Merge branch 'rework/printk_safe-removal' into for-linus
[linux-2.6-microblaze.git] / fs / btrfs / volumes.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2007 Oracle.  All rights reserved.
4  */
5
6 #include <linux/sched.h>
7 #include <linux/sched/mm.h>
8 #include <linux/bio.h>
9 #include <linux/slab.h>
10 #include <linux/blkdev.h>
11 #include <linux/ratelimit.h>
12 #include <linux/kthread.h>
13 #include <linux/raid/pq.h>
14 #include <linux/semaphore.h>
15 #include <linux/uuid.h>
16 #include <linux/list_sort.h>
17 #include "misc.h"
18 #include "ctree.h"
19 #include "extent_map.h"
20 #include "disk-io.h"
21 #include "transaction.h"
22 #include "print-tree.h"
23 #include "volumes.h"
24 #include "raid56.h"
25 #include "async-thread.h"
26 #include "check-integrity.h"
27 #include "rcu-string.h"
28 #include "dev-replace.h"
29 #include "sysfs.h"
30 #include "tree-checker.h"
31 #include "space-info.h"
32 #include "block-group.h"
33 #include "discard.h"
34 #include "zoned.h"
35
36 const struct btrfs_raid_attr btrfs_raid_array[BTRFS_NR_RAID_TYPES] = {
37         [BTRFS_RAID_RAID10] = {
38                 .sub_stripes    = 2,
39                 .dev_stripes    = 1,
40                 .devs_max       = 0,    /* 0 == as many as possible */
41                 .devs_min       = 4,
42                 .tolerated_failures = 1,
43                 .devs_increment = 2,
44                 .ncopies        = 2,
45                 .nparity        = 0,
46                 .raid_name      = "raid10",
47                 .bg_flag        = BTRFS_BLOCK_GROUP_RAID10,
48                 .mindev_error   = BTRFS_ERROR_DEV_RAID10_MIN_NOT_MET,
49         },
50         [BTRFS_RAID_RAID1] = {
51                 .sub_stripes    = 1,
52                 .dev_stripes    = 1,
53                 .devs_max       = 2,
54                 .devs_min       = 2,
55                 .tolerated_failures = 1,
56                 .devs_increment = 2,
57                 .ncopies        = 2,
58                 .nparity        = 0,
59                 .raid_name      = "raid1",
60                 .bg_flag        = BTRFS_BLOCK_GROUP_RAID1,
61                 .mindev_error   = BTRFS_ERROR_DEV_RAID1_MIN_NOT_MET,
62         },
63         [BTRFS_RAID_RAID1C3] = {
64                 .sub_stripes    = 1,
65                 .dev_stripes    = 1,
66                 .devs_max       = 3,
67                 .devs_min       = 3,
68                 .tolerated_failures = 2,
69                 .devs_increment = 3,
70                 .ncopies        = 3,
71                 .nparity        = 0,
72                 .raid_name      = "raid1c3",
73                 .bg_flag        = BTRFS_BLOCK_GROUP_RAID1C3,
74                 .mindev_error   = BTRFS_ERROR_DEV_RAID1C3_MIN_NOT_MET,
75         },
76         [BTRFS_RAID_RAID1C4] = {
77                 .sub_stripes    = 1,
78                 .dev_stripes    = 1,
79                 .devs_max       = 4,
80                 .devs_min       = 4,
81                 .tolerated_failures = 3,
82                 .devs_increment = 4,
83                 .ncopies        = 4,
84                 .nparity        = 0,
85                 .raid_name      = "raid1c4",
86                 .bg_flag        = BTRFS_BLOCK_GROUP_RAID1C4,
87                 .mindev_error   = BTRFS_ERROR_DEV_RAID1C4_MIN_NOT_MET,
88         },
89         [BTRFS_RAID_DUP] = {
90                 .sub_stripes    = 1,
91                 .dev_stripes    = 2,
92                 .devs_max       = 1,
93                 .devs_min       = 1,
94                 .tolerated_failures = 0,
95                 .devs_increment = 1,
96                 .ncopies        = 2,
97                 .nparity        = 0,
98                 .raid_name      = "dup",
99                 .bg_flag        = BTRFS_BLOCK_GROUP_DUP,
100                 .mindev_error   = 0,
101         },
102         [BTRFS_RAID_RAID0] = {
103                 .sub_stripes    = 1,
104                 .dev_stripes    = 1,
105                 .devs_max       = 0,
106                 .devs_min       = 2,
107                 .tolerated_failures = 0,
108                 .devs_increment = 1,
109                 .ncopies        = 1,
110                 .nparity        = 0,
111                 .raid_name      = "raid0",
112                 .bg_flag        = BTRFS_BLOCK_GROUP_RAID0,
113                 .mindev_error   = 0,
114         },
115         [BTRFS_RAID_SINGLE] = {
116                 .sub_stripes    = 1,
117                 .dev_stripes    = 1,
118                 .devs_max       = 1,
119                 .devs_min       = 1,
120                 .tolerated_failures = 0,
121                 .devs_increment = 1,
122                 .ncopies        = 1,
123                 .nparity        = 0,
124                 .raid_name      = "single",
125                 .bg_flag        = 0,
126                 .mindev_error   = 0,
127         },
128         [BTRFS_RAID_RAID5] = {
129                 .sub_stripes    = 1,
130                 .dev_stripes    = 1,
131                 .devs_max       = 0,
132                 .devs_min       = 2,
133                 .tolerated_failures = 1,
134                 .devs_increment = 1,
135                 .ncopies        = 1,
136                 .nparity        = 1,
137                 .raid_name      = "raid5",
138                 .bg_flag        = BTRFS_BLOCK_GROUP_RAID5,
139                 .mindev_error   = BTRFS_ERROR_DEV_RAID5_MIN_NOT_MET,
140         },
141         [BTRFS_RAID_RAID6] = {
142                 .sub_stripes    = 1,
143                 .dev_stripes    = 1,
144                 .devs_max       = 0,
145                 .devs_min       = 3,
146                 .tolerated_failures = 2,
147                 .devs_increment = 1,
148                 .ncopies        = 1,
149                 .nparity        = 2,
150                 .raid_name      = "raid6",
151                 .bg_flag        = BTRFS_BLOCK_GROUP_RAID6,
152                 .mindev_error   = BTRFS_ERROR_DEV_RAID6_MIN_NOT_MET,
153         },
154 };
155
156 const char *btrfs_bg_type_to_raid_name(u64 flags)
157 {
158         const int index = btrfs_bg_flags_to_raid_index(flags);
159
160         if (index >= BTRFS_NR_RAID_TYPES)
161                 return NULL;
162
163         return btrfs_raid_array[index].raid_name;
164 }
165
166 /*
167  * Fill @buf with textual description of @bg_flags, no more than @size_buf
168  * bytes including terminating null byte.
169  */
170 void btrfs_describe_block_groups(u64 bg_flags, char *buf, u32 size_buf)
171 {
172         int i;
173         int ret;
174         char *bp = buf;
175         u64 flags = bg_flags;
176         u32 size_bp = size_buf;
177
178         if (!flags) {
179                 strcpy(bp, "NONE");
180                 return;
181         }
182
183 #define DESCRIBE_FLAG(flag, desc)                                               \
184         do {                                                            \
185                 if (flags & (flag)) {                                   \
186                         ret = snprintf(bp, size_bp, "%s|", (desc));     \
187                         if (ret < 0 || ret >= size_bp)                  \
188                                 goto out_overflow;                      \
189                         size_bp -= ret;                                 \
190                         bp += ret;                                      \
191                         flags &= ~(flag);                               \
192                 }                                                       \
193         } while (0)
194
195         DESCRIBE_FLAG(BTRFS_BLOCK_GROUP_DATA, "data");
196         DESCRIBE_FLAG(BTRFS_BLOCK_GROUP_SYSTEM, "system");
197         DESCRIBE_FLAG(BTRFS_BLOCK_GROUP_METADATA, "metadata");
198
199         DESCRIBE_FLAG(BTRFS_AVAIL_ALLOC_BIT_SINGLE, "single");
200         for (i = 0; i < BTRFS_NR_RAID_TYPES; i++)
201                 DESCRIBE_FLAG(btrfs_raid_array[i].bg_flag,
202                               btrfs_raid_array[i].raid_name);
203 #undef DESCRIBE_FLAG
204
205         if (flags) {
206                 ret = snprintf(bp, size_bp, "0x%llx|", flags);
207                 size_bp -= ret;
208         }
209
210         if (size_bp < size_buf)
211                 buf[size_buf - size_bp - 1] = '\0'; /* remove last | */
212
213         /*
214          * The text is trimmed, it's up to the caller to provide sufficiently
215          * large buffer
216          */
217 out_overflow:;
218 }
219
220 static int init_first_rw_device(struct btrfs_trans_handle *trans);
221 static int btrfs_relocate_sys_chunks(struct btrfs_fs_info *fs_info);
222 static void btrfs_dev_stat_print_on_error(struct btrfs_device *dev);
223 static void btrfs_dev_stat_print_on_load(struct btrfs_device *device);
224 static int __btrfs_map_block(struct btrfs_fs_info *fs_info,
225                              enum btrfs_map_op op,
226                              u64 logical, u64 *length,
227                              struct btrfs_bio **bbio_ret,
228                              int mirror_num, int need_raid_map);
229
230 /*
231  * Device locking
232  * ==============
233  *
234  * There are several mutexes that protect manipulation of devices and low-level
235  * structures like chunks but not block groups, extents or files
236  *
237  * uuid_mutex (global lock)
238  * ------------------------
239  * protects the fs_uuids list that tracks all per-fs fs_devices, resulting from
240  * the SCAN_DEV ioctl registration or from mount either implicitly (the first
241  * device) or requested by the device= mount option
242  *
243  * the mutex can be very coarse and can cover long-running operations
244  *
245  * protects: updates to fs_devices counters like missing devices, rw devices,
246  * seeding, structure cloning, opening/closing devices at mount/umount time
247  *
248  * global::fs_devs - add, remove, updates to the global list
249  *
250  * does not protect: manipulation of the fs_devices::devices list in general
251  * but in mount context it could be used to exclude list modifications by eg.
252  * scan ioctl
253  *
254  * btrfs_device::name - renames (write side), read is RCU
255  *
256  * fs_devices::device_list_mutex (per-fs, with RCU)
257  * ------------------------------------------------
258  * protects updates to fs_devices::devices, ie. adding and deleting
259  *
260  * simple list traversal with read-only actions can be done with RCU protection
261  *
262  * may be used to exclude some operations from running concurrently without any
263  * modifications to the list (see write_all_supers)
264  *
265  * Is not required at mount and close times, because our device list is
266  * protected by the uuid_mutex at that point.
267  *
268  * balance_mutex
269  * -------------
270  * protects balance structures (status, state) and context accessed from
271  * several places (internally, ioctl)
272  *
273  * chunk_mutex
274  * -----------
275  * protects chunks, adding or removing during allocation, trim or when a new
276  * device is added/removed. Additionally it also protects post_commit_list of
277  * individual devices, since they can be added to the transaction's
278  * post_commit_list only with chunk_mutex held.
279  *
280  * cleaner_mutex
281  * -------------
282  * a big lock that is held by the cleaner thread and prevents running subvolume
283  * cleaning together with relocation or delayed iputs
284  *
285  *
286  * Lock nesting
287  * ============
288  *
289  * uuid_mutex
290  *   device_list_mutex
291  *     chunk_mutex
292  *   balance_mutex
293  *
294  *
295  * Exclusive operations
296  * ====================
297  *
298  * Maintains the exclusivity of the following operations that apply to the
299  * whole filesystem and cannot run in parallel.
300  *
301  * - Balance (*)
302  * - Device add
303  * - Device remove
304  * - Device replace (*)
305  * - Resize
306  *
307  * The device operations (as above) can be in one of the following states:
308  *
309  * - Running state
310  * - Paused state
311  * - Completed state
312  *
313  * Only device operations marked with (*) can go into the Paused state for the
314  * following reasons:
315  *
316  * - ioctl (only Balance can be Paused through ioctl)
317  * - filesystem remounted as read-only
318  * - filesystem unmounted and mounted as read-only
319  * - system power-cycle and filesystem mounted as read-only
320  * - filesystem or device errors leading to forced read-only
321  *
322  * The status of exclusive operation is set and cleared atomically.
323  * During the course of Paused state, fs_info::exclusive_operation remains set.
324  * A device operation in Paused or Running state can be canceled or resumed
325  * either by ioctl (Balance only) or when remounted as read-write.
326  * The exclusive status is cleared when the device operation is canceled or
327  * completed.
328  */
329
330 DEFINE_MUTEX(uuid_mutex);
331 static LIST_HEAD(fs_uuids);
332 struct list_head * __attribute_const__ btrfs_get_fs_uuids(void)
333 {
334         return &fs_uuids;
335 }
336
337 /*
338  * alloc_fs_devices - allocate struct btrfs_fs_devices
339  * @fsid:               if not NULL, copy the UUID to fs_devices::fsid
340  * @metadata_fsid:      if not NULL, copy the UUID to fs_devices::metadata_fsid
341  *
342  * Return a pointer to a new struct btrfs_fs_devices on success, or ERR_PTR().
343  * The returned struct is not linked onto any lists and can be destroyed with
344  * kfree() right away.
345  */
346 static struct btrfs_fs_devices *alloc_fs_devices(const u8 *fsid,
347                                                  const u8 *metadata_fsid)
348 {
349         struct btrfs_fs_devices *fs_devs;
350
351         fs_devs = kzalloc(sizeof(*fs_devs), GFP_KERNEL);
352         if (!fs_devs)
353                 return ERR_PTR(-ENOMEM);
354
355         mutex_init(&fs_devs->device_list_mutex);
356
357         INIT_LIST_HEAD(&fs_devs->devices);
358         INIT_LIST_HEAD(&fs_devs->alloc_list);
359         INIT_LIST_HEAD(&fs_devs->fs_list);
360         INIT_LIST_HEAD(&fs_devs->seed_list);
361         if (fsid)
362                 memcpy(fs_devs->fsid, fsid, BTRFS_FSID_SIZE);
363
364         if (metadata_fsid)
365                 memcpy(fs_devs->metadata_uuid, metadata_fsid, BTRFS_FSID_SIZE);
366         else if (fsid)
367                 memcpy(fs_devs->metadata_uuid, fsid, BTRFS_FSID_SIZE);
368
369         return fs_devs;
370 }
371
372 void btrfs_free_device(struct btrfs_device *device)
373 {
374         WARN_ON(!list_empty(&device->post_commit_list));
375         rcu_string_free(device->name);
376         extent_io_tree_release(&device->alloc_state);
377         bio_put(device->flush_bio);
378         btrfs_destroy_dev_zone_info(device);
379         kfree(device);
380 }
381
382 static void free_fs_devices(struct btrfs_fs_devices *fs_devices)
383 {
384         struct btrfs_device *device;
385         WARN_ON(fs_devices->opened);
386         while (!list_empty(&fs_devices->devices)) {
387                 device = list_entry(fs_devices->devices.next,
388                                     struct btrfs_device, dev_list);
389                 list_del(&device->dev_list);
390                 btrfs_free_device(device);
391         }
392         kfree(fs_devices);
393 }
394
395 void __exit btrfs_cleanup_fs_uuids(void)
396 {
397         struct btrfs_fs_devices *fs_devices;
398
399         while (!list_empty(&fs_uuids)) {
400                 fs_devices = list_entry(fs_uuids.next,
401                                         struct btrfs_fs_devices, fs_list);
402                 list_del(&fs_devices->fs_list);
403                 free_fs_devices(fs_devices);
404         }
405 }
406
407 /*
408  * Returns a pointer to a new btrfs_device on success; ERR_PTR() on error.
409  * Returned struct is not linked onto any lists and must be destroyed using
410  * btrfs_free_device.
411  */
412 static struct btrfs_device *__alloc_device(struct btrfs_fs_info *fs_info)
413 {
414         struct btrfs_device *dev;
415
416         dev = kzalloc(sizeof(*dev), GFP_KERNEL);
417         if (!dev)
418                 return ERR_PTR(-ENOMEM);
419
420         /*
421          * Preallocate a bio that's always going to be used for flushing device
422          * barriers and matches the device lifespan
423          */
424         dev->flush_bio = bio_kmalloc(GFP_KERNEL, 0);
425         if (!dev->flush_bio) {
426                 kfree(dev);
427                 return ERR_PTR(-ENOMEM);
428         }
429
430         INIT_LIST_HEAD(&dev->dev_list);
431         INIT_LIST_HEAD(&dev->dev_alloc_list);
432         INIT_LIST_HEAD(&dev->post_commit_list);
433
434         atomic_set(&dev->reada_in_flight, 0);
435         atomic_set(&dev->dev_stats_ccnt, 0);
436         btrfs_device_data_ordered_init(dev);
437         INIT_RADIX_TREE(&dev->reada_zones, GFP_NOFS & ~__GFP_DIRECT_RECLAIM);
438         INIT_RADIX_TREE(&dev->reada_extents, GFP_NOFS & ~__GFP_DIRECT_RECLAIM);
439         extent_io_tree_init(fs_info, &dev->alloc_state,
440                             IO_TREE_DEVICE_ALLOC_STATE, NULL);
441
442         return dev;
443 }
444
445 static noinline struct btrfs_fs_devices *find_fsid(
446                 const u8 *fsid, const u8 *metadata_fsid)
447 {
448         struct btrfs_fs_devices *fs_devices;
449
450         ASSERT(fsid);
451
452         /* Handle non-split brain cases */
453         list_for_each_entry(fs_devices, &fs_uuids, fs_list) {
454                 if (metadata_fsid) {
455                         if (memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE) == 0
456                             && memcmp(metadata_fsid, fs_devices->metadata_uuid,
457                                       BTRFS_FSID_SIZE) == 0)
458                                 return fs_devices;
459                 } else {
460                         if (memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE) == 0)
461                                 return fs_devices;
462                 }
463         }
464         return NULL;
465 }
466
467 static struct btrfs_fs_devices *find_fsid_with_metadata_uuid(
468                                 struct btrfs_super_block *disk_super)
469 {
470
471         struct btrfs_fs_devices *fs_devices;
472
473         /*
474          * Handle scanned device having completed its fsid change but
475          * belonging to a fs_devices that was created by first scanning
476          * a device which didn't have its fsid/metadata_uuid changed
477          * at all and the CHANGING_FSID_V2 flag set.
478          */
479         list_for_each_entry(fs_devices, &fs_uuids, fs_list) {
480                 if (fs_devices->fsid_change &&
481                     memcmp(disk_super->metadata_uuid, fs_devices->fsid,
482                            BTRFS_FSID_SIZE) == 0 &&
483                     memcmp(fs_devices->fsid, fs_devices->metadata_uuid,
484                            BTRFS_FSID_SIZE) == 0) {
485                         return fs_devices;
486                 }
487         }
488         /*
489          * Handle scanned device having completed its fsid change but
490          * belonging to a fs_devices that was created by a device that
491          * has an outdated pair of fsid/metadata_uuid and
492          * CHANGING_FSID_V2 flag set.
493          */
494         list_for_each_entry(fs_devices, &fs_uuids, fs_list) {
495                 if (fs_devices->fsid_change &&
496                     memcmp(fs_devices->metadata_uuid,
497                            fs_devices->fsid, BTRFS_FSID_SIZE) != 0 &&
498                     memcmp(disk_super->metadata_uuid, fs_devices->metadata_uuid,
499                            BTRFS_FSID_SIZE) == 0) {
500                         return fs_devices;
501                 }
502         }
503
504         return find_fsid(disk_super->fsid, disk_super->metadata_uuid);
505 }
506
507
508 static int
509 btrfs_get_bdev_and_sb(const char *device_path, fmode_t flags, void *holder,
510                       int flush, struct block_device **bdev,
511                       struct btrfs_super_block **disk_super)
512 {
513         int ret;
514
515         *bdev = blkdev_get_by_path(device_path, flags, holder);
516
517         if (IS_ERR(*bdev)) {
518                 ret = PTR_ERR(*bdev);
519                 goto error;
520         }
521
522         if (flush)
523                 filemap_write_and_wait((*bdev)->bd_inode->i_mapping);
524         ret = set_blocksize(*bdev, BTRFS_BDEV_BLOCKSIZE);
525         if (ret) {
526                 blkdev_put(*bdev, flags);
527                 goto error;
528         }
529         invalidate_bdev(*bdev);
530         *disk_super = btrfs_read_dev_super(*bdev);
531         if (IS_ERR(*disk_super)) {
532                 ret = PTR_ERR(*disk_super);
533                 blkdev_put(*bdev, flags);
534                 goto error;
535         }
536
537         return 0;
538
539 error:
540         *bdev = NULL;
541         return ret;
542 }
543
544 static bool device_path_matched(const char *path, struct btrfs_device *device)
545 {
546         int found;
547
548         rcu_read_lock();
549         found = strcmp(rcu_str_deref(device->name), path);
550         rcu_read_unlock();
551
552         return found == 0;
553 }
554
555 /*
556  *  Search and remove all stale (devices which are not mounted) devices.
557  *  When both inputs are NULL, it will search and release all stale devices.
558  *  path:       Optional. When provided will it release all unmounted devices
559  *              matching this path only.
560  *  skip_dev:   Optional. Will skip this device when searching for the stale
561  *              devices.
562  *  Return:     0 for success or if @path is NULL.
563  *              -EBUSY if @path is a mounted device.
564  *              -ENOENT if @path does not match any device in the list.
565  */
566 static int btrfs_free_stale_devices(const char *path,
567                                      struct btrfs_device *skip_device)
568 {
569         struct btrfs_fs_devices *fs_devices, *tmp_fs_devices;
570         struct btrfs_device *device, *tmp_device;
571         int ret = 0;
572
573         if (path)
574                 ret = -ENOENT;
575
576         list_for_each_entry_safe(fs_devices, tmp_fs_devices, &fs_uuids, fs_list) {
577
578                 mutex_lock(&fs_devices->device_list_mutex);
579                 list_for_each_entry_safe(device, tmp_device,
580                                          &fs_devices->devices, dev_list) {
581                         if (skip_device && skip_device == device)
582                                 continue;
583                         if (path && !device->name)
584                                 continue;
585                         if (path && !device_path_matched(path, device))
586                                 continue;
587                         if (fs_devices->opened) {
588                                 /* for an already deleted device return 0 */
589                                 if (path && ret != 0)
590                                         ret = -EBUSY;
591                                 break;
592                         }
593
594                         /* delete the stale device */
595                         fs_devices->num_devices--;
596                         list_del(&device->dev_list);
597                         btrfs_free_device(device);
598
599                         ret = 0;
600                 }
601                 mutex_unlock(&fs_devices->device_list_mutex);
602
603                 if (fs_devices->num_devices == 0) {
604                         btrfs_sysfs_remove_fsid(fs_devices);
605                         list_del(&fs_devices->fs_list);
606                         free_fs_devices(fs_devices);
607                 }
608         }
609
610         return ret;
611 }
612
613 /*
614  * This is only used on mount, and we are protected from competing things
615  * messing with our fs_devices by the uuid_mutex, thus we do not need the
616  * fs_devices->device_list_mutex here.
617  */
618 static int btrfs_open_one_device(struct btrfs_fs_devices *fs_devices,
619                         struct btrfs_device *device, fmode_t flags,
620                         void *holder)
621 {
622         struct request_queue *q;
623         struct block_device *bdev;
624         struct btrfs_super_block *disk_super;
625         u64 devid;
626         int ret;
627
628         if (device->bdev)
629                 return -EINVAL;
630         if (!device->name)
631                 return -EINVAL;
632
633         ret = btrfs_get_bdev_and_sb(device->name->str, flags, holder, 1,
634                                     &bdev, &disk_super);
635         if (ret)
636                 return ret;
637
638         devid = btrfs_stack_device_id(&disk_super->dev_item);
639         if (devid != device->devid)
640                 goto error_free_page;
641
642         if (memcmp(device->uuid, disk_super->dev_item.uuid, BTRFS_UUID_SIZE))
643                 goto error_free_page;
644
645         device->generation = btrfs_super_generation(disk_super);
646
647         if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_SEEDING) {
648                 if (btrfs_super_incompat_flags(disk_super) &
649                     BTRFS_FEATURE_INCOMPAT_METADATA_UUID) {
650                         pr_err(
651                 "BTRFS: Invalid seeding and uuid-changed device detected\n");
652                         goto error_free_page;
653                 }
654
655                 clear_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
656                 fs_devices->seeding = true;
657         } else {
658                 if (bdev_read_only(bdev))
659                         clear_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
660                 else
661                         set_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
662         }
663
664         q = bdev_get_queue(bdev);
665         if (!blk_queue_nonrot(q))
666                 fs_devices->rotating = true;
667
668         device->bdev = bdev;
669         clear_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state);
670         device->mode = flags;
671
672         fs_devices->open_devices++;
673         if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) &&
674             device->devid != BTRFS_DEV_REPLACE_DEVID) {
675                 fs_devices->rw_devices++;
676                 list_add_tail(&device->dev_alloc_list, &fs_devices->alloc_list);
677         }
678         btrfs_release_disk_super(disk_super);
679
680         return 0;
681
682 error_free_page:
683         btrfs_release_disk_super(disk_super);
684         blkdev_put(bdev, flags);
685
686         return -EINVAL;
687 }
688
689 /*
690  * Handle scanned device having its CHANGING_FSID_V2 flag set and the fs_devices
691  * being created with a disk that has already completed its fsid change. Such
692  * disk can belong to an fs which has its FSID changed or to one which doesn't.
693  * Handle both cases here.
694  */
695 static struct btrfs_fs_devices *find_fsid_inprogress(
696                                         struct btrfs_super_block *disk_super)
697 {
698         struct btrfs_fs_devices *fs_devices;
699
700         list_for_each_entry(fs_devices, &fs_uuids, fs_list) {
701                 if (memcmp(fs_devices->metadata_uuid, fs_devices->fsid,
702                            BTRFS_FSID_SIZE) != 0 &&
703                     memcmp(fs_devices->metadata_uuid, disk_super->fsid,
704                            BTRFS_FSID_SIZE) == 0 && !fs_devices->fsid_change) {
705                         return fs_devices;
706                 }
707         }
708
709         return find_fsid(disk_super->fsid, NULL);
710 }
711
712
713 static struct btrfs_fs_devices *find_fsid_changed(
714                                         struct btrfs_super_block *disk_super)
715 {
716         struct btrfs_fs_devices *fs_devices;
717
718         /*
719          * Handles the case where scanned device is part of an fs that had
720          * multiple successful changes of FSID but currently device didn't
721          * observe it. Meaning our fsid will be different than theirs. We need
722          * to handle two subcases :
723          *  1 - The fs still continues to have different METADATA/FSID uuids.
724          *  2 - The fs is switched back to its original FSID (METADATA/FSID
725          *  are equal).
726          */
727         list_for_each_entry(fs_devices, &fs_uuids, fs_list) {
728                 /* Changed UUIDs */
729                 if (memcmp(fs_devices->metadata_uuid, fs_devices->fsid,
730                            BTRFS_FSID_SIZE) != 0 &&
731                     memcmp(fs_devices->metadata_uuid, disk_super->metadata_uuid,
732                            BTRFS_FSID_SIZE) == 0 &&
733                     memcmp(fs_devices->fsid, disk_super->fsid,
734                            BTRFS_FSID_SIZE) != 0)
735                         return fs_devices;
736
737                 /* Unchanged UUIDs */
738                 if (memcmp(fs_devices->metadata_uuid, fs_devices->fsid,
739                            BTRFS_FSID_SIZE) == 0 &&
740                     memcmp(fs_devices->fsid, disk_super->metadata_uuid,
741                            BTRFS_FSID_SIZE) == 0)
742                         return fs_devices;
743         }
744
745         return NULL;
746 }
747
748 static struct btrfs_fs_devices *find_fsid_reverted_metadata(
749                                 struct btrfs_super_block *disk_super)
750 {
751         struct btrfs_fs_devices *fs_devices;
752
753         /*
754          * Handle the case where the scanned device is part of an fs whose last
755          * metadata UUID change reverted it to the original FSID. At the same
756          * time * fs_devices was first created by another constitutent device
757          * which didn't fully observe the operation. This results in an
758          * btrfs_fs_devices created with metadata/fsid different AND
759          * btrfs_fs_devices::fsid_change set AND the metadata_uuid of the
760          * fs_devices equal to the FSID of the disk.
761          */
762         list_for_each_entry(fs_devices, &fs_uuids, fs_list) {
763                 if (memcmp(fs_devices->fsid, fs_devices->metadata_uuid,
764                            BTRFS_FSID_SIZE) != 0 &&
765                     memcmp(fs_devices->metadata_uuid, disk_super->fsid,
766                            BTRFS_FSID_SIZE) == 0 &&
767                     fs_devices->fsid_change)
768                         return fs_devices;
769         }
770
771         return NULL;
772 }
773 /*
774  * Add new device to list of registered devices
775  *
776  * Returns:
777  * device pointer which was just added or updated when successful
778  * error pointer when failed
779  */
780 static noinline struct btrfs_device *device_list_add(const char *path,
781                            struct btrfs_super_block *disk_super,
782                            bool *new_device_added)
783 {
784         struct btrfs_device *device;
785         struct btrfs_fs_devices *fs_devices = NULL;
786         struct rcu_string *name;
787         u64 found_transid = btrfs_super_generation(disk_super);
788         u64 devid = btrfs_stack_device_id(&disk_super->dev_item);
789         bool has_metadata_uuid = (btrfs_super_incompat_flags(disk_super) &
790                 BTRFS_FEATURE_INCOMPAT_METADATA_UUID);
791         bool fsid_change_in_progress = (btrfs_super_flags(disk_super) &
792                                         BTRFS_SUPER_FLAG_CHANGING_FSID_V2);
793
794         if (fsid_change_in_progress) {
795                 if (!has_metadata_uuid)
796                         fs_devices = find_fsid_inprogress(disk_super);
797                 else
798                         fs_devices = find_fsid_changed(disk_super);
799         } else if (has_metadata_uuid) {
800                 fs_devices = find_fsid_with_metadata_uuid(disk_super);
801         } else {
802                 fs_devices = find_fsid_reverted_metadata(disk_super);
803                 if (!fs_devices)
804                         fs_devices = find_fsid(disk_super->fsid, NULL);
805         }
806
807
808         if (!fs_devices) {
809                 if (has_metadata_uuid)
810                         fs_devices = alloc_fs_devices(disk_super->fsid,
811                                                       disk_super->metadata_uuid);
812                 else
813                         fs_devices = alloc_fs_devices(disk_super->fsid, NULL);
814
815                 if (IS_ERR(fs_devices))
816                         return ERR_CAST(fs_devices);
817
818                 fs_devices->fsid_change = fsid_change_in_progress;
819
820                 mutex_lock(&fs_devices->device_list_mutex);
821                 list_add(&fs_devices->fs_list, &fs_uuids);
822
823                 device = NULL;
824         } else {
825                 mutex_lock(&fs_devices->device_list_mutex);
826                 device = btrfs_find_device(fs_devices, devid,
827                                 disk_super->dev_item.uuid, NULL);
828
829                 /*
830                  * If this disk has been pulled into an fs devices created by
831                  * a device which had the CHANGING_FSID_V2 flag then replace the
832                  * metadata_uuid/fsid values of the fs_devices.
833                  */
834                 if (fs_devices->fsid_change &&
835                     found_transid > fs_devices->latest_generation) {
836                         memcpy(fs_devices->fsid, disk_super->fsid,
837                                         BTRFS_FSID_SIZE);
838
839                         if (has_metadata_uuid)
840                                 memcpy(fs_devices->metadata_uuid,
841                                        disk_super->metadata_uuid,
842                                        BTRFS_FSID_SIZE);
843                         else
844                                 memcpy(fs_devices->metadata_uuid,
845                                        disk_super->fsid, BTRFS_FSID_SIZE);
846
847                         fs_devices->fsid_change = false;
848                 }
849         }
850
851         if (!device) {
852                 if (fs_devices->opened) {
853                         mutex_unlock(&fs_devices->device_list_mutex);
854                         return ERR_PTR(-EBUSY);
855                 }
856
857                 device = btrfs_alloc_device(NULL, &devid,
858                                             disk_super->dev_item.uuid);
859                 if (IS_ERR(device)) {
860                         mutex_unlock(&fs_devices->device_list_mutex);
861                         /* we can safely leave the fs_devices entry around */
862                         return device;
863                 }
864
865                 name = rcu_string_strdup(path, GFP_NOFS);
866                 if (!name) {
867                         btrfs_free_device(device);
868                         mutex_unlock(&fs_devices->device_list_mutex);
869                         return ERR_PTR(-ENOMEM);
870                 }
871                 rcu_assign_pointer(device->name, name);
872
873                 list_add_rcu(&device->dev_list, &fs_devices->devices);
874                 fs_devices->num_devices++;
875
876                 device->fs_devices = fs_devices;
877                 *new_device_added = true;
878
879                 if (disk_super->label[0])
880                         pr_info(
881         "BTRFS: device label %s devid %llu transid %llu %s scanned by %s (%d)\n",
882                                 disk_super->label, devid, found_transid, path,
883                                 current->comm, task_pid_nr(current));
884                 else
885                         pr_info(
886         "BTRFS: device fsid %pU devid %llu transid %llu %s scanned by %s (%d)\n",
887                                 disk_super->fsid, devid, found_transid, path,
888                                 current->comm, task_pid_nr(current));
889
890         } else if (!device->name || strcmp(device->name->str, path)) {
891                 /*
892                  * When FS is already mounted.
893                  * 1. If you are here and if the device->name is NULL that
894                  *    means this device was missing at time of FS mount.
895                  * 2. If you are here and if the device->name is different
896                  *    from 'path' that means either
897                  *      a. The same device disappeared and reappeared with
898                  *         different name. or
899                  *      b. The missing-disk-which-was-replaced, has
900                  *         reappeared now.
901                  *
902                  * We must allow 1 and 2a above. But 2b would be a spurious
903                  * and unintentional.
904                  *
905                  * Further in case of 1 and 2a above, the disk at 'path'
906                  * would have missed some transaction when it was away and
907                  * in case of 2a the stale bdev has to be updated as well.
908                  * 2b must not be allowed at all time.
909                  */
910
911                 /*
912                  * For now, we do allow update to btrfs_fs_device through the
913                  * btrfs dev scan cli after FS has been mounted.  We're still
914                  * tracking a problem where systems fail mount by subvolume id
915                  * when we reject replacement on a mounted FS.
916                  */
917                 if (!fs_devices->opened && found_transid < device->generation) {
918                         /*
919                          * That is if the FS is _not_ mounted and if you
920                          * are here, that means there is more than one
921                          * disk with same uuid and devid.We keep the one
922                          * with larger generation number or the last-in if
923                          * generation are equal.
924                          */
925                         mutex_unlock(&fs_devices->device_list_mutex);
926                         return ERR_PTR(-EEXIST);
927                 }
928
929                 /*
930                  * We are going to replace the device path for a given devid,
931                  * make sure it's the same device if the device is mounted
932                  */
933                 if (device->bdev) {
934                         int error;
935                         dev_t path_dev;
936
937                         error = lookup_bdev(path, &path_dev);
938                         if (error) {
939                                 mutex_unlock(&fs_devices->device_list_mutex);
940                                 return ERR_PTR(error);
941                         }
942
943                         if (device->bdev->bd_dev != path_dev) {
944                                 mutex_unlock(&fs_devices->device_list_mutex);
945                                 /*
946                                  * device->fs_info may not be reliable here, so
947                                  * pass in a NULL instead. This avoids a
948                                  * possible use-after-free when the fs_info and
949                                  * fs_info->sb are already torn down.
950                                  */
951                                 btrfs_warn_in_rcu(NULL,
952         "duplicate device %s devid %llu generation %llu scanned by %s (%d)",
953                                                   path, devid, found_transid,
954                                                   current->comm,
955                                                   task_pid_nr(current));
956                                 return ERR_PTR(-EEXIST);
957                         }
958                         btrfs_info_in_rcu(device->fs_info,
959         "devid %llu device path %s changed to %s scanned by %s (%d)",
960                                           devid, rcu_str_deref(device->name),
961                                           path, current->comm,
962                                           task_pid_nr(current));
963                 }
964
965                 name = rcu_string_strdup(path, GFP_NOFS);
966                 if (!name) {
967                         mutex_unlock(&fs_devices->device_list_mutex);
968                         return ERR_PTR(-ENOMEM);
969                 }
970                 rcu_string_free(device->name);
971                 rcu_assign_pointer(device->name, name);
972                 if (test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state)) {
973                         fs_devices->missing_devices--;
974                         clear_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state);
975                 }
976         }
977
978         /*
979          * Unmount does not free the btrfs_device struct but would zero
980          * generation along with most of the other members. So just update
981          * it back. We need it to pick the disk with largest generation
982          * (as above).
983          */
984         if (!fs_devices->opened) {
985                 device->generation = found_transid;
986                 fs_devices->latest_generation = max_t(u64, found_transid,
987                                                 fs_devices->latest_generation);
988         }
989
990         fs_devices->total_devices = btrfs_super_num_devices(disk_super);
991
992         mutex_unlock(&fs_devices->device_list_mutex);
993         return device;
994 }
995
996 static struct btrfs_fs_devices *clone_fs_devices(struct btrfs_fs_devices *orig)
997 {
998         struct btrfs_fs_devices *fs_devices;
999         struct btrfs_device *device;
1000         struct btrfs_device *orig_dev;
1001         int ret = 0;
1002
1003         fs_devices = alloc_fs_devices(orig->fsid, NULL);
1004         if (IS_ERR(fs_devices))
1005                 return fs_devices;
1006
1007         mutex_lock(&orig->device_list_mutex);
1008         fs_devices->total_devices = orig->total_devices;
1009
1010         list_for_each_entry(orig_dev, &orig->devices, dev_list) {
1011                 struct rcu_string *name;
1012
1013                 device = btrfs_alloc_device(NULL, &orig_dev->devid,
1014                                             orig_dev->uuid);
1015                 if (IS_ERR(device)) {
1016                         ret = PTR_ERR(device);
1017                         goto error;
1018                 }
1019
1020                 /*
1021                  * This is ok to do without rcu read locked because we hold the
1022                  * uuid mutex so nothing we touch in here is going to disappear.
