Merge tag 'core-rcu-2020-06-01' of git://git.kernel.org/pub/scm/linux/kernel/git...
[linux-2.6-microblaze.git] / fs / buffer.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/fs/buffer.c
4  *
5  *  Copyright (C) 1991, 1992, 2002  Linus Torvalds
6  */
7
8 /*
9  * Start bdflush() with kernel_thread not syscall - Paul Gortmaker, 12/95
10  *
11  * Removed a lot of unnecessary code and simplified things now that
12  * the buffer cache isn't our primary cache - Andrew Tridgell 12/96
13  *
14  * Speed up hash, lru, and free list operations.  Use gfp() for allocating
15  * hash table, use SLAB cache for buffer heads. SMP threading.  -DaveM
16  *
17  * Added 32k buffer block sizes - these are required older ARM systems. - RMK
18  *
19  * async buffer flushing, 1999 Andrea Arcangeli <andrea@suse.de>
20  */
21
22 #include <linux/kernel.h>
23 #include <linux/sched/signal.h>
24 #include <linux/syscalls.h>
25 #include <linux/fs.h>
26 #include <linux/iomap.h>
27 #include <linux/mm.h>
28 #include <linux/percpu.h>
29 #include <linux/slab.h>
30 #include <linux/capability.h>
31 #include <linux/blkdev.h>
32 #include <linux/file.h>
33 #include <linux/quotaops.h>
34 #include <linux/highmem.h>
35 #include <linux/export.h>
36 #include <linux/backing-dev.h>
37 #include <linux/writeback.h>
38 #include <linux/hash.h>
39 #include <linux/suspend.h>
40 #include <linux/buffer_head.h>
41 #include <linux/task_io_accounting_ops.h>
42 #include <linux/bio.h>
43 #include <linux/cpu.h>
44 #include <linux/bitops.h>
45 #include <linux/mpage.h>
46 #include <linux/bit_spinlock.h>
47 #include <linux/pagevec.h>
48 #include <linux/sched/mm.h>
49 #include <trace/events/block.h>
50 #include <linux/fscrypt.h>
51
52 #include "internal.h"
53
54 static int fsync_buffers_list(spinlock_t *lock, struct list_head *list);
55 static int submit_bh_wbc(int op, int op_flags, struct buffer_head *bh,
56                          enum rw_hint hint, struct writeback_control *wbc);
57
58 #define BH_ENTRY(list) list_entry((list), struct buffer_head, b_assoc_buffers)
59
60 inline void touch_buffer(struct buffer_head *bh)
61 {
62         trace_block_touch_buffer(bh);
63         mark_page_accessed(bh->b_page);
64 }
65 EXPORT_SYMBOL(touch_buffer);
66
67 void __lock_buffer(struct buffer_head *bh)
68 {
69         wait_on_bit_lock_io(&bh->b_state, BH_Lock, TASK_UNINTERRUPTIBLE);
70 }
71 EXPORT_SYMBOL(__lock_buffer);
72
73 void unlock_buffer(struct buffer_head *bh)
74 {
75         clear_bit_unlock(BH_Lock, &bh->b_state);
76         smp_mb__after_atomic();
77         wake_up_bit(&bh->b_state, BH_Lock);
78 }
79 EXPORT_SYMBOL(unlock_buffer);
80
81 /*
82  * Returns if the page has dirty or writeback buffers. If all the buffers
83  * are unlocked and clean then the PageDirty information is stale. If
84  * any of the pages are locked, it is assumed they are locked for IO.
85  */
86 void buffer_check_dirty_writeback(struct page *page,
87                                      bool *dirty, bool *writeback)
88 {
89         struct buffer_head *head, *bh;
90         *dirty = false;
91         *writeback = false;
92
93         BUG_ON(!PageLocked(page));
94
95         if (!page_has_buffers(page))
96                 return;
97
98         if (PageWriteback(page))
99                 *writeback = true;
100
101         head = page_buffers(page);
102         bh = head;
103         do {
104                 if (buffer_locked(bh))
105                         *writeback = true;
106
107                 if (buffer_dirty(bh))
108                         *dirty = true;
109
110                 bh = bh->b_this_page;
111         } while (bh != head);
112 }
113 EXPORT_SYMBOL(buffer_check_dirty_writeback);
114
115 /*
116  * Block until a buffer comes unlocked.  This doesn't stop it
117  * from becoming locked again - you have to lock it yourself
118  * if you want to preserve its state.
119  */
120 void __wait_on_buffer(struct buffer_head * bh)
121 {
122         wait_on_bit_io(&bh->b_state, BH_Lock, TASK_UNINTERRUPTIBLE);
123 }
124 EXPORT_SYMBOL(__wait_on_buffer);
125
126 static void
127 __clear_page_buffers(struct page *page)
128 {
129         ClearPagePrivate(page);
130         set_page_private(page, 0);
131         put_page(page);
132 }
133
134 static void buffer_io_error(struct buffer_head *bh, char *msg)
135 {
136         if (!test_bit(BH_Quiet, &bh->b_state))
137                 printk_ratelimited(KERN_ERR
138                         "Buffer I/O error on dev %pg, logical block %llu%s\n",
139                         bh->b_bdev, (unsigned long long)bh->b_blocknr, msg);
140 }
141
142 /*
143  * End-of-IO handler helper function which does not touch the bh after
144  * unlocking it.
145  * Note: unlock_buffer() sort-of does touch the bh after unlocking it, but
146  * a race there is benign: unlock_buffer() only use the bh's address for
147  * hashing after unlocking the buffer, so it doesn't actually touch the bh
148  * itself.
149  */
150 static void __end_buffer_read_notouch(struct buffer_head *bh, int uptodate)
151 {
152         if (uptodate) {
153                 set_buffer_uptodate(bh);
154         } else {
155                 /* This happens, due to failed read-ahead attempts. */
156                 clear_buffer_uptodate(bh);
157         }
158         unlock_buffer(bh);
159 }
160
161 /*
162  * Default synchronous end-of-IO handler..  Just mark it up-to-date and
163  * unlock the buffer. This is what ll_rw_block uses too.
164  */
165 void end_buffer_read_sync(struct buffer_head *bh, int uptodate)
166 {
167         __end_buffer_read_notouch(bh, uptodate);
168         put_bh(bh);
169 }
170 EXPORT_SYMBOL(end_buffer_read_sync);
171
172 void end_buffer_write_sync(struct buffer_head *bh, int uptodate)
173 {
174         if (uptodate) {
175                 set_buffer_uptodate(bh);
176         } else {
177                 buffer_io_error(bh, ", lost sync page write");
178                 mark_buffer_write_io_error(bh);
179                 clear_buffer_uptodate(bh);
180         }
181         unlock_buffer(bh);
182         put_bh(bh);
183 }
184 EXPORT_SYMBOL(end_buffer_write_sync);
185
186 /*
187  * Various filesystems appear to want __find_get_block to be non-blocking.
188  * But it's the page lock which protects the buffers.  To get around this,
189  * we get exclusion from try_to_free_buffers with the blockdev mapping's
190  * private_lock.
191  *
192  * Hack idea: for the blockdev mapping, private_lock contention
193  * may be quite high.  This code could TryLock the page, and if that
194  * succeeds, there is no need to take private_lock.
195  */
196 static struct buffer_head *
197 __find_get_block_slow(struct block_device *bdev, sector_t block)
198 {
199         struct inode *bd_inode = bdev->bd_inode;
200         struct address_space *bd_mapping = bd_inode->i_mapping;
201         struct buffer_head *ret = NULL;
202         pgoff_t index;
203         struct buffer_head *bh;
204         struct buffer_head *head;
205         struct page *page;
206         int all_mapped = 1;
207         static DEFINE_RATELIMIT_STATE(last_warned, HZ, 1);
208
209         index = block >> (PAGE_SHIFT - bd_inode->i_blkbits);
210         page = find_get_page_flags(bd_mapping, index, FGP_ACCESSED);
211         if (!page)
212                 goto out;
213
214         spin_lock(&bd_mapping->private_lock);
215         if (!page_has_buffers(page))
216                 goto out_unlock;
217         head = page_buffers(page);
218         bh = head;
219         do {
220                 if (!buffer_mapped(bh))
221                         all_mapped = 0;
222                 else if (bh->b_blocknr == block) {
223                         ret = bh;
224                         get_bh(bh);
225                         goto out_unlock;
226                 }
227                 bh = bh->b_this_page;
228         } while (bh != head);
229
230         /* we might be here because some of the buffers on this page are
231          * not mapped.  This is due to various races between
232          * file io on the block device and getblk.  It gets dealt with
233          * elsewhere, don't buffer_error if we had some unmapped buffers
234          */
235         ratelimit_set_flags(&last_warned, RATELIMIT_MSG_ON_RELEASE);
236         if (all_mapped && __ratelimit(&last_warned)) {
237                 printk("__find_get_block_slow() failed. block=%llu, "
238                        "b_blocknr=%llu, b_state=0x%08lx, b_size=%zu, "
239                        "device %pg blocksize: %d\n",
240                        (unsigned long long)block,
241                        (unsigned long long)bh->b_blocknr,
242                        bh->b_state, bh->b_size, bdev,
243                        1 << bd_inode->i_blkbits);
244         }
245 out_unlock:
246         spin_unlock(&bd_mapping->private_lock);
247         put_page(page);
248 out:
249         return ret;
250 }
251
252 static void end_buffer_async_read(struct buffer_head *bh, int uptodate)
253 {
254         unsigned long flags;
255         struct buffer_head *first;
256         struct buffer_head *tmp;
257         struct page *page;
258         int page_uptodate = 1;
259
260         BUG_ON(!buffer_async_read(bh));
261
262         page = bh->b_page;
263         if (uptodate) {
264                 set_buffer_uptodate(bh);
265         } else {
266                 clear_buffer_uptodate(bh);
267                 buffer_io_error(bh, ", async page read");
268                 SetPageError(page);
269         }
270
271         /*
272          * Be _very_ careful from here on. Bad things can happen if
273          * two buffer heads end IO at almost the same time and both
274          * decide that the page is now completely done.
275          */
276         first = page_buffers(page);
277         spin_lock_irqsave(&first->b_uptodate_lock, flags);
278         clear_buffer_async_read(bh);
279         unlock_buffer(bh);
280         tmp = bh;
281         do {
282                 if (!buffer_uptodate(tmp))
283                         page_uptodate = 0;
284                 if (buffer_async_read(tmp)) {
285                         BUG_ON(!buffer_locked(tmp));
286                         goto still_busy;
287                 }
288                 tmp = tmp->b_this_page;
289         } while (tmp != bh);
290         spin_unlock_irqrestore(&first->b_uptodate_lock, flags);
291
292         /*
293          * If none of the buffers had errors and they are all
294          * uptodate then we can set the page uptodate.
295          */
296         if (page_uptodate && !PageError(page))
297                 SetPageUptodate(page);
298         unlock_page(page);
299         return;
300
301 still_busy:
302         spin_unlock_irqrestore(&first->b_uptodate_lock, flags);
303         return;
304 }
305
306 struct decrypt_bh_ctx {
307         struct work_struct work;
308         struct buffer_head *bh;
309 };
310
311 static void decrypt_bh(struct work_struct *work)
312 {
313         struct decrypt_bh_ctx *ctx =
314                 container_of(work, struct decrypt_bh_ctx, work);
315         struct buffer_head *bh = ctx->bh;
316         int err;
317
318         err = fscrypt_decrypt_pagecache_blocks(bh->b_page, bh->b_size,
319                                                bh_offset(bh));
320         end_buffer_async_read(bh, err == 0);
321         kfree(ctx);
322 }
323
324 /*
325  * I/O completion handler for block_read_full_page() - pages
326  * which come unlocked at the end of I/O.
327  */
328 static void end_buffer_async_read_io(struct buffer_head *bh, int uptodate)
329 {
330         /* Decrypt if needed */
331         if (uptodate && IS_ENABLED(CONFIG_FS_ENCRYPTION) &&
332             IS_ENCRYPTED(bh->b_page->mapping->host) &&
333             S_ISREG(bh->b_page->mapping->host->i_mode)) {
334                 struct decrypt_bh_ctx *ctx = kmalloc(sizeof(*ctx), GFP_ATOMIC);
335
336                 if (ctx) {
337                         INIT_WORK(&ctx->work, decrypt_bh);
338                         ctx->bh = bh;
339                         fscrypt_enqueue_decrypt_work(&ctx->work);
340                         return;
341                 }
342                 uptodate = 0;
343         }
344         end_buffer_async_read(bh, uptodate);
345 }
346
347 /*
348  * Completion handler for block_write_full_page() - pages which are unlocked
349  * during I/O, and which have PageWriteback cleared upon I/O completion.
350  */
351 void end_buffer_async_write(struct buffer_head *bh, int uptodate)
352 {
353         unsigned long flags;
354         struct buffer_head *first;
355         struct buffer_head *tmp;
356         struct page *page;
357
358         BUG_ON(!buffer_async_write(bh));
359
360         page = bh->b_page;
361         if (uptodate) {
362                 set_buffer_uptodate(bh);
363         } else {
364                 buffer_io_error(bh, ", lost async page write");
365                 mark_buffer_write_io_error(bh);
366                 clear_buffer_uptodate(bh);
367                 SetPageError(page);
368         }
369
370         first = page_buffers(page);
371         spin_lock_irqsave(&first->b_uptodate_lock, flags);
372
373         clear_buffer_async_write(bh);
374         unlock_buffer(bh);
375         tmp = bh->b_this_page;
376         while (tmp != bh) {
377                 if (buffer_async_write(tmp)) {
378                         BUG_ON(!buffer_locked(tmp));
379                         goto still_busy;
380                 }
381                 tmp = tmp->b_this_page;
382         }
383         spin_unlock_irqrestore(&first->b_uptodate_lock, flags);
384         end_page_writeback(page);
385         return;
386
387 still_busy:
388         spin_unlock_irqrestore(&first->b_uptodate_lock, flags);
389         return;
390 }
391 EXPORT_SYMBOL(end_buffer_async_write);
392
393 /*
394  * If a page's buffers are under async readin (end_buffer_async_read
395  * completion) then there is a possibility that another thread of
396  * control could lock one of the buffers after it has completed
397  * but while some of the other buffers have not completed.  This
398  * locked buffer would confuse end_buffer_async_read() into not unlocking
399  * the page.  So the absence of BH_Async_Read tells end_buffer_async_read()
400  * that this buffer is not under async I/O.
401  *
402  * The page comes unlocked when it has no locked buffer_async buffers
403  * left.
404  *
405  * PageLocked prevents anyone starting new async I/O reads any of
406  * the buffers.
407  *
408  * PageWriteback is used to prevent simultaneous writeout of the same
409  * page.
410  *
411  * PageLocked prevents anyone from starting writeback of a page which is
412  * under read I/O (PageWriteback is only ever set against a locked page).
413  */
414 static void mark_buffer_async_read(struct buffer_head *bh)
415 {
416         bh->b_end_io = end_buffer_async_read_io;
417         set_buffer_async_read(bh);
418 }
419
420 static void mark_buffer_async_write_endio(struct buffer_head *bh,
421                                           bh_end_io_t *handler)
422 {
423         bh->b_end_io = handler;
424         set_buffer_async_write(bh);
425 }
426
427 void mark_buffer_async_write(struct buffer_head *bh)
428 {
429         mark_buffer_async_write_endio(bh, end_buffer_async_write);
430 }
431 EXPORT_SYMBOL(mark_buffer_async_write);
432
433
434 /*
435  * fs/buffer.c contains helper functions for buffer-backed address space's
436  * fsync functions.  A common requirement for buffer-based filesystems is
437  * that certain data from the backing blockdev needs to be written out for
438  * a successful fsync().  For example, ext2 indirect blocks need to be
439  * written back and waited upon before fsync() returns.
