gpu/drm: remove the powerpc hack in drm_legacy_sg_alloc
[linux-2.6-microblaze.git] / fs / buffer.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/fs/buffer.c
4  *
5  *  Copyright (C) 1991, 1992, 2002  Linus Torvalds
6  */
7
8 /*
9  * Start bdflush() with kernel_thread not syscall - Paul Gortmaker, 12/95
10  *
11  * Removed a lot of unnecessary code and simplified things now that
12  * the buffer cache isn't our primary cache - Andrew Tridgell 12/96
13  *
14  * Speed up hash, lru, and free list operations.  Use gfp() for allocating
15  * hash table, use SLAB cache for buffer heads. SMP threading.  -DaveM
16  *
17  * Added 32k buffer block sizes - these are required older ARM systems. - RMK
18  *
19  * async buffer flushing, 1999 Andrea Arcangeli <andrea@suse.de>
20  */
21
22 #include <linux/kernel.h>
23 #include <linux/sched/signal.h>
24 #include <linux/syscalls.h>
25 #include <linux/fs.h>
26 #include <linux/iomap.h>
27 #include <linux/mm.h>
28 #include <linux/percpu.h>
29 #include <linux/slab.h>
30 #include <linux/capability.h>
31 #include <linux/blkdev.h>
32 #include <linux/file.h>
33 #include <linux/quotaops.h>
34 #include <linux/highmem.h>
35 #include <linux/export.h>
36 #include <linux/backing-dev.h>
37 #include <linux/writeback.h>
38 #include <linux/hash.h>
39 #include <linux/suspend.h>
40 #include <linux/buffer_head.h>
41 #include <linux/task_io_accounting_ops.h>
42 #include <linux/bio.h>
43 #include <linux/cpu.h>
44 #include <linux/bitops.h>
45 #include <linux/mpage.h>
46 #include <linux/bit_spinlock.h>
47 #include <linux/pagevec.h>
48 #include <linux/sched/mm.h>
49 #include <trace/events/block.h>
50 #include <linux/fscrypt.h>
51
52 #include "internal.h"
53
54 static int fsync_buffers_list(spinlock_t *lock, struct list_head *list);
55 static int submit_bh_wbc(int op, int op_flags, struct buffer_head *bh,
56                          enum rw_hint hint, struct writeback_control *wbc);
57
58 #define BH_ENTRY(list) list_entry((list), struct buffer_head, b_assoc_buffers)
59
60 inline void touch_buffer(struct buffer_head *bh)
61 {
62         trace_block_touch_buffer(bh);
63         mark_page_accessed(bh->b_page);
64 }
65 EXPORT_SYMBOL(touch_buffer);
66
67 void __lock_buffer(struct buffer_head *bh)
68 {
69         wait_on_bit_lock_io(&bh->b_state, BH_Lock, TASK_UNINTERRUPTIBLE);
70 }
71 EXPORT_SYMBOL(__lock_buffer);
72
73 void unlock_buffer(struct buffer_head *bh)
74 {
75         clear_bit_unlock(BH_Lock, &bh->b_state);
76         smp_mb__after_atomic();
77         wake_up_bit(&bh->b_state, BH_Lock);
78 }
79 EXPORT_SYMBOL(unlock_buffer);
80
81 /*
82  * Returns if the page has dirty or writeback buffers. If all the buffers
83  * are unlocked and clean then the PageDirty information is stale. If
84  * any of the pages are locked, it is assumed they are locked for IO.
85  */
86 void buffer_check_dirty_writeback(struct page *page,
87                                      bool *dirty, bool *writeback)
88 {
89         struct buffer_head *head, *bh;
90         *dirty = false;
91         *writeback = false;
92
93         BUG_ON(!PageLocked(page));
94
95         if (!page_has_buffers(page))
96                 return;
97
98         if (PageWriteback(page))
99                 *writeback = true;
100
101         head = page_buffers(page);
102         bh = head;
103         do {
104                 if (buffer_locked(bh))
105                         *writeback = true;
106
107                 if (buffer_dirty(bh))
108                         *dirty = true;
109
110                 bh = bh->b_this_page;
111         } while (bh != head);
112 }
113 EXPORT_SYMBOL(buffer_check_dirty_writeback);
114
115 /*
116  * Block until a buffer comes unlocked.  This doesn't stop it
117  * from becoming locked again - you have to lock it yourself
118  * if you want to preserve its state.
119  */
120 void __wait_on_buffer(struct buffer_head * bh)
121 {
122         wait_on_bit_io(&bh->b_state, BH_Lock, TASK_UNINTERRUPTIBLE);
123 }
124 EXPORT_SYMBOL(__wait_on_buffer);
125
126 static void buffer_io_error(struct buffer_head *bh, char *msg)
127 {
128         if (!test_bit(BH_Quiet, &bh->b_state))
129                 printk_ratelimited(KERN_ERR
130                         "Buffer I/O error on dev %pg, logical block %llu%s\n",
131                         bh->b_bdev, (unsigned long long)bh->b_blocknr, msg);
132 }
133
134 /*
135  * End-of-IO handler helper function which does not touch the bh after
136  * unlocking it.
137  * Note: unlock_buffer() sort-of does touch the bh after unlocking it, but
138  * a race there is benign: unlock_buffer() only use the bh's address for
139  * hashing after unlocking the buffer, so it doesn't actually touch the bh
140  * itself.
141  */
142 static void __end_buffer_read_notouch(struct buffer_head *bh, int uptodate)
143 {
144         if (uptodate) {
145                 set_buffer_uptodate(bh);
146         } else {
147                 /* This happens, due to failed read-ahead attempts. */
148                 clear_buffer_uptodate(bh);
149         }
150         unlock_buffer(bh);
151 }
152
153 /*
154  * Default synchronous end-of-IO handler..  Just mark it up-to-date and
155  * unlock the buffer. This is what ll_rw_block uses too.
156  */
157 void end_buffer_read_sync(struct buffer_head *bh, int uptodate)
158 {
159         __end_buffer_read_notouch(bh, uptodate);
160         put_bh(bh);
161 }
162 EXPORT_SYMBOL(end_buffer_read_sync);
163
164 void end_buffer_write_sync(struct buffer_head *bh, int uptodate)
165 {
166         if (uptodate) {
167                 set_buffer_uptodate(bh);
168         } else {
169                 buffer_io_error(bh, ", lost sync page write");
170                 mark_buffer_write_io_error(bh);
171                 clear_buffer_uptodate(bh);
172         }
173         unlock_buffer(bh);
174         put_bh(bh);
175 }
176 EXPORT_SYMBOL(end_buffer_write_sync);
177
178 /*
179  * Various filesystems appear to want __find_get_block to be non-blocking.
180  * But it's the page lock which protects the buffers.  To get around this,
181  * we get exclusion from try_to_free_buffers with the blockdev mapping's
182  * private_lock.
183  *
184  * Hack idea: for the blockdev mapping, private_lock contention
185  * may be quite high.  This code could TryLock the page, and if that
186  * succeeds, there is no need to take private_lock.
187  */
188 static struct buffer_head *
189 __find_get_block_slow(struct block_device *bdev, sector_t block)
190 {
191         struct inode *bd_inode = bdev->bd_inode;
192         struct address_space *bd_mapping = bd_inode->i_mapping;
193         struct buffer_head *ret = NULL;
194         pgoff_t index;
195         struct buffer_head *bh;
196         struct buffer_head *head;
197         struct page *page;
198         int all_mapped = 1;
199         static DEFINE_RATELIMIT_STATE(last_warned, HZ, 1);
200
201         index = block >> (PAGE_SHIFT - bd_inode->i_blkbits);
202         page = find_get_page_flags(bd_mapping, index, FGP_ACCESSED);
203         if (!page)
204                 goto out;
205
206         spin_lock(&bd_mapping->private_lock);
207         if (!page_has_buffers(page))
208                 goto out_unlock;
209         head = page_buffers(page);
210         bh = head;
211         do {
212                 if (!buffer_mapped(bh))
213                         all_mapped = 0;
214                 else if (bh->b_blocknr == block) {
215                         ret = bh;
216                         get_bh(bh);
217                         goto out_unlock;
218                 }
219                 bh = bh->b_this_page;
220         } while (bh != head);
221
222         /* we might be here because some of the buffers on this page are
223          * not mapped.  This is due to various races between
224          * file io on the block device and getblk.  It gets dealt with
225          * elsewhere, don't buffer_error if we had some unmapped buffers
226          */
227         ratelimit_set_flags(&last_warned, RATELIMIT_MSG_ON_RELEASE);
228         if (all_mapped && __ratelimit(&last_warned)) {
229                 printk("__find_get_block_slow() failed. block=%llu, "
230                        "b_blocknr=%llu, b_state=0x%08lx, b_size=%zu, "
231                        "device %pg blocksize: %d\n",
232                        (unsigned long long)block,
233                        (unsigned long long)bh->b_blocknr,
234                        bh->b_state, bh->b_size, bdev,
235                        1 << bd_inode->i_blkbits);
236         }
237 out_unlock:
238         spin_unlock(&bd_mapping->private_lock);
239         put_page(page);
240 out:
241         return ret;
242 }
243
244 static void end_buffer_async_read(struct buffer_head *bh, int uptodate)
245 {
246         unsigned long flags;
247         struct buffer_head *first;
248         struct buffer_head *tmp;
249         struct page *page;
250         int page_uptodate = 1;
251
252         BUG_ON(!buffer_async_read(bh));
253
254         page = bh->b_page;
255         if (uptodate) {
256                 set_buffer_uptodate(bh);
257         } else {
258                 clear_buffer_uptodate(bh);
259                 buffer_io_error(bh, ", async page read");
260                 SetPageError(page);
261         }
262
263         /*
264          * Be _very_ careful from here on. Bad things can happen if
265          * two buffer heads end IO at almost the same time and both
266          * decide that the page is now completely done.
267          */
268         first = page_buffers(page);
269         spin_lock_irqsave(&first->b_uptodate_lock, flags);
270         clear_buffer_async_read(bh);
271         unlock_buffer(bh);
272         tmp = bh;
273         do {
274                 if (!buffer_uptodate(tmp))
275                         page_uptodate = 0;
276                 if (buffer_async_read(tmp)) {
277                         BUG_ON(!buffer_locked(tmp));
278                         goto still_busy;
279                 }
280                 tmp = tmp->b_this_page;
281         } while (tmp != bh);
282         spin_unlock_irqrestore(&first->b_uptodate_lock, flags);
283
284         /*
285          * If none of the buffers had errors and they are all
286          * uptodate then we can set the page uptodate.
287          */
288         if (page_uptodate && !PageError(page))
289                 SetPageUptodate(page);
290         unlock_page(page);
291         return;
292
293 still_busy:
294         spin_unlock_irqrestore(&first->b_uptodate_lock, flags);
295         return;
296 }
297
298 struct decrypt_bh_ctx {
299         struct work_struct work;
300         struct buffer_head *bh;
301 };
302
303 static void decrypt_bh(struct work_struct *work)
304 {
305         struct decrypt_bh_ctx *ctx =
306                 container_of(work, struct decrypt_bh_ctx, work);
307         struct buffer_head *bh = ctx->bh;
308         int err;
309
310         err = fscrypt_decrypt_pagecache_blocks(bh->b_page, bh->b_size,
311                                                bh_offset(bh));
312         end_buffer_async_read(bh, err == 0);
313         kfree(ctx);
314 }
315
316 /*
317  * I/O completion handler for block_read_full_page() - pages
318  * which come unlocked at the end of I/O.
319  */
320 static void end_buffer_async_read_io(struct buffer_head *bh, int uptodate)
321 {
322         /* Decrypt if needed */
323         if (uptodate && IS_ENABLED(CONFIG_FS_ENCRYPTION) &&
324             IS_ENCRYPTED(bh->b_page->mapping->host) &&
325             S_ISREG(bh->b_page->mapping->host->i_mode)) {
326                 struct decrypt_bh_ctx *ctx = kmalloc(sizeof(*ctx), GFP_ATOMIC);
327
328                 if (ctx) {
329                         INIT_WORK(&ctx->work, decrypt_bh);
330                         ctx->bh = bh;
331                         fscrypt_enqueue_decrypt_work(&ctx->work);
332                         return;
333                 }
334                 uptodate = 0;
335         }
336         end_buffer_async_read(bh, uptodate);
337 }
338
339 /*
340  * Completion handler for block_write_full_page() - pages which are unlocked
341  * during I/O, and which have PageWriteback cleared upon I/O completion.
342  */
343 void end_buffer_async_write(struct buffer_head *bh, int uptodate)
344 {
345         unsigned long flags;
346         struct buffer_head *first;
347         struct buffer_head *tmp;
348         struct page *page;
349
350         BUG_ON(!buffer_async_write(bh));
351
352         page = bh->b_page;
353         if (uptodate) {
354                 set_buffer_uptodate(bh);
355         } else {
356                 buffer_io_error(bh, ", lost async page write");
357                 mark_buffer_write_io_error(bh);
358                 clear_buffer_uptodate(bh);
359                 SetPageError(page);
360         }
361
362         first = page_buffers(page);
363         spin_lock_irqsave(&first->b_uptodate_lock, flags);
364
365         clear_buffer_async_write(bh);
366         unlock_buffer(bh);
367         tmp = bh->b_this_page;
368         while (tmp != bh) {
369                 if (buffer_async_write(tmp)) {
370                         BUG_ON(!buffer_locked(tmp));
371                         goto still_busy;
372                 }
373                 tmp = tmp->b_this_page;
374         }
375         spin_unlock_irqrestore(&first->b_uptodate_lock, flags);
376         end_page_writeback(page);
377         return;
378
379 still_busy:
380         spin_unlock_irqrestore(&first->b_uptodate_lock, flags);
381         return;
382 }
383 EXPORT_SYMBOL(end_buffer_async_write);
384
385 /*
386  * If a page's buffers are under async readin (end_buffer_async_read
387  * completion) then there is a possibility that another thread of
388  * control could lock one of the buffers after it has completed
389  * but while some of the other buffers have not completed.  This
390  * locked buffer would confuse end_buffer_async_read() into not unlocking
391  * the page.  So the absence of BH_Async_Read tells end_buffer_async_read()
392  * that this buffer is not under async I/O.
393  *
394  * The page comes unlocked when it has no locked buffer_async buffers
395  * left.
396  *
397  * PageLocked prevents anyone starting new async I/O reads any of
398  * the buffers.
399  *
400  * PageWriteback is used to prevent simultaneous writeout of the same
401  * page.
402  *
403  * PageLocked prevents anyone from starting writeback of a page which is
404  * under read I/O (PageWriteback is only ever set against a locked page).
405  */
406 static void mark_buffer_async_read(struct buffer_head *bh)
407 {
408         bh->b_end_io = end_buffer_async_read_io;
409         set_buffer_async_read(bh);
410 }
411
412 static void mark_buffer_async_write_endio(struct buffer_head *bh,
413                                           bh_end_io_t *handler)
414 {
415         bh->b_end_io = handler;
416         set_buffer_async_write(bh);
417 }
418
419 void mark_buffer_async_write(struct buffer_head *bh)
420 {
421         mark_buffer_async_write_endio(bh, end_buffer_async_write);
422 }
423 EXPORT_SYMBOL(mark_buffer_async_write);
424
425
426 /*
427  * fs/buffer.c contains helper functions for buffer-backed address space's
428  * fsync functions.  A common requirement for buffer-based filesystems is
429  * that certain data from the backing blockdev needs to be written out for
430  * a successful fsync().  For example, ext2 indirect blocks need to be
431  * written back and waited upon before fsync() returns.