1023                  */
1024                 if (orig_dev->name) {
1025                         name = rcu_string_strdup(orig_dev->name->str,
1026                                         GFP_KERNEL);
1027                         if (!name) {
1028                                 btrfs_free_device(device);
1029                                 ret = -ENOMEM;
1030                                 goto error;
1031                         }
1032                         rcu_assign_pointer(device->name, name);
1033                 }
1034
1035                 list_add(&device->dev_list, &fs_devices->devices);
1036                 device->fs_devices = fs_devices;
1037                 fs_devices->num_devices++;
1038         }
1039         mutex_unlock(&orig->device_list_mutex);
1040         return fs_devices;
1041 error:
1042         mutex_unlock(&orig->device_list_mutex);
1043         free_fs_devices(fs_devices);
1044         return ERR_PTR(ret);
1045 }
1046
1047 static void __btrfs_free_extra_devids(struct btrfs_fs_devices *fs_devices,
1048                                       struct btrfs_device **latest_dev)
1049 {
1050         struct btrfs_device *device, *next;
1051
1052         /* This is the initialized path, it is safe to release the devices. */
1053         list_for_each_entry_safe(device, next, &fs_devices->devices, dev_list) {
1054                 if (test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state)) {
1055                         if (!test_bit(BTRFS_DEV_STATE_REPLACE_TGT,
1056                                       &device->dev_state) &&
1057                             !test_bit(BTRFS_DEV_STATE_MISSING,
1058                                       &device->dev_state) &&
1059                             (!*latest_dev ||
1060                              device->generation > (*latest_dev)->generation)) {
1061                                 *latest_dev = device;
1062                         }
1063                         continue;
1064                 }
1065
1066                 /*
1067                  * We have already validated the presence of BTRFS_DEV_REPLACE_DEVID,
1068                  * in btrfs_init_dev_replace() so just continue.
1069                  */
1070                 if (device->devid == BTRFS_DEV_REPLACE_DEVID)
1071                         continue;
1072
1073                 if (device->bdev) {
1074                         blkdev_put(device->bdev, device->mode);
1075                         device->bdev = NULL;
1076                         fs_devices->open_devices--;
1077                 }
1078                 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
1079                         list_del_init(&device->dev_alloc_list);
1080                         clear_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
1081                 }
1082                 list_del_init(&device->dev_list);
1083                 fs_devices->num_devices--;
1084                 btrfs_free_device(device);
1085         }
1086
1087 }
1088
1089 /*
1090  * After we have read the system tree and know devids belonging to this
1091  * filesystem, remove the device which does not belong there.
1092  */
1093 void btrfs_free_extra_devids(struct btrfs_fs_devices *fs_devices)
1094 {
1095         struct btrfs_device *latest_dev = NULL;
1096         struct btrfs_fs_devices *seed_dev;
1097
1098         mutex_lock(&uuid_mutex);
1099         __btrfs_free_extra_devids(fs_devices, &latest_dev);
1100
1101         list_for_each_entry(seed_dev, &fs_devices->seed_list, seed_list)
1102                 __btrfs_free_extra_devids(seed_dev, &latest_dev);
1103
1104         fs_devices->latest_bdev = latest_dev->bdev;
1105
1106         mutex_unlock(&uuid_mutex);
1107 }
1108
1109 static void btrfs_close_bdev(struct btrfs_device *device)
1110 {
1111         if (!device->bdev)
1112                 return;
1113
1114         if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
1115                 sync_blockdev(device->bdev);
1116                 invalidate_bdev(device->bdev);
1117         }
1118
1119         blkdev_put(device->bdev, device->mode);
1120 }
1121
1122 static void btrfs_close_one_device(struct btrfs_device *device)
1123 {
1124         struct btrfs_fs_devices *fs_devices = device->fs_devices;
1125
1126         if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) &&
1127             device->devid != BTRFS_DEV_REPLACE_DEVID) {
1128                 list_del_init(&device->dev_alloc_list);
1129                 fs_devices->rw_devices--;
1130         }
1131
1132         if (test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state))
1133                 fs_devices->missing_devices--;
1134
1135         btrfs_close_bdev(device);
1136         if (device->bdev) {
1137                 fs_devices->open_devices--;
1138                 device->bdev = NULL;
1139         }
1140         clear_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
1141         btrfs_destroy_dev_zone_info(device);
1142
1143         device->fs_info = NULL;
1144         atomic_set(&device->dev_stats_ccnt, 0);
1145         extent_io_tree_release(&device->alloc_state);
1146
1147         /* Verify the device is back in a pristine state  */
1148         ASSERT(!test_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state));
1149         ASSERT(!test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state));
1150         ASSERT(list_empty(&device->dev_alloc_list));
1151         ASSERT(list_empty(&device->post_commit_list));
1152         ASSERT(atomic_read(&device->reada_in_flight) == 0);
1153 }
1154
1155 static void close_fs_devices(struct btrfs_fs_devices *fs_devices)
1156 {
1157         struct btrfs_device *device, *tmp;
1158
1159         lockdep_assert_held(&uuid_mutex);
1160
1161         if (--fs_devices->opened > 0)
1162                 return;
1163
1164         list_for_each_entry_safe(device, tmp, &fs_devices->devices, dev_list)
1165                 btrfs_close_one_device(device);
1166
1167         WARN_ON(fs_devices->open_devices);
1168         WARN_ON(fs_devices->rw_devices);
1169         fs_devices->opened = 0;
1170         fs_devices->seeding = false;
1171         fs_devices->fs_info = NULL;
1172 }
1173
1174 void btrfs_close_devices(struct btrfs_fs_devices *fs_devices)
1175 {
1176         LIST_HEAD(list);
1177         struct btrfs_fs_devices *tmp;
1178
1179         mutex_lock(&uuid_mutex);
1180         close_fs_devices(fs_devices);
1181         if (!fs_devices->opened)
1182                 list_splice_init(&fs_devices->seed_list, &list);
1183
1184         list_for_each_entry_safe(fs_devices, tmp, &list, seed_list) {
1185                 close_fs_devices(fs_devices);
1186                 list_del(&fs_devices->seed_list);
1187                 free_fs_devices(fs_devices);
1188         }
1189         mutex_unlock(&uuid_mutex);
1190 }
1191
1192 static int open_fs_devices(struct btrfs_fs_devices *fs_devices,
1193                                 fmode_t flags, void *holder)
1194 {
1195         struct btrfs_device *device;
1196         struct btrfs_device *latest_dev = NULL;
1197         struct btrfs_device *tmp_device;
1198
1199         flags |= FMODE_EXCL;
1200
1201         list_for_each_entry_safe(device, tmp_device, &fs_devices->devices,
1202                                  dev_list) {
1203                 int ret;
1204
1205                 ret = btrfs_open_one_device(fs_devices, device, flags, holder);
1206                 if (ret == 0 &&
1207                     (!latest_dev || device->generation > latest_dev->generation)) {
1208                         latest_dev = device;
1209                 } else if (ret == -ENODATA) {
1210                         fs_devices->num_devices--;
1211                         list_del(&device->dev_list);
1212                         btrfs_free_device(device);
1213                 }
1214         }
1215         if (fs_devices->open_devices == 0)
1216                 return -EINVAL;
1217
1218         fs_devices->opened = 1;
1219         fs_devices->latest_bdev = latest_dev->bdev;
1220         fs_devices->total_rw_bytes = 0;
1221         fs_devices->chunk_alloc_policy = BTRFS_CHUNK_ALLOC_REGULAR;
1222         fs_devices->read_policy = BTRFS_READ_POLICY_PID;
1223
1224         return 0;
1225 }
1226
1227 static int devid_cmp(void *priv, const struct list_head *a,
1228                      const struct list_head *b)
1229 {
1230         struct btrfs_device *dev1, *dev2;
1231
1232         dev1 = list_entry(a, struct btrfs_device, dev_list);
1233         dev2 = list_entry(b, struct btrfs_device, dev_list);
1234
1235         if (dev1->devid < dev2->devid)
1236                 return -1;
1237         else if (dev1->devid > dev2->devid)
1238                 return 1;
1239         return 0;
1240 }
1241
1242 int btrfs_open_devices(struct btrfs_fs_devices *fs_devices,
1243                        fmode_t flags, void *holder)
1244 {
1245         int ret;
1246
1247         lockdep_assert_held(&uuid_mutex);
1248         /*
1249          * The device_list_mutex cannot be taken here in case opening the
1250          * underlying device takes further locks like open_mutex.
1251          *
1252          * We also don't need the lock here as this is called during mount and
1253          * exclusion is provided by uuid_mutex
1254          */
1255
1256         if (fs_devices->opened) {
1257                 fs_devices->opened++;
1258                 ret = 0;
1259         } else {
1260                 list_sort(NULL, &fs_devices->devices, devid_cmp);
1261                 ret = open_fs_devices(fs_devices, flags, holder);
1262         }
1263
1264         return ret;
1265 }
1266
1267 void btrfs_release_disk_super(struct btrfs_super_block *super)
1268 {
1269         struct page *page = virt_to_page(super);
1270
1271         put_page(page);
1272 }
1273
1274 static struct btrfs_super_block *btrfs_read_disk_super(struct block_device *bdev,
1275                                                        u64 bytenr, u64 bytenr_orig)
1276 {
1277         struct btrfs_super_block *disk_super;
1278         struct page *page;
1279         void *p;
1280         pgoff_t index;
1281
1282         /* make sure our super fits in the device */
1283         if (bytenr + PAGE_SIZE >= i_size_read(bdev->bd_inode))
1284                 return ERR_PTR(-EINVAL);
1285
1286         /* make sure our super fits in the page */
1287         if (sizeof(*disk_super) > PAGE_SIZE)
1288                 return ERR_PTR(-EINVAL);
1289
1290         /* make sure our super doesn't straddle pages on disk */
1291         index = bytenr >> PAGE_SHIFT;
1292         if ((bytenr + sizeof(*disk_super) - 1) >> PAGE_SHIFT != index)
1293                 return ERR_PTR(-EINVAL);
1294
1295         /* pull in the page with our super */
1296         page = read_cache_page_gfp(bdev->bd_inode->i_mapping, index, GFP_KERNEL);
1297
1298         if (IS_ERR(page))
1299                 return ERR_CAST(page);
1300
1301         p = page_address(page);
1302
1303         /* align our pointer to the offset of the super block */
1304         disk_super = p + offset_in_page(bytenr);
1305
1306         if (btrfs_super_bytenr(disk_super) != bytenr_orig ||
1307             btrfs_super_magic(disk_super) != BTRFS_MAGIC) {
1308                 btrfs_release_disk_super(p);
1309                 return ERR_PTR(-EINVAL);
1310         }
1311
1312         if (disk_super->label[0] && disk_super->label[BTRFS_LABEL_SIZE - 1])
1313                 disk_super->label[BTRFS_LABEL_SIZE - 1] = 0;
1314
1315         return disk_super;
1316 }
1317
1318 int btrfs_forget_devices(const char *path)
1319 {
1320         int ret;
1321
1322         mutex_lock(&uuid_mutex);
1323         ret = btrfs_free_stale_devices(strlen(path) ? path : NULL, NULL);
1324         mutex_unlock(&uuid_mutex);
1325
1326         return ret;
1327 }
1328
1329 /*
1330  * Look for a btrfs signature on a device. This may be called out of the mount path
1331  * and we are not allowed to call set_blocksize during the scan. The superblock
1332  * is read via pagecache
1333  */
1334 struct btrfs_device *btrfs_scan_one_device(const char *path, fmode_t flags,
1335                                            void *holder)
1336 {
1337         struct btrfs_super_block *disk_super;
1338         bool new_device_added = false;
1339         struct btrfs_device *device = NULL;
1340         struct block_device *bdev;
1341         u64 bytenr, bytenr_orig;
1342         int ret;
1343
1344         lockdep_assert_held(&uuid_mutex);
1345
1346         /*
1347          * we would like to check all the supers, but that would make
1348          * a btrfs mount succeed after a mkfs from a different FS.
1349          * So, we need to add a special mount option to scan for
1350          * later supers, using BTRFS_SUPER_MIRROR_MAX instead
1351          */
1352         flags |= FMODE_EXCL;
1353
1354         bdev = blkdev_get_by_path(path, flags, holder);
1355         if (IS_ERR(bdev))
1356                 return ERR_CAST(bdev);
1357
1358         bytenr_orig = btrfs_sb_offset(0);
1359         ret = btrfs_sb_log_location_bdev(bdev, 0, READ, &bytenr);
1360         if (ret)
1361                 return ERR_PTR(ret);
1362
1363         disk_super = btrfs_read_disk_super(bdev, bytenr, bytenr_orig);
1364         if (IS_ERR(disk_super)) {
1365                 device = ERR_CAST(disk_super);
1366                 goto error_bdev_put;
1367         }
1368
1369         device = device_list_add(path, disk_super, &new_device_added);
1370         if (!IS_ERR(device)) {
1371                 if (new_device_added)
1372                         btrfs_free_stale_devices(path, device);
1373         }
1374
1375         btrfs_release_disk_super(disk_super);
1376
1377 error_bdev_put:
1378         blkdev_put(bdev, flags);
1379
1380         return device;
1381 }
1382
1383 /*
1384  * Try to find a chunk that intersects [start, start + len] range and when one
1385  * such is found, record the end of it in *start
1386  */
1387 static bool contains_pending_extent(struct btrfs_device *device, u64 *start,
1388                                     u64 len)
1389 {
1390         u64 physical_start, physical_end;
1391
1392         lockdep_assert_held(&device->fs_info->chunk_mutex);
1393
1394         if (!find_first_extent_bit(&device->alloc_state, *start,
1395                                    &physical_start, &physical_end,
1396                                    CHUNK_ALLOCATED, NULL)) {
1397
1398                 if (in_range(physical_start, *start, len) ||
1399                     in_range(*start, physical_start,
1400                              physical_end - physical_start)) {
1401                         *start = physical_end + 1;
1402                         return true;
1403                 }
1404         }
1405         return false;
1406 }
1407
1408 static u64 dev_extent_search_start(struct btrfs_device *device, u64 start)
1409 {
1410         switch (device->fs_devices->chunk_alloc_policy) {
1411         case BTRFS_CHUNK_ALLOC_REGULAR:
1412                 /*
1413                  * We don't want to overwrite the superblock on the drive nor
1414                  * any area used by the boot loader (grub for example), so we
1415                  * make sure to start at an offset of at least 1MB.
1416                  */
1417                 return max_t(u64, start, SZ_1M);
1418         case BTRFS_CHUNK_ALLOC_ZONED:
1419                 /*
1420                  * We don't care about the starting region like regular
1421                  * allocator, because we anyway use/reserve the first two zones
1422                  * for superblock logging.
1423                  */
1424                 return ALIGN(start, device->zone_info->zone_size);
1425         default:
1426                 BUG();
1427         }
1428 }
1429
1430 static bool dev_extent_hole_check_zoned(struct btrfs_device *device,
1431                                         u64 *hole_start, u64 *hole_size,
1432                                         u64 num_bytes)
1433 {
1434         u64 zone_size = device->zone_info->zone_size;
1435         u64 pos;
1436         int ret;
1437         bool changed = false;
1438
1439         ASSERT(IS_ALIGNED(*hole_start, zone_size));
1440
1441         while (*hole_size > 0) {
1442                 pos = btrfs_find_allocatable_zones(device, *hole_start,
1443                                                    *hole_start + *hole_size,
1444                                                    num_bytes);
1445                 if (pos != *hole_start) {
1446                         *hole_size = *hole_start + *hole_size - pos;
1447                         *hole_start = pos;
1448                         changed = true;
1449                         if (*hole_size < num_bytes)
1450                                 break;
1451                 }
1452
1453                 ret = btrfs_ensure_empty_zones(device, pos, num_bytes);
1454
1455                 /* Range is ensured to be empty */
1456                 if (!ret)
1457                         return changed;
1458
1459                 /* Given hole range was invalid (outside of device) */
1460                 if (ret == -ERANGE) {
1461                         *hole_start += *hole_size;
1462                         *hole_size = 0;
1463                         return true;
1464                 }
1465
1466                 *hole_start += zone_size;
1467                 *hole_size -= zone_size;
1468                 changed = true;
1469         }
1470
1471         return changed;
1472 }
1473
1474 /**
1475  * dev_extent_hole_check - check if specified hole is suitable for allocation
1476  * @device:     the device which we have the hole
1477  * @hole_start: starting position of the hole
1478  * @hole_size:  the size of the hole
1479  * @num_bytes:  the size of the free space that we need
1480  *
1481  * This function may modify @hole_start and @hole_size to reflect the suitable
1482  * position for allocation. Returns 1 if hole position is updated, 0 otherwise.
1483  */
1484 static bool dev_extent_hole_check(struct btrfs_device *device, u64 *hole_start,
1485                                   u64 *hole_size, u64 num_bytes)
1486 {
1487         bool changed = false;
1488         u64 hole_end = *hole_start + *hole_size;
1489
1490         for (;;) {
1491                 /*
1492                  * Check before we set max_hole_start, otherwise we could end up
1493                  * sending back this offset anyway.
1494                  */
1495                 if (contains_pending_extent(device, hole_start, *hole_size)) {
1496                         if (hole_end >= *hole_start)
1497                                 *hole_size = hole_end - *hole_start;
1498                         else
1499                                 *hole_size = 0;
1500                         changed = true;
1501                 }
1502
1503                 switch (device->fs_devices->chunk_alloc_policy) {
1504                 case BTRFS_CHUNK_ALLOC_REGULAR:
1505                         /* No extra check */
1506                         break;
1507                 case BTRFS_CHUNK_ALLOC_ZONED:
1508                         if (dev_extent_hole_check_zoned(device, hole_start,
1509                                                         hole_size, num_bytes)) {
1510                                 changed = true;
1511                                 /*
1512                                  * The changed hole can contain pending extent.
1513                                  * Loop again to check that.
1514                                  */
1515                                 continue;
1516                         }
1517                         break;
1518                 default:
1519                         BUG();
1520                 }
1521
1522                 break;
1523         }
1524
1525         return changed;
1526 }
1527
1528 /*
1529  * find_free_dev_extent_start - find free space in the specified device
1530  * @device:       the device which we search the free space in
1531  * @num_bytes:    the size of the free space that we need
1532  * @search_start: the position from which to begin the search
1533  * @start:        store the start of the free space.
1534  * @len:          the size of the free space. that we find, or the size
1535  *                of the max free space if we don't find suitable free space
1536  *
1537  * this uses a pretty simple search, the expectation is that it is
1538  * called very infrequently and that a given device has a small number
1539  * of extents
1540  *
1541  * @start is used to store the start of the free space if we find. But if we
1542  * don't find suitable free space, it will be used to store the start position
1543  * of the max free space.
1544  *
1545  * @len is used to store the size of the free space that we find.
1546  * But if we don't find suitable free space, it is used to store the size of
1547  * the max free space.
1548  *
1549  * NOTE: This function will search *commit* root of device tree, and does extra
1550  * check to ensure dev extents are not double allocated.
1551  * This makes the function safe to allocate dev extents but may not report
1552  * correct usable device space, as device extent freed in current transaction
1553  * is not reported as available.
1554  */
1555 static int find_free_dev_extent_start(struct btrfs_device *device,
1556                                 u64 num_bytes, u64 search_start, u64 *start,
1557                                 u64 *len)
1558 {
1559         struct btrfs_fs_info *fs_info = device->fs_info;
1560         struct btrfs_root *root = fs_info->dev_root;
1561         struct btrfs_key key;
1562         struct btrfs_dev_extent *dev_extent;
1563         struct btrfs_path *path;
1564         u64 hole_size;
1565         u64 max_hole_start;
1566         u64 max_hole_size;
1567         u64 extent_end;
1568         u64 search_end = device->total_bytes;
1569         int ret;
1570         int slot;
1571         struct extent_buffer *l;
1572
1573         search_start = dev_extent_search_start(device, search_start);
1574
1575         WARN_ON(device->zone_info &&
1576                 !IS_ALIGNED(num_bytes, device->zone_info->zone_size));
1577
1578         path = btrfs_alloc_path();
1579         if (!path)
1580                 return -ENOMEM;
1581
1582         max_hole_start = search_start;
1583         max_hole_size = 0;
1584
1585 again:
1586         if (search_start >= search_end ||
1587                 test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) {
1588                 ret = -ENOSPC;
1589                 goto out;
1590         }
1591
1592         path->reada = READA_FORWARD;
1593         path->search_commit_root = 1;
1594         path->skip_locking = 1;
1595
1596         key.objectid = device->devid;
1597         key.offset = search_start;
1598         key.type = BTRFS_DEV_EXTENT_KEY;
1599
1600         ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1601         if (ret < 0)
1602                 goto out;
1603         if (ret > 0) {
1604                 ret = btrfs_previous_item(root, path, key.objectid, key.type);
1605                 if (ret < 0)
1606                         goto out;
1607         }
1608
1609         while (1) {
1610                 l = path->nodes[0];
1611                 slot = path->slots[0];
1612                 if (slot >= btrfs_header_nritems(l)) {
1613                         ret = btrfs_next_leaf(root, path);
1614                         if (ret == 0)
1615                                 continue;
1616                         if (ret < 0)
1617                                 goto out;
1618
1619                         break;
1620                 }
1621                 btrfs_item_key_to_cpu(l, &key, slot);
1622
1623                 if (key.objectid < device->devid)
1624                         goto next;
1625
1626                 if (key.objectid > device->devid)
1627                         break;
1628
1629                 if (key.type != BTRFS_DEV_EXTENT_KEY)
1630                         goto next;
1631
1632                 if (key.offset > search_start) {
1633                         hole_size = key.offset - search_start;
1634                         dev_extent_hole_check(device, &search_start, &hole_size,
1635                                               num_bytes);
1636
1637                         if (hole_size > max_hole_size) {
1638                                 max_hole_start = search_start;
1639                                 max_hole_size = hole_size;
1640                         }
1641
1642                         /*
1643                          * If this free space is greater than which we need,
1644                          * it must be the max free space that we have found
1645                          * until now, so max_hole_start must point to the start
1646                          * of this free space and the length of this free space
1647                          * is stored in max_hole_size. Thus, we return
1648                          * max_hole_start and max_hole_size and go back to the
1649                          * caller.
1650                          */
1651                         if (hole_size >= num_bytes) {
1652                                 ret = 0;
1653                                 goto out;
1654                         }
1655                 }
1656
1657                 dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
1658                 extent_end = key.offset + btrfs_dev_extent_length(l,
1659                                                                   dev_extent);
1660                 if (extent_end > search_start)
1661                         search_start = extent_end;
1662 next:
1663                 path->slots[0]++;
1664                 cond_resched();
1665         }
1666
1667         /*
1668          * At this point, search_start should be the end of
1669          * allocated dev extents, and when shrinking the device,
1670          * search_end may be smaller than search_start.
1671          */
1672         if (search_end > search_start) {
1673                 hole_size = search_end - search_start;
1674                 if (dev_extent_hole_check(device, &search_start, &hole_size,
1675                                           num_bytes)) {
1676                         btrfs_release_path(path);
1677                         goto again;
1678                 }
1679
1680                 if (hole_size > max_hole_size) {
1681                         max_hole_start = search_start;
1682                         max_hole_size = hole_size;
1683                 }
1684         }
1685
1686         /* See above. */
1687         if (max_hole_size < num_bytes)
1688                 ret = -ENOSPC;
1689         else
1690                 ret = 0;
1691
1692 out:
1693         btrfs_free_path(path);
1694         *start = max_hole_start;
1695         if (len)
1696                 *len = max_hole_size;
1697         return ret;
1698 }
1699
1700 int find_free_dev_extent(struct btrfs_device *device, u64 num_bytes,
1701                          u64 *start, u64 *len)
1702 {
1703         /* FIXME use last free of some kind */
1704         return find_free_dev_extent_start(device, num_bytes, 0, start, len);
1705 }
1706
1707 static int btrfs_free_dev_extent(struct btrfs_trans_handle *trans,
1708                           struct btrfs_device *device,
1709                           u64 start, u64 *dev_extent_len)
1710 {
1711         struct btrfs_fs_info *fs_info = device->fs_info;
1712         struct btrfs_root *root = fs_info->dev_root;
1713         int ret;
1714         struct btrfs_path *path;
1715         struct btrfs_key key;
1716         struct btrfs_key found_key;
1717         struct extent_buffer *leaf = NULL;
1718         struct btrfs_dev_extent *extent = NULL;
1719
1720         path = btrfs_alloc_path();
1721         if (!path)
1722                 return -ENOMEM;
1723
1724         key.objectid = device->devid;
1725         key.offset = start;
1726         key.type = BTRFS_DEV_EXTENT_KEY;
1727 again:
1728         ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1729         if (ret > 0) {
1730                 ret = btrfs_previous_item(root, path, key.objectid,
1731                                           BTRFS_DEV_EXTENT_KEY);
1732                 if (ret)
1733                         goto out;
1734                 leaf = path->nodes[0];
1735                 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1736                 extent = btrfs_item_ptr(leaf, path->slots[0],
1737                                         struct btrfs_dev_extent);
1738                 BUG_ON(found_key.offset > start || found_key.offset +
1739                        btrfs_dev_extent_length(leaf, extent) < start);
1740                 key = found_key;
1741                 btrfs_release_path(path);
1742                 goto again;
1743         } else if (ret == 0) {
1744                 leaf = path->nodes[0];
1745                 extent = btrfs_item_ptr(leaf, path->slots[0],
1746                                         struct btrfs_dev_extent);
1747         } else {
1748                 btrfs_handle_fs_error(fs_info, ret, "Slot search failed");
1749                 goto out;
1750         }
1751
1752         *dev_extent_len = btrfs_dev_extent_length(leaf, extent);
1753
1754         ret = btrfs_del_item(trans, root, path);
1755         if (ret) {
1756                 btrfs_handle_fs_error(fs_info, ret,
1757                                       "Failed to remove dev extent item");
1758         } else {
1759                 set_bit(BTRFS_TRANS_HAVE_FREE_BGS, &trans->transaction->flags);
1760         }
1761 out:
1762         btrfs_free_path(path);
1763         return ret;
1764 }
1765
1766 static int btrfs_alloc_dev_extent(struct btrfs_trans_handle *trans,
1767                                   struct btrfs_device *device,
1768                                   u64 chunk_offset, u64 start, u64 num_bytes)
1769 {
1770         int ret;
1771         struct btrfs_path *path;
1772         struct btrfs_fs_info *fs_info = device->fs_info;
1773         struct btrfs_root *root = fs_info->dev_root;
1774         struct btrfs_dev_extent *extent;
1775         struct extent_buffer *leaf;
1776         struct btrfs_key key;
1777
1778         WARN_ON(!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state));
1779         WARN_ON(test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state));
1780         path = btrfs_alloc_path();
1781         if (!path)
1782                 return -ENOMEM;
1783
1784         key.objectid = device->devid;
1785         key.offset = start;
1786         key.type = BTRFS_DEV_EXTENT_KEY;
1787         ret = btrfs_insert_empty_item(trans, root, path, &key,
1788                                       sizeof(*extent));
1789         if (ret)
1790                 goto out;
1791
1792         leaf = path->nodes[0];
1793         extent = btrfs_item_ptr(leaf, path->slots[0],
1794                                 struct btrfs_dev_extent);
1795         btrfs_set_dev_extent_chunk_tree(leaf, extent,
1796                                         BTRFS_CHUNK_TREE_OBJECTID);
1797         btrfs_set_dev_extent_chunk_objectid(leaf, extent,
1798                                             BTRFS_FIRST_CHUNK_TREE_OBJECTID);
1799         btrfs_set_dev_extent_chunk_offset(leaf, extent, chunk_offset);
1800
1801         btrfs_set_dev_extent_length(leaf, extent, num_bytes);
1802         btrfs_mark_buffer_dirty(leaf);
1803 out:
1804         btrfs_free_path(path);
1805         return ret;
1806 }
1807
1808 static u64 find_next_chunk(struct btrfs_fs_info *fs_info)
1809 {
1810         struct extent_map_tree *em_tree;
1811         struct extent_map *em;
1812         struct rb_node *n;
1813         u64 ret = 0;
1814
1815         em_tree = &fs_info->mapping_tree;
1816         read_lock(&em_tree->lock);
1817         n = rb_last(&em_tree->map.rb_root);
1818         if (n) {
1819                 em = rb_entry(n, struct extent_map, rb_node);
1820                 ret = em->start + em->len;
1821         }
1822         read_unlock(&em_tree->lock);
1823
1824         return ret;
1825 }
1826
1827 static noinline int find_next_devid(struct btrfs_fs_info *fs_info,
1828                                     u64 *devid_ret)
1829 {
1830         int ret;
1831         struct btrfs_key key;
1832         struct btrfs_key found_key;
1833         struct btrfs_path *path;
1834
1835         path = btrfs_alloc_path();
1836         if (!path)
1837                 return -ENOMEM;
1838
1839         key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1840         key.type = BTRFS_DEV_ITEM_KEY;
1841         key.offset = (u64)-1;
1842
1843         ret = btrfs_search_slot(NULL, fs_info->chunk_root, &key, path, 0, 0);
1844         if (ret < 0)
1845                 goto error;
1846
1847         if (ret == 0) {
1848                 /* Corruption */
1849                 btrfs_err(fs_info, "corrupted chunk tree devid -1 matched");
1850                 ret = -EUCLEAN;
1851                 goto error;
1852         }
1853
1854         ret = btrfs_previous_item(fs_info->chunk_root, path,
1855                                   BTRFS_DEV_ITEMS_OBJECTID,
1856                                   BTRFS_DEV_ITEM_KEY);
1857         if (ret) {
1858                 *devid_ret = 1;
1859         } else {
1860                 btrfs_item_key_to_cpu(path->nodes[0], &found_key,
1861                                       path->slots[0]);
1862                 *devid_ret = found_key.offset + 1;
1863         }
1864         ret = 0;
1865 error:
1866         btrfs_free_path(path);
1867         return ret;
1868 }
1869
1870 /*
1871  * the device information is stored in the chunk root
1872  * the btrfs_device struct should be fully filled in
1873  */
1874 static int btrfs_add_dev_item(struct btrfs_trans_handle *trans,
1875                             struct btrfs_device *device)
1876 {
1877         int ret;
1878         struct btrfs_path *path;
1879         struct btrfs_dev_item *dev_item;
1880         struct extent_buffer *leaf;
1881         struct btrfs_key key;
1882         unsigned long ptr;
1883
1884         path = btrfs_alloc_path();
1885         if (!path)
1886                 return -ENOMEM;
1887
1888         key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1889         key.type = BTRFS_DEV_ITEM_KEY;
1890         key.offset = device->devid;
1891
1892         ret = btrfs_insert_empty_item(trans, trans->fs_info->chunk_root, path,
1893                                       &key, sizeof(*dev_item));
1894         if (ret)
1895                 goto out;
1896
1897         leaf = path->nodes[0];
1898         dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item);
1899
1900         btrfs_set_device_id(leaf, dev_item, device->devid);
1901         btrfs_set_device_generation(leaf, dev_item, 0);
1902         btrfs_set_device_type(leaf, dev_item, device->type);
1903         btrfs_set_device_io_align(leaf, dev_item, device->io_align);
1904         btrfs_set_device_io_width(leaf, dev_item, device->io_width);
1905         btrfs_set_device_sector_size(leaf, dev_item, device->sector_size);
1906         btrfs_set_device_total_bytes(leaf, dev_item,
1907                                      btrfs_device_get_disk_total_bytes(device));
1908         btrfs_set_device_bytes_used(leaf, dev_item,
1909                                     btrfs_device_get_bytes_used(device));
1910         btrfs_set_device_group(leaf, dev_item, 0);
1911         btrfs_set_device_seek_speed(leaf, dev_item, 0);
1912         btrfs_set_device_bandwidth(leaf, dev_item, 0);
1913         btrfs_set_device_start_offset(leaf, dev_item, 0);
1914
1915         ptr = btrfs_device_uuid(dev_item);
1916         write_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE);
1917         ptr = btrfs_device_fsid(dev_item);
1918         write_extent_buffer(leaf, trans->fs_info->fs_devices->metadata_uuid,
1919                             ptr, BTRFS_FSID_SIZE);
1920         btrfs_mark_buffer_dirty(leaf);
1921
1922         ret = 0;
1923 out:
1924         btrfs_free_path(path);
1925         return ret;
1926 }
1927
1928 /*
1929  * Function to update ctime/mtime for a given device path.
1930  * Mainly used for ctime/mtime based probe like libblkid.
1931  */
1932 static void update_dev_time(const char *path_name)
1933 {
1934         struct file *filp;
1935
1936         filp = filp_open(path_name, O_RDWR, 0);
1937         if (IS_ERR(filp))
1938                 return;
1939         file_update_time(filp);
1940         filp_close(filp, NULL);
1941 }
1942
1943 static int btrfs_rm_dev_item(struct btrfs_device *device)
1944 {
1945         struct btrfs_root *root = device->fs_info->chunk_root;
1946         int ret;
1947         struct btrfs_path *path;
1948         struct btrfs_key key;
1949         struct btrfs_trans_handle *trans;
1950
1951         path = btrfs_alloc_path();
1952         if (!path)
1953                 return -ENOMEM;
1954
1955         trans = btrfs_start_transaction(root, 0);
1956         if (IS_ERR(trans)) {
1957                 btrfs_free_path(path);
1958                 return PTR_ERR(trans);
1959         }
1960         key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1961         key.type = BTRFS_DEV_ITEM_KEY;
1962         key.offset = device->devid;
1963
1964         ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1965         if (ret) {
1966                 if (ret > 0)
1967                         ret = -ENOENT;
1968                 btrfs_abort_transaction(trans, ret);
1969                 btrfs_end_transaction(trans);
1970                 goto out;
1971         }
1972
1973         ret = btrfs_del_item(trans, root, path);
1974         if (ret) {
1975                 btrfs_abort_transaction(trans, ret);
1976                 btrfs_end_transaction(trans);
1977         }
1978
1979 out:
1980         btrfs_free_path(path);
1981         if (!ret)
1982                 ret = btrfs_commit_transaction(trans);
1983         return ret;
1984 }
1985
1986 /*
1987  * Verify that @num_devices satisfies the RAID profile constraints in the whole
1988  * filesystem. It's up to the caller to adjust that number regarding eg. device
1989  * replace.
1990  */
1991 static int btrfs_check_raid_min_devices(struct btrfs_fs_info *fs_info,
1992                 u64 num_devices)
1993 {
1994         u64 all_avail;
1995         unsigned seq;
1996         int i;
1997
1998         do {
1999                 seq = read_seqbegin(&fs_info->profiles_lock);
2000
2001                 all_avail = fs_info->avail_data_alloc_bits |
2002                             fs_info->avail_system_alloc_bits |
2003                             fs_info->avail_metadata_alloc_bits;
2004         } while (read_seqretry(&fs_info->profiles_lock, seq));
2005
2006         for (i = 0; i < BTRFS_NR_RAID_TYPES; i++) {
2007                 if (!(all_avail & btrfs_raid_array[i].bg_flag))
2008                         continue;
2009
2010                 if (num_devices < btrfs_raid_array[i].devs_min) {
2011                         int ret = btrfs_raid_array[i].mindev_error;
2012
2013                         if (ret)
2014                                 return ret;
2015                 }
2016         }
2017
2018         return 0;
2019 }
2020
2021 static struct btrfs_device * btrfs_find_next_active_device(
2022                 struct btrfs_fs_devices *fs_devs, struct btrfs_device *device)
2023 {
2024         struct btrfs_device *next_device;
2025
2026         list_for_each_entry(next_device, &fs_devs->devices, dev_list) {
2027                 if (next_device != device &&
2028                     !test_bit(BTRFS_DEV_STATE_MISSING, &next_device->dev_state)
2029                     && next_device->bdev)
2030                         return next_device;
2031         }
2032
2033         return NULL;
2034 }
2035
2036 /*
2037  * Helper function to check if the given device is part of s_bdev / latest_bdev
2038  * and replace it with the provided or the next active device, in the context
2039  * where this function called, there should be always be another device (or
2040  * this_dev) which is active.
2041  */
2042 void __cold btrfs_assign_next_active_device(struct btrfs_device *device,
2043                                             struct btrfs_device *next_device)
2044 {
2045         struct btrfs_fs_info *fs_info = device->fs_info;
2046
2047         if (!next_device)
2048                 next_device = btrfs_find_next_active_device(fs_info->fs_devices,
2049                                                             device);
2050         ASSERT(next_device);
2051
2052         if (fs_info->sb->s_bdev &&
2053                         (fs_info->sb->s_bdev == device->bdev))
2054                 fs_info->sb->s_bdev = next_device->bdev;
2055
2056         if (fs_info->fs_devices->latest_bdev == device->bdev)
2057                 fs_info->fs_devices->latest_bdev = next_device->bdev;
2058 }
2059
2060 /*
2061  * Return btrfs_fs_devices::num_devices excluding the device that's being
2062  * currently replaced.
