Merge tag 'gpio-updates-for-v5.13-v2' of git://git.kernel.org/pub/scm/linux/kernel...
[linux-2.6-microblaze.git] / fs / buffer.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/fs/buffer.c
4  *
5  *  Copyright (C) 1991, 1992, 2002  Linus Torvalds
6  */
7
8 /*
9  * Start bdflush() with kernel_thread not syscall - Paul Gortmaker, 12/95
10  *
11  * Removed a lot of unnecessary code and simplified things now that
12  * the buffer cache isn't our primary cache - Andrew Tridgell 12/96
13  *
14  * Speed up hash, lru, and free list operations.  Use gfp() for allocating
15  * hash table, use SLAB cache for buffer heads. SMP threading.  -DaveM
16  *
17  * Added 32k buffer block sizes - these are required older ARM systems. - RMK
18  *
19  * async buffer flushing, 1999 Andrea Arcangeli <andrea@suse.de>
20  */
21
22 #include <linux/kernel.h>
23 #include <linux/sched/signal.h>
24 #include <linux/syscalls.h>
25 #include <linux/fs.h>
26 #include <linux/iomap.h>
27 #include <linux/mm.h>
28 #include <linux/percpu.h>
29 #include <linux/slab.h>
30 #include <linux/capability.h>
31 #include <linux/blkdev.h>
32 #include <linux/file.h>
33 #include <linux/quotaops.h>
34 #include <linux/highmem.h>
35 #include <linux/export.h>
36 #include <linux/backing-dev.h>
37 #include <linux/writeback.h>
38 #include <linux/hash.h>
39 #include <linux/suspend.h>
40 #include <linux/buffer_head.h>
41 #include <linux/task_io_accounting_ops.h>
42 #include <linux/bio.h>
43 #include <linux/cpu.h>
44 #include <linux/bitops.h>
45 #include <linux/mpage.h>
46 #include <linux/bit_spinlock.h>
47 #include <linux/pagevec.h>
48 #include <linux/sched/mm.h>
49 #include <trace/events/block.h>
50 #include <linux/fscrypt.h>
51
52 #include "internal.h"
53
54 static int fsync_buffers_list(spinlock_t *lock, struct list_head *list);
55 static int submit_bh_wbc(int op, int op_flags, struct buffer_head *bh,
56                          enum rw_hint hint, struct writeback_control *wbc);
57
58 #define BH_ENTRY(list) list_entry((list), struct buffer_head, b_assoc_buffers)
59
60 inline void touch_buffer(struct buffer_head *bh)
61 {
62         trace_block_touch_buffer(bh);
63         mark_page_accessed(bh->b_page);
64 }
65 EXPORT_SYMBOL(touch_buffer);
66
67 void __lock_buffer(struct buffer_head *bh)
68 {
69         wait_on_bit_lock_io(&bh->b_state, BH_Lock, TASK_UNINTERRUPTIBLE);
70 }
71 EXPORT_SYMBOL(__lock_buffer);
72
73 void unlock_buffer(struct buffer_head *bh)
74 {
75         clear_bit_unlock(BH_Lock, &bh->b_state);
76         smp_mb__after_atomic();
77         wake_up_bit(&bh->b_state, BH_Lock);
78 }
79 EXPORT_SYMBOL(unlock_buffer);
80
81 /*
82  * Returns if the page has dirty or writeback buffers. If all the buffers
83  * are unlocked and clean then the PageDirty information is stale. If
84  * any of the pages are locked, it is assumed they are locked for IO.
85  */
86 void buffer_check_dirty_writeback(struct page *page,
87                                      bool *dirty, bool *writeback)
88 {
89         struct buffer_head *head, *bh;
90         *dirty = false;
91         *writeback = false;
92
93         BUG_ON(!PageLocked(page));
94
95         if (!page_has_buffers(page))
96                 return;
97
98         if (PageWriteback(page))
99                 *writeback = true;
100
101         head = page_buffers(page);
102         bh = head;
103         do {
104                 if (buffer_locked(bh))
105                         *writeback = true;
106
107                 if (buffer_dirty(bh))
108                         *dirty = true;
109
110                 bh = bh->b_this_page;
111         } while (bh != head);
112 }
113 EXPORT_SYMBOL(buffer_check_dirty_writeback);
114
115 /*
116  * Block until a buffer comes unlocked.  This doesn't stop it
117  * from becoming locked again - you have to lock it yourself
118  * if you want to preserve its state.
119  */
120 void __wait_on_buffer(struct buffer_head * bh)
121 {
122         wait_on_bit_io(&bh->b_state, BH_Lock, TASK_UNINTERRUPTIBLE);
123 }
124 EXPORT_SYMBOL(__wait_on_buffer);
125
126 static void buffer_io_error(struct buffer_head *bh, char *msg)
127 {
128         if (!test_bit(BH_Quiet, &bh->b_state))
129                 printk_ratelimited(KERN_ERR
130                         "Buffer I/O error on dev %pg, logical block %llu%s\n",
131                         bh->b_bdev, (unsigned long long)bh->b_blocknr, msg);
132 }
133
134 /*
135  * End-of-IO handler helper function which does not touch the bh after
136  * unlocking it.
137  * Note: unlock_buffer() sort-of does touch the bh after unlocking it, but
138  * a race there is benign: unlock_buffer() only use the bh's address for
139  * hashing after unlocking the buffer, so it doesn't actually touch the bh
140  * itself.
141  */
142 static void __end_buffer_read_notouch(struct buffer_head *bh, int uptodate)
143 {
144         if (uptodate) {
145                 set_buffer_uptodate(bh);
146         } else {
147                 /* This happens, due to failed read-ahead attempts. */
148                 clear_buffer_uptodate(bh);
149         }
150         unlock_buffer(bh);
151 }
152
153 /*
154  * Default synchronous end-of-IO handler..  Just mark it up-to-date and
155  * unlock the buffer. This is what ll_rw_block uses too.
156  */
157 void end_buffer_read_sync(struct buffer_head *bh, int uptodate)
158 {
159         __end_buffer_read_notouch(bh, uptodate);
160         put_bh(bh);
161 }
162 EXPORT_SYMBOL(end_buffer_read_sync);
163
164 void end_buffer_write_sync(struct buffer_head *bh, int uptodate)
165 {
166         if (uptodate) {
167                 set_buffer_uptodate(bh);
168         } else {
169                 buffer_io_error(bh, ", lost sync page write");
170                 mark_buffer_write_io_error(bh);
171                 clear_buffer_uptodate(bh);
172         }
173         unlock_buffer(bh);
174         put_bh(bh);
175 }
176 EXPORT_SYMBOL(end_buffer_write_sync);
177
178 /*
179  * Various filesystems appear to want __find_get_block to be non-blocking.
180  * But it's the page lock which protects the buffers.  To get around this,
181  * we get exclusion from try_to_free_buffers with the blockdev mapping's
182  * private_lock.
183  *
184  * Hack idea: for the blockdev mapping, private_lock contention
185  * may be quite high.  This code could TryLock the page, and if that
186  * succeeds, there is no need to take private_lock.
187  */
188 static struct buffer_head *
189 __find_get_block_slow(struct block_device *bdev, sector_t block)
190 {
191         struct inode *bd_inode = bdev->bd_inode;
192         struct address_space *bd_mapping = bd_inode->i_mapping;
193         struct buffer_head *ret = NULL;
194         pgoff_t index;
195         struct buffer_head *bh;
196         struct buffer_head *head;
197         struct page *page;
198         int all_mapped = 1;
199         static DEFINE_RATELIMIT_STATE(last_warned, HZ, 1);
200
201         index = block >> (PAGE_SHIFT - bd_inode->i_blkbits);
202         page = find_get_page_flags(bd_mapping, index, FGP_ACCESSED);
203         if (!page)
204                 goto out;
205
206         spin_lock(&bd_mapping->private_lock);
207         if (!page_has_buffers(page))
208                 goto out_unlock;
209         head = page_buffers(page);
210         bh = head;
211         do {
212                 if (!buffer_mapped(bh))
213                         all_mapped = 0;
214                 else if (bh->b_blocknr == block) {
215                         ret = bh;
216                         get_bh(bh);
217                         goto out_unlock;
218                 }
219                 bh = bh->b_this_page;
220         } while (bh != head);
221
222         /* we might be here because some of the buffers on this page are
223          * not mapped.  This is due to various races between
224          * file io on the block device and getblk.  It gets dealt with
225          * elsewhere, don't buffer_error if we had some unmapped buffers
226          */
227         ratelimit_set_flags(&last_warned, RATELIMIT_MSG_ON_RELEASE);
228         if (all_mapped && __ratelimit(&last_warned)) {
229                 printk("__find_get_block_slow() failed. block=%llu, "
230                        "b_blocknr=%llu, b_state=0x%08lx, b_size=%zu, "
231                        "device %pg blocksize: %d\n",
232                        (unsigned long long)block,
233                        (unsigned long long)bh->b_blocknr,
234                        bh->b_state, bh->b_size, bdev,
235                        1 << bd_inode->i_blkbits);
236         }
237 out_unlock:
238         spin_unlock(&bd_mapping->private_lock);
239         put_page(page);
240 out:
241         return ret;
242 }
243
244 static void end_buffer_async_read(struct buffer_head *bh, int uptodate)
245 {
246         unsigned long flags;
247         struct buffer_head *first;
248         struct buffer_head *tmp;
249         struct page *page;
250         int page_uptodate = 1;
251
252         BUG_ON(!buffer_async_read(bh));
253
254         page = bh->b_page;
255         if (uptodate) {
256                 set_buffer_uptodate(bh);
257         } else {
258                 clear_buffer_uptodate(bh);
259                 buffer_io_error(bh, ", async page read");
260                 SetPageError(page);
261         }
262
263         /*
264          * Be _very_ careful from here on. Bad things can happen if
265          * two buffer heads end IO at almost the same time and both
266          * decide that the page is now completely done.
267          */
268         first = page_buffers(page);
269         spin_lock_irqsave(&first->b_uptodate_lock, flags);
270         clear_buffer_async_read(bh);
271         unlock_buffer(bh);
272         tmp = bh;
273         do {
274                 if (!buffer_uptodate(tmp))
275                         page_uptodate = 0;
276                 if (buffer_async_read(tmp)) {
277                         BUG_ON(!buffer_locked(tmp));
278                         goto still_busy;
279                 }
280                 tmp = tmp->b_this_page;
281         } while (tmp != bh);
282         spin_unlock_irqrestore(&first->b_uptodate_lock, flags);
283
284         /*
285          * If none of the buffers had errors and they are all
286          * uptodate then we can set the page uptodate.
287          */
288         if (page_uptodate && !PageError(page))
289                 SetPageUptodate(page);
290         unlock_page(page);
291         return;
292
293 still_busy:
294         spin_unlock_irqrestore(&first->b_uptodate_lock, flags);
295         return;
296 }
297
298 struct decrypt_bh_ctx {
299         struct work_struct work;
300         struct buffer_head *bh;
301 };
302
303 static void decrypt_bh(struct work_struct *work)
304 {
305         struct decrypt_bh_ctx *ctx =
306                 container_of(work, struct decrypt_bh_ctx, work);
307         struct buffer_head *bh = ctx->bh;
308         int err;
309
310         err = fscrypt_decrypt_pagecache_blocks(bh->b_page, bh->b_size,
311                                                bh_offset(bh));
312         end_buffer_async_read(bh, err == 0);
313         kfree(ctx);
314 }
315
316 /*
317  * I/O completion handler for block_read_full_page() - pages
318  * which come unlocked at the end of I/O.
319  */
320 static void end_buffer_async_read_io(struct buffer_head *bh, int uptodate)
321 {
322         /* Decrypt if needed */
323         if (uptodate &&
324             fscrypt_inode_uses_fs_layer_crypto(bh->b_page->mapping->host)) {
325                 struct decrypt_bh_ctx *ctx = kmalloc(sizeof(*ctx), GFP_ATOMIC);
326
327                 if (ctx) {
328                         INIT_WORK(&ctx->work, decrypt_bh);
329                         ctx->bh = bh;
330                         fscrypt_enqueue_decrypt_work(&ctx->work);
331                         return;
332                 }
333                 uptodate = 0;
334         }
335         end_buffer_async_read(bh, uptodate);
336 }
337
338 /*
339  * Completion handler for block_write_full_page() - pages which are unlocked
340  * during I/O, and which have PageWriteback cleared upon I/O completion.
341  */
342 void end_buffer_async_write(struct buffer_head *bh, int uptodate)
343 {
344         unsigned long flags;
345         struct buffer_head *first;
346         struct buffer_head *tmp;
347         struct page *page;
348
349         BUG_ON(!buffer_async_write(bh));
350
351         page = bh->b_page;
352         if (uptodate) {
353                 set_buffer_uptodate(bh);
354         } else {
355                 buffer_io_error(bh, ", lost async page write");
356                 mark_buffer_write_io_error(bh);
357                 clear_buffer_uptodate(bh);
358                 SetPageError(page);
359         }
360
361         first = page_buffers(page);
362         spin_lock_irqsave(&first->b_uptodate_lock, flags);
363
364         clear_buffer_async_write(bh);
365         unlock_buffer(bh);
366         tmp = bh->b_this_page;
367         while (tmp != bh) {
368                 if (buffer_async_write(tmp)) {
369                         BUG_ON(!buffer_locked(tmp));
370                         goto still_busy;
371                 }
372                 tmp = tmp->b_this_page;
373         }
374         spin_unlock_irqrestore(&first->b_uptodate_lock, flags);
375         end_page_writeback(page);
376         return;
377
378 still_busy:
379         spin_unlock_irqrestore(&first->b_uptodate_lock, flags);
380         return;
381 }
382 EXPORT_SYMBOL(end_buffer_async_write);
383
384 /*
385  * If a page's buffers are under async readin (end_buffer_async_read
386  * completion) then there is a possibility that another thread of
387  * control could lock one of the buffers after it has completed
388  * but while some of the other buffers have not completed.  This
389  * locked buffer would confuse end_buffer_async_read() into not unlocking
390  * the page.  So the absence of BH_Async_Read tells end_buffer_async_read()
391  * that this buffer is not under async I/O.
392  *
393  * The page comes unlocked when it has no locked buffer_async buffers
394  * left.
395  *
396  * PageLocked prevents anyone starting new async I/O reads any of
397  * the buffers.
398  *
399  * PageWriteback is used to prevent simultaneous writeout of the same
400  * page.
401  *
402  * PageLocked prevents anyone from starting writeback of a page which is
403  * under read I/O (PageWriteback is only ever set against a locked page).
404  */
405 static void mark_buffer_async_read(struct buffer_head *bh)
406 {
407         bh->b_end_io = end_buffer_async_read_io;
408         set_buffer_async_read(bh);
409 }
410
411 static void mark_buffer_async_write_endio(struct buffer_head *bh,
412                                           bh_end_io_t *handler)
413 {
414         bh->b_end_io = handler;
415         set_buffer_async_write(bh);
416 }
417
418 void mark_buffer_async_write(struct buffer_head *bh)
419 {
420         mark_buffer_async_write_endio(bh, end_buffer_async_write);
421 }
422 EXPORT_SYMBOL(mark_buffer_async_write);
423
424
425 /*
426  * fs/buffer.c contains helper functions for buffer-backed address space's
427  * fsync functions.  A common requirement for buffer-based filesystems is
428  * that certain data from the backing blockdev needs to be written out for
429  * a successful fsync().  For example, ext2 indirect blocks need to be
430  * written back and waited upon before fsync() returns.
