Merge branch 'opp/linux-next' of git://git.kernel.org/pub/scm/linux/kernel/git/vireshk/pm
[linux-2.6-microblaze.git] / fs / btrfs / volumes.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2007 Oracle.  All rights reserved.
4  */
5
6 #include <linux/sched.h>
7 #include <linux/sched/mm.h>
8 #include <linux/bio.h>
9 #include <linux/slab.h>
10 #include <linux/blkdev.h>
11 #include <linux/ratelimit.h>
12 #include <linux/kthread.h>
13 #include <linux/raid/pq.h>
14 #include <linux/semaphore.h>
15 #include <linux/uuid.h>
16 #include <linux/list_sort.h>
17 #include "misc.h"
18 #include "ctree.h"
19 #include "extent_map.h"
20 #include "disk-io.h"
21 #include "transaction.h"
22 #include "print-tree.h"
23 #include "volumes.h"
24 #include "raid56.h"
25 #include "async-thread.h"
26 #include "check-integrity.h"
27 #include "rcu-string.h"
28 #include "dev-replace.h"
29 #include "sysfs.h"
30 #include "tree-checker.h"
31 #include "space-info.h"
32 #include "block-group.h"
33 #include "discard.h"
34 #include "zoned.h"
35
36 const struct btrfs_raid_attr btrfs_raid_array[BTRFS_NR_RAID_TYPES] = {
37         [BTRFS_RAID_RAID10] = {
38                 .sub_stripes    = 2,
39                 .dev_stripes    = 1,
40                 .devs_max       = 0,    /* 0 == as many as possible */
41                 .devs_min       = 4,
42                 .tolerated_failures = 1,
43                 .devs_increment = 2,
44                 .ncopies        = 2,
45                 .nparity        = 0,
46                 .raid_name      = "raid10",
47                 .bg_flag        = BTRFS_BLOCK_GROUP_RAID10,
48                 .mindev_error   = BTRFS_ERROR_DEV_RAID10_MIN_NOT_MET,
49         },
50         [BTRFS_RAID_RAID1] = {
51                 .sub_stripes    = 1,
52                 .dev_stripes    = 1,
53                 .devs_max       = 2,
54                 .devs_min       = 2,
55                 .tolerated_failures = 1,
56                 .devs_increment = 2,
57                 .ncopies        = 2,
58                 .nparity        = 0,
59                 .raid_name      = "raid1",
60                 .bg_flag        = BTRFS_BLOCK_GROUP_RAID1,
61                 .mindev_error   = BTRFS_ERROR_DEV_RAID1_MIN_NOT_MET,
62         },
63         [BTRFS_RAID_RAID1C3] = {
64                 .sub_stripes    = 1,
65                 .dev_stripes    = 1,
66                 .devs_max       = 3,
67                 .devs_min       = 3,
68                 .tolerated_failures = 2,
69                 .devs_increment = 3,
70                 .ncopies        = 3,
71                 .nparity        = 0,
72                 .raid_name      = "raid1c3",
73                 .bg_flag        = BTRFS_BLOCK_GROUP_RAID1C3,
74                 .mindev_error   = BTRFS_ERROR_DEV_RAID1C3_MIN_NOT_MET,
75         },
76         [BTRFS_RAID_RAID1C4] = {
77                 .sub_stripes    = 1,
78                 .dev_stripes    = 1,
79                 .devs_max       = 4,
80                 .devs_min       = 4,
81                 .tolerated_failures = 3,
82                 .devs_increment = 4,
83                 .ncopies        = 4,
84                 .nparity        = 0,
85                 .raid_name      = "raid1c4",
86                 .bg_flag        = BTRFS_BLOCK_GROUP_RAID1C4,
87                 .mindev_error   = BTRFS_ERROR_DEV_RAID1C4_MIN_NOT_MET,
88         },
89         [BTRFS_RAID_DUP] = {
90                 .sub_stripes    = 1,
91                 .dev_stripes    = 2,
92                 .devs_max       = 1,
93                 .devs_min       = 1,
94                 .tolerated_failures = 0,
95                 .devs_increment = 1,
96                 .ncopies        = 2,
97                 .nparity        = 0,
98                 .raid_name      = "dup",
99                 .bg_flag        = BTRFS_BLOCK_GROUP_DUP,
100                 .mindev_error   = 0,
101         },
102         [BTRFS_RAID_RAID0] = {
103                 .sub_stripes    = 1,
104                 .dev_stripes    = 1,
105                 .devs_max       = 0,
106                 .devs_min       = 2,
107                 .tolerated_failures = 0,
108                 .devs_increment = 1,
109                 .ncopies        = 1,
110                 .nparity        = 0,
111                 .raid_name      = "raid0",
112                 .bg_flag        = BTRFS_BLOCK_GROUP_RAID0,
113                 .mindev_error   = 0,
114         },
115         [BTRFS_RAID_SINGLE] = {
116                 .sub_stripes    = 1,
117                 .dev_stripes    = 1,
118                 .devs_max       = 1,
119                 .devs_min       = 1,
120                 .tolerated_failures = 0,
121                 .devs_increment = 1,
122                 .ncopies        = 1,
123                 .nparity        = 0,
124                 .raid_name      = "single",
125                 .bg_flag        = 0,
126                 .mindev_error   = 0,
127         },
128         [BTRFS_RAID_RAID5] = {
129                 .sub_stripes    = 1,
130                 .dev_stripes    = 1,
131                 .devs_max       = 0,
