Merge branches 'acpi-scan', 'acpi-pnp' and 'acpi-sleep'
[linux-2.6-microblaze.git] / fs / cifs / smbdirect.c
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  *   Copyright (C) 2017, Microsoft Corporation.
4  *
5  *   Author(s): Long Li <longli@microsoft.com>
6  */
7 #include <linux/module.h>
8 #include <linux/highmem.h>
9 #include "smbdirect.h"
10 #include "cifs_debug.h"
11 #include "cifsproto.h"
12 #include "smb2proto.h"
13
14 static struct smbd_response *get_empty_queue_buffer(
15                 struct smbd_connection *info);
16 static struct smbd_response *get_receive_buffer(
17                 struct smbd_connection *info);
18 static void put_receive_buffer(
19                 struct smbd_connection *info,
20                 struct smbd_response *response);
21 static int allocate_receive_buffers(struct smbd_connection *info, int num_buf);
22 static void destroy_receive_buffers(struct smbd_connection *info);
23
24 static void put_empty_packet(
25                 struct smbd_connection *info, struct smbd_response *response);
26 static void enqueue_reassembly(
27                 struct smbd_connection *info,
28                 struct smbd_response *response, int data_length);
29 static struct smbd_response *_get_first_reassembly(
30                 struct smbd_connection *info);
31
32 static int smbd_post_recv(
33                 struct smbd_connection *info,
34                 struct smbd_response *response);
35
36 static int smbd_post_send_empty(struct smbd_connection *info);
37 static int smbd_post_send_data(
38                 struct smbd_connection *info,
39                 struct kvec *iov, int n_vec, int remaining_data_length);
40 static int smbd_post_send_page(struct smbd_connection *info,
41                 struct page *page, unsigned long offset,
42                 size_t size, int remaining_data_length);
43
44 static void destroy_mr_list(struct smbd_connection *info);
45 static int allocate_mr_list(struct smbd_connection *info);
46
47 /* SMBD version number */
48 #define SMBD_V1 0x0100
49
50 /* Port numbers for SMBD transport */
51 #define SMB_PORT        445
52 #define SMBD_PORT       5445
53
54 /* Address lookup and resolve timeout in ms */
55 #define RDMA_RESOLVE_TIMEOUT    5000
56
57 /* SMBD negotiation timeout in seconds */
58 #define SMBD_NEGOTIATE_TIMEOUT  120
59
60 /* SMBD minimum receive size and fragmented sized defined in [MS-SMBD] */
61 #define SMBD_MIN_RECEIVE_SIZE           128
62 #define SMBD_MIN_FRAGMENTED_SIZE        131072
63
64 /*
65  * Default maximum number of RDMA read/write outstanding on this connection
66  * This value is possibly decreased during QP creation on hardware limit
67  */
68 #define SMBD_CM_RESPONDER_RESOURCES     32
69
70 /* Maximum number of retries on data transfer operations */
71 #define SMBD_CM_RETRY                   6
72 /* No need to retry on Receiver Not Ready since SMBD manages credits */
73 #define SMBD_CM_RNR_RETRY               0
74
75 /*
76  * User configurable initial values per SMBD transport connection
77  * as defined in [MS-SMBD] 3.1.1.1
78  * Those may change after a SMBD negotiation
79  */
80 /* The local peer's maximum number of credits to grant to the peer */
81 int smbd_receive_credit_max = 255;
82
83 /* The remote peer's credit request of local peer */
84 int smbd_send_credit_target = 255;
85
86 /* The maximum single message size can be sent to remote peer */
87 int smbd_max_send_size = 1364;
88
89 /*  The maximum fragmented upper-layer payload receive size supported */
90 int smbd_max_fragmented_recv_size = 1024 * 1024;
91
92 /*  The maximum single-message size which can be received */
93 int smbd_max_receive_size = 8192;
94
95 /* The timeout to initiate send of a keepalive message on idle */
96 int smbd_keep_alive_interval = 120;
97
98 /*
99  * User configurable initial values for RDMA transport
100  * The actual values used may be lower and are limited to hardware capabilities
101  */
102 /* Default maximum number of SGEs in a RDMA write/read */
103 int smbd_max_frmr_depth = 2048;
104
105 /* If payload is less than this byte, use RDMA send/recv not read/write */
106 int rdma_readwrite_threshold = 4096;
107
108 /* Transport logging functions
109  * Logging are defined as classes. They can be OR'ed to define the actual
110  * logging level via module parameter smbd_logging_class
111  * e.g. cifs.smbd_logging_class=0xa0 will log all log_rdma_recv() and
112  * log_rdma_event()
113  */
114 #define LOG_OUTGOING                    0x1
115 #define LOG_INCOMING                    0x2
116 #define LOG_READ                        0x4
117 #define LOG_WRITE                       0x8
118 #define LOG_RDMA_SEND                   0x10
119 #define LOG_RDMA_RECV                   0x20
120 #define LOG_KEEP_ALIVE                  0x40
121 #define LOG_RDMA_EVENT                  0x80
122 #define LOG_RDMA_MR                     0x100
123 static unsigned int smbd_logging_class;
124 module_param(smbd_logging_class, uint, 0644);
125 MODULE_PARM_DESC(smbd_logging_class,
126         "Logging class for SMBD transport 0x0 to 0x100");
127
128 #define ERR             0x0
129 #define INFO            0x1
130 static unsigned int smbd_logging_level = ERR;
131 module_param(smbd_logging_level, uint, 0644);
132 MODULE_PARM_DESC(smbd_logging_level,
133         "Logging level for SMBD transport, 0 (default): error, 1: info");
134
135 #define log_rdma(level, class, fmt, args...)                            \
136 do {                                                                    \
137         if (level <= smbd_logging_level || class & smbd_logging_class)  \
138                 cifs_dbg(VFS, "%s:%d " fmt, __func__, __LINE__, ##args);\
139 } while (0)
140
141 #define log_outgoing(level, fmt, args...) \
142                 log_rdma(level, LOG_OUTGOING, fmt, ##args)
143 #define log_incoming(level, fmt, args...) \
144                 log_rdma(level, LOG_INCOMING, fmt, ##args)
145 #define log_read(level, fmt, args...)   log_rdma(level, LOG_READ, fmt, ##args)
146 #define log_write(level, fmt, args...)  log_rdma(level, LOG_WRITE, fmt, ##args)
147 #define log_rdma_send(level, fmt, args...) \
148                 log_rdma(level, LOG_RDMA_SEND, fmt, ##args)
149 #define log_rdma_recv(level, fmt, args...) \
150                 log_rdma(level, LOG_RDMA_RECV, fmt, ##args)
151 #define log_keep_alive(level, fmt, args...) \
152                 log_rdma(level, LOG_KEEP_ALIVE, fmt, ##args)
153 #define log_rdma_event(level, fmt, args...) \
154                 log_rdma(level, LOG_RDMA_EVENT, fmt, ##args)
155 #define log_rdma_mr(level, fmt, args...) \
156                 log_rdma(level, LOG_RDMA_MR, fmt, ##args)
157
158 static void smbd_disconnect_rdma_work(struct work_struct *work)
159 {
160         struct smbd_connection *info =
161                 container_of(work, struct smbd_connection, disconnect_work);
162
163         if (info->transport_status == SMBD_CONNECTED) {
164                 info->transport_status = SMBD_DISCONNECTING;
165                 rdma_disconnect(info->id);
166         }
167 }
168
169 static void smbd_disconnect_rdma_connection(struct smbd_connection *info)
170 {
171         queue_work(info->workqueue, &info->disconnect_work);
172 }
173
174 /* Upcall from RDMA CM */
175 static int smbd_conn_upcall(
176                 struct rdma_cm_id *id, struct rdma_cm_event *event)
177 {
178         struct smbd_connection *info = id->context;
179
180         log_rdma_event(INFO, "event=%d status=%d\n",
181                 event->event, event->status);
182
183         switch (event->event) {
184         case RDMA_CM_EVENT_ADDR_RESOLVED:
185         case RDMA_CM_EVENT_ROUTE_RESOLVED:
186                 info->ri_rc = 0;
187                 complete(&info->ri_done);
188                 break;
189
190         case RDMA_CM_EVENT_ADDR_ERROR:
191                 info->ri_rc = -EHOSTUNREACH;
192                 complete(&info->ri_done);
193                 break;
194
195         case RDMA_CM_EVENT_ROUTE_ERROR:
196                 info->ri_rc = -ENETUNREACH;
197                 complete(&info->ri_done);
198                 break;
199
200         case RDMA_CM_EVENT_ESTABLISHED:
201                 log_rdma_event(INFO, "connected event=%d\n", event->event);
202                 info->transport_status = SMBD_CONNECTED;
203                 wake_up_interruptible(&info->conn_wait);
204                 break;
205
206         case RDMA_CM_EVENT_CONNECT_ERROR:
207         case RDMA_CM_EVENT_UNREACHABLE:
208         case RDMA_CM_EVENT_REJECTED:
209                 log_rdma_event(INFO, "connecting failed event=%d\n", event->event);
210                 info->transport_status = SMBD_DISCONNECTED;
211                 wake_up_interruptible(&info->conn_wait);
212                 break;
213
214         case RDMA_CM_EVENT_DEVICE_REMOVAL:
215         case RDMA_CM_EVENT_DISCONNECTED:
216                 /* This happenes when we fail the negotiation */
217                 if (info->transport_status == SMBD_NEGOTIATE_FAILED) {
218                         info->transport_status = SMBD_DISCONNECTED;
219                         wake_up(&info->conn_wait);
220                         break;
221                 }
222
223                 info->transport_status = SMBD_DISCONNECTED;
224                 wake_up_interruptible(&info->disconn_wait);
225                 wake_up_interruptible(&info->wait_reassembly_queue);
226                 wake_up_interruptible_all(&info->wait_send_queue);
227                 break;
228
229         default:
230                 break;
231         }
232
233         return 0;
234 }
235
236 /* Upcall from RDMA QP */
237 static void
238 smbd_qp_async_error_upcall(struct ib_event *event, void *context)
239 {
240         struct smbd_connection *info = context;
241
242         log_rdma_event(ERR, "%s on device %s info %p\n",
243                 ib_event_msg(event->event), event->device->name, info);
244
245         switch (event->event) {
246         case IB_EVENT_CQ_ERR:
247         case IB_EVENT_QP_FATAL:
248                 smbd_disconnect_rdma_connection(info);
249
250         default:
251                 break;
252         }
253 }
254
255 static inline void *smbd_request_payload(struct smbd_request *request)
256 {
257         return (void *)request->packet;
258 }
259
260 static inline void *smbd_response_payload(struct smbd_response *response)
261 {
262         return (void *)response->packet;
263 }
264
265 /* Called when a RDMA send is done */
266 static void send_done(struct ib_cq *cq, struct ib_wc *wc)
267 {
268         int i;
269         struct smbd_request *request =
270                 container_of(wc->wr_cqe, struct smbd_request, cqe);
271
272         log_rdma_send(INFO, "smbd_request %p completed wc->status=%d\n",
273                 request, wc->status);
274
275         if (wc->status != IB_WC_SUCCESS || wc->opcode != IB_WC_SEND) {
276                 log_rdma_send(ERR, "wc->status=%d wc->opcode=%d\n",
277                         wc->status, wc->opcode);
278                 smbd_disconnect_rdma_connection(request->info);
279         }
280
281         for (i = 0; i < request->num_sge; i++)
282                 ib_dma_unmap_single(request->info->id->device,
283                         request->sge[i].addr,
284                         request->sge[i].length,
285                         DMA_TO_DEVICE);
286
287         if (atomic_dec_and_test(&request->info->send_pending))
288                 wake_up(&request->info->wait_send_pending);
289
290         wake_up(&request->info->wait_post_send);
291
292         mempool_free(request, request->info->request_mempool);
293 }
294
295 static void dump_smbd_negotiate_resp(struct smbd_negotiate_resp *resp)
296 {
297         log_rdma_event(INFO, "resp message min_version %u max_version %u negotiated_version %u credits_requested %u credits_granted %u status %u max_readwrite_size %u preferred_send_size %u max_receive_size %u max_fragmented_size %u\n",
298                        resp->min_version, resp->max_version,
299                        resp->negotiated_version, resp->credits_requested,
300                        resp->credits_granted, resp->status,
301                        resp->max_readwrite_size, resp->preferred_send_size,
302                        resp->max_receive_size, resp->max_fragmented_size);
303 }
304
305 /*
306  * Process a negotiation response message, according to [MS-SMBD]3.1.5.7
307  * response, packet_length: the negotiation response message
308  * return value: true if negotiation is a success, false if failed
309  */
310 static bool process_negotiation_response(
311                 struct smbd_response *response, int packet_length)
312 {
313         struct smbd_connection *info = response->info;
314         struct smbd_negotiate_resp *packet = smbd_response_payload(response);
315
316         if (packet_length < sizeof(struct smbd_negotiate_resp)) {
317                 log_rdma_event(ERR,
318                         "error: packet_length=%d\n", packet_length);
319                 return false;
320         }
321
322         if (le16_to_cpu(packet->negotiated_version) != SMBD_V1) {
323                 log_rdma_event(ERR, "error: negotiated_version=%x\n",
324                         le16_to_cpu(packet->negotiated_version));
325                 return false;
326         }
327         info->protocol = le16_to_cpu(packet->negotiated_version);
328
329         if (packet->credits_requested == 0) {
330                 log_rdma_event(ERR, "error: credits_requested==0\n");
331                 return false;
332         }
333         info->receive_credit_target = le16_to_cpu(packet->credits_requested);
334
335         if (packet->credits_granted == 0) {
336                 log_rdma_event(ERR, "error: credits_granted==0\n");
337                 return false;
338         }
339         atomic_set(&info->send_credits, le16_to_cpu(packet->credits_granted));
340
341         atomic_set(&info->receive_credits, 0);
342
343         if (le32_to_cpu(packet->preferred_send_size) > info->max_receive_size) {
344                 log_rdma_event(ERR, "error: preferred_send_size=%d\n",
345                         le32_to_cpu(packet->preferred_send_size));
346                 return false;
347         }
348         info->max_receive_size = le32_to_cpu(packet->preferred_send_size);
349
350         if (le32_to_cpu(packet->max_receive_size) < SMBD_MIN_RECEIVE_SIZE) {
351                 log_rdma_event(ERR, "error: max_receive_size=%d\n",
352                         le32_to_cpu(packet->max_receive_size));
353                 return false;
354         }
355         info->max_send_size = min_t(int, info->max_send_size,
356                                         le32_to_cpu(packet->max_receive_size));
357
358         if (le32_to_cpu(packet->max_fragmented_size) <
359                         SMBD_MIN_FRAGMENTED_SIZE) {
360                 log_rdma_event(ERR, "error: max_fragmented_size=%d\n",
361                         le32_to_cpu(packet->max_fragmented_size));
362                 return false;
363         }
364         info->max_fragmented_send_size =
365                 le32_to_cpu(packet->max_fragmented_size);
366         info->rdma_readwrite_threshold =
367                 rdma_readwrite_threshold > info->max_fragmented_send_size ?
