end of file now. Caller is
1476          * supposed to hold locks serializing us with truncate / punch hole so
1477          * this is a reliable test.
1478          */
1479         max_pgoff = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
1480
1481         trace_dax_pmd_fault(inode, vmf, max_pgoff, 0);
1482
1483         /*
1484          * Make sure that the faulting address's PMD offset (color) matches
1485          * the PMD offset from the start of the file.  This is necessary so
1486          * that a PMD range in the page table overlaps exactly with a PMD
1487          * range in the page cache.
1488          */
1489         if ((vmf->pgoff & PG_PMD_COLOUR) !=
1490             ((vmf->address >> PAGE_SHIFT) & PG_PMD_COLOUR))
1491                 goto fallback;
1492
1493         /* Fall back to PTEs if we're going to COW */
1494         if (write && !(vma->vm_flags & VM_SHARED))
1495                 goto fallback;
1496
1497         /* If the PMD would extend outside the VMA */
1498         if (pmd_addr < vma->vm_start)
1499                 goto fallback;
1500         if ((pmd_addr + PMD_SIZE) > vma->vm_end)
1501                 goto fallback;
1502
1503         if (xas.xa_index >= max_pgoff) {
1504                 result = VM_FAULT_SIGBUS;
1505                 goto out;
1506         }
1507
1508         /* If the PMD would extend beyond the file size */
1509         if ((xas.xa_index | PG_PMD_COLOUR) >= max_pgoff)
1510                 goto fallback;
1511
1512         /*
1513          * grab_mapping_entry() will make sure we get an empty PMD entry,
1514          * a zero PMD entry or a DAX PMD.  If it can't (because a PTE
1515          * entry is already in the array, for instance), it will return
1516          * VM_FAULT_FALLBACK.
1517          */
1518         entry = grab_mapping_entry(&xas, mapping, PMD_ORDER);
1519         if (xa_is_internal(entry)) {
1520                 result = xa_to_internal(entry);
1521                 goto fallback;
1522         }
1523
1524         /*
1525          * It is possible, particularly with mixed reads & writes to private
1526          * mappings, that we have raced with a PTE fault that overlaps with
1527          * the PMD we need to set up.  If so just return and the fault will be
1528          * retried.
1529          */
1530         if (!pmd_none(*vmf->pmd) && !pmd_trans_huge(*vmf->pmd) &&
1531                         !pmd_devmap(*vmf->pmd)) {
1532                 result = 0;
1533                 goto unlock_entry;
1534         }
1535
1536         /*
1537          * Note that we don't use iomap_apply here.  We aren't doing I/O, only
1538          * setting up a mapping, so really we're using iomap_begin() as a way
1539          * to look up our filesystem block.
1540          */
1541         pos = (loff_t)xas.xa_index << PAGE_SHIFT;
1542         error = ops->iomap_begin(inode, pos, PMD_SIZE, iomap_flags, &iomap,
1543                         &srcmap);
1544         if (error)
1545                 goto unlock_entry;
1546
1547         if (iomap.offset + iomap.length < pos + PMD_SIZE)
1548                 goto finish_iomap;
1549
1550         sync = dax_fault_is_synchronous(iomap_flags, vma, &iomap);
1551
1552         switch (iomap.type) {
1553         case IOMAP_MAPPED:
1554                 error = dax_iomap_pfn(&iomap, pos, PMD_SIZE, &pfn);
1555                 if (error < 0)
1556                         goto finish_iomap;
1557
1558                 entry = dax_insert_entry(&xas, mapping, vmf, entry, pfn,
1559                                                 DAX_PMD, write && !sync);
1560
1561                 /*
1562                  * If we are doing synchronous page fault and inode needs fsync,
1563                  * we can insert PMD into page tables only after that happens.
1564                  * Skip insertion for now and return the pfn so that caller can
1565                  * insert it after fsync is done.
1566                  */
1567                 if (sync) {
1568                         if (WARN_ON_ONCE(!pfnp))
1569                                 goto finish_iomap;
1570                         *pfnp = pfn;
1571                         result = VM_FAULT_NEEDDSYNC;
1572                         goto finish_iomap;
1573                 }
1574
1575                 trace_dax_pmd_insert_mapping(inode, vmf, PMD_SIZE, pfn, entry);
1576                 result = vmf_insert_pfn_pmd(vmf, pfn, write);
1577                 break;
1578         case IOMAP_UNWRITTEN:
1579         case IOMAP_HOLE:
1580                 if (WARN_ON_ONCE(write))
1581                         break;
1582                 result = dax_pmd_load_hole(&xas, vmf, &iomap, &entry);
1583                 break;
1584         default:
1585                 WARN_ON_ONCE(1);
1586                 break;
1587         }
1588
1589  finish_iomap:
1590         if (ops->iomap_end) {
1591                 int copied = PMD_SIZE;
1592
1593                 if (result == VM_FAULT_FALLBACK)
1594                         copied = 0;
1595                 /*
1596                  * The fault is done by now and there's no way back (other
1597                  * thread may be already happily using PMD we have installed).
1598                  * Just ignore error from ->iomap_end since we cannot do much
1599                  * with it.