132                 .devs_min       = 2,
133                 .tolerated_failures = 1,
134                 .devs_increment = 1,
135                 .ncopies        = 1,
136                 .nparity        = 1,
137                 .raid_name      = "raid5",
138                 .bg_flag        = BTRFS_BLOCK_GROUP_RAID5,
139                 .mindev_error   = BTRFS_ERROR_DEV_RAID5_MIN_NOT_MET,
140         },
141         [BTRFS_RAID_RAID6] = {
142                 .sub_stripes    = 1,
143                 .dev_stripes    = 1,
144                 .devs_max       = 0,
145                 .devs_min       = 3,
146                 .tolerated_failures = 2,
147                 .devs_increment = 1,
148                 .ncopies        = 1,
149                 .nparity        = 2,
150                 .raid_name      = "raid6",
151                 .bg_flag        = BTRFS_BLOCK_GROUP_RAID6,
152                 .mindev_error   = BTRFS_ERROR_DEV_RAID6_MIN_NOT_MET,
153         },
154 };
155
156 const char *btrfs_bg_type_to_raid_name(u64 flags)
157 {
158         const int index = btrfs_bg_flags_to_raid_index(flags);
159
160         if (index >= BTRFS_NR_RAID_TYPES)
161                 return NULL;
162
163         return btrfs_raid_array[index].raid_name;
164 }
165
166 /*
167  * Fill @buf with textual description of @bg_flags, no more than @size_buf
168  * bytes including terminating null byte.
169  */
170 void btrfs_describe_block_groups(u64 bg_flags, char *buf, u32 size_buf)
171 {
172         int i;
173         int ret;
174         char *bp = buf;
175         u64 flags = bg_flags;
176         u32 size_bp = size_buf;
177
178         if (!flags) {
179                 strcpy(bp, "NONE");
180                 return;
181         }
182
183 #define DESCRIBE_FLAG(flag, desc)                                               \
184         do {                                                            \
185                 if (flags & (flag)) {                                   \
186                         ret = snprintf(bp, size_bp, "%s|", (desc));     \
187                         if (ret < 0 || ret >= size_bp)                  \
188                                 goto out_overflow;                      \
189                         size_bp -= ret;                                 \
190                         bp += ret;                                      \
191                         flags &= ~(flag);                               \
192                 }                                                       \
193         } while (0)
194
195         DESCRIBE_FLAG(BTRFS_BLOCK_GROUP_DATA, "data");
196         DESCRIBE_FLAG(BTRFS_BLOCK_GROUP_SYSTEM, "system");
197         DESCRIBE_FLAG(BTRFS_BLOCK_GROUP_METADATA, "metadata");
198
199         DESCRIBE_FLAG(BTRFS_AVAIL_ALLOC_BIT_SINGLE, "single");
200         for (i = 0; i < BTRFS_NR_RAID_TYPES; i++)
201                 DESCRIBE_FLAG(btrfs_raid_array[i].bg_flag,
202                               btrfs_raid_array[i].raid_name);
203 #undef DESCRIBE_FLAG
204
205         if (flags) {
206                 ret = snprintf(bp, size_bp, "0x%llx|", flags);
207                 size_bp -= ret;
208         }
209
210         if (size_bp < size_buf)
211                 buf[size_buf - size_bp - 1] = '\0'; /* remove last | */
212
213         /*
214          * The text is trimmed, it's up to the caller to provide sufficiently
215          * large buffer
216          */
217 out_overflow:;
218 }
219
220 static int init_first_rw_device(struct btrfs_trans_handle *trans);
221 static int btrfs_relocate_sys_chunks(struct btrfs_fs_info *fs_info);
222 static void btrfs_dev_stat_print_on_error(struct btrfs_device *dev);
223 static void btrfs_dev_stat_print_on_load(struct btrfs_device *device);
224 static int __btrfs_map_block(struct btrfs_fs_info *fs_info,
225                              enum btrfs_map_op op,
226                              u64 logical, u64 *length,
227                              struct btrfs_bio **bbio_ret,
228                              int mirror_num, int need_raid_map);
229
230 /*
231  * Device locking
232  * ==============
233  *
234  * There are several mutexes that protect manipulation of devices and low-level
235  * structures like chunks but not block groups, extents or files
236  *
237  * uuid_mutex (global lock)
238  * ------------------------
239  * protects the fs_uuids list that tracks all per-fs fs_devices, resulting from
240  * the SCAN_DEV ioctl registration or from mount either implicitly (the first
241  * device) or requested by the device= mount option
242  *
243  * the mutex can be very coarse and can cover long-running operations
244  *
245  * protects: updates to fs_devices counters like missing devices, rw devices,
246  * seeding, structure cloning, opening/closing devices at mount/umount time
247  *
248  * global::fs_devs - add, remove, updates to the global list
249  *
250  * does not protect: manipulation of the fs_devices::devices list in general
251  * but in mount context it could be used to exclude list modifications by eg.