368                 info->max_fragmented_send_size :
369                 rdma_readwrite_threshold;
370
371
372         info->max_readwrite_size = min_t(u32,
373                         le32_to_cpu(packet->max_readwrite_size),
374                         info->max_frmr_depth * PAGE_SIZE);
375         info->max_frmr_depth = info->max_readwrite_size / PAGE_SIZE;
376
377         return true;
378 }
379
380 static void smbd_post_send_credits(struct work_struct *work)
381 {
382         int ret = 0;
383         int use_receive_queue = 1;
384         int rc;
385         struct smbd_response *response;
386         struct smbd_connection *info =
387                 container_of(work, struct smbd_connection,
388                         post_send_credits_work);
389
390         if (info->transport_status != SMBD_CONNECTED) {
391                 wake_up(&info->wait_receive_queues);
392                 return;
393         }
394
395         if (info->receive_credit_target >
396                 atomic_read(&info->receive_credits)) {
397                 while (true) {
398                         if (use_receive_queue)
399                                 response = get_receive_buffer(info);
400                         else
401                                 response = get_empty_queue_buffer(info);
402                         if (!response) {
403                                 /* now switch to emtpy packet queue */
404                                 if (use_receive_queue) {
405                                         use_receive_queue = 0;
406                                         continue;
407                                 } else
408                                         break;
409                         }
410
411                         response->type = SMBD_TRANSFER_DATA;
412                         response->first_segment = false;
413                         rc = smbd_post_recv(info, response);
414                         if (rc) {
415                                 log_rdma_recv(ERR,
416                                         "post_recv failed rc=%d\n", rc);
417                                 put_receive_buffer(info, response);
418                                 break;
419                         }
420
421                         ret++;
422                 }
423         }
424
425         spin_lock(&info->lock_new_credits_offered);
426         info->new_credits_offered += ret;
427         spin_unlock(&info->lock_new_credits_offered);
428
429         /* Promptly send an immediate packet as defined in [MS-SMBD] 3.1.1.1 */
430         info->send_immediate = true;
431         if (atomic_read(&info->receive_credits) <
432                 info->receive_credit_target - 1) {
433                 if (info->keep_alive_requested == KEEP_ALIVE_PENDING ||
434                     info->send_immediate) {
435                         log_keep_alive(INFO, "send an empty message\n");
436                         smbd_post_send_empty(info);
437                 }
438         }
439 }
440
441 /* Called from softirq, when recv is done */
442 static void recv_done(struct ib_cq *cq, struct ib_wc *wc)
443 {
444         struct smbd_data_transfer *data_transfer;
445         struct smbd_response *response =
446                 container_of(wc->wr_cqe, struct smbd_response, cqe);
447         struct smbd_connection *info = response->info;
448         int data_length = 0;
449
450         log_rdma_recv(INFO, "response=%p type=%d wc status=%d wc opcode %d byte_len=%d pkey_index=%x\n",
451                       response, response->type, wc->status, wc->opcode,
452                       wc->byte_len, wc->pkey_index);
453
454         if (wc->status != IB_WC_SUCCESS || wc->opcode != IB_WC_RECV) {
455                 log_rdma_recv(INFO, "wc->status=%d opcode=%d\n",
456                         wc->status, wc->opcode);
457                 smbd_disconnect_rdma_connection(info);
458                 goto error;
459         }
460
461         ib_dma_sync_single_for_cpu(
462                 wc->qp->device,
463                 response->sge.addr,
464                 response->sge.length,
465                 DMA_FROM_DEVICE);
466
467         switch (response->type) {
468         /* SMBD negotiation response */
469         case SMBD_NEGOTIATE_RESP:
470                 dump_smbd_negotiate_resp(smbd_response_payload(response));
471                 info->full_packet_received = true;
472                 info->negotiate_done =
473                         process_negotiation_response(response, wc->byte_len);
474                 complete(&info->negotiate_completion);
475                 break;
476
477         /* SMBD data transfer packet */
478         case SMBD_TRANSFER_DATA:
479                 data_transfer = smbd_response_payload(response);
480                 data_length = le32_to_cpu(data_transfer->data_length);
481
482                 /*
483                  * If this is a packet with data playload place the data in
484                  * reassembly queue and wake up the reading thread
485                  */
486                 if (data_length) {
487                         if (info->full_packet_received)
488                                 response->first_segment = true;
489
490                         if (le32_to_cpu(data_transfer->remaining_data_length))
491                                 info->full_packet_received = false;
492                         else
493                                 info->full_packet_received = true;
494
495                         enqueue_reassembly(
496                                 info,
497                                 response,
498                                 data_length);
499                 } else
500                         put_empty_packet(info, response);
501
502                 if (data_length)
503                         wake_up_interruptible(&info->wait_reassembly_queue);
504
505                 atomic_dec(&info->receive_credits);
506                 info->receive_credit_target =
507                         le16_to_cpu(data_transfer->credits_requested);
508                 if (le16_to_cpu(data_transfer->credits_granted)) {
509                         atomic_add(le16_to_cpu(data_transfer->credits_granted),
510                                 &info->send_credits);
511                         /*
512                          * We have new send credits granted from remote peer
513                          * If any sender is waiting for credits, unblock it
514                          */
515                         wake_up_interruptible(&info->wait_send_queue);
516                 }
517
518                 log_incoming(INFO, "data flags %d data_offset %d data_length %d remaining_data_length %d\n",
519                              le16_to_cpu(data_transfer->flags),
520                              le32_to_cpu(data_transfer->data_offset),
521                              le32_to_cpu(data_transfer->data_length),
522                              le32_to_cpu(data_transfer->remaining_data_length));
523
524                 /* Send a KEEP_ALIVE response right away if requested */
525                 info->keep_alive_requested = KEEP_ALIVE_NONE;
526                 if (le16_to_cpu(data_transfer->flags) &
527                                 SMB_DIRECT_RESPONSE_REQUESTED) {
528                         info->keep_alive_requested = KEEP_ALIVE_PENDING;
529                 }
530
531                 return;
532
533         default:
534                 log_rdma_recv(ERR,
535                         "unexpected response type=%d\n", response->type);
536         }
537
538 error:
539         put_receive_buffer(info, response);
540 }
541
542 static struct rdma_cm_id *smbd_create_id(
543                 struct smbd_connection *info,
544                 struct sockaddr *dstaddr, int port)
545 {
546         struct rdma_cm_id *id;
547         int rc;
548         __be16 *sport;
549
550         id = rdma_create_id(&init_net, smbd_conn_upcall, info,
551                 RDMA_PS_TCP, IB_QPT_RC);
552         if (IS_ERR(id)) {
553                 rc = PTR_ERR(id);
554                 log_rdma_event(ERR, "rdma_create_id() failed %i\n", rc);
555                 return id;
556         }
557
558         if (dstaddr->sa_family == AF_INET6)
559                 sport = &((struct sockaddr_in6 *)dstaddr)->sin6_port;
560         else
561                 sport = &((struct sockaddr_in *)dstaddr)->sin_port;
562
563         *sport = htons(port);
564
565         init_completion(&info->ri_done);
566         info->ri_rc = -ETIMEDOUT;
567
568         rc = rdma_resolve_addr(id, NULL, (struct sockaddr *)dstaddr,
569                 RDMA_RESOLVE_TIMEOUT);
570         if (rc) {
571                 log_rdma_event(ERR, "rdma_resolve_addr() failed %i\n", rc);
572                 goto out;
573         }
574         wait_for_completion_interruptible_timeout(
575                 &info->ri_done, msecs_to_jiffies(RDMA_RESOLVE_TIMEOUT));
576         rc = info->ri_rc;
577         if (rc) {
578                 log_rdma_event(ERR, "rdma_resolve_addr() completed %i\n", rc);
579                 goto out;
580         }
581
582         info->ri_rc = -ETIMEDOUT;
583         rc = rdma_resolve_route(id, RDMA_RESOLVE_TIMEOUT);
584         if (rc) {
585                 log_rdma_event(ERR, "rdma_resolve_route() failed %i\n", rc);
586                 goto out;
587         }
588         wait_for_completion_interruptible_timeout(
589                 &info->ri_done, msecs_to_jiffies(RDMA_RESOLVE_TIMEOUT));
590         rc = info->ri_rc;
591         if (rc) {
592                 log_rdma_event(ERR, "rdma_resolve_route() completed %i\n", rc);
593                 goto out;
594         }
595
596         return id;
597
598 out:
599         rdma_destroy_id(id);
600         return ERR_PTR(rc);
601 }
602
603 /*
604  * Test if FRWR (Fast Registration Work Requests) is supported on the device
605  * This implementation requries FRWR on RDMA read/write
606  * return value: true if it is supported
607  */
608 static bool frwr_is_supported(struct ib_device_attr *attrs)
609 {
610         if (!(attrs->device_cap_flags & IB_DEVICE_MEM_MGT_EXTENSIONS))
611                 return false;
612         if (attrs->max_fast_reg_page_list_len == 0)
613                 return false;
614         return true;
615 }
616
617 static int smbd_ia_open(
618                 struct smbd_connection *info,
619                 struct sockaddr *dstaddr, int port)
620 {
621         int rc;
622
623         info->id = smbd_create_id(info, dstaddr, port);
624         if (IS_ERR(info->id)) {
625                 rc = PTR_ERR(info->id);
626                 goto out1;
627         }
628
629         if (!frwr_is_supported(&info->id->device->attrs)) {
630                 log_rdma_event(ERR, "Fast Registration Work Requests (FRWR) is not supported\n");
631                 log_rdma_event(ERR, "Device capability flags = %llx max_fast_reg_page_list_len = %u\n",
632                                info->id->device->attrs.device_cap_flags,
633                                info->id->device->attrs.max_fast_reg_page_list_len);
634                 rc = -EPROTONOSUPPORT;
635                 goto out2;
636         }
637         info->max_frmr_depth = min_t(int,
638                 smbd_max_frmr_depth,
639                 info->id->device->attrs.max_fast_reg_page_list_len);
640         info->mr_type = IB_MR_TYPE_MEM_REG;
641         if (info->id->device->attrs.device_cap_flags & IB_DEVICE_SG_GAPS_REG)
642                 info->mr_type = IB_MR_TYPE_SG_GAPS;
643
644         info->pd = ib_alloc_pd(info->id->device, 0);
645         if (IS_ERR(info->pd)) {
646                 rc = PTR_ERR(info->pd);
647                 log_rdma_event(ERR, "ib_alloc_pd() returned %d\n", rc);
648                 goto out2;
649         }
650
651         return 0;
652
653 out2:
654         rdma_destroy_id(info->id);
655         info->id = NULL;
656
657 out1:
658         return rc;
659 }
660
661 /*
662  * Send a negotiation request message to the peer
663  * The negotiation procedure is in [MS-SMBD] 3.1.5.2 and 3.1.5.3
664  * After negotiation, the transport is connected and ready for
665  * carrying upper layer SMB payload
666  */
667 static int smbd_post_send_negotiate_req(struct smbd_connection *info)
668 {
669         struct ib_send_wr send_wr;
670         int rc = -ENOMEM;
671         struct smbd_request *request;
672         struct smbd_negotiate_req *packet;
673
674         request = mempool_alloc(info->request_mempool, GFP_KERNEL);
675         if (!request)
676                 return rc;
677
678         request->info = info;
679
680         packet = smbd_request_payload(request);
681         packet->min_version = cpu_to_le16(SMBD_V1);
682         packet->max_version = cpu_to_le16(SMBD_V1);
683         packet->reserved = 0;
684         packet->credits_requested = cpu_to_le16(info->send_credit_target);
685         packet->preferred_send_size = cpu_to_le32(info->max_send_size);
686         packet->max_receive_size = cpu_to_le32(info->max_receive_size);
687         packet->max_fragmented_size =
688                 cpu_to_le32(info->max_fragmented_recv_size);
689
690         request->num_sge = 1;
691         request->sge[0].addr = ib_dma_map_single(
692                                 info->id->device, (void *)packet,
693                                 sizeof(*packet), DMA_TO_DEVICE);
694         if (ib_dma_mapping_error(info->id->device, request->sge[0].addr)) {