431  *
432  * The functions mark_buffer_inode_dirty(), fsync_inode_buffers(),
433  * inode_has_buffers() and invalidate_inode_buffers() are provided for the
434  * management of a list of dependent buffers at ->i_mapping->private_list.
435  *
436  * Locking is a little subtle: try_to_free_buffers() will remove buffers
437  * from their controlling inode's queue when they are being freed.  But
438  * try_to_free_buffers() will be operating against the *blockdev* mapping
439  * at the time, not against the S_ISREG file which depends on those buffers.
440  * So the locking for private_list is via the private_lock in the address_space
441  * which backs the buffers.  Which is different from the address_space 
442  * against which the buffers are listed.  So for a particular address_space,
443  * mapping->private_lock does *not* protect mapping->private_list!  In fact,
444  * mapping->private_list will always be protected by the backing blockdev's
445  * ->private_lock.
446  *
447  * Which introduces a requirement: all buffers on an address_space's
448  * ->private_list must be from the same address_space: the blockdev's.
449  *
450  * address_spaces which do not place buffers at ->private_list via these
451  * utility functions are free to use private_lock and private_list for
452  * whatever they want.  The only requirement is that list_empty(private_list)
453  * be true at clear_inode() time.
454  *
455  * FIXME: clear_inode should not call invalidate_inode_buffers().  The
456  * filesystems should do that.  invalidate_inode_buffers() should just go
457  * BUG_ON(!list_empty).
458  *
459  * FIXME: mark_buffer_dirty_inode() is a data-plane operation.  It should
460  * take an address_space, not an inode.  And it should be called
461  * mark_buffer_dirty_fsync() to clearly define why those buffers are being
462  * queued up.
463  *
464  * FIXME: mark_buffer_dirty_inode() doesn't need to add the buffer to the
465  * list if it is already on a list.  Because if the buffer is on a list,
466  * it *must* already be on the right one.  If not, the filesystem is being
467  * silly.  This will save a ton of locking.  But first we have to ensure
468  * that buffers are taken *off* the old inode's list when they are freed
469  * (presumably in truncate).  That requires careful auditing of all
470  * filesystems (do it inside bforget()).  It could also be done by bringing
471  * b_inode back.
472  */
473
474 /*
475  * The buffer's backing address_space's private_lock must be held
476  */
477 static void __remove_assoc_queue(struct buffer_head *bh)
478 {
479         list_del_init(&bh->b_assoc_buffers);
480         WARN_ON(!bh->b_assoc_map);
481         bh->b_assoc_map = NULL;
482 }
483
484 int inode_has_buffers(struct inode *inode)
485 {
486         return !list_empty(&inode->i_data.private_list);
487 }
488
489 /*
490  * osync is designed to support O_SYNC io.  It waits synchronously for
491  * all already-submitted IO to complete, but does not queue any new
492  * writes to the disk.
493  *
494  * To do O_SYNC writes, just queue the buffer writes with ll_rw_block as
495  * you dirty the buffers, and then use osync_inode_buffers to wait for
496  * completion.  Any other dirty buffers which are not yet queued for
497  * write will not be flushed to disk by the osync.
498  */
499 static int osync_buffers_list(spinlock_t *lock, struct list_head *list)
500 {
501         struct buffer_head *bh;
502         struct list_head *p;
503         int err = 0;
504
505         spin_lock(lock);
506 repeat:
507         list_for_each_prev(p, list) {
508                 bh = BH_ENTRY(p);
509                 if (buffer_locked(bh)) {
510                         get_bh(bh);
511                         spin_unlock(lock);
512                         wait_on_buffer(bh);
513                         if (!buffer_uptodate(bh))
514                                 err = -EIO;
515                         brelse(bh);
516                         spin_lock(lock);
517                         goto repeat;
518                 }
519         }
520         spin_unlock(lock);
521         return err;
522 }
523
524 void emergency_thaw_bdev(struct super_block *sb)
525 {
526         while (sb->s_bdev && !thaw_bdev(sb->s_bdev))
527                 printk(KERN_WARNING "Emergency Thaw on %pg\n", sb->s_bdev);
528 }
529
530 /**
531  * sync_mapping_buffers - write out & wait upon a mapping's "associated" buffers
532  * @mapping: the mapping which wants those buffers written
533  *
534  * Starts I/O against the buffers at mapping->private_list, and waits upon
535  * that I/O.
536  *
537  * Basically, this is a convenience function for fsync().
538  * @mapping is a file or directory which needs those buffers to be written for
539  * a successful fsync().
540  */
541 int sync_mapping_buffers(struct address_space *mapping)
542 {
543         struct address_space *buffer_mapping = mapping->private_data;
544
545         if (buffer_mapping == NULL || list_empty(&mapping->private_list))
546                 return 0;
547
548         return fsync_buffers_list(&buffer_mapping->private_lock,
549                                         &mapping->private_list);
550 }
551 EXPORT_SYMBOL(sync_mapping_buffers);
552
553 /*
554  * Called when we've recently written block `bblock', and it is known that
555  * `bblock' was for a buffer_boundary() buffer.  This means that the block at
556  * `bblock + 1' is probably a dirty indirect block.  Hunt it down and, if it's
557  * dirty, schedule it for IO.  So that indirects merge nicely with their data.
558  */
559 void write_boundary_block(struct block_device *bdev,
560                         sector_t bblock, unsigned blocksize)
561 {
562         struct buffer_head *bh = __find_get_block(bdev, bblock + 1, blocksize);
563         if (bh) {
564                 if (buffer_dirty(bh))
565                         ll_rw_block(REQ_OP_WRITE, 0, 1, &bh);
566                 put_bh(bh);
567         }
568 }
569
570 void mark_buffer_dirty_inode(struct buffer_head *bh, struct inode *inode)
571 {
572         struct address_space *mapping = inode->i_mapping;
573         struct address_space *buffer_mapping = bh->b_page->mapping;
574
575         mark_buffer_dirty(bh);
576         if (!mapping->private_data) {
577                 mapping->private_data = buffer_mapping;
578         } else {
579                 BUG_ON(mapping->private_data != buffer_mapping);
580         }
581         if (!bh->b_assoc_map) {
582                 spin_lock(&buffer_mapping->private_lock);
583                 list_move_tail(&bh->b_assoc_buffers,
584                                 &mapping->private_list);
585                 bh->b_assoc_map = mapping;
586                 spin_unlock(&buffer_mapping->private_lock);
587         }
588 }
589 EXPORT_SYMBOL(mark_buffer_dirty_inode);
590
591 /*
592  * Mark the page dirty, and set it dirty in the page cache, and mark the inode
593  * dirty.
594  *
595  * If warn is true, then emit a warning if the page is not uptodate and has
596  * not been truncated.
597  *
598  * The caller must hold lock_page_memcg().
599  */
600 void __set_page_dirty(struct page *page, struct address_space *mapping,
601                              int warn)
602 {
603         unsigned long flags;
604
605         xa_lock_irqsave(&mapping->i_pages, flags);
606         if (page->mapping) {    /* Race with truncate? */
607                 WARN_ON_ONCE(warn && !PageUptodate(page));
608                 account_page_dirtied(page, mapping);
609                 __xa_set_mark(&mapping->i_pages, page_index(page),
610                                 PAGECACHE_TAG_DIRTY);
611         }
612         xa_unlock_irqrestore(&mapping->i_pages, flags);
613 }
614 EXPORT_SYMBOL_GPL(__set_page_dirty);
615
616 /*
617  * Add a page to the dirty page list.
618  *
619  * It is a sad fact of life that this function is called from several places
620  * deeply under spinlocking.  It may not sleep.
621  *
622  * If the page has buffers, the uptodate buffers are set dirty, to preserve
623  * dirty-state coherency between the page and the buffers.  It the page does
624  * not have buffers then when they are later attached they will all be set
625  * dirty.
626  *
627  * The buffers are dirtied before the page is dirtied.  There's a small race
628  * window in which a writepage caller may see the page cleanness but not the
629  * buffer dirtiness.  That's fine.  If this code were to set the page dirty
630  * before the buffers, a concurrent writepage caller could clear the page dirty
631  * bit, see a bunch of clean buffers and we'd end up with dirty buffers/clean
632  * page on the dirty page list.
633  *
634  * We use private_lock to lock against try_to_free_buffers while using the
635  * page's buffer list.  Also use this to protect against clean buffers being
636  * added to the page after it was set dirty.
637  *
638  * FIXME: may need to call ->reservepage here as well.  That's rather up to the
639  * address_space though.
640  */
641 int __set_page_dirty_buffers(struct page *page)
642 {
643         int newly_dirty;
644         struct address_space *mapping = page_mapping(page);
645
646         if (unlikely(!mapping))
647                 return !TestSetPageDirty(page);
648
649         spin_lock(&mapping->private_lock);
650         if (page_has_buffers(page)) {
651                 struct buffer_head *head = page_buffers(page);
652                 struct buffer_head *bh = head;
653
654                 do {
655                         set_buffer_dirty(bh);
656                         bh = bh->b_this_page;
657                 } while (bh != head);
658         }
659         /*
660          * Lock out page's memcg migration to keep PageDirty
661          * synchronized with per-memcg dirty page counters.
662          */
663         lock_page_memcg(page);
664         newly_dirty = !TestSetPageDirty(page);
665         spin_unlock(&mapping->private_lock);
666
667         if (newly_dirty)
668                 __set_page_dirty(page, mapping, 1);
669
670         unlock_page_memcg(page);
671
672         if (newly_dirty)
673                 __mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
674
675         return newly_dirty;
676 }
677 EXPORT_SYMBOL(__set_page_dirty_buffers);
678
679 /*
680  * Write out and wait upon a list of buffers.
681  *
682  * We have conflicting pressures: we want to make sure that all
683  * initially dirty buffers get waited on, but that any subsequently
684  * dirtied buffers don't.  After all, we don't want fsync to last
685  * forever if somebody is actively writing to the file.
686  *
687  * Do this in two main stages: first we copy dirty buffers to a
688  * temporary inode list, queueing the writes as we go.  Then we clean
689  * up, waiting for those writes to complete.
690  * 
691  * During this second stage, any subsequent updates to the file may end
692  * up refiling the buffer on the original inode's dirty list again, so
693  * there is a chance we will end up with a buffer queued for write but
694  * not yet completed on that list.  So, as a final cleanup we go through
695  * the osync code to catch these locked, dirty buffers without requeuing
696  * any newly dirty buffers for write.
697  */
698 static int fsync_buffers_list(spinlock_t *lock, struct list_head *list)
699 {
700         struct buffer_head *bh;
701         struct list_head tmp;
702         struct address_space *mapping;
703         int err = 0, err2;
704         struct blk_plug plug;
705
706         INIT_LIST_HEAD(&tmp);
707         blk_start_plug(&plug);
708
709         spin_lock(lock);
710         while (!list_empty(list)) {
711                 bh = BH_ENTRY(list->next);
712                 mapping = bh->b_assoc_map;
713                 __remove_assoc_queue(bh);
714                 /* Avoid race with mark_buffer_dirty_inode() which does
715                  * a lockless check and we rely on seeing the dirty bit */
716                 smp_mb();
717                 if (buffer_dirty(bh) || buffer_locked(bh)) {
718                         list_add(&bh->b_assoc_buffers, &tmp);
719                         bh->b_assoc_map = mapping;
720                         if (buffer_dirty(bh)) {
721                                 get_bh(bh);
722                                 spin_unlock(lock);
723                                 /*
724                                  * Ensure any pending I/O completes so that
725                                  * write_dirty_buffer() actually writes the
726                                  * current contents - it is a noop if I/O is
727                                  * still in flight on potentially older
728                                  * contents.
729                                  */
730                                 write_dirty_buffer(bh, REQ_SYNC);
731
732                                 /*
733                                  * Kick off IO for the previous mapping. Note
734                                  * that we will not run the very last mapping,
735                                  * wait_on_buffer() will do that for us
736                                  * through sync_buffer().
737                                  */
738                                 brelse(bh);
739                                 spin_lock(lock);
740                         }
741                 }
742         }
743
744         spin_unlock(lock);
745         blk_finish_plug(&plug);
746         spin_lock(lock);
747
748         while (!list_empty(&tmp)) {
749                 bh = BH_ENTRY(tmp.prev);
750                 get_bh(bh);
751                 mapping = bh->b_assoc_map;
752                 __remove_assoc_queue(bh);
753                 /* Avoid race with mark_buffer_dirty_inode() which does
754                  * a lockless check and we rely on seeing the dirty bit */
755                 smp_mb();
756                 if (buffer_dirty(bh)) {
757                         list_add(&bh->b_assoc_buffers,
758                                  &mapping->private_list);
759                         bh->b_assoc_map = mapping;
760                 }
761                 spin_unlock(lock);
762                 wait_on_buffer(bh);
763                 if (!buffer_uptodate(bh))
764                         err = -EIO;
765                 brelse(bh);
766                 spin_lock(lock);
767         }
768         
769         spin_unlock(lock);
770         err2 = osync_buffers_list(lock, list);
771         if (err)
772                 return err;
773         else
774                 return err2;
775 }
776
777 /*
778  * Invalidate any and all dirty buffers on a given inode.  We are
779  * probably unmounting the fs, but that doesn't mean we have already
780  * done a sync().  Just drop the buffers from the inode list.
781  *
782  * NOTE: we take the inode's blockdev's mapping's private_lock.  Which
783  * assumes that all the buffers are against the blockdev.  Not true
784  * for reiserfs.
785  */
786 void invalidate_inode_buffers(struct inode *inode)
787 {
788         if (inode_has_buffers(inode)) {
789                 struct address_space *mapping = &inode->i_data;
790                 struct list_head *list = &mapping->private_list;
791                 struct address_space *buffer_mapping = mapping->private_data;
792
793                 spin_lock(&buffer_mapping->private_lock);
794                 while (!list_empty(list))
795                         __remove_assoc_queue(BH_ENTRY(list->next));
796                 spin_unlock(&buffer_mapping->private_lock);
797         }
798 }
799 EXPORT_SYMBOL(invalidate_inode_buffers);
800
801 /*
802  * Remove any clean buffers from the inode's buffer list.  This is called
803  * when we're trying to free the inode itself.  Those buffers can pin it.
804  *
805  * Returns true if all buffers were removed.
806  */
807 int remove_inode_buffers(struct inode *inode)
808 {
809         int ret = 1;
810
811         if (inode_has_buffers(inode)) {
812                 struct address_space *mapping = &inode->i_data;
813                 struct list_head *list = &mapping->private_list;
814                 struct address_space *buffer_mapping = mapping->private_data;
815
816                 spin_lock(&buffer_mapping->private_lock);
817                 while (!list_empty(list)) {
818                         struct buffer_head *bh = BH_ENTRY(list->next);
819                         if (buffer_dirty(bh)) {
820                                 ret = 0;
821                                 break;
822                         }
823                         __remove_assoc_queue(bh);
824                 }
825                 spin_unlock(&buffer_mapping->private_lock);
826         }
827         return ret;
828 }
829
830 /*
831  * Create the appropriate buffers when given a page for data area and
832  * the size of each buffer.. Use the bh->b_this_page linked list to
833  * follow the buffers created.  Return NULL if unable to create more
834  * buffers.
835  *
836  * The retry flag is used to differentiate async IO (paging, swapping)
837  * which may not fail from ordinary buffer allocations.