252  * scan ioctl
253  *
254  * btrfs_device::name - renames (write side), read is RCU
255  *
256  * fs_devices::device_list_mutex (per-fs, with RCU)
257  * ------------------------------------------------
258  * protects updates to fs_devices::devices, ie. adding and deleting
259  *
260  * simple list traversal with read-only actions can be done with RCU protection
261  *
262  * may be used to exclude some operations from running concurrently without any
263  * modifications to the list (see write_all_supers)
264  *
265  * Is not required at mount and close times, because our device list is
266  * protected by the uuid_mutex at that point.
267  *
268  * balance_mutex
269  * -------------
270  * protects balance structures (status, state) and context accessed from
271  * several places (internally, ioctl)
272  *
273  * chunk_mutex
274  * -----------
275  * protects chunks, adding or removing during allocation, trim or when a new
276  * device is added/removed. Additionally it also protects post_commit_list of
277  * individual devices, since they can be added to the transaction's
278  * post_commit_list only with chunk_mutex held.
279  *
280  * cleaner_mutex
281  * -------------
282  * a big lock that is held by the cleaner thread and prevents running subvolume
283  * cleaning together with relocation or delayed iputs
284  *
285  *
286  * Lock nesting
287  * ============
288  *
289  * uuid_mutex
290  *   device_list_mutex
291  *     chunk_mutex
292  *   balance_mutex
293  *
294  *
295  * Exclusive operations
296  * ====================
297  *
298  * Maintains the exclusivity of the following operations that apply to the
299  * whole filesystem and cannot run in parallel.
300  *
301  * - Balance (*)
302  * - Device add
303  * - Device remove
304  * - Device replace (*)
305  * - Resize
306  *
307  * The device operations (as above) can be in one of the following states:
308  *
309  * - Running state
310  * - Paused state
311  * - Completed state
312  *
313  * Only device operations marked with (*) can go into the Paused state for the
314  * following reasons:
315  *
316  * - ioctl (only Balance can be Paused through ioctl)
317  * - filesystem remounted as read-only
318  * - filesystem unmounted and mounted as read-only
319  * - system power-cycle and filesystem mounted as read-only
320  * - filesystem or device errors leading to forced read-only
321  *
322  * The status of exclusive operation is set and cleared atomically.
323  * During the course of Paused state, fs_info::exclusive_operation remains set.
324  * A device operation in Paused or Running state can be canceled or resumed
325  * either by ioctl (Balance only) or when remounted as read-write.
326  * The exclusive status is cleared when the device operation is canceled or
327  * completed.
328  */
329
330 DEFINE_MUTEX(uuid_mutex);
331 static LIST_HEAD(fs_uuids);
332 struct list_head * __attribute_const__ btrfs_get_fs_uuids(void)
333 {
334         return &fs_uuids;
335 }
336
337 /*
338  * alloc_fs_devices - allocate struct btrfs_fs_devices
339  * @fsid:               if not NULL, copy the UUID to fs_devices::fsid
340  * @metadata_fsid:      if not NULL, copy the UUID to fs_devices::metadata_fsid
341  *
342  * Return a pointer to a new struct btrfs_fs_devices on success, or ERR_PTR().
343  * The returned struct is not linked onto any lists and can be destroyed with
344  * kfree() right away.