440  *
441  * The functions mark_buffer_inode_dirty(), fsync_inode_buffers(),
442  * inode_has_buffers() and invalidate_inode_buffers() are provided for the
443  * management of a list of dependent buffers at ->i_mapping->private_list.
444  *
445  * Locking is a little subtle: try_to_free_buffers() will remove buffers
446  * from their controlling inode's queue when they are being freed.  But
447  * try_to_free_buffers() will be operating against the *blockdev* mapping
448  * at the time, not against the S_ISREG file which depends on those buffers.
449  * So the locking for private_list is via the private_lock in the address_space
450  * which backs the buffers.  Which is different from the address_space 
451  * against which the buffers are listed.  So for a particular address_space,
452  * mapping->private_lock does *not* protect mapping->private_list!  In fact,
453  * mapping->private_list will always be protected by the backing blockdev's
454  * ->private_lock.
455  *
456  * Which introduces a requirement: all buffers on an address_space's
457  * ->private_list must be from the same address_space: the blockdev's.
458  *
459  * address_spaces which do not place buffers at ->private_list via these
460  * utility functions are free to use private_lock and private_list for
461  * whatever they want.  The only requirement is that list_empty(private_list)
462  * be true at clear_inode() time.
463  *
464  * FIXME: clear_inode should not call invalidate_inode_buffers().  The
465  * filesystems should do that.  invalidate_inode_buffers() should just go
466  * BUG_ON(!list_empty).
467  *
468  * FIXME: mark_buffer_dirty_inode() is a data-plane operation.  It should
469  * take an address_space, not an inode.  And it should be called
470  * mark_buffer_dirty_fsync() to clearly define why those buffers are being
471  * queued up.
472  *
473  * FIXME: mark_buffer_dirty_inode() doesn't need to add the buffer to the
474  * list if it is already on a list.  Because if the buffer is on a list,
475  * it *must* already be on the right one.  If not, the filesystem is being
476  * silly.  This will save a ton of locking.  But first we have to ensure
477  * that buffers are taken *off* the old inode's list when they are freed
478  * (presumably in truncate).  That requires careful auditing of all
479  * filesystems (do it inside bforget()).  It could also be done by bringing
480  * b_inode back.
481  */
482
483 /*
484  * The buffer's backing address_space's private_lock must be held
485  */
486 static void __remove_assoc_queue(struct buffer_head *bh)
487 {
488         list_del_init(&bh->b_assoc_buffers);
489         WARN_ON(!bh->b_assoc_map);
490         bh->b_assoc_map = NULL;
491 }
492
493 int inode_has_buffers(struct inode *inode)
494 {
495         return !list_empty(&inode->i_data.private_list);
496 }
497
498 /*
499  * osync is designed to support O_SYNC io.  It waits synchronously for
500  * all already-submitted IO to complete, but does not queue any new
501  * writes to the disk.
502  *
503  * To do O_SYNC writes, just queue the buffer writes with ll_rw_block as
504  * you dirty the buffers, and then use osync_inode_buffers to wait for
505  * completion.  Any other dirty buffers which are not yet queued for
506  * write will not be flushed to disk by the osync.
507  */
508 static int osync_buffers_list(spinlock_t *lock, struct list_head *list)
509 {
510         struct buffer_head *bh;
511         struct list_head *p;
512         int err = 0;
513
514         spin_lock(lock);
515 repeat:
516         list_for_each_prev(p, list) {
517                 bh = BH_ENTRY(p);
518                 if (buffer_locked(bh)) {
519                         get_bh(bh);
520                         spin_unlock(lock);
521                         wait_on_buffer(bh);
522                         if (!buffer_uptodate(bh))
523                                 err = -EIO;
524                         brelse(bh);
525                         spin_lock(lock);
526                         goto repeat;
527                 }
528         }
529         spin_unlock(lock);
530         return err;
531 }
532
533 void emergency_thaw_bdev(struct super_block *sb)
534 {
535         while (sb->s_bdev && !thaw_bdev(sb->s_bdev, sb))
536                 printk(KERN_WARNING "Emergency Thaw on %pg\n", sb->s_bdev);
537 }
538
539 /**
540  * sync_mapping_buffers - write out & wait upon a mapping's "associated" buffers
541  * @mapping: the mapping which wants those buffers written
542  *
543  * Starts I/O against the buffers at mapping->private_list, and waits upon
544  * that I/O.
545  *
546  * Basically, this is a convenience function for fsync().
547  * @mapping is a file or directory which needs those buffers to be written for
548  * a successful fsync().
549  */
550 int sync_mapping_buffers(struct address_space *mapping)
551 {
552         struct address_space *buffer_mapping = mapping->private_data;
553
554         if (buffer_mapping == NULL || list_empty(&mapping->private_list))
555                 return 0;
556
557         return fsync_buffers_list(&buffer_mapping->private_lock,
558                                         &mapping->private_list);
559 }
560 EXPORT_SYMBOL(sync_mapping_buffers);
561
562 /*
563  * Called when we've recently written block `bblock', and it is known that
564  * `bblock' was for a buffer_boundary() buffer.  This means that the block at
565  * `bblock + 1' is probably a dirty indirect block.  Hunt it down and, if it's
566  * dirty, schedule it for IO.  So that indirects merge nicely with their data.
567  */
568 void write_boundary_block(struct block_device *bdev,
569                         sector_t bblock, unsigned blocksize)
570 {
571         struct buffer_head *bh = __find_get_block(bdev, bblock + 1, blocksize);
572         if (bh) {
573                 if (buffer_dirty(bh))
574                         ll_rw_block(REQ_OP_WRITE, 0, 1, &bh);
575                 put_bh(bh);
576         }
577 }
578
579 void mark_buffer_dirty_inode(struct buffer_head *bh, struct inode *inode)
580 {
581         struct address_space *mapping = inode->i_mapping;
582         struct address_space *buffer_mapping = bh->b_page->mapping;
583
584         mark_buffer_dirty(bh);
585         if (!mapping->private_data) {
586                 mapping->private_data = buffer_mapping;
587         } else {
588                 BUG_ON(mapping->private_data != buffer_mapping);
589         }
590         if (!bh->b_assoc_map) {
591                 spin_lock(&buffer_mapping->private_lock);
592                 list_move_tail(&bh->b_assoc_buffers,
593                                 &mapping->private_list);
594                 bh->b_assoc_map = mapping;
595                 spin_unlock(&buffer_mapping->private_lock);
596         }
597 }
598 EXPORT_SYMBOL(mark_buffer_dirty_inode);
599
600 /*
601  * Mark the page dirty, and set it dirty in the page cache, and mark the inode
602  * dirty.
603  *
604  * If warn is true, then emit a warning if the page is not uptodate and has
605  * not been truncated.
606  *
607  * The caller must hold lock_page_memcg().
608  */
609 void __set_page_dirty(struct page *page, struct address_space *mapping,
610                              int warn)
611 {
612         unsigned long flags;
613
614         xa_lock_irqsave(&mapping->i_pages, flags);
615         if (page->mapping) {    /* Race with truncate? */
616                 WARN_ON_ONCE(warn && !PageUptodate(page));
617                 account_page_dirtied(page, mapping);
618                 __xa_set_mark(&mapping->i_pages, page_index(page),
619                                 PAGECACHE_TAG_DIRTY);
620         }
621         xa_unlock_irqrestore(&mapping->i_pages, flags);
622 }
623 EXPORT_SYMBOL_GPL(__set_page_dirty);
624
625 /*
626  * Add a page to the dirty page list.
627  *
628  * It is a sad fact of life that this function is called from several places
629  * deeply under spinlocking.  It may not sleep.
630  *
631  * If the page has buffers, the uptodate buffers are set dirty, to preserve
632  * dirty-state coherency between the page and the buffers.  It the page does
633  * not have buffers then when they are later attached they will all be set
634  * dirty.
635  *
636  * The buffers are dirtied before the page is dirtied.  There's a small race
637  * window in which a writepage caller may see the page cleanness but not the
638  * buffer dirtiness.  That's fine.  If this code were to set the page dirty
639  * before the buffers, a concurrent writepage caller could clear the page dirty
640  * bit, see a bunch of clean buffers and we'd end up with dirty buffers/clean
641  * page on the dirty page list.
642  *
643  * We use private_lock to lock against try_to_free_buffers while using the
644  * page's buffer list.  Also use this to protect against clean buffers being
645  * added to the page after it was set dirty.
646  *
647  * FIXME: may need to call ->reservepage here as well.  That's rather up to the
648  * address_space though.
649  */
650 int __set_page_dirty_buffers(struct page *page)
651 {
652         int newly_dirty;
653         struct address_space *mapping = page_mapping(page);
654
655         if (unlikely(!mapping))
656                 return !TestSetPageDirty(page);
657
658         spin_lock(&mapping->private_lock);
659         if (page_has_buffers(page)) {
660                 struct buffer_head *head = page_buffers(page);
661                 struct buffer_head *bh = head;
662
663                 do {
664                         set_buffer_dirty(bh);
665                         bh = bh->b_this_page;
666                 } while (bh != head);
667         }
668         /*
669          * Lock out page->mem_cgroup migration to keep PageDirty
670          * synchronized with per-memcg dirty page counters.
671          */
672         lock_page_memcg(page);
673         newly_dirty = !TestSetPageDirty(page);
674         spin_unlock(&mapping->private_lock);
675
676         if (newly_dirty)
677                 __set_page_dirty(page, mapping, 1);
678
679         unlock_page_memcg(page);
680
681         if (newly_dirty)
682                 __mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
683
684         return newly_dirty;
685 }
686 EXPORT_SYMBOL(__set_page_dirty_buffers);
687
688 /*
689  * Write out and wait upon a list of buffers.
690  *
691  * We have conflicting pressures: we want to make sure that all
692  * initially dirty buffers get waited on, but that any subsequently
693  * dirtied buffers don't.  After all, we don't want fsync to last
694  * forever if somebody is actively writing to the file.
695  *
696  * Do this in two main stages: first we copy dirty buffers to a
697  * temporary inode list, queueing the writes as we go.  Then we clean
698  * up, waiting for those writes to complete.
699  * 
700  * During this second stage, any subsequent updates to the file may end
701  * up refiling the buffer on the original inode's dirty list again, so
702  * there is a chance we will end up with a buffer queued for write but
703  * not yet completed on that list.  So, as a final cleanup we go through
704  * the osync code to catch these locked, dirty buffers without requeuing
705  * any newly dirty buffers for write.
706  */
707 static int fsync_buffers_list(spinlock_t *lock, struct list_head *list)
708 {
709         struct buffer_head *bh;
710         struct list_head tmp;
711         struct address_space *mapping;
712         int err = 0, err2;
713         struct blk_plug plug;
714
715         INIT_LIST_HEAD(&tmp);
716         blk_start_plug(&plug);
717
718         spin_lock(lock);
719         while (!list_empty(list)) {
720                 bh = BH_ENTRY(list->next);
721                 mapping = bh->b_assoc_map;
722                 __remove_assoc_queue(bh);
723                 /* Avoid race with mark_buffer_dirty_inode() which does
724                  * a lockless check and we rely on seeing the dirty bit */
725                 smp_mb();
726                 if (buffer_dirty(bh) || buffer_locked(bh)) {
727                         list_add(&bh->b_assoc_buffers, &tmp);
728                         bh->b_assoc_map = mapping;
729                         if (buffer_dirty(bh)) {
730                                 get_bh(bh);
731                                 spin_unlock(lock);
732                                 /*
733                                  * Ensure any pending I/O completes so that
734                                  * write_dirty_buffer() actually writes the
735                                  * current contents - it is a noop if I/O is
736                                  * still in flight on potentially older
737                                  * contents.
738                                  */
739                                 write_dirty_buffer(bh, REQ_SYNC);
740
741                                 /*
742                                  * Kick off IO for the previous mapping. Note
743                                  * that we will not run the very last mapping,
744                                  * wait_on_buffer() will do that for us
745                                  * through sync_buffer().
746                                  */
747                                 brelse(bh);
748                                 spin_lock(lock);
749                         }
750                 }
751         }
752
753         spin_unlock(lock);
754         blk_finish_plug(&plug);
755         spin_lock(lock);
756
757         while (!list_empty(&tmp)) {
758                 bh = BH_ENTRY(tmp.prev);
759                 get_bh(bh);
760                 mapping = bh->b_assoc_map;
761                 __remove_assoc_queue(bh);
762                 /* Avoid race with mark_buffer_dirty_inode() which does
763                  * a lockless check and we rely on seeing the dirty bit */
764                 smp_mb();
765                 if (buffer_dirty(bh)) {
766                         list_add(&bh->b_assoc_buffers,
767                                  &mapping->private_list);
768                         bh->b_assoc_map = mapping;
769                 }
770                 spin_unlock(lock);
771                 wait_on_buffer(bh);
772                 if (!buffer_uptodate(bh))
773                         err = -EIO;
774                 brelse(bh);
775                 spin_lock(lock);
776         }
777         
778         spin_unlock(lock);
779         err2 = osync_buffers_list(lock, list);
780         if (err)
781                 return err;
782         else
783                 return err2;
784 }
785
786 /*
787  * Invalidate any and all dirty buffers on a given inode.  We are
788  * probably unmounting the fs, but that doesn't mean we have already
789  * done a sync().  Just drop the buffers from the inode list.
790  *
791  * NOTE: we take the inode's blockdev's mapping's private_lock.  Which
792  * assumes that all the buffers are against the blockdev.  Not true
793  * for reiserfs.
794  */
795 void invalidate_inode_buffers(struct inode *inode)
796 {
797         if (inode_has_buffers(inode)) {
798                 struct address_space *mapping = &inode->i_data;
799                 struct list_head *list = &mapping->private_list;
800                 struct address_space *buffer_mapping = mapping->private_data;
801
802                 spin_lock(&buffer_mapping->private_lock);
803                 while (!list_empty(list))
804                         __remove_assoc_queue(BH_ENTRY(list->next));
805                 spin_unlock(&buffer_mapping->private_lock);
806         }
807 }
808 EXPORT_SYMBOL(invalidate_inode_buffers);
809
810 /*
811  * Remove any clean buffers from the inode's buffer list.  This is called
812  * when we're trying to free the inode itself.  Those buffers can pin it.
813  *
814  * Returns true if all buffers were removed.
815  */
816 int remove_inode_buffers(struct inode *inode)
817 {
818         int ret = 1;
819
820         if (inode_has_buffers(inode)) {
821                 struct address_space *mapping = &inode->i_data;
822                 struct list_head *list = &mapping->private_list;
823                 struct address_space *buffer_mapping = mapping->private_data;
824
825                 spin_lock(&buffer_mapping->private_lock);
826                 while (!list_empty(list)) {
827                         struct buffer_head *bh = BH_ENTRY(list->next);
828                         if (buffer_dirty(bh)) {
829                                 ret = 0;
830                                 break;
831                         }
832                         __remove_assoc_queue(bh);
833                 }
834                 spin_unlock(&buffer_mapping->private_lock);
835         }
836         return ret;
837 }
838
839 /*
840  * Create the appropriate buffers when given a page for data area and
841  * the size of each buffer.. Use the bh->b_this_page linked list to
842  * follow the buffers created.  Return NULL if unable to create more
843  * buffers.
844  *
845  * The retry flag is used to differentiate async IO (paging, swapping)
846  * which may not fail from ordinary buffer allocations.