2063  */
2064 static u64 btrfs_num_devices(struct btrfs_fs_info *fs_info)
2065 {
2066         u64 num_devices = fs_info->fs_devices->num_devices;
2067
2068         down_read(&fs_info->dev_replace.rwsem);
2069         if (btrfs_dev_replace_is_ongoing(&fs_info->dev_replace)) {
2070                 ASSERT(num_devices > 1);
2071                 num_devices--;
2072         }
2073         up_read(&fs_info->dev_replace.rwsem);
2074
2075         return num_devices;
2076 }
2077
2078 void btrfs_scratch_superblocks(struct btrfs_fs_info *fs_info,
2079                                struct block_device *bdev,
2080                                const char *device_path)
2081 {
2082         struct btrfs_super_block *disk_super;
2083         int copy_num;
2084
2085         if (!bdev)
2086                 return;
2087
2088         for (copy_num = 0; copy_num < BTRFS_SUPER_MIRROR_MAX; copy_num++) {
2089                 struct page *page;
2090                 int ret;
2091
2092                 disk_super = btrfs_read_dev_one_super(bdev, copy_num);
2093                 if (IS_ERR(disk_super))
2094                         continue;
2095
2096                 if (bdev_is_zoned(bdev)) {
2097                         btrfs_reset_sb_log_zones(bdev, copy_num);
2098                         continue;
2099                 }
2100
2101                 memset(&disk_super->magic, 0, sizeof(disk_super->magic));
2102
2103                 page = virt_to_page(disk_super);
2104                 set_page_dirty(page);
2105                 lock_page(page);
2106                 /* write_on_page() unlocks the page */
2107                 ret = write_one_page(page);
2108                 if (ret)
2109                         btrfs_warn(fs_info,
2110                                 "error clearing superblock number %d (%d)",
2111                                 copy_num, ret);
2112                 btrfs_release_disk_super(disk_super);
2113
2114         }
2115
2116         /* Notify udev that device has changed */
2117         btrfs_kobject_uevent(bdev, KOBJ_CHANGE);
2118
2119         /* Update ctime/mtime for device path for libblkid */
2120         update_dev_time(device_path);
2121 }
2122
2123 int btrfs_rm_device(struct btrfs_fs_info *fs_info, const char *device_path,
2124                     u64 devid)
2125 {
2126         struct btrfs_device *device;
2127         struct btrfs_fs_devices *cur_devices;
2128         struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
2129         u64 num_devices;
2130         int ret = 0;
2131
2132         mutex_lock(&uuid_mutex);
2133
2134         num_devices = btrfs_num_devices(fs_info);
2135
2136         ret = btrfs_check_raid_min_devices(fs_info, num_devices - 1);
2137         if (ret)
2138                 goto out;
2139
2140         device = btrfs_find_device_by_devspec(fs_info, devid, device_path);
2141
2142         if (IS_ERR(device)) {
2143                 if (PTR_ERR(device) == -ENOENT &&
2144                     strcmp(device_path, "missing") == 0)
2145                         ret = BTRFS_ERROR_DEV_MISSING_NOT_FOUND;
2146                 else
2147                         ret = PTR_ERR(device);
2148                 goto out;
2149         }
2150
2151         if (btrfs_pinned_by_swapfile(fs_info, device)) {
2152                 btrfs_warn_in_rcu(fs_info,
2153                   "cannot remove device %s (devid %llu) due to active swapfile",
2154                                   rcu_str_deref(device->name), device->devid);
2155                 ret = -ETXTBSY;
2156                 goto out;
2157         }
2158
2159         if (test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) {
2160                 ret = BTRFS_ERROR_DEV_TGT_REPLACE;
2161                 goto out;
2162         }
2163
2164         if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) &&
2165             fs_info->fs_devices->rw_devices == 1) {
2166                 ret = BTRFS_ERROR_DEV_ONLY_WRITABLE;
2167                 goto out;
2168         }
2169
2170         if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
2171                 mutex_lock(&fs_info->chunk_mutex);
2172                 list_del_init(&device->dev_alloc_list);
2173                 device->fs_devices->rw_devices--;
2174                 mutex_unlock(&fs_info->chunk_mutex);
2175         }
2176
2177         mutex_unlock(&uuid_mutex);
2178         ret = btrfs_shrink_device(device, 0);
2179         if (!ret)
2180                 btrfs_reada_remove_dev(device);
2181         mutex_lock(&uuid_mutex);
2182         if (ret)
2183                 goto error_undo;
2184
2185         /*
2186          * TODO: the superblock still includes this device in its num_devices
2187          * counter although write_all_supers() is not locked out. This
2188          * could give a filesystem state which requires a degraded mount.
2189          */
2190         ret = btrfs_rm_dev_item(device);
2191         if (ret)
2192                 goto error_undo;
2193
2194         clear_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state);
2195         btrfs_scrub_cancel_dev(device);
2196
2197         /*
2198          * the device list mutex makes sure that we don't change
2199          * the device list while someone else is writing out all
2200          * the device supers. Whoever is writing all supers, should
2201          * lock the device list mutex before getting the number of
2202          * devices in the super block (super_copy). Conversely,
2203          * whoever updates the number of devices in the super block
2204          * (super_copy) should hold the device list mutex.
2205          */
2206
2207         /*
2208          * In normal cases the cur_devices == fs_devices. But in case
2209          * of deleting a seed device, the cur_devices should point to
2210          * its own fs_devices listed under the fs_devices->seed.
2211          */
2212         cur_devices = device->fs_devices;
2213         mutex_lock(&fs_devices->device_list_mutex);
2214         list_del_rcu(&device->dev_list);
2215
2216         cur_devices->num_devices--;
2217         cur_devices->total_devices--;
2218         /* Update total_devices of the parent fs_devices if it's seed */
2219         if (cur_devices != fs_devices)
2220                 fs_devices->total_devices--;
2221
2222         if (test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state))
2223                 cur_devices->missing_devices--;
2224
2225         btrfs_assign_next_active_device(device, NULL);
2226
2227         if (device->bdev) {
2228                 cur_devices->open_devices--;
2229                 /* remove sysfs entry */
2230                 btrfs_sysfs_remove_device(device);
2231         }
2232
2233         num_devices = btrfs_super_num_devices(fs_info->super_copy) - 1;
2234         btrfs_set_super_num_devices(fs_info->super_copy, num_devices);
2235         mutex_unlock(&fs_devices->device_list_mutex);
2236
2237         /*
2238          * at this point, the device is zero sized and detached from
2239          * the devices list.  All that's left is to zero out the old
2240          * supers and free the device.
2241          */
2242         if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state))
2243                 btrfs_scratch_superblocks(fs_info, device->bdev,
2244                                           device->name->str);
2245
2246         btrfs_close_bdev(device);
2247         synchronize_rcu();
2248         btrfs_free_device(device);
2249
2250         if (cur_devices->open_devices == 0) {
2251                 list_del_init(&cur_devices->seed_list);
2252                 close_fs_devices(cur_devices);
2253                 free_fs_devices(cur_devices);
2254         }
2255
2256 out:
2257         mutex_unlock(&uuid_mutex);
2258         return ret;
2259
2260 error_undo:
2261         btrfs_reada_undo_remove_dev(device);
2262         if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
2263                 mutex_lock(&fs_info->chunk_mutex);
2264                 list_add(&device->dev_alloc_list,
2265                          &fs_devices->alloc_list);
2266                 device->fs_devices->rw_devices++;
2267                 mutex_unlock(&fs_info->chunk_mutex);
2268         }
2269         goto out;
2270 }
2271
2272 void btrfs_rm_dev_replace_remove_srcdev(struct btrfs_device *srcdev)
2273 {
2274         struct btrfs_fs_devices *fs_devices;
2275
2276         lockdep_assert_held(&srcdev->fs_info->fs_devices->device_list_mutex);
2277
2278         /*
2279          * in case of fs with no seed, srcdev->fs_devices will point
2280          * to fs_devices of fs_info. However when the dev being replaced is
2281          * a seed dev it will point to the seed's local fs_devices. In short
2282          * srcdev will have its correct fs_devices in both the cases.
2283          */
2284         fs_devices = srcdev->fs_devices;
2285
2286         list_del_rcu(&srcdev->dev_list);
2287         list_del(&srcdev->dev_alloc_list);
2288         fs_devices->num_devices--;
2289         if (test_bit(BTRFS_DEV_STATE_MISSING, &srcdev->dev_state))
2290                 fs_devices->missing_devices--;
2291
2292         if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &srcdev->dev_state))
2293                 fs_devices->rw_devices--;
2294
2295         if (srcdev->bdev)
2296                 fs_devices->open_devices--;
2297 }
2298
2299 void btrfs_rm_dev_replace_free_srcdev(struct btrfs_device *srcdev)
2300 {
2301         struct btrfs_fs_devices *fs_devices = srcdev->fs_devices;
2302
2303         mutex_lock(&uuid_mutex);
2304
2305         btrfs_close_bdev(srcdev);
2306         synchronize_rcu();
2307         btrfs_free_device(srcdev);
2308
2309         /* if this is no devs we rather delete the fs_devices */
2310         if (!fs_devices->num_devices) {
2311                 /*
2312                  * On a mounted FS, num_devices can't be zero unless it's a
2313                  * seed. In case of a seed device being replaced, the replace
2314                  * target added to the sprout FS, so there will be no more
2315                  * device left under the seed FS.
2316                  */
2317                 ASSERT(fs_devices->seeding);
2318
2319                 list_del_init(&fs_devices->seed_list);
2320                 close_fs_devices(fs_devices);
2321                 free_fs_devices(fs_devices);
2322         }
2323         mutex_unlock(&uuid_mutex);
2324 }
2325
2326 void btrfs_destroy_dev_replace_tgtdev(struct btrfs_device *tgtdev)
2327 {
2328         struct btrfs_fs_devices *fs_devices = tgtdev->fs_info->fs_devices;
2329
2330         mutex_lock(&fs_devices->device_list_mutex);
2331
2332         btrfs_sysfs_remove_device(tgtdev);
2333
2334         if (tgtdev->bdev)
2335                 fs_devices->open_devices--;
2336
2337         fs_devices->num_devices--;
2338
2339         btrfs_assign_next_active_device(tgtdev, NULL);
2340
2341         list_del_rcu(&tgtdev->dev_list);
2342
2343         mutex_unlock(&fs_devices->device_list_mutex);
2344
2345         /*
2346          * The update_dev_time() with in btrfs_scratch_superblocks()
2347          * may lead to a call to btrfs_show_devname() which will try
2348          * to hold device_list_mutex. And here this device
2349          * is already out of device list, so we don't have to hold
2350          * the device_list_mutex lock.
2351          */
2352         btrfs_scratch_superblocks(tgtdev->fs_info, tgtdev->bdev,
2353                                   tgtdev->name->str);
2354
2355         btrfs_close_bdev(tgtdev);
2356         synchronize_rcu();
2357         btrfs_free_device(tgtdev);
2358 }
2359
2360 static struct btrfs_device *btrfs_find_device_by_path(
2361                 struct btrfs_fs_info *fs_info, const char *device_path)
2362 {
2363         int ret = 0;
2364         struct btrfs_super_block *disk_super;
2365         u64 devid;
2366         u8 *dev_uuid;
2367         struct block_device *bdev;
2368         struct btrfs_device *device;
2369
2370         ret = btrfs_get_bdev_and_sb(device_path, FMODE_READ,
2371                                     fs_info->bdev_holder, 0, &bdev, &disk_super);
2372         if (ret)
2373                 return ERR_PTR(ret);
2374
2375         devid = btrfs_stack_device_id(&disk_super->dev_item);
2376         dev_uuid = disk_super->dev_item.uuid;
2377         if (btrfs_fs_incompat(fs_info, METADATA_UUID))
2378                 device = btrfs_find_device(fs_info->fs_devices, devid, dev_uuid,
2379                                            disk_super->metadata_uuid);
2380         else
2381                 device = btrfs_find_device(fs_info->fs_devices, devid, dev_uuid,
2382                                            disk_super->fsid);
2383
2384         btrfs_release_disk_super(disk_super);
2385         if (!device)
2386                 device = ERR_PTR(-ENOENT);
2387         blkdev_put(bdev, FMODE_READ);
2388         return device;
2389 }
2390
2391 /*
2392  * Lookup a device given by device id, or the path if the id is 0.
2393  */
2394 struct btrfs_device *btrfs_find_device_by_devspec(
2395                 struct btrfs_fs_info *fs_info, u64 devid,
2396                 const char *device_path)
2397 {
2398         struct btrfs_device *device;
2399
2400         if (devid) {
2401                 device = btrfs_find_device(fs_info->fs_devices, devid, NULL,
2402                                            NULL);
2403                 if (!device)
2404                         return ERR_PTR(-ENOENT);
2405                 return device;
2406         }
2407
2408         if (!device_path || !device_path[0])
2409                 return ERR_PTR(-EINVAL);
2410
2411         if (strcmp(device_path, "missing") == 0) {
2412                 /* Find first missing device */
2413                 list_for_each_entry(device, &fs_info->fs_devices->devices,
2414                                     dev_list) {
2415                         if (test_bit(BTRFS_DEV_STATE_IN_FS_METADATA,
2416                                      &device->dev_state) && !device->bdev)
2417                                 return device;
2418                 }
2419                 return ERR_PTR(-ENOENT);
2420         }
2421
2422         return btrfs_find_device_by_path(fs_info, device_path);
2423 }
2424
2425 /*
2426  * does all the dirty work required for changing file system's UUID.
2427  */
2428 static int btrfs_prepare_sprout(struct btrfs_fs_info *fs_info)
2429 {
2430         struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
2431         struct btrfs_fs_devices *old_devices;
2432         struct btrfs_fs_devices *seed_devices;
2433         struct btrfs_super_block *disk_super = fs_info->super_copy;
2434         struct btrfs_device *device;
2435         u64 super_flags;
2436
2437         lockdep_assert_held(&uuid_mutex);
2438         if (!fs_devices->seeding)
2439                 return -EINVAL;
2440
2441         /*
2442          * Private copy of the seed devices, anchored at
2443          * fs_info->fs_devices->seed_list
2444          */
2445         seed_devices = alloc_fs_devices(NULL, NULL);
2446         if (IS_ERR(seed_devices))
2447                 return PTR_ERR(seed_devices);
2448
2449         /*
2450          * It's necessary to retain a copy of the original seed fs_devices in
2451          * fs_uuids so that filesystems which have been seeded can successfully
2452          * reference the seed device from open_seed_devices. This also supports
2453          * multiple fs seed.
2454          */
2455         old_devices = clone_fs_devices(fs_devices);
2456         if (IS_ERR(old_devices)) {
2457                 kfree(seed_devices);
2458                 return PTR_ERR(old_devices);
2459         }
2460
2461         list_add(&old_devices->fs_list, &fs_uuids);
2462
2463         memcpy(seed_devices, fs_devices, sizeof(*seed_devices));
2464         seed_devices->opened = 1;
2465         INIT_LIST_HEAD(&seed_devices->devices);
2466         INIT_LIST_HEAD(&seed_devices->alloc_list);
2467         mutex_init(&seed_devices->device_list_mutex);
2468
2469         mutex_lock(&fs_devices->device_list_mutex);
2470         list_splice_init_rcu(&fs_devices->devices, &seed_devices->devices,
2471                               synchronize_rcu);
2472         list_for_each_entry(device, &seed_devices->devices, dev_list)
2473                 device->fs_devices = seed_devices;
2474
2475         fs_devices->seeding = false;
2476         fs_devices->num_devices = 0;
2477         fs_devices->open_devices = 0;
2478         fs_devices->missing_devices = 0;
2479         fs_devices->rotating = false;
2480         list_add(&seed_devices->seed_list, &fs_devices->seed_list);
2481
2482         generate_random_uuid(fs_devices->fsid);
2483         memcpy(fs_devices->metadata_uuid, fs_devices->fsid, BTRFS_FSID_SIZE);
2484         memcpy(disk_super->fsid, fs_devices->fsid, BTRFS_FSID_SIZE);
2485         mutex_unlock(&fs_devices->device_list_mutex);
2486
2487         super_flags = btrfs_super_flags(disk_super) &
2488                       ~BTRFS_SUPER_FLAG_SEEDING;
2489         btrfs_set_super_flags(disk_super, super_flags);
2490
2491         return 0;
2492 }
2493
2494 /*
2495  * Store the expected generation for seed devices in device items.
2496  */
2497 static int btrfs_finish_sprout(struct btrfs_trans_handle *trans)
2498 {
2499         struct btrfs_fs_info *fs_info = trans->fs_info;
2500         struct btrfs_root *root = fs_info->chunk_root;
2501         struct btrfs_path *path;
2502         struct extent_buffer *leaf;
2503         struct btrfs_dev_item *dev_item;
2504         struct btrfs_device *device;
2505         struct btrfs_key key;
2506         u8 fs_uuid[BTRFS_FSID_SIZE];
2507         u8 dev_uuid[BTRFS_UUID_SIZE];
2508         u64 devid;
2509         int ret;
2510
2511         path = btrfs_alloc_path();
2512         if (!path)
2513                 return -ENOMEM;
2514
2515         key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
2516         key.offset = 0;
2517         key.type = BTRFS_DEV_ITEM_KEY;
2518
2519         while (1) {
2520                 ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
2521                 if (ret < 0)
2522                         goto error;
2523
2524                 leaf = path->nodes[0];
2525 next_slot:
2526                 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
2527                         ret = btrfs_next_leaf(root, path);
2528                         if (ret > 0)
2529                                 break;
2530                         if (ret < 0)
2531                                 goto error;
2532                         leaf = path->nodes[0];
2533                         btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2534                         btrfs_release_path(path);
2535                         continue;
2536                 }
2537
2538                 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2539                 if (key.objectid != BTRFS_DEV_ITEMS_OBJECTID ||
2540                     key.type != BTRFS_DEV_ITEM_KEY)
2541                         break;
2542
2543                 dev_item = btrfs_item_ptr(leaf, path->slots[0],
2544                                           struct btrfs_dev_item);
2545                 devid = btrfs_device_id(leaf, dev_item);
2546                 read_extent_buffer(leaf, dev_uuid, btrfs_device_uuid(dev_item),
2547                                    BTRFS_UUID_SIZE);
2548                 read_extent_buffer(leaf, fs_uuid, btrfs_device_fsid(dev_item),
2549                                    BTRFS_FSID_SIZE);
2550                 device = btrfs_find_device(fs_info->fs_devices, devid, dev_uuid,
2551                                            fs_uuid);
2552                 BUG_ON(!device); /* Logic error */
2553
2554                 if (device->fs_devices->seeding) {
2555                         btrfs_set_device_generation(leaf, dev_item,
2556                                                     device->generation);
2557                         btrfs_mark_buffer_dirty(leaf);
2558                 }
2559
2560                 path->slots[0]++;
2561                 goto next_slot;
2562         }
2563         ret = 0;
2564 error:
2565         btrfs_free_path(path);
2566         return ret;
2567 }
2568
2569 int btrfs_init_new_device(struct btrfs_fs_info *fs_info, const char *device_path)
2570 {
2571         struct btrfs_root *root = fs_info->dev_root;
2572         struct request_queue *q;
2573         struct btrfs_trans_handle *trans;
2574         struct btrfs_device *device;
2575         struct block_device *bdev;
2576         struct super_block *sb = fs_info->sb;
2577         struct rcu_string *name;
2578         struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
2579         u64 orig_super_total_bytes;
2580         u64 orig_super_num_devices;
2581         int seeding_dev = 0;
2582         int ret = 0;
2583         bool locked = false;
2584
2585         if (sb_rdonly(sb) && !fs_devices->seeding)
2586                 return -EROFS;
2587
2588         bdev = blkdev_get_by_path(device_path, FMODE_WRITE | FMODE_EXCL,
2589                                   fs_info->bdev_holder);
2590         if (IS_ERR(bdev))
2591                 return PTR_ERR(bdev);
2592
2593         if (!btrfs_check_device_zone_type(fs_info, bdev)) {
2594                 ret = -EINVAL;
2595                 goto error;
2596         }
2597
2598         if (fs_devices->seeding) {
2599                 seeding_dev = 1;
2600                 down_write(&sb->s_umount);
2601                 mutex_lock(&uuid_mutex);
2602                 locked = true;
2603         }
2604
2605         sync_blockdev(bdev);
2606
2607         rcu_read_lock();
2608         list_for_each_entry_rcu(device, &fs_devices->devices, dev_list) {
2609                 if (device->bdev == bdev) {
2610                         ret = -EEXIST;
2611                         rcu_read_unlock();
2612                         goto error;
2613                 }
2614         }
2615         rcu_read_unlock();
2616
2617         device = btrfs_alloc_device(fs_info, NULL, NULL);
2618         if (IS_ERR(device)) {
2619                 /* we can safely leave the fs_devices entry around */
2620                 ret = PTR_ERR(device);
2621                 goto error;
2622         }
2623
2624         name = rcu_string_strdup(device_path, GFP_KERNEL);
2625         if (!name) {
2626                 ret = -ENOMEM;
2627                 goto error_free_device;
2628         }
2629         rcu_assign_pointer(device->name, name);
2630
2631         device->fs_info = fs_info;
2632         device->bdev = bdev;
2633
2634         ret = btrfs_get_dev_zone_info(device);
2635         if (ret)
2636                 goto error_free_device;
2637
2638         trans = btrfs_start_transaction(root, 0);
2639         if (IS_ERR(trans)) {
2640                 ret = PTR_ERR(trans);
2641                 goto error_free_zone;
2642         }
2643
2644         q = bdev_get_queue(bdev);
2645         set_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
2646         device->generation = trans->transid;
2647         device->io_width = fs_info->sectorsize;
2648         device->io_align = fs_info->sectorsize;
2649         device->sector_size = fs_info->sectorsize;
2650         device->total_bytes = round_down(i_size_read(bdev->bd_inode),
2651                                          fs_info->sectorsize);
2652         device->disk_total_bytes = device->total_bytes;
2653         device->commit_total_bytes = device->total_bytes;
2654         set_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state);
2655         clear_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state);
2656         device->mode = FMODE_EXCL;
2657         device->dev_stats_valid = 1;
2658         set_blocksize(device->bdev, BTRFS_BDEV_BLOCKSIZE);
2659
2660         if (seeding_dev) {
2661                 btrfs_clear_sb_rdonly(sb);
2662                 ret = btrfs_prepare_sprout(fs_info);
2663                 if (ret) {
2664                         btrfs_abort_transaction(trans, ret);
2665                         goto error_trans;
2666                 }
2667         }
2668
2669         device->fs_devices = fs_devices;
2670
2671         mutex_lock(&fs_devices->device_list_mutex);
2672         mutex_lock(&fs_info->chunk_mutex);
2673         list_add_rcu(&device->dev_list, &fs_devices->devices);
2674         list_add(&device->dev_alloc_list, &fs_devices->alloc_list);
2675         fs_devices->num_devices++;
2676         fs_devices->open_devices++;
2677         fs_devices->rw_devices++;
2678         fs_devices->total_devices++;
2679         fs_devices->total_rw_bytes += device->total_bytes;
2680
2681         atomic64_add(device->total_bytes, &fs_info->free_chunk_space);
2682
2683         if (!blk_queue_nonrot(q))
2684                 fs_devices->rotating = true;
2685
2686         orig_super_total_bytes = btrfs_super_total_bytes(fs_info->super_copy);
2687         btrfs_set_super_total_bytes(fs_info->super_copy,
2688                 round_down(orig_super_total_bytes + device->total_bytes,
2689                            fs_info->sectorsize));
2690
2691         orig_super_num_devices = btrfs_super_num_devices(fs_info->super_copy);
2692         btrfs_set_super_num_devices(fs_info->super_copy,
2693                                     orig_super_num_devices + 1);
2694
2695         /*
2696          * we've got more storage, clear any full flags on the space
2697          * infos
2698          */
2699         btrfs_clear_space_info_full(fs_info);
2700
2701         mutex_unlock(&fs_info->chunk_mutex);
2702
2703         /* Add sysfs device entry */
2704         btrfs_sysfs_add_device(device);
2705
2706         mutex_unlock(&fs_devices->device_list_mutex);
2707
2708         if (seeding_dev) {
2709                 mutex_lock(&fs_info->chunk_mutex);
2710                 ret = init_first_rw_device(trans);
2711                 mutex_unlock(&fs_info->chunk_mutex);
2712                 if (ret) {
2713                         btrfs_abort_transaction(trans, ret);
2714                         goto error_sysfs;
2715                 }
2716         }
2717
2718         ret = btrfs_add_dev_item(trans, device);
2719         if (ret) {
2720                 btrfs_abort_transaction(trans, ret);
2721                 goto error_sysfs;
2722         }
2723
2724         if (seeding_dev) {
2725                 ret = btrfs_finish_sprout(trans);
2726                 if (ret) {
2727                         btrfs_abort_transaction(trans, ret);
2728                         goto error_sysfs;
2729                 }
2730
2731                 /*
2732                  * fs_devices now represents the newly sprouted filesystem and
2733                  * its fsid has been changed by btrfs_prepare_sprout
2734                  */
2735                 btrfs_sysfs_update_sprout_fsid(fs_devices);
2736         }
2737
2738         ret = btrfs_commit_transaction(trans);
2739
2740         if (seeding_dev) {
2741                 mutex_unlock(&uuid_mutex);
2742                 up_write(&sb->s_umount);
2743                 locked = false;
2744
2745                 if (ret) /* transaction commit */
2746                         return ret;
2747
2748                 ret = btrfs_relocate_sys_chunks(fs_info);
2749                 if (ret < 0)
2750                         btrfs_handle_fs_error(fs_info, ret,
2751                                     "Failed to relocate sys chunks after device initialization. This can be fixed using the \"btrfs balance\" command.");
2752                 trans = btrfs_attach_transaction(root);
2753                 if (IS_ERR(trans)) {
2754                         if (PTR_ERR(trans) == -ENOENT)
2755                                 return 0;
2756                         ret = PTR_ERR(trans);
2757                         trans = NULL;
2758                         goto error_sysfs;
2759                 }
2760                 ret = btrfs_commit_transaction(trans);
2761         }
2762
2763         /*
2764          * Now that we have written a new super block to this device, check all
2765          * other fs_devices list if device_path alienates any other scanned
2766          * device.
2767          * We can ignore the return value as it typically returns -EINVAL and
2768          * only succeeds if the device was an alien.
2769          */
2770         btrfs_forget_devices(device_path);
2771
2772         /* Update ctime/mtime for blkid or udev */
2773         update_dev_time(device_path);
2774
2775         return ret;
2776
2777 error_sysfs:
2778         btrfs_sysfs_remove_device(device);
2779         mutex_lock(&fs_info->fs_devices->device_list_mutex);
2780         mutex_lock(&fs_info->chunk_mutex);
2781         list_del_rcu(&device->dev_list);
2782         list_del(&device->dev_alloc_list);
2783         fs_info->fs_devices->num_devices--;
2784         fs_info->fs_devices->open_devices--;
2785         fs_info->fs_devices->rw_devices--;
2786         fs_info->fs_devices->total_devices--;
2787         fs_info->fs_devices->total_rw_bytes -= device->total_bytes;
2788         atomic64_sub(device->total_bytes, &fs_info->free_chunk_space);
2789         btrfs_set_super_total_bytes(fs_info->super_copy,
2790                                     orig_super_total_bytes);
2791         btrfs_set_super_num_devices(fs_info->super_copy,
2792                                     orig_super_num_devices);
2793         mutex_unlock(&fs_info->chunk_mutex);
2794         mutex_unlock(&fs_info->fs_devices->device_list_mutex);
2795 error_trans:
2796         if (seeding_dev)
2797                 btrfs_set_sb_rdonly(sb);
2798         if (trans)
2799                 btrfs_end_transaction(trans);
2800 error_free_zone:
2801         btrfs_destroy_dev_zone_info(device);
2802 error_free_device:
2803         btrfs_free_device(device);
2804 error:
2805         blkdev_put(bdev, FMODE_EXCL);
2806         if (locked) {
2807                 mutex_unlock(&uuid_mutex);
2808                 up_write(&sb->s_umount);
2809         }
2810         return ret;
2811 }
2812
2813 static noinline int btrfs_update_device(struct btrfs_trans_handle *trans,
2814                                         struct btrfs_device *device)
2815 {
2816         int ret;
2817         struct btrfs_path *path;
2818         struct btrfs_root *root = device->fs_info->chunk_root;
2819         struct btrfs_dev_item *dev_item;
2820         struct extent_buffer *leaf;
2821         struct btrfs_key key;
2822
2823         path = btrfs_alloc_path();
2824         if (!path)
2825                 return -ENOMEM;
2826
2827         key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
2828         key.type = BTRFS_DEV_ITEM_KEY;
2829         key.offset = device->devid;
2830
2831         ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
2832         if (ret < 0)
2833                 goto out;
2834
2835         if (ret > 0) {
2836                 ret = -ENOENT;
2837                 goto out;
2838         }
2839
2840         leaf = path->nodes[0];
2841         dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item);
2842
2843         btrfs_set_device_id(leaf, dev_item, device->devid);
2844         btrfs_set_device_type(leaf, dev_item, device->type);
2845         btrfs_set_device_io_align(leaf, dev_item, device->io_align);
2846         btrfs_set_device_io_width(leaf, dev_item, device->io_width);
2847         btrfs_set_device_sector_size(leaf, dev_item, device->sector_size);
2848         btrfs_set_device_total_bytes(leaf, dev_item,
2849                                      btrfs_device_get_disk_total_bytes(device));
2850         btrfs_set_device_bytes_used(leaf, dev_item,
2851                                     btrfs_device_get_bytes_used(device));
2852         btrfs_mark_buffer_dirty(leaf);
2853
2854 out:
2855         btrfs_free_path(path);
2856         return ret;
2857 }
2858
2859 int btrfs_grow_device(struct btrfs_trans_handle *trans,
2860                       struct btrfs_device *device, u64 new_size)
2861 {
2862         struct btrfs_fs_info *fs_info = device->fs_info;
2863         struct btrfs_super_block *super_copy = fs_info->super_copy;
2864         u64 old_total;
2865         u64 diff;
2866
2867         if (!test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state))
2868                 return -EACCES;
2869
2870         new_size = round_down(new_size, fs_info->sectorsize);
2871
2872         mutex_lock(&fs_info->chunk_mutex);
2873         old_total = btrfs_super_total_bytes(super_copy);
2874         diff = round_down(new_size - device->total_bytes, fs_info->sectorsize);
2875
2876         if (new_size <= device->total_bytes ||
2877             test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) {
2878                 mutex_unlock(&fs_info->chunk_mutex);
2879                 return -EINVAL;
2880         }
2881
2882         btrfs_set_super_total_bytes(super_copy,
2883                         round_down(old_total + diff, fs_info->sectorsize));
2884         device->fs_devices->total_rw_bytes += diff;
2885
2886         btrfs_device_set_total_bytes(device, new_size);
2887         btrfs_device_set_disk_total_bytes(device, new_size);
2888         btrfs_clear_space_info_full(device->fs_info);
2889         if (list_empty(&device->post_commit_list))
2890                 list_add_tail(&device->post_commit_list,
2891                               &trans->transaction->dev_update_list);
2892         mutex_unlock(&fs_info->chunk_mutex);
2893
2894         return btrfs_update_device(trans, device);
2895 }
2896
2897 static int btrfs_free_chunk(struct btrfs_trans_handle *trans, u64 chunk_offset)
2898 {
2899         struct btrfs_fs_info *fs_info = trans->fs_info;
2900         struct btrfs_root *root = fs_info->chunk_root;
2901         int ret;
2902         struct btrfs_path *path;
2903         struct btrfs_key key;
2904
2905         path = btrfs_alloc_path();
2906         if (!path)
2907                 return -ENOMEM;
2908
2909         key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
2910         key.offset = chunk_offset;
2911         key.type = BTRFS_CHUNK_ITEM_KEY;
2912
2913         ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
2914         if (ret < 0)
2915                 goto out;
2916         else if (ret > 0) { /* Logic error or corruption */
2917                 btrfs_handle_fs_error(fs_info, -ENOENT,
2918                                       "Failed lookup while freeing chunk.");
2919                 ret = -ENOENT;
2920                 goto out;
2921         }
2922
2923         ret = btrfs_del_item(trans, root, path);
2924         if (ret < 0)
2925                 btrfs_handle_fs_error(fs_info, ret,
2926                                       "Failed to delete chunk item.");
2927 out:
2928         btrfs_free_path(path);
2929         return ret;
2930 }
2931
2932 static int btrfs_del_sys_chunk(struct btrfs_fs_info *fs_info, u64 chunk_offset)
2933 {
2934         struct btrfs_super_block *super_copy = fs_info->super_copy;
2935         struct btrfs_disk_key *disk_key;
2936         struct btrfs_chunk *chunk;
2937         u8 *ptr;
2938         int ret = 0;
2939         u32 num_stripes;
2940         u32 array_size;
2941         u32 len = 0;
2942         u32 cur;
2943         struct btrfs_key key;
2944
2945         mutex_lock(&fs_info->chunk_mutex);
2946         array_size = btrfs_super_sys_array_size(super_copy);
2947
2948         ptr = super_copy->sys_chunk_array;
2949         cur = 0;
2950
2951         while (cur < array_size) {
2952                 disk_key = (struct btrfs_disk_key *)ptr;
2953                 btrfs_disk_key_to_cpu(&key, disk_key);
2954
2955                 len = sizeof(*disk_key);
2956
2957                 if (key.type == BTRFS_CHUNK_ITEM_KEY) {
2958                         chunk = (struct btrfs_chunk *)(ptr + len);
2959                         num_stripes = btrfs_stack_chunk_num_stripes(chunk);
2960                         len += btrfs_chunk_item_size(num_stripes);
2961                 } else {
2962                         ret = -EIO;
2963                         break;
2964                 }
2965                 if (key.objectid == BTRFS_FIRST_CHUNK_TREE_OBJECTID &&
2966                     key.offset == chunk_offset) {
2967                         memmove(ptr, ptr + len, array_size - (cur + len));
2968                         array_size -= len;
2969                         btrfs_set_super_sys_array_size(super_copy, array_size);
2970                 } else {
2971                         ptr += len;
2972                         cur += len;
2973                 }
2974         }
2975         mutex_unlock(&fs_info->chunk_mutex);
2976         return ret;
2977 }
2978
2979 /*
2980  * btrfs_get_chunk_map() - Find the mapping containing the given logical extent.
2981  * @logical: Logical block offset in bytes.
2982  * @length: Length of extent in bytes.
2983  *
2984  * Return: Chunk mapping or ERR_PTR.
2985  */
2986 struct extent_map *btrfs_get_chunk_map(struct btrfs_fs_info *fs_info,
2987                                        u64 logical, u64 length)
2988 {
2989         struct extent_map_tree *em_tree;
2990         struct extent_map *em;
2991
2992         em_tree = &fs_info->mapping_tree;
2993         read_lock(&em_tree->lock);
2994         em = lookup_extent_mapping(em_tree, logical, length);
2995         read_unlock(&em_tree->lock);
2996
2997         if (!em) {
2998                 btrfs_crit(fs_info, "unable to find logical %llu length %llu",
2999                            logical, length);
3000                 return ERR_PTR(-EINVAL);
3001         }
3002
3003         if (em->start > logical || em->start + em->len < logical) {
3004                 btrfs_crit(fs_info,
3005                            "found a bad mapping, wanted %llu-%llu, found %llu-%llu",
3006                            logical, length, em->start, em->start + em->len);
3007                 free_extent_map(em);
3008                 return ERR_PTR(-EINVAL);
3009         }
3010
3011         /* callers are responsible for dropping em's ref. */
3012         return em;
3013 }
3014
3015 int btrfs_remove_chunk(struct btrfs_trans_handle *trans, u64 chunk_offset)
3016 {
3017         struct btrfs_fs_info *fs_info = trans->fs_info;
3018         struct extent_map *em;
3019         struct map_lookup *map;
3020         u64 dev_extent_len = 0;
3021         int i, ret = 0;
3022         struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
3023
3024         em = btrfs_get_chunk_map(fs_info, chunk_offset, 1);
3025         if (IS_ERR(em)) {
3026                 /*
3027                  * This is a logic error, but we don't want to just rely on the
3028                  * user having built with ASSERT enabled, so if ASSERT doesn't
3029                  * do anything we still error out.
3030                  */
3031                 ASSERT(0);
3032                 return PTR_ERR(em);
3033         }
3034         map = em->map_lookup;
3035         mutex_lock(&fs_info->chunk_mutex);
3036         check_system_chunk(trans, map->type);
3037         mutex_unlock(&fs_info->chunk_mutex);
3038
3039         /*
3040          * Take the device list mutex to prevent races with the final phase of
3041          * a device replace operation that replaces the device object associated
3042          * with map stripes (dev-replace.c:btrfs_dev_replace_finishing()).
3043          */
3044         mutex_lock(&fs_devices->device_list_mutex);
3045         for (i = 0; i < map->num_stripes; i++) {
3046                 struct btrfs_device *device = map->stripes[i].dev;
3047                 ret = btrfs_free_dev_extent(trans, device,
3048                                             map->stripes[i].physical,
3049                                             &dev_extent_len);
3050                 if (ret) {
3051                         mutex_unlock(&fs_devices->device_list_mutex);
3052                         btrfs_abort_transaction(trans, ret);
3053                         goto out;
3054                 }
3055
3056                 if (device->bytes_used > 0) {
3057                         mutex_lock(&fs_info->chunk_mutex);
3058                         btrfs_device_set_bytes_used(device,
3059                                         device->bytes_used - dev_extent_len);
3060                         atomic64_add(dev_extent_len, &fs_info->free_chunk_space);
3061                         btrfs_clear_space_info_full(fs_info);
3062                         mutex_unlock(&fs_info->chunk_mutex);
3063                 }
3064
3065                 ret = btrfs_update_device(trans, device);
3066                 if (ret) {
3067                         mutex_unlock(&fs_devices->device_list_mutex);
3068                         btrfs_abort_transaction(trans, ret);
3069                         goto out;
3070                 }
3071         }
3072         mutex_unlock(&fs_devices->device_list_mutex);
3073
3074         ret = btrfs_free_chunk(trans, chunk_offset);
3075         if (ret) {
3076                 btrfs_abort_transaction(trans, ret);
3077                 goto out;
3078         }
3079
3080         trace_btrfs_chunk_free(fs_info, map, chunk_offset, em->len);
3081
3082         if (map->type & BTRFS_BLOCK_GROUP_SYSTEM) {
3083                 ret = btrfs_del_sys_chunk(fs_info, chunk_offset);
3084                 if (ret) {
3085                         btrfs_abort_transaction(trans, ret);
3086                         goto out;
3087                 }
3088         }
3089
3090         ret = btrfs_remove_block_group(trans, chunk_offset, em);
3091         if (ret) {
3092                 btrfs_abort_transaction(trans, ret);
3093                 goto out;
3094         }
3095
3096 out:
3097         /* once for us */
3098         free_extent_map(em);
3099         return ret;
3100 }
3101
3102 int btrfs_relocate_chunk(struct btrfs_fs_info *fs_info, u64 chunk_offset)
3103 {
3104         struct btrfs_root *root = fs_info->chunk_root;
3105         struct btrfs_trans_handle *trans;
3106         struct btrfs_block_group *block_group;
3107         u64 length;
3108         int ret;
3109
3110         /*
3111          * Prevent races with automatic removal of unused block groups.
3112          * After we relocate and before we remove the chunk with offset
3113          * chunk_offset, automatic removal of the block group can kick in,
3114          * resulting in a failure when calling btrfs_remove_chunk() below.
3115          *
3116          * Make sure to acquire this mutex before doing a tree search (dev
3117          * or chunk trees) to find chunks. Otherwise the cleaner kthread might
3118          * call btrfs_remove_chunk() (through btrfs_delete_unused_bgs()) after
3119          * we release the path used to search the chunk/dev tree and before
3120          * the current task acquires this mutex and calls us.
3121          */
3122         lockdep_assert_held(&fs_info->reclaim_bgs_lock);
3123
3124         /* step one, relocate all the extents inside this chunk */
3125         btrfs_scrub_pause(fs_info);
3126         ret = btrfs_relocate_block_group(fs_info, chunk_offset);
3127         btrfs_scrub_continue(fs_info);
3128         if (ret)
3129                 return ret;
3130
3131         block_group = btrfs_lookup_block_group(fs_info, chunk_offset);
3132         if (!block_group)
3133                 return -ENOENT;
3134         btrfs_discard_cancel_work(&fs_info->discard_ctl, block_group);
3135         length = block_group->length;
3136         btrfs_put_block_group(block_group);
3137
3138         /*
3139          * On a zoned file system, discard the whole block group, this will
3140          * trigger a REQ_OP_ZONE_RESET operation on the device zone. If
3141          * resetting the zone fails, don't treat it as a fatal problem from the
3142          * filesystem's point of view.