838  */
839 struct buffer_head *alloc_page_buffers(struct page *page, unsigned long size,
840                 bool retry)
841 {
842         struct buffer_head *bh, *head;
843         gfp_t gfp = GFP_NOFS | __GFP_ACCOUNT;
844         long offset;
845         struct mem_cgroup *memcg, *old_memcg;
846
847         if (retry)
848                 gfp |= __GFP_NOFAIL;
849
850         /* The page lock pins the memcg */
851         memcg = page_memcg(page);
852         old_memcg = set_active_memcg(memcg);
853
854         head = NULL;
855         offset = PAGE_SIZE;
856         while ((offset -= size) >= 0) {
857                 bh = alloc_buffer_head(gfp);
858                 if (!bh)
859                         goto no_grow;
860
861                 bh->b_this_page = head;
862                 bh->b_blocknr = -1;
863                 head = bh;
864
865                 bh->b_size = size;
866
867                 /* Link the buffer to its page */
868                 set_bh_page(bh, page, offset);
869         }
870 out:
871         set_active_memcg(old_memcg);
872         return head;
873 /*
874  * In case anything failed, we just free everything we got.
875  */
876 no_grow:
877         if (head) {
878                 do {
879                         bh = head;
880                         head = head->b_this_page;
881                         free_buffer_head(bh);
882                 } while (head);
883         }
884
885         goto out;
886 }
887 EXPORT_SYMBOL_GPL(alloc_page_buffers);
888
889 static inline void
890 link_dev_buffers(struct page *page, struct buffer_head *head)
891 {
892         struct buffer_head *bh, *tail;
893
894         bh = head;
895         do {
896                 tail = bh;
897                 bh = bh->b_this_page;
898         } while (bh);
899         tail->b_this_page = head;
900         attach_page_private(page, head);
901 }
902
903 static sector_t blkdev_max_block(struct block_device *bdev, unsigned int size)
904 {
905         sector_t retval = ~((sector_t)0);
906         loff_t sz = i_size_read(bdev->bd_inode);
907
908         if (sz) {
909                 unsigned int sizebits = blksize_bits(size);
910                 retval = (sz >> sizebits);
911         }
912         return retval;
913 }
914
915 /*
916  * Initialise the state of a blockdev page's buffers.
917  */ 
918 static sector_t
919 init_page_buffers(struct page *page, struct block_device *bdev,
920                         sector_t block, int size)
921 {
922         struct buffer_head *head = page_buffers(page);
923         struct buffer_head *bh = head;
924         int uptodate = PageUptodate(page);
925         sector_t end_block = blkdev_max_block(I_BDEV(bdev->bd_inode), size);
926
927         do {
928                 if (!buffer_mapped(bh)) {
929                         bh->b_end_io = NULL;
930                         bh->b_private = NULL;
931                         bh->b_bdev = bdev;
932                         bh->b_blocknr = block;
933                         if (uptodate)
934                                 set_buffer_uptodate(bh);
935                         if (block < end_block)
936                                 set_buffer_mapped(bh);
937                 }
938                 block++;
939                 bh = bh->b_this_page;
940         } while (bh != head);
941
942         /*
943          * Caller needs to validate requested block against end of device.
944          */
945         return end_block;
946 }
947
948 /*
949  * Create the page-cache page that contains the requested block.
950  *
951  * This is used purely for blockdev mappings.
952  */
953 static int
954 grow_dev_page(struct block_device *bdev, sector_t block,
955               pgoff_t index, int size, int sizebits, gfp_t gfp)
956 {
957         struct inode *inode = bdev->bd_inode;
958         struct page *page;
959         struct buffer_head *bh;
960         sector_t end_block;
961         int ret = 0;
962         gfp_t gfp_mask;
963
964         gfp_mask = mapping_gfp_constraint(inode->i_mapping, ~__GFP_FS) | gfp;
965
966         /*
967          * XXX: __getblk_slow() can not really deal with failure and
968          * will endlessly loop on improvised global reclaim.  Prefer
969          * looping in the allocator rather than here, at least that
970          * code knows what it's doing.
971          */
972         gfp_mask |= __GFP_NOFAIL;
973
974         page = find_or_create_page(inode->i_mapping, index, gfp_mask);
975
976         BUG_ON(!PageLocked(page));
977
978         if (page_has_buffers(page)) {
979                 bh = page_buffers(page);
980                 if (bh->b_size == size) {
981                         end_block = init_page_buffers(page, bdev,
982                                                 (sector_t)index << sizebits,
983                                                 size);
984                         goto done;
985                 }
986                 if (!try_to_free_buffers(page))
987                         goto failed;
988         }
989
990         /*
991          * Allocate some buffers for this page
992          */
993         bh = alloc_page_buffers(page, size, true);
994
995         /*
996          * Link the page to the buffers and initialise them.  Take the
997          * lock to be atomic wrt __find_get_block(), which does not
998          * run under the page lock.
999          */
1000         spin_lock(&inode->i_mapping->private_lock);
1001         link_dev_buffers(page, bh);
1002         end_block = init_page_buffers(page, bdev, (sector_t)index << sizebits,
1003                         size);
1004         spin_unlock(&inode->i_mapping->private_lock);
1005 done:
1006         ret = (block < end_block) ? 1 : -ENXIO;
1007 failed:
1008         unlock_page(page);
1009         put_page(page);
1010         return ret;
1011 }
1012
1013 /*
1014  * Create buffers for the specified block device block's page.  If
1015  * that page was dirty, the buffers are set dirty also.
1016  */
1017 static int
1018 grow_buffers(struct block_device *bdev, sector_t block, int size, gfp_t gfp)
1019 {
1020         pgoff_t index;
1021         int sizebits;
1022
1023         sizebits = PAGE_SHIFT - __ffs(size);
1024         index = block >> sizebits;
1025
1026         /*
1027          * Check for a block which wants to lie outside our maximum possible
1028          * pagecache index.  (this comparison is done using sector_t types).
1029          */
1030         if (unlikely(index != block >> sizebits)) {
1031                 printk(KERN_ERR "%s: requested out-of-range block %llu for "
1032                         "device %pg\n",
1033                         __func__, (unsigned long long)block,
1034                         bdev);
1035                 return -EIO;
1036         }
1037
1038         /* Create a page with the proper size buffers.. */
1039         return grow_dev_page(bdev, block, index, size, sizebits, gfp);
1040 }
1041
1042 static struct buffer_head *
1043 __getblk_slow(struct block_device *bdev, sector_t block,
1044              unsigned size, gfp_t gfp)
1045 {
1046         /* Size must be multiple of hard sectorsize */
1047         if (unlikely(size & (bdev_logical_block_size(bdev)-1) ||
1048                         (size < 512 || size > PAGE_SIZE))) {
1049                 printk(KERN_ERR "getblk(): invalid block size %d requested\n",
1050                                         size);
1051                 printk(KERN_ERR "logical block size: %d\n",
1052                                         bdev_logical_block_size(bdev));
1053
1054                 dump_stack();
1055                 return NULL;
1056         }
1057
1058         for (;;) {
1059                 struct buffer_head *bh;
1060                 int ret;
1061
1062                 bh = __find_get_block(bdev, block, size);
1063                 if (bh)
1064                         return bh;
1065
1066                 ret = grow_buffers(bdev, block, size, gfp);
1067                 if (ret < 0)
1068                         return NULL;
1069         }
1070 }
1071
1072 /*
1073  * The relationship between dirty buffers and dirty pages:
1074  *
1075  * Whenever a page has any dirty buffers, the page's dirty bit is set, and
1076  * the page is tagged dirty in the page cache.
1077  *
1078  * At all times, the dirtiness of the buffers represents the dirtiness of
1079  * subsections of the page.  If the page has buffers, the page dirty bit is
1080  * merely a hint about the true dirty state.
1081  *
1082  * When a page is set dirty in its entirety, all its buffers are marked dirty
1083  * (if the page has buffers).
1084  *
1085  * When a buffer is marked dirty, its page is dirtied, but the page's other
1086  * buffers are not.
1087  *
1088  * Also.  When blockdev buffers are explicitly read with bread(), they
1089  * individually become uptodate.  But their backing page remains not
1090  * uptodate - even if all of its buffers are uptodate.  A subsequent
1091  * block_read_full_page() against that page will discover all the uptodate
1092  * buffers, will set the page uptodate and will perform no I/O.
1093  */
1094
1095 /**
1096  * mark_buffer_dirty - mark a buffer_head as needing writeout
1097  * @bh: the buffer_head to mark dirty
1098  *
1099  * mark_buffer_dirty() will set the dirty bit against the buffer, then set
1100  * its backing page dirty, then tag the page as dirty in the page cache
1101  * and then attach the address_space's inode to its superblock's dirty
1102  * inode list.
1103  *
1104  * mark_buffer_dirty() is atomic.  It takes bh->b_page->mapping->private_lock,
1105  * i_pages lock and mapping->host->i_lock.
1106  */
1107 void mark_buffer_dirty(struct buffer_head *bh)
1108 {
1109         WARN_ON_ONCE(!buffer_uptodate(bh));
1110
1111         trace_block_dirty_buffer(bh);
1112
1113         /*
1114          * Very *carefully* optimize the it-is-already-dirty case.
1115          *
1116          * Don't let the final "is it dirty" escape to before we
1117          * perhaps modified the buffer.
1118          */
1119         if (buffer_dirty(bh)) {
1120                 smp_mb();
1121                 if (buffer_dirty(bh))
1122                         return;
1123         }
1124
1125         if (!test_set_buffer_dirty(bh)) {
1126                 struct page *page = bh->b_page;
1127                 struct address_space *mapping = NULL;
1128
1129                 lock_page_memcg(page);
1130                 if (!TestSetPageDirty(page)) {
1131                         mapping = page_mapping(page);
1132                         if (mapping)
1133                                 __set_page_dirty(page, mapping, 0);
1134                 }
1135                 unlock_page_memcg(page);
1136                 if (mapping)
1137                         __mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
1138         }
1139 }
1140 EXPORT_SYMBOL(mark_buffer_dirty);
1141
1142 void mark_buffer_write_io_error(struct buffer_head *bh)
1143 {
1144         struct super_block *sb;
1145
1146         set_buffer_write_io_error(bh);
1147         /* FIXME: do we need to set this in both places? */
1148         if (bh->b_page && bh->b_page->mapping)
1149                 mapping_set_error(bh->b_page->mapping, -EIO);
1150         if (bh->b_assoc_map)
1151                 mapping_set_error(bh->b_assoc_map, -EIO);
1152         rcu_read_lock();
1153         sb = READ_ONCE(bh->b_bdev->bd_super);
1154         if (sb)
1155                 errseq_set(&sb->s_wb_err, -EIO);
1156         rcu_read_unlock();
1157 }
1158 EXPORT_SYMBOL(mark_buffer_write_io_error);
1159
1160 /*
1161  * Decrement a buffer_head's reference count.  If all buffers against a page
1162  * have zero reference count, are clean and unlocked, and if the page is clean
1163  * and unlocked then try_to_free_buffers() may strip the buffers from the page
1164  * in preparation for freeing it (sometimes, rarely, buffers are removed from
1165  * a page but it ends up not being freed, and buffers may later be reattached).
1166  */
1167 void __brelse(struct buffer_head * buf)
1168 {
1169         if (atomic_read(&buf->b_count)) {
1170                 put_bh(buf);
1171                 return;
1172         }
1173         WARN(1, KERN_ERR "VFS: brelse: Trying to free free buffer\n");
1174 }
1175 EXPORT_SYMBOL(__brelse);
1176
1177 /*
1178  * bforget() is like brelse(), except it discards any
1179  * potentially dirty data.
1180  */
1181 void __bforget(struct buffer_head *bh)
1182 {
1183         clear_buffer_dirty(bh);
1184         if (bh->b_assoc_map) {
1185                 struct address_space *buffer_mapping = bh->b_page->mapping;
1186
1187                 spin_lock(&buffer_mapping->private_lock);
1188                 list_del_init(&bh->b_assoc_buffers);
1189                 bh->b_assoc_map = NULL;
1190                 spin_unlock(&buffer_mapping->private_lock);
1191         }
1192         __brelse(bh);
1193 }
1194 EXPORT_SYMBOL(__bforget);
1195
1196 static struct buffer_head *__bread_slow(struct buffer_head *bh)
1197 {
1198         lock_buffer(bh);
1199         if (buffer_uptodate(bh)) {
1200                 unlock_buffer(bh);
1201                 return bh;
1202         } else {
1203                 get_bh(bh);
1204                 bh->b_end_io = end_buffer_read_sync;
1205                 submit_bh(REQ_OP_READ, 0, bh);
1206                 wait_on_buffer(bh);
1207                 if (buffer_uptodate(bh))
1208                         return bh;
1209         }
1210         brelse(bh);
1211         return NULL;
1212 }
1213
1214 /*
1215  * Per-cpu buffer LRU implementation.  To reduce the cost of __find_get_block().
1216  * The bhs[] array is sorted - newest buffer is at bhs[0].  Buffers have their
1217  * refcount elevated by one when they're in an LRU.  A buffer can only appear
1218  * once in a particular CPU's LRU.  A single buffer can be present in multiple
1219  * CPU's LRUs at the same time.
1220  *
1221  * This is a transparent caching front-end to sb_bread(), sb_getblk() and
1222  * sb_find_get_block().
1223  *
1224  * The LRUs themselves only need locking against invalidate_bh_lrus.  We use
1225  * a local interrupt disable for that.
1226  */
1227
1228 #define BH_LRU_SIZE     16
1229
1230 struct bh_lru {
1231         struct buffer_head *bhs[BH_LRU_SIZE];
1232 };
1233
1234 static DEFINE_PER_CPU(struct bh_lru, bh_lrus) = {{ NULL }};
1235
1236 #ifdef CONFIG_SMP
1237 #define bh_lru_lock()   local_irq_disable()
1238 #define bh_lru_unlock() local_irq_enable()
1239 #else
1240 #define bh_lru_lock()   preempt_disable()
1241 #define bh_lru_unlock() preempt_enable()
1242 #endif
1243
1244 static inline void check_irqs_on(void)
1245 {
1246 #ifdef irqs_disabled
1247         BUG_ON(irqs_disabled());
1248 #endif
1249 }
1250
1251 /*
1252  * Install a buffer_head into this cpu's LRU.  If not already in the LRU, it is
1253  * inserted at the front, and the buffer_head at the back if any is evicted.
1254  * Or, if already in the LRU it is moved to the front.
1255  */
1256 static void bh_lru_install(struct buffer_head *bh)
1257 {
1258         struct buffer_head *evictee = bh;
1259         struct bh_lru *b;
1260         int i;
1261
1262         check_irqs_on();
1263         bh_lru_lock();
1264
1265         b = this_cpu_ptr(&bh_lrus);
1266         for (i = 0; i < BH_LRU_SIZE; i++) {
1267                 swap(evictee, b->bhs[i]);
1268                 if (evictee == bh) {
1269                         bh_lru_unlock();
1270                         return;
1271                 }
1272         }
1273
1274         get_bh(bh);
1275         bh_lru_unlock();
1276         brelse(evictee);
1277 }
1278
1279 /*
1280  * Look up the bh in this cpu's LRU.  If it's there, move it to the head.