847  */
848 struct buffer_head *alloc_page_buffers(struct page *page, unsigned long size,
849                 bool retry)
850 {
851         struct buffer_head *bh, *head;
852         gfp_t gfp = GFP_NOFS | __GFP_ACCOUNT;
853         long offset;
854         struct mem_cgroup *memcg;
855
856         if (retry)
857                 gfp |= __GFP_NOFAIL;
858
859         memcg = get_mem_cgroup_from_page(page);
860         memalloc_use_memcg(memcg);
861
862         head = NULL;
863         offset = PAGE_SIZE;
864         while ((offset -= size) >= 0) {
865                 bh = alloc_buffer_head(gfp);
866                 if (!bh)
867                         goto no_grow;
868
869                 bh->b_this_page = head;
870                 bh->b_blocknr = -1;
871                 head = bh;
872
873                 bh->b_size = size;
874
875                 /* Link the buffer to its page */
876                 set_bh_page(bh, page, offset);
877         }
878 out:
879         memalloc_unuse_memcg();
880         mem_cgroup_put(memcg);
881         return head;
882 /*
883  * In case anything failed, we just free everything we got.
884  */
885 no_grow:
886         if (head) {
887                 do {
888                         bh = head;
889                         head = head->b_this_page;
890                         free_buffer_head(bh);
891                 } while (head);
892         }
893
894         goto out;
895 }
896 EXPORT_SYMBOL_GPL(alloc_page_buffers);
897
898 static inline void
899 link_dev_buffers(struct page *page, struct buffer_head *head)
900 {
901         struct buffer_head *bh, *tail;
902
903         bh = head;
904         do {
905                 tail = bh;
906                 bh = bh->b_this_page;
907         } while (bh);
908         tail->b_this_page = head;
909         attach_page_buffers(page, head);
910 }
911
912 static sector_t blkdev_max_block(struct block_device *bdev, unsigned int size)
913 {
914         sector_t retval = ~((sector_t)0);
915         loff_t sz = i_size_read(bdev->bd_inode);
916
917         if (sz) {
918                 unsigned int sizebits = blksize_bits(size);
919                 retval = (sz >> sizebits);
920         }
921         return retval;
922 }
923
924 /*
925  * Initialise the state of a blockdev page's buffers.
926  */ 
927 static sector_t
928 init_page_buffers(struct page *page, struct block_device *bdev,
929                         sector_t block, int size)
930 {
931         struct buffer_head *head = page_buffers(page);
932         struct buffer_head *bh = head;
933         int uptodate = PageUptodate(page);
934         sector_t end_block = blkdev_max_block(I_BDEV(bdev->bd_inode), size);
935
936         do {
937                 if (!buffer_mapped(bh)) {
938                         bh->b_end_io = NULL;
939                         bh->b_private = NULL;
940                         bh->b_bdev = bdev;
941                         bh->b_blocknr = block;
942                         if (uptodate)
943                                 set_buffer_uptodate(bh);
944                         if (block < end_block)
945                                 set_buffer_mapped(bh);
946                 }
947                 block++;
948                 bh = bh->b_this_page;
949         } while (bh != head);
950
951         /*
952          * Caller needs to validate requested block against end of device.
953          */
954         return end_block;
955 }
956
957 /*
958  * Create the page-cache page that contains the requested block.
959  *
960  * This is used purely for blockdev mappings.
961  */
962 static int
963 grow_dev_page(struct block_device *bdev, sector_t block,
964               pgoff_t index, int size, int sizebits, gfp_t gfp)
965 {
966         struct inode *inode = bdev->bd_inode;
967         struct page *page;
968         struct buffer_head *bh;
969         sector_t end_block;
970         int ret = 0;
971         gfp_t gfp_mask;
972
973         gfp_mask = mapping_gfp_constraint(inode->i_mapping, ~__GFP_FS) | gfp;
974
975         /*
976          * XXX: __getblk_slow() can not really deal with failure and
977          * will endlessly loop on improvised global reclaim.  Prefer
978          * looping in the allocator rather than here, at least that
979          * code knows what it's doing.
980          */
981         gfp_mask |= __GFP_NOFAIL;
982
983         page = find_or_create_page(inode->i_mapping, index, gfp_mask);
984
985         BUG_ON(!PageLocked(page));
986
987         if (page_has_buffers(page)) {
988                 bh = page_buffers(page);
989                 if (bh->b_size == size) {
990                         end_block = init_page_buffers(page, bdev,
991                                                 (sector_t)index << sizebits,
992                                                 size);
993                         goto done;
994                 }
995                 if (!try_to_free_buffers(page))
996                         goto failed;
997         }
998
999         /*
1000          * Allocate some buffers for this page
1001          */
1002         bh = alloc_page_buffers(page, size, true);
1003
1004         /*
1005          * Link the page to the buffers and initialise them.  Take the
1006          * lock to be atomic wrt __find_get_block(), which does not
1007          * run under the page lock.
1008          */
1009         spin_lock(&inode->i_mapping->private_lock);
1010         link_dev_buffers(page, bh);
1011         end_block = init_page_buffers(page, bdev, (sector_t)index << sizebits,
1012                         size);
1013         spin_unlock(&inode->i_mapping->private_lock);
1014 done:
1015         ret = (block < end_block) ? 1 : -ENXIO;
1016 failed:
1017         unlock_page(page);
1018         put_page(page);
1019         return ret;
1020 }
1021
1022 /*
1023  * Create buffers for the specified block device block's page.  If
1024  * that page was dirty, the buffers are set dirty also.
1025  */
1026 static int
1027 grow_buffers(struct block_device *bdev, sector_t block, int size, gfp_t gfp)
1028 {
1029         pgoff_t index;
1030         int sizebits;
1031
1032         sizebits = -1;
1033         do {
1034                 sizebits++;
1035         } while ((size << sizebits) < PAGE_SIZE);
1036
1037         index = block >> sizebits;
1038
1039         /*
1040          * Check for a block which wants to lie outside our maximum possible
1041          * pagecache index.  (this comparison is done using sector_t types).
1042          */
1043         if (unlikely(index != block >> sizebits)) {
1044                 printk(KERN_ERR "%s: requested out-of-range block %llu for "
1045                         "device %pg\n",
1046                         __func__, (unsigned long long)block,
1047                         bdev);
1048                 return -EIO;
1049         }
1050
1051         /* Create a page with the proper size buffers.. */
1052         return grow_dev_page(bdev, block, index, size, sizebits, gfp);
1053 }
1054
1055 static struct buffer_head *
1056 __getblk_slow(struct block_device *bdev, sector_t block,
1057              unsigned size, gfp_t gfp)
1058 {
1059         /* Size must be multiple of hard sectorsize */
1060         if (unlikely(size & (bdev_logical_block_size(bdev)-1) ||
1061                         (size < 512 || size > PAGE_SIZE))) {
1062                 printk(KERN_ERR "getblk(): invalid block size %d requested\n",
1063                                         size);
1064                 printk(KERN_ERR "logical block size: %d\n",
1065                                         bdev_logical_block_size(bdev));
1066
1067                 dump_stack();
1068                 return NULL;
1069         }
1070
1071         for (;;) {
1072                 struct buffer_head *bh;
1073                 int ret;
1074
1075                 bh = __find_get_block(bdev, block, size);
1076                 if (bh)
1077                         return bh;
1078
1079                 ret = grow_buffers(bdev, block, size, gfp);
1080                 if (ret < 0)
1081                         return NULL;
1082         }
1083 }
1084
1085 /*
1086  * The relationship between dirty buffers and dirty pages:
1087  *
1088  * Whenever a page has any dirty buffers, the page's dirty bit is set, and
1089  * the page is tagged dirty in the page cache.
1090  *
1091  * At all times, the dirtiness of the buffers represents the dirtiness of
1092  * subsections of the page.  If the page has buffers, the page dirty bit is
1093  * merely a hint about the true dirty state.
1094  *
1095  * When a page is set dirty in its entirety, all its buffers are marked dirty
1096  * (if the page has buffers).
1097  *
1098  * When a buffer is marked dirty, its page is dirtied, but the page's other
1099  * buffers are not.
1100  *
1101  * Also.  When blockdev buffers are explicitly read with bread(), they
1102  * individually become uptodate.  But their backing page remains not
1103  * uptodate - even if all of its buffers are uptodate.  A subsequent
1104  * block_read_full_page() against that page will discover all the uptodate
1105  * buffers, will set the page uptodate and will perform no I/O.
1106  */
1107
1108 /**
1109  * mark_buffer_dirty - mark a buffer_head as needing writeout
1110  * @bh: the buffer_head to mark dirty
1111  *
1112  * mark_buffer_dirty() will set the dirty bit against the buffer, then set
1113  * its backing page dirty, then tag the page as dirty in the page cache
1114  * and then attach the address_space's inode to its superblock's dirty
1115  * inode list.
1116  *
1117  * mark_buffer_dirty() is atomic.  It takes bh->b_page->mapping->private_lock,
1118  * i_pages lock and mapping->host->i_lock.
1119  */
1120 void mark_buffer_dirty(struct buffer_head *bh)
1121 {
1122         WARN_ON_ONCE(!buffer_uptodate(bh));
1123
1124         trace_block_dirty_buffer(bh);
1125
1126         /*
1127          * Very *carefully* optimize the it-is-already-dirty case.
1128          *
1129          * Don't let the final "is it dirty" escape to before we
1130          * perhaps modified the buffer.
1131          */
1132         if (buffer_dirty(bh)) {
1133                 smp_mb();
1134                 if (buffer_dirty(bh))
1135                         return;
1136         }
1137
1138         if (!test_set_buffer_dirty(bh)) {
1139                 struct page *page = bh->b_page;
1140                 struct address_space *mapping = NULL;
1141
1142                 lock_page_memcg(page);
1143                 if (!TestSetPageDirty(page)) {
1144                         mapping = page_mapping(page);
1145                         if (mapping)
1146                                 __set_page_dirty(page, mapping, 0);
1147                 }
1148                 unlock_page_memcg(page);
1149                 if (mapping)
1150                         __mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
1151         }
1152 }
1153 EXPORT_SYMBOL(mark_buffer_dirty);
1154
1155 void mark_buffer_write_io_error(struct buffer_head *bh)
1156 {
1157         set_buffer_write_io_error(bh);
1158         /* FIXME: do we need to set this in both places? */
1159         if (bh->b_page && bh->b_page->mapping)
1160                 mapping_set_error(bh->b_page->mapping, -EIO);
1161         if (bh->b_assoc_map)
1162                 mapping_set_error(bh->b_assoc_map, -EIO);
1163 }
1164 EXPORT_SYMBOL(mark_buffer_write_io_error);
1165
1166 /*
1167  * Decrement a buffer_head's reference count.  If all buffers against a page
1168  * have zero reference count, are clean and unlocked, and if the page is clean
1169  * and unlocked then try_to_free_buffers() may strip the buffers from the page
1170  * in preparation for freeing it (sometimes, rarely, buffers are removed from
1171  * a page but it ends up not being freed, and buffers may later be reattached).
1172  */
1173 void __brelse(struct buffer_head * buf)
1174 {
1175         if (atomic_read(&buf->b_count)) {
1176                 put_bh(buf);
1177                 return;
1178         }
1179         WARN(1, KERN_ERR "VFS: brelse: Trying to free free buffer\n");
1180 }
1181 EXPORT_SYMBOL(__brelse);
1182
1183 /*
1184  * bforget() is like brelse(), except it discards any
1185  * potentially dirty data.
1186  */
1187 void __bforget(struct buffer_head *bh)
1188 {
1189         clear_buffer_dirty(bh);
1190         if (bh->b_assoc_map) {
1191                 struct address_space *buffer_mapping = bh->b_page->mapping;
1192
1193                 spin_lock(&buffer_mapping->private_lock);
1194                 list_del_init(&bh->b_assoc_buffers);
1195                 bh->b_assoc_map = NULL;
1196                 spin_unlock(&buffer_mapping->private_lock);
1197         }
1198         __brelse(bh);
1199 }
1200 EXPORT_SYMBOL(__bforget);
1201
1202 static struct buffer_head *__bread_slow(struct buffer_head *bh)
1203 {
1204         lock_buffer(bh);
1205         if (buffer_uptodate(bh)) {
1206                 unlock_buffer(bh);
1207                 return bh;
1208         } else {
1209                 get_bh(bh);
1210                 bh->b_end_io = end_buffer_read_sync;
1211                 submit_bh(REQ_OP_READ, 0, bh);
1212                 wait_on_buffer(bh);
1213                 if (buffer_uptodate(bh))
1214                         return bh;
1215         }
1216         brelse(bh);
1217         return NULL;
1218 }
1219
1220 /*
1221  * Per-cpu buffer LRU implementation.  To reduce the cost of __find_get_block().
1222  * The bhs[] array is sorted - newest buffer is at bhs[0].  Buffers have their
1223  * refcount elevated by one when they're in an LRU.  A buffer can only appear
1224  * once in a particular CPU's LRU.  A single buffer can be present in multiple
1225  * CPU's LRUs at the same time.
1226  *
1227  * This is a transparent caching front-end to sb_bread(), sb_getblk() and
1228  * sb_find_get_block().
1229  *
1230  * The LRUs themselves only need locking against invalidate_bh_lrus.  We use
1231  * a local interrupt disable for that.
1232  */
1233
1234 #define BH_LRU_SIZE     16
1235
1236 struct bh_lru {
1237         struct buffer_head *bhs[BH_LRU_SIZE];
1238 };
1239
1240 static DEFINE_PER_CPU(struct bh_lru, bh_lrus) = {{ NULL }};
1241
1242 #ifdef CONFIG_SMP
1243 #define bh_lru_lock()   local_irq_disable()
1244 #define bh_lru_unlock() local_irq_enable()
1245 #else
1246 #define bh_lru_lock()   preempt_disable()
1247 #define bh_lru_unlock() preempt_enable()
1248 #endif
1249
1250 static inline void check_irqs_on(void)
1251 {
1252 #ifdef irqs_disabled
1253         BUG_ON(irqs_disabled());
1254 #endif
1255 }
1256
1257 /*
1258  * Install a buffer_head into this cpu's LRU.  If not already in the LRU, it is
1259  * inserted at the front, and the buffer_head at the back if any is evicted.
1260  * Or, if already in the LRU it is moved to the front.
1261  */
1262 static void bh_lru_install(struct buffer_head *bh)
1263 {
1264         struct buffer_head *evictee = bh;
1265         struct bh_lru *b;
1266         int i;
1267
1268         check_irqs_on();
1269         bh_lru_lock();
1270
1271         b = this_cpu_ptr(&bh_lrus);
1272         for (i = 0; i < BH_LRU_SIZE; i++) {
1273                 swap(evictee, b->bhs[i]);
1274                 if (evictee == bh) {
1275                         bh_lru_unlock();
1276                         return;
1277                 }
1278         }
1279
1280         get_bh(bh);
1281         bh_lru_unlock();
1282         brelse(evictee);
1283 }
1284
1285 /*
1286  * Look up the bh in this cpu's LRU.  If it's there, move it to the head.