3143          */
3144         if (btrfs_is_zoned(fs_info)) {
3145                 ret = btrfs_discard_extent(fs_info, chunk_offset, length, NULL);
3146                 if (ret)
3147                         btrfs_info(fs_info,
3148                                 "failed to reset zone %llu after relocation",
3149                                 chunk_offset);
3150         }
3151
3152         trans = btrfs_start_trans_remove_block_group(root->fs_info,
3153                                                      chunk_offset);
3154         if (IS_ERR(trans)) {
3155                 ret = PTR_ERR(trans);
3156                 btrfs_handle_fs_error(root->fs_info, ret, NULL);
3157                 return ret;
3158         }
3159
3160         /*
3161          * step two, delete the device extents and the
3162          * chunk tree entries
3163          */
3164         ret = btrfs_remove_chunk(trans, chunk_offset);
3165         btrfs_end_transaction(trans);
3166         return ret;
3167 }
3168
3169 static int btrfs_relocate_sys_chunks(struct btrfs_fs_info *fs_info)
3170 {
3171         struct btrfs_root *chunk_root = fs_info->chunk_root;
3172         struct btrfs_path *path;
3173         struct extent_buffer *leaf;
3174         struct btrfs_chunk *chunk;
3175         struct btrfs_key key;
3176         struct btrfs_key found_key;
3177         u64 chunk_type;
3178         bool retried = false;
3179         int failed = 0;
3180         int ret;
3181
3182         path = btrfs_alloc_path();
3183         if (!path)
3184                 return -ENOMEM;
3185
3186 again:
3187         key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
3188         key.offset = (u64)-1;
3189         key.type = BTRFS_CHUNK_ITEM_KEY;
3190
3191         while (1) {
3192                 mutex_lock(&fs_info->reclaim_bgs_lock);
3193                 ret = btrfs_search_slot(NULL, chunk_root, &key, path, 0, 0);
3194                 if (ret < 0) {
3195                         mutex_unlock(&fs_info->reclaim_bgs_lock);
3196                         goto error;
3197                 }
3198                 BUG_ON(ret == 0); /* Corruption */
3199
3200                 ret = btrfs_previous_item(chunk_root, path, key.objectid,
3201                                           key.type);
3202                 if (ret)
3203                         mutex_unlock(&fs_info->reclaim_bgs_lock);
3204                 if (ret < 0)
3205                         goto error;
3206                 if (ret > 0)
3207                         break;
3208
3209                 leaf = path->nodes[0];
3210                 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
3211
3212                 chunk = btrfs_item_ptr(leaf, path->slots[0],
3213                                        struct btrfs_chunk);
3214                 chunk_type = btrfs_chunk_type(leaf, chunk);
3215                 btrfs_release_path(path);
3216
3217                 if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM) {
3218                         ret = btrfs_relocate_chunk(fs_info, found_key.offset);
3219                         if (ret == -ENOSPC)
3220                                 failed++;
3221                         else
3222                                 BUG_ON(ret);
3223                 }
3224                 mutex_unlock(&fs_info->reclaim_bgs_lock);
3225
3226                 if (found_key.offset == 0)
3227                         break;
3228                 key.offset = found_key.offset - 1;
3229         }
3230         ret = 0;
3231         if (failed && !retried) {
3232                 failed = 0;
3233                 retried = true;
3234                 goto again;
3235         } else if (WARN_ON(failed && retried)) {
3236                 ret = -ENOSPC;
3237         }
3238 error:
3239         btrfs_free_path(path);
3240         return ret;
3241 }
3242
3243 /*
3244  * return 1 : allocate a data chunk successfully,
3245  * return <0: errors during allocating a data chunk,
3246  * return 0 : no need to allocate a data chunk.
3247  */
3248 static int btrfs_may_alloc_data_chunk(struct btrfs_fs_info *fs_info,
3249                                       u64 chunk_offset)
3250 {
3251         struct btrfs_block_group *cache;
3252         u64 bytes_used;
3253         u64 chunk_type;
3254
3255         cache = btrfs_lookup_block_group(fs_info, chunk_offset);
3256         ASSERT(cache);
3257         chunk_type = cache->flags;
3258         btrfs_put_block_group(cache);
3259
3260         if (!(chunk_type & BTRFS_BLOCK_GROUP_DATA))
3261                 return 0;
3262
3263         spin_lock(&fs_info->data_sinfo->lock);
3264         bytes_used = fs_info->data_sinfo->bytes_used;
3265         spin_unlock(&fs_info->data_sinfo->lock);
3266
3267         if (!bytes_used) {
3268                 struct btrfs_trans_handle *trans;
3269                 int ret;
3270
3271                 trans = btrfs_join_transaction(fs_info->tree_root);
3272                 if (IS_ERR(trans))
3273                         return PTR_ERR(trans);
3274
3275                 ret = btrfs_force_chunk_alloc(trans, BTRFS_BLOCK_GROUP_DATA);
3276                 btrfs_end_transaction(trans);
3277                 if (ret < 0)
3278                         return ret;
3279                 return 1;
3280         }
3281
3282         return 0;
3283 }
3284
3285 static int insert_balance_item(struct btrfs_fs_info *fs_info,
3286                                struct btrfs_balance_control *bctl)
3287 {
3288         struct btrfs_root *root = fs_info->tree_root;
3289         struct btrfs_trans_handle *trans;
3290         struct btrfs_balance_item *item;
3291         struct btrfs_disk_balance_args disk_bargs;
3292         struct btrfs_path *path;
3293         struct extent_buffer *leaf;
3294         struct btrfs_key key;
3295         int ret, err;
3296
3297         path = btrfs_alloc_path();
3298         if (!path)
3299                 return -ENOMEM;
3300
3301         trans = btrfs_start_transaction(root, 0);
3302         if (IS_ERR(trans)) {
3303                 btrfs_free_path(path);
3304                 return PTR_ERR(trans);
3305         }
3306
3307         key.objectid = BTRFS_BALANCE_OBJECTID;
3308         key.type = BTRFS_TEMPORARY_ITEM_KEY;
3309         key.offset = 0;
3310
3311         ret = btrfs_insert_empty_item(trans, root, path, &key,
3312                                       sizeof(*item));
3313         if (ret)
3314                 goto out;
3315
3316         leaf = path->nodes[0];
3317         item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_balance_item);
3318
3319         memzero_extent_buffer(leaf, (unsigned long)item, sizeof(*item));
3320
3321         btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->data);
3322         btrfs_set_balance_data(leaf, item, &disk_bargs);
3323         btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->meta);
3324         btrfs_set_balance_meta(leaf, item, &disk_bargs);
3325         btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->sys);
3326         btrfs_set_balance_sys(leaf, item, &disk_bargs);
3327
3328         btrfs_set_balance_flags(leaf, item, bctl->flags);
3329
3330         btrfs_mark_buffer_dirty(leaf);
3331 out:
3332         btrfs_free_path(path);
3333         err = btrfs_commit_transaction(trans);
3334         if (err && !ret)
3335                 ret = err;
3336         return ret;
3337 }
3338
3339 static int del_balance_item(struct btrfs_fs_info *fs_info)
3340 {
3341         struct btrfs_root *root = fs_info->tree_root;
3342         struct btrfs_trans_handle *trans;
3343         struct btrfs_path *path;
3344         struct btrfs_key key;
3345         int ret, err;
3346
3347         path = btrfs_alloc_path();
3348         if (!path)
3349                 return -ENOMEM;
3350
3351         trans = btrfs_start_transaction_fallback_global_rsv(root, 0);
3352         if (IS_ERR(trans)) {
3353                 btrfs_free_path(path);
3354                 return PTR_ERR(trans);
3355         }
3356
3357         key.objectid = BTRFS_BALANCE_OBJECTID;
3358         key.type = BTRFS_TEMPORARY_ITEM_KEY;
3359         key.offset = 0;
3360
3361         ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
3362         if (ret < 0)
3363                 goto out;
3364         if (ret > 0) {
3365                 ret = -ENOENT;
3366                 goto out;
3367         }
3368
3369         ret = btrfs_del_item(trans, root, path);
3370 out:
3371         btrfs_free_path(path);
3372         err = btrfs_commit_transaction(trans);
3373         if (err && !ret)
3374                 ret = err;
3375         return ret;
3376 }
3377
3378 /*
3379  * This is a heuristic used to reduce the number of chunks balanced on
3380  * resume after balance was interrupted.
3381  */
3382 static void update_balance_args(struct btrfs_balance_control *bctl)
3383 {
3384         /*
3385          * Turn on soft mode for chunk types that were being converted.
3386          */
3387         if (bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT)
3388                 bctl->data.flags |= BTRFS_BALANCE_ARGS_SOFT;
3389         if (bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT)
3390                 bctl->sys.flags |= BTRFS_BALANCE_ARGS_SOFT;
3391         if (bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT)
3392                 bctl->meta.flags |= BTRFS_BALANCE_ARGS_SOFT;
3393
3394         /*
3395          * Turn on usage filter if is not already used.  The idea is
3396          * that chunks that we have already balanced should be
3397          * reasonably full.  Don't do it for chunks that are being
3398          * converted - that will keep us from relocating unconverted
3399          * (albeit full) chunks.
3400          */
3401         if (!(bctl->data.flags & BTRFS_BALANCE_ARGS_USAGE) &&
3402             !(bctl->data.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
3403             !(bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
3404                 bctl->data.flags |= BTRFS_BALANCE_ARGS_USAGE;
3405                 bctl->data.usage = 90;
3406         }
3407         if (!(bctl->sys.flags & BTRFS_BALANCE_ARGS_USAGE) &&
3408             !(bctl->sys.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
3409             !(bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
3410                 bctl->sys.flags |= BTRFS_BALANCE_ARGS_USAGE;
3411                 bctl->sys.usage = 90;
3412         }
3413         if (!(bctl->meta.flags & BTRFS_BALANCE_ARGS_USAGE) &&
3414             !(bctl->meta.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
3415             !(bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
3416                 bctl->meta.flags |= BTRFS_BALANCE_ARGS_USAGE;
3417                 bctl->meta.usage = 90;
3418         }
3419 }
3420
3421 /*
3422  * Clear the balance status in fs_info and delete the balance item from disk.
3423  */
3424 static void reset_balance_state(struct btrfs_fs_info *fs_info)
3425 {
3426         struct btrfs_balance_control *bctl = fs_info->balance_ctl;
3427         int ret;
3428
3429         BUG_ON(!fs_info->balance_ctl);
3430
3431         spin_lock(&fs_info->balance_lock);
3432         fs_info->balance_ctl = NULL;
3433         spin_unlock(&fs_info->balance_lock);
3434
3435         kfree(bctl);
3436         ret = del_balance_item(fs_info);
3437         if (ret)
3438                 btrfs_handle_fs_error(fs_info, ret, NULL);
3439 }
3440
3441 /*
3442  * Balance filters.  Return 1 if chunk should be filtered out
3443  * (should not be balanced).
3444  */
3445 static int chunk_profiles_filter(u64 chunk_type,
3446                                  struct btrfs_balance_args *bargs)
3447 {
3448         chunk_type = chunk_to_extended(chunk_type) &
3449                                 BTRFS_EXTENDED_PROFILE_MASK;
3450
3451         if (bargs->profiles & chunk_type)
3452                 return 0;
3453
3454         return 1;
3455 }
3456
3457 static int chunk_usage_range_filter(struct btrfs_fs_info *fs_info, u64 chunk_offset,
3458                               struct btrfs_balance_args *bargs)
3459 {
3460         struct btrfs_block_group *cache;
3461         u64 chunk_used;
3462         u64 user_thresh_min;
3463         u64 user_thresh_max;
3464         int ret = 1;
3465
3466         cache = btrfs_lookup_block_group(fs_info, chunk_offset);
3467         chunk_used = cache->used;
3468
3469         if (bargs->usage_min == 0)
3470                 user_thresh_min = 0;
3471         else
3472                 user_thresh_min = div_factor_fine(cache->length,
3473                                                   bargs->usage_min);
3474
3475         if (bargs->usage_max == 0)
3476                 user_thresh_max = 1;
3477         else if (bargs->usage_max > 100)
3478                 user_thresh_max = cache->length;
3479         else
3480                 user_thresh_max = div_factor_fine(cache->length,
3481                                                   bargs->usage_max);
3482
3483         if (user_thresh_min <= chunk_used && chunk_used < user_thresh_max)
3484                 ret = 0;
3485
3486         btrfs_put_block_group(cache);
3487         return ret;
3488 }
3489
3490 static int chunk_usage_filter(struct btrfs_fs_info *fs_info,
3491                 u64 chunk_offset, struct btrfs_balance_args *bargs)
3492 {
3493         struct btrfs_block_group *cache;
3494         u64 chunk_used, user_thresh;
3495         int ret = 1;
3496
3497         cache = btrfs_lookup_block_group(fs_info, chunk_offset);
3498         chunk_used = cache->used;
3499
3500         if (bargs->usage_min == 0)
3501                 user_thresh = 1;
3502         else if (bargs->usage > 100)
3503                 user_thresh = cache->length;
3504         else
3505                 user_thresh = div_factor_fine(cache->length, bargs->usage);
3506
3507         if (chunk_used < user_thresh)
3508                 ret = 0;
3509
3510         btrfs_put_block_group(cache);
3511         return ret;
3512 }
3513
3514 static int chunk_devid_filter(struct extent_buffer *leaf,
3515                               struct btrfs_chunk *chunk,
3516                               struct btrfs_balance_args *bargs)
3517 {
3518         struct btrfs_stripe *stripe;
3519         int num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
3520         int i;
3521
3522         for (i = 0; i < num_stripes; i++) {
3523                 stripe = btrfs_stripe_nr(chunk, i);
3524                 if (btrfs_stripe_devid(leaf, stripe) == bargs->devid)
3525                         return 0;
3526         }
3527
3528         return 1;
3529 }
3530
3531 static u64 calc_data_stripes(u64 type, int num_stripes)
3532 {
3533         const int index = btrfs_bg_flags_to_raid_index(type);
3534         const int ncopies = btrfs_raid_array[index].ncopies;
3535         const int nparity = btrfs_raid_array[index].nparity;
3536
3537         if (nparity)
3538                 return num_stripes - nparity;
3539         else
3540                 return num_stripes / ncopies;
3541 }
3542
3543 /* [pstart, pend) */
3544 static int chunk_drange_filter(struct extent_buffer *leaf,
3545                                struct btrfs_chunk *chunk,
3546                                struct btrfs_balance_args *bargs)
3547 {
3548         struct btrfs_stripe *stripe;
3549         int num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
3550         u64 stripe_offset;
3551         u64 stripe_length;
3552         u64 type;
3553         int factor;
3554         int i;
3555
3556         if (!(bargs->flags & BTRFS_BALANCE_ARGS_DEVID))
3557                 return 0;
3558
3559         type = btrfs_chunk_type(leaf, chunk);
3560         factor = calc_data_stripes(type, num_stripes);
3561
3562         for (i = 0; i < num_stripes; i++) {
3563                 stripe = btrfs_stripe_nr(chunk, i);
3564                 if (btrfs_stripe_devid(leaf, stripe) != bargs->devid)
3565                         continue;
3566
3567                 stripe_offset = btrfs_stripe_offset(leaf, stripe);
3568                 stripe_length = btrfs_chunk_length(leaf, chunk);
3569                 stripe_length = div_u64(stripe_length, factor);
3570
3571                 if (stripe_offset < bargs->pend &&
3572                     stripe_offset + stripe_length > bargs->pstart)
3573                         return 0;
3574         }
3575
3576         return 1;
3577 }
3578
3579 /* [vstart, vend) */
3580 static int chunk_vrange_filter(struct extent_buffer *leaf,
3581                                struct btrfs_chunk *chunk,
3582                                u64 chunk_offset,
3583                                struct btrfs_balance_args *bargs)
3584 {
3585         if (chunk_offset < bargs->vend &&
3586             chunk_offset + btrfs_chunk_length(leaf, chunk) > bargs->vstart)
3587                 /* at least part of the chunk is inside this vrange */
3588                 return 0;
3589
3590         return 1;
3591 }
3592
3593 static int chunk_stripes_range_filter(struct extent_buffer *leaf,
3594                                struct btrfs_chunk *chunk,
3595                                struct btrfs_balance_args *bargs)
3596 {
3597         int num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
3598
3599         if (bargs->stripes_min <= num_stripes
3600                         && num_stripes <= bargs->stripes_max)
3601                 return 0;
3602
3603         return 1;
3604 }
3605
3606 static int chunk_soft_convert_filter(u64 chunk_type,
3607                                      struct btrfs_balance_args *bargs)
3608 {
3609         if (!(bargs->flags & BTRFS_BALANCE_ARGS_CONVERT))
3610                 return 0;
3611
3612         chunk_type = chunk_to_extended(chunk_type) &
3613                                 BTRFS_EXTENDED_PROFILE_MASK;
3614
3615         if (bargs->target == chunk_type)
3616                 return 1;
3617
3618         return 0;
3619 }
3620
3621 static int should_balance_chunk(struct extent_buffer *leaf,
3622                                 struct btrfs_chunk *chunk, u64 chunk_offset)
3623 {
3624         struct btrfs_fs_info *fs_info = leaf->fs_info;
3625         struct btrfs_balance_control *bctl = fs_info->balance_ctl;
3626         struct btrfs_balance_args *bargs = NULL;
3627         u64 chunk_type = btrfs_chunk_type(leaf, chunk);
3628
3629         /* type filter */
3630         if (!((chunk_type & BTRFS_BLOCK_GROUP_TYPE_MASK) &
3631               (bctl->flags & BTRFS_BALANCE_TYPE_MASK))) {
3632                 return 0;
3633         }
3634
3635         if (chunk_type & BTRFS_BLOCK_GROUP_DATA)
3636                 bargs = &bctl->data;
3637         else if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM)
3638                 bargs = &bctl->sys;
3639         else if (chunk_type & BTRFS_BLOCK_GROUP_METADATA)
3640                 bargs = &bctl->meta;
3641
3642         /* profiles filter */
3643         if ((bargs->flags & BTRFS_BALANCE_ARGS_PROFILES) &&
3644             chunk_profiles_filter(chunk_type, bargs)) {
3645                 return 0;
3646         }
3647
3648         /* usage filter */
3649         if ((bargs->flags & BTRFS_BALANCE_ARGS_USAGE) &&
3650             chunk_usage_filter(fs_info, chunk_offset, bargs)) {
3651                 return 0;
3652         } else if ((bargs->flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
3653             chunk_usage_range_filter(fs_info, chunk_offset, bargs)) {
3654                 return 0;
3655         }
3656
3657         /* devid filter */
3658         if ((bargs->flags & BTRFS_BALANCE_ARGS_DEVID) &&
3659             chunk_devid_filter(leaf, chunk, bargs)) {
3660                 return 0;
3661         }
3662
3663         /* drange filter, makes sense only with devid filter */
3664         if ((bargs->flags & BTRFS_BALANCE_ARGS_DRANGE) &&
3665             chunk_drange_filter(leaf, chunk, bargs)) {
3666                 return 0;
3667         }
3668
3669         /* vrange filter */
3670         if ((bargs->flags & BTRFS_BALANCE_ARGS_VRANGE) &&
3671             chunk_vrange_filter(leaf, chunk, chunk_offset, bargs)) {
3672                 return 0;
3673         }
3674
3675         /* stripes filter */
3676         if ((bargs->flags & BTRFS_BALANCE_ARGS_STRIPES_RANGE) &&
3677             chunk_stripes_range_filter(leaf, chunk, bargs)) {
3678                 return 0;
3679         }
3680
3681         /* soft profile changing mode */
3682         if ((bargs->flags & BTRFS_BALANCE_ARGS_SOFT) &&
3683             chunk_soft_convert_filter(chunk_type, bargs)) {
3684                 return 0;
3685         }
3686
3687         /*
3688          * limited by count, must be the last filter
3689          */
3690         if ((bargs->flags & BTRFS_BALANCE_ARGS_LIMIT)) {
3691                 if (bargs->limit == 0)
3692                         return 0;
3693                 else
3694                         bargs->limit--;
3695         } else if ((bargs->flags & BTRFS_BALANCE_ARGS_LIMIT_RANGE)) {
3696                 /*
3697                  * Same logic as the 'limit' filter; the minimum cannot be
3698                  * determined here because we do not have the global information
3699                  * about the count of all chunks that satisfy the filters.
3700                  */
3701                 if (bargs->limit_max == 0)
3702                         return 0;
3703                 else
3704                         bargs->limit_max--;
3705         }
3706
3707         return 1;
3708 }
3709
3710 static int __btrfs_balance(struct btrfs_fs_info *fs_info)
3711 {
3712         struct btrfs_balance_control *bctl = fs_info->balance_ctl;
3713         struct btrfs_root *chunk_root = fs_info->chunk_root;
3714         u64 chunk_type;
3715         struct btrfs_chunk *chunk;
3716         struct btrfs_path *path = NULL;
3717         struct btrfs_key key;
3718         struct btrfs_key found_key;
3719         struct extent_buffer *leaf;
3720         int slot;
3721         int ret;
3722         int enospc_errors = 0;
3723         bool counting = true;
3724         /* The single value limit and min/max limits use the same bytes in the */
3725         u64 limit_data = bctl->data.limit;
3726         u64 limit_meta = bctl->meta.limit;
3727         u64 limit_sys = bctl->sys.limit;
3728         u32 count_data = 0;
3729         u32 count_meta = 0;
3730         u32 count_sys = 0;
3731         int chunk_reserved = 0;
3732
3733         path = btrfs_alloc_path();
3734         if (!path) {
3735                 ret = -ENOMEM;
3736                 goto error;
3737         }
3738
3739         /* zero out stat counters */
3740         spin_lock(&fs_info->balance_lock);
3741         memset(&bctl->stat, 0, sizeof(bctl->stat));
3742         spin_unlock(&fs_info->balance_lock);
3743 again:
3744         if (!counting) {
3745                 /*
3746                  * The single value limit and min/max limits use the same bytes
3747                  * in the
3748                  */
3749                 bctl->data.limit = limit_data;
3750                 bctl->meta.limit = limit_meta;
3751                 bctl->sys.limit = limit_sys;
3752         }
3753         key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
3754         key.offset = (u64)-1;
3755         key.type = BTRFS_CHUNK_ITEM_KEY;
3756
3757         while (1) {
3758                 if ((!counting && atomic_read(&fs_info->balance_pause_req)) ||
3759                     atomic_read(&fs_info->balance_cancel_req)) {
3760                         ret = -ECANCELED;
3761                         goto error;
3762                 }
3763
3764                 mutex_lock(&fs_info->reclaim_bgs_lock);
3765                 ret = btrfs_search_slot(NULL, chunk_root, &key, path, 0, 0);
3766                 if (ret < 0) {
3767                         mutex_unlock(&fs_info->reclaim_bgs_lock);
3768                         goto error;
3769                 }
3770
3771                 /*
3772                  * this shouldn't happen, it means the last relocate
3773                  * failed
3774                  */
3775                 if (ret == 0)
3776                         BUG(); /* FIXME break ? */
3777
3778                 ret = btrfs_previous_item(chunk_root, path, 0,
3779                                           BTRFS_CHUNK_ITEM_KEY);
3780                 if (ret) {
3781                         mutex_unlock(&fs_info->reclaim_bgs_lock);
3782                         ret = 0;
3783                         break;
3784                 }
3785
3786                 leaf = path->nodes[0];
3787                 slot = path->slots[0];
3788                 btrfs_item_key_to_cpu(leaf, &found_key, slot);
3789
3790                 if (found_key.objectid != key.objectid) {
3791                         mutex_unlock(&fs_info->reclaim_bgs_lock);
3792                         break;
3793                 }
3794
3795                 chunk = btrfs_item_ptr(leaf, slot, struct btrfs_chunk);
3796                 chunk_type = btrfs_chunk_type(leaf, chunk);
3797
3798                 if (!counting) {
3799                         spin_lock(&fs_info->balance_lock);
3800                         bctl->stat.considered++;
3801                         spin_unlock(&fs_info->balance_lock);
3802                 }
3803
3804                 ret = should_balance_chunk(leaf, chunk, found_key.offset);
3805
3806                 btrfs_release_path(path);
3807                 if (!ret) {
3808                         mutex_unlock(&fs_info->reclaim_bgs_lock);
3809                         goto loop;
3810                 }
3811
3812                 if (counting) {
3813                         mutex_unlock(&fs_info->reclaim_bgs_lock);
3814                         spin_lock(&fs_info->balance_lock);
3815                         bctl->stat.expected++;
3816                         spin_unlock(&fs_info->balance_lock);
3817
3818                         if (chunk_type & BTRFS_BLOCK_GROUP_DATA)
3819                                 count_data++;
3820                         else if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM)
3821                                 count_sys++;
3822                         else if (chunk_type & BTRFS_BLOCK_GROUP_METADATA)
3823                                 count_meta++;
3824
3825                         goto loop;
3826                 }
3827
3828                 /*
3829                  * Apply limit_min filter, no need to check if the LIMITS
3830                  * filter is used, limit_min is 0 by default
3831                  */
3832                 if (((chunk_type & BTRFS_BLOCK_GROUP_DATA) &&
3833                                         count_data < bctl->data.limit_min)
3834                                 || ((chunk_type & BTRFS_BLOCK_GROUP_METADATA) &&
3835                                         count_meta < bctl->meta.limit_min)
3836                                 || ((chunk_type & BTRFS_BLOCK_GROUP_SYSTEM) &&
3837                                         count_sys < bctl->sys.limit_min)) {
3838                         mutex_unlock(&fs_info->reclaim_bgs_lock);
3839                         goto loop;
3840                 }
3841
3842                 if (!chunk_reserved) {
3843                         /*
3844                          * We may be relocating the only data chunk we have,
3845                          * which could potentially end up with losing data's
3846                          * raid profile, so lets allocate an empty one in
3847                          * advance.
3848                          */
3849                         ret = btrfs_may_alloc_data_chunk(fs_info,
3850                                                          found_key.offset);
3851                         if (ret < 0) {
3852                                 mutex_unlock(&fs_info->reclaim_bgs_lock);
3853                                 goto error;
3854                         } else if (ret == 1) {
3855                                 chunk_reserved = 1;
3856                         }
3857                 }
3858
3859                 ret = btrfs_relocate_chunk(fs_info, found_key.offset);
3860                 mutex_unlock(&fs_info->reclaim_bgs_lock);
3861                 if (ret == -ENOSPC) {
3862                         enospc_errors++;
3863                 } else if (ret == -ETXTBSY) {
3864                         btrfs_info(fs_info,
3865            "skipping relocation of block group %llu due to active swapfile",
3866                                    found_key.offset);
3867                         ret = 0;
3868                 } else if (ret) {
3869                         goto error;
3870                 } else {
3871                         spin_lock(&fs_info->balance_lock);
3872                         bctl->stat.completed++;
3873                         spin_unlock(&fs_info->balance_lock);
3874                 }
3875 loop:
3876                 if (found_key.offset == 0)
3877                         break;
3878                 key.offset = found_key.offset - 1;
3879         }
3880
3881         if (counting) {
3882                 btrfs_release_path(path);
3883                 counting = false;
3884                 goto again;
3885         }
3886 error:
3887         btrfs_free_path(path);
3888         if (enospc_errors) {
3889                 btrfs_info(fs_info, "%d enospc errors during balance",
3890                            enospc_errors);
3891                 if (!ret)
3892                         ret = -ENOSPC;
3893         }
3894
3895         return ret;
3896 }
3897
3898 /**
3899  * alloc_profile_is_valid - see if a given profile is valid and reduced
3900  * @flags: profile to validate
3901  * @extended: if true @flags is treated as an extended profile
3902  */
3903 static int alloc_profile_is_valid(u64 flags, int extended)
3904 {
3905         u64 mask = (extended ? BTRFS_EXTENDED_PROFILE_MASK :
3906                                BTRFS_BLOCK_GROUP_PROFILE_MASK);
3907
3908         flags &= ~BTRFS_BLOCK_GROUP_TYPE_MASK;
3909
3910         /* 1) check that all other bits are zeroed */
3911         if (flags & ~mask)
3912                 return 0;
3913
3914         /* 2) see if profile is reduced */
3915         if (flags == 0)
3916                 return !extended; /* "0" is valid for usual profiles */
3917
3918         return has_single_bit_set(flags);
3919 }
3920
3921 static inline int balance_need_close(struct btrfs_fs_info *fs_info)
3922 {
3923         /* cancel requested || normal exit path */
3924         return atomic_read(&fs_info->balance_cancel_req) ||
3925                 (atomic_read(&fs_info->balance_pause_req) == 0 &&
3926                  atomic_read(&fs_info->balance_cancel_req) == 0);
3927 }
3928
3929 /*
3930  * Validate target profile against allowed profiles and return true if it's OK.
3931  * Otherwise print the error message and return false.
3932  */
3933 static inline int validate_convert_profile(struct btrfs_fs_info *fs_info,
3934                 const struct btrfs_balance_args *bargs,
3935                 u64 allowed, const char *type)
3936 {
3937         if (!(bargs->flags & BTRFS_BALANCE_ARGS_CONVERT))
3938                 return true;
3939
3940         /* Profile is valid and does not have bits outside of the allowed set */
3941         if (alloc_profile_is_valid(bargs->target, 1) &&
3942             (bargs->target & ~allowed) == 0)
3943                 return true;
3944
3945         btrfs_err(fs_info, "balance: invalid convert %s profile %s",
3946                         type, btrfs_bg_type_to_raid_name(bargs->target));
3947         return false;
3948 }
3949
3950 /*
3951  * Fill @buf with textual description of balance filter flags @bargs, up to
3952  * @size_buf including the terminating null. The output may be trimmed if it
3953  * does not fit into the provided buffer.
3954  */
3955 static void describe_balance_args(struct btrfs_balance_args *bargs, char *buf,
3956                                  u32 size_buf)
3957 {
3958         int ret;
3959         u32 size_bp = size_buf;
3960         char *bp = buf;
3961         u64 flags = bargs->flags;
3962         char tmp_buf[128] = {'\0'};
3963
3964         if (!flags)
3965                 return;
3966
3967 #define CHECK_APPEND_NOARG(a)                                           \
3968         do {                                                            \
3969                 ret = snprintf(bp, size_bp, (a));                       \
3970                 if (ret < 0 || ret >= size_bp)                          \
3971                         goto out_overflow;                              \
3972                 size_bp -= ret;                                         \
3973                 bp += ret;                                              \
3974         } while (0)
3975
3976 #define CHECK_APPEND_1ARG(a, v1)                                        \
3977         do {                                                            \
3978                 ret = snprintf(bp, size_bp, (a), (v1));                 \
3979                 if (ret < 0 || ret >= size_bp)                          \
3980                         goto out_overflow;                              \
3981                 size_bp -= ret;                                         \
3982                 bp += ret;                                              \
3983         } while (0)
3984
3985 #define CHECK_APPEND_2ARG(a, v1, v2)                                    \
3986         do {                                                            \
3987                 ret = snprintf(bp, size_bp, (a), (v1), (v2));           \
3988                 if (ret < 0 || ret >= size_bp)                          \
3989                         goto out_overflow;                              \
3990                 size_bp -= ret;                                         \
3991                 bp += ret;                                              \
3992         } while (0)
3993
3994         if (flags & BTRFS_BALANCE_ARGS_CONVERT)
3995                 CHECK_APPEND_1ARG("convert=%s,",
3996                                   btrfs_bg_type_to_raid_name(bargs->target));
3997
3998         if (flags & BTRFS_BALANCE_ARGS_SOFT)
3999                 CHECK_APPEND_NOARG("soft,");
4000
4001         if (flags & BTRFS_BALANCE_ARGS_PROFILES) {
4002                 btrfs_describe_block_groups(bargs->profiles, tmp_buf,
4003                                             sizeof(tmp_buf));
4004                 CHECK_APPEND_1ARG("profiles=%s,", tmp_buf);
4005         }
4006
4007         if (flags & BTRFS_BALANCE_ARGS_USAGE)
4008                 CHECK_APPEND_1ARG("usage=%llu,", bargs->usage);
4009
4010         if (flags & BTRFS_BALANCE_ARGS_USAGE_RANGE)
4011                 CHECK_APPEND_2ARG("usage=%u..%u,",
4012                                   bargs->usage_min, bargs->usage_max);
4013
4014         if (flags & BTRFS_BALANCE_ARGS_DEVID)
4015                 CHECK_APPEND_1ARG("devid=%llu,", bargs->devid);
4016
4017         if (flags & BTRFS_BALANCE_ARGS_DRANGE)
4018                 CHECK_APPEND_2ARG("drange=%llu..%llu,",
4019                                   bargs->pstart, bargs->pend);
4020
4021         if (flags & BTRFS_BALANCE_ARGS_VRANGE)
4022                 CHECK_APPEND_2ARG("vrange=%llu..%llu,",
4023                                   bargs->vstart, bargs->vend);
4024
4025         if (flags & BTRFS_BALANCE_ARGS_LIMIT)
4026                 CHECK_APPEND_1ARG("limit=%llu,", bargs->limit);
4027
4028         if (flags & BTRFS_BALANCE_ARGS_LIMIT_RANGE)
4029                 CHECK_APPEND_2ARG("limit=%u..%u,",
4030                                 bargs->limit_min, bargs->limit_max);
4031
4032         if (flags & BTRFS_BALANCE_ARGS_STRIPES_RANGE)
4033                 CHECK_APPEND_2ARG("stripes=%u..%u,",
4034                                   bargs->stripes_min, bargs->stripes_max);
4035
4036 #undef CHECK_APPEND_2ARG
4037 #undef CHECK_APPEND_1ARG
4038 #undef CHECK_APPEND_NOARG
4039
4040 out_overflow:
4041
4042         if (size_bp < size_buf)
4043                 buf[size_buf - size_bp - 1] = '\0'; /* remove last , */
4044         else
4045                 buf[0] = '\0';
4046 }
4047
4048 static void describe_balance_start_or_resume(struct btrfs_fs_info *fs_info)
4049 {
4050         u32 size_buf = 1024;
4051         char tmp_buf[192] = {'\0'};
4052         char *buf;
4053         char *bp;
4054         u32 size_bp = size_buf;
4055         int ret;
4056         struct btrfs_balance_control *bctl = fs_info->balance_ctl;
4057
4058         buf = kzalloc(size_buf, GFP_KERNEL);
4059         if (!buf)
4060                 return;
4061
4062         bp = buf;
4063
4064 #define CHECK_APPEND_1ARG(a, v1)                                        \
4065         do {                                                            \
4066                 ret = snprintf(bp, size_bp, (a), (v1));                 \
4067                 if (ret < 0 || ret >= size_bp)                          \
4068                         goto out_overflow;                              \
4069                 size_bp -= ret;                                         \
4070                 bp += ret;                                              \
4071         } while (0)
4072
4073         if (bctl->flags & BTRFS_BALANCE_FORCE)
4074                 CHECK_APPEND_1ARG("%s", "-f ");
4075
4076         if (bctl->flags & BTRFS_BALANCE_DATA) {
4077                 describe_balance_args(&bctl->data, tmp_buf, sizeof(tmp_buf));
4078                 CHECK_APPEND_1ARG("-d%s ", tmp_buf);
4079         }
4080
4081         if (bctl->flags & BTRFS_BALANCE_METADATA) {
4082                 describe_balance_args(&bctl->meta, tmp_buf, sizeof(tmp_buf));
4083                 CHECK_APPEND_1ARG("-m%s ", tmp_buf);
4084         }
4085
4086         if (bctl->flags & BTRFS_BALANCE_SYSTEM) {
4087                 describe_balance_args(&bctl->sys, tmp_buf, sizeof(tmp_buf));
4088                 CHECK_APPEND_1ARG("-s%s ", tmp_buf);
4089         }
4090
4091 #undef CHECK_APPEND_1ARG
4092
4093 out_overflow:
4094
4095         if (size_bp < size_buf)
4096                 buf[size_buf - size_bp - 1] = '\0'; /* remove last " " */
4097         btrfs_info(fs_info, "balance: %s %s",
4098                    (bctl->flags & BTRFS_BALANCE_RESUME) ?
4099                    "resume" : "start", buf);
4100
4101         kfree(buf);
4102 }
4103
4104 /*
4105  * Should be called with balance mutexe held
4106  */
4107 int btrfs_balance(struct btrfs_fs_info *fs_info,
4108                   struct btrfs_balance_control *bctl,
4109                   struct btrfs_ioctl_balance_args *bargs)
4110 {
4111         u64 meta_target, data_target;
4112         u64 allowed;
4113         int mixed = 0;
4114         int ret;
4115         u64 num_devices;
4116         unsigned seq;
4117         bool reducing_redundancy;
4118         int i;
4119
4120         if (btrfs_fs_closing(fs_info) ||
4121             atomic_read(&fs_info->balance_pause_req) ||
4122             btrfs_should_cancel_balance(fs_info)) {
4123                 ret = -EINVAL;
4124                 goto out;
4125         }
4126
4127         allowed = btrfs_super_incompat_flags(fs_info->super_copy);
4128         if (allowed & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS)
4129                 mixed = 1;
4130
4131         /*
4132          * In case of mixed groups both data and meta should be picked,
4133          * and identical options should be given for both of them.
4134          */
4135         allowed = BTRFS_BALANCE_DATA | BTRFS_BALANCE_METADATA;
4136         if (mixed && (bctl->flags & allowed)) {
4137                 if (!(bctl->flags & BTRFS_BALANCE_DATA) ||
4138                     !(bctl->flags & BTRFS_BALANCE_METADATA) ||
4139                     memcmp(&bctl->data, &bctl->meta, sizeof(bctl->data))) {
4140                         btrfs_err(fs_info,
4141           "balance: mixed groups data and metadata options must be the same");
4142                         ret = -EINVAL;
4143                         goto out;
4144                 }
4145         }
4146
4147         /*
4148          * rw_devices will not change at the moment, device add/delete/replace
4149          * are exclusive
4150          */
4151         num_devices = fs_info->fs_devices->rw_devices;
4152
4153         /*
4154          * SINGLE profile on-disk has no profile bit, but in-memory we have a
4155          * special bit for it, to make it easier to distinguish.  Thus we need
4156          * to set it manually, or balance would refuse the profile.