695                 rc = -EIO;
696                 goto dma_mapping_failed;
697         }
698
699         request->sge[0].length = sizeof(*packet);
700         request->sge[0].lkey = info->pd->local_dma_lkey;
701
702         ib_dma_sync_single_for_device(
703                 info->id->device, request->sge[0].addr,
704                 request->sge[0].length, DMA_TO_DEVICE);
705
706         request->cqe.done = send_done;
707
708         send_wr.next = NULL;
709         send_wr.wr_cqe = &request->cqe;
710         send_wr.sg_list = request->sge;
711         send_wr.num_sge = request->num_sge;
712         send_wr.opcode = IB_WR_SEND;
713         send_wr.send_flags = IB_SEND_SIGNALED;
714
715         log_rdma_send(INFO, "sge addr=%llx length=%x lkey=%x\n",
716                 request->sge[0].addr,
717                 request->sge[0].length, request->sge[0].lkey);
718
719         atomic_inc(&info->send_pending);
720         rc = ib_post_send(info->id->qp, &send_wr, NULL);
721         if (!rc)
722                 return 0;
723
724         /* if we reach here, post send failed */
725         log_rdma_send(ERR, "ib_post_send failed rc=%d\n", rc);
726         atomic_dec(&info->send_pending);
727         ib_dma_unmap_single(info->id->device, request->sge[0].addr,
728                 request->sge[0].length, DMA_TO_DEVICE);
729
730         smbd_disconnect_rdma_connection(info);
731
732 dma_mapping_failed:
733         mempool_free(request, info->request_mempool);
734         return rc;
735 }
736
737 /*
738  * Extend the credits to remote peer
739  * This implements [MS-SMBD] 3.1.5.9
740  * The idea is that we should extend credits to remote peer as quickly as
741  * it's allowed, to maintain data flow. We allocate as much receive
742  * buffer as possible, and extend the receive credits to remote peer
743  * return value: the new credtis being granted.
744  */
745 static int manage_credits_prior_sending(struct smbd_connection *info)
746 {
747         int new_credits;
748
749         spin_lock(&info->lock_new_credits_offered);
750         new_credits = info->new_credits_offered;
751         info->new_credits_offered = 0;
752         spin_unlock(&info->lock_new_credits_offered);
753
754         return new_credits;
755 }
756
757 /*
758  * Check if we need to send a KEEP_ALIVE message
759  * The idle connection timer triggers a KEEP_ALIVE message when expires
760  * SMB_DIRECT_RESPONSE_REQUESTED is set in the message flag to have peer send
761  * back a response.
762  * return value:
763  * 1 if SMB_DIRECT_RESPONSE_REQUESTED needs to be set
764  * 0: otherwise
765  */
766 static int manage_keep_alive_before_sending(struct smbd_connection *info)
767 {
768         if (info->keep_alive_requested == KEEP_ALIVE_PENDING) {
769                 info->keep_alive_requested = KEEP_ALIVE_SENT;
770                 return 1;
771         }
772         return 0;
773 }
774
775 /* Post the send request */
776 static int smbd_post_send(struct smbd_connection *info,
777                 struct smbd_request *request)
778 {
779         struct ib_send_wr send_wr;
780         int rc, i;
781
782         for (i = 0; i < request->num_sge; i++) {
783                 log_rdma_send(INFO,
784                         "rdma_request sge[%d] addr=%llu length=%u\n",
785                         i, request->sge[i].addr, request->sge[i].length);
786                 ib_dma_sync_single_for_device(
787                         info->id->device,
788                         request->sge[i].addr,
789                         request->sge[i].length,
790                         DMA_TO_DEVICE);
791         }
792
793         request->cqe.done = send_done;
794
795         send_wr.next = NULL;
796         send_wr.wr_cqe = &request->cqe;
797         send_wr.sg_list = request->sge;
798         send_wr.num_sge = request->num_sge;
799         send_wr.opcode = IB_WR_SEND;
800         send_wr.send_flags = IB_SEND_SIGNALED;
801
802         rc = ib_post_send(info->id->qp, &send_wr, NULL);
803         if (rc) {
804                 log_rdma_send(ERR, "ib_post_send failed rc=%d\n", rc);
805                 smbd_disconnect_rdma_connection(info);
806                 rc = -EAGAIN;
807         } else
808                 /* Reset timer for idle connection after packet is sent */
809                 mod_delayed_work(info->workqueue, &info->idle_timer_work,
810                         info->keep_alive_interval*HZ);
811
812         return rc;
813 }
814
815 static int smbd_post_send_sgl(struct smbd_connection *info,
816         struct scatterlist *sgl, int data_length, int remaining_data_length)
817 {
818         int num_sgs;
819         int i, rc;
820         int header_length;
821         struct smbd_request *request;
822         struct smbd_data_transfer *packet;
823         int new_credits;
824         struct scatterlist *sg;
825
826 wait_credit:
827         /* Wait for send credits. A SMBD packet needs one credit */
828         rc = wait_event_interruptible(info->wait_send_queue,
829                 atomic_read(&info->send_credits) > 0 ||
830                 info->transport_status != SMBD_CONNECTED);
831         if (rc)
832                 goto err_wait_credit;
833
834         if (info->transport_status != SMBD_CONNECTED) {
835                 log_outgoing(ERR, "disconnected not sending on wait_credit\n");
836                 rc = -EAGAIN;
837                 goto err_wait_credit;
838         }
839         if (unlikely(atomic_dec_return(&info->send_credits) < 0)) {
840                 atomic_inc(&info->send_credits);
841                 goto wait_credit;
842         }
843
844 wait_send_queue:
845         wait_event(info->wait_post_send,
846                 atomic_read(&info->send_pending) < info->send_credit_target ||
847                 info->transport_status != SMBD_CONNECTED);
848
849         if (info->transport_status != SMBD_CONNECTED) {
850                 log_outgoing(ERR, "disconnected not sending on wait_send_queue\n");
851                 rc = -EAGAIN;
852                 goto err_wait_send_queue;
853         }
854
855         if (unlikely(atomic_inc_return(&info->send_pending) >
856                                 info->send_credit_target)) {
857                 atomic_dec(&info->send_pending);
858                 goto wait_send_queue;
859         }
860
861         request = mempool_alloc(info->request_mempool, GFP_KERNEL);
862         if (!request) {
863                 rc = -ENOMEM;
864                 goto err_alloc;
865         }
866
867         request->info = info;
868
869         /* Fill in the packet header */
870         packet = smbd_request_payload(request);
871         packet->credits_requested = cpu_to_le16(info->send_credit_target);
872
873         new_credits = manage_credits_prior_sending(info);
874         atomic_add(new_credits, &info->receive_credits);
875         packet->credits_granted = cpu_to_le16(new_credits);
876
877         info->send_immediate = false;
878
879         packet->flags = 0;
880         if (manage_keep_alive_before_sending(info))
881                 packet->flags |= cpu_to_le16(SMB_DIRECT_RESPONSE_REQUESTED);
882
883         packet->reserved = 0;
884         if (!data_length)
885                 packet->data_offset = 0;
886         else
887                 packet->data_offset = cpu_to_le32(24);
888         packet->data_length = cpu_to_le32(data_length);
889         packet->remaining_data_length = cpu_to_le32(remaining_data_length);
890         packet->padding = 0;
891
892         log_outgoing(INFO, "credits_requested=%d credits_granted=%d data_offset=%d data_length=%d remaining_data_length=%d\n",
893                      le16_to_cpu(packet->credits_requested),
894                      le16_to_cpu(packet->credits_granted),
895                      le32_to_cpu(packet->data_offset),
896                      le32_to_cpu(packet->data_length),
897                      le32_to_cpu(packet->remaining_data_length));
898
899         /* Map the packet to DMA */
900         header_length = sizeof(struct smbd_data_transfer);
901         /* If this is a packet without payload, don't send padding */
902         if (!data_length)
903                 header_length = offsetof(struct smbd_data_transfer, padding);
904
905         request->num_sge = 1;
906         request->sge[0].addr = ib_dma_map_single(info->id->device,
907                                                  (void *)packet,
908                                                  header_length,
909                                                  DMA_TO_DEVICE);
910         if (ib_dma_mapping_error(info->id->device, request->sge[0].addr)) {
911                 rc = -EIO;
912                 request->sge[0].addr = 0;
913                 goto err_dma;
914         }
915
916         request->sge[0].length = header_length;
917         request->sge[0].lkey = info->pd->local_dma_lkey;
918
919         /* Fill in the packet data payload */
920         num_sgs = sgl ? sg_nents(sgl) : 0;
921         for_each_sg(sgl, sg, num_sgs, i) {
922                 request->sge[i+1].addr =
923                         ib_dma_map_page(info->id->device, sg_page(sg),
924                                sg->offset, sg->length, DMA_TO_DEVICE);
925                 if (ib_dma_mapping_error(
926                                 info->id->device, request->sge[i+1].addr)) {
927                         rc = -EIO;
928                         request->sge[i+1].addr = 0;
929                         goto err_dma;
930                 }
931                 request->sge[i+1].length = sg->length;
932                 request->sge[i+1].lkey = info->pd->local_dma_lkey;
933                 request->num_sge++;
934         }
935
936         rc = smbd_post_send(info, request);
937         if (!rc)
938                 return 0;
939
940 err_dma:
941         for (i = 0; i < request->num_sge; i++)
942                 if (request->sge[i].addr)
943                         ib_dma_unmap_single(info->id->device,
944                                             request->sge[i].addr,
945                                             request->sge[i].length,
946                                             DMA_TO_DEVICE);
947         mempool_free(request, info->request_mempool);
948
949         /* roll back receive credits and credits to be offered */
950         spin_lock(&info->lock_new_credits_offered);
951         info->new_credits_offered += new_credits;
952         spin_unlock(&info->lock_new_credits_offered);
953         atomic_sub(new_credits, &info->receive_credits);
954
955 err_alloc:
956         if (atomic_dec_and_test(&info->send_pending))
957                 wake_up(&info->wait_send_pending);
958
959 err_wait_send_queue:
960         /* roll back send credits and pending */
961         atomic_inc(&info->send_credits);
962
963 err_wait_credit:
964         return rc;
965 }
966
967 /*
968  * Send a page
969  * page: the page to send
970  * offset: offset in the page to send
971  * size: length in the page to send
972  * remaining_data_length: remaining data to send in this payload
973  */
974 static int smbd_post_send_page(struct smbd_connection *info, struct page *page,
975                 unsigned long offset, size_t size, int remaining_data_length)
976 {
977         struct scatterlist sgl;
978
979         sg_init_table(&sgl, 1);
980         sg_set_page(&sgl, page, size, offset);
981
982         return smbd_post_send_sgl(info, &sgl, size, remaining_data_length);
983 }
984
985 /*
986  * Send an empty message
987  * Empty message is used to extend credits to peer to for keep live
988  * while there is no upper layer payload to send at the time
989  */
990 static int smbd_post_send_empty(struct smbd_connection *info)
991 {
992         info->count_send_empty++;
993         return smbd_post_send_sgl(info, NULL, 0, 0);
994 }
995
996 /*
997  * Send a data buffer
998  * iov: the iov array describing the data buffers
999  * n_vec: number of iov array
1000  * remaining_data_length: remaining data to send following this packet
1001  * in segmented SMBD packet
1002  */
1003 static int smbd_post_send_data(
1004         struct smbd_connection *info, struct kvec *iov, int n_vec,
1005         int remaining_data_length)
1006 {
1007         int i;
1008         u32 data_length = 0;
1009         struct scatterlist sgl[SMBDIRECT_MAX_SGE];
1010
1011         if (n_vec > SMBDIRECT_MAX_SGE) {
1012                 cifs_dbg(VFS, "Can't fit data to SGL, n_vec=%d\n", n_vec);
1013                 return -EINVAL;
1014         }
1015
1016         sg_init_table(sgl, n_vec);
1017         for (i = 0; i < n_vec; i++) {
1018                 data_length += iov[i].iov_len;
1019                 sg_set_buf(&sgl[i], iov[i].iov_base, iov[i].iov_len);
1020         }
1021
1022         return smbd_post_send_sgl(info, sgl, data_length, remaining_data_length);
1023 }
1024
1025 /*
1026  * Post a receive request to the transport
1027  * The remote peer can only send data when a receive request is posted
1028  * The interaction is controlled by send/receive credit system
1029  */
1030 static int smbd_post_recv(
1031                 struct smbd_connection *info, struct smbd_response *response)
1032 {
1033         struct ib_recv_wr recv_wr;
1034         int rc = -EIO;
1035
1036         response->sge.addr = ib_dma_map_single(
1037                                 info->id->device, response->packet,
1038                                 info->max_receive_size, DMA_FROM_DEVICE);