1287  */
1288 static struct buffer_head *
1289 lookup_bh_lru(struct block_device *bdev, sector_t block, unsigned size)
1290 {
1291         struct buffer_head *ret = NULL;
1292         unsigned int i;
1293
1294         check_irqs_on();
1295         bh_lru_lock();
1296         for (i = 0; i < BH_LRU_SIZE; i++) {
1297                 struct buffer_head *bh = __this_cpu_read(bh_lrus.bhs[i]);
1298
1299                 if (bh && bh->b_blocknr == block && bh->b_bdev == bdev &&
1300                     bh->b_size == size) {
1301                         if (i) {
1302                                 while (i) {
1303                                         __this_cpu_write(bh_lrus.bhs[i],
1304                                                 __this_cpu_read(bh_lrus.bhs[i - 1]));
1305                                         i--;
1306                                 }
1307                                 __this_cpu_write(bh_lrus.bhs[0], bh);
1308                         }
1309                         get_bh(bh);
1310                         ret = bh;
1311                         break;
1312                 }
1313         }
1314         bh_lru_unlock();
1315         return ret;
1316 }
1317
1318 /*
1319  * Perform a pagecache lookup for the matching buffer.  If it's there, refresh
1320  * it in the LRU and mark it as accessed.  If it is not present then return
1321  * NULL
1322  */
1323 struct buffer_head *
1324 __find_get_block(struct block_device *bdev, sector_t block, unsigned size)
1325 {
1326         struct buffer_head *bh = lookup_bh_lru(bdev, block, size);
1327
1328         if (bh == NULL) {
1329                 /* __find_get_block_slow will mark the page accessed */
1330                 bh = __find_get_block_slow(bdev, block);
1331                 if (bh)
1332                         bh_lru_install(bh);
1333         } else
1334                 touch_buffer(bh);
1335
1336         return bh;
1337 }
1338 EXPORT_SYMBOL(__find_get_block);
1339
1340 /*
1341  * __getblk_gfp() will locate (and, if necessary, create) the buffer_head
1342  * which corresponds to the passed block_device, block and size. The
1343  * returned buffer has its reference count incremented.
1344  *
1345  * __getblk_gfp() will lock up the machine if grow_dev_page's
1346  * try_to_free_buffers() attempt is failing.  FIXME, perhaps?
1347  */
1348 struct buffer_head *
1349 __getblk_gfp(struct block_device *bdev, sector_t block,
1350              unsigned size, gfp_t gfp)
1351 {
1352         struct buffer_head *bh = __find_get_block(bdev, block, size);
1353
1354         might_sleep();
1355         if (bh == NULL)
1356                 bh = __getblk_slow(bdev, block, size, gfp);
1357         return bh;
1358 }
1359 EXPORT_SYMBOL(__getblk_gfp);
1360
1361 /*
1362  * Do async read-ahead on a buffer..
1363  */
1364 void __breadahead(struct block_device *bdev, sector_t block, unsigned size)
1365 {
1366         struct buffer_head *bh = __getblk(bdev, block, size);
1367         if (likely(bh)) {
1368                 ll_rw_block(REQ_OP_READ, REQ_RAHEAD, 1, &bh);
1369                 brelse(bh);
1370         }
1371 }
1372 EXPORT_SYMBOL(__breadahead);
1373
1374 void __breadahead_gfp(struct block_device *bdev, sector_t block, unsigned size,
1375                       gfp_t gfp)
1376 {
1377         struct buffer_head *bh = __getblk_gfp(bdev, block, size, gfp);
1378         if (likely(bh)) {
1379                 ll_rw_block(REQ_OP_READ, REQ_RAHEAD, 1, &bh);
1380                 brelse(bh);
1381         }
1382 }
1383 EXPORT_SYMBOL(__breadahead_gfp);
1384
1385 /**
1386  *  __bread_gfp() - reads a specified block and returns the bh
1387  *  @bdev: the block_device to read from
1388  *  @block: number of block
1389  *  @size: size (in bytes) to read
1390  *  @gfp: page allocation flag
1391  *
1392  *  Reads a specified block, and returns buffer head that contains it.
1393  *  The page cache can be allocated from non-movable area
1394  *  not to prevent page migration if you set gfp to zero.
1395  *  It returns NULL if the block was unreadable.
1396  */
1397 struct buffer_head *
1398 __bread_gfp(struct block_device *bdev, sector_t block,
1399                    unsigned size, gfp_t gfp)
1400 {
1401         struct buffer_head *bh = __getblk_gfp(bdev, block, size, gfp);
1402
1403         if (likely(bh) && !buffer_uptodate(bh))
1404                 bh = __bread_slow(bh);
1405         return bh;
1406 }
1407 EXPORT_SYMBOL(__bread_gfp);
1408
1409 /*
1410  * invalidate_bh_lrus() is called rarely - but not only at unmount.
1411  * This doesn't race because it runs in each cpu either in irq
1412  * or with preempt disabled.
1413  */
1414 static void invalidate_bh_lru(void *arg)
1415 {
1416         struct bh_lru *b = &get_cpu_var(bh_lrus);
1417         int i;
1418
1419         for (i = 0; i < BH_LRU_SIZE; i++) {
1420                 brelse(b->bhs[i]);
1421                 b->bhs[i] = NULL;
1422         }
1423         put_cpu_var(bh_lrus);
1424 }
1425
1426 static bool has_bh_in_lru(int cpu, void *dummy)
1427 {
1428         struct bh_lru *b = per_cpu_ptr(&bh_lrus, cpu);
1429         int i;
1430         
1431         for (i = 0; i < BH_LRU_SIZE; i++) {
1432                 if (b->bhs[i])
1433                         return true;
1434         }
1435
1436         return false;
1437 }
1438
1439 void invalidate_bh_lrus(void)
1440 {
1441         on_each_cpu_cond(has_bh_in_lru, invalidate_bh_lru, NULL, 1);
1442 }
1443 EXPORT_SYMBOL_GPL(invalidate_bh_lrus);
1444
1445 void set_bh_page(struct buffer_head *bh,
1446                 struct page *page, unsigned long offset)
1447 {
1448         bh->b_page = page;
1449         BUG_ON(offset >= PAGE_SIZE);
1450         if (PageHighMem(page))
1451                 /*
1452                  * This catches illegal uses and preserves the offset:
1453                  */
1454                 bh->b_data = (char *)(0 + offset);
1455         else
1456                 bh->b_data = page_address(page) + offset;
1457 }
1458 EXPORT_SYMBOL(set_bh_page);
1459
1460 /*
1461  * Called when truncating a buffer on a page completely.
1462  */
1463
1464 /* Bits that are cleared during an invalidate */
1465 #define BUFFER_FLAGS_DISCARD \
1466         (1 << BH_Mapped | 1 << BH_New | 1 << BH_Req | \
1467          1 << BH_Delay | 1 << BH_Unwritten)
1468
1469 static void discard_buffer(struct buffer_head * bh)
1470 {
1471         unsigned long b_state, b_state_old;
1472
1473         lock_buffer(bh);
1474         clear_buffer_dirty(bh);
1475         bh->b_bdev = NULL;
1476         b_state = bh->b_state;
1477         for (;;) {
1478                 b_state_old = cmpxchg(&bh->b_state, b_state,
1479                                       (b_state & ~BUFFER_FLAGS_DISCARD));
1480                 if (b_state_old == b_state)
1481                         break;
1482                 b_state = b_state_old;
1483         }
1484         unlock_buffer(bh);
1485 }
1486
1487 /**
1488  * block_invalidatepage - invalidate part or all of a buffer-backed page
1489  *
1490  * @page: the page which is affected
1491  * @offset: start of the range to invalidate
1492  * @length: length of the range to invalidate
1493  *
1494  * block_invalidatepage() is called when all or part of the page has become
1495  * invalidated by a truncate operation.
1496  *
1497  * block_invalidatepage() does not have to release all buffers, but it must
1498  * ensure that no dirty buffer is left outside @offset and that no I/O
1499  * is underway against any of the blocks which are outside the truncation
1500  * point.  Because the caller is about to free (and possibly reuse) those
1501  * blocks on-disk.
1502  */
1503 void block_invalidatepage(struct page *page, unsigned int offset,
1504                           unsigned int length)
1505 {
1506         struct buffer_head *head, *bh, *next;
1507         unsigned int curr_off = 0;
1508         unsigned int stop = length + offset;
1509
1510         BUG_ON(!PageLocked(page));
1511         if (!page_has_buffers(page))
1512                 goto out;
1513
1514         /*
1515          * Check for overflow
1516          */
1517         BUG_ON(stop > PAGE_SIZE || stop < length);
1518
1519         head = page_buffers(page);
1520         bh = head;
1521         do {
1522                 unsigned int next_off = curr_off + bh->b_size;
1523                 next = bh->b_this_page;
1524
1525                 /*
1526                  * Are we still fully in range ?
1527                  */
1528                 if (next_off > stop)
1529                         goto out;
1530
1531                 /*
1532                  * is this block fully invalidated?
1533                  */
1534                 if (offset <= curr_off)
1535                         discard_buffer(bh);
1536                 curr_off = next_off;
1537                 bh = next;
1538         } while (bh != head);
1539
1540         /*
1541          * We release buffers only if the entire page is being invalidated.
1542          * The get_block cached value has been unconditionally invalidated,
1543          * so real IO is not possible anymore.
1544          */
1545         if (length == PAGE_SIZE)
1546                 try_to_release_page(page, 0);
1547 out:
1548         return;
1549 }
1550 EXPORT_SYMBOL(block_invalidatepage);
1551
1552
1553 /*
1554  * We attach and possibly dirty the buffers atomically wrt
1555  * __set_page_dirty_buffers() via private_lock.  try_to_free_buffers
1556  * is already excluded via the page lock.
1557  */
1558 void create_empty_buffers(struct page *page,
1559                         unsigned long blocksize, unsigned long b_state)
1560 {
1561         struct buffer_head *bh, *head, *tail;
1562
1563         head = alloc_page_buffers(page, blocksize, true);
1564         bh = head;
1565         do {
1566                 bh->b_state |= b_state;
1567                 tail = bh;
1568                 bh = bh->b_this_page;
1569         } while (bh);
1570         tail->b_this_page = head;
1571
1572         spin_lock(&page->mapping->private_lock);
1573         if (PageUptodate(page) || PageDirty(page)) {
1574                 bh = head;
1575                 do {
1576                         if (PageDirty(page))
1577                                 set_buffer_dirty(bh);
1578                         if (PageUptodate(page))
1579                                 set_buffer_uptodate(bh);
1580                         bh = bh->b_this_page;
1581                 } while (bh != head);
1582         }
1583         attach_page_buffers(page, head);
1584         spin_unlock(&page->mapping->private_lock);
1585 }
1586 EXPORT_SYMBOL(create_empty_buffers);
1587
1588 /**
1589  * clean_bdev_aliases: clean a range of buffers in block device
1590  * @bdev: Block device to clean buffers in
1591  * @block: Start of a range of blocks to clean
1592  * @len: Number of blocks to clean
1593  *
1594  * We are taking a range of blocks for data and we don't want writeback of any
1595  * buffer-cache aliases starting from return from this function and until the
1596  * moment when something will explicitly mark the buffer dirty (hopefully that
1597  * will not happen until we will free that block ;-) We don't even need to mark
1598  * it not-uptodate - nobody can expect anything from a newly allocated buffer
1599  * anyway. We used to use unmap_buffer() for such invalidation, but that was
1600  * wrong. We definitely don't want to mark the alias unmapped, for example - it
1601  * would confuse anyone who might pick it with bread() afterwards...
1602  *
1603  * Also..  Note that bforget() doesn't lock the buffer.  So there can be
1604  * writeout I/O going on against recently-freed buffers.  We don't wait on that
1605  * I/O in bforget() - it's more efficient to wait on the I/O only if we really
1606  * need to.  That happens here.
1607  */
1608 void clean_bdev_aliases(struct block_device *bdev, sector_t block, sector_t len)
1609 {
1610         struct inode *bd_inode = bdev->bd_inode;
1611         struct address_space *bd_mapping = bd_inode->i_mapping;
1612         struct pagevec pvec;
1613         pgoff_t index = block >> (PAGE_SHIFT - bd_inode->i_blkbits);
1614         pgoff_t end;
1615         int i, count;
1616         struct buffer_head *bh;
1617         struct buffer_head *head;
1618
1619         end = (block + len - 1) >> (PAGE_SHIFT - bd_inode->i_blkbits);
1620         pagevec_init(&pvec);
1621         while (pagevec_lookup_range(&pvec, bd_mapping, &index, end)) {
1622                 count = pagevec_count(&pvec);
1623                 for (i = 0; i < count; i++) {
1624                         struct page *page = pvec.pages[i];
1625
1626                         if (!page_has_buffers(page))
1627                                 continue;
1628                         /*
1629                          * We use page lock instead of bd_mapping->private_lock
1630                          * to pin buffers here since we can afford to sleep and
1631                          * it scales better than a global spinlock lock.
1632                          */
1633                         lock_page(page);
1634                         /* Recheck when the page is locked which pins bhs */
1635                         if (!page_has_buffers(page))
1636                                 goto unlock_page;
1637                         head = page_buffers(page);
1638                         bh = head;
1639                         do {
1640                                 if (!buffer_mapped(bh) || (bh->b_blocknr < block))
1641                                         goto next;
1642                                 if (bh->b_blocknr >= block + len)
1643                                         break;
1644                                 clear_buffer_dirty(bh);
1645                                 wait_on_buffer(bh);
1646                                 clear_buffer_req(bh);
1647 next:
1648                                 bh = bh->b_this_page;
1649                         } while (bh != head);
1650 unlock_page:
1651                         unlock_page(page);
1652                 }
1653                 pagevec_release(&pvec);
1654                 cond_resched();
1655                 /* End of range already reached? */
1656                 if (index > end || !index)
1657                         break;
1658         }
1659 }
1660 EXPORT_SYMBOL(clean_bdev_aliases);
1661
1662 /*
1663  * Size is a power-of-two in the range 512..PAGE_SIZE,
1664  * and the case we care about most is PAGE_SIZE.
1665  *
1666  * So this *could* possibly be written with those
1667  * constraints in mind (relevant mostly if some
1668  * architecture has a slow bit-scan instruction)
1669  */
1670 static inline int block_size_bits(unsigned int blocksize)
1671 {
1672         return ilog2(blocksize);
1673 }
1674
1675 static struct buffer_head *create_page_buffers(struct page *page, struct inode *inode, unsigned int b_state)
1676 {
1677         BUG_ON(!PageLocked(page));
1678
1679         if (!page_has_buffers(page))
1680                 create_empty_buffers(page, 1 << READ_ONCE(inode->i_blkbits),
1681                                      b_state);
1682         return page_buffers(page);
1683 }
1684
1685 /*
1686  * NOTE! All mapped/uptodate combinations are valid:
1687  *
1688  *      Mapped  Uptodate        Meaning
1689  *
1690  *      No      No              "unknown" - must do get_block()
1691  *      No      Yes             "hole" - zero-filled
1692  *      Yes     No              "allocated" - allocated on disk, not read in
1693  *      Yes     Yes             "valid" - allocated and up-to-date in memory.
1694  *
1695  * "Dirty" is valid only with the last case (mapped+uptodate).
1696  */
1697
1698 /*
1699  * While block_write_full_page is writing back the dirty buffers under
1700  * the page lock, whoever dirtied the buffers may decide to clean them
1701  * again at any time.  We handle that by only looking at the buffer
1702  * state inside lock_buffer().
1703  *
1704  * If block_write_full_page() is called for regular writeback
1705  * (wbc->sync_mode == WB_SYNC_NONE) then it will redirty a page which has a
1706  * locked buffer.   This only can happen if someone has written the buffer
1707  * directly, with submit_bh().  At the address_space level PageWriteback
1708  * prevents this contention from occurring.
1709  *
1710  * If block_write_full_page() is called with wbc->sync_mode ==
1711  * WB_SYNC_ALL, the writes are posted using REQ_SYNC; this
1712  * causes the writes to be flagged as synchronous writes.