1281  */
1282 static struct buffer_head *
1283 lookup_bh_lru(struct block_device *bdev, sector_t block, unsigned size)
1284 {
1285         struct buffer_head *ret = NULL;
1286         unsigned int i;
1287
1288         check_irqs_on();
1289         bh_lru_lock();
1290         for (i = 0; i < BH_LRU_SIZE; i++) {
1291                 struct buffer_head *bh = __this_cpu_read(bh_lrus.bhs[i]);
1292
1293                 if (bh && bh->b_blocknr == block && bh->b_bdev == bdev &&
1294                     bh->b_size == size) {
1295                         if (i) {
1296                                 while (i) {
1297                                         __this_cpu_write(bh_lrus.bhs[i],
1298                                                 __this_cpu_read(bh_lrus.bhs[i - 1]));
1299                                         i--;
1300                                 }
1301                                 __this_cpu_write(bh_lrus.bhs[0], bh);
1302                         }
1303                         get_bh(bh);
1304                         ret = bh;
1305                         break;
1306                 }
1307         }
1308         bh_lru_unlock();
1309         return ret;
1310 }
1311
1312 /*
1313  * Perform a pagecache lookup for the matching buffer.  If it's there, refresh
1314  * it in the LRU and mark it as accessed.  If it is not present then return
1315  * NULL
1316  */
1317 struct buffer_head *
1318 __find_get_block(struct block_device *bdev, sector_t block, unsigned size)
1319 {
1320         struct buffer_head *bh = lookup_bh_lru(bdev, block, size);
1321
1322         if (bh == NULL) {
1323                 /* __find_get_block_slow will mark the page accessed */
1324                 bh = __find_get_block_slow(bdev, block);
1325                 if (bh)
1326                         bh_lru_install(bh);
1327         } else
1328                 touch_buffer(bh);
1329
1330         return bh;
1331 }
1332 EXPORT_SYMBOL(__find_get_block);
1333
1334 /*
1335  * __getblk_gfp() will locate (and, if necessary, create) the buffer_head
1336  * which corresponds to the passed block_device, block and size. The
1337  * returned buffer has its reference count incremented.
1338  *
1339  * __getblk_gfp() will lock up the machine if grow_dev_page's
1340  * try_to_free_buffers() attempt is failing.  FIXME, perhaps?
1341  */
1342 struct buffer_head *
1343 __getblk_gfp(struct block_device *bdev, sector_t block,
1344              unsigned size, gfp_t gfp)
1345 {
1346         struct buffer_head *bh = __find_get_block(bdev, block, size);
1347
1348         might_sleep();
1349         if (bh == NULL)
1350                 bh = __getblk_slow(bdev, block, size, gfp);
1351         return bh;
1352 }
1353 EXPORT_SYMBOL(__getblk_gfp);
1354
1355 /*
1356  * Do async read-ahead on a buffer..
1357  */
1358 void __breadahead(struct block_device *bdev, sector_t block, unsigned size)
1359 {
1360         struct buffer_head *bh = __getblk(bdev, block, size);
1361         if (likely(bh)) {
1362                 ll_rw_block(REQ_OP_READ, REQ_RAHEAD, 1, &bh);
1363                 brelse(bh);
1364         }
1365 }
1366 EXPORT_SYMBOL(__breadahead);
1367
1368 void __breadahead_gfp(struct block_device *bdev, sector_t block, unsigned size,
1369                       gfp_t gfp)
1370 {
1371         struct buffer_head *bh = __getblk_gfp(bdev, block, size, gfp);
1372         if (likely(bh)) {
1373                 ll_rw_block(REQ_OP_READ, REQ_RAHEAD, 1, &bh);
1374                 brelse(bh);
1375         }
1376 }
1377 EXPORT_SYMBOL(__breadahead_gfp);
1378
1379 /**
1380  *  __bread_gfp() - reads a specified block and returns the bh
1381  *  @bdev: the block_device to read from
1382  *  @block: number of block
1383  *  @size: size (in bytes) to read
1384  *  @gfp: page allocation flag
1385  *
1386  *  Reads a specified block, and returns buffer head that contains it.
1387  *  The page cache can be allocated from non-movable area
1388  *  not to prevent page migration if you set gfp to zero.
1389  *  It returns NULL if the block was unreadable.
1390  */
1391 struct buffer_head *
1392 __bread_gfp(struct block_device *bdev, sector_t block,
1393                    unsigned size, gfp_t gfp)
1394 {
1395         struct buffer_head *bh = __getblk_gfp(bdev, block, size, gfp);
1396
1397         if (likely(bh) && !buffer_uptodate(bh))
1398                 bh = __bread_slow(bh);
1399         return bh;
1400 }
1401 EXPORT_SYMBOL(__bread_gfp);
1402
1403 /*
1404  * invalidate_bh_lrus() is called rarely - but not only at unmount.
1405  * This doesn't race because it runs in each cpu either in irq
1406  * or with preempt disabled.
1407  */
1408 static void invalidate_bh_lru(void *arg)
1409 {
1410         struct bh_lru *b = &get_cpu_var(bh_lrus);
1411         int i;
1412
1413         for (i = 0; i < BH_LRU_SIZE; i++) {
1414                 brelse(b->bhs[i]);
1415                 b->bhs[i] = NULL;
1416         }
1417         put_cpu_var(bh_lrus);
1418 }
1419
1420 static bool has_bh_in_lru(int cpu, void *dummy)
1421 {
1422         struct bh_lru *b = per_cpu_ptr(&bh_lrus, cpu);
1423         int i;
1424         
1425         for (i = 0; i < BH_LRU_SIZE; i++) {
1426                 if (b->bhs[i])
1427                         return true;
1428         }
1429
1430         return false;
1431 }
1432
1433 void invalidate_bh_lrus(void)
1434 {
1435         on_each_cpu_cond(has_bh_in_lru, invalidate_bh_lru, NULL, 1);
1436 }
1437 EXPORT_SYMBOL_GPL(invalidate_bh_lrus);
1438
1439 void set_bh_page(struct buffer_head *bh,
1440                 struct page *page, unsigned long offset)
1441 {
1442         bh->b_page = page;
1443         BUG_ON(offset >= PAGE_SIZE);
1444         if (PageHighMem(page))
1445                 /*
1446                  * This catches illegal uses and preserves the offset:
1447                  */
1448                 bh->b_data = (char *)(0 + offset);
1449         else
1450                 bh->b_data = page_address(page) + offset;
1451 }
1452 EXPORT_SYMBOL(set_bh_page);
1453
1454 /*
1455  * Called when truncating a buffer on a page completely.
1456  */
1457
1458 /* Bits that are cleared during an invalidate */
1459 #define BUFFER_FLAGS_DISCARD \
1460         (1 << BH_Mapped | 1 << BH_New | 1 << BH_Req | \
1461          1 << BH_Delay | 1 << BH_Unwritten)
1462
1463 static void discard_buffer(struct buffer_head * bh)
1464 {
1465         unsigned long b_state, b_state_old;
1466
1467         lock_buffer(bh);
1468         clear_buffer_dirty(bh);
1469         bh->b_bdev = NULL;
1470         b_state = bh->b_state;
1471         for (;;) {
1472                 b_state_old = cmpxchg(&bh->b_state, b_state,
1473                                       (b_state & ~BUFFER_FLAGS_DISCARD));
1474                 if (b_state_old == b_state)
1475                         break;
1476                 b_state = b_state_old;
1477         }
1478         unlock_buffer(bh);
1479 }
1480
1481 /**
1482  * block_invalidatepage - invalidate part or all of a buffer-backed page
1483  *
1484  * @page: the page which is affected
1485  * @offset: start of the range to invalidate
1486  * @length: length of the range to invalidate
1487  *
1488  * block_invalidatepage() is called when all or part of the page has become
1489  * invalidated by a truncate operation.
1490  *
1491  * block_invalidatepage() does not have to release all buffers, but it must
1492  * ensure that no dirty buffer is left outside @offset and that no I/O
1493  * is underway against any of the blocks which are outside the truncation
1494  * point.  Because the caller is about to free (and possibly reuse) those
1495  * blocks on-disk.
1496  */
1497 void block_invalidatepage(struct page *page, unsigned int offset,
1498                           unsigned int length)
1499 {
1500         struct buffer_head *head, *bh, *next;
1501         unsigned int curr_off = 0;
1502         unsigned int stop = length + offset;
1503
1504         BUG_ON(!PageLocked(page));
1505         if (!page_has_buffers(page))
1506                 goto out;
1507
1508         /*
1509          * Check for overflow
1510          */
1511         BUG_ON(stop > PAGE_SIZE || stop < length);
1512
1513         head = page_buffers(page);
1514         bh = head;
1515         do {
1516                 unsigned int next_off = curr_off + bh->b_size;
1517                 next = bh->b_this_page;
1518
1519                 /*
1520                  * Are we still fully in range ?
1521                  */
1522                 if (next_off > stop)
1523                         goto out;
1524
1525                 /*
1526                  * is this block fully invalidated?
1527                  */
1528                 if (offset <= curr_off)
1529                         discard_buffer(bh);
1530                 curr_off = next_off;
1531                 bh = next;
1532         } while (bh != head);
1533
1534         /*
1535          * We release buffers only if the entire page is being invalidated.
1536          * The get_block cached value has been unconditionally invalidated,
1537          * so real IO is not possible anymore.
1538          */
1539         if (length == PAGE_SIZE)
1540                 try_to_release_page(page, 0);
1541 out:
1542         return;
1543 }
1544 EXPORT_SYMBOL(block_invalidatepage);
1545
1546
1547 /*
1548  * We attach and possibly dirty the buffers atomically wrt
1549  * __set_page_dirty_buffers() via private_lock.  try_to_free_buffers
1550  * is already excluded via the page lock.
1551  */
1552 void create_empty_buffers(struct page *page,
1553                         unsigned long blocksize, unsigned long b_state)
1554 {
1555         struct buffer_head *bh, *head, *tail;
1556
1557         head = alloc_page_buffers(page, blocksize, true);
1558         bh = head;
1559         do {
1560                 bh->b_state |= b_state;
1561                 tail = bh;
1562                 bh = bh->b_this_page;
1563         } while (bh);
1564         tail->b_this_page = head;
1565
1566         spin_lock(&page->mapping->private_lock);
1567         if (PageUptodate(page) || PageDirty(page)) {
1568                 bh = head;
1569                 do {
1570                         if (PageDirty(page))
1571                                 set_buffer_dirty(bh);
1572                         if (PageUptodate(page))
1573                                 set_buffer_uptodate(bh);
1574                         bh = bh->b_this_page;
1575                 } while (bh != head);
1576         }
1577         attach_page_private(page, head);
1578         spin_unlock(&page->mapping->private_lock);
1579 }
1580 EXPORT_SYMBOL(create_empty_buffers);
1581
1582 /**
1583  * clean_bdev_aliases: clean a range of buffers in block device
1584  * @bdev: Block device to clean buffers in
1585  * @block: Start of a range of blocks to clean
1586  * @len: Number of blocks to clean
1587  *
1588  * We are taking a range of blocks for data and we don't want writeback of any
1589  * buffer-cache aliases starting from return from this function and until the
1590  * moment when something will explicitly mark the buffer dirty (hopefully that
1591  * will not happen until we will free that block ;-) We don't even need to mark
1592  * it not-uptodate - nobody can expect anything from a newly allocated buffer
1593  * anyway. We used to use unmap_buffer() for such invalidation, but that was
1594  * wrong. We definitely don't want to mark the alias unmapped, for example - it
1595  * would confuse anyone who might pick it with bread() afterwards...
1596  *
1597  * Also..  Note that bforget() doesn't lock the buffer.  So there can be
1598  * writeout I/O going on against recently-freed buffers.  We don't wait on that
1599  * I/O in bforget() - it's more efficient to wait on the I/O only if we really
1600  * need to.  That happens here.
1601  */
1602 void clean_bdev_aliases(struct block_device *bdev, sector_t block, sector_t len)
1603 {
1604         struct inode *bd_inode = bdev->bd_inode;
1605         struct address_space *bd_mapping = bd_inode->i_mapping;
1606         struct pagevec pvec;
1607         pgoff_t index = block >> (PAGE_SHIFT - bd_inode->i_blkbits);
1608         pgoff_t end;
1609         int i, count;
1610         struct buffer_head *bh;
1611         struct buffer_head *head;
1612
1613         end = (block + len - 1) >> (PAGE_SHIFT - bd_inode->i_blkbits);
1614         pagevec_init(&pvec);
1615         while (pagevec_lookup_range(&pvec, bd_mapping, &index, end)) {
1616                 count = pagevec_count(&pvec);
1617                 for (i = 0; i < count; i++) {
1618                         struct page *page = pvec.pages[i];
1619
1620                         if (!page_has_buffers(page))
1621                                 continue;
1622                         /*
1623                          * We use page lock instead of bd_mapping->private_lock
1624                          * to pin buffers here since we can afford to sleep and
1625                          * it scales better than a global spinlock lock.
1626                          */
1627                         lock_page(page);
1628                         /* Recheck when the page is locked which pins bhs */
1629                         if (!page_has_buffers(page))
1630                                 goto unlock_page;
1631                         head = page_buffers(page);
1632                         bh = head;
1633                         do {
1634                                 if (!buffer_mapped(bh) || (bh->b_blocknr < block))
1635                                         goto next;
1636                                 if (bh->b_blocknr >= block + len)
1637                                         break;
1638                                 clear_buffer_dirty(bh);
1639                                 wait_on_buffer(bh);
1640                                 clear_buffer_req(bh);
1641 next:
1642                                 bh = bh->b_this_page;
1643                         } while (bh != head);
1644 unlock_page:
1645                         unlock_page(page);
1646                 }
1647                 pagevec_release(&pvec);
1648                 cond_resched();
1649                 /* End of range already reached? */
1650                 if (index > end || !index)
1651                         break;
1652         }
1653 }
1654 EXPORT_SYMBOL(clean_bdev_aliases);
1655
1656 /*
1657  * Size is a power-of-two in the range 512..PAGE_SIZE,
1658  * and the case we care about most is PAGE_SIZE.
1659  *
1660  * So this *could* possibly be written with those
1661  * constraints in mind (relevant mostly if some
1662  * architecture has a slow bit-scan instruction)
1663  */
1664 static inline int block_size_bits(unsigned int blocksize)
1665 {
1666         return ilog2(blocksize);
1667 }
1668
1669 static struct buffer_head *create_page_buffers(struct page *page, struct inode *inode, unsigned int b_state)
1670 {
1671         BUG_ON(!PageLocked(page));
1672
1673         if (!page_has_buffers(page))
1674                 create_empty_buffers(page, 1 << READ_ONCE(inode->i_blkbits),
1675                                      b_state);
1676         return page_buffers(page);
1677 }
1678
1679 /*
1680  * NOTE! All mapped/uptodate combinations are valid:
1681  *
1682  *      Mapped  Uptodate        Meaning
1683  *
1684  *      No      No              "unknown" - must do get_block()
1685  *      No      Yes             "hole" - zero-filled
1686  *      Yes     No              "allocated" - allocated on disk, not read in
1687  *      Yes     Yes             "valid" - allocated and up-to-date in memory.
1688  *
1689  * "Dirty" is valid only with the last case (mapped+uptodate).
1690  */
1691
1692 /*
1693  * While block_write_full_page is writing back the dirty buffers under
1694  * the page lock, whoever dirtied the buffers may decide to clean them
1695  * again at any time.  We handle that by only looking at the buffer
1696  * state inside lock_buffer().
1697  *
1698  * If block_write_full_page() is called for regular writeback
1699  * (wbc->sync_mode == WB_SYNC_NONE) then it will redirty a page which has a
1700  * locked buffer.   This only can happen if someone has written the buffer
1701  * directly, with submit_bh().  At the address_space level PageWriteback
1702  * prevents this contention from occurring.
1703  *
1704  * If block_write_full_page() is called with wbc->sync_mode ==
1705  * WB_SYNC_ALL, the writes are posted using REQ_SYNC; this
1706  * causes the writes to be flagged as synchronous writes.