432  *
433  * The functions mark_buffer_inode_dirty(), fsync_inode_buffers(),
434  * inode_has_buffers() and invalidate_inode_buffers() are provided for the
435  * management of a list of dependent buffers at ->i_mapping->private_list.
436  *
437  * Locking is a little subtle: try_to_free_buffers() will remove buffers
438  * from their controlling inode's queue when they are being freed.  But
439  * try_to_free_buffers() will be operating against the *blockdev* mapping
440  * at the time, not against the S_ISREG file which depends on those buffers.
441  * So the locking for private_list is via the private_lock in the address_space
442  * which backs the buffers.  Which is different from the address_space 
443  * against which the buffers are listed.  So for a particular address_space,
444  * mapping->private_lock does *not* protect mapping->private_list!  In fact,
445  * mapping->private_list will always be protected by the backing blockdev's
446  * ->private_lock.
447  *
448  * Which introduces a requirement: all buffers on an address_space's
449  * ->private_list must be from the same address_space: the blockdev's.
450  *
451  * address_spaces which do not place buffers at ->private_list via these
452  * utility functions are free to use private_lock and private_list for
453  * whatever they want.  The only requirement is that list_empty(private_list)
454  * be true at clear_inode() time.
455  *
456  * FIXME: clear_inode should not call invalidate_inode_buffers().  The
457  * filesystems should do that.  invalidate_inode_buffers() should just go
458  * BUG_ON(!list_empty).
459  *
460  * FIXME: mark_buffer_dirty_inode() is a data-plane operation.  It should
461  * take an address_space, not an inode.  And it should be called
462  * mark_buffer_dirty_fsync() to clearly define why those buffers are being
463  * queued up.
464  *
465  * FIXME: mark_buffer_dirty_inode() doesn't need to add the buffer to the
466  * list if it is already on a list.  Because if the buffer is on a list,
467  * it *must* already be on the right one.  If not, the filesystem is being
468  * silly.  This will save a ton of locking.  But first we have to ensure
469  * that buffers are taken *off* the old inode's list when they are freed
470  * (presumably in truncate).  That requires careful auditing of all
471  * filesystems (do it inside bforget()).  It could also be done by bringing
472  * b_inode back.
473  */
474
475 /*
476  * The buffer's backing address_space's private_lock must be held
477  */
478 static void __remove_assoc_queue(struct buffer_head *bh)
479 {
480         list_del_init(&bh->b_assoc_buffers);
481         WARN_ON(!bh->b_assoc_map);
482         bh->b_assoc_map = NULL;
483 }
484
485 int inode_has_buffers(struct inode *inode)
486 {
487         return !list_empty(&inode->i_data.private_list);
488 }
489
490 /*
491  * osync is designed to support O_SYNC io.  It waits synchronously for
492  * all already-submitted IO to complete, but does not queue any new
493  * writes to the disk.
494  *
495  * To do O_SYNC writes, just queue the buffer writes with ll_rw_block as
496  * you dirty the buffers, and then use osync_inode_buffers to wait for
497  * completion.  Any other dirty buffers which are not yet queued for
498  * write will not be flushed to disk by the osync.
499  */
500 static int osync_buffers_list(spinlock_t *lock, struct list_head *list)
501 {
502         struct buffer_head *bh;
503         struct list_head *p;
504         int err = 0;
505
506         spin_lock(lock);
507 repeat:
508         list_for_each_prev(p, list) {
509                 bh = BH_ENTRY(p);
510                 if (buffer_locked(bh)) {
511                         get_bh(bh);
512                         spin_unlock(lock);
513                         wait_on_buffer(bh);
514                         if (!buffer_uptodate(bh))
515                                 err = -EIO;
516                         brelse(bh);
517                         spin_lock(lock);
518                         goto repeat;
519                 }
520         }
521         spin_unlock(lock);
522         return err;
523 }
524
525 void emergency_thaw_bdev(struct super_block *sb)
526 {
527         while (sb->s_bdev && !thaw_bdev(sb->s_bdev, sb))
528                 printk(KERN_WARNING "Emergency Thaw on %pg\n", sb->s_bdev);
529 }
530
531 /**
532  * sync_mapping_buffers - write out & wait upon a mapping's "associated" buffers
533  * @mapping: the mapping which wants those buffers written
534  *
535  * Starts I/O against the buffers at mapping->private_list, and waits upon
536  * that I/O.
537  *
538  * Basically, this is a convenience function for fsync().
539  * @mapping is a file or directory which needs those buffers to be written for
540  * a successful fsync().
541  */
542 int sync_mapping_buffers(struct address_space *mapping)
543 {
544         struct address_space *buffer_mapping = mapping->private_data;
545
546         if (buffer_mapping == NULL || list_empty(&mapping->private_list))
547                 return 0;
548
549         return fsync_buffers_list(&buffer_mapping->private_lock,
550                                         &mapping->private_list);
551 }
552 EXPORT_SYMBOL(sync_mapping_buffers);
553
554 /*
555  * Called when we've recently written block `bblock', and it is known that
556  * `bblock' was for a buffer_boundary() buffer.  This means that the block at
557  * `bblock + 1' is probably a dirty indirect block.  Hunt it down and, if it's
558  * dirty, schedule it for IO.  So that indirects merge nicely with their data.
559  */
560 void write_boundary_block(struct block_device *bdev,
561                         sector_t bblock, unsigned blocksize)
562 {
563         struct buffer_head *bh = __find_get_block(bdev, bblock + 1, blocksize);
564         if (bh) {
565                 if (buffer_dirty(bh))
566                         ll_rw_block(REQ_OP_WRITE, 0, 1, &bh);
567                 put_bh(bh);
568         }
569 }
570
571 void mark_buffer_dirty_inode(struct buffer_head *bh, struct inode *inode)
572 {
573         struct address_space *mapping = inode->i_mapping;
574         struct address_space *buffer_mapping = bh->b_page->mapping;
575
576         mark_buffer_dirty(bh);
577         if (!mapping->private_data) {
578                 mapping->private_data = buffer_mapping;
579         } else {
580                 BUG_ON(mapping->private_data != buffer_mapping);
581         }
582         if (!bh->b_assoc_map) {
583                 spin_lock(&buffer_mapping->private_lock);
584                 list_move_tail(&bh->b_assoc_buffers,
585                                 &mapping->private_list);
586                 bh->b_assoc_map = mapping;
587                 spin_unlock(&buffer_mapping->private_lock);
588         }
589 }
590 EXPORT_SYMBOL(mark_buffer_dirty_inode);
591
592 /*
593  * Mark the page dirty, and set it dirty in the page cache, and mark the inode
594  * dirty.
595  *
596  * If warn is true, then emit a warning if the page is not uptodate and has
597  * not been truncated.
598  *
599  * The caller must hold lock_page_memcg().
600  */
601 void __set_page_dirty(struct page *page, struct address_space *mapping,
602                              int warn)
603 {
604         unsigned long flags;
605
606         xa_lock_irqsave(&mapping->i_pages, flags);
607         if (page->mapping) {    /* Race with truncate? */
608                 WARN_ON_ONCE(warn && !PageUptodate(page));
609                 account_page_dirtied(page, mapping);
610                 __xa_set_mark(&mapping->i_pages, page_index(page),
611                                 PAGECACHE_TAG_DIRTY);
612         }
613         xa_unlock_irqrestore(&mapping->i_pages, flags);
614 }
615 EXPORT_SYMBOL_GPL(__set_page_dirty);
616
617 /*
618  * Add a page to the dirty page list.
619  *
620  * It is a sad fact of life that this function is called from several places
621  * deeply under spinlocking.  It may not sleep.
622  *
623  * If the page has buffers, the uptodate buffers are set dirty, to preserve
624  * dirty-state coherency between the page and the buffers.  It the page does
625  * not have buffers then when they are later attached they will all be set
626  * dirty.
627  *
628  * The buffers are dirtied before the page is dirtied.  There's a small race
629  * window in which a writepage caller may see the page cleanness but not the
630  * buffer dirtiness.  That's fine.  If this code were to set the page dirty
631  * before the buffers, a concurrent writepage caller could clear the page dirty
632  * bit, see a bunch of clean buffers and we'd end up with dirty buffers/clean
633  * page on the dirty page list.
634  *
635  * We use private_lock to lock against try_to_free_buffers while using the
636  * page's buffer list.  Also use this to protect against clean buffers being
637  * added to the page after it was set dirty.
638  *
639  * FIXME: may need to call ->reservepage here as well.  That's rather up to the
640  * address_space though.
641  */
642 int __set_page_dirty_buffers(struct page *page)
643 {
644         int newly_dirty;
645         struct address_space *mapping = page_mapping(page);
646
647         if (unlikely(!mapping))
648                 return !TestSetPageDirty(page);
649
650         spin_lock(&mapping->private_lock);
651         if (page_has_buffers(page)) {
652                 struct buffer_head *head = page_buffers(page);
653                 struct buffer_head *bh = head;
654
655                 do {
656                         set_buffer_dirty(bh);
657                         bh = bh->b_this_page;
658                 } while (bh != head);
659         }
660         /*
661          * Lock out page->mem_cgroup migration to keep PageDirty
662          * synchronized with per-memcg dirty page counters.
663          */
664         lock_page_memcg(page);
665         newly_dirty = !TestSetPageDirty(page);
666         spin_unlock(&mapping->private_lock);
667
668         if (newly_dirty)
669                 __set_page_dirty(page, mapping, 1);
670
671         unlock_page_memcg(page);
672
673         if (newly_dirty)
674                 __mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
675
676         return newly_dirty;
677 }
678 EXPORT_SYMBOL(__set_page_dirty_buffers);
679
680 /*
681  * Write out and wait upon a list of buffers.
682  *
683  * We have conflicting pressures: we want to make sure that all
684  * initially dirty buffers get waited on, but that any subsequently
685  * dirtied buffers don't.  After all, we don't want fsync to last
686  * forever if somebody is actively writing to the file.
687  *
688  * Do this in two main stages: first we copy dirty buffers to a
689  * temporary inode list, queueing the writes as we go.  Then we clean
690  * up, waiting for those writes to complete.
691  * 
692  * During this second stage, any subsequent updates to the file may end
693  * up refiling the buffer on the original inode's dirty list again, so
694  * there is a chance we will end up with a buffer queued for write but
695  * not yet completed on that list.  So, as a final cleanup we go through
696  * the osync code to catch these locked, dirty buffers without requeuing
697  * any newly dirty buffers for write.
698  */
699 static int fsync_buffers_list(spinlock_t *lock, struct list_head *list)
700 {
701         struct buffer_head *bh;
702         struct list_head tmp;
703         struct address_space *mapping;
704         int err = 0, err2;
705         struct blk_plug plug;
706
707         INIT_LIST_HEAD(&tmp);
708         blk_start_plug(&plug);
709
710         spin_lock(lock);
711         while (!list_empty(list)) {
712                 bh = BH_ENTRY(list->next);
713                 mapping = bh->b_assoc_map;
714                 __remove_assoc_queue(bh);
715                 /* Avoid race with mark_buffer_dirty_inode() which does
716                  * a lockless check and we rely on seeing the dirty bit */
717                 smp_mb();
718                 if (buffer_dirty(bh) || buffer_locked(bh)) {
719                         list_add(&bh->b_assoc_buffers, &tmp);
720                         bh->b_assoc_map = mapping;
721                         if (buffer_dirty(bh)) {
722                                 get_bh(bh);
723                                 spin_unlock(lock);
724                                 /*
725                                  * Ensure any pending I/O completes so that
726                                  * write_dirty_buffer() actually writes the
727                                  * current contents - it is a noop if I/O is
728                                  * still in flight on potentially older
729                                  * contents.
730                                  */
731                                 write_dirty_buffer(bh, REQ_SYNC);
732
733                                 /*
734                                  * Kick off IO for the previous mapping. Note
735                                  * that we will not run the very last mapping,
736                                  * wait_on_buffer() will do that for us
737                                  * through sync_buffer().
738                                  */
739                                 brelse(bh);
740                                 spin_lock(lock);
741                         }
742                 }
743         }
744
745         spin_unlock(lock);
746         blk_finish_plug(&plug);
747         spin_lock(lock);
748
749         while (!list_empty(&tmp)) {
750                 bh = BH_ENTRY(tmp.prev);
751                 get_bh(bh);
752                 mapping = bh->b_assoc_map;
753                 __remove_assoc_queue(bh);
754                 /* Avoid race with mark_buffer_dirty_inode() which does
755                  * a lockless check and we rely on seeing the dirty bit */
756                 smp_mb();
757                 if (buffer_dirty(bh)) {
758                         list_add(&bh->b_assoc_buffers,
759                                  &mapping->private_list);
760                         bh->b_assoc_map = mapping;
761                 }
762                 spin_unlock(lock);
763                 wait_on_buffer(bh);
764                 if (!buffer_uptodate(bh))
765                         err = -EIO;
766                 brelse(bh);
767                 spin_lock(lock);
768         }
769         
770         spin_unlock(lock);
771         err2 = osync_buffers_list(lock, list);
772         if (err)
773                 return err;
774         else
775                 return err2;
776 }
777
778 /*
779  * Invalidate any and all dirty buffers on a given inode.  We are
780  * probably unmounting the fs, but that doesn't mean we have already
781  * done a sync().  Just drop the buffers from the inode list.
782  *
783  * NOTE: we take the inode's blockdev's mapping's private_lock.  Which
784  * assumes that all the buffers are against the blockdev.  Not true
785  * for reiserfs.
786  */
787 void invalidate_inode_buffers(struct inode *inode)
788 {
789         if (inode_has_buffers(inode)) {
790                 struct address_space *mapping = &inode->i_data;
791                 struct list_head *list = &mapping->private_list;
792                 struct address_space *buffer_mapping = mapping->private_data;
793
794                 spin_lock(&buffer_mapping->private_lock);
795                 while (!list_empty(list))
796                         __remove_assoc_queue(BH_ENTRY(list->next));
797                 spin_unlock(&buffer_mapping->private_lock);
798         }
799 }
800 EXPORT_SYMBOL(invalidate_inode_buffers);
801
802 /*
803  * Remove any clean buffers from the inode's buffer list.  This is called
804  * when we're trying to free the inode itself.  Those buffers can pin it.
805  *
806  * Returns true if all buffers were removed.
807  */
808 int remove_inode_buffers(struct inode *inode)
809 {
810         int ret = 1;
811
812         if (inode_has_buffers(inode)) {
813                 struct address_space *mapping = &inode->i_data;
814                 struct list_head *list = &mapping->private_list;
815                 struct address_space *buffer_mapping = mapping->private_data;
816
817                 spin_lock(&buffer_mapping->private_lock);
818                 while (!list_empty(list)) {
819                         struct buffer_head *bh = BH_ENTRY(list->next);
820                         if (buffer_dirty(bh)) {
821                                 ret = 0;
822                                 break;
823                         }
824                         __remove_assoc_queue(bh);
825                 }
826                 spin_unlock(&buffer_mapping->private_lock);
827         }
828         return ret;
829 }
830
831 /*
832  * Create the appropriate buffers when given a page for data area and
833  * the size of each buffer.. Use the bh->b_this_page linked list to
834  * follow the buffers created.  Return NULL if unable to create more
835  * buffers.
836  *
837  * The retry flag is used to differentiate async IO (paging, swapping)
838  * which may not fail from ordinary buffer allocations.