1713  */
1714 int __block_write_full_page(struct inode *inode, struct page *page,
1715                         get_block_t *get_block, struct writeback_control *wbc,
1716                         bh_end_io_t *handler)
1717 {
1718         int err;
1719         sector_t block;
1720         sector_t last_block;
1721         struct buffer_head *bh, *head;
1722         unsigned int blocksize, bbits;
1723         int nr_underway = 0;
1724         int write_flags = wbc_to_write_flags(wbc);
1725
1726         head = create_page_buffers(page, inode,
1727                                         (1 << BH_Dirty)|(1 << BH_Uptodate));
1728
1729         /*
1730          * Be very careful.  We have no exclusion from __set_page_dirty_buffers
1731          * here, and the (potentially unmapped) buffers may become dirty at
1732          * any time.  If a buffer becomes dirty here after we've inspected it
1733          * then we just miss that fact, and the page stays dirty.
1734          *
1735          * Buffers outside i_size may be dirtied by __set_page_dirty_buffers;
1736          * handle that here by just cleaning them.
1737          */
1738
1739         bh = head;
1740         blocksize = bh->b_size;
1741         bbits = block_size_bits(blocksize);
1742
1743         block = (sector_t)page->index << (PAGE_SHIFT - bbits);
1744         last_block = (i_size_read(inode) - 1) >> bbits;
1745
1746         /*
1747          * Get all the dirty buffers mapped to disk addresses and
1748          * handle any aliases from the underlying blockdev's mapping.
1749          */
1750         do {
1751                 if (block > last_block) {
1752                         /*
1753                          * mapped buffers outside i_size will occur, because
1754                          * this page can be outside i_size when there is a
1755                          * truncate in progress.
1756                          */
1757                         /*
1758                          * The buffer was zeroed by block_write_full_page()
1759                          */
1760                         clear_buffer_dirty(bh);
1761                         set_buffer_uptodate(bh);
1762                 } else if ((!buffer_mapped(bh) || buffer_delay(bh)) &&
1763                            buffer_dirty(bh)) {
1764                         WARN_ON(bh->b_size != blocksize);
1765                         err = get_block(inode, block, bh, 1);
1766                         if (err)
1767                                 goto recover;
1768                         clear_buffer_delay(bh);
1769                         if (buffer_new(bh)) {
1770                                 /* blockdev mappings never come here */
1771                                 clear_buffer_new(bh);
1772                                 clean_bdev_bh_alias(bh);
1773                         }
1774                 }
1775                 bh = bh->b_this_page;
1776                 block++;
1777         } while (bh != head);
1778
1779         do {
1780                 if (!buffer_mapped(bh))
1781                         continue;
1782                 /*
1783                  * If it's a fully non-blocking write attempt and we cannot
1784                  * lock the buffer then redirty the page.  Note that this can
1785                  * potentially cause a busy-wait loop from writeback threads
1786                  * and kswapd activity, but those code paths have their own
1787                  * higher-level throttling.
1788                  */
1789                 if (wbc->sync_mode != WB_SYNC_NONE) {
1790                         lock_buffer(bh);
1791                 } else if (!trylock_buffer(bh)) {
1792                         redirty_page_for_writepage(wbc, page);
1793                         continue;
1794                 }
1795                 if (test_clear_buffer_dirty(bh)) {
1796                         mark_buffer_async_write_endio(bh, handler);
1797                 } else {
1798                         unlock_buffer(bh);
1799                 }
1800         } while ((bh = bh->b_this_page) != head);
1801
1802         /*
1803          * The page and its buffers are protected by PageWriteback(), so we can
1804          * drop the bh refcounts early.
1805          */
1806         BUG_ON(PageWriteback(page));
1807         set_page_writeback(page);
1808
1809         do {
1810                 struct buffer_head *next = bh->b_this_page;
1811                 if (buffer_async_write(bh)) {
1812                         submit_bh_wbc(REQ_OP_WRITE, write_flags, bh,
1813                                         inode->i_write_hint, wbc);
1814                         nr_underway++;
1815                 }
1816                 bh = next;
1817         } while (bh != head);
1818         unlock_page(page);
1819
1820         err = 0;
1821 done:
1822         if (nr_underway == 0) {
1823                 /*
1824                  * The page was marked dirty, but the buffers were
1825                  * clean.  Someone wrote them back by hand with
1826                  * ll_rw_block/submit_bh.  A rare case.
1827                  */
1828                 end_page_writeback(page);
1829
1830                 /*
1831                  * The page and buffer_heads can be released at any time from
1832                  * here on.
1833                  */
1834         }
1835         return err;
1836
1837 recover:
1838         /*
1839          * ENOSPC, or some other error.  We may already have added some
1840          * blocks to the file, so we need to write these out to avoid
1841          * exposing stale data.
1842          * The page is currently locked and not marked for writeback
1843          */
1844         bh = head;
1845         /* Recovery: lock and submit the mapped buffers */
1846         do {
1847                 if (buffer_mapped(bh) && buffer_dirty(bh) &&
1848                     !buffer_delay(bh)) {
1849                         lock_buffer(bh);
1850                         mark_buffer_async_write_endio(bh, handler);
1851                 } else {
1852                         /*
1853                          * The buffer may have been set dirty during
1854                          * attachment to a dirty page.
1855                          */
1856                         clear_buffer_dirty(bh);
1857                 }
1858         } while ((bh = bh->b_this_page) != head);
1859         SetPageError(page);
1860         BUG_ON(PageWriteback(page));
1861         mapping_set_error(page->mapping, err);
1862         set_page_writeback(page);
1863         do {
1864                 struct buffer_head *next = bh->b_this_page;
1865                 if (buffer_async_write(bh)) {
1866                         clear_buffer_dirty(bh);
1867                         submit_bh_wbc(REQ_OP_WRITE, write_flags, bh,
1868                                         inode->i_write_hint, wbc);
1869                         nr_underway++;
1870                 }
1871                 bh = next;
1872         } while (bh != head);
1873         unlock_page(page);
1874         goto done;
1875 }
1876 EXPORT_SYMBOL(__block_write_full_page);
1877
1878 /*
1879  * If a page has any new buffers, zero them out here, and mark them uptodate
1880  * and dirty so they'll be written out (in order to prevent uninitialised
1881  * block data from leaking). And clear the new bit.
1882  */
1883 void page_zero_new_buffers(struct page *page, unsigned from, unsigned to)
1884 {
1885         unsigned int block_start, block_end;
1886         struct buffer_head *head, *bh;
1887
1888         BUG_ON(!PageLocked(page));
1889         if (!page_has_buffers(page))
1890                 return;
1891
1892         bh = head = page_buffers(page);
1893         block_start = 0;
1894         do {
1895                 block_end = block_start + bh->b_size;
1896
1897                 if (buffer_new(bh)) {
1898                         if (block_end > from && block_start < to) {
1899                                 if (!PageUptodate(page)) {
1900                                         unsigned start, size;
1901
1902                                         start = max(from, block_start);
1903                                         size = min(to, block_end) - start;
1904
1905                                         zero_user(page, start, size);
1906                                         set_buffer_uptodate(bh);
1907                                 }
1908
1909                                 clear_buffer_new(bh);
1910                                 mark_buffer_dirty(bh);
1911                         }
1912                 }
1913
1914                 block_start = block_end;
1915                 bh = bh->b_this_page;
1916         } while (bh != head);
1917 }
1918 EXPORT_SYMBOL(page_zero_new_buffers);
1919
1920 static void
1921 iomap_to_bh(struct inode *inode, sector_t block, struct buffer_head *bh,
1922                 struct iomap *iomap)
1923 {
1924         loff_t offset = block << inode->i_blkbits;
1925
1926         bh->b_bdev = iomap->bdev;
1927
1928         /*
1929          * Block points to offset in file we need to map, iomap contains
1930          * the offset at which the map starts. If the map ends before the
1931          * current block, then do not map the buffer and let the caller
1932          * handle it.
1933          */
1934         BUG_ON(offset >= iomap->offset + iomap->length);
1935
1936         switch (iomap->type) {
1937         case IOMAP_HOLE:
1938                 /*
1939                  * If the buffer is not up to date or beyond the current EOF,
1940                  * we need to mark it as new to ensure sub-block zeroing is
1941                  * executed if necessary.
1942                  */
1943                 if (!buffer_uptodate(bh) ||
1944                     (offset >= i_size_read(inode)))
1945                         set_buffer_new(bh);
1946                 break;
1947         case IOMAP_DELALLOC:
1948                 if (!buffer_uptodate(bh) ||
1949                     (offset >= i_size_read(inode)))
1950                         set_buffer_new(bh);
1951                 set_buffer_uptodate(bh);
1952                 set_buffer_mapped(bh);
1953                 set_buffer_delay(bh);
1954                 break;
1955         case IOMAP_UNWRITTEN:
1956                 /*
1957                  * For unwritten regions, we always need to ensure that regions
1958                  * in the block we are not writing to are zeroed. Mark the
1959                  * buffer as new to ensure this.
1960                  */
1961                 set_buffer_new(bh);
1962                 set_buffer_unwritten(bh);
1963                 /* FALLTHRU */
1964         case IOMAP_MAPPED:
1965                 if ((iomap->flags & IOMAP_F_NEW) ||
1966                     offset >= i_size_read(inode))
1967                         set_buffer_new(bh);
1968                 bh->b_blocknr = (iomap->addr + offset - iomap->offset) >>
1969                                 inode->i_blkbits;
1970                 set_buffer_mapped(bh);
1971                 break;
1972         }
1973 }
1974
1975 int __block_write_begin_int(struct page *page, loff_t pos, unsigned len,
1976                 get_block_t *get_block, struct iomap *iomap)
1977 {
1978         unsigned from = pos & (PAGE_SIZE - 1);
1979         unsigned to = from + len;
1980         struct inode *inode = page->mapping->host;
1981         unsigned block_start, block_end;
1982         sector_t block;
1983         int err = 0;
1984         unsigned blocksize, bbits;
1985         struct buffer_head *bh, *head, *wait[2], **wait_bh=wait;
1986
1987         BUG_ON(!PageLocked(page));
1988         BUG_ON(from > PAGE_SIZE);
1989         BUG_ON(to > PAGE_SIZE);
1990         BUG_ON(from > to);
1991
1992         head = create_page_buffers(page, inode, 0);
1993         blocksize = head->b_size;
1994         bbits = block_size_bits(blocksize);
1995
1996         block = (sector_t)page->index << (PAGE_SHIFT - bbits);
1997
1998         for(bh = head, block_start = 0; bh != head || !block_start;
1999             block++, block_start=block_end, bh = bh->b_this_page) {
2000                 block_end = block_start + blocksize;
2001                 if (block_end <= from || block_start >= to) {
2002                         if (PageUptodate(page)) {
2003                                 if (!buffer_uptodate(bh))
2004                                         set_buffer_uptodate(bh);
2005                         }
2006                         continue;
2007                 }
2008                 if (buffer_new(bh))
2009                         clear_buffer_new(bh);
2010                 if (!buffer_mapped(bh)) {
2011                         WARN_ON(bh->b_size != blocksize);
2012                         if (get_block) {
2013                                 err = get_block(inode, block, bh, 1);
2014                                 if (err)
2015                                         break;
2016                         } else {
2017                                 iomap_to_bh(inode, block, bh, iomap);
2018                         }
2019
2020                         if (buffer_new(bh)) {
2021                                 clean_bdev_bh_alias(bh);
2022                                 if (PageUptodate(page)) {
2023                                         clear_buffer_new(bh);
2024                                         set_buffer_uptodate(bh);
2025                                         mark_buffer_dirty(bh);
2026                                         continue;
2027                                 }
2028                                 if (block_end > to || block_start < from)
2029                                         zero_user_segments(page,
2030                                                 to, block_end,
2031                                                 block_start, from);
2032                                 continue;
2033                         }
2034                 }
2035                 if (PageUptodate(page)) {
2036                         if (!buffer_uptodate(bh))
2037                                 set_buffer_uptodate(bh);
2038                         continue; 
2039                 }
2040                 if (!buffer_uptodate(bh) && !buffer_delay(bh) &&
2041                     !buffer_unwritten(bh) &&
2042                      (block_start < from || block_end > to)) {
2043                         ll_rw_block(REQ_OP_READ, 0, 1, &bh);
2044                         *wait_bh++=bh;
2045                 }
2046         }
2047         /*
2048          * If we issued read requests - let them complete.
2049          */
2050         while(wait_bh > wait) {
2051                 wait_on_buffer(*--wait_bh);
2052                 if (!buffer_uptodate(*wait_bh))
2053                         err = -EIO;
2054         }
2055         if (unlikely(err))
2056                 page_zero_new_buffers(page, from, to);
2057         return err;
2058 }
2059
2060 int __block_write_begin(struct page *page, loff_t pos, unsigned len,
2061                 get_block_t *get_block)
2062 {
2063         return __block_write_begin_int(page, pos, len, get_block, NULL);
2064 }
2065 EXPORT_SYMBOL(__block_write_begin);
2066
2067 static int __block_commit_write(struct inode *inode, struct page *page,
2068                 unsigned from, unsigned to)
2069 {
2070         unsigned block_start, block_end;
2071         int partial = 0;
2072         unsigned blocksize;
2073         struct buffer_head *bh, *head;
2074
2075         bh = head = page_buffers(page);
2076         blocksize = bh->b_size;
2077
2078         block_start = 0;
2079         do {
2080                 block_end = block_start + blocksize;
2081                 if (block_end <= from || block_start >= to) {
2082                         if (!buffer_uptodate(bh))
2083                                 partial = 1;
2084                 } else {
2085                         set_buffer_uptodate(bh);
2086                         mark_buffer_dirty(bh);
2087                 }
2088                 clear_buffer_new(bh);
2089
2090                 block_start = block_end;
2091                 bh = bh->b_this_page;
2092         } while (bh != head);
2093
2094         /*
2095          * If this is a partial write which happened to make all buffers
2096          * uptodate then we can optimize away a bogus readpage() for
2097          * the next read(). Here we 'discover' whether the page went
2098          * uptodate as a result of this (potentially partial) write.
2099          */
2100         if (!partial)
2101                 SetPageUptodate(page);
2102         return 0;
2103 }
2104
2105 /*
2106  * block_write_begin takes care of the basic task of block allocation and
2107  * bringing partial write blocks uptodate first.
2108  *
2109  * The filesystem needs to handle block truncation upon failure.
2110  */
2111 int block_write_begin(struct address_space *mapping, loff_t pos, unsigned len,
2112                 unsigned flags, struct page **pagep, get_block_t *get_block)
2113 {
2114         pgoff_t index = pos >> PAGE_SHIFT;
2115         struct page *page;
2116         int status;
2117
2118         page = grab_cache_page_write_begin(mapping, index, flags);
2119         if (!page)
2120                 return -ENOMEM;
2121
2122         status = __block_write_begin(page, pos, len, get_block);
2123         if (unlikely(status)) {
2124                 unlock_page(page);
2125                 put_page(page);
2126                 page = NULL;
2127         }
2128
2129         *pagep = page;
2130         return status;
2131 }
2132 EXPORT_SYMBOL(block_write_begin);
2133
2134 int block_write_end(struct file *file, struct address_space *mapping,
2135                         loff_t pos, unsigned len, unsigned copied,
2136                         struct page *page, void *fsdata)
2137 {
2138         struct inode *inode = mapping->host;
2139         unsigned start;
2140
2141         start = pos & (PAGE_SIZE - 1);
2142
2143         if (unlikely(copied < len)) {
2144                 /*
2145                  * The buffers that were written will now be uptodate, so we
2146                  * don't have to worry about a readpage reading them and
2147                  * overwriting a partial write. However if we have encountered
2148                  * a short write and only partially written into a buffer, it
2149                  * will not be marked uptodate, so a readpage might come in and
2150                  * destroy our partial write.