1600                  */
1601                 ops->iomap_end(inode, pos, PMD_SIZE, copied, iomap_flags,
1602                                 &iomap);
1603         }
1604  unlock_entry:
1605         dax_unlock_entry(&xas, entry);
1606  fallback:
1607         if (result == VM_FAULT_FALLBACK) {
1608                 split_huge_pmd(vma, vmf->pmd, vmf->address);
1609                 count_vm_event(THP_FAULT_FALLBACK);
1610         }
1611 out:
1612         trace_dax_pmd_fault_done(inode, vmf, max_pgoff, result);
1613         return result;
1614 }
1615 #else
1616 static vm_fault_t dax_iomap_pmd_fault(struct vm_fault *vmf, pfn_t *pfnp,
1617                                const struct iomap_ops *ops)
1618 {
1619         return VM_FAULT_FALLBACK;
1620 }
1621 #endif /* CONFIG_FS_DAX_PMD */
1622
1623 /**
1624  * dax_iomap_fault - handle a page fault on a DAX file
1625  * @vmf: The description of the fault
1626  * @pe_size: Size of the page to fault in
1627  * @pfnp: PFN to insert for synchronous faults if fsync is required
1628  * @iomap_errp: Storage for detailed error code in case of error
1629  * @ops: Iomap ops passed from the file system
1630  *
1631  * When a page fault occurs, filesystems may call this helper in
1632  * their fault handler for DAX files. dax_iomap_fault() assumes the caller
1633  * has done all the necessary locking for page fault to proceed
1634  * successfully.
1635  */
1636 vm_fault_t dax_iomap_fault(struct vm_fault *vmf, enum page_entry_size pe_size,
1637                     pfn_t *pfnp, int *iomap_errp, const struct iomap_ops *ops)
1638 {
1639         switch (pe_size) {
1640         case PE_SIZE_PTE:
1641                 return dax_iomap_pte_fault(vmf, pfnp, iomap_errp, ops);
1642         case PE_SIZE_PMD:
1643                 return dax_iomap_pmd_fault(vmf, pfnp, ops);
1644         default:
1645                 return VM_FAULT_FALLBACK;
1646         }
1647 }
1648 EXPORT_SYMBOL_GPL(dax_iomap_fault);
1649
1650 /*
1651  * dax_insert_pfn_mkwrite - insert PTE or PMD entry into page tables
1652  * @vmf: The description of the fault
1653  * @pfn: PFN to insert
1654  * @order: Order of entry to insert.
1655  *
1656  * This function inserts a writeable PTE or PMD entry into the page tables
1657  * for an mmaped DAX file.  It also marks the page cache entry as dirty.
1658  */
1659 static vm_fault_t
1660 dax_insert_pfn_mkwrite(struct vm_fault *vmf, pfn_t pfn, unsigned int order)
1661 {
1662         struct address_space *mapping = vmf->vma->vm_file->f_mapping;
1663         XA_STATE_ORDER(xas, &mapping->i_pages, vmf->pgoff, order);
1664         void *entry;
1665         vm_fault_t ret;
1666
1667         xas_lock_irq(&xas);
1668         entry = get_unlocked_entry(&xas, order);
1669         /* Did we race with someone splitting entry or so? */
1670         if (!entry || dax_is_conflict(entry) ||
1671             (order == 0 && !dax_is_pte_entry(entry))) {
1672                 put_unlocked_entry(&xas, entry);
1673                 xas_unlock_irq(&xas);
1674                 trace_dax_insert_pfn_mkwrite_no_entry(mapping->host, vmf,
1675                                                       VM_FAULT_NOPAGE);
1676                 return VM_FAULT_NOPAGE;
1677         }
1678         xas_set_mark(&xas, PAGECACHE_TAG_DIRTY);
1679         dax_lock_entry(&xas, entry);
1680         xas_unlock_irq(&xas);
1681         if (order == 0)
1682                 ret = vmf_insert_mixed_mkwrite(vmf->vma, vmf->address, pfn);
1683 #ifdef CONFIG_FS_DAX_PMD
1684         else if (order == PMD_ORDER)
1685                 ret = vmf_insert_pfn_pmd(vmf, pfn, FAULT_FLAG_WRITE);
1686 #endif
1687         else
1688                 ret = VM_FAULT_FALLBACK;
1689         dax_unlock_entry(&xas, entry);
1690         trace_dax_insert_pfn_mkwrite(mapping->host, vmf, ret);
1691         return ret;
1692 }
1693
1694 /**
1695  * dax_finish_sync_fault - finish synchronous page fault
1696  * @vmf: The description of the fault
1697  * @pe_size: Size of entry to be inserted
1698  * @pfn: PFN to insert
1699  *
1700  * This function ensures that the file range touched by the page fault is
1701  * stored persistently on the media and handles inserting of appropriate page
1702  * table entry.
1703  */
1704 vm_fault_t dax_finish_sync_fault(struct vm_fault *vmf,
1705                 enum page_entry_size pe_size, pfn_t pfn)
1706 {
1707         int err;
1708         loff_t start = ((loff_t)vmf->pgoff) << PAGE_SHIFT;
1709         unsigned int order = pe_order(pe_size);
1710         size_t len = PAGE_SIZE << order;
1711
1712         err = vfs_fsync_range(vmf->vma->vm_file, start, start + len - 1, 1);
1713         if (err)
1714                 return VM_FAULT_SIGBUS;
1715         return dax_insert_pfn_mkwrite(vmf, pfn, order);
1716 }
1717 EXPORT_SYMBOL_GPL(dax_finish_sync_fault);