839  */
840 struct buffer_head *alloc_page_buffers(struct page *page, unsigned long size,
841                 bool retry)
842 {
843         struct buffer_head *bh, *head;
844         gfp_t gfp = GFP_NOFS | __GFP_ACCOUNT;
845         long offset;
846         struct mem_cgroup *memcg;
847
848         if (retry)
849                 gfp |= __GFP_NOFAIL;
850
851         memcg = get_mem_cgroup_from_page(page);
852         memalloc_use_memcg(memcg);
853
854         head = NULL;
855         offset = PAGE_SIZE;
856         while ((offset -= size) >= 0) {
857                 bh = alloc_buffer_head(gfp);
858                 if (!bh)
859                         goto no_grow;
860
861                 bh->b_this_page = head;
862                 bh->b_blocknr = -1;
863                 head = bh;
864
865                 bh->b_size = size;
866
867                 /* Link the buffer to its page */
868                 set_bh_page(bh, page, offset);
869         }
870 out:
871         memalloc_unuse_memcg();
872         mem_cgroup_put(memcg);
873         return head;
874 /*
875  * In case anything failed, we just free everything we got.
876  */
877 no_grow:
878         if (head) {
879                 do {
880                         bh = head;
881                         head = head->b_this_page;
882                         free_buffer_head(bh);
883                 } while (head);
884         }
885
886         goto out;
887 }
888 EXPORT_SYMBOL_GPL(alloc_page_buffers);
889
890 static inline void
891 link_dev_buffers(struct page *page, struct buffer_head *head)
892 {
893         struct buffer_head *bh, *tail;
894
895         bh = head;
896         do {
897                 tail = bh;
898                 bh = bh->b_this_page;
899         } while (bh);
900         tail->b_this_page = head;
901         attach_page_private(page, head);
902 }
903
904 static sector_t blkdev_max_block(struct block_device *bdev, unsigned int size)
905 {
906         sector_t retval = ~((sector_t)0);
907         loff_t sz = i_size_read(bdev->bd_inode);
908
909         if (sz) {
910                 unsigned int sizebits = blksize_bits(size);
911                 retval = (sz >> sizebits);
912         }
913         return retval;
914 }
915
916 /*
917  * Initialise the state of a blockdev page's buffers.
918  */ 
919 static sector_t
920 init_page_buffers(struct page *page, struct block_device *bdev,
921                         sector_t block, int size)
922 {
923         struct buffer_head *head = page_buffers(page);
924         struct buffer_head *bh = head;
925         int uptodate = PageUptodate(page);
926         sector_t end_block = blkdev_max_block(I_BDEV(bdev->bd_inode), size);
927
928         do {
929                 if (!buffer_mapped(bh)) {
930                         bh->b_end_io = NULL;
931                         bh->b_private = NULL;
932                         bh->b_bdev = bdev;
933                         bh->b_blocknr = block;
934                         if (uptodate)
935                                 set_buffer_uptodate(bh);
936                         if (block < end_block)
937                                 set_buffer_mapped(bh);
938                 }
939                 block++;
940                 bh = bh->b_this_page;
941         } while (bh != head);
942
943         /*
944          * Caller needs to validate requested block against end of device.
945          */
946         return end_block;
947 }
948
949 /*
950  * Create the page-cache page that contains the requested block.
951  *
952  * This is used purely for blockdev mappings.
953  */
954 static int
955 grow_dev_page(struct block_device *bdev, sector_t block,
956               pgoff_t index, int size, int sizebits, gfp_t gfp)
957 {
958         struct inode *inode = bdev->bd_inode;
959         struct page *page;
960         struct buffer_head *bh;
961         sector_t end_block;
962         int ret = 0;
963         gfp_t gfp_mask;
964
965         gfp_mask = mapping_gfp_constraint(inode->i_mapping, ~__GFP_FS) | gfp;
966
967         /*
968          * XXX: __getblk_slow() can not really deal with failure and
969          * will endlessly loop on improvised global reclaim.  Prefer
970          * looping in the allocator rather than here, at least that
971          * code knows what it's doing.
972          */
973         gfp_mask |= __GFP_NOFAIL;
974
975         page = find_or_create_page(inode->i_mapping, index, gfp_mask);
976
977         BUG_ON(!PageLocked(page));
978
979         if (page_has_buffers(page)) {
980                 bh = page_buffers(page);
981                 if (bh->b_size == size) {
982                         end_block = init_page_buffers(page, bdev,
983                                                 (sector_t)index << sizebits,
984                                                 size);
985                         goto done;
986                 }
987                 if (!try_to_free_buffers(page))
988                         goto failed;
989         }
990
991         /*
992          * Allocate some buffers for this page
993          */
994         bh = alloc_page_buffers(page, size, true);
995
996         /*
997          * Link the page to the buffers and initialise them.  Take the
998          * lock to be atomic wrt __find_get_block(), which does not
999          * run under the page lock.
1000          */
1001         spin_lock(&inode->i_mapping->private_lock);
1002         link_dev_buffers(page, bh);
1003         end_block = init_page_buffers(page, bdev, (sector_t)index << sizebits,
1004                         size);
1005         spin_unlock(&inode->i_mapping->private_lock);
1006 done:
1007         ret = (block < end_block) ? 1 : -ENXIO;
1008 failed:
1009         unlock_page(page);
1010         put_page(page);
1011         return ret;
1012 }
1013
1014 /*
1015  * Create buffers for the specified block device block's page.  If
1016  * that page was dirty, the buffers are set dirty also.
1017  */
1018 static int
1019 grow_buffers(struct block_device *bdev, sector_t block, int size, gfp_t gfp)
1020 {
1021         pgoff_t index;
1022         int sizebits;
1023
1024         sizebits = -1;
1025         do {
1026                 sizebits++;
1027         } while ((size << sizebits) < PAGE_SIZE);
1028
1029         index = block >> sizebits;
1030
1031         /*
1032          * Check for a block which wants to lie outside our maximum possible
1033          * pagecache index.  (this comparison is done using sector_t types).
1034          */
1035         if (unlikely(index != block >> sizebits)) {
1036                 printk(KERN_ERR "%s: requested out-of-range block %llu for "
1037                         "device %pg\n",
1038                         __func__, (unsigned long long)block,
1039                         bdev);
1040                 return -EIO;
1041         }
1042
1043         /* Create a page with the proper size buffers.. */
1044         return grow_dev_page(bdev, block, index, size, sizebits, gfp);
1045 }
1046
1047 static struct buffer_head *
1048 __getblk_slow(struct block_device *bdev, sector_t block,
1049              unsigned size, gfp_t gfp)
1050 {
1051         /* Size must be multiple of hard sectorsize */
1052         if (unlikely(size & (bdev_logical_block_size(bdev)-1) ||
1053                         (size < 512 || size > PAGE_SIZE))) {
1054                 printk(KERN_ERR "getblk(): invalid block size %d requested\n",
1055                                         size);
1056                 printk(KERN_ERR "logical block size: %d\n",
1057                                         bdev_logical_block_size(bdev));
1058
1059                 dump_stack();
1060                 return NULL;
1061         }
1062
1063         for (;;) {
1064                 struct buffer_head *bh;
1065                 int ret;
1066
1067                 bh = __find_get_block(bdev, block, size);
1068                 if (bh)
1069                         return bh;
1070
1071                 ret = grow_buffers(bdev, block, size, gfp);
1072                 if (ret < 0)
1073                         return NULL;
1074         }
1075 }
1076
1077 /*
1078  * The relationship between dirty buffers and dirty pages:
1079  *
1080  * Whenever a page has any dirty buffers, the page's dirty bit is set, and
1081  * the page is tagged dirty in the page cache.
1082  *
1083  * At all times, the dirtiness of the buffers represents the dirtiness of
1084  * subsections of the page.  If the page has buffers, the page dirty bit is
1085  * merely a hint about the true dirty state.
1086  *
1087  * When a page is set dirty in its entirety, all its buffers are marked dirty
1088  * (if the page has buffers).
1089  *
1090  * When a buffer is marked dirty, its page is dirtied, but the page's other
1091  * buffers are not.
1092  *
1093  * Also.  When blockdev buffers are explicitly read with bread(), they
1094  * individually become uptodate.  But their backing page remains not
1095  * uptodate - even if all of its buffers are uptodate.  A subsequent
1096  * block_read_full_page() against that page will discover all the uptodate
1097  * buffers, will set the page uptodate and will perform no I/O.
1098  */
1099
1100 /**
1101  * mark_buffer_dirty - mark a buffer_head as needing writeout
1102  * @bh: the buffer_head to mark dirty
1103  *
1104  * mark_buffer_dirty() will set the dirty bit against the buffer, then set
1105  * its backing page dirty, then tag the page as dirty in the page cache
1106  * and then attach the address_space's inode to its superblock's dirty
1107  * inode list.
1108  *
1109  * mark_buffer_dirty() is atomic.  It takes bh->b_page->mapping->private_lock,
1110  * i_pages lock and mapping->host->i_lock.
1111  */
1112 void mark_buffer_dirty(struct buffer_head *bh)
1113 {
1114         WARN_ON_ONCE(!buffer_uptodate(bh));
1115
1116         trace_block_dirty_buffer(bh);
1117
1118         /*
1119          * Very *carefully* optimize the it-is-already-dirty case.
1120          *
1121          * Don't let the final "is it dirty" escape to before we
1122          * perhaps modified the buffer.
1123          */
1124         if (buffer_dirty(bh)) {
1125                 smp_mb();
1126                 if (buffer_dirty(bh))
1127                         return;
1128         }
1129
1130         if (!test_set_buffer_dirty(bh)) {
1131                 struct page *page = bh->b_page;
1132                 struct address_space *mapping = NULL;
1133
1134                 lock_page_memcg(page);
1135                 if (!TestSetPageDirty(page)) {
1136                         mapping = page_mapping(page);
1137                         if (mapping)
1138                                 __set_page_dirty(page, mapping, 0);
1139                 }
1140                 unlock_page_memcg(page);
1141                 if (mapping)
1142                         __mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
1143         }
1144 }
1145 EXPORT_SYMBOL(mark_buffer_dirty);
1146
1147 void mark_buffer_write_io_error(struct buffer_head *bh)
1148 {
1149         struct super_block *sb;
1150
1151         set_buffer_write_io_error(bh);
1152         /* FIXME: do we need to set this in both places? */
1153         if (bh->b_page && bh->b_page->mapping)
1154                 mapping_set_error(bh->b_page->mapping, -EIO);
1155         if (bh->b_assoc_map)
1156                 mapping_set_error(bh->b_assoc_map, -EIO);
1157         rcu_read_lock();
1158         sb = READ_ONCE(bh->b_bdev->bd_super);
1159         if (sb)
1160                 errseq_set(&sb->s_wb_err, -EIO);
1161         rcu_read_unlock();
1162 }
1163 EXPORT_SYMBOL(mark_buffer_write_io_error);
1164
1165 /*
1166  * Decrement a buffer_head's reference count.  If all buffers against a page
1167  * have zero reference count, are clean and unlocked, and if the page is clean
1168  * and unlocked then try_to_free_buffers() may strip the buffers from the page
1169  * in preparation for freeing it (sometimes, rarely, buffers are removed from
1170  * a page but it ends up not being freed, and buffers may later be reattached).
1171  */
1172 void __brelse(struct buffer_head * buf)
1173 {
1174         if (atomic_read(&buf->b_count)) {
1175                 put_bh(buf);
1176                 return;
1177         }
1178         WARN(1, KERN_ERR "VFS: brelse: Trying to free free buffer\n");
1179 }
1180 EXPORT_SYMBOL(__brelse);
1181
1182 /*
1183  * bforget() is like brelse(), except it discards any
1184  * potentially dirty data.
1185  */
1186 void __bforget(struct buffer_head *bh)
1187 {
1188         clear_buffer_dirty(bh);
1189         if (bh->b_assoc_map) {
1190                 struct address_space *buffer_mapping = bh->b_page->mapping;
1191
1192                 spin_lock(&buffer_mapping->private_lock);
1193                 list_del_init(&bh->b_assoc_buffers);
1194                 bh->b_assoc_map = NULL;
1195                 spin_unlock(&buffer_mapping->private_lock);
1196         }
1197         __brelse(bh);
1198 }
1199 EXPORT_SYMBOL(__bforget);
1200
1201 static struct buffer_head *__bread_slow(struct buffer_head *bh)
1202 {
1203         lock_buffer(bh);
1204         if (buffer_uptodate(bh)) {
1205                 unlock_buffer(bh);
1206                 return bh;
1207         } else {
1208                 get_bh(bh);
1209                 bh->b_end_io = end_buffer_read_sync;
1210                 submit_bh(REQ_OP_READ, 0, bh);
1211                 wait_on_buffer(bh);
1212                 if (buffer_uptodate(bh))
1213                         return bh;
1214         }
1215         brelse(bh);
1216         return NULL;
1217 }
1218
1219 /*
1220  * Per-cpu buffer LRU implementation.  To reduce the cost of __find_get_block().
1221  * The bhs[] array is sorted - newest buffer is at bhs[0].  Buffers have their
1222  * refcount elevated by one when they're in an LRU.  A buffer can only appear
1223  * once in a particular CPU's LRU.  A single buffer can be present in multiple
1224  * CPU's LRUs at the same time.
1225  *
1226  * This is a transparent caching front-end to sb_bread(), sb_getblk() and
1227  * sb_find_get_block().
1228  *
1229  * The LRUs themselves only need locking against invalidate_bh_lrus.  We use
1230  * a local interrupt disable for that.
1231  */
1232
1233 #define BH_LRU_SIZE     16
1234
1235 struct bh_lru {
1236         struct buffer_head *bhs[BH_LRU_SIZE];
1237 };
1238
1239 static DEFINE_PER_CPU(struct bh_lru, bh_lrus) = {{ NULL }};
1240
1241 #ifdef CONFIG_SMP
1242 #define bh_lru_lock()   local_irq_disable()
1243 #define bh_lru_unlock() local_irq_enable()
1244 #else
1245 #define bh_lru_lock()   preempt_disable()
1246 #define bh_lru_unlock() preempt_enable()
1247 #endif
1248
1249 static inline void check_irqs_on(void)
1250 {
1251 #ifdef irqs_disabled
1252         BUG_ON(irqs_disabled());
1253 #endif
1254 }
1255
1256 /*
1257  * Install a buffer_head into this cpu's LRU.  If not already in the LRU, it is
1258  * inserted at the front, and the buffer_head at the back if any is evicted.
1259  * Or, if already in the LRU it is moved to the front.
1260  */
1261 static void bh_lru_install(struct buffer_head *bh)
1262 {
1263         struct buffer_head *evictee = bh;
1264         struct bh_lru *b;
1265         int i;
1266
1267         check_irqs_on();
1268         bh_lru_lock();
1269
1270         b = this_cpu_ptr(&bh_lrus);
1271         for (i = 0; i < BH_LRU_SIZE; i++) {
1272                 swap(evictee, b->bhs[i]);
1273                 if (evictee == bh) {
1274                         bh_lru_unlock();
1275                         return;
1276                 }
1277         }
1278
1279         get_bh(bh);
1280         bh_lru_unlock();
1281         brelse(evictee);
1282 }
1283
1284 /*
1285  * Look up the bh in this cpu's LRU.  If it's there, move it to the head.