2151                  *
2152                  * Do the simplest thing, and just treat any short write to a
2153                  * non uptodate page as a zero-length write, and force the
2154                  * caller to redo the whole thing.
2155                  */
2156                 if (!PageUptodate(page))
2157                         copied = 0;
2158
2159                 page_zero_new_buffers(page, start+copied, start+len);
2160         }
2161         flush_dcache_page(page);
2162
2163         /* This could be a short (even 0-length) commit */
2164         __block_commit_write(inode, page, start, start+copied);
2165
2166         return copied;
2167 }
2168 EXPORT_SYMBOL(block_write_end);
2169
2170 int generic_write_end(struct file *file, struct address_space *mapping,
2171                         loff_t pos, unsigned len, unsigned copied,
2172                         struct page *page, void *fsdata)
2173 {
2174         struct inode *inode = mapping->host;
2175         loff_t old_size = inode->i_size;
2176         bool i_size_changed = false;
2177
2178         copied = block_write_end(file, mapping, pos, len, copied, page, fsdata);
2179
2180         /*
2181          * No need to use i_size_read() here, the i_size cannot change under us
2182          * because we hold i_rwsem.
2183          *
2184          * But it's important to update i_size while still holding page lock:
2185          * page writeout could otherwise come in and zero beyond i_size.
2186          */
2187         if (pos + copied > inode->i_size) {
2188                 i_size_write(inode, pos + copied);
2189                 i_size_changed = true;
2190         }
2191
2192         unlock_page(page);
2193         put_page(page);
2194
2195         if (old_size < pos)
2196                 pagecache_isize_extended(inode, old_size, pos);
2197         /*
2198          * Don't mark the inode dirty under page lock. First, it unnecessarily
2199          * makes the holding time of page lock longer. Second, it forces lock
2200          * ordering of page lock and transaction start for journaling
2201          * filesystems.
2202          */
2203         if (i_size_changed)
2204                 mark_inode_dirty(inode);
2205         return copied;
2206 }
2207 EXPORT_SYMBOL(generic_write_end);
2208
2209 /*
2210  * block_is_partially_uptodate checks whether buffers within a page are
2211  * uptodate or not.
2212  *
2213  * Returns true if all buffers which correspond to a file portion
2214  * we want to read are uptodate.
2215  */
2216 int block_is_partially_uptodate(struct page *page, unsigned long from,
2217                                         unsigned long count)
2218 {
2219         unsigned block_start, block_end, blocksize;
2220         unsigned to;
2221         struct buffer_head *bh, *head;
2222         int ret = 1;
2223
2224         if (!page_has_buffers(page))
2225                 return 0;
2226
2227         head = page_buffers(page);
2228         blocksize = head->b_size;
2229         to = min_t(unsigned, PAGE_SIZE - from, count);
2230         to = from + to;
2231         if (from < blocksize && to > PAGE_SIZE - blocksize)
2232                 return 0;
2233
2234         bh = head;
2235         block_start = 0;
2236         do {
2237                 block_end = block_start + blocksize;
2238                 if (block_end > from && block_start < to) {
2239                         if (!buffer_uptodate(bh)) {
2240                                 ret = 0;
2241                                 break;
2242                         }
2243                         if (block_end >= to)
2244                                 break;
2245                 }
2246                 block_start = block_end;
2247                 bh = bh->b_this_page;
2248         } while (bh != head);
2249
2250         return ret;
2251 }
2252 EXPORT_SYMBOL(block_is_partially_uptodate);
2253
2254 /*
2255  * Generic "read page" function for block devices that have the normal
2256  * get_block functionality. This is most of the block device filesystems.
2257  * Reads the page asynchronously --- the unlock_buffer() and
2258  * set/clear_buffer_uptodate() functions propagate buffer state into the
2259  * page struct once IO has completed.
2260  */
2261 int block_read_full_page(struct page *page, get_block_t *get_block)
2262 {
2263         struct inode *inode = page->mapping->host;
2264         sector_t iblock, lblock;
2265         struct buffer_head *bh, *head, *arr[MAX_BUF_PER_PAGE];
2266         unsigned int blocksize, bbits;
2267         int nr, i;
2268         int fully_mapped = 1;
2269
2270         head = create_page_buffers(page, inode, 0);
2271         blocksize = head->b_size;
2272         bbits = block_size_bits(blocksize);
2273
2274         iblock = (sector_t)page->index << (PAGE_SHIFT - bbits);
2275         lblock = (i_size_read(inode)+blocksize-1) >> bbits;
2276         bh = head;
2277         nr = 0;
2278         i = 0;
2279
2280         do {
2281                 if (buffer_uptodate(bh))
2282                         continue;
2283
2284                 if (!buffer_mapped(bh)) {
2285                         int err = 0;
2286
2287                         fully_mapped = 0;
2288                         if (iblock < lblock) {
2289                                 WARN_ON(bh->b_size != blocksize);
2290                                 err = get_block(inode, iblock, bh, 0);
2291                                 if (err)
2292                                         SetPageError(page);
2293                         }
2294                         if (!buffer_mapped(bh)) {
2295                                 zero_user(page, i * blocksize, blocksize);
2296                                 if (!err)
2297                                         set_buffer_uptodate(bh);
2298                                 continue;
2299                         }
2300                         /*
2301                          * get_block() might have updated the buffer
2302                          * synchronously
2303                          */
2304                         if (buffer_uptodate(bh))
2305                                 continue;
2306                 }
2307                 arr[nr++] = bh;
2308         } while (i++, iblock++, (bh = bh->b_this_page) != head);
2309
2310         if (fully_mapped)
2311                 SetPageMappedToDisk(page);
2312
2313         if (!nr) {
2314                 /*
2315                  * All buffers are uptodate - we can set the page uptodate
2316                  * as well. But not if get_block() returned an error.
2317                  */
2318                 if (!PageError(page))
2319                         SetPageUptodate(page);
2320                 unlock_page(page);
2321                 return 0;
2322         }
2323
2324         /* Stage two: lock the buffers */
2325         for (i = 0; i < nr; i++) {
2326                 bh = arr[i];
2327                 lock_buffer(bh);
2328                 mark_buffer_async_read(bh);
2329         }
2330
2331         /*
2332          * Stage 3: start the IO.  Check for uptodateness
2333          * inside the buffer lock in case another process reading
2334          * the underlying blockdev brought it uptodate (the sct fix).
2335          */
2336         for (i = 0; i < nr; i++) {
2337                 bh = arr[i];
2338                 if (buffer_uptodate(bh))
2339                         end_buffer_async_read(bh, 1);
2340                 else
2341                         submit_bh(REQ_OP_READ, 0, bh);
2342         }
2343         return 0;
2344 }
2345 EXPORT_SYMBOL(block_read_full_page);
2346
2347 /* utility function for filesystems that need to do work on expanding
2348  * truncates.  Uses filesystem pagecache writes to allow the filesystem to
2349  * deal with the hole.  
2350  */
2351 int generic_cont_expand_simple(struct inode *inode, loff_t size)
2352 {
2353         struct address_space *mapping = inode->i_mapping;
2354         struct page *page;
2355         void *fsdata;
2356         int err;
2357
2358         err = inode_newsize_ok(inode, size);
2359         if (err)
2360                 goto out;
2361
2362         err = pagecache_write_begin(NULL, mapping, size, 0,
2363                                     AOP_FLAG_CONT_EXPAND, &page, &fsdata);
2364         if (err)
2365                 goto out;
2366
2367         err = pagecache_write_end(NULL, mapping, size, 0, 0, page, fsdata);
2368         BUG_ON(err > 0);
2369
2370 out:
2371         return err;
2372 }
2373 EXPORT_SYMBOL(generic_cont_expand_simple);
2374
2375 static int cont_expand_zero(struct file *file, struct address_space *mapping,
2376                             loff_t pos, loff_t *bytes)
2377 {
2378         struct inode *inode = mapping->host;
2379         unsigned int blocksize = i_blocksize(inode);
2380         struct page *page;
2381         void *fsdata;
2382         pgoff_t index, curidx;
2383         loff_t curpos;
2384         unsigned zerofrom, offset, len;
2385         int err = 0;
2386
2387         index = pos >> PAGE_SHIFT;
2388         offset = pos & ~PAGE_MASK;
2389
2390         while (index > (curidx = (curpos = *bytes)>>PAGE_SHIFT)) {
2391                 zerofrom = curpos & ~PAGE_MASK;
2392                 if (zerofrom & (blocksize-1)) {
2393                         *bytes |= (blocksize-1);
2394                         (*bytes)++;
2395                 }
2396                 len = PAGE_SIZE - zerofrom;
2397
2398                 err = pagecache_write_begin(file, mapping, curpos, len, 0,
2399                                             &page, &fsdata);
2400                 if (err)
2401                         goto out;
2402                 zero_user(page, zerofrom, len);
2403                 err = pagecache_write_end(file, mapping, curpos, len, len,
2404                                                 page, fsdata);
2405                 if (err < 0)
2406                         goto out;
2407                 BUG_ON(err != len);
2408                 err = 0;
2409
2410                 balance_dirty_pages_ratelimited(mapping);
2411
2412                 if (fatal_signal_pending(current)) {
2413                         err = -EINTR;
2414                         goto out;
2415                 }
2416         }
2417
2418         /* page covers the boundary, find the boundary offset */
2419         if (index == curidx) {
2420                 zerofrom = curpos & ~PAGE_MASK;
2421                 /* if we will expand the thing last block will be filled */
2422                 if (offset <= zerofrom) {
2423                         goto out;
2424                 }
2425                 if (zerofrom & (blocksize-1)) {
2426                         *bytes |= (blocksize-1);
2427                         (*bytes)++;
2428                 }
2429                 len = offset - zerofrom;
2430
2431                 err = pagecache_write_begin(file, mapping, curpos, len, 0,
2432                                             &page, &fsdata);
2433                 if (err)
2434                         goto out;
2435                 zero_user(page, zerofrom, len);
2436                 err = pagecache_write_end(file, mapping, curpos, len, len,
2437                                                 page, fsdata);
2438                 if (err < 0)
2439                         goto out;
2440                 BUG_ON(err != len);
2441                 err = 0;
2442         }
2443 out:
2444         return err;
2445 }
2446
2447 /*
2448  * For moronic filesystems that do not allow holes in file.
2449  * We may have to extend the file.
2450  */
2451 int cont_write_begin(struct file *file, struct address_space *mapping,
2452                         loff_t pos, unsigned len, unsigned flags,
2453                         struct page **pagep, void **fsdata,
2454                         get_block_t *get_block, loff_t *bytes)
2455 {
2456         struct inode *inode = mapping->host;
2457         unsigned int blocksize = i_blocksize(inode);
2458         unsigned int zerofrom;
2459         int err;
2460
2461         err = cont_expand_zero(file, mapping, pos, bytes);
2462         if (err)
2463                 return err;
2464
2465         zerofrom = *bytes & ~PAGE_MASK;
2466         if (pos+len > *bytes && zerofrom & (blocksize-1)) {
2467                 *bytes |= (blocksize-1);
2468                 (*bytes)++;
2469         }
2470
2471         return block_write_begin(mapping, pos, len, flags, pagep, get_block);
2472 }
2473 EXPORT_SYMBOL(cont_write_begin);
2474
2475 int block_commit_write(struct page *page, unsigned from, unsigned to)
2476 {
2477         struct inode *inode = page->mapping->host;
2478         __block_commit_write(inode,page,from,to);
2479         return 0;
2480 }
2481 EXPORT_SYMBOL(block_commit_write);
2482
2483 /*
2484  * block_page_mkwrite() is not allowed to change the file size as it gets
2485  * called from a page fault handler when a page is first dirtied. Hence we must
2486  * be careful to check for EOF conditions here. We set the page up correctly
2487  * for a written page which means we get ENOSPC checking when writing into
2488  * holes and correct delalloc and unwritten extent mapping on filesystems that
2489  * support these features.
2490  *
2491  * We are not allowed to take the i_mutex here so we have to play games to
2492  * protect against truncate races as the page could now be beyond EOF.  Because
2493  * truncate writes the inode size before removing pages, once we have the
2494  * page lock we can determine safely if the page is beyond EOF. If it is not
2495  * beyond EOF, then the page is guaranteed safe against truncation until we
2496  * unlock the page.
2497  *
2498  * Direct callers of this function should protect against filesystem freezing
2499  * using sb_start_pagefault() - sb_end_pagefault() functions.
2500  */
2501 int block_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf,
2502                          get_block_t get_block)
2503 {
2504         struct page *page = vmf->page;
2505         struct inode *inode = file_inode(vma->vm_file);
2506         unsigned long end;
2507         loff_t size;
2508         int ret;
2509
2510         lock_page(page);
2511         size = i_size_read(inode);
2512         if ((page->mapping != inode->i_mapping) ||
2513             (page_offset(page) > size)) {
2514                 /* We overload EFAULT to mean page got truncated */
2515                 ret = -EFAULT;
2516                 goto out_unlock;
2517         }
2518
2519         /* page is wholly or partially inside EOF */
2520         if (((page->index + 1) << PAGE_SHIFT) > size)
2521                 end = size & ~PAGE_MASK;
2522         else
2523                 end = PAGE_SIZE;
2524
2525         ret = __block_write_begin(page, 0, end, get_block);
2526         if (!ret)
2527                 ret = block_commit_write(page, 0, end);
2528
2529         if (unlikely(ret < 0))
2530                 goto out_unlock;
2531         set_page_dirty(page);
2532         wait_for_stable_page(page);
2533         return 0;
2534 out_unlock:
2535         unlock_page(page);
2536         return ret;
2537 }
2538 EXPORT_SYMBOL(block_page_mkwrite);
2539
2540 /*
2541  * nobh_write_begin()'s prereads are special: the buffer_heads are freed
2542  * immediately, while under the page lock.  So it needs a special end_io
2543  * handler which does not touch the bh after unlocking it.
2544  */
2545 static void end_buffer_read_nobh(struct buffer_head *bh, int uptodate)
2546 {
2547         __end_buffer_read_notouch(bh, uptodate);
2548 }
2549
2550 /*
2551  * Attach the singly-linked list of buffers created by nobh_write_begin, to
2552  * the page (converting it to circular linked list and taking care of page
2553  * dirty races).
2554  */
2555 static void attach_nobh_buffers(struct page *page, struct buffer_head *head)
2556 {
2557         struct buffer_head *bh;
2558
2559         BUG_ON(!PageLocked(page));
2560
2561         spin_lock(&page->mapping->private_lock);
2562         bh = head;
2563         do {
2564                 if (PageDirty(page))
2565                         set_buffer_dirty(bh);
2566                 if (!bh->b_this_page)
2567                         bh->b_this_page = head;
2568                 bh = bh->b_this_page;
2569         } while (bh != head);
2570         attach_page_buffers(page, head);
2571         spin_unlock(&page->mapping->private_lock);
2572 }
2573
2574 /*
2575  * On entry, the page is fully not uptodate.
2576  * On exit the page is fully uptodate in the areas outside (from,to)
2577  * The filesystem needs to handle block truncation upon failure.