345  */
346 static struct btrfs_fs_devices *alloc_fs_devices(const u8 *fsid,
347                                                  const u8 *metadata_fsid)
348 {
349         struct btrfs_fs_devices *fs_devs;
350
351         fs_devs = kzalloc(sizeof(*fs_devs), GFP_KERNEL);
352         if (!fs_devs)
353                 return ERR_PTR(-ENOMEM);
354
355         mutex_init(&fs_devs->device_list_mutex);
356
357         INIT_LIST_HEAD(&fs_devs->devices);
358         INIT_LIST_HEAD(&fs_devs->alloc_list);
359         INIT_LIST_HEAD(&fs_devs->fs_list);
360         INIT_LIST_HEAD(&fs_devs->seed_list);
361         if (fsid)
362                 memcpy(fs_devs->fsid, fsid, BTRFS_FSID_SIZE);
363
364         if (metadata_fsid)
365                 memcpy(fs_devs->metadata_uuid, metadata_fsid, BTRFS_FSID_SIZE);
366         else if (fsid)
367                 memcpy(fs_devs->metadata_uuid, fsid, BTRFS_FSID_SIZE);
368
369         return fs_devs;
370 }
371
372 void btrfs_free_device(struct btrfs_device *device)
373 {
374         WARN_ON(!list_empty(&device->post_commit_list));
375         rcu_string_free(device->name);
376         extent_io_tree_release(&device->alloc_state);
377         bio_put(device->flush_bio);
378         btrfs_destroy_dev_zone_info(device);
379         kfree(device);
380 }
381
382 static void free_fs_devices(struct btrfs_fs_devices *fs_devices)
383 {
384         struct btrfs_device *device;
385         WARN_ON(fs_devices->opened);
386         while (!list_empty(&fs_devices->devices)) {
387                 device = list_entry(fs_devices->devices.next,
388                                     struct btrfs_device, dev_list);
389                 list_del(&device->dev_list);
390                 btrfs_free_device(device);
391         }
392         kfree(fs_devices);
393 }
394
395 void __exit btrfs_cleanup_fs_uuids(void)
396 {
397         struct btrfs_fs_devices *fs_devices;
398
399         while (!list_empty(&fs_uuids)) {
400                 fs_devices = list_entry(fs_uuids.next,
401                                         struct btrfs_fs_devices, fs_list);
402                 list_del(&fs_devices->fs_list);
403                 free_fs_devices(fs_devices);
404         }
405 }
406
407 /*
408  * Returns a pointer to a new btrfs_device on success; ERR_PTR() on error.
409  * Returned struct is not linked onto any lists and must be destroyed using
410  * btrfs_free_device.
411  */
412 static struct btrfs_device *__alloc_device(struct btrfs_fs_info *fs_info)
413 {
414         struct btrfs_device *dev;
415
416         dev = kzalloc(sizeof(*dev), GFP_KERNEL);
417         if (!dev)
418                 return ERR_PTR(-ENOMEM);
419
420         /*
421          * Preallocate a bio that's always going to be used for flushing device
422          * barriers and matches the device lifespan
423          */
424         dev->flush_bio = bio_kmalloc(GFP_KERNEL, 0);
425         if (!dev->flush_bio) {
426                 kfree(dev);
427                 return ERR_PTR(-ENOMEM);
428         }
429
430         INIT_LIST_HEAD(&dev->dev_list);
431         INIT_LIST_HEAD(&dev->dev_alloc_list);
432         INIT_LIST_HEAD(&dev->post_commit_list);
433
434         atomic_set(&dev->reada_in_flight, 0);
435         atomic_set(&dev->dev_stats_ccnt, 0);
436         btrfs_device_data_ordered_init(dev);
437         INIT_RADIX_TREE(&dev->reada_zones, GFP_NOFS & ~__GFP_DIRECT_RECLAIM);
438         INIT_RADIX_TREE(&dev->reada_extents, GFP_NOFS & ~__GFP_DIRECT_RECLAIM);
439         extent_io_tree_init(fs_info, &dev->alloc_state,
440                             IO_TREE_DEVICE_ALLOC_STATE, NULL);
441
442         return dev;
443 }
444
445 static noinline struct btrfs_fs_devices *find_fsid(
446                 const u8 *fsid, const u8 *metadata_fsid)
447 {
448         struct btrfs_fs_devices *fs_devices;
449
450         ASSERT(fsid);
451
452         /* Handle non-split brain cases */
453         list_for_each_entry(fs_devices, &fs_uuids, fs_list) {
454                 if (metadata_fsid) {
455                         if (memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE) == 0
456                             && memcmp(metadata_fsid, fs_devices->metadata_uuid,
457                                       BTRFS_FSID_SIZE) == 0)
458                                 return fs_devices;
459                 } else {
460                         if (memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE) == 0)
461                                 return fs_devices;
462                 }
463         }
464         return NULL;
465 }
466
467 static struct btrfs_fs_devices *find_fsid_with_metadata_uuid(
468                                 struct btrfs_super_block *disk_super)
469 {
470
471         struct btrfs_fs_devices *fs_devices;
472
473         /*
474          * Handle scanned device having completed its fsid change but
475          * belonging to a fs_devices that was created by first scanning
476          * a device which didn't have its fsid/metadata_uuid changed
477          * at all and the CHANGING_FSID_V2 flag set.
478          */
479         list_for_each_entry(fs_devices, &fs_uuids, fs_list) {
480                 if (fs_devices->fsid_change &&
481                     memcmp(disk_super->metadata_uuid, fs_devices->fsid,
482                            BTRFS_FSID_SIZE) == 0 &&
483                     memcmp(fs_devices->fsid, fs_devices->metadata_uuid,
484                            BTRFS_FSID_SIZE) == 0) {
485                         return fs_devices;
486                 }
487         }
488         /*
489          * Handle scanned device having completed its fsid change but
490          * belonging to a fs_devices that was created by a device that
491          * has an outdated pair of fsid/metadata_uuid and
492          * CHANGING_FSID_V2 flag set.