1286  */
1287 static struct buffer_head *
1288 lookup_bh_lru(struct block_device *bdev, sector_t block, unsigned size)
1289 {
1290         struct buffer_head *ret = NULL;
1291         unsigned int i;
1292
1293         check_irqs_on();
1294         bh_lru_lock();
1295         for (i = 0; i < BH_LRU_SIZE; i++) {
1296                 struct buffer_head *bh = __this_cpu_read(bh_lrus.bhs[i]);
1297
1298                 if (bh && bh->b_blocknr == block && bh->b_bdev == bdev &&
1299                     bh->b_size == size) {
1300                         if (i) {
1301                                 while (i) {
1302                                         __this_cpu_write(bh_lrus.bhs[i],
1303                                                 __this_cpu_read(bh_lrus.bhs[i - 1]));
1304                                         i--;
1305                                 }
1306                                 __this_cpu_write(bh_lrus.bhs[0], bh);
1307                         }
1308                         get_bh(bh);
1309                         ret = bh;
1310                         break;
1311                 }
1312         }
1313         bh_lru_unlock();
1314         return ret;
1315 }
1316
1317 /*
1318  * Perform a pagecache lookup for the matching buffer.  If it's there, refresh
1319  * it in the LRU and mark it as accessed.  If it is not present then return
1320  * NULL
1321  */
1322 struct buffer_head *
1323 __find_get_block(struct block_device *bdev, sector_t block, unsigned size)
1324 {
1325         struct buffer_head *bh = lookup_bh_lru(bdev, block, size);
1326
1327         if (bh == NULL) {
1328                 /* __find_get_block_slow will mark the page accessed */
1329                 bh = __find_get_block_slow(bdev, block);
1330                 if (bh)
1331                         bh_lru_install(bh);
1332         } else
1333                 touch_buffer(bh);
1334
1335         return bh;
1336 }
1337 EXPORT_SYMBOL(__find_get_block);
1338
1339 /*
1340  * __getblk_gfp() will locate (and, if necessary, create) the buffer_head
1341  * which corresponds to the passed block_device, block and size. The
1342  * returned buffer has its reference count incremented.
1343  *
1344  * __getblk_gfp() will lock up the machine if grow_dev_page's
1345  * try_to_free_buffers() attempt is failing.  FIXME, perhaps?
1346  */
1347 struct buffer_head *
1348 __getblk_gfp(struct block_device *bdev, sector_t block,
1349              unsigned size, gfp_t gfp)
1350 {
1351         struct buffer_head *bh = __find_get_block(bdev, block, size);
1352
1353         might_sleep();
1354         if (bh == NULL)
1355                 bh = __getblk_slow(bdev, block, size, gfp);
1356         return bh;
1357 }
1358 EXPORT_SYMBOL(__getblk_gfp);
1359
1360 /*
1361  * Do async read-ahead on a buffer..
1362  */
1363 void __breadahead(struct block_device *bdev, sector_t block, unsigned size)
1364 {
1365         struct buffer_head *bh = __getblk(bdev, block, size);
1366         if (likely(bh)) {
1367                 ll_rw_block(REQ_OP_READ, REQ_RAHEAD, 1, &bh);
1368                 brelse(bh);
1369         }
1370 }
1371 EXPORT_SYMBOL(__breadahead);
1372
1373 void __breadahead_gfp(struct block_device *bdev, sector_t block, unsigned size,
1374                       gfp_t gfp)
1375 {
1376         struct buffer_head *bh = __getblk_gfp(bdev, block, size, gfp);
1377         if (likely(bh)) {
1378                 ll_rw_block(REQ_OP_READ, REQ_RAHEAD, 1, &bh);
1379                 brelse(bh);
1380         }
1381 }
1382 EXPORT_SYMBOL(__breadahead_gfp);
1383
1384 /**
1385  *  __bread_gfp() - reads a specified block and returns the bh
1386  *  @bdev: the block_device to read from
1387  *  @block: number of block
1388  *  @size: size (in bytes) to read
1389  *  @gfp: page allocation flag
1390  *
1391  *  Reads a specified block, and returns buffer head that contains it.
1392  *  The page cache can be allocated from non-movable area
1393  *  not to prevent page migration if you set gfp to zero.
1394  *  It returns NULL if the block was unreadable.
1395  */
1396 struct buffer_head *
1397 __bread_gfp(struct block_device *bdev, sector_t block,
1398                    unsigned size, gfp_t gfp)
1399 {
1400         struct buffer_head *bh = __getblk_gfp(bdev, block, size, gfp);
1401
1402         if (likely(bh) && !buffer_uptodate(bh))
1403                 bh = __bread_slow(bh);
1404         return bh;
1405 }
1406 EXPORT_SYMBOL(__bread_gfp);
1407
1408 /*
1409  * invalidate_bh_lrus() is called rarely - but not only at unmount.
1410  * This doesn't race because it runs in each cpu either in irq
1411  * or with preempt disabled.
1412  */
1413 static void invalidate_bh_lru(void *arg)
1414 {
1415         struct bh_lru *b = &get_cpu_var(bh_lrus);
1416         int i;
1417
1418         for (i = 0; i < BH_LRU_SIZE; i++) {
1419                 brelse(b->bhs[i]);
1420                 b->bhs[i] = NULL;
1421         }
1422         put_cpu_var(bh_lrus);
1423 }
1424
1425 static bool has_bh_in_lru(int cpu, void *dummy)
1426 {
1427         struct bh_lru *b = per_cpu_ptr(&bh_lrus, cpu);
1428         int i;
1429         
1430         for (i = 0; i < BH_LRU_SIZE; i++) {
1431                 if (b->bhs[i])
1432                         return true;
1433         }
1434
1435         return false;
1436 }
1437
1438 void invalidate_bh_lrus(void)
1439 {
1440         on_each_cpu_cond(has_bh_in_lru, invalidate_bh_lru, NULL, 1);
1441 }
1442 EXPORT_SYMBOL_GPL(invalidate_bh_lrus);
1443
1444 void set_bh_page(struct buffer_head *bh,
1445                 struct page *page, unsigned long offset)
1446 {
1447         bh->b_page = page;
1448         BUG_ON(offset >= PAGE_SIZE);
1449         if (PageHighMem(page))
1450                 /*
1451                  * This catches illegal uses and preserves the offset:
1452                  */
1453                 bh->b_data = (char *)(0 + offset);
1454         else
1455                 bh->b_data = page_address(page) + offset;
1456 }
1457 EXPORT_SYMBOL(set_bh_page);
1458
1459 /*
1460  * Called when truncating a buffer on a page completely.
1461  */
1462
1463 /* Bits that are cleared during an invalidate */
1464 #define BUFFER_FLAGS_DISCARD \
1465         (1 << BH_Mapped | 1 << BH_New | 1 << BH_Req | \
1466          1 << BH_Delay | 1 << BH_Unwritten)
1467
1468 static void discard_buffer(struct buffer_head * bh)
1469 {
1470         unsigned long b_state, b_state_old;
1471
1472         lock_buffer(bh);
1473         clear_buffer_dirty(bh);
1474         bh->b_bdev = NULL;
1475         b_state = bh->b_state;
1476         for (;;) {
1477                 b_state_old = cmpxchg(&bh->b_state, b_state,
1478                                       (b_state & ~BUFFER_FLAGS_DISCARD));
1479                 if (b_state_old == b_state)
1480                         break;
1481                 b_state = b_state_old;
1482         }
1483         unlock_buffer(bh);
1484 }
1485
1486 /**
1487  * block_invalidatepage - invalidate part or all of a buffer-backed page
1488  *
1489  * @page: the page which is affected
1490  * @offset: start of the range to invalidate
1491  * @length: length of the range to invalidate
1492  *
1493  * block_invalidatepage() is called when all or part of the page has become
1494  * invalidated by a truncate operation.
1495  *
1496  * block_invalidatepage() does not have to release all buffers, but it must
1497  * ensure that no dirty buffer is left outside @offset and that no I/O
1498  * is underway against any of the blocks which are outside the truncation
1499  * point.  Because the caller is about to free (and possibly reuse) those
1500  * blocks on-disk.
1501  */
1502 void block_invalidatepage(struct page *page, unsigned int offset,
1503                           unsigned int length)
1504 {
1505         struct buffer_head *head, *bh, *next;
1506         unsigned int curr_off = 0;
1507         unsigned int stop = length + offset;
1508
1509         BUG_ON(!PageLocked(page));
1510         if (!page_has_buffers(page))
1511                 goto out;
1512
1513         /*
1514          * Check for overflow
1515          */
1516         BUG_ON(stop > PAGE_SIZE || stop < length);
1517
1518         head = page_buffers(page);
1519         bh = head;
1520         do {
1521                 unsigned int next_off = curr_off + bh->b_size;
1522                 next = bh->b_this_page;
1523
1524                 /*
1525                  * Are we still fully in range ?
1526                  */
1527                 if (next_off > stop)
1528                         goto out;
1529
1530                 /*
1531                  * is this block fully invalidated?
1532                  */
1533                 if (offset <= curr_off)
1534                         discard_buffer(bh);
1535                 curr_off = next_off;
1536                 bh = next;
1537         } while (bh != head);
1538
1539         /*
1540          * We release buffers only if the entire page is being invalidated.
1541          * The get_block cached value has been unconditionally invalidated,
1542          * so real IO is not possible anymore.
1543          */
1544         if (length == PAGE_SIZE)
1545                 try_to_release_page(page, 0);
1546 out:
1547         return;
1548 }
1549 EXPORT_SYMBOL(block_invalidatepage);
1550
1551
1552 /*
1553  * We attach and possibly dirty the buffers atomically wrt
1554  * __set_page_dirty_buffers() via private_lock.  try_to_free_buffers
1555  * is already excluded via the page lock.
1556  */
1557 void create_empty_buffers(struct page *page,
1558                         unsigned long blocksize, unsigned long b_state)
1559 {
1560         struct buffer_head *bh, *head, *tail;
1561
1562         head = alloc_page_buffers(page, blocksize, true);
1563         bh = head;
1564         do {
1565                 bh->b_state |= b_state;
1566                 tail = bh;
1567                 bh = bh->b_this_page;
1568         } while (bh);
1569         tail->b_this_page = head;
1570
1571         spin_lock(&page->mapping->private_lock);
1572         if (PageUptodate(page) || PageDirty(page)) {
1573                 bh = head;
1574                 do {
1575                         if (PageDirty(page))
1576                                 set_buffer_dirty(bh);
1577                         if (PageUptodate(page))
1578                                 set_buffer_uptodate(bh);
1579                         bh = bh->b_this_page;
1580                 } while (bh != head);
1581         }
1582         attach_page_private(page, head);
1583         spin_unlock(&page->mapping->private_lock);
1584 }
1585 EXPORT_SYMBOL(create_empty_buffers);
1586
1587 /**
1588  * clean_bdev_aliases: clean a range of buffers in block device
1589  * @bdev: Block device to clean buffers in
1590  * @block: Start of a range of blocks to clean
1591  * @len: Number of blocks to clean
1592  *
1593  * We are taking a range of blocks for data and we don't want writeback of any
1594  * buffer-cache aliases starting from return from this function and until the
1595  * moment when something will explicitly mark the buffer dirty (hopefully that
1596  * will not happen until we will free that block ;-) We don't even need to mark
1597  * it not-uptodate - nobody can expect anything from a newly allocated buffer
1598  * anyway. We used to use unmap_buffer() for such invalidation, but that was
1599  * wrong. We definitely don't want to mark the alias unmapped, for example - it
1600  * would confuse anyone who might pick it with bread() afterwards...
1601  *
1602  * Also..  Note that bforget() doesn't lock the buffer.  So there can be
1603  * writeout I/O going on against recently-freed buffers.  We don't wait on that
1604  * I/O in bforget() - it's more efficient to wait on the I/O only if we really
1605  * need to.  That happens here.
1606  */
1607 void clean_bdev_aliases(struct block_device *bdev, sector_t block, sector_t len)
1608 {
1609         struct inode *bd_inode = bdev->bd_inode;
1610         struct address_space *bd_mapping = bd_inode->i_mapping;
1611         struct pagevec pvec;
1612         pgoff_t index = block >> (PAGE_SHIFT - bd_inode->i_blkbits);
1613         pgoff_t end;
1614         int i, count;
1615         struct buffer_head *bh;
1616         struct buffer_head *head;
1617
1618         end = (block + len - 1) >> (PAGE_SHIFT - bd_inode->i_blkbits);
1619         pagevec_init(&pvec);
1620         while (pagevec_lookup_range(&pvec, bd_mapping, &index, end)) {
1621                 count = pagevec_count(&pvec);
1622                 for (i = 0; i < count; i++) {
1623                         struct page *page = pvec.pages[i];
1624
1625                         if (!page_has_buffers(page))
1626                                 continue;
1627                         /*
1628                          * We use page lock instead of bd_mapping->private_lock
1629                          * to pin buffers here since we can afford to sleep and
1630                          * it scales better than a global spinlock lock.
1631                          */
1632                         lock_page(page);
1633                         /* Recheck when the page is locked which pins bhs */
1634                         if (!page_has_buffers(page))
1635                                 goto unlock_page;
1636                         head = page_buffers(page);
1637                         bh = head;
1638                         do {
1639                                 if (!buffer_mapped(bh) || (bh->b_blocknr < block))
1640                                         goto next;
1641                                 if (bh->b_blocknr >= block + len)
1642                                         break;
1643                                 clear_buffer_dirty(bh);
1644                                 wait_on_buffer(bh);
1645                                 clear_buffer_req(bh);
1646 next:
1647                                 bh = bh->b_this_page;
1648                         } while (bh != head);
1649 unlock_page:
1650                         unlock_page(page);
1651                 }
1652                 pagevec_release(&pvec);
1653                 cond_resched();
1654                 /* End of range already reached? */
1655                 if (index > end || !index)
1656                         break;
1657         }
1658 }
1659 EXPORT_SYMBOL(clean_bdev_aliases);
1660
1661 /*
1662  * Size is a power-of-two in the range 512..PAGE_SIZE,
1663  * and the case we care about most is PAGE_SIZE.
1664  *
1665  * So this *could* possibly be written with those
1666  * constraints in mind (relevant mostly if some
1667  * architecture has a slow bit-scan instruction)
1668  */
1669 static inline int block_size_bits(unsigned int blocksize)
1670 {
1671         return ilog2(blocksize);
1672 }
1673
1674 static struct buffer_head *create_page_buffers(struct page *page, struct inode *inode, unsigned int b_state)
1675 {
1676         BUG_ON(!PageLocked(page));
1677
1678         if (!page_has_buffers(page))
1679                 create_empty_buffers(page, 1 << READ_ONCE(inode->i_blkbits),
1680                                      b_state);
1681         return page_buffers(page);
1682 }
1683
1684 /*
1685  * NOTE! All mapped/uptodate combinations are valid:
1686  *
1687  *      Mapped  Uptodate        Meaning
1688  *
1689  *      No      No              "unknown" - must do get_block()
1690  *      No      Yes             "hole" - zero-filled
1691  *      Yes     No              "allocated" - allocated on disk, not read in
1692  *      Yes     Yes             "valid" - allocated and up-to-date in memory.
1693  *
1694  * "Dirty" is valid only with the last case (mapped+uptodate).
1695  */
1696
1697 /*
1698  * While block_write_full_page is writing back the dirty buffers under
1699  * the page lock, whoever dirtied the buffers may decide to clean them
1700  * again at any time.  We handle that by only looking at the buffer
1701  * state inside lock_buffer().
1702  *
1703  * If block_write_full_page() is called for regular writeback
1704  * (wbc->sync_mode == WB_SYNC_NONE) then it will redirty a page which has a
1705  * locked buffer.   This only can happen if someone has written the buffer
1706  * directly, with submit_bh().  At the address_space level PageWriteback
1707  * prevents this contention from occurring.
1708  *
1709  * If block_write_full_page() is called with wbc->sync_mode ==
1710  * WB_SYNC_ALL, the writes are posted using REQ_SYNC; this
1711  * causes the writes to be flagged as synchronous writes.