2578  */
2579 int nobh_write_begin(struct address_space *mapping,
2580                         loff_t pos, unsigned len, unsigned flags,
2581                         struct page **pagep, void **fsdata,
2582                         get_block_t *get_block)
2583 {
2584         struct inode *inode = mapping->host;
2585         const unsigned blkbits = inode->i_blkbits;
2586         const unsigned blocksize = 1 << blkbits;
2587         struct buffer_head *head, *bh;
2588         struct page *page;
2589         pgoff_t index;
2590         unsigned from, to;
2591         unsigned block_in_page;
2592         unsigned block_start, block_end;
2593         sector_t block_in_file;
2594         int nr_reads = 0;
2595         int ret = 0;
2596         int is_mapped_to_disk = 1;
2597
2598         index = pos >> PAGE_SHIFT;
2599         from = pos & (PAGE_SIZE - 1);
2600         to = from + len;
2601
2602         page = grab_cache_page_write_begin(mapping, index, flags);
2603         if (!page)
2604                 return -ENOMEM;
2605         *pagep = page;
2606         *fsdata = NULL;
2607
2608         if (page_has_buffers(page)) {
2609                 ret = __block_write_begin(page, pos, len, get_block);
2610                 if (unlikely(ret))
2611                         goto out_release;
2612                 return ret;
2613         }
2614
2615         if (PageMappedToDisk(page))
2616                 return 0;
2617
2618         /*
2619          * Allocate buffers so that we can keep track of state, and potentially
2620          * attach them to the page if an error occurs. In the common case of
2621          * no error, they will just be freed again without ever being attached
2622          * to the page (which is all OK, because we're under the page lock).
2623          *
2624          * Be careful: the buffer linked list is a NULL terminated one, rather
2625          * than the circular one we're used to.
2626          */
2627         head = alloc_page_buffers(page, blocksize, false);
2628         if (!head) {
2629                 ret = -ENOMEM;
2630                 goto out_release;
2631         }
2632
2633         block_in_file = (sector_t)page->index << (PAGE_SHIFT - blkbits);
2634
2635         /*
2636          * We loop across all blocks in the page, whether or not they are
2637          * part of the affected region.  This is so we can discover if the
2638          * page is fully mapped-to-disk.
2639          */
2640         for (block_start = 0, block_in_page = 0, bh = head;
2641                   block_start < PAGE_SIZE;
2642                   block_in_page++, block_start += blocksize, bh = bh->b_this_page) {
2643                 int create;
2644
2645                 block_end = block_start + blocksize;
2646                 bh->b_state = 0;
2647                 create = 1;
2648                 if (block_start >= to)
2649                         create = 0;
2650                 ret = get_block(inode, block_in_file + block_in_page,
2651                                         bh, create);
2652                 if (ret)
2653                         goto failed;
2654                 if (!buffer_mapped(bh))
2655                         is_mapped_to_disk = 0;
2656                 if (buffer_new(bh))
2657                         clean_bdev_bh_alias(bh);
2658                 if (PageUptodate(page)) {
2659                         set_buffer_uptodate(bh);
2660                         continue;
2661                 }
2662                 if (buffer_new(bh) || !buffer_mapped(bh)) {
2663                         zero_user_segments(page, block_start, from,
2664                                                         to, block_end);
2665                         continue;
2666                 }
2667                 if (buffer_uptodate(bh))
2668                         continue;       /* reiserfs does this */
2669                 if (block_start < from || block_end > to) {
2670                         lock_buffer(bh);
2671                         bh->b_end_io = end_buffer_read_nobh;
2672                         submit_bh(REQ_OP_READ, 0, bh);
2673                         nr_reads++;
2674                 }
2675         }
2676
2677         if (nr_reads) {
2678                 /*
2679                  * The page is locked, so these buffers are protected from
2680                  * any VM or truncate activity.  Hence we don't need to care
2681                  * for the buffer_head refcounts.
2682                  */
2683                 for (bh = head; bh; bh = bh->b_this_page) {
2684                         wait_on_buffer(bh);
2685                         if (!buffer_uptodate(bh))
2686                                 ret = -EIO;
2687                 }
2688                 if (ret)
2689                         goto failed;
2690         }
2691
2692         if (is_mapped_to_disk)
2693                 SetPageMappedToDisk(page);
2694
2695         *fsdata = head; /* to be released by nobh_write_end */
2696
2697         return 0;
2698
2699 failed:
2700         BUG_ON(!ret);
2701         /*
2702          * Error recovery is a bit difficult. We need to zero out blocks that
2703          * were newly allocated, and dirty them to ensure they get written out.
2704          * Buffers need to be attached to the page at this point, otherwise
2705          * the handling of potential IO errors during writeout would be hard
2706          * (could try doing synchronous writeout, but what if that fails too?)
2707          */
2708         attach_nobh_buffers(page, head);
2709         page_zero_new_buffers(page, from, to);
2710
2711 out_release:
2712         unlock_page(page);
2713         put_page(page);
2714         *pagep = NULL;
2715
2716         return ret;
2717 }
2718 EXPORT_SYMBOL(nobh_write_begin);
2719
2720 int nobh_write_end(struct file *file, struct address_space *mapping,
2721                         loff_t pos, unsigned len, unsigned copied,
2722                         struct page *page, void *fsdata)
2723 {
2724         struct inode *inode = page->mapping->host;
2725         struct buffer_head *head = fsdata;
2726         struct buffer_head *bh;
2727         BUG_ON(fsdata != NULL && page_has_buffers(page));
2728
2729         if (unlikely(copied < len) && head)
2730                 attach_nobh_buffers(page, head);
2731         if (page_has_buffers(page))
2732                 return generic_write_end(file, mapping, pos, len,
2733                                         copied, page, fsdata);
2734
2735         SetPageUptodate(page);
2736         set_page_dirty(page);
2737         if (pos+copied > inode->i_size) {
2738                 i_size_write(inode, pos+copied);
2739                 mark_inode_dirty(inode);
2740         }
2741
2742         unlock_page(page);
2743         put_page(page);
2744
2745         while (head) {
2746                 bh = head;
2747                 head = head->b_this_page;
2748                 free_buffer_head(bh);
2749         }
2750
2751         return copied;
2752 }
2753 EXPORT_SYMBOL(nobh_write_end);
2754
2755 /*
2756  * nobh_writepage() - based on block_full_write_page() except
2757  * that it tries to operate without attaching bufferheads to
2758  * the page.
2759  */
2760 int nobh_writepage(struct page *page, get_block_t *get_block,
2761                         struct writeback_control *wbc)
2762 {
2763         struct inode * const inode = page->mapping->host;
2764         loff_t i_size = i_size_read(inode);
2765         const pgoff_t end_index = i_size >> PAGE_SHIFT;
2766         unsigned offset;
2767         int ret;
2768
2769         /* Is the page fully inside i_size? */
2770         if (page->index < end_index)
2771                 goto out;
2772
2773         /* Is the page fully outside i_size? (truncate in progress) */
2774         offset = i_size & (PAGE_SIZE-1);
2775         if (page->index >= end_index+1 || !offset) {
2776                 /*
2777                  * The page may have dirty, unmapped buffers.  For example,
2778                  * they may have been added in ext3_writepage().  Make them
2779                  * freeable here, so the page does not leak.
2780                  */
2781 #if 0
2782                 /* Not really sure about this  - do we need this ? */
2783                 if (page->mapping->a_ops->invalidatepage)
2784                         page->mapping->a_ops->invalidatepage(page, offset);
2785 #endif
2786                 unlock_page(page);
2787                 return 0; /* don't care */
2788         }
2789
2790         /*
2791          * The page straddles i_size.  It must be zeroed out on each and every
2792          * writepage invocation because it may be mmapped.  "A file is mapped
2793          * in multiples of the page size.  For a file that is not a multiple of
2794          * the  page size, the remaining memory is zeroed when mapped, and
2795          * writes to that region are not written out to the file."
2796          */
2797         zero_user_segment(page, offset, PAGE_SIZE);
2798 out:
2799         ret = mpage_writepage(page, get_block, wbc);
2800         if (ret == -EAGAIN)
2801                 ret = __block_write_full_page(inode, page, get_block, wbc,
2802                                               end_buffer_async_write);
2803         return ret;
2804 }
2805 EXPORT_SYMBOL(nobh_writepage);
2806
2807 int nobh_truncate_page(struct address_space *mapping,
2808                         loff_t from, get_block_t *get_block)
2809 {
2810         pgoff_t index = from >> PAGE_SHIFT;
2811         unsigned offset = from & (PAGE_SIZE-1);
2812         unsigned blocksize;
2813         sector_t iblock;
2814         unsigned length, pos;
2815         struct inode *inode = mapping->host;
2816         struct page *page;
2817         struct buffer_head map_bh;
2818         int err;
2819
2820         blocksize = i_blocksize(inode);
2821         length = offset & (blocksize - 1);
2822
2823         /* Block boundary? Nothing to do */
2824         if (!length)
2825                 return 0;
2826
2827         length = blocksize - length;
2828         iblock = (sector_t)index << (PAGE_SHIFT - inode->i_blkbits);
2829
2830         page = grab_cache_page(mapping, index);
2831         err = -ENOMEM;
2832         if (!page)
2833                 goto out;
2834
2835         if (page_has_buffers(page)) {
2836 has_buffers:
2837                 unlock_page(page);
2838                 put_page(page);
2839                 return block_truncate_page(mapping, from, get_block);
2840         }
2841
2842         /* Find the buffer that contains "offset" */
2843         pos = blocksize;
2844         while (offset >= pos) {
2845                 iblock++;
2846                 pos += blocksize;
2847         }
2848
2849         map_bh.b_size = blocksize;
2850         map_bh.b_state = 0;
2851         err = get_block(inode, iblock, &map_bh, 0);
2852         if (err)
2853                 goto unlock;
2854         /* unmapped? It's a hole - nothing to do */
2855         if (!buffer_mapped(&map_bh))
2856                 goto unlock;
2857
2858         /* Ok, it's mapped. Make sure it's up-to-date */
2859         if (!PageUptodate(page)) {
2860                 err = mapping->a_ops->readpage(NULL, page);
2861                 if (err) {
2862                         put_page(page);
2863                         goto out;
2864                 }
2865                 lock_page(page);
2866                 if (!PageUptodate(page)) {
2867                         err = -EIO;
2868                         goto unlock;
2869                 }
2870                 if (page_has_buffers(page))
2871                         goto has_buffers;
2872         }
2873         zero_user(page, offset, length);
2874         set_page_dirty(page);
2875         err = 0;
2876
2877 unlock:
2878         unlock_page(page);
2879         put_page(page);
2880 out:
2881         return err;
2882 }
2883 EXPORT_SYMBOL(nobh_truncate_page);
2884
2885 int block_truncate_page(struct address_space *mapping,
2886                         loff_t from, get_block_t *get_block)
2887 {
2888         pgoff_t index = from >> PAGE_SHIFT;
2889         unsigned offset = from & (PAGE_SIZE-1);
2890         unsigned blocksize;
2891         sector_t iblock;
2892         unsigned length, pos;
2893         struct inode *inode = mapping->host;
2894         struct page *page;
2895         struct buffer_head *bh;
2896         int err;
2897
2898         blocksize = i_blocksize(inode);
2899         length = offset & (blocksize - 1);
2900
2901         /* Block boundary? Nothing to do */
2902         if (!length)
2903                 return 0;
2904
2905         length = blocksize - length;
2906         iblock = (sector_t)index << (PAGE_SHIFT - inode->i_blkbits);
2907         
2908         page = grab_cache_page(mapping, index);
2909         err = -ENOMEM;
2910         if (!page)
2911                 goto out;
2912
2913         if (!page_has_buffers(page))
2914                 create_empty_buffers(page, blocksize, 0);
2915
2916         /* Find the buffer that contains "offset" */
2917         bh = page_buffers(page);
2918         pos = blocksize;
2919         while (offset >= pos) {
2920                 bh = bh->b_this_page;
2921                 iblock++;
2922                 pos += blocksize;
2923         }
2924
2925         err = 0;
2926         if (!buffer_mapped(bh)) {
2927                 WARN_ON(bh->b_size != blocksize);
2928                 err = get_block(inode, iblock, bh, 0);
2929                 if (err)
2930                         goto unlock;
2931                 /* unmapped? It's a hole - nothing to do */
2932                 if (!buffer_mapped(bh))
2933                         goto unlock;
2934         }
2935
2936         /* Ok, it's mapped. Make sure it's up-to-date */
2937         if (PageUptodate(page))
2938                 set_buffer_uptodate(bh);
2939
2940         if (!buffer_uptodate(bh) && !buffer_delay(bh) && !buffer_unwritten(bh)) {
2941                 err = -EIO;
2942                 ll_rw_block(REQ_OP_READ, 0, 1, &bh);
2943                 wait_on_buffer(bh);
2944                 /* Uhhuh. Read error. Complain and punt. */
2945                 if (!buffer_uptodate(bh))
2946                         goto unlock;
2947         }
2948
2949         zero_user(page, offset, length);
2950         mark_buffer_dirty(bh);
2951         err = 0;
2952
2953 unlock:
2954         unlock_page(page);
2955         put_page(page);
2956 out:
2957         return err;
2958 }
2959 EXPORT_SYMBOL(block_truncate_page);
2960
2961 /*
2962  * The generic ->writepage function for buffer-backed address_spaces
2963  */
2964 int block_write_full_page(struct page *page, get_block_t *get_block,
2965                         struct writeback_control *wbc)
2966 {
2967         struct inode * const inode = page->mapping->host;
2968         loff_t i_size = i_size_read(inode);
2969         const pgoff_t end_index = i_size >> PAGE_SHIFT;
2970         unsigned offset;
2971
2972         /* Is the page fully inside i_size? */
2973         if (page->index < end_index)
2974                 return __block_write_full_page(inode, page, get_block, wbc,
2975                                                end_buffer_async_write);
2976
2977         /* Is the page fully outside i_size? (truncate in progress) */
2978         offset = i_size & (PAGE_SIZE-1);
2979         if (page->index >= end_index+1 || !offset) {
2980                 /*
2981                  * The page may have dirty, unmapped buffers.  For example,
2982                  * they may have been added in ext3_writepage().  Make them
2983                  * freeable here, so the page does not leak.
2984                  */
2985                 do_invalidatepage(page, 0, PAGE_SIZE);
2986                 unlock_page(page);
2987                 return 0; /* don't care */
2988         }
2989
2990         /*
2991          * The page straddles i_size.  It must be zeroed out on each and every
2992          * writepage invocation because it may be mmapped.  "A file is mapped
2993          * in multiples of the page size.  For a file that is not a multiple of
2994          * the  page size, the remaining memory is zeroed when mapped, and
2995          * writes to that region are not written out to the file."