1707  */
1708 int __block_write_full_page(struct inode *inode, struct page *page,
1709                         get_block_t *get_block, struct writeback_control *wbc,
1710                         bh_end_io_t *handler)
1711 {
1712         int err;
1713         sector_t block;
1714         sector_t last_block;
1715         struct buffer_head *bh, *head;
1716         unsigned int blocksize, bbits;
1717         int nr_underway = 0;
1718         int write_flags = wbc_to_write_flags(wbc);
1719
1720         head = create_page_buffers(page, inode,
1721                                         (1 << BH_Dirty)|(1 << BH_Uptodate));
1722
1723         /*
1724          * Be very careful.  We have no exclusion from __set_page_dirty_buffers
1725          * here, and the (potentially unmapped) buffers may become dirty at
1726          * any time.  If a buffer becomes dirty here after we've inspected it
1727          * then we just miss that fact, and the page stays dirty.
1728          *
1729          * Buffers outside i_size may be dirtied by __set_page_dirty_buffers;
1730          * handle that here by just cleaning them.
1731          */
1732
1733         bh = head;
1734         blocksize = bh->b_size;
1735         bbits = block_size_bits(blocksize);
1736
1737         block = (sector_t)page->index << (PAGE_SHIFT - bbits);
1738         last_block = (i_size_read(inode) - 1) >> bbits;
1739
1740         /*
1741          * Get all the dirty buffers mapped to disk addresses and
1742          * handle any aliases from the underlying blockdev's mapping.
1743          */
1744         do {
1745                 if (block > last_block) {
1746                         /*
1747                          * mapped buffers outside i_size will occur, because
1748                          * this page can be outside i_size when there is a
1749                          * truncate in progress.
1750                          */
1751                         /*
1752                          * The buffer was zeroed by block_write_full_page()
1753                          */
1754                         clear_buffer_dirty(bh);
1755                         set_buffer_uptodate(bh);
1756                 } else if ((!buffer_mapped(bh) || buffer_delay(bh)) &&
1757                            buffer_dirty(bh)) {
1758                         WARN_ON(bh->b_size != blocksize);
1759                         err = get_block(inode, block, bh, 1);
1760                         if (err)
1761                                 goto recover;
1762                         clear_buffer_delay(bh);
1763                         if (buffer_new(bh)) {
1764                                 /* blockdev mappings never come here */
1765                                 clear_buffer_new(bh);
1766                                 clean_bdev_bh_alias(bh);
1767                         }
1768                 }
1769                 bh = bh->b_this_page;
1770                 block++;
1771         } while (bh != head);
1772
1773         do {
1774                 if (!buffer_mapped(bh))
1775                         continue;
1776                 /*
1777                  * If it's a fully non-blocking write attempt and we cannot
1778                  * lock the buffer then redirty the page.  Note that this can
1779                  * potentially cause a busy-wait loop from writeback threads
1780                  * and kswapd activity, but those code paths have their own
1781                  * higher-level throttling.
1782                  */
1783                 if (wbc->sync_mode != WB_SYNC_NONE) {
1784                         lock_buffer(bh);
1785                 } else if (!trylock_buffer(bh)) {
1786                         redirty_page_for_writepage(wbc, page);
1787                         continue;
1788                 }
1789                 if (test_clear_buffer_dirty(bh)) {
1790                         mark_buffer_async_write_endio(bh, handler);
1791                 } else {
1792                         unlock_buffer(bh);
1793                 }
1794         } while ((bh = bh->b_this_page) != head);
1795
1796         /*
1797          * The page and its buffers are protected by PageWriteback(), so we can
1798          * drop the bh refcounts early.
1799          */
1800         BUG_ON(PageWriteback(page));
1801         set_page_writeback(page);
1802
1803         do {
1804                 struct buffer_head *next = bh->b_this_page;
1805                 if (buffer_async_write(bh)) {
1806                         submit_bh_wbc(REQ_OP_WRITE, write_flags, bh,
1807                                         inode->i_write_hint, wbc);
1808                         nr_underway++;
1809                 }
1810                 bh = next;
1811         } while (bh != head);
1812         unlock_page(page);
1813
1814         err = 0;
1815 done:
1816         if (nr_underway == 0) {
1817                 /*
1818                  * The page was marked dirty, but the buffers were
1819                  * clean.  Someone wrote them back by hand with
1820                  * ll_rw_block/submit_bh.  A rare case.
1821                  */
1822                 end_page_writeback(page);
1823
1824                 /*
1825                  * The page and buffer_heads can be released at any time from
1826                  * here on.
1827                  */
1828         }
1829         return err;
1830
1831 recover:
1832         /*
1833          * ENOSPC, or some other error.  We may already have added some
1834          * blocks to the file, so we need to write these out to avoid
1835          * exposing stale data.
1836          * The page is currently locked and not marked for writeback
1837          */
1838         bh = head;
1839         /* Recovery: lock and submit the mapped buffers */
1840         do {
1841                 if (buffer_mapped(bh) && buffer_dirty(bh) &&
1842                     !buffer_delay(bh)) {
1843                         lock_buffer(bh);
1844                         mark_buffer_async_write_endio(bh, handler);
1845                 } else {
1846                         /*
1847                          * The buffer may have been set dirty during
1848                          * attachment to a dirty page.
1849                          */
1850                         clear_buffer_dirty(bh);
1851                 }
1852         } while ((bh = bh->b_this_page) != head);
1853         SetPageError(page);
1854         BUG_ON(PageWriteback(page));
1855         mapping_set_error(page->mapping, err);
1856         set_page_writeback(page);
1857         do {
1858                 struct buffer_head *next = bh->b_this_page;
1859                 if (buffer_async_write(bh)) {
1860                         clear_buffer_dirty(bh);
1861                         submit_bh_wbc(REQ_OP_WRITE, write_flags, bh,
1862                                         inode->i_write_hint, wbc);
1863                         nr_underway++;
1864                 }
1865                 bh = next;
1866         } while (bh != head);
1867         unlock_page(page);
1868         goto done;
1869 }
1870 EXPORT_SYMBOL(__block_write_full_page);
1871
1872 /*
1873  * If a page has any new buffers, zero them out here, and mark them uptodate
1874  * and dirty so they'll be written out (in order to prevent uninitialised
1875  * block data from leaking). And clear the new bit.
1876  */
1877 void page_zero_new_buffers(struct page *page, unsigned from, unsigned to)
1878 {
1879         unsigned int block_start, block_end;
1880         struct buffer_head *head, *bh;
1881
1882         BUG_ON(!PageLocked(page));
1883         if (!page_has_buffers(page))
1884                 return;
1885
1886         bh = head = page_buffers(page);
1887         block_start = 0;
1888         do {
1889                 block_end = block_start + bh->b_size;
1890
1891                 if (buffer_new(bh)) {
1892                         if (block_end > from && block_start < to) {
1893                                 if (!PageUptodate(page)) {
1894                                         unsigned start, size;
1895
1896                                         start = max(from, block_start);
1897                                         size = min(to, block_end) - start;
1898
1899                                         zero_user(page, start, size);
1900                                         set_buffer_uptodate(bh);
1901                                 }
1902
1903                                 clear_buffer_new(bh);
1904                                 mark_buffer_dirty(bh);
1905                         }
1906                 }
1907
1908                 block_start = block_end;
1909                 bh = bh->b_this_page;
1910         } while (bh != head);
1911 }
1912 EXPORT_SYMBOL(page_zero_new_buffers);
1913
1914 static void
1915 iomap_to_bh(struct inode *inode, sector_t block, struct buffer_head *bh,
1916                 struct iomap *iomap)
1917 {
1918         loff_t offset = block << inode->i_blkbits;
1919
1920         bh->b_bdev = iomap->bdev;
1921
1922         /*
1923          * Block points to offset in file we need to map, iomap contains
1924          * the offset at which the map starts. If the map ends before the
1925          * current block, then do not map the buffer and let the caller
1926          * handle it.
1927          */
1928         BUG_ON(offset >= iomap->offset + iomap->length);
1929
1930         switch (iomap->type) {
1931         case IOMAP_HOLE:
1932                 /*
1933                  * If the buffer is not up to date or beyond the current EOF,
1934                  * we need to mark it as new to ensure sub-block zeroing is
1935                  * executed if necessary.
1936                  */
1937                 if (!buffer_uptodate(bh) ||
1938                     (offset >= i_size_read(inode)))
1939                         set_buffer_new(bh);
1940                 break;
1941         case IOMAP_DELALLOC:
1942                 if (!buffer_uptodate(bh) ||
1943                     (offset >= i_size_read(inode)))
1944                         set_buffer_new(bh);
1945                 set_buffer_uptodate(bh);
1946                 set_buffer_mapped(bh);
1947                 set_buffer_delay(bh);
1948                 break;
1949         case IOMAP_UNWRITTEN:
1950                 /*
1951                  * For unwritten regions, we always need to ensure that regions
1952                  * in the block we are not writing to are zeroed. Mark the
1953                  * buffer as new to ensure this.
1954                  */
1955                 set_buffer_new(bh);
1956                 set_buffer_unwritten(bh);
1957                 fallthrough;
1958         case IOMAP_MAPPED:
1959                 if ((iomap->flags & IOMAP_F_NEW) ||
1960                     offset >= i_size_read(inode))
1961                         set_buffer_new(bh);
1962                 bh->b_blocknr = (iomap->addr + offset - iomap->offset) >>
1963                                 inode->i_blkbits;
1964                 set_buffer_mapped(bh);
1965                 break;
1966         }
1967 }
1968
1969 int __block_write_begin_int(struct page *page, loff_t pos, unsigned len,
1970                 get_block_t *get_block, struct iomap *iomap)
1971 {
1972         unsigned from = pos & (PAGE_SIZE - 1);
1973         unsigned to = from + len;
1974         struct inode *inode = page->mapping->host;
1975         unsigned block_start, block_end;
1976         sector_t block;
1977         int err = 0;
1978         unsigned blocksize, bbits;
1979         struct buffer_head *bh, *head, *wait[2], **wait_bh=wait;
1980
1981         BUG_ON(!PageLocked(page));
1982         BUG_ON(from > PAGE_SIZE);
1983         BUG_ON(to > PAGE_SIZE);
1984         BUG_ON(from > to);
1985
1986         head = create_page_buffers(page, inode, 0);
1987         blocksize = head->b_size;
1988         bbits = block_size_bits(blocksize);
1989
1990         block = (sector_t)page->index << (PAGE_SHIFT - bbits);
1991
1992         for(bh = head, block_start = 0; bh != head || !block_start;
1993             block++, block_start=block_end, bh = bh->b_this_page) {
1994                 block_end = block_start + blocksize;
1995                 if (block_end <= from || block_start >= to) {
1996                         if (PageUptodate(page)) {
1997                                 if (!buffer_uptodate(bh))
1998                                         set_buffer_uptodate(bh);
1999                         }
2000                         continue;
2001                 }
2002                 if (buffer_new(bh))
2003                         clear_buffer_new(bh);
2004                 if (!buffer_mapped(bh)) {
2005                         WARN_ON(bh->b_size != blocksize);
2006                         if (get_block) {
2007                                 err = get_block(inode, block, bh, 1);
2008                                 if (err)
2009                                         break;
2010                         } else {
2011                                 iomap_to_bh(inode, block, bh, iomap);
2012                         }
2013
2014                         if (buffer_new(bh)) {
2015                                 clean_bdev_bh_alias(bh);
2016                                 if (PageUptodate(page)) {
2017                                         clear_buffer_new(bh);
2018                                         set_buffer_uptodate(bh);
2019                                         mark_buffer_dirty(bh);
2020                                         continue;
2021                                 }
2022                                 if (block_end > to || block_start < from)
2023                                         zero_user_segments(page,
2024                                                 to, block_end,
2025                                                 block_start, from);
2026                                 continue;
2027                         }
2028                 }
2029                 if (PageUptodate(page)) {
2030                         if (!buffer_uptodate(bh))
2031                                 set_buffer_uptodate(bh);
2032                         continue; 
2033                 }
2034                 if (!buffer_uptodate(bh) && !buffer_delay(bh) &&
2035                     !buffer_unwritten(bh) &&
2036                      (block_start < from || block_end > to)) {
2037                         ll_rw_block(REQ_OP_READ, 0, 1, &bh);
2038                         *wait_bh++=bh;
2039                 }
2040         }
2041         /*
2042          * If we issued read requests - let them complete.
2043          */
2044         while(wait_bh > wait) {
2045                 wait_on_buffer(*--wait_bh);
2046                 if (!buffer_uptodate(*wait_bh))
2047                         err = -EIO;
2048         }
2049         if (unlikely(err))
2050                 page_zero_new_buffers(page, from, to);
2051         return err;
2052 }
2053
2054 int __block_write_begin(struct page *page, loff_t pos, unsigned len,
2055                 get_block_t *get_block)
2056 {
2057         return __block_write_begin_int(page, pos, len, get_block, NULL);
2058 }
2059 EXPORT_SYMBOL(__block_write_begin);
2060
2061 static int __block_commit_write(struct inode *inode, struct page *page,
2062                 unsigned from, unsigned to)
2063 {
2064         unsigned block_start, block_end;
2065         int partial = 0;
2066         unsigned blocksize;
2067         struct buffer_head *bh, *head;
2068
2069         bh = head = page_buffers(page);
2070         blocksize = bh->b_size;
2071
2072         block_start = 0;
2073         do {
2074                 block_end = block_start + blocksize;
2075                 if (block_end <= from || block_start >= to) {
2076                         if (!buffer_uptodate(bh))
2077                                 partial = 1;
2078                 } else {
2079                         set_buffer_uptodate(bh);
2080                         mark_buffer_dirty(bh);
2081                 }
2082                 if (buffer_new(bh))
2083                         clear_buffer_new(bh);
2084
2085                 block_start = block_end;
2086                 bh = bh->b_this_page;
2087         } while (bh != head);
2088
2089         /*
2090          * If this is a partial write which happened to make all buffers
2091          * uptodate then we can optimize away a bogus readpage() for
2092          * the next read(). Here we 'discover' whether the page went
2093          * uptodate as a result of this (potentially partial) write.
2094          */
2095         if (!partial)
2096                 SetPageUptodate(page);
2097         return 0;
2098 }
2099
2100 /*
2101  * block_write_begin takes care of the basic task of block allocation and
2102  * bringing partial write blocks uptodate first.
2103  *
2104  * The filesystem needs to handle block truncation upon failure.
2105  */
2106 int block_write_begin(struct address_space *mapping, loff_t pos, unsigned len,
2107                 unsigned flags, struct page **pagep, get_block_t *get_block)
2108 {
2109         pgoff_t index = pos >> PAGE_SHIFT;
2110         struct page *page;
2111         int status;
2112
2113         page = grab_cache_page_write_begin(mapping, index, flags);
2114         if (!page)
2115                 return -ENOMEM;
2116
2117         status = __block_write_begin(page, pos, len, get_block);
2118         if (unlikely(status)) {
2119                 unlock_page(page);
2120                 put_page(page);
2121                 page = NULL;
2122         }
2123
2124         *pagep = page;
2125         return status;
2126 }
2127 EXPORT_SYMBOL(block_write_begin);
2128
2129 int block_write_end(struct file *file, struct address_space *mapping,
2130                         loff_t pos, unsigned len, unsigned copied,
2131                         struct page *page, void *fsdata)
2132 {
2133         struct inode *inode = mapping->host;
2134         unsigned start;
2135
2136         start = pos & (PAGE_SIZE - 1);
2137
2138         if (unlikely(copied < len)) {
2139                 /*
2140                  * The buffers that were written will now be uptodate, so we
2141                  * don't have to worry about a readpage reading them and
2142                  * overwriting a partial write. However if we have encountered
2143                  * a short write and only partially written into a buffer, it
2144                  * will not be marked uptodate, so a readpage might come in and
2145                  * destroy our partial write.