493          */
494         list_for_each_entry(fs_devices, &fs_uuids, fs_list) {
495                 if (fs_devices->fsid_change &&
496                     memcmp(fs_devices->metadata_uuid,
497                            fs_devices->fsid, BTRFS_FSID_SIZE) != 0 &&
498                     memcmp(disk_super->metadata_uuid, fs_devices->metadata_uuid,
499                            BTRFS_FSID_SIZE) == 0) {
500                         return fs_devices;
501                 }
502         }
503
504         return find_fsid(disk_super->fsid, disk_super->metadata_uuid);
505 }
506
507
508 static int
509 btrfs_get_bdev_and_sb(const char *device_path, fmode_t flags, void *holder,
510                       int flush, struct block_device **bdev,
511                       struct btrfs_super_block **disk_super)
512 {
513         int ret;
514
515         *bdev = blkdev_get_by_path(device_path, flags, holder);
516
517         if (IS_ERR(*bdev)) {
518                 ret = PTR_ERR(*bdev);
519                 goto error;
520         }
521
522         if (flush)
523                 filemap_write_and_wait((*bdev)->bd_inode->i_mapping);
524         ret = set_blocksize(*bdev, BTRFS_BDEV_BLOCKSIZE);
525         if (ret) {
526                 blkdev_put(*bdev, flags);
527                 goto error;
528         }
529         invalidate_bdev(*bdev);
530         *disk_super = btrfs_read_dev_super(*bdev);
531         if (IS_ERR(*disk_super)) {
532                 ret = PTR_ERR(*disk_super);
533                 blkdev_put(*bdev, flags);
534                 goto error;
535         }
536
537         return 0;
538
539 error:
540         *bdev = NULL;
541         return ret;
542 }
543
544 static bool device_path_matched(const char *path, struct btrfs_device *device)
545 {
546         int found;
547
548         rcu_read_lock();
549         found = strcmp(rcu_str_deref(device->name), path);
550         rcu_read_unlock();
551
552         return found == 0;
553 }
554
555 /*
556  *  Search and remove all stale (devices which are not mounted) devices.
557  *  When both inputs are NULL, it will search and release all stale devices.
558  *  path:       Optional. When provided will it release all unmounted devices
559  *              matching this path only.
560  *  skip_dev:   Optional. Will skip this device when searching for the stale
561  *              devices.
562  *  Return:     0 for success or if @path is NULL.
563  *              -EBUSY if @path is a mounted device.
564  *              -ENOENT if @path does not match any device in the list.
565  */
566 static int btrfs_free_stale_devices(const char *path,
567                                      struct btrfs_device *skip_device)
568 {
569         struct btrfs_fs_devices *fs_devices, *tmp_fs_devices;
570         struct btrfs_device *device, *tmp_device;
571         int ret = 0;
572
573         if (path)
574                 ret = -ENOENT;
575
576         list_for_each_entry_safe(fs_devices, tmp_fs_devices, &fs_uuids, fs_list) {
577
578                 mutex_lock(&fs_devices->device_list_mutex);
579                 list_for_each_entry_safe(device, tmp_device,
580                                          &fs_devices->devices, dev_list) {
581                         if (skip_device && skip_device == device)
582                                 continue;
583                         if (path && !device->name)
584                                 continue;
585                         if (path && !device_path_matched(path, device))
586                                 continue;
587                         if (fs_devices->opened) {
588                                 /* for an already deleted device return 0 */
589                                 if (path && ret != 0)
590                                         ret = -EBUSY;
591                                 break;
592                         }
593
594                         /* delete the stale device */
595                         fs_devices->num_devices--;
596                         list_del(&device->dev_list);
597                         btrfs_free_device(device);
598
599                         ret = 0;
600                 }
601                 mutex_unlock(&fs_devices->device_list_mutex);
602
603                 if (fs_devices->num_devices == 0) {
604                         btrfs_sysfs_remove_fsid(fs_devices);
605                         list_del(&fs_devices->fs_list);
606                         free_fs_devices(fs_devices);
607                 }
608         }
609
610         return ret;
611 }
612
613 /*
614  * This is only used on mount, and we are protected from competing things
615  * messing with our fs_devices by the uuid_mutex, thus we do not need the
616  * fs_devices->device_list_mutex here.