1039         if (ib_dma_mapping_error(info->id->device, response->sge.addr))
1040                 return rc;
1041
1042         response->sge.length = info->max_receive_size;
1043         response->sge.lkey = info->pd->local_dma_lkey;
1044
1045         response->cqe.done = recv_done;
1046
1047         recv_wr.wr_cqe = &response->cqe;
1048         recv_wr.next = NULL;
1049         recv_wr.sg_list = &response->sge;
1050         recv_wr.num_sge = 1;
1051
1052         rc = ib_post_recv(info->id->qp, &recv_wr, NULL);
1053         if (rc) {
1054                 ib_dma_unmap_single(info->id->device, response->sge.addr,
1055                                     response->sge.length, DMA_FROM_DEVICE);
1056                 smbd_disconnect_rdma_connection(info);
1057                 log_rdma_recv(ERR, "ib_post_recv failed rc=%d\n", rc);
1058         }
1059
1060         return rc;
1061 }
1062
1063 /* Perform SMBD negotiate according to [MS-SMBD] 3.1.5.2 */
1064 static int smbd_negotiate(struct smbd_connection *info)
1065 {
1066         int rc;
1067         struct smbd_response *response = get_receive_buffer(info);
1068
1069         response->type = SMBD_NEGOTIATE_RESP;
1070         rc = smbd_post_recv(info, response);
1071         log_rdma_event(INFO, "smbd_post_recv rc=%d iov.addr=%llx iov.length=%x iov.lkey=%x\n",
1072                        rc, response->sge.addr,
1073                        response->sge.length, response->sge.lkey);
1074         if (rc)
1075                 return rc;
1076
1077         init_completion(&info->negotiate_completion);
1078         info->negotiate_done = false;
1079         rc = smbd_post_send_negotiate_req(info);
1080         if (rc)
1081                 return rc;
1082
1083         rc = wait_for_completion_interruptible_timeout(
1084                 &info->negotiate_completion, SMBD_NEGOTIATE_TIMEOUT * HZ);
1085         log_rdma_event(INFO, "wait_for_completion_timeout rc=%d\n", rc);
1086
1087         if (info->negotiate_done)
1088                 return 0;
1089
1090         if (rc == 0)
1091                 rc = -ETIMEDOUT;
1092         else if (rc == -ERESTARTSYS)
1093                 rc = -EINTR;
1094         else
1095                 rc = -ENOTCONN;
1096
1097         return rc;
1098 }
1099
1100 static void put_empty_packet(
1101                 struct smbd_connection *info, struct smbd_response *response)
1102 {
1103         spin_lock(&info->empty_packet_queue_lock);
1104         list_add_tail(&response->list, &info->empty_packet_queue);
1105         info->count_empty_packet_queue++;
1106         spin_unlock(&info->empty_packet_queue_lock);
1107
1108         queue_work(info->workqueue, &info->post_send_credits_work);
1109 }
1110
1111 /*
1112  * Implement Connection.FragmentReassemblyBuffer defined in [MS-SMBD] 3.1.1.1
1113  * This is a queue for reassembling upper layer payload and present to upper
1114  * layer. All the inncoming payload go to the reassembly queue, regardless of
1115  * if reassembly is required. The uuper layer code reads from the queue for all
1116  * incoming payloads.
1117  * Put a received packet to the reassembly queue
1118  * response: the packet received
1119  * data_length: the size of payload in this packet
1120  */
1121 static void enqueue_reassembly(
1122         struct smbd_connection *info,
1123         struct smbd_response *response,
1124         int data_length)
1125 {
1126         spin_lock(&info->reassembly_queue_lock);
1127         list_add_tail(&response->list, &info->reassembly_queue);
1128         info->reassembly_queue_length++;
1129         /*
1130          * Make sure reassembly_data_length is updated after list and
1131          * reassembly_queue_length are updated. On the dequeue side
1132          * reassembly_data_length is checked without a lock to determine
1133          * if reassembly_queue_length and list is up to date
1134          */
1135         virt_wmb();
1136         info->reassembly_data_length += data_length;
1137         spin_unlock(&info->reassembly_queue_lock);
1138         info->count_reassembly_queue++;
1139         info->count_enqueue_reassembly_queue++;
1140 }
1141
1142 /*
1143  * Get the first entry at the front of reassembly queue
1144  * Caller is responsible for locking
1145  * return value: the first entry if any, NULL if queue is empty
1146  */
1147 static struct smbd_response *_get_first_reassembly(struct smbd_connection *info)
1148 {
1149         struct smbd_response *ret = NULL;
1150
1151         if (!list_empty(&info->reassembly_queue)) {
1152                 ret = list_first_entry(
1153                         &info->reassembly_queue,
1154                         struct smbd_response, list);
1155         }
1156         return ret;
1157 }
1158
1159 static struct smbd_response *get_empty_queue_buffer(
1160                 struct smbd_connection *info)
1161 {
1162         struct smbd_response *ret = NULL;
1163         unsigned long flags;
1164
1165         spin_lock_irqsave(&info->empty_packet_queue_lock, flags);
1166         if (!list_empty(&info->empty_packet_queue)) {
1167                 ret = list_first_entry(
1168                         &info->empty_packet_queue,
1169                         struct smbd_response, list);
1170                 list_del(&ret->list);
1171                 info->count_empty_packet_queue--;
1172         }
1173         spin_unlock_irqrestore(&info->empty_packet_queue_lock, flags);
1174
1175         return ret;
1176 }
1177
1178 /*
1179  * Get a receive buffer
1180  * For each remote send, we need to post a receive. The receive buffers are
1181  * pre-allocated in advance.
1182  * return value: the receive buffer, NULL if none is available
1183  */
1184 static struct smbd_response *get_receive_buffer(struct smbd_connection *info)
1185 {
1186         struct smbd_response *ret = NULL;
1187         unsigned long flags;
1188
1189         spin_lock_irqsave(&info->receive_queue_lock, flags);
1190         if (!list_empty(&info->receive_queue)) {
1191                 ret = list_first_entry(
1192                         &info->receive_queue,
1193                         struct smbd_response, list);
1194                 list_del(&ret->list);
1195                 info->count_receive_queue--;
1196                 info->count_get_receive_buffer++;
1197         }
1198         spin_unlock_irqrestore(&info->receive_queue_lock, flags);
1199
1200         return ret;
1201 }
1202
1203 /*
1204  * Return a receive buffer
1205  * Upon returning of a receive buffer, we can post new receive and extend
1206  * more receive credits to remote peer. This is done immediately after a
1207  * receive buffer is returned.
1208  */
1209 static void put_receive_buffer(
1210         struct smbd_connection *info, struct smbd_response *response)
1211 {
1212         unsigned long flags;
1213
1214         ib_dma_unmap_single(info->id->device, response->sge.addr,
1215                 response->sge.length, DMA_FROM_DEVICE);
1216
1217         spin_lock_irqsave(&info->receive_queue_lock, flags);
1218         list_add_tail(&response->list, &info->receive_queue);
1219         info->count_receive_queue++;
1220         info->count_put_receive_buffer++;
1221         spin_unlock_irqrestore(&info->receive_queue_lock, flags);
1222
1223         queue_work(info->workqueue, &info->post_send_credits_work);
1224 }
1225
1226 /* Preallocate all receive buffer on transport establishment */
1227 static int allocate_receive_buffers(struct smbd_connection *info, int num_buf)
1228 {
1229         int i;
1230         struct smbd_response *response;
1231
1232         INIT_LIST_HEAD(&info->reassembly_queue);
1233         spin_lock_init(&info->reassembly_queue_lock);
1234         info->reassembly_data_length = 0;
1235         info->reassembly_queue_length = 0;
1236
1237         INIT_LIST_HEAD(&info->receive_queue);
1238         spin_lock_init(&info->receive_queue_lock);
1239         info->count_receive_queue = 0;
1240
1241         INIT_LIST_HEAD(&info->empty_packet_queue);
1242         spin_lock_init(&info->empty_packet_queue_lock);
1243         info->count_empty_packet_queue = 0;
1244
1245         init_waitqueue_head(&info->wait_receive_queues);
1246
1247         for (i = 0; i < num_buf; i++) {
1248                 response = mempool_alloc(info->response_mempool, GFP_KERNEL);
1249                 if (!response)
1250                         goto allocate_failed;
1251
1252                 response->info = info;
1253                 list_add_tail(&response->list, &info->receive_queue);
1254                 info->count_receive_queue++;
1255         }
1256
1257         return 0;
1258
1259 allocate_failed:
1260         while (!list_empty(&info->receive_queue)) {
1261                 response = list_first_entry(
1262                                 &info->receive_queue,
1263                                 struct smbd_response, list);
1264                 list_del(&response->list);
1265                 info->count_receive_queue--;
1266
1267                 mempool_free(response, info->response_mempool);
1268         }
1269         return -ENOMEM;
1270 }
1271
1272 static void destroy_receive_buffers(struct smbd_connection *info)
1273 {
1274         struct smbd_response *response;
1275
1276         while ((response = get_receive_buffer(info)))
1277                 mempool_free(response, info->response_mempool);
1278
1279         while ((response = get_empty_queue_buffer(info)))
1280                 mempool_free(response, info->response_mempool);
1281 }
1282
1283 /* Implement idle connection timer [MS-SMBD] 3.1.6.2 */
1284 static void idle_connection_timer(struct work_struct *work)
1285 {
1286         struct smbd_connection *info = container_of(
1287                                         work, struct smbd_connection,
1288                                         idle_timer_work.work);
1289
1290         if (info->keep_alive_requested != KEEP_ALIVE_NONE) {
1291                 log_keep_alive(ERR,
1292                         "error status info->keep_alive_requested=%d\n",
1293                         info->keep_alive_requested);
1294                 smbd_disconnect_rdma_connection(info);
1295                 return;
1296         }
1297
1298         log_keep_alive(INFO, "about to send an empty idle message\n");
1299         smbd_post_send_empty(info);
1300
1301         /* Setup the next idle timeout work */
1302         queue_delayed_work(info->workqueue, &info->idle_timer_work,
1303                         info->keep_alive_interval*HZ);
1304 }
1305
1306 /*
1307  * Destroy the transport and related RDMA and memory resources
1308  * Need to go through all the pending counters and make sure on one is using
1309  * the transport while it is destroyed
1310  */
1311 void smbd_destroy(struct TCP_Server_Info *server)
1312 {
1313         struct smbd_connection *info = server->smbd_conn;
1314         struct smbd_response *response;
1315         unsigned long flags;
1316
1317         if (!info) {
1318                 log_rdma_event(INFO, "rdma session already destroyed\n");
1319                 return;
1320         }
1321
1322         log_rdma_event(INFO, "destroying rdma session\n");
1323         if (info->transport_status != SMBD_DISCONNECTED) {
1324                 rdma_disconnect(server->smbd_conn->id);
1325                 log_rdma_event(INFO, "wait for transport being disconnected\n");
1326                 wait_event_interruptible(
1327                         info->disconn_wait,
1328                         info->transport_status == SMBD_DISCONNECTED);
1329         }
1330
1331         log_rdma_event(INFO, "destroying qp\n");
1332         ib_drain_qp(info->id->qp);
1333         rdma_destroy_qp(info->id);
1334
1335         log_rdma_event(INFO, "cancelling idle timer\n");
1336         cancel_delayed_work_sync(&info->idle_timer_work);
1337
1338         log_rdma_event(INFO, "wait for all send posted to IB to finish\n");
1339         wait_event(info->wait_send_pending,
1340                 atomic_read(&info->send_pending) == 0);
1341
1342         /* It's not posssible for upper layer to get to reassembly */
1343         log_rdma_event(INFO, "drain the reassembly queue\n");
1344         do {
1345                 spin_lock_irqsave(&info->reassembly_queue_lock, flags);
1346                 response = _get_first_reassembly(info);
1347                 if (response) {
1348                         list_del(&response->list);
1349                         spin_unlock_irqrestore(
1350                                 &info->reassembly_queue_lock, flags);
1351                         put_receive_buffer(info, response);
1352                 } else
1353                         spin_unlock_irqrestore(
1354                                 &info->reassembly_queue_lock, flags);
1355         } while (response);
1356         info->reassembly_data_length = 0;
1357
1358         log_rdma_event(INFO, "free receive buffers\n");
1359         wait_event(info->wait_receive_queues,
1360                 info->count_receive_queue + info->count_empty_packet_queue
1361                         == info->receive_credit_max);
1362         destroy_receive_buffers(info);
1363
1364         /*
1365          * For performance reasons, memory registration and deregistration
1366          * are not locked by srv_mutex. It is possible some processes are
1367          * blocked on transport srv_mutex while holding memory registration.