2146                  *
2147                  * Do the simplest thing, and just treat any short write to a
2148                  * non uptodate page as a zero-length write, and force the
2149                  * caller to redo the whole thing.
2150                  */
2151                 if (!PageUptodate(page))
2152                         copied = 0;
2153
2154                 page_zero_new_buffers(page, start+copied, start+len);
2155         }
2156         flush_dcache_page(page);
2157
2158         /* This could be a short (even 0-length) commit */
2159         __block_commit_write(inode, page, start, start+copied);
2160
2161         return copied;
2162 }
2163 EXPORT_SYMBOL(block_write_end);
2164
2165 int generic_write_end(struct file *file, struct address_space *mapping,
2166                         loff_t pos, unsigned len, unsigned copied,
2167                         struct page *page, void *fsdata)
2168 {
2169         struct inode *inode = mapping->host;
2170         loff_t old_size = inode->i_size;
2171         bool i_size_changed = false;
2172
2173         copied = block_write_end(file, mapping, pos, len, copied, page, fsdata);
2174
2175         /*
2176          * No need to use i_size_read() here, the i_size cannot change under us
2177          * because we hold i_rwsem.
2178          *
2179          * But it's important to update i_size while still holding page lock:
2180          * page writeout could otherwise come in and zero beyond i_size.
2181          */
2182         if (pos + copied > inode->i_size) {
2183                 i_size_write(inode, pos + copied);
2184                 i_size_changed = true;
2185         }
2186
2187         unlock_page(page);
2188         put_page(page);
2189
2190         if (old_size < pos)
2191                 pagecache_isize_extended(inode, old_size, pos);
2192         /*
2193          * Don't mark the inode dirty under page lock. First, it unnecessarily
2194          * makes the holding time of page lock longer. Second, it forces lock
2195          * ordering of page lock and transaction start for journaling
2196          * filesystems.
2197          */
2198         if (i_size_changed)
2199                 mark_inode_dirty(inode);
2200         return copied;
2201 }
2202 EXPORT_SYMBOL(generic_write_end);
2203
2204 /*
2205  * block_is_partially_uptodate checks whether buffers within a page are
2206  * uptodate or not.
2207  *
2208  * Returns true if all buffers which correspond to a file portion
2209  * we want to read are uptodate.
2210  */
2211 int block_is_partially_uptodate(struct page *page, unsigned long from,
2212                                         unsigned long count)
2213 {
2214         unsigned block_start, block_end, blocksize;
2215         unsigned to;
2216         struct buffer_head *bh, *head;
2217         int ret = 1;
2218
2219         if (!page_has_buffers(page))
2220                 return 0;
2221
2222         head = page_buffers(page);
2223         blocksize = head->b_size;
2224         to = min_t(unsigned, PAGE_SIZE - from, count);
2225         to = from + to;
2226         if (from < blocksize && to > PAGE_SIZE - blocksize)
2227                 return 0;
2228
2229         bh = head;
2230         block_start = 0;
2231         do {
2232                 block_end = block_start + blocksize;
2233                 if (block_end > from && block_start < to) {
2234                         if (!buffer_uptodate(bh)) {
2235                                 ret = 0;
2236                                 break;
2237                         }
2238                         if (block_end >= to)
2239                                 break;
2240                 }
2241                 block_start = block_end;
2242                 bh = bh->b_this_page;
2243         } while (bh != head);
2244
2245         return ret;
2246 }
2247 EXPORT_SYMBOL(block_is_partially_uptodate);
2248
2249 /*
2250  * Generic "read page" function for block devices that have the normal
2251  * get_block functionality. This is most of the block device filesystems.
2252  * Reads the page asynchronously --- the unlock_buffer() and
2253  * set/clear_buffer_uptodate() functions propagate buffer state into the
2254  * page struct once IO has completed.
2255  */
2256 int block_read_full_page(struct page *page, get_block_t *get_block)
2257 {
2258         struct inode *inode = page->mapping->host;
2259         sector_t iblock, lblock;
2260         struct buffer_head *bh, *head, *arr[MAX_BUF_PER_PAGE];
2261         unsigned int blocksize, bbits;
2262         int nr, i;
2263         int fully_mapped = 1;
2264
2265         head = create_page_buffers(page, inode, 0);
2266         blocksize = head->b_size;
2267         bbits = block_size_bits(blocksize);
2268
2269         iblock = (sector_t)page->index << (PAGE_SHIFT - bbits);
2270         lblock = (i_size_read(inode)+blocksize-1) >> bbits;
2271         bh = head;
2272         nr = 0;
2273         i = 0;
2274
2275         do {
2276                 if (buffer_uptodate(bh))
2277                         continue;
2278
2279                 if (!buffer_mapped(bh)) {
2280                         int err = 0;
2281
2282                         fully_mapped = 0;
2283                         if (iblock < lblock) {
2284                                 WARN_ON(bh->b_size != blocksize);
2285                                 err = get_block(inode, iblock, bh, 0);
2286                                 if (err)
2287                                         SetPageError(page);
2288                         }
2289                         if (!buffer_mapped(bh)) {
2290                                 zero_user(page, i * blocksize, blocksize);
2291                                 if (!err)
2292                                         set_buffer_uptodate(bh);
2293                                 continue;
2294                         }
2295                         /*
2296                          * get_block() might have updated the buffer
2297                          * synchronously
2298                          */
2299                         if (buffer_uptodate(bh))
2300                                 continue;
2301                 }
2302                 arr[nr++] = bh;
2303         } while (i++, iblock++, (bh = bh->b_this_page) != head);
2304
2305         if (fully_mapped)
2306                 SetPageMappedToDisk(page);
2307
2308         if (!nr) {
2309                 /*
2310                  * All buffers are uptodate - we can set the page uptodate
2311                  * as well. But not if get_block() returned an error.
2312                  */
2313                 if (!PageError(page))
2314                         SetPageUptodate(page);
2315                 unlock_page(page);
2316                 return 0;
2317         }
2318
2319         /* Stage two: lock the buffers */
2320         for (i = 0; i < nr; i++) {
2321                 bh = arr[i];
2322                 lock_buffer(bh);
2323                 mark_buffer_async_read(bh);
2324         }
2325
2326         /*
2327          * Stage 3: start the IO.  Check for uptodateness
2328          * inside the buffer lock in case another process reading
2329          * the underlying blockdev brought it uptodate (the sct fix).
2330          */
2331         for (i = 0; i < nr; i++) {
2332                 bh = arr[i];
2333                 if (buffer_uptodate(bh))
2334                         end_buffer_async_read(bh, 1);
2335                 else
2336                         submit_bh(REQ_OP_READ, 0, bh);
2337         }
2338         return 0;
2339 }
2340 EXPORT_SYMBOL(block_read_full_page);
2341
2342 /* utility function for filesystems that need to do work on expanding
2343  * truncates.  Uses filesystem pagecache writes to allow the filesystem to
2344  * deal with the hole.  
2345  */
2346 int generic_cont_expand_simple(struct inode *inode, loff_t size)
2347 {
2348         struct address_space *mapping = inode->i_mapping;
2349         struct page *page;
2350         void *fsdata;
2351         int err;
2352
2353         err = inode_newsize_ok(inode, size);
2354         if (err)
2355                 goto out;
2356
2357         err = pagecache_write_begin(NULL, mapping, size, 0,
2358                                     AOP_FLAG_CONT_EXPAND, &page, &fsdata);
2359         if (err)
2360                 goto out;
2361
2362         err = pagecache_write_end(NULL, mapping, size, 0, 0, page, fsdata);
2363         BUG_ON(err > 0);
2364
2365 out:
2366         return err;
2367 }
2368 EXPORT_SYMBOL(generic_cont_expand_simple);
2369
2370 static int cont_expand_zero(struct file *file, struct address_space *mapping,
2371                             loff_t pos, loff_t *bytes)
2372 {
2373         struct inode *inode = mapping->host;
2374         unsigned int blocksize = i_blocksize(inode);
2375         struct page *page;
2376         void *fsdata;
2377         pgoff_t index, curidx;
2378         loff_t curpos;
2379         unsigned zerofrom, offset, len;
2380         int err = 0;
2381
2382         index = pos >> PAGE_SHIFT;
2383         offset = pos & ~PAGE_MASK;
2384
2385         while (index > (curidx = (curpos = *bytes)>>PAGE_SHIFT)) {
2386                 zerofrom = curpos & ~PAGE_MASK;
2387                 if (zerofrom & (blocksize-1)) {
2388                         *bytes |= (blocksize-1);
2389                         (*bytes)++;
2390                 }
2391                 len = PAGE_SIZE - zerofrom;
2392
2393                 err = pagecache_write_begin(file, mapping, curpos, len, 0,
2394                                             &page, &fsdata);
2395                 if (err)
2396                         goto out;
2397                 zero_user(page, zerofrom, len);
2398                 err = pagecache_write_end(file, mapping, curpos, len, len,
2399                                                 page, fsdata);
2400                 if (err < 0)
2401                         goto out;
2402                 BUG_ON(err != len);
2403                 err = 0;
2404
2405                 balance_dirty_pages_ratelimited(mapping);
2406
2407                 if (fatal_signal_pending(current)) {
2408                         err = -EINTR;
2409                         goto out;
2410                 }
2411         }
2412
2413         /* page covers the boundary, find the boundary offset */
2414         if (index == curidx) {
2415                 zerofrom = curpos & ~PAGE_MASK;
2416                 /* if we will expand the thing last block will be filled */
2417                 if (offset <= zerofrom) {
2418                         goto out;
2419                 }
2420                 if (zerofrom & (blocksize-1)) {
2421                         *bytes |= (blocksize-1);
2422                         (*bytes)++;
2423                 }
2424                 len = offset - zerofrom;
2425
2426                 err = pagecache_write_begin(file, mapping, curpos, len, 0,
2427                                             &page, &fsdata);
2428                 if (err)
2429                         goto out;
2430                 zero_user(page, zerofrom, len);
2431                 err = pagecache_write_end(file, mapping, curpos, len, len,
2432                                                 page, fsdata);
2433                 if (err < 0)
2434                         goto out;
2435                 BUG_ON(err != len);
2436                 err = 0;
2437         }
2438 out:
2439         return err;
2440 }
2441
2442 /*
2443  * For moronic filesystems that do not allow holes in file.
2444  * We may have to extend the file.
2445  */
2446 int cont_write_begin(struct file *file, struct address_space *mapping,
2447                         loff_t pos, unsigned len, unsigned flags,
2448                         struct page **pagep, void **fsdata,
2449                         get_block_t *get_block, loff_t *bytes)
2450 {
2451         struct inode *inode = mapping->host;
2452         unsigned int blocksize = i_blocksize(inode);
2453         unsigned int zerofrom;
2454         int err;
2455
2456         err = cont_expand_zero(file, mapping, pos, bytes);
2457         if (err)
2458                 return err;
2459
2460         zerofrom = *bytes & ~PAGE_MASK;
2461         if (pos+len > *bytes && zerofrom & (blocksize-1)) {
2462                 *bytes |= (blocksize-1);
2463                 (*bytes)++;
2464         }
2465
2466         return block_write_begin(mapping, pos, len, flags, pagep, get_block);
2467 }
2468 EXPORT_SYMBOL(cont_write_begin);
2469
2470 int block_commit_write(struct page *page, unsigned from, unsigned to)
2471 {
2472         struct inode *inode = page->mapping->host;
2473         __block_commit_write(inode,page,from,to);
2474         return 0;
2475 }
2476 EXPORT_SYMBOL(block_commit_write);
2477
2478 /*
2479  * block_page_mkwrite() is not allowed to change the file size as it gets
2480  * called from a page fault handler when a page is first dirtied. Hence we must
2481  * be careful to check for EOF conditions here. We set the page up correctly
2482  * for a written page which means we get ENOSPC checking when writing into
2483  * holes and correct delalloc and unwritten extent mapping on filesystems that
2484  * support these features.
2485  *
2486  * We are not allowed to take the i_mutex here so we have to play games to
2487  * protect against truncate races as the page could now be beyond EOF.  Because
2488  * truncate writes the inode size before removing pages, once we have the
2489  * page lock we can determine safely if the page is beyond EOF. If it is not
2490  * beyond EOF, then the page is guaranteed safe against truncation until we
2491  * unlock the page.
2492  *
2493  * Direct callers of this function should protect against filesystem freezing
2494  * using sb_start_pagefault() - sb_end_pagefault() functions.
2495  */
2496 int block_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf,
2497                          get_block_t get_block)
2498 {
2499         struct page *page = vmf->page;
2500         struct inode *inode = file_inode(vma->vm_file);
2501         unsigned long end;
2502         loff_t size;
2503         int ret;
2504
2505         lock_page(page);
2506         size = i_size_read(inode);
2507         if ((page->mapping != inode->i_mapping) ||
2508             (page_offset(page) > size)) {
2509                 /* We overload EFAULT to mean page got truncated */
2510                 ret = -EFAULT;
2511                 goto out_unlock;
2512         }
2513
2514         /* page is wholly or partially inside EOF */
2515         if (((page->index + 1) << PAGE_SHIFT) > size)
2516                 end = size & ~PAGE_MASK;
2517         else
2518                 end = PAGE_SIZE;
2519
2520         ret = __block_write_begin(page, 0, end, get_block);
2521         if (!ret)
2522                 ret = block_commit_write(page, 0, end);
2523
2524         if (unlikely(ret < 0))
2525                 goto out_unlock;
2526         set_page_dirty(page);
2527         wait_for_stable_page(page);
2528         return 0;
2529 out_unlock:
2530         unlock_page(page);
2531         return ret;
2532 }
2533 EXPORT_SYMBOL(block_page_mkwrite);
2534
2535 /*
2536  * nobh_write_begin()'s prereads are special: the buffer_heads are freed
2537  * immediately, while under the page lock.  So it needs a special end_io
2538  * handler which does not touch the bh after unlocking it.
2539  */
2540 static void end_buffer_read_nobh(struct buffer_head *bh, int uptodate)
2541 {
2542         __end_buffer_read_notouch(bh, uptodate);
2543 }
2544
2545 /*
2546  * Attach the singly-linked list of buffers created by nobh_write_begin, to
2547  * the page (converting it to circular linked list and taking care of page
2548  * dirty races).
2549  */
2550 static void attach_nobh_buffers(struct page *page, struct buffer_head *head)
2551 {
2552         struct buffer_head *bh;
2553
2554         BUG_ON(!PageLocked(page));
2555
2556         spin_lock(&page->mapping->private_lock);
2557         bh = head;
2558         do {
2559                 if (PageDirty(page))
2560                         set_buffer_dirty(bh);
2561                 if (!bh->b_this_page)
2562                         bh->b_this_page = head;
2563                 bh = bh->b_this_page;
2564         } while (bh != head);
2565         attach_page_private(page, head);
2566         spin_unlock(&page->mapping->private_lock);
2567 }
2568
2569 /*
2570  * On entry, the page is fully not uptodate.
2571  * On exit the page is fully uptodate in the areas outside (from,to)
2572  * The filesystem needs to handle block truncation upon failure.