4157          */
4158         allowed = BTRFS_AVAIL_ALLOC_BIT_SINGLE;
4159         for (i = 0; i < ARRAY_SIZE(btrfs_raid_array); i++)
4160                 if (num_devices >= btrfs_raid_array[i].devs_min)
4161                         allowed |= btrfs_raid_array[i].bg_flag;
4162
4163         if (!validate_convert_profile(fs_info, &bctl->data, allowed, "data") ||
4164             !validate_convert_profile(fs_info, &bctl->meta, allowed, "metadata") ||
4165             !validate_convert_profile(fs_info, &bctl->sys,  allowed, "system")) {
4166                 ret = -EINVAL;
4167                 goto out;
4168         }
4169
4170         /*
4171          * Allow to reduce metadata or system integrity only if force set for
4172          * profiles with redundancy (copies, parity)
4173          */
4174         allowed = 0;
4175         for (i = 0; i < ARRAY_SIZE(btrfs_raid_array); i++) {
4176                 if (btrfs_raid_array[i].ncopies >= 2 ||
4177                     btrfs_raid_array[i].tolerated_failures >= 1)
4178                         allowed |= btrfs_raid_array[i].bg_flag;
4179         }
4180         do {
4181                 seq = read_seqbegin(&fs_info->profiles_lock);
4182
4183                 if (((bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
4184                      (fs_info->avail_system_alloc_bits & allowed) &&
4185                      !(bctl->sys.target & allowed)) ||
4186                     ((bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
4187                      (fs_info->avail_metadata_alloc_bits & allowed) &&
4188                      !(bctl->meta.target & allowed)))
4189                         reducing_redundancy = true;
4190                 else
4191                         reducing_redundancy = false;
4192
4193                 /* if we're not converting, the target field is uninitialized */
4194                 meta_target = (bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) ?
4195                         bctl->meta.target : fs_info->avail_metadata_alloc_bits;
4196                 data_target = (bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) ?
4197                         bctl->data.target : fs_info->avail_data_alloc_bits;
4198         } while (read_seqretry(&fs_info->profiles_lock, seq));
4199
4200         if (reducing_redundancy) {
4201                 if (bctl->flags & BTRFS_BALANCE_FORCE) {
4202                         btrfs_info(fs_info,
4203                            "balance: force reducing metadata redundancy");
4204                 } else {
4205                         btrfs_err(fs_info,
4206         "balance: reduces metadata redundancy, use --force if you want this");
4207                         ret = -EINVAL;
4208                         goto out;
4209                 }
4210         }
4211
4212         if (btrfs_get_num_tolerated_disk_barrier_failures(meta_target) <
4213                 btrfs_get_num_tolerated_disk_barrier_failures(data_target)) {
4214                 btrfs_warn(fs_info,
4215         "balance: metadata profile %s has lower redundancy than data profile %s",
4216                                 btrfs_bg_type_to_raid_name(meta_target),
4217                                 btrfs_bg_type_to_raid_name(data_target));
4218         }
4219
4220         ret = insert_balance_item(fs_info, bctl);
4221         if (ret && ret != -EEXIST)
4222                 goto out;
4223
4224         if (!(bctl->flags & BTRFS_BALANCE_RESUME)) {
4225                 BUG_ON(ret == -EEXIST);
4226                 BUG_ON(fs_info->balance_ctl);
4227                 spin_lock(&fs_info->balance_lock);
4228                 fs_info->balance_ctl = bctl;
4229                 spin_unlock(&fs_info->balance_lock);
4230         } else {
4231                 BUG_ON(ret != -EEXIST);
4232                 spin_lock(&fs_info->balance_lock);
4233                 update_balance_args(bctl);
4234                 spin_unlock(&fs_info->balance_lock);
4235         }
4236
4237         ASSERT(!test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags));
4238         set_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags);
4239         describe_balance_start_or_resume(fs_info);
4240         mutex_unlock(&fs_info->balance_mutex);
4241
4242         ret = __btrfs_balance(fs_info);
4243
4244         mutex_lock(&fs_info->balance_mutex);
4245         if (ret == -ECANCELED && atomic_read(&fs_info->balance_pause_req))
4246                 btrfs_info(fs_info, "balance: paused");
4247         /*
4248          * Balance can be canceled by:
4249          *
4250          * - Regular cancel request
4251          *   Then ret == -ECANCELED and balance_cancel_req > 0
4252          *
4253          * - Fatal signal to "btrfs" process
4254          *   Either the signal caught by wait_reserve_ticket() and callers
4255          *   got -EINTR, or caught by btrfs_should_cancel_balance() and
4256          *   got -ECANCELED.
4257          *   Either way, in this case balance_cancel_req = 0, and
4258          *   ret == -EINTR or ret == -ECANCELED.
4259          *
4260          * So here we only check the return value to catch canceled balance.
4261          */
4262         else if (ret == -ECANCELED || ret == -EINTR)
4263                 btrfs_info(fs_info, "balance: canceled");
4264         else
4265                 btrfs_info(fs_info, "balance: ended with status: %d", ret);
4266
4267         clear_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags);
4268
4269         if (bargs) {
4270                 memset(bargs, 0, sizeof(*bargs));
4271                 btrfs_update_ioctl_balance_args(fs_info, bargs);
4272         }
4273
4274         if ((ret && ret != -ECANCELED && ret != -ENOSPC) ||
4275             balance_need_close(fs_info)) {
4276                 reset_balance_state(fs_info);
4277                 btrfs_exclop_finish(fs_info);
4278         }
4279
4280         wake_up(&fs_info->balance_wait_q);
4281
4282         return ret;
4283 out:
4284         if (bctl->flags & BTRFS_BALANCE_RESUME)
4285                 reset_balance_state(fs_info);
4286         else
4287                 kfree(bctl);
4288         btrfs_exclop_finish(fs_info);
4289
4290         return ret;
4291 }
4292
4293 static int balance_kthread(void *data)
4294 {
4295         struct btrfs_fs_info *fs_info = data;
4296         int ret = 0;
4297
4298         mutex_lock(&fs_info->balance_mutex);
4299         if (fs_info->balance_ctl)
4300                 ret = btrfs_balance(fs_info, fs_info->balance_ctl, NULL);
4301         mutex_unlock(&fs_info->balance_mutex);
4302
4303         return ret;
4304 }
4305
4306 int btrfs_resume_balance_async(struct btrfs_fs_info *fs_info)
4307 {
4308         struct task_struct *tsk;
4309
4310         mutex_lock(&fs_info->balance_mutex);
4311         if (!fs_info->balance_ctl) {
4312                 mutex_unlock(&fs_info->balance_mutex);
4313                 return 0;
4314         }
4315         mutex_unlock(&fs_info->balance_mutex);
4316
4317         if (btrfs_test_opt(fs_info, SKIP_BALANCE)) {
4318                 btrfs_info(fs_info, "balance: resume skipped");
4319                 return 0;
4320         }
4321
4322         /*
4323          * A ro->rw remount sequence should continue with the paused balance
4324          * regardless of who pauses it, system or the user as of now, so set
4325          * the resume flag.
4326          */
4327         spin_lock(&fs_info->balance_lock);
4328         fs_info->balance_ctl->flags |= BTRFS_BALANCE_RESUME;
4329         spin_unlock(&fs_info->balance_lock);
4330
4331         tsk = kthread_run(balance_kthread, fs_info, "btrfs-balance");
4332         return PTR_ERR_OR_ZERO(tsk);
4333 }
4334
4335 int btrfs_recover_balance(struct btrfs_fs_info *fs_info)
4336 {
4337         struct btrfs_balance_control *bctl;
4338         struct btrfs_balance_item *item;
4339         struct btrfs_disk_balance_args disk_bargs;
4340         struct btrfs_path *path;
4341         struct extent_buffer *leaf;
4342         struct btrfs_key key;
4343         int ret;
4344
4345         path = btrfs_alloc_path();
4346         if (!path)
4347                 return -ENOMEM;
4348
4349         key.objectid = BTRFS_BALANCE_OBJECTID;
4350         key.type = BTRFS_TEMPORARY_ITEM_KEY;
4351         key.offset = 0;
4352
4353         ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
4354         if (ret < 0)
4355                 goto out;
4356         if (ret > 0) { /* ret = -ENOENT; */
4357                 ret = 0;
4358                 goto out;
4359         }
4360
4361         bctl = kzalloc(sizeof(*bctl), GFP_NOFS);
4362         if (!bctl) {
4363                 ret = -ENOMEM;
4364                 goto out;
4365         }
4366
4367         leaf = path->nodes[0];
4368         item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_balance_item);
4369
4370         bctl->flags = btrfs_balance_flags(leaf, item);
4371         bctl->flags |= BTRFS_BALANCE_RESUME;
4372
4373         btrfs_balance_data(leaf, item, &disk_bargs);
4374         btrfs_disk_balance_args_to_cpu(&bctl->data, &disk_bargs);
4375         btrfs_balance_meta(leaf, item, &disk_bargs);
4376         btrfs_disk_balance_args_to_cpu(&bctl->meta, &disk_bargs);
4377         btrfs_balance_sys(leaf, item, &disk_bargs);
4378         btrfs_disk_balance_args_to_cpu(&bctl->sys, &disk_bargs);
4379
4380         /*
4381          * This should never happen, as the paused balance state is recovered
4382          * during mount without any chance of other exclusive ops to collide.
4383          *
4384          * This gives the exclusive op status to balance and keeps in paused
4385          * state until user intervention (cancel or umount). If the ownership
4386          * cannot be assigned, show a message but do not fail. The balance
4387          * is in a paused state and must have fs_info::balance_ctl properly
4388          * set up.
4389          */
4390         if (!btrfs_exclop_start(fs_info, BTRFS_EXCLOP_BALANCE))
4391                 btrfs_warn(fs_info,
4392         "balance: cannot set exclusive op status, resume manually");
4393
4394         btrfs_release_path(path);
4395
4396         mutex_lock(&fs_info->balance_mutex);
4397         BUG_ON(fs_info->balance_ctl);
4398         spin_lock(&fs_info->balance_lock);
4399         fs_info->balance_ctl = bctl;
4400         spin_unlock(&fs_info->balance_lock);
4401         mutex_unlock(&fs_info->balance_mutex);
4402 out:
4403         btrfs_free_path(path);
4404         return ret;
4405 }
4406
4407 int btrfs_pause_balance(struct btrfs_fs_info *fs_info)
4408 {
4409         int ret = 0;
4410
4411         mutex_lock(&fs_info->balance_mutex);
4412         if (!fs_info->balance_ctl) {
4413                 mutex_unlock(&fs_info->balance_mutex);
4414                 return -ENOTCONN;
4415         }
4416
4417         if (test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)) {
4418                 atomic_inc(&fs_info->balance_pause_req);
4419                 mutex_unlock(&fs_info->balance_mutex);
4420
4421                 wait_event(fs_info->balance_wait_q,
4422                            !test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags));
4423
4424                 mutex_lock(&fs_info->balance_mutex);
4425                 /* we are good with balance_ctl ripped off from under us */
4426                 BUG_ON(test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags));
4427                 atomic_dec(&fs_info->balance_pause_req);
4428         } else {
4429                 ret = -ENOTCONN;
4430         }
4431
4432         mutex_unlock(&fs_info->balance_mutex);
4433         return ret;
4434 }
4435
4436 int btrfs_cancel_balance(struct btrfs_fs_info *fs_info)
4437 {
4438         mutex_lock(&fs_info->balance_mutex);
4439         if (!fs_info->balance_ctl) {
4440                 mutex_unlock(&fs_info->balance_mutex);
4441                 return -ENOTCONN;
4442         }
4443
4444         /*
4445          * A paused balance with the item stored on disk can be resumed at
4446          * mount time if the mount is read-write. Otherwise it's still paused
4447          * and we must not allow cancelling as it deletes the item.
4448          */
4449         if (sb_rdonly(fs_info->sb)) {
4450                 mutex_unlock(&fs_info->balance_mutex);
4451                 return -EROFS;
4452         }
4453
4454         atomic_inc(&fs_info->balance_cancel_req);
4455         /*
4456          * if we are running just wait and return, balance item is
4457          * deleted in btrfs_balance in this case
4458          */
4459         if (test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)) {
4460                 mutex_unlock(&fs_info->balance_mutex);
4461                 wait_event(fs_info->balance_wait_q,
4462                            !test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags));
4463                 mutex_lock(&fs_info->balance_mutex);
4464         } else {
4465                 mutex_unlock(&fs_info->balance_mutex);
4466                 /*
4467                  * Lock released to allow other waiters to continue, we'll
4468                  * reexamine the status again.
4469                  */
4470                 mutex_lock(&fs_info->balance_mutex);
4471
4472                 if (fs_info->balance_ctl) {
4473                         reset_balance_state(fs_info);
4474                         btrfs_exclop_finish(fs_info);
4475                         btrfs_info(fs_info, "balance: canceled");
4476                 }
4477         }
4478
4479         BUG_ON(fs_info->balance_ctl ||
4480                 test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags));
4481         atomic_dec(&fs_info->balance_cancel_req);
4482         mutex_unlock(&fs_info->balance_mutex);
4483         return 0;
4484 }
4485
4486 int btrfs_uuid_scan_kthread(void *data)
4487 {
4488         struct btrfs_fs_info *fs_info = data;
4489         struct btrfs_root *root = fs_info->tree_root;
4490         struct btrfs_key key;
4491         struct btrfs_path *path = NULL;
4492         int ret = 0;
4493         struct extent_buffer *eb;
4494         int slot;
4495         struct btrfs_root_item root_item;
4496         u32 item_size;
4497         struct btrfs_trans_handle *trans = NULL;
4498         bool closing = false;
4499
4500         path = btrfs_alloc_path();
4501         if (!path) {
4502                 ret = -ENOMEM;
4503                 goto out;
4504         }
4505
4506         key.objectid = 0;
4507         key.type = BTRFS_ROOT_ITEM_KEY;
4508         key.offset = 0;
4509
4510         while (1) {
4511                 if (btrfs_fs_closing(fs_info)) {
4512                         closing = true;
4513                         break;
4514                 }
4515                 ret = btrfs_search_forward(root, &key, path,
4516                                 BTRFS_OLDEST_GENERATION);
4517                 if (ret) {
4518                         if (ret > 0)
4519                                 ret = 0;
4520                         break;
4521                 }
4522
4523                 if (key.type != BTRFS_ROOT_ITEM_KEY ||
4524                     (key.objectid < BTRFS_FIRST_FREE_OBJECTID &&
4525                      key.objectid != BTRFS_FS_TREE_OBJECTID) ||
4526                     key.objectid > BTRFS_LAST_FREE_OBJECTID)
4527                         goto skip;
4528
4529                 eb = path->nodes[0];
4530                 slot = path->slots[0];
4531                 item_size = btrfs_item_size_nr(eb, slot);
4532                 if (item_size < sizeof(root_item))
4533                         goto skip;
4534
4535                 read_extent_buffer(eb, &root_item,
4536                                    btrfs_item_ptr_offset(eb, slot),
4537                                    (int)sizeof(root_item));
4538                 if (btrfs_root_refs(&root_item) == 0)
4539                         goto skip;
4540
4541                 if (!btrfs_is_empty_uuid(root_item.uuid) ||
4542                     !btrfs_is_empty_uuid(root_item.received_uuid)) {
4543                         if (trans)
4544                                 goto update_tree;
4545
4546                         btrfs_release_path(path);
4547                         /*
4548                          * 1 - subvol uuid item
4549                          * 1 - received_subvol uuid item
4550                          */
4551                         trans = btrfs_start_transaction(fs_info->uuid_root, 2);
4552                         if (IS_ERR(trans)) {
4553                                 ret = PTR_ERR(trans);
4554                                 break;
4555                         }
4556                         continue;
4557                 } else {
4558                         goto skip;
4559                 }
4560 update_tree:
4561                 btrfs_release_path(path);
4562                 if (!btrfs_is_empty_uuid(root_item.uuid)) {
4563                         ret = btrfs_uuid_tree_add(trans, root_item.uuid,
4564                                                   BTRFS_UUID_KEY_SUBVOL,
4565                                                   key.objectid);
4566                         if (ret < 0) {
4567                                 btrfs_warn(fs_info, "uuid_tree_add failed %d",
4568                                         ret);
4569                                 break;
4570                         }
4571                 }
4572
4573                 if (!btrfs_is_empty_uuid(root_item.received_uuid)) {
4574                         ret = btrfs_uuid_tree_add(trans,
4575                                                   root_item.received_uuid,
4576                                                  BTRFS_UUID_KEY_RECEIVED_SUBVOL,
4577                                                   key.objectid);
4578                         if (ret < 0) {
4579                                 btrfs_warn(fs_info, "uuid_tree_add failed %d",
4580                                         ret);
4581                                 break;
4582                         }
4583                 }
4584
4585 skip:
4586                 btrfs_release_path(path);
4587                 if (trans) {
4588                         ret = btrfs_end_transaction(trans);
4589                         trans = NULL;
4590                         if (ret)
4591                                 break;
4592                 }
4593
4594                 if (key.offset < (u64)-1) {
4595                         key.offset++;
4596                 } else if (key.type < BTRFS_ROOT_ITEM_KEY) {
4597                         key.offset = 0;
4598                         key.type = BTRFS_ROOT_ITEM_KEY;
4599                 } else if (key.objectid < (u64)-1) {
4600                         key.offset = 0;
4601                         key.type = BTRFS_ROOT_ITEM_KEY;
4602                         key.objectid++;
4603                 } else {
4604                         break;
4605                 }
4606                 cond_resched();
4607         }
4608
4609 out:
4610         btrfs_free_path(path);
4611         if (trans && !IS_ERR(trans))
4612                 btrfs_end_transaction(trans);
4613         if (ret)
4614                 btrfs_warn(fs_info, "btrfs_uuid_scan_kthread failed %d", ret);
4615         else if (!closing)
4616                 set_bit(BTRFS_FS_UPDATE_UUID_TREE_GEN, &fs_info->flags);
4617         up(&fs_info->uuid_tree_rescan_sem);
4618         return 0;
4619 }
4620
4621 int btrfs_create_uuid_tree(struct btrfs_fs_info *fs_info)
4622 {
4623         struct btrfs_trans_handle *trans;
4624         struct btrfs_root *tree_root = fs_info->tree_root;
4625         struct btrfs_root *uuid_root;
4626         struct task_struct *task;
4627         int ret;
4628
4629         /*
4630          * 1 - root node
4631          * 1 - root item
4632          */
4633         trans = btrfs_start_transaction(tree_root, 2);
4634         if (IS_ERR(trans))
4635                 return PTR_ERR(trans);
4636
4637         uuid_root = btrfs_create_tree(trans, BTRFS_UUID_TREE_OBJECTID);
4638         if (IS_ERR(uuid_root)) {
4639                 ret = PTR_ERR(uuid_root);
4640                 btrfs_abort_transaction(trans, ret);
4641                 btrfs_end_transaction(trans);
4642                 return ret;
4643         }
4644
4645         fs_info->uuid_root = uuid_root;
4646
4647         ret = btrfs_commit_transaction(trans);
4648         if (ret)
4649                 return ret;
4650
4651         down(&fs_info->uuid_tree_rescan_sem);
4652         task = kthread_run(btrfs_uuid_scan_kthread, fs_info, "btrfs-uuid");
4653         if (IS_ERR(task)) {
4654                 /* fs_info->update_uuid_tree_gen remains 0 in all error case */
4655                 btrfs_warn(fs_info, "failed to start uuid_scan task");
4656                 up(&fs_info->uuid_tree_rescan_sem);
4657                 return PTR_ERR(task);
4658         }
4659
4660         return 0;
4661 }
4662
4663 /*
4664  * shrinking a device means finding all of the device extents past
4665  * the new size, and then following the back refs to the chunks.
4666  * The chunk relocation code actually frees the device extent
4667  */
4668 int btrfs_shrink_device(struct btrfs_device *device, u64 new_size)
4669 {
4670         struct btrfs_fs_info *fs_info = device->fs_info;
4671         struct btrfs_root *root = fs_info->dev_root;
4672         struct btrfs_trans_handle *trans;
4673         struct btrfs_dev_extent *dev_extent = NULL;
4674         struct btrfs_path *path;
4675         u64 length;
4676         u64 chunk_offset;
4677         int ret;
4678         int slot;
4679         int failed = 0;
4680         bool retried = false;
4681         struct extent_buffer *l;
4682         struct btrfs_key key;
4683         struct btrfs_super_block *super_copy = fs_info->super_copy;
4684         u64 old_total = btrfs_super_total_bytes(super_copy);
4685         u64 old_size = btrfs_device_get_total_bytes(device);
4686         u64 diff;
4687         u64 start;
4688
4689         new_size = round_down(new_size, fs_info->sectorsize);
4690         start = new_size;
4691         diff = round_down(old_size - new_size, fs_info->sectorsize);
4692
4693         if (test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state))
4694                 return -EINVAL;
4695
4696         path = btrfs_alloc_path();
4697         if (!path)
4698                 return -ENOMEM;
4699
4700         path->reada = READA_BACK;
4701
4702         trans = btrfs_start_transaction(root, 0);
4703         if (IS_ERR(trans)) {
4704                 btrfs_free_path(path);
4705                 return PTR_ERR(trans);
4706         }
4707
4708         mutex_lock(&fs_info->chunk_mutex);
4709
4710         btrfs_device_set_total_bytes(device, new_size);
4711         if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
4712                 device->fs_devices->total_rw_bytes -= diff;
4713                 atomic64_sub(diff, &fs_info->free_chunk_space);
4714         }
4715
4716         /*
4717          * Once the device's size has been set to the new size, ensure all
4718          * in-memory chunks are synced to disk so that the loop below sees them
4719          * and relocates them accordingly.
4720          */
4721         if (contains_pending_extent(device, &start, diff)) {
4722                 mutex_unlock(&fs_info->chunk_mutex);
4723                 ret = btrfs_commit_transaction(trans);
4724                 if (ret)
4725                         goto done;
4726         } else {
4727                 mutex_unlock(&fs_info->chunk_mutex);
4728                 btrfs_end_transaction(trans);
4729         }
4730
4731 again:
4732         key.objectid = device->devid;
4733         key.offset = (u64)-1;
4734         key.type = BTRFS_DEV_EXTENT_KEY;
4735
4736         do {
4737                 mutex_lock(&fs_info->reclaim_bgs_lock);
4738                 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4739                 if (ret < 0) {
4740                         mutex_unlock(&fs_info->reclaim_bgs_lock);
4741                         goto done;
4742                 }
4743
4744                 ret = btrfs_previous_item(root, path, 0, key.type);
4745                 if (ret) {
4746                         mutex_unlock(&fs_info->reclaim_bgs_lock);
4747                         if (ret < 0)
4748                                 goto done;
4749                         ret = 0;
4750                         btrfs_release_path(path);
4751                         break;
4752                 }
4753
4754                 l = path->nodes[0];
4755                 slot = path->slots[0];
4756                 btrfs_item_key_to_cpu(l, &key, path->slots[0]);
4757
4758                 if (key.objectid != device->devid) {
4759                         mutex_unlock(&fs_info->reclaim_bgs_lock);
4760                         btrfs_release_path(path);
4761                         break;
4762                 }
4763
4764                 dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
4765                 length = btrfs_dev_extent_length(l, dev_extent);
4766
4767                 if (key.offset + length <= new_size) {
4768                         mutex_unlock(&fs_info->reclaim_bgs_lock);
4769                         btrfs_release_path(path);
4770                         break;
4771                 }
4772
4773                 chunk_offset = btrfs_dev_extent_chunk_offset(l, dev_extent);
4774                 btrfs_release_path(path);
4775
4776                 /*
4777                  * We may be relocating the only data chunk we have,
4778                  * which could potentially end up with losing data's
4779                  * raid profile, so lets allocate an empty one in
4780                  * advance.
4781                  */
4782                 ret = btrfs_may_alloc_data_chunk(fs_info, chunk_offset);
4783                 if (ret < 0) {
4784                         mutex_unlock(&fs_info->reclaim_bgs_lock);
4785                         goto done;
4786                 }
4787
4788                 ret = btrfs_relocate_chunk(fs_info, chunk_offset);
4789                 mutex_unlock(&fs_info->reclaim_bgs_lock);
4790                 if (ret == -ENOSPC) {
4791                         failed++;
4792                 } else if (ret) {
4793                         if (ret == -ETXTBSY) {
4794                                 btrfs_warn(fs_info,
4795                    "could not shrink block group %llu due to active swapfile",
4796                                            chunk_offset);
4797                         }
4798                         goto done;
4799                 }
4800         } while (key.offset-- > 0);
4801
4802         if (failed && !retried) {
4803                 failed = 0;
4804                 retried = true;
4805                 goto again;
4806         } else if (failed && retried) {
4807                 ret = -ENOSPC;
4808                 goto done;
4809         }
4810
4811         /* Shrinking succeeded, else we would be at "done". */
4812         trans = btrfs_start_transaction(root, 0);
4813         if (IS_ERR(trans)) {
4814                 ret = PTR_ERR(trans);
4815                 goto done;
4816         }
4817
4818         mutex_lock(&fs_info->chunk_mutex);
4819         /* Clear all state bits beyond the shrunk device size */
4820         clear_extent_bits(&device->alloc_state, new_size, (u64)-1,
4821                           CHUNK_STATE_MASK);
4822
4823         btrfs_device_set_disk_total_bytes(device, new_size);
4824         if (list_empty(&device->post_commit_list))
4825                 list_add_tail(&device->post_commit_list,
4826                               &trans->transaction->dev_update_list);
4827
4828         WARN_ON(diff > old_total);
4829         btrfs_set_super_total_bytes(super_copy,
4830                         round_down(old_total - diff, fs_info->sectorsize));
4831         mutex_unlock(&fs_info->chunk_mutex);
4832
4833         /* Now btrfs_update_device() will change the on-disk size. */
4834         ret = btrfs_update_device(trans, device);
4835         if (ret < 0) {
4836                 btrfs_abort_transaction(trans, ret);
4837                 btrfs_end_transaction(trans);
4838         } else {
4839                 ret = btrfs_commit_transaction(trans);
4840         }
4841 done:
4842         btrfs_free_path(path);
4843         if (ret) {
4844                 mutex_lock(&fs_info->chunk_mutex);
4845                 btrfs_device_set_total_bytes(device, old_size);
4846                 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state))
4847                         device->fs_devices->total_rw_bytes += diff;
4848                 atomic64_add(diff, &fs_info->free_chunk_space);
4849                 mutex_unlock(&fs_info->chunk_mutex);
4850         }
4851         return ret;
4852 }
4853
4854 static int btrfs_add_system_chunk(struct btrfs_fs_info *fs_info,
4855                            struct btrfs_key *key,
4856                            struct btrfs_chunk *chunk, int item_size)
4857 {
4858         struct btrfs_super_block *super_copy = fs_info->super_copy;
4859         struct btrfs_disk_key disk_key;
4860         u32 array_size;
4861         u8 *ptr;
4862
4863         mutex_lock(&fs_info->chunk_mutex);
4864         array_size = btrfs_super_sys_array_size(super_copy);
4865         if (array_size + item_size + sizeof(disk_key)
4866                         > BTRFS_SYSTEM_CHUNK_ARRAY_SIZE) {
4867                 mutex_unlock(&fs_info->chunk_mutex);
4868                 return -EFBIG;
4869         }
4870
4871         ptr = super_copy->sys_chunk_array + array_size;
4872         btrfs_cpu_key_to_disk(&disk_key, key);
4873         memcpy(ptr, &disk_key, sizeof(disk_key));
4874         ptr += sizeof(disk_key);
4875         memcpy(ptr, chunk, item_size);
4876         item_size += sizeof(disk_key);
4877         btrfs_set_super_sys_array_size(super_copy, array_size + item_size);
4878         mutex_unlock(&fs_info->chunk_mutex);
4879
4880         return 0;
4881 }
4882
4883 /*
4884  * sort the devices in descending order by max_avail, total_avail
4885  */
4886 static int btrfs_cmp_device_info(const void *a, const void *b)
4887 {
4888         const struct btrfs_device_info *di_a = a;
4889         const struct btrfs_device_info *di_b = b;
4890
4891         if (di_a->max_avail > di_b->max_avail)
4892                 return -1;
4893         if (di_a->max_avail < di_b->max_avail)
4894                 return 1;
4895         if (di_a->total_avail > di_b->total_avail)
4896                 return -1;
4897         if (di_a->total_avail < di_b->total_avail)
4898                 return 1;
4899         return 0;
4900 }
4901
4902 static void check_raid56_incompat_flag(struct btrfs_fs_info *info, u64 type)
4903 {
4904         if (!(type & BTRFS_BLOCK_GROUP_RAID56_MASK))
4905                 return;
4906
4907         btrfs_set_fs_incompat(info, RAID56);
4908 }
4909
4910 static void check_raid1c34_incompat_flag(struct btrfs_fs_info *info, u64 type)
4911 {
4912         if (!(type & (BTRFS_BLOCK_GROUP_RAID1C3 | BTRFS_BLOCK_GROUP_RAID1C4)))
4913                 return;
4914
4915         btrfs_set_fs_incompat(info, RAID1C34);
4916 }
4917
4918 /*
4919  * Structure used internally for __btrfs_alloc_chunk() function.
4920  * Wraps needed parameters.
4921  */
4922 struct alloc_chunk_ctl {
4923         u64 start;
4924         u64 type;
4925         /* Total number of stripes to allocate */
4926         int num_stripes;
4927         /* sub_stripes info for map */
4928         int sub_stripes;
4929         /* Stripes per device */
4930         int dev_stripes;
4931         /* Maximum number of devices to use */
4932         int devs_max;
4933         /* Minimum number of devices to use */
4934         int devs_min;
4935         /* ndevs has to be a multiple of this */
4936         int devs_increment;
4937         /* Number of copies */
4938         int ncopies;
4939         /* Number of stripes worth of bytes to store parity information */
4940         int nparity;
4941         u64 max_stripe_size;
4942         u64 max_chunk_size;
4943         u64 dev_extent_min;
4944         u64 stripe_size;
4945         u64 chunk_size;
4946         int ndevs;
4947 };
4948
4949 static void init_alloc_chunk_ctl_policy_regular(
4950                                 struct btrfs_fs_devices *fs_devices,
4951                                 struct alloc_chunk_ctl *ctl)
4952 {
4953         u64 type = ctl->type;
4954
4955         if (type & BTRFS_BLOCK_GROUP_DATA) {
4956                 ctl->max_stripe_size = SZ_1G;
4957                 ctl->max_chunk_size = BTRFS_MAX_DATA_CHUNK_SIZE;
4958         } else if (type & BTRFS_BLOCK_GROUP_METADATA) {
4959                 /* For larger filesystems, use larger metadata chunks */
4960                 if (fs_devices->total_rw_bytes > 50ULL * SZ_1G)
4961                         ctl->max_stripe_size = SZ_1G;
4962                 else
4963                         ctl->max_stripe_size = SZ_256M;
4964                 ctl->max_chunk_size = ctl->max_stripe_size;
4965         } else if (type & BTRFS_BLOCK_GROUP_SYSTEM) {
4966                 ctl->max_stripe_size = SZ_32M;
4967                 ctl->max_chunk_size = 2 * ctl->max_stripe_size;
4968                 ctl->devs_max = min_t(int, ctl->devs_max,
4969                                       BTRFS_MAX_DEVS_SYS_CHUNK);
4970         } else {
4971                 BUG();
4972         }
4973
4974         /* We don't want a chunk larger than 10% of writable space */
4975         ctl->max_chunk_size = min(div_factor(fs_devices->total_rw_bytes, 1),
4976                                   ctl->max_chunk_size);
4977         ctl->dev_extent_min = BTRFS_STRIPE_LEN * ctl->dev_stripes;
4978 }
4979
4980 static void init_alloc_chunk_ctl_policy_zoned(
4981                                       struct btrfs_fs_devices *fs_devices,
4982                                       struct alloc_chunk_ctl *ctl)
4983 {
4984         u64 zone_size = fs_devices->fs_info->zone_size;
4985         u64 limit;
4986         int min_num_stripes = ctl->devs_min * ctl->dev_stripes;
4987         int min_data_stripes = (min_num_stripes - ctl->nparity) / ctl->ncopies;
4988         u64 min_chunk_size = min_data_stripes * zone_size;
4989         u64 type = ctl->type;
4990
4991         ctl->max_stripe_size = zone_size;
4992         if (type & BTRFS_BLOCK_GROUP_DATA) {
4993                 ctl->max_chunk_size = round_down(BTRFS_MAX_DATA_CHUNK_SIZE,
4994                                                  zone_size);
4995         } else if (type & BTRFS_BLOCK_GROUP_METADATA) {
4996                 ctl->max_chunk_size = ctl->max_stripe_size;
4997         } else if (type & BTRFS_BLOCK_GROUP_SYSTEM) {
4998                 ctl->max_chunk_size = 2 * ctl->max_stripe_size;
4999                 ctl->devs_max = min_t(int, ctl->devs_max,
5000                                       BTRFS_MAX_DEVS_SYS_CHUNK);
5001         } else {
5002                 BUG();
5003         }
5004
5005         /* We don't want a chunk larger than 10% of writable space */
5006         limit = max(round_down(div_factor(fs_devices->total_rw_bytes, 1),
5007                                zone_size),
5008                     min_chunk_size);
5009         ctl->max_chunk_size = min(limit, ctl->max_chunk_size);
5010         ctl->dev_extent_min = zone_size * ctl->dev_stripes;
5011 }
5012
5013 static void init_alloc_chunk_ctl(struct btrfs_fs_devices *fs_devices,
5014                                  struct alloc_chunk_ctl *ctl)
5015 {
5016         int index = btrfs_bg_flags_to_raid_index(ctl->type);
5017
5018         ctl->sub_stripes = btrfs_raid_array[index].sub_stripes;
5019         ctl->dev_stripes = btrfs_raid_array[index].dev_stripes;
5020         ctl->devs_max = btrfs_raid_array[index].devs_max;
5021         if (!ctl->devs_max)
5022                 ctl->devs_max = BTRFS_MAX_DEVS(fs_devices->fs_info);
5023         ctl->devs_min = btrfs_raid_array[index].devs_min;
5024         ctl->devs_increment = btrfs_raid_array[index].devs_increment;
5025         ctl->ncopies = btrfs_raid_array[index].ncopies;
5026         ctl->nparity = btrfs_raid_array[index].nparity;
5027         ctl->ndevs = 0;
5028
5029         switch (fs_devices->chunk_alloc_policy) {
5030         case BTRFS_CHUNK_ALLOC_REGULAR:
5031                 init_alloc_chunk_ctl_policy_regular(fs_devices, ctl);
5032                 break;
5033         case BTRFS_CHUNK_ALLOC_ZONED:
5034                 init_alloc_chunk_ctl_policy_zoned(fs_devices, ctl);
5035                 break;
5036         default:
5037                 BUG();
5038         }
5039 }
5040
5041 static int gather_device_info(struct btrfs_fs_devices *fs_devices,
5042                               struct alloc_chunk_ctl *ctl,
5043                               struct btrfs_device_info *devices_info)
5044 {
5045         struct btrfs_fs_info *info = fs_devices->fs_info;
5046         struct btrfs_device *device;
5047         u64 total_avail;
5048         u64 dev_extent_want = ctl->max_stripe_size * ctl->dev_stripes;
5049         int ret;
5050         int ndevs = 0;
5051         u64 max_avail;
5052         u64 dev_offset;
5053
5054         /*
5055          * in the first pass through the devices list, we gather information
5056          * about the available holes on each device.
5057          */
5058         list_for_each_entry(device, &fs_devices->alloc_list, dev_alloc_list) {
5059                 if (!test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
5060                         WARN(1, KERN_ERR
5061                                "BTRFS: read-only device in alloc_list\n");
5062                         continue;
5063                 }
5064
5065                 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA,
5066                                         &device->dev_state) ||
5067                     test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state))
5068                         continue;
5069
5070                 if (device->total_bytes > device->bytes_used)
5071                         total_avail = device->total_bytes - device->bytes_used;
5072                 else
5073                         total_avail = 0;
5074
5075                 /* If there is no space on this device, skip it. */
5076                 if (total_avail < ctl->dev_extent_min)
5077                         continue;
5078
5079                 ret = find_free_dev_extent(device, dev_extent_want, &dev_offset,
5080                                            &max_avail);
5081                 if (ret && ret != -ENOSPC)
5082                         return ret;
5083
5084                 if (ret == 0)
5085                         max_avail = dev_extent_want;
5086
5087                 if (max_avail < ctl->dev_extent_min) {
5088                         if (btrfs_test_opt(info, ENOSPC_DEBUG))
5089                                 btrfs_debug(info,
5090                         "%s: devid %llu has no free space, have=%llu want=%llu",
5091                                             __func__, device->devid, max_avail,
5092                                             ctl->dev_extent_min);
5093                         continue;
5094                 }
5095
5096                 if (ndevs == fs_devices->rw_devices) {
5097                         WARN(1, "%s: found more than %llu devices\n",
5098                              __func__, fs_devices->rw_devices);
5099                         break;
5100                 }
5101                 devices_info[ndevs].dev_offset = dev_offset;
5102                 devices_info[ndevs].max_avail = max_avail;
5103                 devices_info[ndevs].total_avail = total_avail;
5104                 devices_info[ndevs].dev = device;
5105                 ++ndevs;
5106         }
5107         ctl->ndevs = ndevs;
5108
5109         /*
5110          * now sort the devices by hole size / available space
5111          */
5112         sort(devices_info, ndevs, sizeof(struct btrfs_device_info),
5113              btrfs_cmp_device_info, NULL);
5114
5115         return 0;
5116 }
5117
5118 static int decide_stripe_size_regular(struct alloc_chunk_ctl *ctl,
5119                                       struct btrfs_device_info *devices_info)
5120 {
5121         /* Number of stripes that count for block group size */
5122         int data_stripes;
5123
5124         /*
5125          * The primary goal is to maximize the number of stripes, so use as
5126          * many devices as possible, even if the stripes are not maximum sized.
5127          *
5128          * The DUP profile stores more than one stripe per device, the
5129          * max_avail is the total size so we have to adjust.
5130          */
5131         ctl->stripe_size = div_u64(devices_info[ctl->ndevs - 1].max_avail,
5132                                    ctl->dev_stripes);
5133         ctl->num_stripes = ctl->ndevs * ctl->dev_stripes;
5134
5135         /* This will have to be fixed for RAID1 and RAID10 over more drives */
5136         data_stripes = (ctl->num_stripes - ctl->nparity) / ctl->ncopies;
5137
5138         /*
5139          * Use the number of data stripes to figure out how big this chunk is
5140          * really going to be in terms of logical address space, and compare
5141          * that answer with the max chunk size. If it's higher, we try to
5142          * reduce stripe_size.
5143          */
5144         if (ctl->stripe_size * data_stripes > ctl->max_chunk_size) {
5145                 /*
5146                  * Reduce stripe_size, round it up to a 16MB boundary again and
5147                  * then use it, unless it ends up being even bigger than the
5148                  * previous value we had already.