1368          * Release the transport srv_mutex to allow them to hit the failure
1369          * path when sending data, and then release memory registartions.
1370          */
1371         log_rdma_event(INFO, "freeing mr list\n");
1372         wake_up_interruptible_all(&info->wait_mr);
1373         while (atomic_read(&info->mr_used_count)) {
1374                 mutex_unlock(&server->srv_mutex);
1375                 msleep(1000);
1376                 mutex_lock(&server->srv_mutex);
1377         }
1378         destroy_mr_list(info);
1379
1380         ib_free_cq(info->send_cq);
1381         ib_free_cq(info->recv_cq);
1382         ib_dealloc_pd(info->pd);
1383         rdma_destroy_id(info->id);
1384
1385         /* free mempools */
1386         mempool_destroy(info->request_mempool);
1387         kmem_cache_destroy(info->request_cache);
1388
1389         mempool_destroy(info->response_mempool);
1390         kmem_cache_destroy(info->response_cache);
1391
1392         info->transport_status = SMBD_DESTROYED;
1393
1394         destroy_workqueue(info->workqueue);
1395         log_rdma_event(INFO,  "rdma session destroyed\n");
1396         kfree(info);
1397 }
1398
1399 /*
1400  * Reconnect this SMBD connection, called from upper layer
1401  * return value: 0 on success, or actual error code
1402  */
1403 int smbd_reconnect(struct TCP_Server_Info *server)
1404 {
1405         log_rdma_event(INFO, "reconnecting rdma session\n");
1406
1407         if (!server->smbd_conn) {
1408                 log_rdma_event(INFO, "rdma session already destroyed\n");
1409                 goto create_conn;
1410         }
1411
1412         /*
1413          * This is possible if transport is disconnected and we haven't received
1414          * notification from RDMA, but upper layer has detected timeout
1415          */
1416         if (server->smbd_conn->transport_status == SMBD_CONNECTED) {
1417                 log_rdma_event(INFO, "disconnecting transport\n");
1418                 smbd_destroy(server);
1419         }
1420
1421 create_conn:
1422         log_rdma_event(INFO, "creating rdma session\n");
1423         server->smbd_conn = smbd_get_connection(
1424                 server, (struct sockaddr *) &server->dstaddr);
1425
1426         if (server->smbd_conn)
1427                 cifs_dbg(VFS, "RDMA transport re-established\n");
1428
1429         return server->smbd_conn ? 0 : -ENOENT;
1430 }
1431
1432 static void destroy_caches_and_workqueue(struct smbd_connection *info)
1433 {
1434         destroy_receive_buffers(info);
1435         destroy_workqueue(info->workqueue);
1436         mempool_destroy(info->response_mempool);
1437         kmem_cache_destroy(info->response_cache);
1438         mempool_destroy(info->request_mempool);
1439         kmem_cache_destroy(info->request_cache);
1440 }
1441
1442 #define MAX_NAME_LEN    80
1443 static int allocate_caches_and_workqueue(struct smbd_connection *info)
1444 {
1445         char name[MAX_NAME_LEN];
1446         int rc;
1447
1448         scnprintf(name, MAX_NAME_LEN, "smbd_request_%p", info);
1449         info->request_cache =
1450                 kmem_cache_create(
1451                         name,
1452                         sizeof(struct smbd_request) +
1453                                 sizeof(struct smbd_data_transfer),
1454                         0, SLAB_HWCACHE_ALIGN, NULL);
1455         if (!info->request_cache)
1456                 return -ENOMEM;
1457
1458         info->request_mempool =
1459                 mempool_create(info->send_credit_target, mempool_alloc_slab,
1460                         mempool_free_slab, info->request_cache);
1461         if (!info->request_mempool)
1462                 goto out1;
1463
1464         scnprintf(name, MAX_NAME_LEN, "smbd_response_%p", info);
1465         info->response_cache =
1466                 kmem_cache_create(
1467                         name,
1468                         sizeof(struct smbd_response) +
1469                                 info->max_receive_size,
1470                         0, SLAB_HWCACHE_ALIGN, NULL);
1471         if (!info->response_cache)
1472                 goto out2;
1473
1474         info->response_mempool =
1475                 mempool_create(info->receive_credit_max, mempool_alloc_slab,
1476                        mempool_free_slab, info->response_cache);
1477         if (!info->response_mempool)
1478                 goto out3;
1479
1480         scnprintf(name, MAX_NAME_LEN, "smbd_%p", info);
1481         info->workqueue = create_workqueue(name);
1482         if (!info->workqueue)
1483                 goto out4;
1484
1485         rc = allocate_receive_buffers(info, info->receive_credit_max);
1486         if (rc) {
1487                 log_rdma_event(ERR, "failed to allocate receive buffers\n");
1488                 goto out5;
1489         }
1490
1491         return 0;
1492
1493 out5:
1494         destroy_workqueue(info->workqueue);
1495 out4:
1496         mempool_destroy(info->response_mempool);
1497 out3:
1498         kmem_cache_destroy(info->response_cache);
1499 out2:
1500         mempool_destroy(info->request_mempool);
1501 out1:
1502         kmem_cache_destroy(info->request_cache);
1503         return -ENOMEM;
1504 }
1505
1506 /* Create a SMBD connection, called by upper layer */
1507 static struct smbd_connection *_smbd_get_connection(
1508         struct TCP_Server_Info *server, struct sockaddr *dstaddr, int port)
1509 {
1510         int rc;
1511         struct smbd_connection *info;
1512         struct rdma_conn_param conn_param;
1513         struct ib_qp_init_attr qp_attr;
1514         struct sockaddr_in *addr_in = (struct sockaddr_in *) dstaddr;
1515         struct ib_port_immutable port_immutable;
1516         u32 ird_ord_hdr[2];
1517
1518         info = kzalloc(sizeof(struct smbd_connection), GFP_KERNEL);
1519         if (!info)
1520                 return NULL;
1521
1522         info->transport_status = SMBD_CONNECTING;
1523         rc = smbd_ia_open(info, dstaddr, port);
1524         if (rc) {
1525                 log_rdma_event(INFO, "smbd_ia_open rc=%d\n", rc);
1526                 goto create_id_failed;
1527         }
1528
1529         if (smbd_send_credit_target > info->id->device->attrs.max_cqe ||
1530             smbd_send_credit_target > info->id->device->attrs.max_qp_wr) {
1531                 log_rdma_event(ERR, "consider lowering send_credit_target = %d. Possible CQE overrun, device reporting max_cpe %d max_qp_wr %d\n",
1532                                smbd_send_credit_target,
1533                                info->id->device->attrs.max_cqe,
1534                                info->id->device->attrs.max_qp_wr);
1535                 goto config_failed;
1536         }
1537
1538         if (smbd_receive_credit_max > info->id->device->attrs.max_cqe ||
1539             smbd_receive_credit_max > info->id->device->attrs.max_qp_wr) {
1540                 log_rdma_event(ERR, "consider lowering receive_credit_max = %d. Possible CQE overrun, device reporting max_cpe %d max_qp_wr %d\n",
1541                                smbd_receive_credit_max,
1542                                info->id->device->attrs.max_cqe,
1543                                info->id->device->attrs.max_qp_wr);
1544                 goto config_failed;
1545         }
1546
1547         info->receive_credit_max = smbd_receive_credit_max;
1548         info->send_credit_target = smbd_send_credit_target;
1549         info->max_send_size = smbd_max_send_size;
1550         info->max_fragmented_recv_size = smbd_max_fragmented_recv_size;
1551         info->max_receive_size = smbd_max_receive_size;
1552         info->keep_alive_interval = smbd_keep_alive_interval;
1553
1554         if (info->id->device->attrs.max_send_sge < SMBDIRECT_MAX_SGE) {
1555                 log_rdma_event(ERR,
1556                         "warning: device max_send_sge = %d too small\n",
1557                         info->id->device->attrs.max_send_sge);
1558                 log_rdma_event(ERR, "Queue Pair creation may fail\n");
1559         }
1560         if (info->id->device->attrs.max_recv_sge < SMBDIRECT_MAX_SGE) {
1561                 log_rdma_event(ERR,
1562                         "warning: device max_recv_sge = %d too small\n",
1563                         info->id->device->attrs.max_recv_sge);
1564                 log_rdma_event(ERR, "Queue Pair creation may fail\n");
1565         }
1566
1567         info->send_cq = NULL;
1568         info->recv_cq = NULL;
1569         info->send_cq =
1570                 ib_alloc_cq_any(info->id->device, info,
1571                                 info->send_credit_target, IB_POLL_SOFTIRQ);
1572         if (IS_ERR(info->send_cq)) {
1573                 info->send_cq = NULL;
1574                 goto alloc_cq_failed;
1575         }
1576
1577         info->recv_cq =
1578                 ib_alloc_cq_any(info->id->device, info,
1579                                 info->receive_credit_max, IB_POLL_SOFTIRQ);
1580         if (IS_ERR(info->recv_cq)) {
1581                 info->recv_cq = NULL;
1582                 goto alloc_cq_failed;
1583         }
1584
1585         memset(&qp_attr, 0, sizeof(qp_attr));
1586         qp_attr.event_handler = smbd_qp_async_error_upcall;
1587         qp_attr.qp_context = info;
1588         qp_attr.cap.max_send_wr = info->send_credit_target;
1589         qp_attr.cap.max_recv_wr = info->receive_credit_max;
1590         qp_attr.cap.max_send_sge = SMBDIRECT_MAX_SGE;
1591         qp_attr.cap.max_recv_sge = SMBDIRECT_MAX_SGE;
1592         qp_attr.cap.max_inline_data = 0;
1593         qp_attr.sq_sig_type = IB_SIGNAL_REQ_WR;
1594         qp_attr.qp_type = IB_QPT_RC;
1595         qp_attr.send_cq = info->send_cq;
1596         qp_attr.recv_cq = info->recv_cq;
1597         qp_attr.port_num = ~0;
1598
1599         rc = rdma_create_qp(info->id, info->pd, &qp_attr);
1600         if (rc) {
1601                 log_rdma_event(ERR, "rdma_create_qp failed %i\n", rc);
1602                 goto create_qp_failed;
1603         }
1604
1605         memset(&conn_param, 0, sizeof(conn_param));
1606         conn_param.initiator_depth = 0;
1607
1608         conn_param.responder_resources =
1609                 info->id->device->attrs.max_qp_rd_atom
1610                         < SMBD_CM_RESPONDER_RESOURCES ?