2996          */
2997         zero_user_segment(page, offset, PAGE_SIZE);
2998         return __block_write_full_page(inode, page, get_block, wbc,
2999                                                         end_buffer_async_write);
3000 }
3001 EXPORT_SYMBOL(block_write_full_page);
3002
3003 sector_t generic_block_bmap(struct address_space *mapping, sector_t block,
3004                             get_block_t *get_block)
3005 {
3006         struct inode *inode = mapping->host;
3007         struct buffer_head tmp = {
3008                 .b_size = i_blocksize(inode),
3009         };
3010
3011         get_block(inode, block, &tmp, 0);
3012         return tmp.b_blocknr;
3013 }
3014 EXPORT_SYMBOL(generic_block_bmap);
3015
3016 static void end_bio_bh_io_sync(struct bio *bio)
3017 {
3018         struct buffer_head *bh = bio->bi_private;
3019
3020         if (unlikely(bio_flagged(bio, BIO_QUIET)))
3021                 set_bit(BH_Quiet, &bh->b_state);
3022
3023         bh->b_end_io(bh, !bio->bi_status);
3024         bio_put(bio);
3025 }
3026
3027 static int submit_bh_wbc(int op, int op_flags, struct buffer_head *bh,
3028                          enum rw_hint write_hint, struct writeback_control *wbc)
3029 {
3030         struct bio *bio;
3031
3032         BUG_ON(!buffer_locked(bh));
3033         BUG_ON(!buffer_mapped(bh));
3034         BUG_ON(!bh->b_end_io);
3035         BUG_ON(buffer_delay(bh));
3036         BUG_ON(buffer_unwritten(bh));
3037
3038         /*
3039          * Only clear out a write error when rewriting
3040          */
3041         if (test_set_buffer_req(bh) && (op == REQ_OP_WRITE))
3042                 clear_buffer_write_io_error(bh);
3043
3044         /*
3045          * from here on down, it's all bio -- do the initial mapping,
3046          * submit_bio -> generic_make_request may further map this bio around
3047          */
3048         bio = bio_alloc(GFP_NOIO, 1);
3049
3050         bio->bi_iter.bi_sector = bh->b_blocknr * (bh->b_size >> 9);
3051         bio_set_dev(bio, bh->b_bdev);
3052         bio->bi_write_hint = write_hint;
3053
3054         bio_add_page(bio, bh->b_page, bh->b_size, bh_offset(bh));
3055         BUG_ON(bio->bi_iter.bi_size != bh->b_size);
3056
3057         bio->bi_end_io = end_bio_bh_io_sync;
3058         bio->bi_private = bh;
3059
3060         if (buffer_meta(bh))
3061                 op_flags |= REQ_META;
3062         if (buffer_prio(bh))
3063                 op_flags |= REQ_PRIO;
3064         bio_set_op_attrs(bio, op, op_flags);
3065
3066         /* Take care of bh's that straddle the end of the device */
3067         guard_bio_eod(bio);
3068
3069         if (wbc) {
3070                 wbc_init_bio(wbc, bio);
3071                 wbc_account_cgroup_owner(wbc, bh->b_page, bh->b_size);
3072         }
3073
3074         submit_bio(bio);
3075         return 0;
3076 }
3077
3078 int submit_bh(int op, int op_flags, struct buffer_head *bh)
3079 {
3080         return submit_bh_wbc(op, op_flags, bh, 0, NULL);
3081 }
3082 EXPORT_SYMBOL(submit_bh);
3083
3084 /**
3085  * ll_rw_block: low-level access to block devices (DEPRECATED)
3086  * @op: whether to %READ or %WRITE
3087  * @op_flags: req_flag_bits
3088  * @nr: number of &struct buffer_heads in the array
3089  * @bhs: array of pointers to &struct buffer_head
3090  *
3091  * ll_rw_block() takes an array of pointers to &struct buffer_heads, and
3092  * requests an I/O operation on them, either a %REQ_OP_READ or a %REQ_OP_WRITE.
3093  * @op_flags contains flags modifying the detailed I/O behavior, most notably
3094  * %REQ_RAHEAD.
3095  *
3096  * This function drops any buffer that it cannot get a lock on (with the
3097  * BH_Lock state bit), any buffer that appears to be clean when doing a write
3098  * request, and any buffer that appears to be up-to-date when doing read
3099  * request.  Further it marks as clean buffers that are processed for
3100  * writing (the buffer cache won't assume that they are actually clean
3101  * until the buffer gets unlocked).
3102  *
3103  * ll_rw_block sets b_end_io to simple completion handler that marks
3104  * the buffer up-to-date (if appropriate), unlocks the buffer and wakes
3105  * any waiters. 
3106  *
3107  * All of the buffers must be for the same device, and must also be a
3108  * multiple of the current approved size for the device.
3109  */
3110 void ll_rw_block(int op, int op_flags,  int nr, struct buffer_head *bhs[])
3111 {
3112         int i;
3113
3114         for (i = 0; i < nr; i++) {
3115                 struct buffer_head *bh = bhs[i];
3116
3117                 if (!trylock_buffer(bh))
3118                         continue;
3119                 if (op == WRITE) {
3120                         if (test_clear_buffer_dirty(bh)) {
3121                                 bh->b_end_io = end_buffer_write_sync;
3122                                 get_bh(bh);
3123                                 submit_bh(op, op_flags, bh);
3124                                 continue;
3125                         }
3126                 } else {
3127                         if (!buffer_uptodate(bh)) {
3128                                 bh->b_end_io = end_buffer_read_sync;
3129                                 get_bh(bh);
3130                                 submit_bh(op, op_flags, bh);
3131                                 continue;
3132                         }
3133                 }
3134                 unlock_buffer(bh);
3135         }
3136 }
3137 EXPORT_SYMBOL(ll_rw_block);
3138
3139 void write_dirty_buffer(struct buffer_head *bh, int op_flags)
3140 {
3141         lock_buffer(bh);
3142         if (!test_clear_buffer_dirty(bh)) {
3143                 unlock_buffer(bh);
3144                 return;
3145         }
3146         bh->b_end_io = end_buffer_write_sync;
3147         get_bh(bh);
3148         submit_bh(REQ_OP_WRITE, op_flags, bh);
3149 }
3150 EXPORT_SYMBOL(write_dirty_buffer);
3151
3152 /*
3153  * For a data-integrity writeout, we need to wait upon any in-progress I/O
3154  * and then start new I/O and then wait upon it.  The caller must have a ref on
3155  * the buffer_head.
3156  */
3157 int __sync_dirty_buffer(struct buffer_head *bh, int op_flags)
3158 {
3159         int ret = 0;
3160
3161         WARN_ON(atomic_read(&bh->b_count) < 1);
3162         lock_buffer(bh);
3163         if (test_clear_buffer_dirty(bh)) {
3164                 get_bh(bh);
3165                 bh->b_end_io = end_buffer_write_sync;
3166                 ret = submit_bh(REQ_OP_WRITE, op_flags, bh);
3167                 wait_on_buffer(bh);
3168                 if (!ret && !buffer_uptodate(bh))
3169                         ret = -EIO;
3170         } else {
3171                 unlock_buffer(bh);
3172         }
3173         return ret;
3174 }
3175 EXPORT_SYMBOL(__sync_dirty_buffer);
3176
3177 int sync_dirty_buffer(struct buffer_head *bh)
3178 {
3179         return __sync_dirty_buffer(bh, REQ_SYNC);
3180 }
3181 EXPORT_SYMBOL(sync_dirty_buffer);
3182
3183 /*
3184  * try_to_free_buffers() checks if all the buffers on this particular page
3185  * are unused, and releases them if so.
3186  *
3187  * Exclusion against try_to_free_buffers may be obtained by either
3188  * locking the page or by holding its mapping's private_lock.
3189  *
3190  * If the page is dirty but all the buffers are clean then we need to
3191  * be sure to mark the page clean as well.  This is because the page
3192  * may be against a block device, and a later reattachment of buffers
3193  * to a dirty page will set *all* buffers dirty.  Which would corrupt
3194  * filesystem data on the same device.
3195  *
3196  * The same applies to regular filesystem pages: if all the buffers are
3197  * clean then we set the page clean and proceed.  To do that, we require
3198  * total exclusion from __set_page_dirty_buffers().  That is obtained with
3199  * private_lock.
3200  *
3201  * try_to_free_buffers() is non-blocking.
3202  */
3203 static inline int buffer_busy(struct buffer_head *bh)
3204 {
3205         return atomic_read(&bh->b_count) |
3206                 (bh->b_state & ((1 << BH_Dirty) | (1 << BH_Lock)));
3207 }
3208
3209 static int
3210 drop_buffers(struct page *page, struct buffer_head **buffers_to_free)
3211 {
3212         struct buffer_head *head = page_buffers(page);
3213         struct buffer_head *bh;
3214
3215         bh = head;
3216         do {
3217                 if (buffer_busy(bh))
3218                         goto failed;
3219                 bh = bh->b_this_page;
3220         } while (bh != head);
3221
3222         do {
3223                 struct buffer_head *next = bh->b_this_page;
3224
3225                 if (bh->b_assoc_map)
3226                         __remove_assoc_queue(bh);
3227                 bh = next;
3228         } while (bh != head);
3229         *buffers_to_free = head;
3230         __clear_page_buffers(page);
3231         return 1;
3232 failed:
3233         return 0;
3234 }
3235
3236 int try_to_free_buffers(struct page *page)
3237 {
3238         struct address_space * const mapping = page->mapping;
3239         struct buffer_head *buffers_to_free = NULL;
3240         int ret = 0;
3241
3242         BUG_ON(!PageLocked(page));
3243         if (PageWriteback(page))
3244                 return 0;
3245
3246         if (mapping == NULL) {          /* can this still happen? */
3247                 ret = drop_buffers(page, &buffers_to_free);
3248                 goto out;
3249         }
3250
3251         spin_lock(&mapping->private_lock);
3252         ret = drop_buffers(page, &buffers_to_free);
3253
3254         /*
3255          * If the filesystem writes its buffers by hand (eg ext3)
3256          * then we can have clean buffers against a dirty page.  We
3257          * clean the page here; otherwise the VM will never notice
3258          * that the filesystem did any IO at all.
3259          *
3260          * Also, during truncate, discard_buffer will have marked all
3261          * the page's buffers clean.  We discover that here and clean
3262          * the page also.
3263          *
3264          * private_lock must be held over this entire operation in order
3265          * to synchronise against __set_page_dirty_buffers and prevent the
3266          * dirty bit from being lost.
3267          */
3268         if (ret)
3269                 cancel_dirty_page(page);
3270         spin_unlock(&mapping->private_lock);
3271 out:
3272         if (buffers_to_free) {
3273                 struct buffer_head *bh = buffers_to_free;
3274
3275                 do {
3276                         struct buffer_head *next = bh->b_this_page;
3277                         free_buffer_head(bh);
3278                         bh = next;
3279                 } while (bh != buffers_to_free);
3280         }
3281         return ret;
3282 }
3283 EXPORT_SYMBOL(try_to_free_buffers);
3284
3285 /*
3286  * There are no bdflush tunables left.  But distributions are
3287  * still running obsolete flush daemons, so we terminate them here.
3288  *
3289  * Use of bdflush() is deprecated and will be removed in a future kernel.
3290  * The `flush-X' kernel threads fully replace bdflush daemons and this call.
3291  */
3292 SYSCALL_DEFINE2(bdflush, int, func, long, data)
3293 {
3294         static int msg_count;
3295
3296         if (!capable(CAP_SYS_ADMIN))
3297                 return -EPERM;
3298
3299         if (msg_count < 5) {
3300                 msg_count++;
3301                 printk(KERN_INFO
3302                         "warning: process `%s' used the obsolete bdflush"
3303                         " system call\n", current->comm);
3304                 printk(KERN_INFO "Fix your initscripts?\n");
3305         }
3306
3307         if (func == 1)
3308                 do_exit(0);
3309         return 0;
3310 }
3311
3312 /*
3313  * Buffer-head allocation
3314  */
3315 static struct kmem_cache *bh_cachep __read_mostly;
3316
3317 /*
3318  * Once the number of bh's in the machine exceeds this level, we start
3319  * stripping them in writeback.
3320  */
3321 static unsigned long max_buffer_heads;
3322
3323 int buffer_heads_over_limit;
3324
3325 struct bh_accounting {
3326         int nr;                 /* Number of live bh's */
3327         int ratelimit;          /* Limit cacheline bouncing */
3328 };
3329
3330 static DEFINE_PER_CPU(struct bh_accounting, bh_accounting) = {0, 0};
3331
3332 static void recalc_bh_state(void)
3333 {
3334         int i;
3335         int tot = 0;
3336
3337         if (__this_cpu_inc_return(bh_accounting.ratelimit) - 1 < 4096)
3338                 return;
3339         __this_cpu_write(bh_accounting.ratelimit, 0);
3340         for_each_online_cpu(i)
3341                 tot += per_cpu(bh_accounting, i).nr;
3342         buffer_heads_over_limit = (tot > max_buffer_heads);
3343 }
3344
3345 struct buffer_head *alloc_buffer_head(gfp_t gfp_flags)
3346 {
3347         struct buffer_head *ret = kmem_cache_zalloc(bh_cachep, gfp_flags);
3348         if (ret) {
3349                 INIT_LIST_HEAD(&ret->b_assoc_buffers);
3350                 spin_lock_init(&ret->b_uptodate_lock);
3351                 preempt_disable();
3352                 __this_cpu_inc(bh_accounting.nr);
3353                 recalc_bh_state();
3354                 preempt_enable();
3355         }
3356         return ret;
3357 }
3358 EXPORT_SYMBOL(alloc_buffer_head);
3359
3360 void free_buffer_head(struct buffer_head *bh)
3361 {
3362         BUG_ON(!list_empty(&bh->b_assoc_buffers));
3363         kmem_cache_free(bh_cachep, bh);
3364         preempt_disable();
3365         __this_cpu_dec(bh_accounting.nr);
3366         recalc_bh_state();
3367         preempt_enable();
3368 }
3369 EXPORT_SYMBOL(free_buffer_head);
3370
3371 static int buffer_exit_cpu_dead(unsigned int cpu)
3372 {
3373         int i;
3374         struct bh_lru *b = &per_cpu(bh_lrus, cpu);
3375
3376         for (i = 0; i < BH_LRU_SIZE; i++) {
3377                 brelse(b->bhs[i]);
3378                 b->bhs[i] = NULL;
3379         }
3380         this_cpu_add(bh_accounting.nr, per_cpu(bh_accounting, cpu).nr);
3381         per_cpu(bh_accounting, cpu).nr = 0;
3382         return 0;
3383 }
3384
3385 /**
3386  * bh_uptodate_or_lock - Test whether the buffer is uptodate
3387  * @bh: struct buffer_head
3388  *
3389  * Return true if the buffer is up-to-date and false,
3390  * with the buffer locked, if not.
3391  */
3392 int bh_uptodate_or_lock(struct buffer_head *bh)
3393 {
3394         if (!buffer_uptodate(bh)) {
3395                 lock_buffer(bh);
3396                 if (!buffer_uptodate(bh))
3397                         return 0;
3398                 unlock_buffer(bh);
3399         }
3400         return 1;
3401 }
3402 EXPORT_SYMBOL(bh_uptodate_or_lock);
3403
3404 /**
3405  * bh_submit_read - Submit a locked buffer for reading
3406  * @bh: struct buffer_head
3407  *
3408  * Returns zero on success and -EIO on error.
3409  */
3410 int bh_submit_read(struct buffer_head *bh)
3411 {
3412         BUG_ON(!buffer_locked(bh));
3413
3414         if (buffer_uptodate(bh)) {
3415                 unlock_buffer(bh);
3416                 return 0;
3417         }
3418
3419         get_bh(bh);
3420         bh->b_end_io = end_buffer_read_sync;
3421         submit_bh(REQ_OP_READ, 0, bh);
3422         wait_on_buffer(bh);
3423         if (buffer_uptodate(bh))
3424                 return 0;
3425         return -EIO;
3426 }
3427 EXPORT_SYMBOL(bh_submit_read);
3428
3429 void __init buffer_init(void)
3430 {
3431         unsigned long nrpages;
3432         int ret;
3433
3434         bh_cachep = kmem_cache_create("buffer_head",
3435                         sizeof(struct buffer_head), 0,
3436                                 (SLAB_RECLAIM_ACCOUNT|SLAB_PANIC|
3437                                 SLAB_MEM_SPREAD),
3438                                 NULL);
3439
3440         /*
3441          * Limit the bh occupancy to 10% of ZONE_NORMAL
3442          */
3443         nrpages = (nr_free_buffer_pages() * 10) / 100;
3444         max_buffer_heads = nrpages * (PAGE_SIZE / sizeof(struct buffer_head));
3445         ret = cpuhp_setup_state_nocalls(CPUHP_FS_BUFF_DEAD, "fs/buffer:dead",
3446                                         NULL, buffer_exit_cpu_dead);
3447         WARN_ON(ret < 0);
3448 }