1712  */
1713 int __block_write_full_page(struct inode *inode, struct page *page,
1714                         get_block_t *get_block, struct writeback_control *wbc,
1715                         bh_end_io_t *handler)
1716 {
1717         int err;
1718         sector_t block;
1719         sector_t last_block;
1720         struct buffer_head *bh, *head;
1721         unsigned int blocksize, bbits;
1722         int nr_underway = 0;
1723         int write_flags = wbc_to_write_flags(wbc);
1724
1725         head = create_page_buffers(page, inode,
1726                                         (1 << BH_Dirty)|(1 << BH_Uptodate));
1727
1728         /*
1729          * Be very careful.  We have no exclusion from __set_page_dirty_buffers
1730          * here, and the (potentially unmapped) buffers may become dirty at
1731          * any time.  If a buffer becomes dirty here after we've inspected it
1732          * then we just miss that fact, and the page stays dirty.
1733          *
1734          * Buffers outside i_size may be dirtied by __set_page_dirty_buffers;
1735          * handle that here by just cleaning them.
1736          */
1737
1738         bh = head;
1739         blocksize = bh->b_size;
1740         bbits = block_size_bits(blocksize);
1741
1742         block = (sector_t)page->index << (PAGE_SHIFT - bbits);
1743         last_block = (i_size_read(inode) - 1) >> bbits;
1744
1745         /*
1746          * Get all the dirty buffers mapped to disk addresses and
1747          * handle any aliases from the underlying blockdev's mapping.
1748          */
1749         do {
1750                 if (block > last_block) {
1751                         /*
1752                          * mapped buffers outside i_size will occur, because
1753                          * this page can be outside i_size when there is a
1754                          * truncate in progress.
1755                          */
1756                         /*
1757                          * The buffer was zeroed by block_write_full_page()
1758                          */
1759                         clear_buffer_dirty(bh);
1760                         set_buffer_uptodate(bh);
1761                 } else if ((!buffer_mapped(bh) || buffer_delay(bh)) &&
1762                            buffer_dirty(bh)) {
1763                         WARN_ON(bh->b_size != blocksize);
1764                         err = get_block(inode, block, bh, 1);
1765                         if (err)
1766                                 goto recover;
1767                         clear_buffer_delay(bh);
1768                         if (buffer_new(bh)) {
1769                                 /* blockdev mappings never come here */
1770                                 clear_buffer_new(bh);
1771                                 clean_bdev_bh_alias(bh);
1772                         }
1773                 }
1774                 bh = bh->b_this_page;
1775                 block++;
1776         } while (bh != head);
1777
1778         do {
1779                 if (!buffer_mapped(bh))
1780                         continue;
1781                 /*
1782                  * If it's a fully non-blocking write attempt and we cannot
1783                  * lock the buffer then redirty the page.  Note that this can
1784                  * potentially cause a busy-wait loop from writeback threads
1785                  * and kswapd activity, but those code paths have their own
1786                  * higher-level throttling.
1787                  */
1788                 if (wbc->sync_mode != WB_SYNC_NONE) {
1789                         lock_buffer(bh);
1790                 } else if (!trylock_buffer(bh)) {
1791                         redirty_page_for_writepage(wbc, page);
1792                         continue;
1793                 }
1794                 if (test_clear_buffer_dirty(bh)) {
1795                         mark_buffer_async_write_endio(bh, handler);
1796                 } else {
1797                         unlock_buffer(bh);
1798                 }
1799         } while ((bh = bh->b_this_page) != head);
1800
1801         /*
1802          * The page and its buffers are protected by PageWriteback(), so we can
1803          * drop the bh refcounts early.
1804          */
1805         BUG_ON(PageWriteback(page));
1806         set_page_writeback(page);
1807
1808         do {
1809                 struct buffer_head *next = bh->b_this_page;
1810                 if (buffer_async_write(bh)) {
1811                         submit_bh_wbc(REQ_OP_WRITE, write_flags, bh,
1812                                         inode->i_write_hint, wbc);
1813                         nr_underway++;
1814                 }
1815                 bh = next;
1816         } while (bh != head);
1817         unlock_page(page);
1818
1819         err = 0;
1820 done:
1821         if (nr_underway == 0) {
1822                 /*
1823                  * The page was marked dirty, but the buffers were
1824                  * clean.  Someone wrote them back by hand with
1825                  * ll_rw_block/submit_bh.  A rare case.
1826                  */
1827                 end_page_writeback(page);
1828
1829                 /*
1830                  * The page and buffer_heads can be released at any time from
1831                  * here on.
1832                  */
1833         }
1834         return err;
1835
1836 recover:
1837         /*
1838          * ENOSPC, or some other error.  We may already have added some
1839          * blocks to the file, so we need to write these out to avoid
1840          * exposing stale data.
1841          * The page is currently locked and not marked for writeback
1842          */
1843         bh = head;
1844         /* Recovery: lock and submit the mapped buffers */
1845         do {
1846                 if (buffer_mapped(bh) && buffer_dirty(bh) &&
1847                     !buffer_delay(bh)) {
1848                         lock_buffer(bh);
1849                         mark_buffer_async_write_endio(bh, handler);
1850                 } else {
1851                         /*
1852                          * The buffer may have been set dirty during
1853                          * attachment to a dirty page.
1854                          */
1855                         clear_buffer_dirty(bh);
1856                 }
1857         } while ((bh = bh->b_this_page) != head);
1858         SetPageError(page);
1859         BUG_ON(PageWriteback(page));
1860         mapping_set_error(page->mapping, err);
1861         set_page_writeback(page);
1862         do {
1863                 struct buffer_head *next = bh->b_this_page;
1864                 if (buffer_async_write(bh)) {
1865                         clear_buffer_dirty(bh);
1866                         submit_bh_wbc(REQ_OP_WRITE, write_flags, bh,
1867                                         inode->i_write_hint, wbc);
1868                         nr_underway++;
1869                 }
1870                 bh = next;
1871         } while (bh != head);
1872         unlock_page(page);
1873         goto done;
1874 }
1875 EXPORT_SYMBOL(__block_write_full_page);
1876
1877 /*
1878  * If a page has any new buffers, zero them out here, and mark them uptodate
1879  * and dirty so they'll be written out (in order to prevent uninitialised
1880  * block data from leaking). And clear the new bit.
1881  */
1882 void page_zero_new_buffers(struct page *page, unsigned from, unsigned to)
1883 {
1884         unsigned int block_start, block_end;
1885         struct buffer_head *head, *bh;
1886
1887         BUG_ON(!PageLocked(page));
1888         if (!page_has_buffers(page))
1889                 return;
1890
1891         bh = head = page_buffers(page);
1892         block_start = 0;
1893         do {
1894                 block_end = block_start + bh->b_size;
1895
1896                 if (buffer_new(bh)) {
1897                         if (block_end > from && block_start < to) {
1898                                 if (!PageUptodate(page)) {
1899                                         unsigned start, size;
1900
1901                                         start = max(from, block_start);
1902                                         size = min(to, block_end) - start;
1903
1904                                         zero_user(page, start, size);
1905                                         set_buffer_uptodate(bh);
1906                                 }
1907
1908                                 clear_buffer_new(bh);
1909                                 mark_buffer_dirty(bh);
1910                         }
1911                 }
1912
1913                 block_start = block_end;
1914                 bh = bh->b_this_page;
1915         } while (bh != head);
1916 }
1917 EXPORT_SYMBOL(page_zero_new_buffers);
1918
1919 static void
1920 iomap_to_bh(struct inode *inode, sector_t block, struct buffer_head *bh,
1921                 struct iomap *iomap)
1922 {
1923         loff_t offset = block << inode->i_blkbits;
1924
1925         bh->b_bdev = iomap->bdev;
1926
1927         /*
1928          * Block points to offset in file we need to map, iomap contains
1929          * the offset at which the map starts. If the map ends before the
1930          * current block, then do not map the buffer and let the caller
1931          * handle it.
1932          */
1933         BUG_ON(offset >= iomap->offset + iomap->length);
1934
1935         switch (iomap->type) {
1936         case IOMAP_HOLE:
1937                 /*
1938                  * If the buffer is not up to date or beyond the current EOF,
1939                  * we need to mark it as new to ensure sub-block zeroing is
1940                  * executed if necessary.
1941                  */
1942                 if (!buffer_uptodate(bh) ||
1943                     (offset >= i_size_read(inode)))
1944                         set_buffer_new(bh);
1945                 break;
1946         case IOMAP_DELALLOC:
1947                 if (!buffer_uptodate(bh) ||
1948                     (offset >= i_size_read(inode)))
1949                         set_buffer_new(bh);
1950                 set_buffer_uptodate(bh);
1951                 set_buffer_mapped(bh);
1952                 set_buffer_delay(bh);
1953                 break;
1954         case IOMAP_UNWRITTEN:
1955                 /*
1956                  * For unwritten regions, we always need to ensure that regions
1957                  * in the block we are not writing to are zeroed. Mark the
1958                  * buffer as new to ensure this.
1959                  */
1960                 set_buffer_new(bh);
1961                 set_buffer_unwritten(bh);
1962                 /* FALLTHRU */
1963         case IOMAP_MAPPED:
1964                 if ((iomap->flags & IOMAP_F_NEW) ||
1965                     offset >= i_size_read(inode))
1966                         set_buffer_new(bh);
1967                 bh->b_blocknr = (iomap->addr + offset - iomap->offset) >>
1968                                 inode->i_blkbits;
1969                 set_buffer_mapped(bh);
1970                 break;
1971         }
1972 }
1973
1974 int __block_write_begin_int(struct page *page, loff_t pos, unsigned len,
1975                 get_block_t *get_block, struct iomap *iomap)
1976 {
1977         unsigned from = pos & (PAGE_SIZE - 1);
1978         unsigned to = from + len;
1979         struct inode *inode = page->mapping->host;
1980         unsigned block_start, block_end;
1981         sector_t block;
1982         int err = 0;
1983         unsigned blocksize, bbits;
1984         struct buffer_head *bh, *head, *wait[2], **wait_bh=wait;
1985
1986         BUG_ON(!PageLocked(page));
1987         BUG_ON(from > PAGE_SIZE);
1988         BUG_ON(to > PAGE_SIZE);
1989         BUG_ON(from > to);
1990
1991         head = create_page_buffers(page, inode, 0);
1992         blocksize = head->b_size;
1993         bbits = block_size_bits(blocksize);
1994
1995         block = (sector_t)page->index << (PAGE_SHIFT - bbits);
1996
1997         for(bh = head, block_start = 0; bh != head || !block_start;
1998             block++, block_start=block_end, bh = bh->b_this_page) {
1999                 block_end = block_start + blocksize;
2000                 if (block_end <= from || block_start >= to) {
2001                         if (PageUptodate(page)) {
2002                                 if (!buffer_uptodate(bh))
2003                                         set_buffer_uptodate(bh);
2004                         }
2005                         continue;
2006                 }
2007                 if (buffer_new(bh))
2008                         clear_buffer_new(bh);
2009                 if (!buffer_mapped(bh)) {
2010                         WARN_ON(bh->b_size != blocksize);
2011                         if (get_block) {
2012                                 err = get_block(inode, block, bh, 1);
2013                                 if (err)
2014                                         break;
2015                         } else {
2016                                 iomap_to_bh(inode, block, bh, iomap);
2017                         }
2018
2019                         if (buffer_new(bh)) {
2020                                 clean_bdev_bh_alias(bh);
2021                                 if (PageUptodate(page)) {
2022                                         clear_buffer_new(bh);
2023                                         set_buffer_uptodate(bh);
2024                                         mark_buffer_dirty(bh);
2025                                         continue;
2026                                 }
2027                                 if (block_end > to || block_start < from)
2028                                         zero_user_segments(page,
2029                                                 to, block_end,
2030                                                 block_start, from);
2031                                 continue;
2032                         }
2033                 }
2034                 if (PageUptodate(page)) {
2035                         if (!buffer_uptodate(bh))
2036                                 set_buffer_uptodate(bh);
2037                         continue; 
2038                 }
2039                 if (!buffer_uptodate(bh) && !buffer_delay(bh) &&
2040                     !buffer_unwritten(bh) &&
2041                      (block_start < from || block_end > to)) {
2042                         ll_rw_block(REQ_OP_READ, 0, 1, &bh);
2043                         *wait_bh++=bh;
2044                 }
2045         }
2046         /*
2047          * If we issued read requests - let them complete.
2048          */
2049         while(wait_bh > wait) {
2050                 wait_on_buffer(*--wait_bh);
2051                 if (!buffer_uptodate(*wait_bh))
2052                         err = -EIO;
2053         }
2054         if (unlikely(err))
2055                 page_zero_new_buffers(page, from, to);
2056         return err;
2057 }
2058
2059 int __block_write_begin(struct page *page, loff_t pos, unsigned len,
2060                 get_block_t *get_block)
2061 {
2062         return __block_write_begin_int(page, pos, len, get_block, NULL);
2063 }
2064 EXPORT_SYMBOL(__block_write_begin);
2065
2066 static int __block_commit_write(struct inode *inode, struct page *page,
2067                 unsigned from, unsigned to)
2068 {
2069         unsigned block_start, block_end;
2070         int partial = 0;
2071         unsigned blocksize;
2072         struct buffer_head *bh, *head;
2073
2074         bh = head = page_buffers(page);
2075         blocksize = bh->b_size;
2076
2077         block_start = 0;
2078         do {
2079                 block_end = block_start + blocksize;
2080                 if (block_end <= from || block_start >= to) {
2081                         if (!buffer_uptodate(bh))
2082                                 partial = 1;
2083                 } else {
2084                         set_buffer_uptodate(bh);
2085                         mark_buffer_dirty(bh);
2086                 }
2087                 clear_buffer_new(bh);
2088
2089                 block_start = block_end;
2090                 bh = bh->b_this_page;
2091         } while (bh != head);
2092
2093         /*
2094          * If this is a partial write which happened to make all buffers
2095          * uptodate then we can optimize away a bogus readpage() for
2096          * the next read(). Here we 'discover' whether the page went
2097          * uptodate as a result of this (potentially partial) write.
2098          */
2099         if (!partial)
2100                 SetPageUptodate(page);
2101         return 0;
2102 }
2103
2104 /*
2105  * block_write_begin takes care of the basic task of block allocation and
2106  * bringing partial write blocks uptodate first.
2107  *
2108  * The filesystem needs to handle block truncation upon failure.
2109  */
2110 int block_write_begin(struct address_space *mapping, loff_t pos, unsigned len,
2111                 unsigned flags, struct page **pagep, get_block_t *get_block)
2112 {
2113         pgoff_t index = pos >> PAGE_SHIFT;
2114         struct page *page;
2115         int status;
2116
2117         page = grab_cache_page_write_begin(mapping, index, flags);
2118         if (!page)
2119                 return -ENOMEM;
2120
2121         status = __block_write_begin(page, pos, len, get_block);
2122         if (unlikely(status)) {
2123                 unlock_page(page);
2124                 put_page(page);
2125                 page = NULL;
2126         }
2127
2128         *pagep = page;
2129         return status;
2130 }
2131 EXPORT_SYMBOL(block_write_begin);
2132
2133 int block_write_end(struct file *file, struct address_space *mapping,
2134                         loff_t pos, unsigned len, unsigned copied,
2135                         struct page *page, void *fsdata)
2136 {
2137         struct inode *inode = mapping->host;
2138         unsigned start;
2139
2140         start = pos & (PAGE_SIZE - 1);
2141
2142         if (unlikely(copied < len)) {
2143                 /*
2144                  * The buffers that were written will now be uptodate, so we
2145                  * don't have to worry about a readpage reading them and
2146                  * overwriting a partial write. However if we have encountered
2147                  * a short write and only partially written into a buffer, it
2148                  * will not be marked uptodate, so a readpage might come in and
2149                  * destroy our partial write.