1611                 info->id->device->attrs.max_qp_rd_atom :
1612                 SMBD_CM_RESPONDER_RESOURCES;
1613         info->responder_resources = conn_param.responder_resources;
1614         log_rdma_mr(INFO, "responder_resources=%d\n",
1615                 info->responder_resources);
1616
1617         /* Need to send IRD/ORD in private data for iWARP */
1618         info->id->device->ops.get_port_immutable(
1619                 info->id->device, info->id->port_num, &port_immutable);
1620         if (port_immutable.core_cap_flags & RDMA_CORE_PORT_IWARP) {
1621                 ird_ord_hdr[0] = info->responder_resources;
1622                 ird_ord_hdr[1] = 1;
1623                 conn_param.private_data = ird_ord_hdr;
1624                 conn_param.private_data_len = sizeof(ird_ord_hdr);
1625         } else {
1626                 conn_param.private_data = NULL;
1627                 conn_param.private_data_len = 0;
1628         }
1629
1630         conn_param.retry_count = SMBD_CM_RETRY;
1631         conn_param.rnr_retry_count = SMBD_CM_RNR_RETRY;
1632         conn_param.flow_control = 0;
1633
1634         log_rdma_event(INFO, "connecting to IP %pI4 port %d\n",
1635                 &addr_in->sin_addr, port);
1636
1637         init_waitqueue_head(&info->conn_wait);
1638         init_waitqueue_head(&info->disconn_wait);
1639         init_waitqueue_head(&info->wait_reassembly_queue);
1640         rc = rdma_connect(info->id, &conn_param);
1641         if (rc) {
1642                 log_rdma_event(ERR, "rdma_connect() failed with %i\n", rc);
1643                 goto rdma_connect_failed;
1644         }
1645
1646         wait_event_interruptible(
1647                 info->conn_wait, info->transport_status != SMBD_CONNECTING);
1648
1649         if (info->transport_status != SMBD_CONNECTED) {
1650                 log_rdma_event(ERR, "rdma_connect failed port=%d\n", port);
1651                 goto rdma_connect_failed;
1652         }
1653
1654         log_rdma_event(INFO, "rdma_connect connected\n");
1655
1656         rc = allocate_caches_and_workqueue(info);
1657         if (rc) {
1658                 log_rdma_event(ERR, "cache allocation failed\n");
1659                 goto allocate_cache_failed;
1660         }
1661
1662         init_waitqueue_head(&info->wait_send_queue);
1663         INIT_DELAYED_WORK(&info->idle_timer_work, idle_connection_timer);
1664         queue_delayed_work(info->workqueue, &info->idle_timer_work,
1665                 info->keep_alive_interval*HZ);
1666
1667         init_waitqueue_head(&info->wait_send_pending);
1668         atomic_set(&info->send_pending, 0);
1669
1670         init_waitqueue_head(&info->wait_post_send);
1671
1672         INIT_WORK(&info->disconnect_work, smbd_disconnect_rdma_work);
1673         INIT_WORK(&info->post_send_credits_work, smbd_post_send_credits);
1674         info->new_credits_offered = 0;
1675         spin_lock_init(&info->lock_new_credits_offered);
1676
1677         rc = smbd_negotiate(info);
1678         if (rc) {
1679                 log_rdma_event(ERR, "smbd_negotiate rc=%d\n", rc);
1680                 goto negotiation_failed;
1681         }
1682
1683         rc = allocate_mr_list(info);
1684         if (rc) {
1685                 log_rdma_mr(ERR, "memory registration allocation failed\n");
1686                 goto allocate_mr_failed;
1687         }
1688
1689         return info;
1690
1691 allocate_mr_failed:
1692         /* At this point, need to a full transport shutdown */
1693         smbd_destroy(server);
1694         return NULL;
1695
1696 negotiation_failed:
1697         cancel_delayed_work_sync(&info->idle_timer_work);
1698         destroy_caches_and_workqueue(info);
1699         info->transport_status = SMBD_NEGOTIATE_FAILED;
1700         init_waitqueue_head(&info->conn_wait);
1701         rdma_disconnect(info->id);
1702         wait_event(info->conn_wait,
1703                 info->transport_status == SMBD_DISCONNECTED);
1704
1705 allocate_cache_failed:
1706 rdma_connect_failed:
1707         rdma_destroy_qp(info->id);
1708
1709 create_qp_failed:
1710 alloc_cq_failed:
1711         if (info->send_cq)
1712                 ib_free_cq(info->send_cq);
1713         if (info->recv_cq)
1714                 ib_free_cq(info->recv_cq);
1715
1716 config_failed:
1717         ib_dealloc_pd(info->pd);
1718         rdma_destroy_id(info->id);
1719
1720 create_id_failed:
1721         kfree(info);
1722         return NULL;
1723 }
1724
1725 struct smbd_connection *smbd_get_connection(
1726         struct TCP_Server_Info *server, struct sockaddr *dstaddr)
1727 {
1728         struct smbd_connection *ret;
1729         int port = SMBD_PORT;
1730
1731 try_again:
1732         ret = _smbd_get_connection(server, dstaddr, port);
1733
1734         /* Try SMB_PORT if SMBD_PORT doesn't work */
1735         if (!ret && port == SMBD_PORT) {
1736                 port = SMB_PORT;
1737                 goto try_again;
1738         }
1739         return ret;
1740 }
1741
1742 /*
1743  * Receive data from receive reassembly queue
1744  * All the incoming data packets are placed in reassembly queue
1745  * buf: the buffer to read data into
1746  * size: the length of data to read
1747  * return value: actual data read
1748  * Note: this implementation copies the data from reassebmly queue to receive
1749  * buffers used by upper layer. This is not the optimal code path. A better way
1750  * to do it is to not have upper layer allocate its receive buffers but rather
1751  * borrow the buffer from reassembly queue, and return it after data is
1752  * consumed. But this will require more changes to upper layer code, and also
1753  * need to consider packet boundaries while they still being reassembled.
1754  */
1755 static int smbd_recv_buf(struct smbd_connection *info, char *buf,
1756                 unsigned int size)
1757 {
1758         struct smbd_response *response;
1759         struct smbd_data_transfer *data_transfer;
1760         int to_copy, to_read, data_read, offset;
1761         u32 data_length, remaining_data_length, data_offset;
1762         int rc;
1763
1764 again:
1765         /*
1766          * No need to hold the reassembly queue lock all the time as we are
1767          * the only one reading from the front of the queue. The transport
1768          * may add more entries to the back of the queue at the same time
1769          */
1770         log_read(INFO, "size=%d info->reassembly_data_length=%d\n", size,
1771                 info->reassembly_data_length);
1772         if (info->reassembly_data_length >= size) {
1773                 int queue_length;
1774                 int queue_removed = 0;
1775
1776                 /*
1777                  * Need to make sure reassembly_data_length is read before
1778                  * reading reassembly_queue_length and calling
1779                  * _get_first_reassembly. This call is lock free
1780                  * as we never read at the end of the queue which are being
1781                  * updated in SOFTIRQ as more data is received
1782                  */
1783                 virt_rmb();
1784                 queue_length = info->reassembly_queue_length;
1785                 data_read = 0;
1786                 to_read = size;
1787                 offset = info->first_entry_offset;
1788                 while (data_read < size) {
1789                         response = _get_first_reassembly(info);
1790                         data_transfer = smbd_response_payload(response);
1791                         data_length = le32_to_cpu(data_transfer->data_length);
1792                         remaining_data_length =
1793                                 le32_to_cpu(
1794                                         data_transfer->remaining_data_length);
1795                         data_offset = le32_to_cpu(data_transfer->data_offset);
1796
1797                         /*
1798                          * The upper layer expects RFC1002 length at the
1799                          * beginning of the payload. Return it to indicate
1800                          * the total length of the packet. This minimize the
1801                          * change to upper layer packet processing logic. This
1802                          * will be eventually remove when an intermediate
1803                          * transport layer is added
1804                          */
1805                         if (response->first_segment && size == 4) {
1806                                 unsigned int rfc1002_len =
1807                                         data_length + remaining_data_length;
1808                                 *((__be32 *)buf) = cpu_to_be32(rfc1002_len);
1809                                 data_read = 4;
1810                                 response->first_segment = false;
1811                                 log_read(INFO, "returning rfc1002 length %d\n",
1812                                         rfc1002_len);
1813                                 goto read_rfc1002_done;
1814                         }
1815
1816                         to_copy = min_t(int, data_length - offset, to_read);
1817                         memcpy(
1818                                 buf + data_read,
1819                                 (char *)data_transfer + data_offset + offset,
1820                                 to_copy);
1821
1822                         /* move on to the next buffer? */
1823                         if (to_copy == data_length - offset) {
1824                                 queue_length--;
1825                                 /*
1826                                  * No need to lock if we are not at the
1827                                  * end of the queue
1828                                  */
1829                                 if (queue_length)
1830                                         list_del(&response->list);
1831                                 else {
1832                                         spin_lock_irq(
1833                                                 &info->reassembly_queue_lock);
1834                                         list_del(&response->list);
1835                                         spin_unlock_irq(
1836                                                 &info->reassembly_queue_lock);
1837                                 }
1838                                 queue_removed++;
1839                                 info->count_reassembly_queue--;
1840                                 info->count_dequeue_reassembly_queue++;
1841                                 put_receive_buffer(info, response);
1842                                 offset = 0;
1843                                 log_read(INFO, "put_receive_buffer offset=0\n");
1844                         } else
1845                                 offset += to_copy;
1846
1847                         to_read -= to_copy;
1848                         data_read += to_copy;
1849
1850                         log_read(INFO, "_get_first_reassembly memcpy %d bytes data_transfer_length-offset=%d after that to_read=%d data_read=%d offset=%d\n",
1851                                  to_copy, data_length - offset,
1852                                  to_read, data_read, offset);
1853                 }
1854
1855                 spin_lock_irq(&info->reassembly_queue_lock);
1856                 info->reassembly_data_length -= data_read;
1857                 info->reassembly_queue_length -= queue_removed;
1858                 spin_unlock_irq(&info->reassembly_queue_lock);
1859
1860                 info->first_entry_offset = offset;
1861                 log_read(INFO, "returning to thread data_read=%d reassembly_data_length=%d first_entry_offset=%d\n",
1862                          data_read, info->reassembly_data_length,
1863                          info->first_entry_offset);
1864 read_rfc1002_done:
1865                 return data_read;
1866         }
1867
1868         log_read(INFO, "wait_event on more data\n");
1869         rc = wait_event_interruptible(
1870                 info->wait_reassembly_queue,
1871                 info->reassembly_data_length >= size ||
1872                         info->transport_status != SMBD_CONNECTED);
1873         /* Don't return any data if interrupted */
1874         if (rc)
1875                 return rc;
1876
1877         if (info->transport_status != SMBD_CONNECTED) {
1878                 log_read(ERR, "disconnected\n");
1879                 return -ECONNABORTED;
1880         }
1881
1882         goto again;
1883 }
1884
1885 /*
1886  * Receive a page from receive reassembly queue
1887  * page: the page to read data into
1888  * to_read: the length of data to read
1889  * return value: actual data read
1890  */
1891 static int smbd_recv_page(struct smbd_connection *info,
1892                 struct page *page, unsigned int page_offset,
1893                 unsigned int to_read)
1894 {
1895         int ret;
1896         char *to_address;
1897         void *page_address;
1898
1899         /* make sure we have the page ready for read */
1900         ret = wait_event_interruptible(
1901                 info->wait_reassembly_queue,
1902                 info->reassembly_data_length >= to_read ||
1903                         info->transport_status != SMBD_CONNECTED);
1904         if (ret)
1905                 return ret;
1906
1907         /* now we can read from reassembly queue and not sleep */
1908         page_address = kmap_atomic(page);
1909         to_address = (char *) page_address + page_offset;
1910
1911         log_read(INFO, "reading from page=%p address=%p to_read=%d\n",
1912                 page, to_address, to_read);
1913
1914         ret = smbd_recv_buf(info, to_address, to_read);
1915         kunmap_atomic(page_address);
1916
1917         return ret;
1918 }
1919
1920 /*
1921  * Receive data from transport
1922  * msg: a msghdr point to the buffer, can be ITER_KVEC or ITER_BVEC
1923  * return: total bytes read, or 0. SMB Direct will not do partial read.