2573  */
2574 int nobh_write_begin(struct address_space *mapping,
2575                         loff_t pos, unsigned len, unsigned flags,
2576                         struct page **pagep, void **fsdata,
2577                         get_block_t *get_block)
2578 {
2579         struct inode *inode = mapping->host;
2580         const unsigned blkbits = inode->i_blkbits;
2581         const unsigned blocksize = 1 << blkbits;
2582         struct buffer_head *head, *bh;
2583         struct page *page;
2584         pgoff_t index;
2585         unsigned from, to;
2586         unsigned block_in_page;
2587         unsigned block_start, block_end;
2588         sector_t block_in_file;
2589         int nr_reads = 0;
2590         int ret = 0;
2591         int is_mapped_to_disk = 1;
2592
2593         index = pos >> PAGE_SHIFT;
2594         from = pos & (PAGE_SIZE - 1);
2595         to = from + len;
2596
2597         page = grab_cache_page_write_begin(mapping, index, flags);
2598         if (!page)
2599                 return -ENOMEM;
2600         *pagep = page;
2601         *fsdata = NULL;
2602
2603         if (page_has_buffers(page)) {
2604                 ret = __block_write_begin(page, pos, len, get_block);
2605                 if (unlikely(ret))
2606                         goto out_release;
2607                 return ret;
2608         }
2609
2610         if (PageMappedToDisk(page))
2611                 return 0;
2612
2613         /*
2614          * Allocate buffers so that we can keep track of state, and potentially
2615          * attach them to the page if an error occurs. In the common case of
2616          * no error, they will just be freed again without ever being attached
2617          * to the page (which is all OK, because we're under the page lock).
2618          *
2619          * Be careful: the buffer linked list is a NULL terminated one, rather
2620          * than the circular one we're used to.
2621          */
2622         head = alloc_page_buffers(page, blocksize, false);
2623         if (!head) {
2624                 ret = -ENOMEM;
2625                 goto out_release;
2626         }
2627
2628         block_in_file = (sector_t)page->index << (PAGE_SHIFT - blkbits);
2629
2630         /*
2631          * We loop across all blocks in the page, whether or not they are
2632          * part of the affected region.  This is so we can discover if the
2633          * page is fully mapped-to-disk.
2634          */
2635         for (block_start = 0, block_in_page = 0, bh = head;
2636                   block_start < PAGE_SIZE;
2637                   block_in_page++, block_start += blocksize, bh = bh->b_this_page) {
2638                 int create;
2639
2640                 block_end = block_start + blocksize;
2641                 bh->b_state = 0;
2642                 create = 1;
2643                 if (block_start >= to)
2644                         create = 0;
2645                 ret = get_block(inode, block_in_file + block_in_page,
2646                                         bh, create);
2647                 if (ret)
2648                         goto failed;
2649                 if (!buffer_mapped(bh))
2650                         is_mapped_to_disk = 0;
2651                 if (buffer_new(bh))
2652                         clean_bdev_bh_alias(bh);
2653                 if (PageUptodate(page)) {
2654                         set_buffer_uptodate(bh);
2655                         continue;
2656                 }
2657                 if (buffer_new(bh) || !buffer_mapped(bh)) {
2658                         zero_user_segments(page, block_start, from,
2659                                                         to, block_end);
2660                         continue;
2661                 }
2662                 if (buffer_uptodate(bh))
2663                         continue;       /* reiserfs does this */
2664                 if (block_start < from || block_end > to) {
2665                         lock_buffer(bh);
2666                         bh->b_end_io = end_buffer_read_nobh;
2667                         submit_bh(REQ_OP_READ, 0, bh);
2668                         nr_reads++;
2669                 }
2670         }
2671
2672         if (nr_reads) {
2673                 /*
2674                  * The page is locked, so these buffers are protected from
2675                  * any VM or truncate activity.  Hence we don't need to care
2676                  * for the buffer_head refcounts.
2677                  */
2678                 for (bh = head; bh; bh = bh->b_this_page) {
2679                         wait_on_buffer(bh);
2680                         if (!buffer_uptodate(bh))
2681                                 ret = -EIO;
2682                 }
2683                 if (ret)
2684                         goto failed;
2685         }
2686
2687         if (is_mapped_to_disk)
2688                 SetPageMappedToDisk(page);
2689
2690         *fsdata = head; /* to be released by nobh_write_end */
2691
2692         return 0;
2693
2694 failed:
2695         BUG_ON(!ret);
2696         /*
2697          * Error recovery is a bit difficult. We need to zero out blocks that
2698          * were newly allocated, and dirty them to ensure they get written out.
2699          * Buffers need to be attached to the page at this point, otherwise
2700          * the handling of potential IO errors during writeout would be hard
2701          * (could try doing synchronous writeout, but what if that fails too?)
2702          */
2703         attach_nobh_buffers(page, head);
2704         page_zero_new_buffers(page, from, to);
2705
2706 out_release:
2707         unlock_page(page);
2708         put_page(page);
2709         *pagep = NULL;
2710
2711         return ret;
2712 }
2713 EXPORT_SYMBOL(nobh_write_begin);
2714
2715 int nobh_write_end(struct file *file, struct address_space *mapping,
2716                         loff_t pos, unsigned len, unsigned copied,
2717                         struct page *page, void *fsdata)
2718 {
2719         struct inode *inode = page->mapping->host;
2720         struct buffer_head *head = fsdata;
2721         struct buffer_head *bh;
2722         BUG_ON(fsdata != NULL && page_has_buffers(page));
2723
2724         if (unlikely(copied < len) && head)
2725                 attach_nobh_buffers(page, head);
2726         if (page_has_buffers(page))
2727                 return generic_write_end(file, mapping, pos, len,
2728                                         copied, page, fsdata);
2729
2730         SetPageUptodate(page);
2731         set_page_dirty(page);
2732         if (pos+copied > inode->i_size) {
2733                 i_size_write(inode, pos+copied);
2734                 mark_inode_dirty(inode);
2735         }
2736
2737         unlock_page(page);
2738         put_page(page);
2739
2740         while (head) {
2741                 bh = head;
2742                 head = head->b_this_page;
2743                 free_buffer_head(bh);
2744         }
2745
2746         return copied;
2747 }
2748 EXPORT_SYMBOL(nobh_write_end);
2749
2750 /*
2751  * nobh_writepage() - based on block_full_write_page() except
2752  * that it tries to operate without attaching bufferheads to
2753  * the page.
2754  */
2755 int nobh_writepage(struct page *page, get_block_t *get_block,
2756                         struct writeback_control *wbc)
2757 {
2758         struct inode * const inode = page->mapping->host;
2759         loff_t i_size = i_size_read(inode);
2760         const pgoff_t end_index = i_size >> PAGE_SHIFT;
2761         unsigned offset;
2762         int ret;
2763
2764         /* Is the page fully inside i_size? */
2765         if (page->index < end_index)
2766                 goto out;
2767
2768         /* Is the page fully outside i_size? (truncate in progress) */
2769         offset = i_size & (PAGE_SIZE-1);
2770         if (page->index >= end_index+1 || !offset) {
2771                 unlock_page(page);
2772                 return 0; /* don't care */
2773         }
2774
2775         /*
2776          * The page straddles i_size.  It must be zeroed out on each and every
2777          * writepage invocation because it may be mmapped.  "A file is mapped
2778          * in multiples of the page size.  For a file that is not a multiple of
2779          * the  page size, the remaining memory is zeroed when mapped, and
2780          * writes to that region are not written out to the file."
2781          */
2782         zero_user_segment(page, offset, PAGE_SIZE);
2783 out:
2784         ret = mpage_writepage(page, get_block, wbc);
2785         if (ret == -EAGAIN)
2786                 ret = __block_write_full_page(inode, page, get_block, wbc,
2787                                               end_buffer_async_write);
2788         return ret;
2789 }
2790 EXPORT_SYMBOL(nobh_writepage);
2791
2792 int nobh_truncate_page(struct address_space *mapping,
2793                         loff_t from, get_block_t *get_block)
2794 {
2795         pgoff_t index = from >> PAGE_SHIFT;
2796         unsigned offset = from & (PAGE_SIZE-1);
2797         unsigned blocksize;
2798         sector_t iblock;
2799         unsigned length, pos;
2800         struct inode *inode = mapping->host;
2801         struct page *page;
2802         struct buffer_head map_bh;
2803         int err;
2804
2805         blocksize = i_blocksize(inode);
2806         length = offset & (blocksize - 1);
2807
2808         /* Block boundary? Nothing to do */
2809         if (!length)
2810                 return 0;
2811
2812         length = blocksize - length;
2813         iblock = (sector_t)index << (PAGE_SHIFT - inode->i_blkbits);
2814
2815         page = grab_cache_page(mapping, index);
2816         err = -ENOMEM;
2817         if (!page)
2818                 goto out;
2819
2820         if (page_has_buffers(page)) {
2821 has_buffers:
2822                 unlock_page(page);
2823                 put_page(page);
2824                 return block_truncate_page(mapping, from, get_block);
2825         }
2826
2827         /* Find the buffer that contains "offset" */
2828         pos = blocksize;
2829         while (offset >= pos) {
2830                 iblock++;
2831                 pos += blocksize;
2832         }
2833
2834         map_bh.b_size = blocksize;
2835         map_bh.b_state = 0;
2836         err = get_block(inode, iblock, &map_bh, 0);
2837         if (err)
2838                 goto unlock;
2839         /* unmapped? It's a hole - nothing to do */
2840         if (!buffer_mapped(&map_bh))
2841                 goto unlock;
2842
2843         /* Ok, it's mapped. Make sure it's up-to-date */
2844         if (!PageUptodate(page)) {
2845                 err = mapping->a_ops->readpage(NULL, page);
2846                 if (err) {
2847                         put_page(page);
2848                         goto out;
2849                 }
2850                 lock_page(page);
2851                 if (!PageUptodate(page)) {
2852                         err = -EIO;
2853                         goto unlock;
2854                 }
2855                 if (page_has_buffers(page))
2856                         goto has_buffers;
2857         }
2858         zero_user(page, offset, length);
2859         set_page_dirty(page);
2860         err = 0;
2861
2862 unlock:
2863         unlock_page(page);
2864         put_page(page);
2865 out:
2866         return err;
2867 }
2868 EXPORT_SYMBOL(nobh_truncate_page);
2869
2870 int block_truncate_page(struct address_space *mapping,
2871                         loff_t from, get_block_t *get_block)
2872 {
2873         pgoff_t index = from >> PAGE_SHIFT;
2874         unsigned offset = from & (PAGE_SIZE-1);
2875         unsigned blocksize;
2876         sector_t iblock;
2877         unsigned length, pos;
2878         struct inode *inode = mapping->host;
2879         struct page *page;
2880         struct buffer_head *bh;
2881         int err;
2882
2883         blocksize = i_blocksize(inode);
2884         length = offset & (blocksize - 1);
2885
2886         /* Block boundary? Nothing to do */
2887         if (!length)
2888                 return 0;
2889
2890         length = blocksize - length;
2891         iblock = (sector_t)index << (PAGE_SHIFT - inode->i_blkbits);
2892         
2893         page = grab_cache_page(mapping, index);
2894         err = -ENOMEM;
2895         if (!page)
2896                 goto out;
2897
2898         if (!page_has_buffers(page))
2899                 create_empty_buffers(page, blocksize, 0);
2900
2901         /* Find the buffer that contains "offset" */
2902         bh = page_buffers(page);
2903         pos = blocksize;
2904         while (offset >= pos) {
2905                 bh = bh->b_this_page;
2906                 iblock++;
2907                 pos += blocksize;
2908         }
2909
2910         err = 0;
2911         if (!buffer_mapped(bh)) {
2912                 WARN_ON(bh->b_size != blocksize);
2913                 err = get_block(inode, iblock, bh, 0);
2914                 if (err)
2915                         goto unlock;
2916                 /* unmapped? It's a hole - nothing to do */
2917                 if (!buffer_mapped(bh))
2918                         goto unlock;
2919         }
2920
2921         /* Ok, it's mapped. Make sure it's up-to-date */
2922         if (PageUptodate(page))
2923                 set_buffer_uptodate(bh);
2924
2925         if (!buffer_uptodate(bh) && !buffer_delay(bh) && !buffer_unwritten(bh)) {
2926                 err = -EIO;
2927                 ll_rw_block(REQ_OP_READ, 0, 1, &bh);
2928                 wait_on_buffer(bh);
2929                 /* Uhhuh. Read error. Complain and punt. */
2930                 if (!buffer_uptodate(bh))
2931                         goto unlock;
2932         }
2933
2934         zero_user(page, offset, length);
2935         mark_buffer_dirty(bh);
2936         err = 0;
2937
2938 unlock:
2939         unlock_page(page);
2940         put_page(page);
2941 out:
2942         return err;
2943 }
2944 EXPORT_SYMBOL(block_truncate_page);
2945
2946 /*
2947  * The generic ->writepage function for buffer-backed address_spaces
2948  */
2949 int block_write_full_page(struct page *page, get_block_t *get_block,
2950                         struct writeback_control *wbc)
2951 {
2952         struct inode * const inode = page->mapping->host;
2953         loff_t i_size = i_size_read(inode);
2954         const pgoff_t end_index = i_size >> PAGE_SHIFT;
2955         unsigned offset;
2956
2957         /* Is the page fully inside i_size? */
2958         if (page->index < end_index)
2959                 return __block_write_full_page(inode, page, get_block, wbc,
2960                                                end_buffer_async_write);
2961
2962         /* Is the page fully outside i_size? (truncate in progress) */
2963         offset = i_size & (PAGE_SIZE-1);
2964         if (page->index >= end_index+1 || !offset) {
2965                 unlock_page(page);
2966                 return 0; /* don't care */
2967         }
2968
2969         /*
2970          * The page straddles i_size.  It must be zeroed out on each and every
2971          * writepage invocation because it may be mmapped.  "A file is mapped
2972          * in multiples of the page size.  For a file that is not a multiple of
2973          * the  page size, the remaining memory is zeroed when mapped, and
2974          * writes to that region are not written out to the file."