617  */
618 static int btrfs_open_one_device(struct btrfs_fs_devices *fs_devices,
619                         struct btrfs_device *device, fmode_t flags,
620                         void *holder)
621 {
622         struct request_queue *q;
623         struct block_device *bdev;
624         struct btrfs_super_block *disk_super;
625         u64 devid;
626         int ret;
627
628         if (device->bdev)
629                 return -EINVAL;
630         if (!device->name)
631                 return -EINVAL;
632
633         ret = btrfs_get_bdev_and_sb(device->name->str, flags, holder, 1,
634                                     &bdev, &disk_super);
635         if (ret)
636                 return ret;
637
638         devid = btrfs_stack_device_id(&disk_super->dev_item);
639         if (devid != device->devid)
640                 goto error_free_page;
641
642         if (memcmp(device->uuid, disk_super->dev_item.uuid, BTRFS_UUID_SIZE))
643                 goto error_free_page;
644
645         device->generation = btrfs_super_generation(disk_super);
646
647         if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_SEEDING) {
648                 if (btrfs_super_incompat_flags(disk_super) &
649                     BTRFS_FEATURE_INCOMPAT_METADATA_UUID) {
650                         pr_err(
651                 "BTRFS: Invalid seeding and uuid-changed device detected\n");
652                         goto error_free_page;
653                 }
654
655                 clear_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
656                 fs_devices->seeding = true;
657         } else {
658                 if (bdev_read_only(bdev))
659                         clear_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
660                 else
661                         set_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
662         }
663
664         q = bdev_get_queue(bdev);
665         if (!blk_queue_nonrot(q))
666                 fs_devices->rotating = true;
667
668         device->bdev = bdev;
669         clear_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state);
670         device->mode = flags;
671
672         fs_devices->open_devices++;
673         if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) &&
674             device->devid != BTRFS_DEV_REPLACE_DEVID) {
675                 fs_devices->rw_devices++;
676                 list_add_tail(&device->dev_alloc_list, &fs_devices->alloc_list);
677         }
678         btrfs_release_disk_super(disk_super);
679
680         return 0;
681
682 error_free_page:
683         btrfs_release_disk_super(disk_super);
684         blkdev_put(bdev, flags);
685
686         return -EINVAL;
687 }
688
689 /*
690  * Handle scanned device having its CHANGING_FSID_V2 flag set and the fs_devices
691  * being created with a disk that has already completed its fsid change. Such
692  * disk can belong to an fs which has its FSID changed or to one which doesn't.
693  * Handle both cases here.
694  */
695 static struct btrfs_fs_devices *find_fsid_inprogress(
696                                         struct btrfs_super_block *disk_super)
697 {
698         struct btrfs_fs_devices *fs_devices;
699
700         list_for_each_entry(fs_devices, &fs_uuids, fs_list) {
701                 if (memcmp(fs_devices->metadata_uuid, fs_devices->fsid,
702                            BTRFS_FSID_SIZE) != 0 &&
703                     memcmp(fs_devices->metadata_uuid, disk_super->fsid,
704                            BTRFS_FSID_SIZE) == 0 && !fs_devices->fsid_change) {
705                         return fs_devices;
706                 }
707         }
708
709         return find_fsid(disk_super->fsid, NULL);
710 }
711
712
713 static struct btrfs_fs_devices *find_fsid_changed(
714                                         struct btrfs_super_block *disk_super)
715 {
716         struct btrfs_fs_devices *fs_devices;
717
718         /*
719          * Handles the case where scanned device is part of an fs that had
720          * multiple successful changes of FSID but currently device didn't
721          * observe it. Meaning our fsid will be different than theirs. We need
722          * to handle two subcases :
723          *  1 - The fs still continues to have different METADATA/FSID uuids.
724          *  2 - The fs is switched back to its original FSID (METADATA/FSID
725          *  are equal).
726          */
727         list_for_each_entry(fs_devices, &fs_uuids, fs_list) {
728                 /* Changed UUIDs */
729                 if (memcmp(fs_devices->metadata_uuid, fs_devices->fsid,
730                            BTRFS_FSID_SIZE) != 0 &&
731                     memcmp(fs_devices->metadata_uuid, disk_super->metadata_uuid,
732                            BTRFS_FSID_SIZE) == 0 &&
733                     memcmp(fs_devices->fsid, disk_super->fsid,
734                            BTRFS_FSID_SIZE) != 0)
735                         return fs_devices;
736
737                 /* Unchanged UUIDs */
738                 if (memcmp(fs_devices->metadata_uuid, fs_devices->fsid,
739                            BTRFS_FSID_SIZE) == 0 &&
740                     memcmp(fs_devices->fsid, disk_super->metadata_uuid,
741                            BTRFS_FSID_SIZE) == 0)
742                         return fs_devices;
743         }
744
745         return NULL;
746 }
747
748 static struct btrfs_fs_devices *find_fsid_reverted_metadata(
749                                 struct btrfs_super_block *disk_super)
750 {
751         struct btrfs_fs_devices *fs_devices;
752
753         /*
754          * Handle the case where the scanned device is part of an fs whose last
755          * metadata UUID change reverted it to the original FSID. At the same
756          * time * fs_devices was first created by another constitutent device
757          * which didn't fully observe the operation. This results in an
758          * btrfs_fs_devices created with metadata/fsid different AND
759          * btrfs_fs_devices::fsid_change set AND the metadata_uuid of the
760          * fs_devices equal to the FSID of the disk.