2150                  *
2151                  * Do the simplest thing, and just treat any short write to a
2152                  * non uptodate page as a zero-length write, and force the
2153                  * caller to redo the whole thing.
2154                  */
2155                 if (!PageUptodate(page))
2156                         copied = 0;
2157
2158                 page_zero_new_buffers(page, start+copied, start+len);
2159         }
2160         flush_dcache_page(page);
2161
2162         /* This could be a short (even 0-length) commit */
2163         __block_commit_write(inode, page, start, start+copied);
2164
2165         return copied;
2166 }
2167 EXPORT_SYMBOL(block_write_end);
2168
2169 int generic_write_end(struct file *file, struct address_space *mapping,
2170                         loff_t pos, unsigned len, unsigned copied,
2171                         struct page *page, void *fsdata)
2172 {
2173         struct inode *inode = mapping->host;
2174         loff_t old_size = inode->i_size;
2175         bool i_size_changed = false;
2176
2177         copied = block_write_end(file, mapping, pos, len, copied, page, fsdata);
2178
2179         /*
2180          * No need to use i_size_read() here, the i_size cannot change under us
2181          * because we hold i_rwsem.
2182          *
2183          * But it's important to update i_size while still holding page lock:
2184          * page writeout could otherwise come in and zero beyond i_size.
2185          */
2186         if (pos + copied > inode->i_size) {
2187                 i_size_write(inode, pos + copied);
2188                 i_size_changed = true;
2189         }
2190
2191         unlock_page(page);
2192         put_page(page);
2193
2194         if (old_size < pos)
2195                 pagecache_isize_extended(inode, old_size, pos);
2196         /*
2197          * Don't mark the inode dirty under page lock. First, it unnecessarily
2198          * makes the holding time of page lock longer. Second, it forces lock
2199          * ordering of page lock and transaction start for journaling
2200          * filesystems.
2201          */
2202         if (i_size_changed)
2203                 mark_inode_dirty(inode);
2204         return copied;
2205 }
2206 EXPORT_SYMBOL(generic_write_end);
2207
2208 /*
2209  * block_is_partially_uptodate checks whether buffers within a page are
2210  * uptodate or not.
2211  *
2212  * Returns true if all buffers which correspond to a file portion
2213  * we want to read are uptodate.
2214  */
2215 int block_is_partially_uptodate(struct page *page, unsigned long from,
2216                                         unsigned long count)
2217 {
2218         unsigned block_start, block_end, blocksize;
2219         unsigned to;
2220         struct buffer_head *bh, *head;
2221         int ret = 1;
2222
2223         if (!page_has_buffers(page))
2224                 return 0;
2225
2226         head = page_buffers(page);
2227         blocksize = head->b_size;
2228         to = min_t(unsigned, PAGE_SIZE - from, count);
2229         to = from + to;
2230         if (from < blocksize && to > PAGE_SIZE - blocksize)
2231                 return 0;
2232
2233         bh = head;
2234         block_start = 0;
2235         do {
2236                 block_end = block_start + blocksize;
2237                 if (block_end > from && block_start < to) {
2238                         if (!buffer_uptodate(bh)) {
2239                                 ret = 0;
2240                                 break;
2241                         }
2242                         if (block_end >= to)
2243                                 break;
2244                 }
2245                 block_start = block_end;
2246                 bh = bh->b_this_page;
2247         } while (bh != head);
2248
2249         return ret;
2250 }
2251 EXPORT_SYMBOL(block_is_partially_uptodate);
2252
2253 /*
2254  * Generic "read page" function for block devices that have the normal
2255  * get_block functionality. This is most of the block device filesystems.
2256  * Reads the page asynchronously --- the unlock_buffer() and
2257  * set/clear_buffer_uptodate() functions propagate buffer state into the
2258  * page struct once IO has completed.
2259  */
2260 int block_read_full_page(struct page *page, get_block_t *get_block)
2261 {
2262         struct inode *inode = page->mapping->host;
2263         sector_t iblock, lblock;
2264         struct buffer_head *bh, *head, *arr[MAX_BUF_PER_PAGE];
2265         unsigned int blocksize, bbits;
2266         int nr, i;
2267         int fully_mapped = 1;
2268
2269         head = create_page_buffers(page, inode, 0);
2270         blocksize = head->b_size;
2271         bbits = block_size_bits(blocksize);
2272
2273         iblock = (sector_t)page->index << (PAGE_SHIFT - bbits);
2274         lblock = (i_size_read(inode)+blocksize-1) >> bbits;
2275         bh = head;
2276         nr = 0;
2277         i = 0;
2278
2279         do {
2280                 if (buffer_uptodate(bh))
2281                         continue;
2282
2283                 if (!buffer_mapped(bh)) {
2284                         int err = 0;
2285
2286                         fully_mapped = 0;
2287                         if (iblock < lblock) {
2288                                 WARN_ON(bh->b_size != blocksize);
2289                                 err = get_block(inode, iblock, bh, 0);
2290                                 if (err)
2291                                         SetPageError(page);
2292                         }
2293                         if (!buffer_mapped(bh)) {
2294                                 zero_user(page, i * blocksize, blocksize);
2295                                 if (!err)
2296                                         set_buffer_uptodate(bh);
2297                                 continue;
2298                         }
2299                         /*
2300                          * get_block() might have updated the buffer
2301                          * synchronously
2302                          */
2303                         if (buffer_uptodate(bh))
2304                                 continue;
2305                 }
2306                 arr[nr++] = bh;
2307         } while (i++, iblock++, (bh = bh->b_this_page) != head);
2308
2309         if (fully_mapped)
2310                 SetPageMappedToDisk(page);
2311
2312         if (!nr) {
2313                 /*
2314                  * All buffers are uptodate - we can set the page uptodate
2315                  * as well. But not if get_block() returned an error.
2316                  */
2317                 if (!PageError(page))
2318                         SetPageUptodate(page);
2319                 unlock_page(page);
2320                 return 0;
2321         }
2322
2323         /* Stage two: lock the buffers */
2324         for (i = 0; i < nr; i++) {
2325                 bh = arr[i];
2326                 lock_buffer(bh);
2327                 mark_buffer_async_read(bh);
2328         }
2329
2330         /*
2331          * Stage 3: start the IO.  Check for uptodateness
2332          * inside the buffer lock in case another process reading
2333          * the underlying blockdev brought it uptodate (the sct fix).
2334          */
2335         for (i = 0; i < nr; i++) {
2336                 bh = arr[i];
2337                 if (buffer_uptodate(bh))
2338                         end_buffer_async_read(bh, 1);
2339                 else
2340                         submit_bh(REQ_OP_READ, 0, bh);
2341         }
2342         return 0;
2343 }
2344 EXPORT_SYMBOL(block_read_full_page);
2345
2346 /* utility function for filesystems that need to do work on expanding
2347  * truncates.  Uses filesystem pagecache writes to allow the filesystem to
2348  * deal with the hole.  
2349  */
2350 int generic_cont_expand_simple(struct inode *inode, loff_t size)
2351 {
2352         struct address_space *mapping = inode->i_mapping;
2353         struct page *page;
2354         void *fsdata;
2355         int err;
2356
2357         err = inode_newsize_ok(inode, size);
2358         if (err)
2359                 goto out;
2360
2361         err = pagecache_write_begin(NULL, mapping, size, 0,
2362                                     AOP_FLAG_CONT_EXPAND, &page, &fsdata);
2363         if (err)
2364                 goto out;
2365
2366         err = pagecache_write_end(NULL, mapping, size, 0, 0, page, fsdata);
2367         BUG_ON(err > 0);
2368
2369 out:
2370         return err;
2371 }
2372 EXPORT_SYMBOL(generic_cont_expand_simple);
2373
2374 static int cont_expand_zero(struct file *file, struct address_space *mapping,
2375                             loff_t pos, loff_t *bytes)
2376 {
2377         struct inode *inode = mapping->host;
2378         unsigned int blocksize = i_blocksize(inode);
2379         struct page *page;
2380         void *fsdata;
2381         pgoff_t index, curidx;
2382         loff_t curpos;
2383         unsigned zerofrom, offset, len;
2384         int err = 0;
2385
2386         index = pos >> PAGE_SHIFT;
2387         offset = pos & ~PAGE_MASK;
2388
2389         while (index > (curidx = (curpos = *bytes)>>PAGE_SHIFT)) {
2390                 zerofrom = curpos & ~PAGE_MASK;
2391                 if (zerofrom & (blocksize-1)) {
2392                         *bytes |= (blocksize-1);
2393                         (*bytes)++;
2394                 }
2395                 len = PAGE_SIZE - zerofrom;
2396
2397                 err = pagecache_write_begin(file, mapping, curpos, len, 0,
2398                                             &page, &fsdata);
2399                 if (err)
2400                         goto out;
2401                 zero_user(page, zerofrom, len);
2402                 err = pagecache_write_end(file, mapping, curpos, len, len,
2403                                                 page, fsdata);
2404                 if (err < 0)
2405                         goto out;
2406                 BUG_ON(err != len);
2407                 err = 0;
2408
2409                 balance_dirty_pages_ratelimited(mapping);
2410
2411                 if (fatal_signal_pending(current)) {
2412                         err = -EINTR;
2413                         goto out;
2414                 }
2415         }
2416
2417         /* page covers the boundary, find the boundary offset */
2418         if (index == curidx) {
2419                 zerofrom = curpos & ~PAGE_MASK;
2420                 /* if we will expand the thing last block will be filled */
2421                 if (offset <= zerofrom) {
2422                         goto out;
2423                 }
2424                 if (zerofrom & (blocksize-1)) {
2425                         *bytes |= (blocksize-1);
2426                         (*bytes)++;
2427                 }
2428                 len = offset - zerofrom;
2429
2430                 err = pagecache_write_begin(file, mapping, curpos, len, 0,
2431                                             &page, &fsdata);
2432                 if (err)
2433                         goto out;
2434                 zero_user(page, zerofrom, len);
2435                 err = pagecache_write_end(file, mapping, curpos, len, len,
2436                                                 page, fsdata);
2437                 if (err < 0)
2438                         goto out;
2439                 BUG_ON(err != len);
2440                 err = 0;
2441         }
2442 out:
2443         return err;
2444 }
2445
2446 /*
2447  * For moronic filesystems that do not allow holes in file.
2448  * We may have to extend the file.
2449  */
2450 int cont_write_begin(struct file *file, struct address_space *mapping,
2451                         loff_t pos, unsigned len, unsigned flags,
2452                         struct page **pagep, void **fsdata,
2453                         get_block_t *get_block, loff_t *bytes)
2454 {
2455         struct inode *inode = mapping->host;
2456         unsigned int blocksize = i_blocksize(inode);
2457         unsigned int zerofrom;
2458         int err;
2459
2460         err = cont_expand_zero(file, mapping, pos, bytes);
2461         if (err)
2462                 return err;
2463
2464         zerofrom = *bytes & ~PAGE_MASK;
2465         if (pos+len > *bytes && zerofrom & (blocksize-1)) {
2466                 *bytes |= (blocksize-1);
2467                 (*bytes)++;
2468         }
2469
2470         return block_write_begin(mapping, pos, len, flags, pagep, get_block);
2471 }
2472 EXPORT_SYMBOL(cont_write_begin);
2473
2474 int block_commit_write(struct page *page, unsigned from, unsigned to)
2475 {
2476         struct inode *inode = page->mapping->host;
2477         __block_commit_write(inode,page,from,to);
2478         return 0;
2479 }
2480 EXPORT_SYMBOL(block_commit_write);
2481
2482 /*
2483  * block_page_mkwrite() is not allowed to change the file size as it gets
2484  * called from a page fault handler when a page is first dirtied. Hence we must
2485  * be careful to check for EOF conditions here. We set the page up correctly
2486  * for a written page which means we get ENOSPC checking when writing into
2487  * holes and correct delalloc and unwritten extent mapping on filesystems that
2488  * support these features.
2489  *
2490  * We are not allowed to take the i_mutex here so we have to play games to
2491  * protect against truncate races as the page could now be beyond EOF.  Because
2492  * truncate writes the inode size before removing pages, once we have the
2493  * page lock we can determine safely if the page is beyond EOF. If it is not
2494  * beyond EOF, then the page is guaranteed safe against truncation until we
2495  * unlock the page.
2496  *
2497  * Direct callers of this function should protect against filesystem freezing
2498  * using sb_start_pagefault() - sb_end_pagefault() functions.
2499  */
2500 int block_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf,
2501                          get_block_t get_block)
2502 {
2503         struct page *page = vmf->page;
2504         struct inode *inode = file_inode(vma->vm_file);
2505         unsigned long end;
2506         loff_t size;
2507         int ret;
2508
2509         lock_page(page);
2510         size = i_size_read(inode);
2511         if ((page->mapping != inode->i_mapping) ||
2512             (page_offset(page) > size)) {
2513                 /* We overload EFAULT to mean page got truncated */
2514                 ret = -EFAULT;
2515                 goto out_unlock;
2516         }
2517
2518         /* page is wholly or partially inside EOF */
2519         if (((page->index + 1) << PAGE_SHIFT) > size)
2520                 end = size & ~PAGE_MASK;
2521         else
2522                 end = PAGE_SIZE;
2523
2524         ret = __block_write_begin(page, 0, end, get_block);
2525         if (!ret)
2526                 ret = block_commit_write(page, 0, end);
2527
2528         if (unlikely(ret < 0))
2529                 goto out_unlock;
2530         set_page_dirty(page);
2531         wait_for_stable_page(page);
2532         return 0;
2533 out_unlock:
2534         unlock_page(page);
2535         return ret;
2536 }
2537 EXPORT_SYMBOL(block_page_mkwrite);
2538
2539 /*
2540  * nobh_write_begin()'s prereads are special: the buffer_heads are freed
2541  * immediately, while under the page lock.  So it needs a special end_io
2542  * handler which does not touch the bh after unlocking it.
2543  */
2544 static void end_buffer_read_nobh(struct buffer_head *bh, int uptodate)
2545 {
2546         __end_buffer_read_notouch(bh, uptodate);
2547 }
2548
2549 /*
2550  * Attach the singly-linked list of buffers created by nobh_write_begin, to
2551  * the page (converting it to circular linked list and taking care of page
2552  * dirty races).
2553  */
2554 static void attach_nobh_buffers(struct page *page, struct buffer_head *head)
2555 {
2556         struct buffer_head *bh;
2557
2558         BUG_ON(!PageLocked(page));
2559
2560         spin_lock(&page->mapping->private_lock);
2561         bh = head;
2562         do {
2563                 if (PageDirty(page))
2564                         set_buffer_dirty(bh);
2565                 if (!bh->b_this_page)
2566                         bh->b_this_page = head;
2567                 bh = bh->b_this_page;
2568         } while (bh != head);
2569         attach_page_private(page, head);
2570         spin_unlock(&page->mapping->private_lock);
2571 }
2572
2573 /*
2574  * On entry, the page is fully not uptodate.
2575  * On exit the page is fully uptodate in the areas outside (from,to)
2576  * The filesystem needs to handle block truncation upon failure.