2975          */
2976         zero_user_segment(page, offset, PAGE_SIZE);
2977         return __block_write_full_page(inode, page, get_block, wbc,
2978                                                         end_buffer_async_write);
2979 }
2980 EXPORT_SYMBOL(block_write_full_page);
2981
2982 sector_t generic_block_bmap(struct address_space *mapping, sector_t block,
2983                             get_block_t *get_block)
2984 {
2985         struct inode *inode = mapping->host;
2986         struct buffer_head tmp = {
2987                 .b_size = i_blocksize(inode),
2988         };
2989
2990         get_block(inode, block, &tmp, 0);
2991         return tmp.b_blocknr;
2992 }
2993 EXPORT_SYMBOL(generic_block_bmap);
2994
2995 static void end_bio_bh_io_sync(struct bio *bio)
2996 {
2997         struct buffer_head *bh = bio->bi_private;
2998
2999         if (unlikely(bio_flagged(bio, BIO_QUIET)))
3000                 set_bit(BH_Quiet, &bh->b_state);
3001
3002         bh->b_end_io(bh, !bio->bi_status);
3003         bio_put(bio);
3004 }
3005
3006 static int submit_bh_wbc(int op, int op_flags, struct buffer_head *bh,
3007                          enum rw_hint write_hint, struct writeback_control *wbc)
3008 {
3009         struct bio *bio;
3010
3011         BUG_ON(!buffer_locked(bh));
3012         BUG_ON(!buffer_mapped(bh));
3013         BUG_ON(!bh->b_end_io);
3014         BUG_ON(buffer_delay(bh));
3015         BUG_ON(buffer_unwritten(bh));
3016
3017         /*
3018          * Only clear out a write error when rewriting
3019          */
3020         if (test_set_buffer_req(bh) && (op == REQ_OP_WRITE))
3021                 clear_buffer_write_io_error(bh);
3022
3023         bio = bio_alloc(GFP_NOIO, 1);
3024
3025         fscrypt_set_bio_crypt_ctx_bh(bio, bh, GFP_NOIO);
3026
3027         bio->bi_iter.bi_sector = bh->b_blocknr * (bh->b_size >> 9);
3028         bio_set_dev(bio, bh->b_bdev);
3029         bio->bi_write_hint = write_hint;
3030
3031         bio_add_page(bio, bh->b_page, bh->b_size, bh_offset(bh));
3032         BUG_ON(bio->bi_iter.bi_size != bh->b_size);
3033
3034         bio->bi_end_io = end_bio_bh_io_sync;
3035         bio->bi_private = bh;
3036
3037         if (buffer_meta(bh))
3038                 op_flags |= REQ_META;
3039         if (buffer_prio(bh))
3040                 op_flags |= REQ_PRIO;
3041         bio_set_op_attrs(bio, op, op_flags);
3042
3043         /* Take care of bh's that straddle the end of the device */
3044         guard_bio_eod(bio);
3045
3046         if (wbc) {
3047                 wbc_init_bio(wbc, bio);
3048                 wbc_account_cgroup_owner(wbc, bh->b_page, bh->b_size);
3049         }
3050
3051         submit_bio(bio);
3052         return 0;
3053 }
3054
3055 int submit_bh(int op, int op_flags, struct buffer_head *bh)
3056 {
3057         return submit_bh_wbc(op, op_flags, bh, 0, NULL);
3058 }
3059 EXPORT_SYMBOL(submit_bh);
3060
3061 /**
3062  * ll_rw_block: low-level access to block devices (DEPRECATED)
3063  * @op: whether to %READ or %WRITE
3064  * @op_flags: req_flag_bits
3065  * @nr: number of &struct buffer_heads in the array
3066  * @bhs: array of pointers to &struct buffer_head
3067  *
3068  * ll_rw_block() takes an array of pointers to &struct buffer_heads, and
3069  * requests an I/O operation on them, either a %REQ_OP_READ or a %REQ_OP_WRITE.
3070  * @op_flags contains flags modifying the detailed I/O behavior, most notably
3071  * %REQ_RAHEAD.
3072  *
3073  * This function drops any buffer that it cannot get a lock on (with the
3074  * BH_Lock state bit), any buffer that appears to be clean when doing a write
3075  * request, and any buffer that appears to be up-to-date when doing read
3076  * request.  Further it marks as clean buffers that are processed for
3077  * writing (the buffer cache won't assume that they are actually clean
3078  * until the buffer gets unlocked).
3079  *
3080  * ll_rw_block sets b_end_io to simple completion handler that marks
3081  * the buffer up-to-date (if appropriate), unlocks the buffer and wakes
3082  * any waiters. 
3083  *
3084  * All of the buffers must be for the same device, and must also be a
3085  * multiple of the current approved size for the device.
3086  */
3087 void ll_rw_block(int op, int op_flags,  int nr, struct buffer_head *bhs[])
3088 {
3089         int i;
3090
3091         for (i = 0; i < nr; i++) {
3092                 struct buffer_head *bh = bhs[i];
3093
3094                 if (!trylock_buffer(bh))
3095                         continue;
3096                 if (op == WRITE) {
3097                         if (test_clear_buffer_dirty(bh)) {
3098                                 bh->b_end_io = end_buffer_write_sync;
3099                                 get_bh(bh);
3100                                 submit_bh(op, op_flags, bh);
3101                                 continue;
3102                         }
3103                 } else {
3104                         if (!buffer_uptodate(bh)) {
3105                                 bh->b_end_io = end_buffer_read_sync;
3106                                 get_bh(bh);
3107                                 submit_bh(op, op_flags, bh);
3108                                 continue;
3109                         }
3110                 }
3111                 unlock_buffer(bh);
3112         }
3113 }
3114 EXPORT_SYMBOL(ll_rw_block);
3115
3116 void write_dirty_buffer(struct buffer_head *bh, int op_flags)
3117 {
3118         lock_buffer(bh);
3119         if (!test_clear_buffer_dirty(bh)) {
3120                 unlock_buffer(bh);
3121                 return;
3122         }
3123         bh->b_end_io = end_buffer_write_sync;
3124         get_bh(bh);
3125         submit_bh(REQ_OP_WRITE, op_flags, bh);
3126 }
3127 EXPORT_SYMBOL(write_dirty_buffer);
3128
3129 /*
3130  * For a data-integrity writeout, we need to wait upon any in-progress I/O
3131  * and then start new I/O and then wait upon it.  The caller must have a ref on
3132  * the buffer_head.
3133  */
3134 int __sync_dirty_buffer(struct buffer_head *bh, int op_flags)
3135 {
3136         int ret = 0;
3137
3138         WARN_ON(atomic_read(&bh->b_count) < 1);
3139         lock_buffer(bh);
3140         if (test_clear_buffer_dirty(bh)) {
3141                 /*
3142                  * The bh should be mapped, but it might not be if the
3143                  * device was hot-removed. Not much we can do but fail the I/O.
3144                  */
3145                 if (!buffer_mapped(bh)) {
3146                         unlock_buffer(bh);
3147                         return -EIO;
3148                 }
3149
3150                 get_bh(bh);
3151                 bh->b_end_io = end_buffer_write_sync;
3152                 ret = submit_bh(REQ_OP_WRITE, op_flags, bh);
3153                 wait_on_buffer(bh);
3154                 if (!ret && !buffer_uptodate(bh))
3155                         ret = -EIO;
3156         } else {
3157                 unlock_buffer(bh);
3158         }
3159         return ret;
3160 }
3161 EXPORT_SYMBOL(__sync_dirty_buffer);
3162
3163 int sync_dirty_buffer(struct buffer_head *bh)
3164 {
3165         return __sync_dirty_buffer(bh, REQ_SYNC);
3166 }
3167 EXPORT_SYMBOL(sync_dirty_buffer);
3168
3169 /*
3170  * try_to_free_buffers() checks if all the buffers on this particular page
3171  * are unused, and releases them if so.
3172  *
3173  * Exclusion against try_to_free_buffers may be obtained by either
3174  * locking the page or by holding its mapping's private_lock.
3175  *
3176  * If the page is dirty but all the buffers are clean then we need to
3177  * be sure to mark the page clean as well.  This is because the page
3178  * may be against a block device, and a later reattachment of buffers
3179  * to a dirty page will set *all* buffers dirty.  Which would corrupt
3180  * filesystem data on the same device.
3181  *
3182  * The same applies to regular filesystem pages: if all the buffers are
3183  * clean then we set the page clean and proceed.  To do that, we require
3184  * total exclusion from __set_page_dirty_buffers().  That is obtained with
3185  * private_lock.
3186  *
3187  * try_to_free_buffers() is non-blocking.
3188  */
3189 static inline int buffer_busy(struct buffer_head *bh)
3190 {
3191         return atomic_read(&bh->b_count) |
3192                 (bh->b_state & ((1 << BH_Dirty) | (1 << BH_Lock)));
3193 }
3194
3195 static int
3196 drop_buffers(struct page *page, struct buffer_head **buffers_to_free)
3197 {
3198         struct buffer_head *head = page_buffers(page);
3199         struct buffer_head *bh;
3200
3201         bh = head;
3202         do {
3203                 if (buffer_busy(bh))
3204                         goto failed;
3205                 bh = bh->b_this_page;
3206         } while (bh != head);
3207
3208         do {
3209                 struct buffer_head *next = bh->b_this_page;
3210
3211                 if (bh->b_assoc_map)
3212                         __remove_assoc_queue(bh);
3213                 bh = next;
3214         } while (bh != head);
3215         *buffers_to_free = head;
3216         detach_page_private(page);
3217         return 1;
3218 failed:
3219         return 0;
3220 }
3221
3222 int try_to_free_buffers(struct page *page)
3223 {
3224         struct address_space * const mapping = page->mapping;
3225         struct buffer_head *buffers_to_free = NULL;
3226         int ret = 0;
3227
3228         BUG_ON(!PageLocked(page));
3229         if (PageWriteback(page))
3230                 return 0;
3231
3232         if (mapping == NULL) {          /* can this still happen? */
3233                 ret = drop_buffers(page, &buffers_to_free);
3234                 goto out;
3235         }
3236
3237         spin_lock(&mapping->private_lock);
3238         ret = drop_buffers(page, &buffers_to_free);
3239
3240         /*
3241          * If the filesystem writes its buffers by hand (eg ext3)
3242          * then we can have clean buffers against a dirty page.  We
3243          * clean the page here; otherwise the VM will never notice
3244          * that the filesystem did any IO at all.
3245          *
3246          * Also, during truncate, discard_buffer will have marked all
3247          * the page's buffers clean.  We discover that here and clean
3248          * the page also.
3249          *
3250          * private_lock must be held over this entire operation in order
3251          * to synchronise against __set_page_dirty_buffers and prevent the
3252          * dirty bit from being lost.
3253          */
3254         if (ret)
3255                 cancel_dirty_page(page);
3256         spin_unlock(&mapping->private_lock);
3257 out:
3258         if (buffers_to_free) {
3259                 struct buffer_head *bh = buffers_to_free;
3260
3261                 do {
3262                         struct buffer_head *next = bh->b_this_page;
3263                         free_buffer_head(bh);
3264                         bh = next;
3265                 } while (bh != buffers_to_free);
3266         }
3267         return ret;
3268 }
3269 EXPORT_SYMBOL(try_to_free_buffers);
3270
3271 /*
3272  * There are no bdflush tunables left.  But distributions are
3273  * still running obsolete flush daemons, so we terminate them here.
3274  *
3275  * Use of bdflush() is deprecated and will be removed in a future kernel.
3276  * The `flush-X' kernel threads fully replace bdflush daemons and this call.
3277  */
3278 SYSCALL_DEFINE2(bdflush, int, func, long, data)
3279 {
3280         static int msg_count;
3281
3282         if (!capable(CAP_SYS_ADMIN))
3283                 return -EPERM;
3284
3285         if (msg_count < 5) {
3286                 msg_count++;
3287                 printk(KERN_INFO
3288                         "warning: process `%s' used the obsolete bdflush"
3289                         " system call\n", current->comm);
3290                 printk(KERN_INFO "Fix your initscripts?\n");
3291         }
3292
3293         if (func == 1)
3294                 do_exit(0);
3295         return 0;
3296 }
3297
3298 /*
3299  * Buffer-head allocation
3300  */
3301 static struct kmem_cache *bh_cachep __read_mostly;
3302
3303 /*
3304  * Once the number of bh's in the machine exceeds this level, we start
3305  * stripping them in writeback.
3306  */
3307 static unsigned long max_buffer_heads;
3308
3309 int buffer_heads_over_limit;
3310
3311 struct bh_accounting {
3312         int nr;                 /* Number of live bh's */
3313         int ratelimit;          /* Limit cacheline bouncing */
3314 };
3315
3316 static DEFINE_PER_CPU(struct bh_accounting, bh_accounting) = {0, 0};
3317
3318 static void recalc_bh_state(void)
3319 {
3320         int i;
3321         int tot = 0;
3322
3323         if (__this_cpu_inc_return(bh_accounting.ratelimit) - 1 < 4096)
3324                 return;
3325         __this_cpu_write(bh_accounting.ratelimit, 0);
3326         for_each_online_cpu(i)
3327                 tot += per_cpu(bh_accounting, i).nr;
3328         buffer_heads_over_limit = (tot > max_buffer_heads);
3329 }
3330
3331 struct buffer_head *alloc_buffer_head(gfp_t gfp_flags)
3332 {
3333         struct buffer_head *ret = kmem_cache_zalloc(bh_cachep, gfp_flags);
3334         if (ret) {
3335                 INIT_LIST_HEAD(&ret->b_assoc_buffers);
3336                 spin_lock_init(&ret->b_uptodate_lock);
3337                 preempt_disable();
3338                 __this_cpu_inc(bh_accounting.nr);
3339                 recalc_bh_state();
3340                 preempt_enable();
3341         }
3342         return ret;
3343 }
3344 EXPORT_SYMBOL(alloc_buffer_head);
3345
3346 void free_buffer_head(struct buffer_head *bh)
3347 {
3348         BUG_ON(!list_empty(&bh->b_assoc_buffers));
3349         kmem_cache_free(bh_cachep, bh);
3350         preempt_disable();
3351         __this_cpu_dec(bh_accounting.nr);
3352         recalc_bh_state();
3353         preempt_enable();
3354 }
3355 EXPORT_SYMBOL(free_buffer_head);
3356
3357 static int buffer_exit_cpu_dead(unsigned int cpu)
3358 {
3359         int i;
3360         struct bh_lru *b = &per_cpu(bh_lrus, cpu);
3361
3362         for (i = 0; i < BH_LRU_SIZE; i++) {
3363                 brelse(b->bhs[i]);
3364                 b->bhs[i] = NULL;
3365         }
3366         this_cpu_add(bh_accounting.nr, per_cpu(bh_accounting, cpu).nr);
3367         per_cpu(bh_accounting, cpu).nr = 0;
3368         return 0;
3369 }
3370
3371 /**
3372  * bh_uptodate_or_lock - Test whether the buffer is uptodate
3373  * @bh: struct buffer_head
3374  *
3375  * Return true if the buffer is up-to-date and false,
3376  * with the buffer locked, if not.
3377  */
3378 int bh_uptodate_or_lock(struct buffer_head *bh)
3379 {
3380         if (!buffer_uptodate(bh)) {
3381                 lock_buffer(bh);
3382                 if (!buffer_uptodate(bh))
3383                         return 0;
3384                 unlock_buffer(bh);
3385         }
3386         return 1;
3387 }
3388 EXPORT_SYMBOL(bh_uptodate_or_lock);
3389
3390 /**
3391  * bh_submit_read - Submit a locked buffer for reading
3392  * @bh: struct buffer_head
3393  *
3394  * Returns zero on success and -EIO on error.
3395  */
3396 int bh_submit_read(struct buffer_head *bh)
3397 {
3398         BUG_ON(!buffer_locked(bh));
3399
3400         if (buffer_uptodate(bh)) {
3401                 unlock_buffer(bh);
3402                 return 0;
3403         }
3404
3405         get_bh(bh);
3406         bh->b_end_io = end_buffer_read_sync;
3407         submit_bh(REQ_OP_READ, 0, bh);
3408         wait_on_buffer(bh);
3409         if (buffer_uptodate(bh))
3410                 return 0;
3411         return -EIO;
3412 }
3413 EXPORT_SYMBOL(bh_submit_read);
3414
3415 void __init buffer_init(void)
3416 {
3417         unsigned long nrpages;
3418         int ret;
3419
3420         bh_cachep = kmem_cache_create("buffer_head",
3421                         sizeof(struct buffer_head), 0,
3422                                 (SLAB_RECLAIM_ACCOUNT|SLAB_PANIC|
3423                                 SLAB_MEM_SPREAD),
3424                                 NULL);
3425
3426         /*
3427          * Limit the bh occupancy to 10% of ZONE_NORMAL
3428          */
3429         nrpages = (nr_free_buffer_pages() * 10) / 100;
3430         max_buffer_heads = nrpages * (PAGE_SIZE / sizeof(struct buffer_head));
3431         ret = cpuhp_setup_state_nocalls(CPUHP_FS_BUFF_DEAD, "fs/buffer:dead",
3432                                         NULL, buffer_exit_cpu_dead);
3433         WARN_ON(ret < 0);
3434 }