1924  */
1925 int smbd_recv(struct smbd_connection *info, struct msghdr *msg)
1926 {
1927         char *buf;
1928         struct page *page;
1929         unsigned int to_read, page_offset;
1930         int rc;
1931
1932         if (iov_iter_rw(&msg->msg_iter) == WRITE) {
1933                 /* It's a bug in upper layer to get there */
1934                 cifs_dbg(VFS, "Invalid msg iter dir %u\n",
1935                          iov_iter_rw(&msg->msg_iter));
1936                 rc = -EINVAL;
1937                 goto out;
1938         }
1939
1940         switch (iov_iter_type(&msg->msg_iter)) {
1941         case ITER_KVEC:
1942                 buf = msg->msg_iter.kvec->iov_base;
1943                 to_read = msg->msg_iter.kvec->iov_len;
1944                 rc = smbd_recv_buf(info, buf, to_read);
1945                 break;
1946
1947         case ITER_BVEC:
1948                 page = msg->msg_iter.bvec->bv_page;
1949                 page_offset = msg->msg_iter.bvec->bv_offset;
1950                 to_read = msg->msg_iter.bvec->bv_len;
1951                 rc = smbd_recv_page(info, page, page_offset, to_read);
1952                 break;
1953
1954         default:
1955                 /* It's a bug in upper layer to get there */
1956                 cifs_dbg(VFS, "Invalid msg type %d\n",
1957                          iov_iter_type(&msg->msg_iter));
1958                 rc = -EINVAL;
1959         }
1960
1961 out:
1962         /* SMBDirect will read it all or nothing */
1963         if (rc > 0)
1964                 msg->msg_iter.count = 0;
1965         return rc;
1966 }
1967
1968 /*
1969  * Send data to transport
1970  * Each rqst is transported as a SMBDirect payload
1971  * rqst: the data to write
1972  * return value: 0 if successfully write, otherwise error code
1973  */
1974 int smbd_send(struct TCP_Server_Info *server,
1975         int num_rqst, struct smb_rqst *rqst_array)
1976 {
1977         struct smbd_connection *info = server->smbd_conn;
1978         struct kvec vec;
1979         int nvecs;
1980         int size;
1981         unsigned int buflen, remaining_data_length;
1982         int start, i, j;
1983         int max_iov_size =
1984                 info->max_send_size - sizeof(struct smbd_data_transfer);
1985         struct kvec *iov;
1986         int rc;
1987         struct smb_rqst *rqst;
1988         int rqst_idx;
1989
1990         if (info->transport_status != SMBD_CONNECTED) {
1991                 rc = -EAGAIN;
1992                 goto done;
1993         }
1994
1995         /*
1996          * Add in the page array if there is one. The caller needs to set
1997          * rq_tailsz to PAGE_SIZE when the buffer has multiple pages and
1998          * ends at page boundary
1999          */
2000         remaining_data_length = 0;
2001         for (i = 0; i < num_rqst; i++)
2002                 remaining_data_length += smb_rqst_len(server, &rqst_array[i]);
2003
2004         if (remaining_data_length > info->max_fragmented_send_size) {
2005                 log_write(ERR, "payload size %d > max size %d\n",
2006                         remaining_data_length, info->max_fragmented_send_size);
2007                 rc = -EINVAL;
2008                 goto done;
2009         }
2010
2011         log_write(INFO, "num_rqst=%d total length=%u\n",
2012                         num_rqst, remaining_data_length);
2013
2014         rqst_idx = 0;
2015 next_rqst:
2016         rqst = &rqst_array[rqst_idx];
2017         iov = rqst->rq_iov;
2018
2019         cifs_dbg(FYI, "Sending smb (RDMA): idx=%d smb_len=%lu\n",
2020                 rqst_idx, smb_rqst_len(server, rqst));
2021         for (i = 0; i < rqst->rq_nvec; i++)
2022                 dump_smb(iov[i].iov_base, iov[i].iov_len);
2023
2024
2025         log_write(INFO, "rqst_idx=%d nvec=%d rqst->rq_npages=%d rq_pagesz=%d rq_tailsz=%d buflen=%lu\n",
2026                   rqst_idx, rqst->rq_nvec, rqst->rq_npages, rqst->rq_pagesz,
2027                   rqst->rq_tailsz, smb_rqst_len(server, rqst));
2028
2029         start = i = 0;
2030         buflen = 0;
2031         while (true) {
2032                 buflen += iov[i].iov_len;
2033                 if (buflen > max_iov_size) {
2034                         if (i > start) {
2035                                 remaining_data_length -=
2036                                         (buflen-iov[i].iov_len);
2037                                 log_write(INFO, "sending iov[] from start=%d i=%d nvecs=%d remaining_data_length=%d\n",
2038                                           start, i, i - start,
2039                                           remaining_data_length);
2040                                 rc = smbd_post_send_data(
2041                                         info, &iov[start], i-start,
2042                                         remaining_data_length);
2043                                 if (rc)
2044                                         goto done;
2045                         } else {
2046                                 /* iov[start] is too big, break it */
2047                                 nvecs = (buflen+max_iov_size-1)/max_iov_size;
2048                                 log_write(INFO, "iov[%d] iov_base=%p buflen=%d break to %d vectors\n",
2049                                           start, iov[start].iov_base,
2050                                           buflen, nvecs);
2051                                 for (j = 0; j < nvecs; j++) {
2052                                         vec.iov_base =
2053                                                 (char *)iov[start].iov_base +
2054                                                 j*max_iov_size;
2055                                         vec.iov_len = max_iov_size;
2056                                         if (j == nvecs-1)
2057                                                 vec.iov_len =
2058                                                         buflen -
2059                                                         max_iov_size*(nvecs-1);
2060                                         remaining_data_length -= vec.iov_len;
2061                                         log_write(INFO,
2062                                                 "sending vec j=%d iov_base=%p iov_len=%zu remaining_data_length=%d\n",
2063                                                   j, vec.iov_base, vec.iov_len,
2064                                                   remaining_data_length);
2065                                         rc = smbd_post_send_data(
2066                                                 info, &vec, 1,
2067                                                 remaining_data_length);
2068                                         if (rc)
2069                                                 goto done;
2070                                 }
2071                                 i++;
2072                                 if (i == rqst->rq_nvec)
2073                                         break;
2074                         }
2075                         start = i;
2076                         buflen = 0;
2077                 } else {
2078                         i++;
2079                         if (i == rqst->rq_nvec) {
2080                                 /* send out all remaining vecs */
2081                                 remaining_data_length -= buflen;
2082                                 log_write(INFO, "sending iov[] from start=%d i=%d nvecs=%d remaining_data_length=%d\n",
2083                                           start, i, i - start,
2084                                           remaining_data_length);
2085                                 rc = smbd_post_send_data(info, &iov[start],
2086                                         i-start, remaining_data_length);
2087                                 if (rc)
2088                                         goto done;
2089                                 break;
2090                         }
2091                 }
2092                 log_write(INFO, "looping i=%d buflen=%d\n", i, buflen);
2093         }
2094
2095         /* now sending pages if there are any */
2096         for (i = 0; i < rqst->rq_npages; i++) {
2097                 unsigned int offset;
2098
2099                 rqst_page_get_length(rqst, i, &buflen, &offset);
2100                 nvecs = (buflen + max_iov_size - 1) / max_iov_size;
2101                 log_write(INFO, "sending pages buflen=%d nvecs=%d\n",
2102                         buflen, nvecs);
2103                 for (j = 0; j < nvecs; j++) {
2104                         size = max_iov_size;
2105                         if (j == nvecs-1)
2106                                 size = buflen - j*max_iov_size;
2107                         remaining_data_length -= size;
2108                         log_write(INFO, "sending pages i=%d offset=%d size=%d remaining_data_length=%d\n",
2109                                   i, j * max_iov_size + offset, size,
2110                                   remaining_data_length);
2111                         rc = smbd_post_send_page(
2112                                 info, rqst->rq_pages[i],
2113                                 j*max_iov_size + offset,
2114                                 size, remaining_data_length);
2115                         if (rc)
2116                                 goto done;
2117                 }
2118         }
2119
2120         rqst_idx++;
2121         if (rqst_idx < num_rqst)
2122                 goto next_rqst;
2123
2124 done:
2125         /*
2126          * As an optimization, we don't wait for individual I/O to finish
2127          * before sending the next one.
2128          * Send them all and wait for pending send count to get to 0
2129          * that means all the I/Os have been out and we are good to return
2130          */
2131
2132         wait_event(info->wait_send_pending,
2133                 atomic_read(&info->send_pending) == 0);
2134
2135         return rc;
2136 }
2137
2138 static void register_mr_done(struct ib_cq *cq, struct ib_wc *wc)
2139 {
2140         struct smbd_mr *mr;
2141         struct ib_cqe *cqe;
2142
2143         if (wc->status) {
2144                 log_rdma_mr(ERR, "status=%d\n", wc->status);
2145                 cqe = wc->wr_cqe;
2146                 mr = container_of(cqe, struct smbd_mr, cqe);
2147                 smbd_disconnect_rdma_connection(mr->conn);
2148         }
2149 }
2150
2151 /*
2152  * The work queue function that recovers MRs
2153  * We need to call ib_dereg_mr() and ib_alloc_mr() before this MR can be used
2154  * again. Both calls are slow, so finish them in a workqueue. This will not
2155  * block I/O path.
2156  * There is one workqueue that recovers MRs, there is no need to lock as the
2157  * I/O requests calling smbd_register_mr will never update the links in the
2158  * mr_list.
2159  */
2160 static void smbd_mr_recovery_work(struct work_struct *work)
2161 {
2162         struct smbd_connection *info =
2163                 container_of(work, struct smbd_connection, mr_recovery_work);
2164         struct smbd_mr *smbdirect_mr;
2165         int rc;
2166
2167         list_for_each_entry(smbdirect_mr, &info->mr_list, list) {
2168                 if (smbdirect_mr->state == MR_ERROR) {
2169
2170                         /* recover this MR entry */
2171                         rc = ib_dereg_mr(smbdirect_mr->mr);
2172                         if (rc) {
2173                                 log_rdma_mr(ERR,
2174                                         "ib_dereg_mr failed rc=%x\n",
2175                                         rc);
2176                                 smbd_disconnect_rdma_connection(info);
2177                                 continue;
2178                         }
2179
2180                         smbdirect_mr->mr = ib_alloc_mr(
2181                                 info->pd, info->mr_type,
2182                                 info->max_frmr_depth);
2183                         if (IS_ERR(smbdirect_mr->mr)) {
2184                                 log_rdma_mr(ERR, "ib_alloc_mr failed mr_type=%x max_frmr_depth=%x\n",
2185                                             info->mr_type,
2186                                             info->max_frmr_depth);
2187                                 smbd_disconnect_rdma_connection(info);
2188                                 continue;
2189                         }
2190                 } else
2191                         /* This MR is being used, don't recover it */
2192                         continue;
2193
2194                 smbdirect_mr->state = MR_READY;
2195
2196                 /* smbdirect_mr->state is updated by this function
2197                  * and is read and updated by I/O issuing CPUs trying
2198                  * to get a MR, the call to atomic_inc_return
2199                  * implicates a memory barrier and guarantees this
2200                  * value is updated before waking up any calls to
2201                  * get_mr() from the I/O issuing CPUs
2202                  */
2203                 if (atomic_inc_return(&info->mr_ready_count) == 1)
2204                         wake_up_interruptible(&info->wait_mr);
2205         }
2206 }
2207
2208 static void destroy_mr_list(struct smbd_connection *info)
2209 {
2210         struct smbd_mr *mr, *tmp;
2211
2212         cancel_work_sync(&info->mr_recovery_work);
2213         list_for_each_entry_safe(mr, tmp, &info->mr_list, list) {
2214                 if (mr->state == MR_INVALIDATED)
2215                         ib_dma_unmap_sg(info->id->device, mr->sgl,
2216                                 mr->sgl_count, mr->dir);
2217                 ib_dereg_mr(mr->mr);
2218                 kfree(mr->sgl);
2219                 kfree(mr);
2220         }
2221 }
2222
2223 /*
2224  * Allocate MRs used for RDMA read/write
2225  * The number of MRs will not exceed hardware capability in responder_resources
2226  * All MRs are kept in mr_list. The MR can be recovered after it's used
2227  * Recovery is done in smbd_mr_recovery_work. The content of list entry changes
2228  * as MRs are used and recovered for I/O, but the list links will not change
2229  */
2230 static int allocate_mr_list(struct smbd_connection *info)
2231 {
2232         int i;
2233         struct smbd_mr *smbdirect_mr, *tmp;
2234
2235         INIT_LIST_HEAD(&info->mr_list);
2236         init_waitqueue_head(&info->wait_mr);
2237         spin_lock_init(&info->mr_list_lock);
2238         atomic_set(&info->mr_ready_count, 0);
2239         atomic_set(&info->mr_used_count, 0);
2240         init_waitqueue_head(&info->wait_for_mr_cleanup);
2241         /* Allocate more MRs (2x) than hardware responder_resources */
2242         for (i = 0; i < info->responder_resources * 2; i++) {
2243                 smbdirect_mr = kzalloc(sizeof(*smbdirect_mr), GFP_KERNEL);
2244                 if (!smbdirect_mr)
2245                         goto out;
2246                 smbdirect_mr->mr = ib_alloc_mr(info->pd, info->mr_type,
2247                                         info->max_frmr_depth);
2248                 if (IS_ERR(smbdirect_mr->mr)) {
2249                         log_rdma_mr(ERR, "ib_alloc_mr failed mr_type=%x max_frmr_depth=%x\n",
2250                                     info->mr_type, info->max_frmr_depth);
2251                         goto out;
2252                 }
2253                 smbdirect_mr->sgl = kcalloc(
2254                                         info->max_frmr_depth,
2255                                         sizeof(struct scatterlist),
2256                                         GFP_KERNEL);
2257                 if (!smbdirect_mr->sgl) {
2258                         log_rdma_mr(ERR, "failed to allocate sgl\n");
2259                         ib_dereg_mr(smbdirect_mr->mr);
2260                         goto out;
2261                 }
2262                 smbdirect_mr->state = MR_READY;
2263                 smbdirect_mr->conn = info;
2264
2265                 list_add_tail(&smbdirect_mr->list, &info->mr_list);
2266                 atomic_inc(&info->mr_ready_count);
2267         }
2268         INIT_WORK(&info->mr_recovery_work, smbd_mr_recovery_work);
2269         return 0;
2270
2271 out:
2272         kfree(smbdirect_mr);
2273
2274         list_for_each_entry_safe(smbdirect_mr, tmp, &info->mr_list, list) {
2275                 ib_dereg_mr(smbdirect_mr->mr);
2276                 kfree(smbdirect_mr->sgl);
2277                 kfree(smbdirect_mr);
2278         }
2279         return -ENOMEM;
2280 }
2281
2282 /*
2283  * Get a MR from mr_list. This function waits until there is at least one
2284  * MR available in the list. It may access the list while the
2285  * smbd_mr_recovery_work is recovering the MR list. This doesn't need a lock
2286  * as they never modify the same places. However, there may be several CPUs
2287  * issueing I/O trying to get MR at the same time, mr_list_lock is used to
2288  * protect this situation.