2577  */
2578 int nobh_write_begin(struct address_space *mapping,
2579                         loff_t pos, unsigned len, unsigned flags,
2580                         struct page **pagep, void **fsdata,
2581                         get_block_t *get_block)
2582 {
2583         struct inode *inode = mapping->host;
2584         const unsigned blkbits = inode->i_blkbits;
2585         const unsigned blocksize = 1 << blkbits;
2586         struct buffer_head *head, *bh;
2587         struct page *page;
2588         pgoff_t index;
2589         unsigned from, to;
2590         unsigned block_in_page;
2591         unsigned block_start, block_end;
2592         sector_t block_in_file;
2593         int nr_reads = 0;
2594         int ret = 0;
2595         int is_mapped_to_disk = 1;
2596
2597         index = pos >> PAGE_SHIFT;
2598         from = pos & (PAGE_SIZE - 1);
2599         to = from + len;
2600
2601         page = grab_cache_page_write_begin(mapping, index, flags);
2602         if (!page)
2603                 return -ENOMEM;
2604         *pagep = page;
2605         *fsdata = NULL;
2606
2607         if (page_has_buffers(page)) {
2608                 ret = __block_write_begin(page, pos, len, get_block);
2609                 if (unlikely(ret))
2610                         goto out_release;
2611                 return ret;
2612         }
2613
2614         if (PageMappedToDisk(page))
2615                 return 0;
2616
2617         /*
2618          * Allocate buffers so that we can keep track of state, and potentially
2619          * attach them to the page if an error occurs. In the common case of
2620          * no error, they will just be freed again without ever being attached
2621          * to the page (which is all OK, because we're under the page lock).
2622          *
2623          * Be careful: the buffer linked list is a NULL terminated one, rather
2624          * than the circular one we're used to.
2625          */
2626         head = alloc_page_buffers(page, blocksize, false);
2627         if (!head) {
2628                 ret = -ENOMEM;
2629                 goto out_release;
2630         }
2631
2632         block_in_file = (sector_t)page->index << (PAGE_SHIFT - blkbits);
2633
2634         /*
2635          * We loop across all blocks in the page, whether or not they are
2636          * part of the affected region.  This is so we can discover if the
2637          * page is fully mapped-to-disk.
2638          */
2639         for (block_start = 0, block_in_page = 0, bh = head;
2640                   block_start < PAGE_SIZE;
2641                   block_in_page++, block_start += blocksize, bh = bh->b_this_page) {
2642                 int create;
2643
2644                 block_end = block_start + blocksize;
2645                 bh->b_state = 0;
2646                 create = 1;
2647                 if (block_start >= to)
2648                         create = 0;
2649                 ret = get_block(inode, block_in_file + block_in_page,
2650                                         bh, create);
2651                 if (ret)
2652                         goto failed;
2653                 if (!buffer_mapped(bh))
2654                         is_mapped_to_disk = 0;
2655                 if (buffer_new(bh))
2656                         clean_bdev_bh_alias(bh);
2657                 if (PageUptodate(page)) {
2658                         set_buffer_uptodate(bh);
2659                         continue;
2660                 }
2661                 if (buffer_new(bh) || !buffer_mapped(bh)) {
2662                         zero_user_segments(page, block_start, from,
2663                                                         to, block_end);
2664                         continue;
2665                 }
2666                 if (buffer_uptodate(bh))
2667                         continue;       /* reiserfs does this */
2668                 if (block_start < from || block_end > to) {
2669                         lock_buffer(bh);
2670                         bh->b_end_io = end_buffer_read_nobh;
2671                         submit_bh(REQ_OP_READ, 0, bh);
2672                         nr_reads++;
2673                 }
2674         }
2675
2676         if (nr_reads) {
2677                 /*
2678                  * The page is locked, so these buffers are protected from
2679                  * any VM or truncate activity.  Hence we don't need to care
2680                  * for the buffer_head refcounts.
2681                  */
2682                 for (bh = head; bh; bh = bh->b_this_page) {
2683                         wait_on_buffer(bh);
2684                         if (!buffer_uptodate(bh))
2685                                 ret = -EIO;
2686                 }
2687                 if (ret)
2688                         goto failed;
2689         }
2690
2691         if (is_mapped_to_disk)
2692                 SetPageMappedToDisk(page);
2693
2694         *fsdata = head; /* to be released by nobh_write_end */
2695
2696         return 0;
2697
2698 failed:
2699         BUG_ON(!ret);
2700         /*
2701          * Error recovery is a bit difficult. We need to zero out blocks that
2702          * were newly allocated, and dirty them to ensure they get written out.
2703          * Buffers need to be attached to the page at this point, otherwise
2704          * the handling of potential IO errors during writeout would be hard
2705          * (could try doing synchronous writeout, but what if that fails too?)
2706          */
2707         attach_nobh_buffers(page, head);
2708         page_zero_new_buffers(page, from, to);
2709
2710 out_release:
2711         unlock_page(page);
2712         put_page(page);
2713         *pagep = NULL;
2714
2715         return ret;
2716 }
2717 EXPORT_SYMBOL(nobh_write_begin);
2718
2719 int nobh_write_end(struct file *file, struct address_space *mapping,
2720                         loff_t pos, unsigned len, unsigned copied,
2721                         struct page *page, void *fsdata)
2722 {
2723         struct inode *inode = page->mapping->host;
2724         struct buffer_head *head = fsdata;
2725         struct buffer_head *bh;
2726         BUG_ON(fsdata != NULL && page_has_buffers(page));
2727
2728         if (unlikely(copied < len) && head)
2729                 attach_nobh_buffers(page, head);
2730         if (page_has_buffers(page))
2731                 return generic_write_end(file, mapping, pos, len,
2732                                         copied, page, fsdata);
2733
2734         SetPageUptodate(page);
2735         set_page_dirty(page);
2736         if (pos+copied > inode->i_size) {
2737                 i_size_write(inode, pos+copied);
2738                 mark_inode_dirty(inode);
2739         }
2740
2741         unlock_page(page);
2742         put_page(page);
2743
2744         while (head) {
2745                 bh = head;
2746                 head = head->b_this_page;
2747                 free_buffer_head(bh);
2748         }
2749
2750         return copied;
2751 }
2752 EXPORT_SYMBOL(nobh_write_end);
2753
2754 /*
2755  * nobh_writepage() - based on block_full_write_page() except
2756  * that it tries to operate without attaching bufferheads to
2757  * the page.
2758  */
2759 int nobh_writepage(struct page *page, get_block_t *get_block,
2760                         struct writeback_control *wbc)
2761 {
2762         struct inode * const inode = page->mapping->host;
2763         loff_t i_size = i_size_read(inode);
2764         const pgoff_t end_index = i_size >> PAGE_SHIFT;
2765         unsigned offset;
2766         int ret;
2767
2768         /* Is the page fully inside i_size? */
2769         if (page->index < end_index)
2770                 goto out;
2771
2772         /* Is the page fully outside i_size? (truncate in progress) */
2773         offset = i_size & (PAGE_SIZE-1);
2774         if (page->index >= end_index+1 || !offset) {
2775                 /*
2776                  * The page may have dirty, unmapped buffers.  For example,
2777                  * they may have been added in ext3_writepage().  Make them
2778                  * freeable here, so the page does not leak.
2779                  */
2780 #if 0
2781                 /* Not really sure about this  - do we need this ? */
2782                 if (page->mapping->a_ops->invalidatepage)
2783                         page->mapping->a_ops->invalidatepage(page, offset);
2784 #endif
2785                 unlock_page(page);
2786                 return 0; /* don't care */
2787         }
2788
2789         /*
2790          * The page straddles i_size.  It must be zeroed out on each and every
2791          * writepage invocation because it may be mmapped.  "A file is mapped
2792          * in multiples of the page size.  For a file that is not a multiple of
2793          * the  page size, the remaining memory is zeroed when mapped, and
2794          * writes to that region are not written out to the file."
2795          */
2796         zero_user_segment(page, offset, PAGE_SIZE);
2797 out:
2798         ret = mpage_writepage(page, get_block, wbc);
2799         if (ret == -EAGAIN)
2800                 ret = __block_write_full_page(inode, page, get_block, wbc,
2801                                               end_buffer_async_write);
2802         return ret;
2803 }
2804 EXPORT_SYMBOL(nobh_writepage);
2805
2806 int nobh_truncate_page(struct address_space *mapping,
2807                         loff_t from, get_block_t *get_block)
2808 {
2809         pgoff_t index = from >> PAGE_SHIFT;
2810         unsigned offset = from & (PAGE_SIZE-1);
2811         unsigned blocksize;
2812         sector_t iblock;
2813         unsigned length, pos;
2814         struct inode *inode = mapping->host;
2815         struct page *page;
2816         struct buffer_head map_bh;
2817         int err;
2818
2819         blocksize = i_blocksize(inode);
2820         length = offset & (blocksize - 1);
2821
2822         /* Block boundary? Nothing to do */
2823         if (!length)
2824                 return 0;
2825
2826         length = blocksize - length;
2827         iblock = (sector_t)index << (PAGE_SHIFT - inode->i_blkbits);
2828
2829         page = grab_cache_page(mapping, index);
2830         err = -ENOMEM;
2831         if (!page)
2832                 goto out;
2833
2834         if (page_has_buffers(page)) {
2835 has_buffers:
2836                 unlock_page(page);
2837                 put_page(page);
2838                 return block_truncate_page(mapping, from, get_block);
2839         }
2840
2841         /* Find the buffer that contains "offset" */
2842         pos = blocksize;
2843         while (offset >= pos) {
2844                 iblock++;
2845                 pos += blocksize;
2846         }
2847
2848         map_bh.b_size = blocksize;
2849         map_bh.b_state = 0;
2850         err = get_block(inode, iblock, &map_bh, 0);
2851         if (err)
2852                 goto unlock;
2853         /* unmapped? It's a hole - nothing to do */
2854         if (!buffer_mapped(&map_bh))
2855                 goto unlock;
2856
2857         /* Ok, it's mapped. Make sure it's up-to-date */
2858         if (!PageUptodate(page)) {
2859                 err = mapping->a_ops->readpage(NULL, page);
2860                 if (err) {
2861                         put_page(page);
2862                         goto out;
2863                 }
2864                 lock_page(page);
2865                 if (!PageUptodate(page)) {
2866                         err = -EIO;
2867                         goto unlock;
2868                 }
2869                 if (page_has_buffers(page))
2870                         goto has_buffers;
2871         }
2872         zero_user(page, offset, length);
2873         set_page_dirty(page);
2874         err = 0;
2875
2876 unlock:
2877         unlock_page(page);
2878         put_page(page);
2879 out:
2880         return err;
2881 }
2882 EXPORT_SYMBOL(nobh_truncate_page);
2883
2884 int block_truncate_page(struct address_space *mapping,
2885                         loff_t from, get_block_t *get_block)
2886 {
2887         pgoff_t index = from >> PAGE_SHIFT;
2888         unsigned offset = from & (PAGE_SIZE-1);
2889         unsigned blocksize;
2890         sector_t iblock;
2891         unsigned length, pos;
2892         struct inode *inode = mapping->host;
2893         struct page *page;
2894         struct buffer_head *bh;
2895         int err;
2896
2897         blocksize = i_blocksize(inode);
2898         length = offset & (blocksize - 1);
2899
2900         /* Block boundary? Nothing to do */
2901         if (!length)
2902                 return 0;
2903
2904         length = blocksize - length;
2905         iblock = (sector_t)index << (PAGE_SHIFT - inode->i_blkbits);
2906         
2907         page = grab_cache_page(mapping, index);
2908         err = -ENOMEM;
2909         if (!page)
2910                 goto out;
2911
2912         if (!page_has_buffers(page))
2913                 create_empty_buffers(page, blocksize, 0);
2914
2915         /* Find the buffer that contains "offset" */
2916         bh = page_buffers(page);
2917         pos = blocksize;
2918         while (offset >= pos) {
2919                 bh = bh->b_this_page;
2920                 iblock++;
2921                 pos += blocksize;
2922         }
2923
2924         err = 0;
2925         if (!buffer_mapped(bh)) {
2926                 WARN_ON(bh->b_size != blocksize);
2927                 err = get_block(inode, iblock, bh, 0);
2928                 if (err)
2929                         goto unlock;
2930                 /* unmapped? It's a hole - nothing to do */
2931                 if (!buffer_mapped(bh))
2932                         goto unlock;
2933         }
2934
2935         /* Ok, it's mapped. Make sure it's up-to-date */
2936         if (PageUptodate(page))
2937                 set_buffer_uptodate(bh);
2938
2939         if (!buffer_uptodate(bh) && !buffer_delay(bh) && !buffer_unwritten(bh)) {
2940                 err = -EIO;
2941                 ll_rw_block(REQ_OP_READ, 0, 1, &bh);
2942                 wait_on_buffer(bh);
2943                 /* Uhhuh. Read error. Complain and punt. */
2944                 if (!buffer_uptodate(bh))
2945                         goto unlock;
2946         }
2947
2948         zero_user(page, offset, length);
2949         mark_buffer_dirty(bh);
2950         err = 0;
2951
2952 unlock:
2953         unlock_page(page);
2954         put_page(page);
2955 out:
2956         return err;
2957 }
2958 EXPORT_SYMBOL(block_truncate_page);
2959
2960 /*
2961  * The generic ->writepage function for buffer-backed address_spaces
2962  */
2963 int block_write_full_page(struct page *page, get_block_t *get_block,
2964                         struct writeback_control *wbc)
2965 {
2966         struct inode * const inode = page->mapping->host;
2967         loff_t i_size = i_size_read(inode);
2968         const pgoff_t end_index = i_size >> PAGE_SHIFT;
2969         unsigned offset;
2970
2971         /* Is the page fully inside i_size? */
2972         if (page->index < end_index)
2973                 return __block_write_full_page(inode, page, get_block, wbc,
2974                                                end_buffer_async_write);
2975
2976         /* Is the page fully outside i_size? (truncate in progress) */
2977         offset = i_size & (PAGE_SIZE-1);
2978         if (page->index >= end_index+1 || !offset) {
2979                 /*
2980                  * The page may have dirty, unmapped buffers.  For example,
2981                  * they may have been added in ext3_writepage().  Make them
2982                  * freeable here, so the page does not leak.
2983                  */
2984                 do_invalidatepage(page, 0, PAGE_SIZE);
2985                 unlock_page(page);
2986                 return 0; /* don't care */
2987         }
2988
2989         /*
2990          * The page straddles i_size.  It must be zeroed out on each and every
2991          * writepage invocation because it may be mmapped.  "A file is mapped
2992          * in multiples of the page size.  For a file that is not a multiple of
2993          * the  page size, the remaining memory is zeroed when mapped, and
2994          * writes to that region are not written out to the file."