5149                  */
5150                 ctl->stripe_size = min(round_up(div_u64(ctl->max_chunk_size,
5151                                                         data_stripes), SZ_16M),
5152                                        ctl->stripe_size);
5153         }
5154
5155         /* Align to BTRFS_STRIPE_LEN */
5156         ctl->stripe_size = round_down(ctl->stripe_size, BTRFS_STRIPE_LEN);
5157         ctl->chunk_size = ctl->stripe_size * data_stripes;
5158
5159         return 0;
5160 }
5161
5162 static int decide_stripe_size_zoned(struct alloc_chunk_ctl *ctl,
5163                                     struct btrfs_device_info *devices_info)
5164 {
5165         u64 zone_size = devices_info[0].dev->zone_info->zone_size;
5166         /* Number of stripes that count for block group size */
5167         int data_stripes;
5168
5169         /*
5170          * It should hold because:
5171          *    dev_extent_min == dev_extent_want == zone_size * dev_stripes
5172          */
5173         ASSERT(devices_info[ctl->ndevs - 1].max_avail == ctl->dev_extent_min);
5174
5175         ctl->stripe_size = zone_size;
5176         ctl->num_stripes = ctl->ndevs * ctl->dev_stripes;
5177         data_stripes = (ctl->num_stripes - ctl->nparity) / ctl->ncopies;
5178
5179         /* stripe_size is fixed in zoned filesysmte. Reduce ndevs instead. */
5180         if (ctl->stripe_size * data_stripes > ctl->max_chunk_size) {
5181                 ctl->ndevs = div_u64(div_u64(ctl->max_chunk_size * ctl->ncopies,
5182                                              ctl->stripe_size) + ctl->nparity,
5183                                      ctl->dev_stripes);
5184                 ctl->num_stripes = ctl->ndevs * ctl->dev_stripes;
5185                 data_stripes = (ctl->num_stripes - ctl->nparity) / ctl->ncopies;
5186                 ASSERT(ctl->stripe_size * data_stripes <= ctl->max_chunk_size);
5187         }
5188
5189         ctl->chunk_size = ctl->stripe_size * data_stripes;
5190
5191         return 0;
5192 }
5193
5194 static int decide_stripe_size(struct btrfs_fs_devices *fs_devices,
5195                               struct alloc_chunk_ctl *ctl,
5196                               struct btrfs_device_info *devices_info)
5197 {
5198         struct btrfs_fs_info *info = fs_devices->fs_info;
5199
5200         /*
5201          * Round down to number of usable stripes, devs_increment can be any
5202          * number so we can't use round_down() that requires power of 2, while
5203          * rounddown is safe.
5204          */
5205         ctl->ndevs = rounddown(ctl->ndevs, ctl->devs_increment);
5206
5207         if (ctl->ndevs < ctl->devs_min) {
5208                 if (btrfs_test_opt(info, ENOSPC_DEBUG)) {
5209                         btrfs_debug(info,
5210         "%s: not enough devices with free space: have=%d minimum required=%d",
5211                                     __func__, ctl->ndevs, ctl->devs_min);
5212                 }
5213                 return -ENOSPC;
5214         }
5215
5216         ctl->ndevs = min(ctl->ndevs, ctl->devs_max);
5217
5218         switch (fs_devices->chunk_alloc_policy) {
5219         case BTRFS_CHUNK_ALLOC_REGULAR:
5220                 return decide_stripe_size_regular(ctl, devices_info);
5221         case BTRFS_CHUNK_ALLOC_ZONED:
5222                 return decide_stripe_size_zoned(ctl, devices_info);
5223         default:
5224                 BUG();
5225         }
5226 }
5227
5228 static int create_chunk(struct btrfs_trans_handle *trans,
5229                         struct alloc_chunk_ctl *ctl,
5230                         struct btrfs_device_info *devices_info)
5231 {
5232         struct btrfs_fs_info *info = trans->fs_info;
5233         struct map_lookup *map = NULL;
5234         struct extent_map_tree *em_tree;
5235         struct extent_map *em;
5236         u64 start = ctl->start;
5237         u64 type = ctl->type;
5238         int ret;
5239         int i;
5240         int j;
5241
5242         map = kmalloc(map_lookup_size(ctl->num_stripes), GFP_NOFS);
5243         if (!map)
5244                 return -ENOMEM;
5245         map->num_stripes = ctl->num_stripes;
5246
5247         for (i = 0; i < ctl->ndevs; ++i) {
5248                 for (j = 0; j < ctl->dev_stripes; ++j) {
5249                         int s = i * ctl->dev_stripes + j;
5250                         map->stripes[s].dev = devices_info[i].dev;
5251                         map->stripes[s].physical = devices_info[i].dev_offset +
5252                                                    j * ctl->stripe_size;
5253                 }
5254         }
5255         map->stripe_len = BTRFS_STRIPE_LEN;
5256         map->io_align = BTRFS_STRIPE_LEN;
5257         map->io_width = BTRFS_STRIPE_LEN;
5258         map->type = type;
5259         map->sub_stripes = ctl->sub_stripes;
5260
5261         trace_btrfs_chunk_alloc(info, map, start, ctl->chunk_size);
5262
5263         em = alloc_extent_map();
5264         if (!em) {
5265                 kfree(map);
5266                 return -ENOMEM;
5267         }
5268         set_bit(EXTENT_FLAG_FS_MAPPING, &em->flags);
5269         em->map_lookup = map;
5270         em->start = start;
5271         em->len = ctl->chunk_size;
5272         em->block_start = 0;
5273         em->block_len = em->len;
5274         em->orig_block_len = ctl->stripe_size;
5275
5276         em_tree = &info->mapping_tree;
5277         write_lock(&em_tree->lock);
5278         ret = add_extent_mapping(em_tree, em, 0);
5279         if (ret) {
5280                 write_unlock(&em_tree->lock);
5281                 free_extent_map(em);
5282                 return ret;
5283         }
5284         write_unlock(&em_tree->lock);
5285
5286         ret = btrfs_make_block_group(trans, 0, type, start, ctl->chunk_size);
5287         if (ret)
5288                 goto error_del_extent;
5289
5290         for (i = 0; i < map->num_stripes; i++) {
5291                 struct btrfs_device *dev = map->stripes[i].dev;
5292
5293                 btrfs_device_set_bytes_used(dev,
5294                                             dev->bytes_used + ctl->stripe_size);
5295                 if (list_empty(&dev->post_commit_list))
5296                         list_add_tail(&dev->post_commit_list,
5297                                       &trans->transaction->dev_update_list);
5298         }
5299
5300         atomic64_sub(ctl->stripe_size * map->num_stripes,
5301                      &info->free_chunk_space);
5302
5303         free_extent_map(em);
5304         check_raid56_incompat_flag(info, type);
5305         check_raid1c34_incompat_flag(info, type);
5306
5307         return 0;
5308
5309 error_del_extent:
5310         write_lock(&em_tree->lock);
5311         remove_extent_mapping(em_tree, em);
5312         write_unlock(&em_tree->lock);
5313
5314         /* One for our allocation */
5315         free_extent_map(em);
5316         /* One for the tree reference */
5317         free_extent_map(em);
5318
5319         return ret;
5320 }
5321
5322 int btrfs_alloc_chunk(struct btrfs_trans_handle *trans, u64 type)
5323 {
5324         struct btrfs_fs_info *info = trans->fs_info;
5325         struct btrfs_fs_devices *fs_devices = info->fs_devices;
5326         struct btrfs_device_info *devices_info = NULL;
5327         struct alloc_chunk_ctl ctl;
5328         int ret;
5329
5330         lockdep_assert_held(&info->chunk_mutex);
5331
5332         if (!alloc_profile_is_valid(type, 0)) {
5333                 ASSERT(0);
5334                 return -EINVAL;
5335         }
5336
5337         if (list_empty(&fs_devices->alloc_list)) {
5338                 if (btrfs_test_opt(info, ENOSPC_DEBUG))
5339                         btrfs_debug(info, "%s: no writable device", __func__);
5340                 return -ENOSPC;
5341         }
5342
5343         if (!(type & BTRFS_BLOCK_GROUP_TYPE_MASK)) {
5344                 btrfs_err(info, "invalid chunk type 0x%llx requested", type);
5345                 ASSERT(0);
5346                 return -EINVAL;
5347         }
5348
5349         ctl.start = find_next_chunk(info);
5350         ctl.type = type;
5351         init_alloc_chunk_ctl(fs_devices, &ctl);
5352
5353         devices_info = kcalloc(fs_devices->rw_devices, sizeof(*devices_info),
5354                                GFP_NOFS);
5355         if (!devices_info)
5356                 return -ENOMEM;
5357
5358         ret = gather_device_info(fs_devices, &ctl, devices_info);
5359         if (ret < 0)
5360                 goto out;
5361
5362         ret = decide_stripe_size(fs_devices, &ctl, devices_info);
5363         if (ret < 0)
5364                 goto out;
5365
5366         ret = create_chunk(trans, &ctl, devices_info);
5367
5368 out:
5369         kfree(devices_info);
5370         return ret;
5371 }
5372
5373 /*
5374  * Chunk allocation falls into two parts. The first part does work
5375  * that makes the new allocated chunk usable, but does not do any operation
5376  * that modifies the chunk tree. The second part does the work that
5377  * requires modifying the chunk tree. This division is important for the
5378  * bootstrap process of adding storage to a seed btrfs.
5379  */
5380 int btrfs_finish_chunk_alloc(struct btrfs_trans_handle *trans,
5381                              u64 chunk_offset, u64 chunk_size)
5382 {
5383         struct btrfs_fs_info *fs_info = trans->fs_info;
5384         struct btrfs_root *extent_root = fs_info->extent_root;
5385         struct btrfs_root *chunk_root = fs_info->chunk_root;
5386         struct btrfs_key key;
5387         struct btrfs_device *device;
5388         struct btrfs_chunk *chunk;
5389         struct btrfs_stripe *stripe;
5390         struct extent_map *em;
5391         struct map_lookup *map;
5392         size_t item_size;
5393         u64 dev_offset;
5394         u64 stripe_size;
5395         int i = 0;
5396         int ret = 0;
5397
5398         em = btrfs_get_chunk_map(fs_info, chunk_offset, chunk_size);
5399         if (IS_ERR(em))
5400                 return PTR_ERR(em);
5401
5402         map = em->map_lookup;
5403         item_size = btrfs_chunk_item_size(map->num_stripes);
5404         stripe_size = em->orig_block_len;
5405
5406         chunk = kzalloc(item_size, GFP_NOFS);
5407         if (!chunk) {
5408                 ret = -ENOMEM;
5409                 goto out;
5410         }
5411
5412         /*
5413          * Take the device list mutex to prevent races with the final phase of
5414          * a device replace operation that replaces the device object associated
5415          * with the map's stripes, because the device object's id can change
5416          * at any time during that final phase of the device replace operation
5417          * (dev-replace.c:btrfs_dev_replace_finishing()).
5418          */
5419         mutex_lock(&fs_info->fs_devices->device_list_mutex);
5420         for (i = 0; i < map->num_stripes; i++) {
5421                 device = map->stripes[i].dev;
5422                 dev_offset = map->stripes[i].physical;
5423
5424                 ret = btrfs_update_device(trans, device);
5425                 if (ret)
5426                         break;
5427                 ret = btrfs_alloc_dev_extent(trans, device, chunk_offset,
5428                                              dev_offset, stripe_size);
5429                 if (ret)
5430                         break;
5431         }
5432         if (ret) {
5433                 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
5434                 goto out;
5435         }
5436
5437         stripe = &chunk->stripe;
5438         for (i = 0; i < map->num_stripes; i++) {
5439                 device = map->stripes[i].dev;
5440                 dev_offset = map->stripes[i].physical;
5441
5442                 btrfs_set_stack_stripe_devid(stripe, device->devid);
5443                 btrfs_set_stack_stripe_offset(stripe, dev_offset);
5444                 memcpy(stripe->dev_uuid, device->uuid, BTRFS_UUID_SIZE);
5445                 stripe++;
5446         }
5447         mutex_unlock(&fs_info->fs_devices->device_list_mutex);
5448
5449         btrfs_set_stack_chunk_length(chunk, chunk_size);
5450         btrfs_set_stack_chunk_owner(chunk, extent_root->root_key.objectid);
5451         btrfs_set_stack_chunk_stripe_len(chunk, map->stripe_len);
5452         btrfs_set_stack_chunk_type(chunk, map->type);
5453         btrfs_set_stack_chunk_num_stripes(chunk, map->num_stripes);
5454         btrfs_set_stack_chunk_io_align(chunk, map->stripe_len);
5455         btrfs_set_stack_chunk_io_width(chunk, map->stripe_len);
5456         btrfs_set_stack_chunk_sector_size(chunk, fs_info->sectorsize);
5457         btrfs_set_stack_chunk_sub_stripes(chunk, map->sub_stripes);
5458
5459         key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
5460         key.type = BTRFS_CHUNK_ITEM_KEY;
5461         key.offset = chunk_offset;
5462
5463         ret = btrfs_insert_item(trans, chunk_root, &key, chunk, item_size);
5464         if (ret == 0 && map->type & BTRFS_BLOCK_GROUP_SYSTEM) {
5465                 /*
5466                  * TODO: Cleanup of inserted chunk root in case of
5467                  * failure.
5468                  */
5469                 ret = btrfs_add_system_chunk(fs_info, &key, chunk, item_size);
5470         }
5471
5472 out:
5473         kfree(chunk);
5474         free_extent_map(em);
5475         return ret;
5476 }
5477
5478 static noinline int init_first_rw_device(struct btrfs_trans_handle *trans)
5479 {
5480         struct btrfs_fs_info *fs_info = trans->fs_info;
5481         u64 alloc_profile;
5482         int ret;
5483
5484         alloc_profile = btrfs_metadata_alloc_profile(fs_info);
5485         ret = btrfs_alloc_chunk(trans, alloc_profile);
5486         if (ret)
5487                 return ret;
5488
5489         alloc_profile = btrfs_system_alloc_profile(fs_info);
5490         ret = btrfs_alloc_chunk(trans, alloc_profile);
5491         return ret;
5492 }
5493
5494 static inline int btrfs_chunk_max_errors(struct map_lookup *map)
5495 {
5496         const int index = btrfs_bg_flags_to_raid_index(map->type);
5497
5498         return btrfs_raid_array[index].tolerated_failures;
5499 }
5500
5501 int btrfs_chunk_readonly(struct btrfs_fs_info *fs_info, u64 chunk_offset)
5502 {
5503         struct extent_map *em;
5504         struct map_lookup *map;
5505         int readonly = 0;
5506         int miss_ndevs = 0;
5507         int i;
5508
5509         em = btrfs_get_chunk_map(fs_info, chunk_offset, 1);
5510         if (IS_ERR(em))
5511                 return 1;
5512
5513         map = em->map_lookup;
5514         for (i = 0; i < map->num_stripes; i++) {
5515                 if (test_bit(BTRFS_DEV_STATE_MISSING,
5516                                         &map->stripes[i].dev->dev_state)) {
5517                         miss_ndevs++;
5518                         continue;
5519                 }
5520                 if (!test_bit(BTRFS_DEV_STATE_WRITEABLE,
5521                                         &map->stripes[i].dev->dev_state)) {
5522                         readonly = 1;
5523                         goto end;
5524                 }
5525         }
5526
5527         /*
5528          * If the number of missing devices is larger than max errors,
5529          * we can not write the data into that chunk successfully, so
5530          * set it readonly.
5531          */
5532         if (miss_ndevs > btrfs_chunk_max_errors(map))
5533                 readonly = 1;
5534 end:
5535         free_extent_map(em);
5536         return readonly;
5537 }
5538
5539 void btrfs_mapping_tree_free(struct extent_map_tree *tree)
5540 {
5541         struct extent_map *em;
5542
5543         while (1) {
5544                 write_lock(&tree->lock);
5545                 em = lookup_extent_mapping(tree, 0, (u64)-1);
5546                 if (em)
5547                         remove_extent_mapping(tree, em);
5548                 write_unlock(&tree->lock);
5549                 if (!em)
5550                         break;
5551                 /* once for us */
5552                 free_extent_map(em);
5553                 /* once for the tree */
5554                 free_extent_map(em);
5555         }
5556 }
5557
5558 int btrfs_num_copies(struct btrfs_fs_info *fs_info, u64 logical, u64 len)
5559 {
5560         struct extent_map *em;
5561         struct map_lookup *map;
5562         int ret;
5563
5564         em = btrfs_get_chunk_map(fs_info, logical, len);
5565         if (IS_ERR(em))
5566                 /*
5567                  * We could return errors for these cases, but that could get
5568                  * ugly and we'd probably do the same thing which is just not do
5569                  * anything else and exit, so return 1 so the callers don't try
5570                  * to use other copies.
5571                  */
5572                 return 1;
5573
5574         map = em->map_lookup;
5575         if (map->type & (BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID1_MASK))
5576                 ret = map->num_stripes;
5577         else if (map->type & BTRFS_BLOCK_GROUP_RAID10)
5578                 ret = map->sub_stripes;
5579         else if (map->type & BTRFS_BLOCK_GROUP_RAID5)
5580                 ret = 2;
5581         else if (map->type & BTRFS_BLOCK_GROUP_RAID6)
5582                 /*
5583                  * There could be two corrupted data stripes, we need
5584                  * to loop retry in order to rebuild the correct data.
5585                  *
5586                  * Fail a stripe at a time on every retry except the
5587                  * stripe under reconstruction.
5588                  */
5589                 ret = map->num_stripes;
5590         else
5591                 ret = 1;
5592         free_extent_map(em);
5593
5594         down_read(&fs_info->dev_replace.rwsem);
5595         if (btrfs_dev_replace_is_ongoing(&fs_info->dev_replace) &&
5596             fs_info->dev_replace.tgtdev)
5597                 ret++;
5598         up_read(&fs_info->dev_replace.rwsem);
5599
5600         return ret;
5601 }
5602
5603 unsigned long btrfs_full_stripe_len(struct btrfs_fs_info *fs_info,
5604                                     u64 logical)
5605 {
5606         struct extent_map *em;
5607         struct map_lookup *map;
5608         unsigned long len = fs_info->sectorsize;
5609
5610         em = btrfs_get_chunk_map(fs_info, logical, len);
5611
5612         if (!WARN_ON(IS_ERR(em))) {
5613                 map = em->map_lookup;
5614                 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK)
5615                         len = map->stripe_len * nr_data_stripes(map);
5616                 free_extent_map(em);
5617         }
5618         return len;
5619 }
5620
5621 int btrfs_is_parity_mirror(struct btrfs_fs_info *fs_info, u64 logical, u64 len)
5622 {
5623         struct extent_map *em;
5624         struct map_lookup *map;
5625         int ret = 0;
5626
5627         em = btrfs_get_chunk_map(fs_info, logical, len);
5628
5629         if(!WARN_ON(IS_ERR(em))) {
5630                 map = em->map_lookup;
5631                 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK)
5632                         ret = 1;
5633                 free_extent_map(em);
5634         }
5635         return ret;
5636 }
5637
5638 static int find_live_mirror(struct btrfs_fs_info *fs_info,
5639                             struct map_lookup *map, int first,
5640                             int dev_replace_is_ongoing)
5641 {
5642         int i;
5643         int num_stripes;
5644         int preferred_mirror;
5645         int tolerance;
5646         struct btrfs_device *srcdev;
5647
5648         ASSERT((map->type &
5649                  (BTRFS_BLOCK_GROUP_RAID1_MASK | BTRFS_BLOCK_GROUP_RAID10)));
5650
5651         if (map->type & BTRFS_BLOCK_GROUP_RAID10)
5652                 num_stripes = map->sub_stripes;
5653         else
5654                 num_stripes = map->num_stripes;
5655
5656         switch (fs_info->fs_devices->read_policy) {
5657         default:
5658                 /* Shouldn't happen, just warn and use pid instead of failing */
5659                 btrfs_warn_rl(fs_info,
5660                               "unknown read_policy type %u, reset to pid",
5661                               fs_info->fs_devices->read_policy);
5662                 fs_info->fs_devices->read_policy = BTRFS_READ_POLICY_PID;
5663                 fallthrough;
5664         case BTRFS_READ_POLICY_PID:
5665                 preferred_mirror = first + (current->pid % num_stripes);
5666                 break;
5667         }
5668
5669         if (dev_replace_is_ongoing &&
5670             fs_info->dev_replace.cont_reading_from_srcdev_mode ==
5671              BTRFS_DEV_REPLACE_ITEM_CONT_READING_FROM_SRCDEV_MODE_AVOID)
5672                 srcdev = fs_info->dev_replace.srcdev;
5673         else
5674                 srcdev = NULL;
5675
5676         /*
5677          * try to avoid the drive that is the source drive for a
5678          * dev-replace procedure, only choose it if no other non-missing
5679          * mirror is available
5680          */
5681         for (tolerance = 0; tolerance < 2; tolerance++) {
5682                 if (map->stripes[preferred_mirror].dev->bdev &&
5683                     (tolerance || map->stripes[preferred_mirror].dev != srcdev))
5684                         return preferred_mirror;
5685                 for (i = first; i < first + num_stripes; i++) {
5686                         if (map->stripes[i].dev->bdev &&
5687                             (tolerance || map->stripes[i].dev != srcdev))
5688                                 return i;
5689                 }
5690         }
5691
5692         /* we couldn't find one that doesn't fail.  Just return something
5693          * and the io error handling code will clean up eventually
5694          */
5695         return preferred_mirror;
5696 }
5697
5698 /* Bubble-sort the stripe set to put the parity/syndrome stripes last */
5699 static void sort_parity_stripes(struct btrfs_bio *bbio, int num_stripes)
5700 {
5701         int i;
5702         int again = 1;
5703
5704         while (again) {
5705                 again = 0;
5706                 for (i = 0; i < num_stripes - 1; i++) {
5707                         /* Swap if parity is on a smaller index */
5708                         if (bbio->raid_map[i] > bbio->raid_map[i + 1]) {
5709                                 swap(bbio->stripes[i], bbio->stripes[i + 1]);
5710                                 swap(bbio->raid_map[i], bbio->raid_map[i + 1]);
5711                                 again = 1;
5712                         }
5713                 }
5714         }
5715 }
5716
5717 static struct btrfs_bio *alloc_btrfs_bio(int total_stripes, int real_stripes)
5718 {
5719         struct btrfs_bio *bbio = kzalloc(
5720                  /* the size of the btrfs_bio */
5721                 sizeof(struct btrfs_bio) +
5722                 /* plus the variable array for the stripes */
5723                 sizeof(struct btrfs_bio_stripe) * (total_stripes) +
5724                 /* plus the variable array for the tgt dev */
5725                 sizeof(int) * (real_stripes) +
5726                 /*
5727                  * plus the raid_map, which includes both the tgt dev
5728                  * and the stripes
5729                  */
5730                 sizeof(u64) * (total_stripes),
5731                 GFP_NOFS|__GFP_NOFAIL);
5732
5733         atomic_set(&bbio->error, 0);
5734         refcount_set(&bbio->refs, 1);
5735
5736         bbio->tgtdev_map = (int *)(bbio->stripes + total_stripes);
5737         bbio->raid_map = (u64 *)(bbio->tgtdev_map + real_stripes);
5738
5739         return bbio;
5740 }
5741
5742 void btrfs_get_bbio(struct btrfs_bio *bbio)
5743 {
5744         WARN_ON(!refcount_read(&bbio->refs));
5745         refcount_inc(&bbio->refs);
5746 }
5747
5748 void btrfs_put_bbio(struct btrfs_bio *bbio)
5749 {
5750         if (!bbio)
5751                 return;
5752         if (refcount_dec_and_test(&bbio->refs))
5753                 kfree(bbio);
5754 }
5755
5756 /* can REQ_OP_DISCARD be sent with other REQ like REQ_OP_WRITE? */
5757 /*
5758  * Please note that, discard won't be sent to target device of device
5759  * replace.
5760  */
5761 static int __btrfs_map_block_for_discard(struct btrfs_fs_info *fs_info,
5762                                          u64 logical, u64 *length_ret,
5763                                          struct btrfs_bio **bbio_ret)
5764 {
5765         struct extent_map *em;
5766         struct map_lookup *map;
5767         struct btrfs_bio *bbio;
5768         u64 length = *length_ret;
5769         u64 offset;
5770         u64 stripe_nr;
5771         u64 stripe_nr_end;
5772         u64 stripe_end_offset;
5773         u64 stripe_cnt;
5774         u64 stripe_len;
5775         u64 stripe_offset;
5776         u64 num_stripes;
5777         u32 stripe_index;
5778         u32 factor = 0;
5779         u32 sub_stripes = 0;
5780         u64 stripes_per_dev = 0;
5781         u32 remaining_stripes = 0;
5782         u32 last_stripe = 0;
5783         int ret = 0;
5784         int i;
5785
5786         /* discard always return a bbio */
5787         ASSERT(bbio_ret);
5788
5789         em = btrfs_get_chunk_map(fs_info, logical, length);
5790         if (IS_ERR(em))
5791                 return PTR_ERR(em);
5792
5793         map = em->map_lookup;
5794         /* we don't discard raid56 yet */
5795         if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
5796                 ret = -EOPNOTSUPP;
5797                 goto out;
5798         }
5799
5800         offset = logical - em->start;
5801         length = min_t(u64, em->start + em->len - logical, length);
5802         *length_ret = length;
5803
5804         stripe_len = map->stripe_len;
5805         /*
5806          * stripe_nr counts the total number of stripes we have to stride
5807          * to get to this block
5808          */
5809         stripe_nr = div64_u64(offset, stripe_len);
5810
5811         /* stripe_offset is the offset of this block in its stripe */
5812         stripe_offset = offset - stripe_nr * stripe_len;
5813
5814         stripe_nr_end = round_up(offset + length, map->stripe_len);
5815         stripe_nr_end = div64_u64(stripe_nr_end, map->stripe_len);
5816         stripe_cnt = stripe_nr_end - stripe_nr;
5817         stripe_end_offset = stripe_nr_end * map->stripe_len -
5818                             (offset + length);
5819         /*
5820          * after this, stripe_nr is the number of stripes on this
5821          * device we have to walk to find the data, and stripe_index is
5822          * the number of our device in the stripe array
5823          */
5824         num_stripes = 1;
5825         stripe_index = 0;
5826         if (map->type & (BTRFS_BLOCK_GROUP_RAID0 |
5827                          BTRFS_BLOCK_GROUP_RAID10)) {
5828                 if (map->type & BTRFS_BLOCK_GROUP_RAID0)
5829                         sub_stripes = 1;
5830                 else
5831                         sub_stripes = map->sub_stripes;
5832
5833                 factor = map->num_stripes / sub_stripes;
5834                 num_stripes = min_t(u64, map->num_stripes,
5835                                     sub_stripes * stripe_cnt);
5836                 stripe_nr = div_u64_rem(stripe_nr, factor, &stripe_index);
5837                 stripe_index *= sub_stripes;
5838                 stripes_per_dev = div_u64_rem(stripe_cnt, factor,
5839                                               &remaining_stripes);
5840                 div_u64_rem(stripe_nr_end - 1, factor, &last_stripe);
5841                 last_stripe *= sub_stripes;
5842         } else if (map->type & (BTRFS_BLOCK_GROUP_RAID1_MASK |
5843                                 BTRFS_BLOCK_GROUP_DUP)) {
5844                 num_stripes = map->num_stripes;
5845         } else {
5846                 stripe_nr = div_u64_rem(stripe_nr, map->num_stripes,
5847                                         &stripe_index);
5848         }
5849
5850         bbio = alloc_btrfs_bio(num_stripes, 0);
5851         if (!bbio) {
5852                 ret = -ENOMEM;
5853                 goto out;
5854         }
5855
5856         for (i = 0; i < num_stripes; i++) {
5857                 bbio->stripes[i].physical =
5858                         map->stripes[stripe_index].physical +
5859                         stripe_offset + stripe_nr * map->stripe_len;
5860                 bbio->stripes[i].dev = map->stripes[stripe_index].dev;
5861
5862                 if (map->type & (BTRFS_BLOCK_GROUP_RAID0 |
5863                                  BTRFS_BLOCK_GROUP_RAID10)) {
5864                         bbio->stripes[i].length = stripes_per_dev *
5865                                 map->stripe_len;
5866
5867                         if (i / sub_stripes < remaining_stripes)
5868                                 bbio->stripes[i].length +=
5869                                         map->stripe_len;
5870
5871                         /*
5872                          * Special for the first stripe and
5873                          * the last stripe:
5874                          *
5875                          * |-------|...|-------|
5876                          *     |----------|
5877                          *    off     end_off
5878                          */
5879                         if (i < sub_stripes)
5880                                 bbio->stripes[i].length -=
5881                                         stripe_offset;
5882
5883                         if (stripe_index >= last_stripe &&
5884                             stripe_index <= (last_stripe +
5885                                              sub_stripes - 1))
5886                                 bbio->stripes[i].length -=
5887                                         stripe_end_offset;
5888
5889                         if (i == sub_stripes - 1)
5890                                 stripe_offset = 0;
5891                 } else {
5892                         bbio->stripes[i].length = length;
5893                 }
5894
5895                 stripe_index++;
5896                 if (stripe_index == map->num_stripes) {
5897                         stripe_index = 0;
5898                         stripe_nr++;
5899                 }
5900         }
5901
5902         *bbio_ret = bbio;
5903         bbio->map_type = map->type;
5904         bbio->num_stripes = num_stripes;
5905 out:
5906         free_extent_map(em);
5907         return ret;
5908 }
5909
5910 /*
5911  * In dev-replace case, for repair case (that's the only case where the mirror
5912  * is selected explicitly when calling btrfs_map_block), blocks left of the
5913  * left cursor can also be read from the target drive.
5914  *
5915  * For REQ_GET_READ_MIRRORS, the target drive is added as the last one to the
5916  * array of stripes.
5917  * For READ, it also needs to be supported using the same mirror number.
5918  *
5919  * If the requested block is not left of the left cursor, EIO is returned. This
5920  * can happen because btrfs_num_copies() returns one more in the dev-replace
5921  * case.
5922  */
5923 static int get_extra_mirror_from_replace(struct btrfs_fs_info *fs_info,
5924                                          u64 logical, u64 length,
5925                                          u64 srcdev_devid, int *mirror_num,
5926                                          u64 *physical)
5927 {
5928         struct btrfs_bio *bbio = NULL;
5929         int num_stripes;
5930         int index_srcdev = 0;
5931         int found = 0;
5932         u64 physical_of_found = 0;
5933         int i;
5934         int ret = 0;
5935
5936         ret = __btrfs_map_block(fs_info, BTRFS_MAP_GET_READ_MIRRORS,
5937                                 logical, &length, &bbio, 0, 0);
5938         if (ret) {
5939                 ASSERT(bbio == NULL);
5940                 return ret;
5941         }
5942
5943         num_stripes = bbio->num_stripes;
5944         if (*mirror_num > num_stripes) {
5945                 /*
5946                  * BTRFS_MAP_GET_READ_MIRRORS does not contain this mirror,
5947                  * that means that the requested area is not left of the left
5948                  * cursor
5949                  */
5950                 btrfs_put_bbio(bbio);
5951                 return -EIO;
5952         }
5953
5954         /*
5955          * process the rest of the function using the mirror_num of the source
5956          * drive. Therefore look it up first.  At the end, patch the device
5957          * pointer to the one of the target drive.
5958          */
5959         for (i = 0; i < num_stripes; i++) {
5960                 if (bbio->stripes[i].dev->devid != srcdev_devid)
5961                         continue;
5962
5963                 /*
5964                  * In case of DUP, in order to keep it simple, only add the
5965                  * mirror with the lowest physical address
5966                  */
5967                 if (found &&
5968                     physical_of_found <= bbio->stripes[i].physical)
5969                         continue;
5970
5971                 index_srcdev = i;
5972                 found = 1;
5973                 physical_of_found = bbio->stripes[i].physical;
5974         }
5975
5976         btrfs_put_bbio(bbio);
5977
5978         ASSERT(found);
5979         if (!found)
5980                 return -EIO;
5981
5982         *mirror_num = index_srcdev + 1;
5983         *physical = physical_of_found;
5984         return ret;
5985 }
5986
5987 static bool is_block_group_to_copy(struct btrfs_fs_info *fs_info, u64 logical)
5988 {
5989         struct btrfs_block_group *cache;
5990         bool ret;
5991
5992         /* Non zoned filesystem does not use "to_copy" flag */
5993         if (!btrfs_is_zoned(fs_info))
5994                 return false;
5995
5996         cache = btrfs_lookup_block_group(fs_info, logical);
5997
5998         spin_lock(&cache->lock);
5999         ret = cache->to_copy;
6000         spin_unlock(&cache->lock);
6001
6002         btrfs_put_block_group(cache);
6003         return ret;
6004 }
6005
6006 static void handle_ops_on_dev_replace(enum btrfs_map_op op,
6007                                       struct btrfs_bio **bbio_ret,
6008                                       struct btrfs_dev_replace *dev_replace,
6009                                       u64 logical,
6010                                       int *num_stripes_ret, int *max_errors_ret)
6011 {
6012         struct btrfs_bio *bbio = *bbio_ret;
6013         u64 srcdev_devid = dev_replace->srcdev->devid;
6014         int tgtdev_indexes = 0;
6015         int num_stripes = *num_stripes_ret;
6016         int max_errors = *max_errors_ret;
6017         int i;
6018
6019         if (op == BTRFS_MAP_WRITE) {
6020                 int index_where_to_add;
6021
6022                 /*
6023                  * A block group which have "to_copy" set will eventually
6024                  * copied by dev-replace process. We can avoid cloning IO here.
6025                  */
6026                 if (is_block_group_to_copy(dev_replace->srcdev->fs_info, logical))
6027                         return;
6028
6029                 /*
6030                  * duplicate the write operations while the dev replace
6031                  * procedure is running. Since the copying of the old disk to
6032                  * the new disk takes place at run time while the filesystem is
6033                  * mounted writable, the regular write operations to the old
6034                  * disk have to be duplicated to go to the new disk as well.
6035                  *
6036                  * Note that device->missing is handled by the caller, and that
6037                  * the write to the old disk is already set up in the stripes
6038                  * array.
6039                  */
6040                 index_where_to_add = num_stripes;
6041                 for (i = 0; i < num_stripes; i++) {
6042                         if (bbio->stripes[i].dev->devid == srcdev_devid) {
6043                                 /* write to new disk, too */
6044                                 struct btrfs_bio_stripe *new =
6045                                         bbio->stripes + index_where_to_add;
6046                                 struct btrfs_bio_stripe *old =
6047                                         bbio->stripes + i;
6048
6049                                 new->physical = old->physical;
6050                                 new->length = old->length;
6051                                 new->dev = dev_replace->tgtdev;
6052                                 bbio->tgtdev_map[i] = index_where_to_add;
6053                                 index_where_to_add++;
6054                                 max_errors++;
6055                                 tgtdev_indexes++;
6056                         }
6057                 }
6058                 num_stripes = index_where_to_add;
6059         } else if (op == BTRFS_MAP_GET_READ_MIRRORS) {
6060                 int index_srcdev = 0;
6061                 int found = 0;
6062                 u64 physical_of_found = 0;
6063
6064                 /*
6065                  * During the dev-replace procedure, the target drive can also
6066                  * be used to read data in case it is needed to repair a corrupt
6067                  * block elsewhere. This is possible if the requested area is
6068                  * left of the left cursor. In this area, the target drive is a
6069                  * full copy of the source drive.
6070                  */
6071                 for (i = 0; i < num_stripes; i++) {
6072                         if (bbio->stripes[i].dev->devid == srcdev_devid) {
6073                                 /*
6074                                  * In case of DUP, in order to keep it simple,
6075                                  * only add the mirror with the lowest physical
6076                                  * address
6077                                  */
6078                                 if (found &&
6079                                     physical_of_found <=
6080                                      bbio->stripes[i].physical)
6081                                         continue;
6082                                 index_srcdev = i;
6083                                 found = 1;
6084                                 physical_of_found = bbio->stripes[i].physical;
6085                         }
6086                 }
6087                 if (found) {
6088                         struct btrfs_bio_stripe *tgtdev_stripe =
6089                                 bbio->stripes + num_stripes;
6090
6091                         tgtdev_stripe->physical = physical_of_found;
6092                         tgtdev_stripe->length =
6093                                 bbio->stripes[index_srcdev].length;
6094                         tgtdev_stripe->dev = dev_replace->tgtdev;
6095                         bbio->tgtdev_map[index_srcdev] = num_stripes;
6096
6097                         tgtdev_indexes++;
6098                         num_stripes++;
6099                 }
6100         }
6101
6102         *num_stripes_ret = num_stripes;
6103         *max_errors_ret = max_errors;
6104         bbio->num_tgtdevs = tgtdev_indexes;
6105         *bbio_ret = bbio;
6106 }
6107
6108 static bool need_full_stripe(enum btrfs_map_op op)
6109 {
6110         return (op == BTRFS_MAP_WRITE || op == BTRFS_MAP_GET_READ_MIRRORS);
6111 }
6112
6113 /*
6114  * Calculate the geometry of a particular (address, len) tuple. This
6115  * information is used to calculate how big a particular bio can get before it
6116  * straddles a stripe.
6117  *
6118  * @fs_info: the filesystem
6119  * @em:      mapping containing the logical extent
6120  * @op:      type of operation - write or read
6121  * @logical: address that we want to figure out the geometry of
6122  * @io_geom: pointer used to return values
6123  *
6124  * Returns < 0 in case a chunk for the given logical address cannot be found,
6125  * usually shouldn't happen unless @logical is corrupted, 0 otherwise.