761          */
762         list_for_each_entry(fs_devices, &fs_uuids, fs_list) {
763                 if (memcmp(fs_devices->fsid, fs_devices->metadata_uuid,
764                            BTRFS_FSID_SIZE) != 0 &&
765                     memcmp(fs_devices->metadata_uuid, disk_super->fsid,
766                            BTRFS_FSID_SIZE) == 0 &&
767                     fs_devices->fsid_change)
768                         return fs_devices;
769         }
770
771         return NULL;
772 }
773 /*
774  * Add new device to list of registered devices
775  *
776  * Returns:
777  * device pointer which was just added or updated when successful
778  * error pointer when failed
779  */
780 static noinline struct btrfs_device *device_list_add(const char *path,
781                            struct btrfs_super_block *disk_super,
782                            bool *new_device_added)
783 {
784         struct btrfs_device *device;
785         struct btrfs_fs_devices *fs_devices = NULL;
786         struct rcu_string *name;
787         u64 found_transid = btrfs_super_generation(disk_super);
788         u64 devid = btrfs_stack_device_id(&disk_super->dev_item);
789         bool has_metadata_uuid = (btrfs_super_incompat_flags(disk_super) &
790                 BTRFS_FEATURE_INCOMPAT_METADATA_UUID);
791         bool fsid_change_in_progress = (btrfs_super_flags(disk_super) &
792                                         BTRFS_SUPER_FLAG_CHANGING_FSID_V2);
793
794         if (fsid_change_in_progress) {
795                 if (!has_metadata_uuid)
796                         fs_devices = find_fsid_inprogress(disk_super);
797                 else
798                         fs_devices = find_fsid_changed(disk_super);
799         } else if (has_metadata_uuid) {
800                 fs_devices = find_fsid_with_metadata_uuid(disk_super);
801         } else {
802                 fs_devices = find_fsid_reverted_metadata(disk_super);
803                 if (!fs_devices)
804                         fs_devices = find_fsid(disk_super->fsid, NULL);
805         }
806
807
808         if (!fs_devices) {
809                 if (has_metadata_uuid)
810                         fs_devices = alloc_fs_devices(disk_super->fsid,
811                                                       disk_super->metadata_uuid);
812                 else
813                         fs_devices = alloc_fs_devices(disk_super->fsid, NULL);
814
815                 if (IS_ERR(fs_devices))
816                         return ERR_CAST(fs_devices);
817
818                 fs_devices->fsid_change = fsid_change_in_progress;
819
820                 mutex_lock(&fs_devices->device_list_mutex);
821                 list_add(&fs_devices->fs_list, &fs_uuids);
822
823                 device = NULL;
824         } else {
825                 mutex_lock(&fs_devices->device_list_mutex);
826                 device = btrfs_find_device(fs_devices, devid,
827                                 disk_super->dev_item.uuid, NULL);
828
829                 /*
830                  * If this disk has been pulled into an fs devices created by
831                  * a device which had the CHANGING_FSID_V2 flag then replace the
832                  * metadata_uuid/fsid values of the fs_devices.
833                  */
834                 if (fs_devices->fsid_change &&
835                     found_transid > fs_devices->latest_generation) {
836                         memcpy(fs_devices->fsid, disk_super->fsid,
837                                         BTRFS_FSID_SIZE);
838
839                         if (has_metadata_uuid)
840                                 memcpy(fs_devices->metadata_uuid,
841                                        disk_super->metadata_uuid,
842                                        BTRFS_FSID_SIZE);
843                         else
844                                 memcpy(fs_devices->metadata_uuid,
845                                        disk_super->fsid, BTRFS_FSID_SIZE);
846
847                         fs_devices->fsid_change = false;
848                 }
849         }
850
851         if (!device) {
852                 if (fs_devices->opened) {
853                         mutex_unlock(&fs_devices->device_list_mutex);
854                         return ERR_PTR(-EBUSY);
855                 }
856
857                 device = btrfs_alloc_device(NULL, &devid,
858                                             disk_super->dev_item.uuid);
859                 if (IS_ERR(device)) {
860                         mutex_unlock(&fs_devices->device_list_mutex);
861                         /* we can safely leave the fs_devices entry around */
862                         return device;
863                 }
864
865                 name = rcu_string_strdup(path, GFP_NOFS);
866                 if (!name) {
867                         btrfs_free_device(device);
868                         mutex_unlock(&fs_devices->device_list_mutex);
869                         return ERR_PTR(-ENOMEM);
870                 }
871                 rcu_assign_pointer(device->name, name);
872
873                 list_add_rcu(&device->dev_list, &fs_devices->devices);
874                 fs_devices->num_devices++;
875
876                 device->fs_devices = fs_devices;
877                 *new_device_added = true;
878
879                 if (disk_super->label[0])
880                         pr_info(
881         "BTRFS: device label %s devid %llu transid %llu %s scanned by %s (%d)\n",
882                                 disk_super->label, devid, found_transid, path,
883                                 current->comm, task_pid_nr(current));
884                 else
885                         pr_info(
886         "BTRFS: device fsid %pU devid %llu transid %llu %s scanned by %s (%d)\n",
887                                 disk_super->fsid, devid, found_transid, path,
888                                 current->comm, task_pid_nr(current));
889
890         } else if (!device->name || strcmp(device->name->str, path)) {
891                 /*
892                  * When FS is already mounted.