2289  */
2290 static struct smbd_mr *get_mr(struct smbd_connection *info)
2291 {
2292         struct smbd_mr *ret;
2293         int rc;
2294 again:
2295         rc = wait_event_interruptible(info->wait_mr,
2296                 atomic_read(&info->mr_ready_count) ||
2297                 info->transport_status != SMBD_CONNECTED);
2298         if (rc) {
2299                 log_rdma_mr(ERR, "wait_event_interruptible rc=%x\n", rc);
2300                 return NULL;
2301         }
2302
2303         if (info->transport_status != SMBD_CONNECTED) {
2304                 log_rdma_mr(ERR, "info->transport_status=%x\n",
2305                         info->transport_status);
2306                 return NULL;
2307         }
2308
2309         spin_lock(&info->mr_list_lock);
2310         list_for_each_entry(ret, &info->mr_list, list) {
2311                 if (ret->state == MR_READY) {
2312                         ret->state = MR_REGISTERED;
2313                         spin_unlock(&info->mr_list_lock);
2314                         atomic_dec(&info->mr_ready_count);
2315                         atomic_inc(&info->mr_used_count);
2316                         return ret;
2317                 }
2318         }
2319
2320         spin_unlock(&info->mr_list_lock);
2321         /*
2322          * It is possible that we could fail to get MR because other processes may
2323          * try to acquire a MR at the same time. If this is the case, retry it.
2324          */
2325         goto again;
2326 }
2327
2328 /*
2329  * Register memory for RDMA read/write
2330  * pages[]: the list of pages to register memory with
2331  * num_pages: the number of pages to register
2332  * tailsz: if non-zero, the bytes to register in the last page
2333  * writing: true if this is a RDMA write (SMB read), false for RDMA read
2334  * need_invalidate: true if this MR needs to be locally invalidated after I/O
2335  * return value: the MR registered, NULL if failed.
2336  */
2337 struct smbd_mr *smbd_register_mr(
2338         struct smbd_connection *info, struct page *pages[], int num_pages,
2339         int offset, int tailsz, bool writing, bool need_invalidate)
2340 {
2341         struct smbd_mr *smbdirect_mr;
2342         int rc, i;
2343         enum dma_data_direction dir;
2344         struct ib_reg_wr *reg_wr;
2345
2346         if (num_pages > info->max_frmr_depth) {
2347                 log_rdma_mr(ERR, "num_pages=%d max_frmr_depth=%d\n",
2348                         num_pages, info->max_frmr_depth);
2349                 return NULL;
2350         }
2351
2352         smbdirect_mr = get_mr(info);
2353         if (!smbdirect_mr) {
2354                 log_rdma_mr(ERR, "get_mr returning NULL\n");
2355                 return NULL;
2356         }
2357         smbdirect_mr->need_invalidate = need_invalidate;
2358         smbdirect_mr->sgl_count = num_pages;
2359         sg_init_table(smbdirect_mr->sgl, num_pages);
2360
2361         log_rdma_mr(INFO, "num_pages=0x%x offset=0x%x tailsz=0x%x\n",
2362                         num_pages, offset, tailsz);
2363
2364         if (num_pages == 1) {
2365                 sg_set_page(&smbdirect_mr->sgl[0], pages[0], tailsz, offset);
2366                 goto skip_multiple_pages;
2367         }
2368
2369         /* We have at least two pages to register */
2370         sg_set_page(
2371                 &smbdirect_mr->sgl[0], pages[0], PAGE_SIZE - offset, offset);
2372         i = 1;
2373         while (i < num_pages - 1) {
2374                 sg_set_page(&smbdirect_mr->sgl[i], pages[i], PAGE_SIZE, 0);
2375                 i++;
2376         }
2377         sg_set_page(&smbdirect_mr->sgl[i], pages[i],
2378                 tailsz ? tailsz : PAGE_SIZE, 0);
2379
2380 skip_multiple_pages:
2381         dir = writing ? DMA_FROM_DEVICE : DMA_TO_DEVICE;
2382         smbdirect_mr->dir = dir;
2383         rc = ib_dma_map_sg(info->id->device, smbdirect_mr->sgl, num_pages, dir);
2384         if (!rc) {
2385                 log_rdma_mr(ERR, "ib_dma_map_sg num_pages=%x dir=%x rc=%x\n",
2386                         num_pages, dir, rc);
2387                 goto dma_map_error;
2388         }
2389
2390         rc = ib_map_mr_sg(smbdirect_mr->mr, smbdirect_mr->sgl, num_pages,
2391                 NULL, PAGE_SIZE);
2392         if (rc != num_pages) {
2393                 log_rdma_mr(ERR,
2394                         "ib_map_mr_sg failed rc = %d num_pages = %x\n",
2395                         rc, num_pages);
2396                 goto map_mr_error;
2397         }
2398
2399         ib_update_fast_reg_key(smbdirect_mr->mr,
2400                 ib_inc_rkey(smbdirect_mr->mr->rkey));
2401         reg_wr = &smbdirect_mr->wr;
2402         reg_wr->wr.opcode = IB_WR_REG_MR;
2403         smbdirect_mr->cqe.done = register_mr_done;
2404         reg_wr->wr.wr_cqe = &smbdirect_mr->cqe;
2405         reg_wr->wr.num_sge = 0;
2406         reg_wr->wr.send_flags = IB_SEND_SIGNALED;
2407         reg_wr->mr = smbdirect_mr->mr;
2408         reg_wr->key = smbdirect_mr->mr->rkey;
2409         reg_wr->access = writing ?
2410                         IB_ACCESS_REMOTE_WRITE | IB_ACCESS_LOCAL_WRITE :
2411                         IB_ACCESS_REMOTE_READ;
2412
2413         /*
2414          * There is no need for waiting for complemtion on ib_post_send
2415          * on IB_WR_REG_MR. Hardware enforces a barrier and order of execution
2416          * on the next ib_post_send when we actaully send I/O to remote peer
2417          */
2418         rc = ib_post_send(info->id->qp, &reg_wr->wr, NULL);
2419         if (!rc)
2420                 return smbdirect_mr;
2421
2422         log_rdma_mr(ERR, "ib_post_send failed rc=%x reg_wr->key=%x\n",
2423                 rc, reg_wr->key);
2424
2425         /* If all failed, attempt to recover this MR by setting it MR_ERROR*/
2426 map_mr_error:
2427         ib_dma_unmap_sg(info->id->device, smbdirect_mr->sgl,
2428                 smbdirect_mr->sgl_count, smbdirect_mr->dir);
2429
2430 dma_map_error:
2431         smbdirect_mr->state = MR_ERROR;
2432         if (atomic_dec_and_test(&info->mr_used_count))
2433                 wake_up(&info->wait_for_mr_cleanup);
2434
2435         smbd_disconnect_rdma_connection(info);
2436
2437         return NULL;
2438 }
2439
2440 static void local_inv_done(struct ib_cq *cq, struct ib_wc *wc)
2441 {
2442         struct smbd_mr *smbdirect_mr;
2443         struct ib_cqe *cqe;
2444
2445         cqe = wc->wr_cqe;
2446         smbdirect_mr = container_of(cqe, struct smbd_mr, cqe);
2447         smbdirect_mr->state = MR_INVALIDATED;
2448         if (wc->status != IB_WC_SUCCESS) {
2449                 log_rdma_mr(ERR, "invalidate failed status=%x\n", wc->status);
2450                 smbdirect_mr->state = MR_ERROR;
2451         }
2452         complete(&smbdirect_mr->invalidate_done);
2453 }
2454
2455 /*
2456  * Deregister a MR after I/O is done
2457  * This function may wait if remote invalidation is not used
2458  * and we have to locally invalidate the buffer to prevent data is being
2459  * modified by remote peer after upper layer consumes it
2460  */
2461 int smbd_deregister_mr(struct smbd_mr *smbdirect_mr)
2462 {
2463         struct ib_send_wr *wr;
2464         struct smbd_connection *info = smbdirect_mr->conn;
2465         int rc = 0;
2466
2467         if (smbdirect_mr->need_invalidate) {
2468                 /* Need to finish local invalidation before returning */
2469                 wr = &smbdirect_mr->inv_wr;
2470                 wr->opcode = IB_WR_LOCAL_INV;
2471                 smbdirect_mr->cqe.done = local_inv_done;
2472                 wr->wr_cqe = &smbdirect_mr->cqe;
2473                 wr->num_sge = 0;
2474                 wr->ex.invalidate_rkey = smbdirect_mr->mr->rkey;
2475                 wr->send_flags = IB_SEND_SIGNALED;
2476
2477                 init_completion(&smbdirect_mr->invalidate_done);
2478                 rc = ib_post_send(info->id->qp, wr, NULL);
2479                 if (rc) {
2480                         log_rdma_mr(ERR, "ib_post_send failed rc=%x\n", rc);
2481                         smbd_disconnect_rdma_connection(info);
2482                         goto done;
2483                 }
2484                 wait_for_completion(&smbdirect_mr->invalidate_done);
2485                 smbdirect_mr->need_invalidate = false;
2486         } else
2487                 /*
2488                  * For remote invalidation, just set it to MR_INVALIDATED
2489                  * and defer to mr_recovery_work to recover the MR for next use
2490                  */
2491                 smbdirect_mr->state = MR_INVALIDATED;
2492
2493         if (smbdirect_mr->state == MR_INVALIDATED) {
2494                 ib_dma_unmap_sg(
2495                         info->id->device, smbdirect_mr->sgl,
2496                         smbdirect_mr->sgl_count,
2497                         smbdirect_mr->dir);
2498                 smbdirect_mr->state = MR_READY;
2499                 if (atomic_inc_return(&info->mr_ready_count) == 1)
2500                         wake_up_interruptible(&info->wait_mr);
2501         } else
2502                 /*
2503                  * Schedule the work to do MR recovery for future I/Os MR
2504                  * recovery is slow and don't want it to block current I/O
2505                  */
2506                 queue_work(info->workqueue, &info->mr_recovery_work);
2507
2508 done:
2509         if (atomic_dec_and_test(&info->mr_used_count))
2510                 wake_up(&info->wait_for_mr_cleanup);
2511
2512         return rc;
2513 }