6126  */
6127 int btrfs_get_io_geometry(struct btrfs_fs_info *fs_info, struct extent_map *em,
6128                           enum btrfs_map_op op, u64 logical,
6129                           struct btrfs_io_geometry *io_geom)
6130 {
6131         struct map_lookup *map;
6132         u64 len;
6133         u64 offset;
6134         u64 stripe_offset;
6135         u64 stripe_nr;
6136         u64 stripe_len;
6137         u64 raid56_full_stripe_start = (u64)-1;
6138         int data_stripes;
6139
6140         ASSERT(op != BTRFS_MAP_DISCARD);
6141
6142         map = em->map_lookup;
6143         /* Offset of this logical address in the chunk */
6144         offset = logical - em->start;
6145         /* Len of a stripe in a chunk */
6146         stripe_len = map->stripe_len;
6147         /* Stripe where this block falls in */
6148         stripe_nr = div64_u64(offset, stripe_len);
6149         /* Offset of stripe in the chunk */
6150         stripe_offset = stripe_nr * stripe_len;
6151         if (offset < stripe_offset) {
6152                 btrfs_crit(fs_info,
6153 "stripe math has gone wrong, stripe_offset=%llu offset=%llu start=%llu logical=%llu stripe_len=%llu",
6154                         stripe_offset, offset, em->start, logical, stripe_len);
6155                 return -EINVAL;
6156         }
6157
6158         /* stripe_offset is the offset of this block in its stripe */
6159         stripe_offset = offset - stripe_offset;
6160         data_stripes = nr_data_stripes(map);
6161
6162         if (map->type & BTRFS_BLOCK_GROUP_PROFILE_MASK) {
6163                 u64 max_len = stripe_len - stripe_offset;
6164
6165                 /*
6166                  * In case of raid56, we need to know the stripe aligned start
6167                  */
6168                 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
6169                         unsigned long full_stripe_len = stripe_len * data_stripes;
6170                         raid56_full_stripe_start = offset;
6171
6172                         /*
6173                          * Allow a write of a full stripe, but make sure we
6174                          * don't allow straddling of stripes
6175                          */
6176                         raid56_full_stripe_start = div64_u64(raid56_full_stripe_start,
6177                                         full_stripe_len);
6178                         raid56_full_stripe_start *= full_stripe_len;
6179
6180                         /*
6181                          * For writes to RAID[56], allow a full stripeset across
6182                          * all disks. For other RAID types and for RAID[56]
6183                          * reads, just allow a single stripe (on a single disk).
6184                          */
6185                         if (op == BTRFS_MAP_WRITE) {
6186                                 max_len = stripe_len * data_stripes -
6187                                           (offset - raid56_full_stripe_start);
6188                         }
6189                 }
6190                 len = min_t(u64, em->len - offset, max_len);
6191         } else {
6192                 len = em->len - offset;
6193         }
6194
6195         io_geom->len = len;
6196         io_geom->offset = offset;
6197         io_geom->stripe_len = stripe_len;
6198         io_geom->stripe_nr = stripe_nr;
6199         io_geom->stripe_offset = stripe_offset;
6200         io_geom->raid56_stripe_offset = raid56_full_stripe_start;
6201
6202         return 0;
6203 }
6204
6205 static int __btrfs_map_block(struct btrfs_fs_info *fs_info,
6206                              enum btrfs_map_op op,
6207                              u64 logical, u64 *length,
6208                              struct btrfs_bio **bbio_ret,
6209                              int mirror_num, int need_raid_map)
6210 {
6211         struct extent_map *em;
6212         struct map_lookup *map;
6213         u64 stripe_offset;
6214         u64 stripe_nr;
6215         u64 stripe_len;
6216         u32 stripe_index;
6217         int data_stripes;
6218         int i;
6219         int ret = 0;
6220         int num_stripes;
6221         int max_errors = 0;
6222         int tgtdev_indexes = 0;
6223         struct btrfs_bio *bbio = NULL;
6224         struct btrfs_dev_replace *dev_replace = &fs_info->dev_replace;
6225         int dev_replace_is_ongoing = 0;
6226         int num_alloc_stripes;
6227         int patch_the_first_stripe_for_dev_replace = 0;
6228         u64 physical_to_patch_in_first_stripe = 0;
6229         u64 raid56_full_stripe_start = (u64)-1;
6230         struct btrfs_io_geometry geom;
6231
6232         ASSERT(bbio_ret);
6233         ASSERT(op != BTRFS_MAP_DISCARD);
6234
6235         em = btrfs_get_chunk_map(fs_info, logical, *length);
6236         ASSERT(!IS_ERR(em));
6237
6238         ret = btrfs_get_io_geometry(fs_info, em, op, logical, &geom);
6239         if (ret < 0)
6240                 return ret;
6241
6242         map = em->map_lookup;
6243
6244         *length = geom.len;
6245         stripe_len = geom.stripe_len;
6246         stripe_nr = geom.stripe_nr;
6247         stripe_offset = geom.stripe_offset;
6248         raid56_full_stripe_start = geom.raid56_stripe_offset;
6249         data_stripes = nr_data_stripes(map);
6250
6251         down_read(&dev_replace->rwsem);
6252         dev_replace_is_ongoing = btrfs_dev_replace_is_ongoing(dev_replace);
6253         /*
6254          * Hold the semaphore for read during the whole operation, write is
6255          * requested at commit time but must wait.
6256          */
6257         if (!dev_replace_is_ongoing)
6258                 up_read(&dev_replace->rwsem);
6259
6260         if (dev_replace_is_ongoing && mirror_num == map->num_stripes + 1 &&
6261             !need_full_stripe(op) && dev_replace->tgtdev != NULL) {
6262                 ret = get_extra_mirror_from_replace(fs_info, logical, *length,
6263                                                     dev_replace->srcdev->devid,
6264                                                     &mirror_num,
6265                                             &physical_to_patch_in_first_stripe);
6266                 if (ret)
6267                         goto out;
6268                 else
6269                         patch_the_first_stripe_for_dev_replace = 1;
6270         } else if (mirror_num > map->num_stripes) {
6271                 mirror_num = 0;
6272         }
6273
6274         num_stripes = 1;
6275         stripe_index = 0;
6276         if (map->type & BTRFS_BLOCK_GROUP_RAID0) {
6277                 stripe_nr = div_u64_rem(stripe_nr, map->num_stripes,
6278                                 &stripe_index);
6279                 if (!need_full_stripe(op))
6280                         mirror_num = 1;
6281         } else if (map->type & BTRFS_BLOCK_GROUP_RAID1_MASK) {
6282                 if (need_full_stripe(op))
6283                         num_stripes = map->num_stripes;
6284                 else if (mirror_num)
6285                         stripe_index = mirror_num - 1;
6286                 else {
6287                         stripe_index = find_live_mirror(fs_info, map, 0,
6288                                             dev_replace_is_ongoing);
6289                         mirror_num = stripe_index + 1;
6290                 }
6291
6292         } else if (map->type & BTRFS_BLOCK_GROUP_DUP) {
6293                 if (need_full_stripe(op)) {
6294                         num_stripes = map->num_stripes;
6295                 } else if (mirror_num) {
6296                         stripe_index = mirror_num - 1;
6297                 } else {
6298                         mirror_num = 1;
6299                 }
6300
6301         } else if (map->type & BTRFS_BLOCK_GROUP_RAID10) {
6302                 u32 factor = map->num_stripes / map->sub_stripes;
6303
6304                 stripe_nr = div_u64_rem(stripe_nr, factor, &stripe_index);
6305                 stripe_index *= map->sub_stripes;
6306
6307                 if (need_full_stripe(op))
6308                         num_stripes = map->sub_stripes;
6309                 else if (mirror_num)
6310                         stripe_index += mirror_num - 1;
6311                 else {
6312                         int old_stripe_index = stripe_index;
6313                         stripe_index = find_live_mirror(fs_info, map,
6314                                               stripe_index,
6315                                               dev_replace_is_ongoing);
6316                         mirror_num = stripe_index - old_stripe_index + 1;
6317                 }
6318
6319         } else if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
6320                 if (need_raid_map && (need_full_stripe(op) || mirror_num > 1)) {
6321                         /* push stripe_nr back to the start of the full stripe */
6322                         stripe_nr = div64_u64(raid56_full_stripe_start,
6323                                         stripe_len * data_stripes);
6324
6325                         /* RAID[56] write or recovery. Return all stripes */
6326                         num_stripes = map->num_stripes;
6327                         max_errors = nr_parity_stripes(map);
6328
6329                         *length = map->stripe_len;
6330                         stripe_index = 0;
6331                         stripe_offset = 0;
6332                 } else {
6333                         /*
6334                          * Mirror #0 or #1 means the original data block.
6335                          * Mirror #2 is RAID5 parity block.
6336                          * Mirror #3 is RAID6 Q block.
6337                          */
6338                         stripe_nr = div_u64_rem(stripe_nr,
6339                                         data_stripes, &stripe_index);
6340                         if (mirror_num > 1)
6341                                 stripe_index = data_stripes + mirror_num - 2;
6342
6343                         /* We distribute the parity blocks across stripes */
6344                         div_u64_rem(stripe_nr + stripe_index, map->num_stripes,
6345                                         &stripe_index);
6346                         if (!need_full_stripe(op) && mirror_num <= 1)
6347                                 mirror_num = 1;
6348                 }
6349         } else {
6350                 /*
6351                  * after this, stripe_nr is the number of stripes on this
6352                  * device we have to walk to find the data, and stripe_index is
6353                  * the number of our device in the stripe array
6354                  */
6355                 stripe_nr = div_u64_rem(stripe_nr, map->num_stripes,
6356                                 &stripe_index);
6357                 mirror_num = stripe_index + 1;
6358         }
6359         if (stripe_index >= map->num_stripes) {
6360                 btrfs_crit(fs_info,
6361                            "stripe index math went horribly wrong, got stripe_index=%u, num_stripes=%u",
6362                            stripe_index, map->num_stripes);
6363                 ret = -EINVAL;
6364                 goto out;
6365         }
6366
6367         num_alloc_stripes = num_stripes;
6368         if (dev_replace_is_ongoing && dev_replace->tgtdev != NULL) {
6369                 if (op == BTRFS_MAP_WRITE)
6370                         num_alloc_stripes <<= 1;
6371                 if (op == BTRFS_MAP_GET_READ_MIRRORS)
6372                         num_alloc_stripes++;
6373                 tgtdev_indexes = num_stripes;
6374         }
6375
6376         bbio = alloc_btrfs_bio(num_alloc_stripes, tgtdev_indexes);
6377         if (!bbio) {
6378                 ret = -ENOMEM;
6379                 goto out;
6380         }
6381
6382         for (i = 0; i < num_stripes; i++) {
6383                 bbio->stripes[i].physical = map->stripes[stripe_index].physical +
6384                         stripe_offset + stripe_nr * map->stripe_len;
6385                 bbio->stripes[i].dev = map->stripes[stripe_index].dev;
6386                 stripe_index++;
6387         }
6388
6389         /* build raid_map */
6390         if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK && need_raid_map &&
6391             (need_full_stripe(op) || mirror_num > 1)) {
6392                 u64 tmp;
6393                 unsigned rot;
6394
6395                 /* Work out the disk rotation on this stripe-set */
6396                 div_u64_rem(stripe_nr, num_stripes, &rot);
6397
6398                 /* Fill in the logical address of each stripe */
6399                 tmp = stripe_nr * data_stripes;
6400                 for (i = 0; i < data_stripes; i++)
6401                         bbio->raid_map[(i+rot) % num_stripes] =
6402                                 em->start + (tmp + i) * map->stripe_len;
6403
6404                 bbio->raid_map[(i+rot) % map->num_stripes] = RAID5_P_STRIPE;
6405                 if (map->type & BTRFS_BLOCK_GROUP_RAID6)
6406                         bbio->raid_map[(i+rot+1) % num_stripes] =
6407                                 RAID6_Q_STRIPE;
6408
6409                 sort_parity_stripes(bbio, num_stripes);
6410         }
6411
6412         if (need_full_stripe(op))
6413                 max_errors = btrfs_chunk_max_errors(map);
6414
6415         if (dev_replace_is_ongoing && dev_replace->tgtdev != NULL &&
6416             need_full_stripe(op)) {
6417                 handle_ops_on_dev_replace(op, &bbio, dev_replace, logical,
6418                                           &num_stripes, &max_errors);
6419         }
6420
6421         *bbio_ret = bbio;
6422         bbio->map_type = map->type;
6423         bbio->num_stripes = num_stripes;
6424         bbio->max_errors = max_errors;
6425         bbio->mirror_num = mirror_num;
6426
6427         /*
6428          * this is the case that REQ_READ && dev_replace_is_ongoing &&
6429          * mirror_num == num_stripes + 1 && dev_replace target drive is
6430          * available as a mirror
6431          */
6432         if (patch_the_first_stripe_for_dev_replace && num_stripes > 0) {
6433                 WARN_ON(num_stripes > 1);
6434                 bbio->stripes[0].dev = dev_replace->tgtdev;
6435                 bbio->stripes[0].physical = physical_to_patch_in_first_stripe;
6436                 bbio->mirror_num = map->num_stripes + 1;
6437         }
6438 out:
6439         if (dev_replace_is_ongoing) {
6440                 lockdep_assert_held(&dev_replace->rwsem);
6441                 /* Unlock and let waiting writers proceed */
6442                 up_read(&dev_replace->rwsem);
6443         }
6444         free_extent_map(em);
6445         return ret;
6446 }
6447
6448 int btrfs_map_block(struct btrfs_fs_info *fs_info, enum btrfs_map_op op,
6449                       u64 logical, u64 *length,
6450                       struct btrfs_bio **bbio_ret, int mirror_num)
6451 {
6452         if (op == BTRFS_MAP_DISCARD)
6453                 return __btrfs_map_block_for_discard(fs_info, logical,
6454                                                      length, bbio_ret);
6455
6456         return __btrfs_map_block(fs_info, op, logical, length, bbio_ret,
6457                                  mirror_num, 0);
6458 }
6459
6460 /* For Scrub/replace */
6461 int btrfs_map_sblock(struct btrfs_fs_info *fs_info, enum btrfs_map_op op,
6462                      u64 logical, u64 *length,
6463                      struct btrfs_bio **bbio_ret)
6464 {
6465         return __btrfs_map_block(fs_info, op, logical, length, bbio_ret, 0, 1);
6466 }
6467
6468 static inline void btrfs_end_bbio(struct btrfs_bio *bbio, struct bio *bio)
6469 {
6470         bio->bi_private = bbio->private;
6471         bio->bi_end_io = bbio->end_io;
6472         bio_endio(bio);
6473
6474         btrfs_put_bbio(bbio);
6475 }
6476
6477 static void btrfs_end_bio(struct bio *bio)
6478 {
6479         struct btrfs_bio *bbio = bio->bi_private;
6480         int is_orig_bio = 0;
6481
6482         if (bio->bi_status) {
6483                 atomic_inc(&bbio->error);
6484                 if (bio->bi_status == BLK_STS_IOERR ||
6485                     bio->bi_status == BLK_STS_TARGET) {
6486                         struct btrfs_device *dev = btrfs_io_bio(bio)->device;
6487
6488                         ASSERT(dev->bdev);
6489                         if (btrfs_op(bio) == BTRFS_MAP_WRITE)
6490                                 btrfs_dev_stat_inc_and_print(dev,
6491                                                 BTRFS_DEV_STAT_WRITE_ERRS);
6492                         else if (!(bio->bi_opf & REQ_RAHEAD))
6493                                 btrfs_dev_stat_inc_and_print(dev,
6494                                                 BTRFS_DEV_STAT_READ_ERRS);
6495                         if (bio->bi_opf & REQ_PREFLUSH)
6496                                 btrfs_dev_stat_inc_and_print(dev,
6497                                                 BTRFS_DEV_STAT_FLUSH_ERRS);
6498                 }
6499         }
6500
6501         if (bio == bbio->orig_bio)
6502                 is_orig_bio = 1;
6503
6504         btrfs_bio_counter_dec(bbio->fs_info);
6505
6506         if (atomic_dec_and_test(&bbio->stripes_pending)) {
6507                 if (!is_orig_bio) {
6508                         bio_put(bio);
6509                         bio = bbio->orig_bio;
6510                 }
6511
6512                 btrfs_io_bio(bio)->mirror_num = bbio->mirror_num;
6513                 /* only send an error to the higher layers if it is
6514                  * beyond the tolerance of the btrfs bio
6515                  */
6516                 if (atomic_read(&bbio->error) > bbio->max_errors) {
6517                         bio->bi_status = BLK_STS_IOERR;
6518                 } else {
6519                         /*
6520                          * this bio is actually up to date, we didn't
6521                          * go over the max number of errors
6522                          */
6523                         bio->bi_status = BLK_STS_OK;
6524                 }
6525
6526                 btrfs_end_bbio(bbio, bio);
6527         } else if (!is_orig_bio) {
6528                 bio_put(bio);
6529         }
6530 }
6531
6532 static void submit_stripe_bio(struct btrfs_bio *bbio, struct bio *bio,
6533                               u64 physical, struct btrfs_device *dev)
6534 {
6535         struct btrfs_fs_info *fs_info = bbio->fs_info;
6536
6537         bio->bi_private = bbio;
6538         btrfs_io_bio(bio)->device = dev;
6539         bio->bi_end_io = btrfs_end_bio;
6540         bio->bi_iter.bi_sector = physical >> 9;
6541         /*
6542          * For zone append writing, bi_sector must point the beginning of the
6543          * zone
6544          */
6545         if (bio_op(bio) == REQ_OP_ZONE_APPEND) {
6546                 if (btrfs_dev_is_sequential(dev, physical)) {
6547                         u64 zone_start = round_down(physical, fs_info->zone_size);
6548
6549                         bio->bi_iter.bi_sector = zone_start >> SECTOR_SHIFT;
6550                 } else {
6551                         bio->bi_opf &= ~REQ_OP_ZONE_APPEND;
6552                         bio->bi_opf |= REQ_OP_WRITE;
6553                 }
6554         }
6555         btrfs_debug_in_rcu(fs_info,
6556         "btrfs_map_bio: rw %d 0x%x, sector=%llu, dev=%lu (%s id %llu), size=%u",
6557                 bio_op(bio), bio->bi_opf, bio->bi_iter.bi_sector,
6558                 (unsigned long)dev->bdev->bd_dev, rcu_str_deref(dev->name),
6559                 dev->devid, bio->bi_iter.bi_size);
6560         bio_set_dev(bio, dev->bdev);
6561
6562         btrfs_bio_counter_inc_noblocked(fs_info);
6563
6564         btrfsic_submit_bio(bio);
6565 }
6566
6567 static void bbio_error(struct btrfs_bio *bbio, struct bio *bio, u64 logical)
6568 {
6569         atomic_inc(&bbio->error);
6570         if (atomic_dec_and_test(&bbio->stripes_pending)) {
6571                 /* Should be the original bio. */
6572                 WARN_ON(bio != bbio->orig_bio);
6573
6574                 btrfs_io_bio(bio)->mirror_num = bbio->mirror_num;
6575                 bio->bi_iter.bi_sector = logical >> 9;
6576                 if (atomic_read(&bbio->error) > bbio->max_errors)
6577                         bio->bi_status = BLK_STS_IOERR;
6578                 else
6579                         bio->bi_status = BLK_STS_OK;
6580                 btrfs_end_bbio(bbio, bio);
6581         }
6582 }
6583
6584 blk_status_t btrfs_map_bio(struct btrfs_fs_info *fs_info, struct bio *bio,
6585                            int mirror_num)
6586 {
6587         struct btrfs_device *dev;
6588         struct bio *first_bio = bio;
6589         u64 logical = bio->bi_iter.bi_sector << 9;
6590         u64 length = 0;
6591         u64 map_length;
6592         int ret;
6593         int dev_nr;
6594         int total_devs;
6595         struct btrfs_bio *bbio = NULL;
6596
6597         length = bio->bi_iter.bi_size;
6598         map_length = length;
6599
6600         btrfs_bio_counter_inc_blocked(fs_info);
6601         ret = __btrfs_map_block(fs_info, btrfs_op(bio), logical,
6602                                 &map_length, &bbio, mirror_num, 1);
6603         if (ret) {
6604                 btrfs_bio_counter_dec(fs_info);
6605                 return errno_to_blk_status(ret);
6606         }
6607
6608         total_devs = bbio->num_stripes;
6609         bbio->orig_bio = first_bio;
6610         bbio->private = first_bio->bi_private;
6611         bbio->end_io = first_bio->bi_end_io;
6612         bbio->fs_info = fs_info;
6613         atomic_set(&bbio->stripes_pending, bbio->num_stripes);
6614
6615         if ((bbio->map_type & BTRFS_BLOCK_GROUP_RAID56_MASK) &&
6616             ((btrfs_op(bio) == BTRFS_MAP_WRITE) || (mirror_num > 1))) {
6617                 /* In this case, map_length has been set to the length of
6618                    a single stripe; not the whole write */
6619                 if (btrfs_op(bio) == BTRFS_MAP_WRITE) {
6620                         ret = raid56_parity_write(fs_info, bio, bbio,
6621                                                   map_length);
6622                 } else {
6623                         ret = raid56_parity_recover(fs_info, bio, bbio,
6624                                                     map_length, mirror_num, 1);
6625                 }
6626
6627                 btrfs_bio_counter_dec(fs_info);
6628                 return errno_to_blk_status(ret);
6629         }
6630
6631         if (map_length < length) {
6632                 btrfs_crit(fs_info,
6633                            "mapping failed logical %llu bio len %llu len %llu",
6634                            logical, length, map_length);
6635                 BUG();
6636         }
6637
6638         for (dev_nr = 0; dev_nr < total_devs; dev_nr++) {
6639                 dev = bbio->stripes[dev_nr].dev;
6640                 if (!dev || !dev->bdev || test_bit(BTRFS_DEV_STATE_MISSING,
6641                                                    &dev->dev_state) ||
6642                     (btrfs_op(first_bio) == BTRFS_MAP_WRITE &&
6643                     !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))) {
6644                         bbio_error(bbio, first_bio, logical);
6645                         continue;
6646                 }
6647
6648                 if (dev_nr < total_devs - 1)
6649                         bio = btrfs_bio_clone(first_bio);
6650                 else
6651                         bio = first_bio;
6652
6653                 submit_stripe_bio(bbio, bio, bbio->stripes[dev_nr].physical, dev);
6654         }
6655         btrfs_bio_counter_dec(fs_info);
6656         return BLK_STS_OK;
6657 }
6658
6659 /*
6660  * Find a device specified by @devid or @uuid in the list of @fs_devices, or
6661  * return NULL.
6662  *
6663  * If devid and uuid are both specified, the match must be exact, otherwise
6664  * only devid is used.
6665  */
6666 struct btrfs_device *btrfs_find_device(struct btrfs_fs_devices *fs_devices,
6667                                        u64 devid, u8 *uuid, u8 *fsid)
6668 {
6669         struct btrfs_device *device;
6670         struct btrfs_fs_devices *seed_devs;
6671
6672         if (!fsid || !memcmp(fs_devices->metadata_uuid, fsid, BTRFS_FSID_SIZE)) {
6673                 list_for_each_entry(device, &fs_devices->devices, dev_list) {
6674                         if (device->devid == devid &&
6675                             (!uuid || memcmp(device->uuid, uuid,
6676                                              BTRFS_UUID_SIZE) == 0))
6677                                 return device;
6678                 }
6679         }
6680
6681         list_for_each_entry(seed_devs, &fs_devices->seed_list, seed_list) {
6682                 if (!fsid ||
6683                     !memcmp(seed_devs->metadata_uuid, fsid, BTRFS_FSID_SIZE)) {
6684                         list_for_each_entry(device, &seed_devs->devices,
6685                                             dev_list) {
6686                                 if (device->devid == devid &&
6687                                     (!uuid || memcmp(device->uuid, uuid,
6688                                                      BTRFS_UUID_SIZE) == 0))
6689                                         return device;
6690                         }
6691                 }
6692         }
6693
6694         return NULL;
6695 }
6696
6697 static struct btrfs_device *add_missing_dev(struct btrfs_fs_devices *fs_devices,
6698                                             u64 devid, u8 *dev_uuid)
6699 {
6700         struct btrfs_device *device;
6701         unsigned int nofs_flag;
6702
6703         /*
6704          * We call this under the chunk_mutex, so we want to use NOFS for this
6705          * allocation, however we don't want to change btrfs_alloc_device() to
6706          * always do NOFS because we use it in a lot of other GFP_KERNEL safe
6707          * places.
6708          */
6709         nofs_flag = memalloc_nofs_save();
6710         device = btrfs_alloc_device(NULL, &devid, dev_uuid);
6711         memalloc_nofs_restore(nofs_flag);
6712         if (IS_ERR(device))
6713                 return device;
6714
6715         list_add(&device->dev_list, &fs_devices->devices);
6716         device->fs_devices = fs_devices;
6717         fs_devices->num_devices++;
6718
6719         set_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state);
6720         fs_devices->missing_devices++;
6721
6722         return device;
6723 }
6724
6725 /**
6726  * btrfs_alloc_device - allocate struct btrfs_device
6727  * @fs_info:    used only for generating a new devid, can be NULL if
6728  *              devid is provided (i.e. @devid != NULL).
6729  * @devid:      a pointer to devid for this device.  If NULL a new devid
6730  *              is generated.
6731  * @uuid:       a pointer to UUID for this device.  If NULL a new UUID
6732  *              is generated.
6733  *
6734  * Return: a pointer to a new &struct btrfs_device on success; ERR_PTR()
6735  * on error.  Returned struct is not linked onto any lists and must be
6736  * destroyed with btrfs_free_device.
6737  */
6738 struct btrfs_device *btrfs_alloc_device(struct btrfs_fs_info *fs_info,
6739                                         const u64 *devid,
6740                                         const u8 *uuid)
6741 {
6742         struct btrfs_device *dev;
6743         u64 tmp;
6744
6745         if (WARN_ON(!devid && !fs_info))
6746                 return ERR_PTR(-EINVAL);
6747
6748         dev = __alloc_device(fs_info);
6749         if (IS_ERR(dev))
6750                 return dev;
6751
6752         if (devid)
6753                 tmp = *devid;
6754         else {
6755                 int ret;
6756
6757                 ret = find_next_devid(fs_info, &tmp);
6758                 if (ret) {
6759                         btrfs_free_device(dev);
6760                         return ERR_PTR(ret);
6761                 }
6762         }
6763         dev->devid = tmp;
6764
6765         if (uuid)
6766                 memcpy(dev->uuid, uuid, BTRFS_UUID_SIZE);
6767         else
6768                 generate_random_uuid(dev->uuid);
6769
6770         return dev;
6771 }
6772
6773 static void btrfs_report_missing_device(struct btrfs_fs_info *fs_info,
6774                                         u64 devid, u8 *uuid, bool error)
6775 {
6776         if (error)
6777                 btrfs_err_rl(fs_info, "devid %llu uuid %pU is missing",
6778                               devid, uuid);
6779         else
6780                 btrfs_warn_rl(fs_info, "devid %llu uuid %pU is missing",
6781                               devid, uuid);
6782 }
6783
6784 static u64 calc_stripe_length(u64 type, u64 chunk_len, int num_stripes)
6785 {
6786         int index = btrfs_bg_flags_to_raid_index(type);
6787         int ncopies = btrfs_raid_array[index].ncopies;
6788         const int nparity = btrfs_raid_array[index].nparity;
6789         int data_stripes;
6790
6791         if (nparity)
6792                 data_stripes = num_stripes - nparity;
6793         else
6794                 data_stripes = num_stripes / ncopies;
6795
6796         return div_u64(chunk_len, data_stripes);
6797 }
6798
6799 #if BITS_PER_LONG == 32
6800 /*
6801  * Due to page cache limit, metadata beyond BTRFS_32BIT_MAX_FILE_SIZE
6802  * can't be accessed on 32bit systems.
6803  *
6804  * This function do mount time check to reject the fs if it already has
6805  * metadata chunk beyond that limit.
6806  */
6807 static int check_32bit_meta_chunk(struct btrfs_fs_info *fs_info,
6808                                   u64 logical, u64 length, u64 type)
6809 {
6810         if (!(type & BTRFS_BLOCK_GROUP_METADATA))
6811                 return 0;
6812
6813         if (logical + length < MAX_LFS_FILESIZE)
6814                 return 0;
6815
6816         btrfs_err_32bit_limit(fs_info);
6817         return -EOVERFLOW;
6818 }
6819
6820 /*
6821  * This is to give early warning for any metadata chunk reaching
6822  * BTRFS_32BIT_EARLY_WARN_THRESHOLD.
6823  * Although we can still access the metadata, it's not going to be possible
6824  * once the limit is reached.
6825  */
6826 static void warn_32bit_meta_chunk(struct btrfs_fs_info *fs_info,
6827                                   u64 logical, u64 length, u64 type)
6828 {
6829         if (!(type & BTRFS_BLOCK_GROUP_METADATA))
6830                 return;
6831
6832         if (logical + length < BTRFS_32BIT_EARLY_WARN_THRESHOLD)
6833                 return;
6834
6835         btrfs_warn_32bit_limit(fs_info);
6836 }
6837 #endif
6838
6839 static int read_one_chunk(struct btrfs_key *key, struct extent_buffer *leaf,
6840                           struct btrfs_chunk *chunk)
6841 {
6842         struct btrfs_fs_info *fs_info = leaf->fs_info;
6843         struct extent_map_tree *map_tree = &fs_info->mapping_tree;
6844         struct map_lookup *map;
6845         struct extent_map *em;
6846         u64 logical;
6847         u64 length;
6848         u64 devid;
6849         u64 type;
6850         u8 uuid[BTRFS_UUID_SIZE];
6851         int num_stripes;
6852         int ret;
6853         int i;
6854
6855         logical = key->offset;
6856         length = btrfs_chunk_length(leaf, chunk);
6857         type = btrfs_chunk_type(leaf, chunk);
6858         num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
6859
6860 #if BITS_PER_LONG == 32
6861         ret = check_32bit_meta_chunk(fs_info, logical, length, type);
6862         if (ret < 0)
6863                 return ret;
6864         warn_32bit_meta_chunk(fs_info, logical, length, type);
6865 #endif
6866
6867         /*
6868          * Only need to verify chunk item if we're reading from sys chunk array,
6869          * as chunk item in tree block is already verified by tree-checker.
6870          */
6871         if (leaf->start == BTRFS_SUPER_INFO_OFFSET) {
6872                 ret = btrfs_check_chunk_valid(leaf, chunk, logical);
6873                 if (ret)
6874                         return ret;
6875         }
6876
6877         read_lock(&map_tree->lock);
6878         em = lookup_extent_mapping(map_tree, logical, 1);
6879         read_unlock(&map_tree->lock);
6880
6881         /* already mapped? */
6882         if (em && em->start <= logical && em->start + em->len > logical) {
6883                 free_extent_map(em);
6884                 return 0;
6885         } else if (em) {
6886                 free_extent_map(em);
6887         }
6888
6889         em = alloc_extent_map();
6890         if (!em)
6891                 return -ENOMEM;
6892         map = kmalloc(map_lookup_size(num_stripes), GFP_NOFS);
6893         if (!map) {
6894                 free_extent_map(em);
6895                 return -ENOMEM;
6896         }
6897
6898         set_bit(EXTENT_FLAG_FS_MAPPING, &em->flags);
6899         em->map_lookup = map;
6900         em->start = logical;
6901         em->len = length;
6902         em->orig_start = 0;
6903         em->block_start = 0;
6904         em->block_len = em->len;
6905
6906         map->num_stripes = num_stripes;
6907         map->io_width = btrfs_chunk_io_width(leaf, chunk);
6908         map->io_align = btrfs_chunk_io_align(leaf, chunk);
6909         map->stripe_len = btrfs_chunk_stripe_len(leaf, chunk);
6910         map->type = type;
6911         map->sub_stripes = btrfs_chunk_sub_stripes(leaf, chunk);
6912         map->verified_stripes = 0;
6913         em->orig_block_len = calc_stripe_length(type, em->len,
6914                                                 map->num_stripes);
6915         for (i = 0; i < num_stripes; i++) {
6916                 map->stripes[i].physical =
6917                         btrfs_stripe_offset_nr(leaf, chunk, i);
6918                 devid = btrfs_stripe_devid_nr(leaf, chunk, i);
6919                 read_extent_buffer(leaf, uuid, (unsigned long)
6920                                    btrfs_stripe_dev_uuid_nr(chunk, i),
6921                                    BTRFS_UUID_SIZE);
6922                 map->stripes[i].dev = btrfs_find_device(fs_info->fs_devices,
6923                                                         devid, uuid, NULL);
6924                 if (!map->stripes[i].dev &&
6925                     !btrfs_test_opt(fs_info, DEGRADED)) {
6926                         free_extent_map(em);
6927                         btrfs_report_missing_device(fs_info, devid, uuid, true);
6928                         return -ENOENT;
6929                 }
6930                 if (!map->stripes[i].dev) {
6931                         map->stripes[i].dev =
6932                                 add_missing_dev(fs_info->fs_devices, devid,
6933                                                 uuid);
6934                         if (IS_ERR(map->stripes[i].dev)) {
6935                                 free_extent_map(em);
6936                                 btrfs_err(fs_info,
6937                                         "failed to init missing dev %llu: %ld",
6938                                         devid, PTR_ERR(map->stripes[i].dev));
6939                                 return PTR_ERR(map->stripes[i].dev);
6940                         }
6941                         btrfs_report_missing_device(fs_info, devid, uuid, false);
6942                 }
6943                 set_bit(BTRFS_DEV_STATE_IN_FS_METADATA,
6944                                 &(map->stripes[i].dev->dev_state));
6945
6946         }
6947
6948         write_lock(&map_tree->lock);
6949         ret = add_extent_mapping(map_tree, em, 0);
6950         write_unlock(&map_tree->lock);
6951         if (ret < 0) {
6952                 btrfs_err(fs_info,
6953                           "failed to add chunk map, start=%llu len=%llu: %d",
6954                           em->start, em->len, ret);
6955         }
6956         free_extent_map(em);
6957
6958         return ret;
6959 }
6960
6961 static void fill_device_from_item(struct extent_buffer *leaf,
6962                                  struct btrfs_dev_item *dev_item,
6963                                  struct btrfs_device *device)
6964 {
6965         unsigned long ptr;
6966
6967         device->devid = btrfs_device_id(leaf, dev_item);
6968         device->disk_total_bytes = btrfs_device_total_bytes(leaf, dev_item);
6969         device->total_bytes = device->disk_total_bytes;
6970         device->commit_total_bytes = device->disk_total_bytes;
6971         device->bytes_used = btrfs_device_bytes_used(leaf, dev_item);
6972         device->commit_bytes_used = device->bytes_used;
6973         device->type = btrfs_device_type(leaf, dev_item);
6974         device->io_align = btrfs_device_io_align(leaf, dev_item);
6975         device->io_width = btrfs_device_io_width(leaf, dev_item);
6976         device->sector_size = btrfs_device_sector_size(leaf, dev_item);
6977         WARN_ON(device->devid == BTRFS_DEV_REPLACE_DEVID);
6978         clear_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state);
6979
6980         ptr = btrfs_device_uuid(dev_item);
6981         read_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE);
6982 }
6983
6984 static struct btrfs_fs_devices *open_seed_devices(struct btrfs_fs_info *fs_info,
6985                                                   u8 *fsid)
6986 {
6987         struct btrfs_fs_devices *fs_devices;
6988         int ret;
6989
6990         lockdep_assert_held(&uuid_mutex);
6991         ASSERT(fsid);
6992
6993         /* This will match only for multi-device seed fs */
6994         list_for_each_entry(fs_devices, &fs_info->fs_devices->seed_list, seed_list)
6995                 if (!memcmp(fs_devices->fsid, fsid, BTRFS_FSID_SIZE))
6996                         return fs_devices;
6997
6998
6999         fs_devices = find_fsid(fsid, NULL);
7000         if (!fs_devices) {
7001                 if (!btrfs_test_opt(fs_info, DEGRADED))
7002                         return ERR_PTR(-ENOENT);
7003
7004                 fs_devices = alloc_fs_devices(fsid, NULL);
7005                 if (IS_ERR(fs_devices))
7006                         return fs_devices;
7007
7008                 fs_devices->seeding = true;
7009                 fs_devices->opened = 1;
7010                 return fs_devices;
7011         }
7012
7013         /*
7014          * Upon first call for a seed fs fsid, just create a private copy of the
7015          * respective fs_devices and anchor it at fs_info->fs_devices->seed_list
7016          */
7017         fs_devices = clone_fs_devices(fs_devices);
7018         if (IS_ERR(fs_devices))
7019                 return fs_devices;
7020
7021         ret = open_fs_devices(fs_devices, FMODE_READ, fs_info->bdev_holder);
7022         if (ret) {
7023                 free_fs_devices(fs_devices);
7024                 return ERR_PTR(ret);
7025         }
7026
7027         if (!fs_devices->seeding) {
7028                 close_fs_devices(fs_devices);
7029                 free_fs_devices(fs_devices);
7030                 return ERR_PTR(-EINVAL);
7031         }
7032
7033         list_add(&fs_devices->seed_list, &fs_info->fs_devices->seed_list);
7034
7035         return fs_devices;
7036 }
7037
7038 static int read_one_dev(struct extent_buffer *leaf,
7039                         struct btrfs_dev_item *dev_item)
7040 {
7041         struct btrfs_fs_info *fs_info = leaf->fs_info;
7042         struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
7043         struct btrfs_device *device;
7044         u64 devid;
7045         int ret;
7046         u8 fs_uuid[BTRFS_FSID_SIZE];
7047         u8 dev_uuid[BTRFS_UUID_SIZE];
7048
7049         devid = btrfs_device_id(leaf, dev_item);
7050         read_extent_buffer(leaf, dev_uuid, btrfs_device_uuid(dev_item),
7051                            BTRFS_UUID_SIZE);
7052         read_extent_buffer(leaf, fs_uuid, btrfs_device_fsid(dev_item),
7053                            BTRFS_FSID_SIZE);
7054
7055         if (memcmp(fs_uuid, fs_devices->metadata_uuid, BTRFS_FSID_SIZE)) {
7056                 fs_devices = open_seed_devices(fs_info, fs_uuid);
7057                 if (IS_ERR(fs_devices))
7058                         return PTR_ERR(fs_devices);
7059         }
7060
7061         device = btrfs_find_device(fs_info->fs_devices, devid, dev_uuid,
7062                                    fs_uuid);
7063         if (!device) {
7064                 if (!btrfs_test_opt(fs_info, DEGRADED)) {
7065                         btrfs_report_missing_device(fs_info, devid,
7066                                                         dev_uuid, true);
7067                         return -ENOENT;
7068                 }
7069
7070                 device = add_missing_dev(fs_devices, devid, dev_uuid);
7071                 if (IS_ERR(device)) {
7072                         btrfs_err(fs_info,
7073                                 "failed to add missing dev %llu: %ld",
7074                                 devid, PTR_ERR(device));
7075                         return PTR_ERR(device);
7076                 }
7077                 btrfs_report_missing_device(fs_info, devid, dev_uuid, false);
7078         } else {
7079                 if (!device->bdev) {
7080                         if (!btrfs_test_opt(fs_info, DEGRADED)) {
7081                                 btrfs_report_missing_device(fs_info,
7082                                                 devid, dev_uuid, true);
7083                                 return -ENOENT;
7084                         }
7085                         btrfs_report_missing_device(fs_info, devid,
7086                                                         dev_uuid, false);
7087                 }
7088
7089                 if (!device->bdev &&
7090                     !test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state)) {
7091                         /*
7092                          * this happens when a device that was properly setup
7093                          * in the device info lists suddenly goes bad.