2995          */
2996         zero_user_segment(page, offset, PAGE_SIZE);
2997         return __block_write_full_page(inode, page, get_block, wbc,
2998                                                         end_buffer_async_write);
2999 }
3000 EXPORT_SYMBOL(block_write_full_page);
3001
3002 sector_t generic_block_bmap(struct address_space *mapping, sector_t block,
3003                             get_block_t *get_block)
3004 {
3005         struct inode *inode = mapping->host;
3006         struct buffer_head tmp = {
3007                 .b_size = i_blocksize(inode),
3008         };
3009
3010         get_block(inode, block, &tmp, 0);
3011         return tmp.b_blocknr;
3012 }
3013 EXPORT_SYMBOL(generic_block_bmap);
3014
3015 static void end_bio_bh_io_sync(struct bio *bio)
3016 {
3017         struct buffer_head *bh = bio->bi_private;
3018
3019         if (unlikely(bio_flagged(bio, BIO_QUIET)))
3020                 set_bit(BH_Quiet, &bh->b_state);
3021
3022         bh->b_end_io(bh, !bio->bi_status);
3023         bio_put(bio);
3024 }
3025
3026 static int submit_bh_wbc(int op, int op_flags, struct buffer_head *bh,
3027                          enum rw_hint write_hint, struct writeback_control *wbc)
3028 {
3029         struct bio *bio;
3030
3031         BUG_ON(!buffer_locked(bh));
3032         BUG_ON(!buffer_mapped(bh));
3033         BUG_ON(!bh->b_end_io);
3034         BUG_ON(buffer_delay(bh));
3035         BUG_ON(buffer_unwritten(bh));
3036
3037         /*
3038          * Only clear out a write error when rewriting
3039          */
3040         if (test_set_buffer_req(bh) && (op == REQ_OP_WRITE))
3041                 clear_buffer_write_io_error(bh);
3042
3043         /*
3044          * from here on down, it's all bio -- do the initial mapping,
3045          * submit_bio -> generic_make_request may further map this bio around
3046          */
3047         bio = bio_alloc(GFP_NOIO, 1);
3048
3049         bio->bi_iter.bi_sector = bh->b_blocknr * (bh->b_size >> 9);
3050         bio_set_dev(bio, bh->b_bdev);
3051         bio->bi_write_hint = write_hint;
3052
3053         bio_add_page(bio, bh->b_page, bh->b_size, bh_offset(bh));
3054         BUG_ON(bio->bi_iter.bi_size != bh->b_size);
3055
3056         bio->bi_end_io = end_bio_bh_io_sync;
3057         bio->bi_private = bh;
3058
3059         if (buffer_meta(bh))
3060                 op_flags |= REQ_META;
3061         if (buffer_prio(bh))
3062                 op_flags |= REQ_PRIO;
3063         bio_set_op_attrs(bio, op, op_flags);
3064
3065         /* Take care of bh's that straddle the end of the device */
3066         guard_bio_eod(bio);
3067
3068         if (wbc) {
3069                 wbc_init_bio(wbc, bio);
3070                 wbc_account_cgroup_owner(wbc, bh->b_page, bh->b_size);
3071         }
3072
3073         submit_bio(bio);
3074         return 0;
3075 }
3076
3077 int submit_bh(int op, int op_flags, struct buffer_head *bh)
3078 {
3079         return submit_bh_wbc(op, op_flags, bh, 0, NULL);
3080 }
3081 EXPORT_SYMBOL(submit_bh);
3082
3083 /**
3084  * ll_rw_block: low-level access to block devices (DEPRECATED)
3085  * @op: whether to %READ or %WRITE
3086  * @op_flags: req_flag_bits
3087  * @nr: number of &struct buffer_heads in the array
3088  * @bhs: array of pointers to &struct buffer_head
3089  *
3090  * ll_rw_block() takes an array of pointers to &struct buffer_heads, and
3091  * requests an I/O operation on them, either a %REQ_OP_READ or a %REQ_OP_WRITE.
3092  * @op_flags contains flags modifying the detailed I/O behavior, most notably
3093  * %REQ_RAHEAD.
3094  *
3095  * This function drops any buffer that it cannot get a lock on (with the
3096  * BH_Lock state bit), any buffer that appears to be clean when doing a write
3097  * request, and any buffer that appears to be up-to-date when doing read
3098  * request.  Further it marks as clean buffers that are processed for
3099  * writing (the buffer cache won't assume that they are actually clean
3100  * until the buffer gets unlocked).
3101  *
3102  * ll_rw_block sets b_end_io to simple completion handler that marks
3103  * the buffer up-to-date (if appropriate), unlocks the buffer and wakes
3104  * any waiters. 
3105  *
3106  * All of the buffers must be for the same device, and must also be a
3107  * multiple of the current approved size for the device.
3108  */
3109 void ll_rw_block(int op, int op_flags,  int nr, struct buffer_head *bhs[])
3110 {
3111         int i;
3112
3113         for (i = 0; i < nr; i++) {
3114                 struct buffer_head *bh = bhs[i];
3115
3116                 if (!trylock_buffer(bh))
3117                         continue;
3118                 if (op == WRITE) {
3119                         if (test_clear_buffer_dirty(bh)) {
3120                                 bh->b_end_io = end_buffer_write_sync;
3121                                 get_bh(bh);
3122                                 submit_bh(op, op_flags, bh);
3123                                 continue;
3124                         }
3125                 } else {
3126                         if (!buffer_uptodate(bh)) {
3127                                 bh->b_end_io = end_buffer_read_sync;
3128                                 get_bh(bh);
3129                                 submit_bh(op, op_flags, bh);
3130                                 continue;
3131                         }
3132                 }
3133                 unlock_buffer(bh);
3134         }
3135 }
3136 EXPORT_SYMBOL(ll_rw_block);
3137
3138 void write_dirty_buffer(struct buffer_head *bh, int op_flags)
3139 {
3140         lock_buffer(bh);
3141         if (!test_clear_buffer_dirty(bh)) {
3142                 unlock_buffer(bh);
3143                 return;
3144         }
3145         bh->b_end_io = end_buffer_write_sync;
3146         get_bh(bh);
3147         submit_bh(REQ_OP_WRITE, op_flags, bh);
3148 }
3149 EXPORT_SYMBOL(write_dirty_buffer);
3150
3151 /*
3152  * For a data-integrity writeout, we need to wait upon any in-progress I/O
3153  * and then start new I/O and then wait upon it.  The caller must have a ref on
3154  * the buffer_head.
3155  */
3156 int __sync_dirty_buffer(struct buffer_head *bh, int op_flags)
3157 {
3158         int ret = 0;
3159
3160         WARN_ON(atomic_read(&bh->b_count) < 1);
3161         lock_buffer(bh);
3162         if (test_clear_buffer_dirty(bh)) {
3163                 get_bh(bh);
3164                 bh->b_end_io = end_buffer_write_sync;
3165                 ret = submit_bh(REQ_OP_WRITE, op_flags, bh);
3166                 wait_on_buffer(bh);
3167                 if (!ret && !buffer_uptodate(bh))
3168                         ret = -EIO;
3169         } else {
3170                 unlock_buffer(bh);
3171         }
3172         return ret;
3173 }
3174 EXPORT_SYMBOL(__sync_dirty_buffer);
3175
3176 int sync_dirty_buffer(struct buffer_head *bh)
3177 {
3178         return __sync_dirty_buffer(bh, REQ_SYNC);
3179 }
3180 EXPORT_SYMBOL(sync_dirty_buffer);
3181
3182 /*
3183  * try_to_free_buffers() checks if all the buffers on this particular page
3184  * are unused, and releases them if so.
3185  *
3186  * Exclusion against try_to_free_buffers may be obtained by either
3187  * locking the page or by holding its mapping's private_lock.
3188  *
3189  * If the page is dirty but all the buffers are clean then we need to
3190  * be sure to mark the page clean as well.  This is because the page
3191  * may be against a block device, and a later reattachment of buffers
3192  * to a dirty page will set *all* buffers dirty.  Which would corrupt
3193  * filesystem data on the same device.
3194  *
3195  * The same applies to regular filesystem pages: if all the buffers are
3196  * clean then we set the page clean and proceed.  To do that, we require
3197  * total exclusion from __set_page_dirty_buffers().  That is obtained with
3198  * private_lock.
3199  *
3200  * try_to_free_buffers() is non-blocking.
3201  */
3202 static inline int buffer_busy(struct buffer_head *bh)
3203 {
3204         return atomic_read(&bh->b_count) |
3205                 (bh->b_state & ((1 << BH_Dirty) | (1 << BH_Lock)));
3206 }
3207
3208 static int
3209 drop_buffers(struct page *page, struct buffer_head **buffers_to_free)
3210 {
3211         struct buffer_head *head = page_buffers(page);
3212         struct buffer_head *bh;
3213
3214         bh = head;
3215         do {
3216                 if (buffer_busy(bh))
3217                         goto failed;
3218                 bh = bh->b_this_page;
3219         } while (bh != head);
3220
3221         do {
3222                 struct buffer_head *next = bh->b_this_page;
3223
3224                 if (bh->b_assoc_map)
3225                         __remove_assoc_queue(bh);
3226                 bh = next;
3227         } while (bh != head);
3228         *buffers_to_free = head;
3229         detach_page_private(page);
3230         return 1;
3231 failed:
3232         return 0;
3233 }
3234
3235 int try_to_free_buffers(struct page *page)
3236 {
3237         struct address_space * const mapping = page->mapping;
3238         struct buffer_head *buffers_to_free = NULL;
3239         int ret = 0;
3240
3241         BUG_ON(!PageLocked(page));
3242         if (PageWriteback(page))
3243                 return 0;
3244
3245         if (mapping == NULL) {          /* can this still happen? */
3246                 ret = drop_buffers(page, &buffers_to_free);
3247                 goto out;
3248         }
3249
3250         spin_lock(&mapping->private_lock);
3251         ret = drop_buffers(page, &buffers_to_free);
3252
3253         /*
3254          * If the filesystem writes its buffers by hand (eg ext3)
3255          * then we can have clean buffers against a dirty page.  We
3256          * clean the page here; otherwise the VM will never notice
3257          * that the filesystem did any IO at all.
3258          *
3259          * Also, during truncate, discard_buffer will have marked all
3260          * the page's buffers clean.  We discover that here and clean
3261          * the page also.
3262          *
3263          * private_lock must be held over this entire operation in order
3264          * to synchronise against __set_page_dirty_buffers and prevent the
3265          * dirty bit from being lost.
3266          */
3267         if (ret)
3268                 cancel_dirty_page(page);
3269         spin_unlock(&mapping->private_lock);
3270 out:
3271         if (buffers_to_free) {
3272                 struct buffer_head *bh = buffers_to_free;
3273
3274                 do {
3275                         struct buffer_head *next = bh->b_this_page;
3276                         free_buffer_head(bh);
3277                         bh = next;
3278                 } while (bh != buffers_to_free);
3279         }
3280         return ret;
3281 }
3282 EXPORT_SYMBOL(try_to_free_buffers);
3283
3284 /*
3285  * There are no bdflush tunables left.  But distributions are
3286  * still running obsolete flush daemons, so we terminate them here.
3287  *
3288  * Use of bdflush() is deprecated and will be removed in a future kernel.
3289  * The `flush-X' kernel threads fully replace bdflush daemons and this call.
3290  */
3291 SYSCALL_DEFINE2(bdflush, int, func, long, data)
3292 {
3293         static int msg_count;
3294
3295         if (!capable(CAP_SYS_ADMIN))
3296                 return -EPERM;
3297
3298         if (msg_count < 5) {
3299                 msg_count++;
3300                 printk(KERN_INFO
3301                         "warning: process `%s' used the obsolete bdflush"
3302                         " system call\n", current->comm);
3303                 printk(KERN_INFO "Fix your initscripts?\n");
3304         }
3305
3306         if (func == 1)
3307                 do_exit(0);
3308         return 0;
3309 }
3310
3311 /*
3312  * Buffer-head allocation
3313  */
3314 static struct kmem_cache *bh_cachep __read_mostly;
3315
3316 /*
3317  * Once the number of bh's in the machine exceeds this level, we start
3318  * stripping them in writeback.
3319  */
3320 static unsigned long max_buffer_heads;
3321
3322 int buffer_heads_over_limit;
3323
3324 struct bh_accounting {
3325         int nr;                 /* Number of live bh's */
3326         int ratelimit;          /* Limit cacheline bouncing */
3327 };
3328
3329 static DEFINE_PER_CPU(struct bh_accounting, bh_accounting) = {0, 0};
3330
3331 static void recalc_bh_state(void)
3332 {
3333         int i;
3334         int tot = 0;
3335
3336         if (__this_cpu_inc_return(bh_accounting.ratelimit) - 1 < 4096)
3337                 return;
3338         __this_cpu_write(bh_accounting.ratelimit, 0);
3339         for_each_online_cpu(i)
3340                 tot += per_cpu(bh_accounting, i).nr;
3341         buffer_heads_over_limit = (tot > max_buffer_heads);
3342 }
3343
3344 struct buffer_head *alloc_buffer_head(gfp_t gfp_flags)
3345 {
3346         struct buffer_head *ret = kmem_cache_zalloc(bh_cachep, gfp_flags);
3347         if (ret) {
3348                 INIT_LIST_HEAD(&ret->b_assoc_buffers);
3349                 spin_lock_init(&ret->b_uptodate_lock);
3350                 preempt_disable();
3351                 __this_cpu_inc(bh_accounting.nr);
3352                 recalc_bh_state();
3353                 preempt_enable();
3354         }
3355         return ret;
3356 }
3357 EXPORT_SYMBOL(alloc_buffer_head);
3358
3359 void free_buffer_head(struct buffer_head *bh)
3360 {
3361         BUG_ON(!list_empty(&bh->b_assoc_buffers));
3362         kmem_cache_free(bh_cachep, bh);
3363         preempt_disable();
3364         __this_cpu_dec(bh_accounting.nr);
3365         recalc_bh_state();
3366         preempt_enable();
3367 }
3368 EXPORT_SYMBOL(free_buffer_head);
3369
3370 static int buffer_exit_cpu_dead(unsigned int cpu)
3371 {
3372         int i;
3373         struct bh_lru *b = &per_cpu(bh_lrus, cpu);
3374
3375         for (i = 0; i < BH_LRU_SIZE; i++) {
3376                 brelse(b->bhs[i]);
3377                 b->bhs[i] = NULL;
3378         }
3379         this_cpu_add(bh_accounting.nr, per_cpu(bh_accounting, cpu).nr);
3380         per_cpu(bh_accounting, cpu).nr = 0;
3381         return 0;
3382 }
3383
3384 /**
3385  * bh_uptodate_or_lock - Test whether the buffer is uptodate
3386  * @bh: struct buffer_head
3387  *
3388  * Return true if the buffer is up-to-date and false,
3389  * with the buffer locked, if not.
3390  */
3391 int bh_uptodate_or_lock(struct buffer_head *bh)
3392 {
3393         if (!buffer_uptodate(bh)) {
3394                 lock_buffer(bh);
3395                 if (!buffer_uptodate(bh))
3396                         return 0;
3397                 unlock_buffer(bh);
3398         }
3399         return 1;
3400 }
3401 EXPORT_SYMBOL(bh_uptodate_or_lock);
3402
3403 /**
3404  * bh_submit_read - Submit a locked buffer for reading
3405  * @bh: struct buffer_head
3406  *
3407  * Returns zero on success and -EIO on error.
3408  */
3409 int bh_submit_read(struct buffer_head *bh)
3410 {
3411         BUG_ON(!buffer_locked(bh));
3412
3413         if (buffer_uptodate(bh)) {
3414                 unlock_buffer(bh);
3415                 return 0;
3416         }
3417
3418         get_bh(bh);
3419         bh->b_end_io = end_buffer_read_sync;
3420         submit_bh(REQ_OP_READ, 0, bh);
3421         wait_on_buffer(bh);
3422         if (buffer_uptodate(bh))
3423                 return 0;
3424         return -EIO;
3425 }
3426 EXPORT_SYMBOL(bh_submit_read);
3427
3428 void __init buffer_init(void)
3429 {
3430         unsigned long nrpages;
3431         int ret;
3432
3433         bh_cachep = kmem_cache_create("buffer_head",
3434                         sizeof(struct buffer_head), 0,
3435                                 (SLAB_RECLAIM_ACCOUNT|SLAB_PANIC|
3436                                 SLAB_MEM_SPREAD),
3437                                 NULL);
3438
3439         /*
3440          * Limit the bh occupancy to 10% of ZONE_NORMAL
3441          */
3442         nrpages = (nr_free_buffer_pages() * 10) / 100;
3443         max_buffer_heads = nrpages * (PAGE_SIZE / sizeof(struct buffer_head));
3444         ret = cpuhp_setup_state_nocalls(CPUHP_FS_BUFF_DEAD, "fs/buffer:dead",
3445                                         NULL, buffer_exit_cpu_dead);
3446         WARN_ON(ret < 0);
3447 }