7094                          * device->bdev is NULL, and so we have to set
7095                          * device->missing to one here
7096                          */
7097                         device->fs_devices->missing_devices++;
7098                         set_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state);
7099                 }
7100
7101                 /* Move the device to its own fs_devices */
7102                 if (device->fs_devices != fs_devices) {
7103                         ASSERT(test_bit(BTRFS_DEV_STATE_MISSING,
7104                                                         &device->dev_state));
7105
7106                         list_move(&device->dev_list, &fs_devices->devices);
7107                         device->fs_devices->num_devices--;
7108                         fs_devices->num_devices++;
7109
7110                         device->fs_devices->missing_devices--;
7111                         fs_devices->missing_devices++;
7112
7113                         device->fs_devices = fs_devices;
7114                 }
7115         }
7116
7117         if (device->fs_devices != fs_info->fs_devices) {
7118                 BUG_ON(test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state));
7119                 if (device->generation !=
7120                     btrfs_device_generation(leaf, dev_item))
7121                         return -EINVAL;
7122         }
7123
7124         fill_device_from_item(leaf, dev_item, device);
7125         if (device->bdev) {
7126                 u64 max_total_bytes = i_size_read(device->bdev->bd_inode);
7127
7128                 if (device->total_bytes > max_total_bytes) {
7129                         btrfs_err(fs_info,
7130                         "device total_bytes should be at most %llu but found %llu",
7131                                   max_total_bytes, device->total_bytes);
7132                         return -EINVAL;
7133                 }
7134         }
7135         set_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state);
7136         if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) &&
7137            !test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) {
7138                 device->fs_devices->total_rw_bytes += device->total_bytes;
7139                 atomic64_add(device->total_bytes - device->bytes_used,
7140                                 &fs_info->free_chunk_space);
7141         }
7142         ret = 0;
7143         return ret;
7144 }
7145
7146 int btrfs_read_sys_array(struct btrfs_fs_info *fs_info)
7147 {
7148         struct btrfs_root *root = fs_info->tree_root;
7149         struct btrfs_super_block *super_copy = fs_info->super_copy;
7150         struct extent_buffer *sb;
7151         struct btrfs_disk_key *disk_key;
7152         struct btrfs_chunk *chunk;
7153         u8 *array_ptr;
7154         unsigned long sb_array_offset;
7155         int ret = 0;
7156         u32 num_stripes;
7157         u32 array_size;
7158         u32 len = 0;
7159         u32 cur_offset;
7160         u64 type;
7161         struct btrfs_key key;
7162
7163         ASSERT(BTRFS_SUPER_INFO_SIZE <= fs_info->nodesize);
7164         /*
7165          * This will create extent buffer of nodesize, superblock size is
7166          * fixed to BTRFS_SUPER_INFO_SIZE. If nodesize > sb size, this will
7167          * overallocate but we can keep it as-is, only the first page is used.
7168          */
7169         sb = btrfs_find_create_tree_block(fs_info, BTRFS_SUPER_INFO_OFFSET,
7170                                           root->root_key.objectid, 0);
7171         if (IS_ERR(sb))
7172                 return PTR_ERR(sb);
7173         set_extent_buffer_uptodate(sb);
7174         /*
7175          * The sb extent buffer is artificial and just used to read the system array.
7176          * set_extent_buffer_uptodate() call does not properly mark all it's
7177          * pages up-to-date when the page is larger: extent does not cover the
7178          * whole page and consequently check_page_uptodate does not find all
7179          * the page's extents up-to-date (the hole beyond sb),
7180          * write_extent_buffer then triggers a WARN_ON.
7181          *
7182          * Regular short extents go through mark_extent_buffer_dirty/writeback cycle,
7183          * but sb spans only this function. Add an explicit SetPageUptodate call
7184          * to silence the warning eg. on PowerPC 64.
7185          */
7186         if (PAGE_SIZE > BTRFS_SUPER_INFO_SIZE)
7187                 SetPageUptodate(sb->pages[0]);
7188
7189         write_extent_buffer(sb, super_copy, 0, BTRFS_SUPER_INFO_SIZE);
7190         array_size = btrfs_super_sys_array_size(super_copy);
7191
7192         array_ptr = super_copy->sys_chunk_array;
7193         sb_array_offset = offsetof(struct btrfs_super_block, sys_chunk_array);
7194         cur_offset = 0;
7195
7196         while (cur_offset < array_size) {
7197                 disk_key = (struct btrfs_disk_key *)array_ptr;
7198                 len = sizeof(*disk_key);
7199                 if (cur_offset + len > array_size)
7200                         goto out_short_read;
7201
7202                 btrfs_disk_key_to_cpu(&key, disk_key);
7203
7204                 array_ptr += len;
7205                 sb_array_offset += len;
7206                 cur_offset += len;
7207
7208                 if (key.type != BTRFS_CHUNK_ITEM_KEY) {
7209                         btrfs_err(fs_info,
7210                             "unexpected item type %u in sys_array at offset %u",
7211                                   (u32)key.type, cur_offset);
7212                         ret = -EIO;
7213                         break;
7214                 }
7215
7216                 chunk = (struct btrfs_chunk *)sb_array_offset;
7217                 /*
7218                  * At least one btrfs_chunk with one stripe must be present,
7219                  * exact stripe count check comes afterwards
7220                  */
7221                 len = btrfs_chunk_item_size(1);
7222                 if (cur_offset + len > array_size)
7223                         goto out_short_read;
7224
7225                 num_stripes = btrfs_chunk_num_stripes(sb, chunk);
7226                 if (!num_stripes) {
7227                         btrfs_err(fs_info,
7228                         "invalid number of stripes %u in sys_array at offset %u",
7229                                   num_stripes, cur_offset);
7230                         ret = -EIO;
7231                         break;
7232                 }
7233
7234                 type = btrfs_chunk_type(sb, chunk);
7235                 if ((type & BTRFS_BLOCK_GROUP_SYSTEM) == 0) {
7236                         btrfs_err(fs_info,
7237                         "invalid chunk type %llu in sys_array at offset %u",
7238                                   type, cur_offset);
7239                         ret = -EIO;
7240                         break;
7241                 }
7242
7243                 len = btrfs_chunk_item_size(num_stripes);
7244                 if (cur_offset + len > array_size)
7245                         goto out_short_read;
7246
7247                 ret = read_one_chunk(&key, sb, chunk);
7248                 if (ret)
7249                         break;
7250
7251                 array_ptr += len;
7252                 sb_array_offset += len;
7253                 cur_offset += len;
7254         }
7255         clear_extent_buffer_uptodate(sb);
7256         free_extent_buffer_stale(sb);
7257         return ret;
7258
7259 out_short_read:
7260         btrfs_err(fs_info, "sys_array too short to read %u bytes at offset %u",
7261                         len, cur_offset);
7262         clear_extent_buffer_uptodate(sb);
7263         free_extent_buffer_stale(sb);
7264         return -EIO;
7265 }
7266
7267 /*
7268  * Check if all chunks in the fs are OK for read-write degraded mount
7269  *
7270  * If the @failing_dev is specified, it's accounted as missing.
7271  *
7272  * Return true if all chunks meet the minimal RW mount requirements.
7273  * Return false if any chunk doesn't meet the minimal RW mount requirements.
7274  */
7275 bool btrfs_check_rw_degradable(struct btrfs_fs_info *fs_info,
7276                                         struct btrfs_device *failing_dev)
7277 {
7278         struct extent_map_tree *map_tree = &fs_info->mapping_tree;
7279         struct extent_map *em;
7280         u64 next_start = 0;
7281         bool ret = true;
7282
7283         read_lock(&map_tree->lock);
7284         em = lookup_extent_mapping(map_tree, 0, (u64)-1);
7285         read_unlock(&map_tree->lock);
7286         /* No chunk at all? Return false anyway */
7287         if (!em) {
7288                 ret = false;
7289                 goto out;
7290         }
7291         while (em) {
7292                 struct map_lookup *map;
7293                 int missing = 0;
7294                 int max_tolerated;
7295                 int i;
7296
7297                 map = em->map_lookup;
7298                 max_tolerated =
7299                         btrfs_get_num_tolerated_disk_barrier_failures(
7300                                         map->type);
7301                 for (i = 0; i < map->num_stripes; i++) {
7302                         struct btrfs_device *dev = map->stripes[i].dev;
7303
7304                         if (!dev || !dev->bdev ||
7305                             test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state) ||
7306                             dev->last_flush_error)
7307                                 missing++;
7308                         else if (failing_dev && failing_dev == dev)
7309                                 missing++;
7310                 }
7311                 if (missing > max_tolerated) {
7312                         if (!failing_dev)
7313                                 btrfs_warn(fs_info,
7314         "chunk %llu missing %d devices, max tolerance is %d for writable mount",
7315                                    em->start, missing, max_tolerated);
7316                         free_extent_map(em);
7317                         ret = false;
7318                         goto out;
7319                 }
7320                 next_start = extent_map_end(em);
7321                 free_extent_map(em);
7322
7323                 read_lock(&map_tree->lock);
7324                 em = lookup_extent_mapping(map_tree, next_start,
7325                                            (u64)(-1) - next_start);
7326                 read_unlock(&map_tree->lock);
7327         }
7328 out:
7329         return ret;
7330 }
7331
7332 static void readahead_tree_node_children(struct extent_buffer *node)
7333 {
7334         int i;
7335         const int nr_items = btrfs_header_nritems(node);
7336
7337         for (i = 0; i < nr_items; i++)
7338                 btrfs_readahead_node_child(node, i);
7339 }
7340
7341 int btrfs_read_chunk_tree(struct btrfs_fs_info *fs_info)
7342 {
7343         struct btrfs_root *root = fs_info->chunk_root;
7344         struct btrfs_path *path;
7345         struct extent_buffer *leaf;
7346         struct btrfs_key key;
7347         struct btrfs_key found_key;
7348         int ret;
7349         int slot;
7350         u64 total_dev = 0;
7351         u64 last_ra_node = 0;
7352
7353         path = btrfs_alloc_path();
7354         if (!path)
7355                 return -ENOMEM;
7356
7357         /*
7358          * uuid_mutex is needed only if we are mounting a sprout FS
7359          * otherwise we don't need it.
7360          */
7361         mutex_lock(&uuid_mutex);
7362
7363         /*
7364          * It is possible for mount and umount to race in such a way that
7365          * we execute this code path, but open_fs_devices failed to clear
7366          * total_rw_bytes. We certainly want it cleared before reading the
7367          * device items, so clear it here.
7368          */
7369         fs_info->fs_devices->total_rw_bytes = 0;
7370
7371         /*
7372          * Read all device items, and then all the chunk items. All
7373          * device items are found before any chunk item (their object id
7374          * is smaller than the lowest possible object id for a chunk
7375          * item - BTRFS_FIRST_CHUNK_TREE_OBJECTID).
7376          */
7377         key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
7378         key.offset = 0;
7379         key.type = 0;
7380         ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
7381         if (ret < 0)
7382                 goto error;
7383         while (1) {
7384                 struct extent_buffer *node;
7385
7386                 leaf = path->nodes[0];
7387                 slot = path->slots[0];
7388                 if (slot >= btrfs_header_nritems(leaf)) {
7389                         ret = btrfs_next_leaf(root, path);
7390                         if (ret == 0)
7391                                 continue;
7392                         if (ret < 0)
7393                                 goto error;
7394                         break;
7395                 }
7396                 /*
7397                  * The nodes on level 1 are not locked but we don't need to do
7398                  * that during mount time as nothing else can access the tree
7399                  */
7400                 node = path->nodes[1];
7401                 if (node) {
7402                         if (last_ra_node != node->start) {
7403                                 readahead_tree_node_children(node);
7404                                 last_ra_node = node->start;
7405                         }
7406                 }
7407                 btrfs_item_key_to_cpu(leaf, &found_key, slot);
7408                 if (found_key.type == BTRFS_DEV_ITEM_KEY) {
7409                         struct btrfs_dev_item *dev_item;
7410                         dev_item = btrfs_item_ptr(leaf, slot,
7411                                                   struct btrfs_dev_item);
7412                         ret = read_one_dev(leaf, dev_item);
7413                         if (ret)
7414                                 goto error;
7415                         total_dev++;
7416                 } else if (found_key.type == BTRFS_CHUNK_ITEM_KEY) {
7417                         struct btrfs_chunk *chunk;
7418                         chunk = btrfs_item_ptr(leaf, slot, struct btrfs_chunk);
7419                         mutex_lock(&fs_info->chunk_mutex);
7420                         ret = read_one_chunk(&found_key, leaf, chunk);
7421                         mutex_unlock(&fs_info->chunk_mutex);
7422                         if (ret)
7423                                 goto error;
7424                 }
7425                 path->slots[0]++;
7426         }
7427
7428         /*
7429          * After loading chunk tree, we've got all device information,
7430          * do another round of validation checks.
7431          */
7432         if (total_dev != fs_info->fs_devices->total_devices) {
7433                 btrfs_err(fs_info,
7434            "super_num_devices %llu mismatch with num_devices %llu found here",
7435                           btrfs_super_num_devices(fs_info->super_copy),
7436                           total_dev);
7437                 ret = -EINVAL;
7438                 goto error;
7439         }
7440         if (btrfs_super_total_bytes(fs_info->super_copy) <
7441             fs_info->fs_devices->total_rw_bytes) {
7442                 btrfs_err(fs_info,
7443         "super_total_bytes %llu mismatch with fs_devices total_rw_bytes %llu",
7444                           btrfs_super_total_bytes(fs_info->super_copy),
7445                           fs_info->fs_devices->total_rw_bytes);
7446                 ret = -EINVAL;
7447                 goto error;
7448         }
7449         ret = 0;
7450 error:
7451         mutex_unlock(&uuid_mutex);
7452
7453         btrfs_free_path(path);
7454         return ret;
7455 }
7456
7457 void btrfs_init_devices_late(struct btrfs_fs_info *fs_info)
7458 {
7459         struct btrfs_fs_devices *fs_devices = fs_info->fs_devices, *seed_devs;
7460         struct btrfs_device *device;
7461
7462         fs_devices->fs_info = fs_info;
7463
7464         mutex_lock(&fs_devices->device_list_mutex);
7465         list_for_each_entry(device, &fs_devices->devices, dev_list)
7466                 device->fs_info = fs_info;
7467
7468         list_for_each_entry(seed_devs, &fs_devices->seed_list, seed_list) {
7469                 list_for_each_entry(device, &seed_devs->devices, dev_list)
7470                         device->fs_info = fs_info;
7471
7472                 seed_devs->fs_info = fs_info;
7473         }
7474         mutex_unlock(&fs_devices->device_list_mutex);
7475 }
7476
7477 static u64 btrfs_dev_stats_value(const struct extent_buffer *eb,
7478                                  const struct btrfs_dev_stats_item *ptr,
7479                                  int index)
7480 {
7481         u64 val;
7482
7483         read_extent_buffer(eb, &val,
7484                            offsetof(struct btrfs_dev_stats_item, values) +
7485                             ((unsigned long)ptr) + (index * sizeof(u64)),
7486                            sizeof(val));
7487         return val;
7488 }
7489
7490 static void btrfs_set_dev_stats_value(struct extent_buffer *eb,
7491                                       struct btrfs_dev_stats_item *ptr,
7492                                       int index, u64 val)
7493 {
7494         write_extent_buffer(eb, &val,
7495                             offsetof(struct btrfs_dev_stats_item, values) +
7496                              ((unsigned long)ptr) + (index * sizeof(u64)),
7497                             sizeof(val));
7498 }
7499
7500 static int btrfs_device_init_dev_stats(struct btrfs_device *device,
7501                                        struct btrfs_path *path)
7502 {
7503         struct btrfs_dev_stats_item *ptr;
7504         struct extent_buffer *eb;
7505         struct btrfs_key key;
7506         int item_size;
7507         int i, ret, slot;
7508
7509         if (!device->fs_info->dev_root)
7510                 return 0;
7511
7512         key.objectid = BTRFS_DEV_STATS_OBJECTID;
7513         key.type = BTRFS_PERSISTENT_ITEM_KEY;
7514         key.offset = device->devid;
7515         ret = btrfs_search_slot(NULL, device->fs_info->dev_root, &key, path, 0, 0);
7516         if (ret) {
7517                 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
7518                         btrfs_dev_stat_set(device, i, 0);
7519                 device->dev_stats_valid = 1;
7520                 btrfs_release_path(path);
7521                 return ret < 0 ? ret : 0;
7522         }
7523         slot = path->slots[0];
7524         eb = path->nodes[0];
7525         item_size = btrfs_item_size_nr(eb, slot);
7526
7527         ptr = btrfs_item_ptr(eb, slot, struct btrfs_dev_stats_item);
7528
7529         for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) {
7530                 if (item_size >= (1 + i) * sizeof(__le64))
7531                         btrfs_dev_stat_set(device, i,
7532                                            btrfs_dev_stats_value(eb, ptr, i));
7533                 else
7534                         btrfs_dev_stat_set(device, i, 0);
7535         }
7536
7537         device->dev_stats_valid = 1;
7538         btrfs_dev_stat_print_on_load(device);
7539         btrfs_release_path(path);
7540
7541         return 0;
7542 }
7543
7544 int btrfs_init_dev_stats(struct btrfs_fs_info *fs_info)
7545 {
7546         struct btrfs_fs_devices *fs_devices = fs_info->fs_devices, *seed_devs;
7547         struct btrfs_device *device;
7548         struct btrfs_path *path = NULL;
7549         int ret = 0;
7550
7551         path = btrfs_alloc_path();
7552         if (!path)
7553                 return -ENOMEM;
7554
7555         mutex_lock(&fs_devices->device_list_mutex);
7556         list_for_each_entry(device, &fs_devices->devices, dev_list) {
7557                 ret = btrfs_device_init_dev_stats(device, path);
7558                 if (ret)
7559                         goto out;
7560         }
7561         list_for_each_entry(seed_devs, &fs_devices->seed_list, seed_list) {
7562                 list_for_each_entry(device, &seed_devs->devices, dev_list) {
7563                         ret = btrfs_device_init_dev_stats(device, path);
7564                         if (ret)
7565                                 goto out;
7566                 }
7567         }
7568 out:
7569         mutex_unlock(&fs_devices->device_list_mutex);
7570
7571         btrfs_free_path(path);
7572         return ret;
7573 }
7574
7575 static int update_dev_stat_item(struct btrfs_trans_handle *trans,
7576                                 struct btrfs_device *device)
7577 {
7578         struct btrfs_fs_info *fs_info = trans->fs_info;
7579         struct btrfs_root *dev_root = fs_info->dev_root;
7580         struct btrfs_path *path;
7581         struct btrfs_key key;
7582         struct extent_buffer *eb;
7583         struct btrfs_dev_stats_item *ptr;
7584         int ret;
7585         int i;
7586
7587         key.objectid = BTRFS_DEV_STATS_OBJECTID;
7588         key.type = BTRFS_PERSISTENT_ITEM_KEY;
7589         key.offset = device->devid;
7590
7591         path = btrfs_alloc_path();
7592         if (!path)
7593                 return -ENOMEM;
7594         ret = btrfs_search_slot(trans, dev_root, &key, path, -1, 1);
7595         if (ret < 0) {
7596                 btrfs_warn_in_rcu(fs_info,
7597                         "error %d while searching for dev_stats item for device %s",
7598                               ret, rcu_str_deref(device->name));
7599                 goto out;
7600         }
7601
7602         if (ret == 0 &&
7603             btrfs_item_size_nr(path->nodes[0], path->slots[0]) < sizeof(*ptr)) {
7604                 /* need to delete old one and insert a new one */
7605                 ret = btrfs_del_item(trans, dev_root, path);
7606                 if (ret != 0) {
7607                         btrfs_warn_in_rcu(fs_info,
7608                                 "delete too small dev_stats item for device %s failed %d",
7609                                       rcu_str_deref(device->name), ret);
7610                         goto out;
7611                 }
7612                 ret = 1;
7613         }
7614
7615         if (ret == 1) {
7616                 /* need to insert a new item */
7617                 btrfs_release_path(path);
7618                 ret = btrfs_insert_empty_item(trans, dev_root, path,
7619                                               &key, sizeof(*ptr));
7620                 if (ret < 0) {
7621                         btrfs_warn_in_rcu(fs_info,
7622                                 "insert dev_stats item for device %s failed %d",
7623                                 rcu_str_deref(device->name), ret);
7624                         goto out;
7625                 }
7626         }
7627
7628         eb = path->nodes[0];
7629         ptr = btrfs_item_ptr(eb, path->slots[0], struct btrfs_dev_stats_item);
7630         for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
7631                 btrfs_set_dev_stats_value(eb, ptr, i,
7632                                           btrfs_dev_stat_read(device, i));
7633         btrfs_mark_buffer_dirty(eb);
7634
7635 out:
7636         btrfs_free_path(path);
7637         return ret;
7638 }
7639
7640 /*
7641  * called from commit_transaction. Writes all changed device stats to disk.
7642  */
7643 int btrfs_run_dev_stats(struct btrfs_trans_handle *trans)
7644 {
7645         struct btrfs_fs_info *fs_info = trans->fs_info;
7646         struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
7647         struct btrfs_device *device;
7648         int stats_cnt;
7649         int ret = 0;
7650
7651         mutex_lock(&fs_devices->device_list_mutex);
7652         list_for_each_entry(device, &fs_devices->devices, dev_list) {
7653                 stats_cnt = atomic_read(&device->dev_stats_ccnt);
7654                 if (!device->dev_stats_valid || stats_cnt == 0)
7655                         continue;
7656
7657
7658                 /*
7659                  * There is a LOAD-LOAD control dependency between the value of
7660                  * dev_stats_ccnt and updating the on-disk values which requires
7661                  * reading the in-memory counters. Such control dependencies
7662                  * require explicit read memory barriers.
7663                  *
7664                  * This memory barriers pairs with smp_mb__before_atomic in
7665                  * btrfs_dev_stat_inc/btrfs_dev_stat_set and with the full
7666                  * barrier implied by atomic_xchg in
7667                  * btrfs_dev_stats_read_and_reset
7668                  */
7669                 smp_rmb();
7670
7671                 ret = update_dev_stat_item(trans, device);
7672                 if (!ret)
7673                         atomic_sub(stats_cnt, &device->dev_stats_ccnt);
7674         }
7675         mutex_unlock(&fs_devices->device_list_mutex);
7676
7677         return ret;
7678 }
7679
7680 void btrfs_dev_stat_inc_and_print(struct btrfs_device *dev, int index)
7681 {
7682         btrfs_dev_stat_inc(dev, index);
7683         btrfs_dev_stat_print_on_error(dev);
7684 }
7685
7686 static void btrfs_dev_stat_print_on_error(struct btrfs_device *dev)
7687 {
7688         if (!dev->dev_stats_valid)
7689                 return;
7690         btrfs_err_rl_in_rcu(dev->fs_info,
7691                 "bdev %s errs: wr %u, rd %u, flush %u, corrupt %u, gen %u",
7692                            rcu_str_deref(dev->name),
7693                            btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_WRITE_ERRS),
7694                            btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_READ_ERRS),
7695                            btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_FLUSH_ERRS),
7696                            btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_CORRUPTION_ERRS),
7697                            btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_GENERATION_ERRS));
7698 }
7699
7700 static void btrfs_dev_stat_print_on_load(struct btrfs_device *dev)
7701 {
7702         int i;
7703
7704         for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
7705                 if (btrfs_dev_stat_read(dev, i) != 0)
7706                         break;
7707         if (i == BTRFS_DEV_STAT_VALUES_MAX)
7708                 return; /* all values == 0, suppress message */
7709
7710         btrfs_info_in_rcu(dev->fs_info,
7711                 "bdev %s errs: wr %u, rd %u, flush %u, corrupt %u, gen %u",
7712                rcu_str_deref(dev->name),
7713                btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_WRITE_ERRS),
7714                btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_READ_ERRS),
7715                btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_FLUSH_ERRS),
7716                btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_CORRUPTION_ERRS),
7717                btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_GENERATION_ERRS));
7718 }
7719
7720 int btrfs_get_dev_stats(struct btrfs_fs_info *fs_info,
7721                         struct btrfs_ioctl_get_dev_stats *stats)
7722 {
7723         struct btrfs_device *dev;
7724         struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
7725         int i;
7726
7727         mutex_lock(&fs_devices->device_list_mutex);
7728         dev = btrfs_find_device(fs_info->fs_devices, stats->devid, NULL, NULL);
7729         mutex_unlock(&fs_devices->device_list_mutex);
7730
7731         if (!dev) {
7732                 btrfs_warn(fs_info, "get dev_stats failed, device not found");
7733                 return -ENODEV;
7734         } else if (!dev->dev_stats_valid) {
7735                 btrfs_warn(fs_info, "get dev_stats failed, not yet valid");
7736                 return -ENODEV;
7737         } else if (stats->flags & BTRFS_DEV_STATS_RESET) {
7738                 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) {
7739                         if (stats->nr_items > i)
7740                                 stats->values[i] =
7741                                         btrfs_dev_stat_read_and_reset(dev, i);
7742                         else
7743                                 btrfs_dev_stat_set(dev, i, 0);
7744                 }
7745                 btrfs_info(fs_info, "device stats zeroed by %s (%d)",
7746                            current->comm, task_pid_nr(current));
7747         } else {
7748                 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
7749                         if (stats->nr_items > i)
7750                                 stats->values[i] = btrfs_dev_stat_read(dev, i);
7751         }
7752         if (stats->nr_items > BTRFS_DEV_STAT_VALUES_MAX)
7753                 stats->nr_items = BTRFS_DEV_STAT_VALUES_MAX;
7754         return 0;
7755 }
7756
7757 /*
7758  * Update the size and bytes used for each device where it changed.  This is
7759  * delayed since we would otherwise get errors while writing out the
7760  * superblocks.
7761  *
7762  * Must be invoked during transaction commit.
7763  */
7764 void btrfs_commit_device_sizes(struct btrfs_transaction *trans)
7765 {
7766         struct btrfs_device *curr, *next;
7767
7768         ASSERT(trans->state == TRANS_STATE_COMMIT_DOING);
7769
7770         if (list_empty(&trans->dev_update_list))
7771                 return;
7772
7773         /*
7774          * We don't need the device_list_mutex here.  This list is owned by the
7775          * transaction and the transaction must complete before the device is
7776          * released.
7777          */
7778         mutex_lock(&trans->fs_info->chunk_mutex);
7779         list_for_each_entry_safe(curr, next, &trans->dev_update_list,
7780                                  post_commit_list) {
7781                 list_del_init(&curr->post_commit_list);
7782                 curr->commit_total_bytes = curr->disk_total_bytes;
7783                 curr->commit_bytes_used = curr->bytes_used;
7784         }
7785         mutex_unlock(&trans->fs_info->chunk_mutex);
7786 }
7787
7788 /*
7789  * Multiplicity factor for simple profiles: DUP, RAID1-like and RAID10.
7790  */
7791 int btrfs_bg_type_to_factor(u64 flags)
7792 {
7793         const int index = btrfs_bg_flags_to_raid_index(flags);
7794
7795         return btrfs_raid_array[index].ncopies;
7796 }
7797
7798
7799
7800 static int verify_one_dev_extent(struct btrfs_fs_info *fs_info,
7801                                  u64 chunk_offset, u64 devid,
7802                                  u64 physical_offset, u64 physical_len)
7803 {
7804         struct extent_map_tree *em_tree = &fs_info->mapping_tree;
7805         struct extent_map *em;
7806         struct map_lookup *map;
7807         struct btrfs_device *dev;
7808         u64 stripe_len;
7809         bool found = false;
7810         int ret = 0;
7811         int i;
7812
7813         read_lock(&em_tree->lock);
7814         em = lookup_extent_mapping(em_tree, chunk_offset, 1);
7815         read_unlock(&em_tree->lock);
7816
7817         if (!em) {
7818                 btrfs_err(fs_info,
7819 "dev extent physical offset %llu on devid %llu doesn't have corresponding chunk",
7820                           physical_offset, devid);
7821                 ret = -EUCLEAN;
7822                 goto out;
7823         }
7824
7825         map = em->map_lookup;
7826         stripe_len = calc_stripe_length(map->type, em->len, map->num_stripes);
7827         if (physical_len != stripe_len) {
7828                 btrfs_err(fs_info,
7829 "dev extent physical offset %llu on devid %llu length doesn't match chunk %llu, have %llu expect %llu",
7830                           physical_offset, devid, em->start, physical_len,
7831                           stripe_len);
7832                 ret = -EUCLEAN;
7833                 goto out;
7834         }
7835
7836         for (i = 0; i < map->num_stripes; i++) {
7837                 if (map->stripes[i].dev->devid == devid &&
7838                     map->stripes[i].physical == physical_offset) {
7839                         found = true;
7840                         if (map->verified_stripes >= map->num_stripes) {
7841                                 btrfs_err(fs_info,
7842                                 "too many dev extents for chunk %llu found",
7843                                           em->start);
7844                                 ret = -EUCLEAN;
7845                                 goto out;
7846                         }
7847                         map->verified_stripes++;
7848                         break;
7849                 }
7850         }
7851         if (!found) {
7852                 btrfs_err(fs_info,
7853         "dev extent physical offset %llu devid %llu has no corresponding chunk",
7854                         physical_offset, devid);
7855                 ret = -EUCLEAN;
7856         }
7857
7858         /* Make sure no dev extent is beyond device boundary */
7859         dev = btrfs_find_device(fs_info->fs_devices, devid, NULL, NULL);
7860         if (!dev) {
7861                 btrfs_err(fs_info, "failed to find devid %llu", devid);
7862                 ret = -EUCLEAN;
7863                 goto out;
7864         }
7865
7866         if (physical_offset + physical_len > dev->disk_total_bytes) {
7867                 btrfs_err(fs_info,
7868 "dev extent devid %llu physical offset %llu len %llu is beyond device boundary %llu",
7869                           devid, physical_offset, physical_len,
7870                           dev->disk_total_bytes);
7871                 ret = -EUCLEAN;
7872                 goto out;
7873         }
7874
7875         if (dev->zone_info) {
7876                 u64 zone_size = dev->zone_info->zone_size;
7877
7878                 if (!IS_ALIGNED(physical_offset, zone_size) ||
7879                     !IS_ALIGNED(physical_len, zone_size)) {
7880                         btrfs_err(fs_info,
7881 "zoned: dev extent devid %llu physical offset %llu len %llu is not aligned to device zone",
7882                                   devid, physical_offset, physical_len);
7883                         ret = -EUCLEAN;
7884                         goto out;
7885                 }
7886         }
7887
7888 out:
7889         free_extent_map(em);
7890         return ret;
7891 }
7892
7893 static int verify_chunk_dev_extent_mapping(struct btrfs_fs_info *fs_info)
7894 {
7895         struct extent_map_tree *em_tree = &fs_info->mapping_tree;
7896         struct extent_map *em;
7897         struct rb_node *node;
7898         int ret = 0;
7899
7900         read_lock(&em_tree->lock);
7901         for (node = rb_first_cached(&em_tree->map); node; node = rb_next(node)) {
7902                 em = rb_entry(node, struct extent_map, rb_node);
7903                 if (em->map_lookup->num_stripes !=
7904                     em->map_lookup->verified_stripes) {
7905                         btrfs_err(fs_info,
7906                         "chunk %llu has missing dev extent, have %d expect %d",
7907                                   em->start, em->map_lookup->verified_stripes,
7908                                   em->map_lookup->num_stripes);
7909                         ret = -EUCLEAN;
7910                         goto out;
7911                 }
7912         }
7913 out:
7914         read_unlock(&em_tree->lock);
7915         return ret;
7916 }
7917
7918 /*
7919  * Ensure that all dev extents are mapped to correct chunk, otherwise
7920  * later chunk allocation/free would cause unexpected behavior.
7921  *
7922  * NOTE: This will iterate through the whole device tree, which should be of
7923  * the same size level as the chunk tree.  This slightly increases mount time.
7924  */
7925 int btrfs_verify_dev_extents(struct btrfs_fs_info *fs_info)
7926 {
7927         struct btrfs_path *path;
7928         struct btrfs_root *root = fs_info->dev_root;
7929         struct btrfs_key key;
7930         u64 prev_devid = 0;
7931         u64 prev_dev_ext_end = 0;
7932         int ret = 0;
7933
7934         /*
7935          * We don't have a dev_root because we mounted with ignorebadroots and
7936          * failed to load the root, so we want to skip the verification in this
7937          * case for sure.
7938          *
7939          * However if the dev root is fine, but the tree itself is corrupted
7940          * we'd still fail to mount.  This verification is only to make sure
7941          * writes can happen safely, so instead just bypass this check
7942          * completely in the case of IGNOREBADROOTS.
7943          */
7944         if (btrfs_test_opt(fs_info, IGNOREBADROOTS))
7945                 return 0;
7946
7947         key.objectid = 1;
7948         key.type = BTRFS_DEV_EXTENT_KEY;
7949         key.offset = 0;
7950
7951         path = btrfs_alloc_path();
7952         if (!path)
7953                 return -ENOMEM;
7954
7955         path->reada = READA_FORWARD;
7956         ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
7957         if (ret < 0)
7958                 goto out;
7959
7960         if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) {
7961                 ret = btrfs_next_item(root, path);
7962                 if (ret < 0)
7963                         goto out;
7964                 /* No dev extents at all? Not good */
7965                 if (ret > 0) {
7966                         ret = -EUCLEAN;
7967                         goto out;
7968                 }
7969         }
7970         while (1) {
7971                 struct extent_buffer *leaf = path->nodes[0];
7972                 struct btrfs_dev_extent *dext;
7973                 int slot = path->slots[0];
7974                 u64 chunk_offset;
7975                 u64 physical_offset;
7976                 u64 physical_len;
7977                 u64 devid;
7978
7979                 btrfs_item_key_to_cpu(leaf, &key, slot);
7980                 if (key.type != BTRFS_DEV_EXTENT_KEY)
7981                         break;
7982                 devid = key.objectid;
7983                 physical_offset = key.offset;
7984
7985                 dext = btrfs_item_ptr(leaf, slot, struct btrfs_dev_extent);
7986                 chunk_offset = btrfs_dev_extent_chunk_offset(leaf, dext);
7987                 physical_len = btrfs_dev_extent_length(leaf, dext);
7988
7989                 /* Check if this dev extent overlaps with the previous one */
7990                 if (devid == prev_devid && physical_offset < prev_dev_ext_end) {
7991                         btrfs_err(fs_info,
7992 "dev extent devid %llu physical offset %llu overlap with previous dev extent end %llu",
7993                                   devid, physical_offset, prev_dev_ext_end);
7994                         ret = -EUCLEAN;
7995                         goto out;
7996                 }
7997
7998                 ret = verify_one_dev_extent(fs_info, chunk_offset, devid,
7999                                             physical_offset, physical_len);
8000                 if (ret < 0)
8001                         goto out;
8002                 prev_devid = devid;
8003                 prev_dev_ext_end = physical_offset + physical_len;
8004
8005                 ret = btrfs_next_item(root, path);
8006                 if (ret < 0)
8007                         goto out;
8008                 if (ret > 0) {
8009                         ret = 0;
8010                         break;
8011                 }
8012         }
8013
8014         /* Ensure all chunks have corresponding dev extents */
8015         ret = verify_chunk_dev_extent_mapping(fs_info);
8016 out:
8017         btrfs_free_path(path);
8018         return ret;
8019 }
8020
8021 /*
8022  * Check whether the given block group or device is pinned by any inode being
8023  * used as a swapfile.
8024  */
8025 bool btrfs_pinned_by_swapfile(struct btrfs_fs_info *fs_info, void *ptr)
8026 {
8027         struct btrfs_swapfile_pin *sp;
8028         struct rb_node *node;
8029
8030         spin_lock(&fs_info->swapfile_pins_lock);
8031         node = fs_info->swapfile_pins.rb_node;
8032         while (node) {
8033                 sp = rb_entry(node, struct btrfs_swapfile_pin, node);
8034                 if (ptr < sp->ptr)
8035                         node = node->rb_left;
8036                 else if (ptr > sp->ptr)
8037                         node = node->rb_right;
8038                 else
8039                         break;
8040         }
8041         spin_unlock(&fs_info->swapfile_pins_lock);
8042         return node != NULL;
8043 }
8044
8045 static int relocating_repair_kthread(void *data)
8046 {
8047         struct btrfs_block_group *cache = (struct btrfs_block_group *)data;
8048         struct btrfs_fs_info *fs_info = cache->fs_info;
8049         u64 target;
8050         int ret = 0;
8051
8052         target = cache->start;
8053         btrfs_put_block_group(cache);
8054
8055         if (!btrfs_exclop_start(fs_info, BTRFS_EXCLOP_BALANCE)) {
8056                 btrfs_info(fs_info,
8057                            "zoned: skip relocating block group %llu to repair: EBUSY",
8058                            target);
8059                 return -EBUSY;
8060         }
8061
8062         mutex_lock(&fs_info->reclaim_bgs_lock);
8063
8064         /* Ensure block group still exists */
8065         cache = btrfs_lookup_block_group(fs_info, target);
8066         if (!cache)
8067                 goto out;
8068
8069         if (!cache->relocating_repair)
8070                 goto out;
8071
8072         ret = btrfs_may_alloc_data_chunk(fs_info, target);
8073         if (ret < 0)
8074                 goto out;
8075
8076         btrfs_info(fs_info,
8077                    "zoned: relocating block group %llu to repair IO failure",
8078                    target);
8079         ret = btrfs_relocate_chunk(fs_info, target);
8080
8081 out:
8082         if (cache)
8083                 btrfs_put_block_group(cache);
8084         mutex_unlock(&fs_info->reclaim_bgs_lock);
8085         btrfs_exclop_finish(fs_info);
8086
8087         return ret;
8088 }
8089
8090 int btrfs_repair_one_zone(struct btrfs_fs_info *fs_info, u64 logical)
8091 {
8092         struct btrfs_block_group *cache;
8093
8094         /* Do not attempt to repair in degraded state */
8095         if (btrfs_test_opt(fs_info, DEGRADED))
8096                 return 0;
8097
8098         cache = btrfs_lookup_block_group(fs_info, logical);
8099         if (!cache)
8100                 return 0;
8101
8102         spin_lock(&cache->lock);
8103         if (cache->relocating_repair) {
8104                 spin_unlock(&cache->lock);
8105                 btrfs_put_block_group(cache);
8106                 return 0;
8107         }
8108         cache->relocating_repair = 1;
8109         spin_unlock(&cache->lock);
8110
8111         kthread_run(relocating_repair_kthread, cache,
8112                     "btrfs-relocating-repair");
8113
8114         return 0;
8115 }