893                  * 1. If you are here and if the device->name is NULL that
894                  *    means this device was missing at time of FS mount.
895                  * 2. If you are here and if the device->name is different
896                  *    from 'path' that means either
897                  *      a. The same device disappeared and reappeared with
898                  *         different name. or
899                  *      b. The missing-disk-which-was-replaced, has
900                  *         reappeared now.
901                  *
902                  * We must allow 1 and 2a above. But 2b would be a spurious
903                  * and unintentional.
904                  *
905                  * Further in case of 1 and 2a above, the disk at 'path'
906                  * would have missed some transaction when it was away and
907                  * in case of 2a the stale bdev has to be updated as well.
908                  * 2b must not be allowed at all time.
909                  */
910
911                 /*
912                  * For now, we do allow update to btrfs_fs_device through the
913                  * btrfs dev scan cli after FS has been mounted.  We're still
914                  * tracking a problem where systems fail mount by subvolume id
915                  * when we reject replacement on a mounted FS.
916                  */
917                 if (!fs_devices->opened && found_transid < device->generation) {
918                         /*
919                          * That is if the FS is _not_ mounted and if you
920                          * are here, that means there is more than one
921                          * disk with same uuid and devid.We keep the one
922                          * with larger generation number or the last-in if
923                          * generation are equal.
924                          */
925                         mutex_unlock(&fs_devices->device_list_mutex);
926                         return ERR_PTR(-EEXIST);
927                 }
928
929                 /*
930                  * We are going to replace the device path for a given devid,
931                  * make sure it's the same device if the device is mounted
932                  */
933                 if (device->bdev) {
934                         int error;
935                         dev_t path_dev;
936
937                         error = lookup_bdev(path, &path_dev);
938                         if (error) {
939                                 mutex_unlock(&fs_devices->device_list_mutex);
940                                 return ERR_PTR(error);
941                         }
942
943                         if (device->bdev->bd_dev != path_dev) {
944                                 mutex_unlock(&fs_devices->device_list_mutex);
945                                 /*
946                                  * device->fs_info may not be reliable here, so
947                                  * pass in a NULL instead. This avoids a
948                                  * possible use-after-free when the fs_info and
949                                  * fs_info->sb are already torn down.
950                                  */
951                                 btrfs_warn_in_rcu(NULL,
952         "duplicate device %s devid %llu generation %llu scanned by %s (%d)",
953                                                   path, devid, found_transid,
954                                                   current->comm,
955                                                   task_pid_nr(current));
956                                 return ERR_PTR(-EEXIST);
957                         }
958                         btrfs_info_in_rcu(device->fs_info,
959         "devid %llu device path %s changed to %s scanned by %s (%d)",
960                                           devid, rcu_str_deref(device->name),
961                                           path, current->comm,
962                                           task_pid_nr(current));
963                 }
964
965                 name = rcu_string_strdup(path, GFP_NOFS);
966                 if (!name) {
967                         mutex_unlock(&fs_devices->device_list_mutex);
968                         return ERR_PTR(-ENOMEM);
969                 }
970                 rcu_string_free(device->name);
971                 rcu_assign_pointer(device->name, name);
972                 if (test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state)) {
973                         fs_devices->missing_devices--;
974                         clear_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state);
975                 }
976         }
977
978         /*
979          * Unmount does not free the btrfs_device struct but would zero
980          * generation along with most of the other members. So just update
981          * it back. We need it to pick the disk with largest generation
982          * (as above).
983          */
984         if (!fs_devices->opened) {
985                 device->generation = found_transid;
986                 fs_devices->latest_generation = max_t(u64, found_transid,
987                                                 fs_devices->latest_generation);
988         }
989
990         fs_devices->total_devices = btrfs_super_num_devices(disk_super);
991
992         mutex_unlock(&fs_devices->device_list_mutex);
993         return device;
994 }
995
996 static struct btrfs_fs_devices *clone_fs_devices(struct btrfs_fs_devices *orig)
997 {
998         struct btrfs_fs_devices *fs_devices;
999         struct btrfs_device *device;
1000         struct btrfs_device *orig_dev;
1001         int ret = 0;
1002
1003         fs_devices = alloc_fs_devices(orig->fsid, NULL);
1004         if (IS_ERR(fs_devices))
1005                 return fs_devices;
1006
1007         mutex_lock(&orig->device_list_mutex);
1008         fs_devices->total_devices = orig->total_devices;
1009
1010         list_for_each_entry(orig_dev, &orig->devices, dev_list) {
1011                 struct rcu_string *name;
1012
1013                 device = btrfs_alloc_device(NULL, &orig_dev->devid,
1014                                             orig_dev->uuid);
1015                 if (IS_ERR(device)) {
1016                         ret = PTR_ERR(device);
1017                         goto error;
1018                 }
1019
1020                 /*
1021                  * This is ok to do without rcu read locked because we hold the
1022                  * uuid mutex so nothing we touch in here is going to disappear.
1023                  */
1024                 if (orig_dev->name) {
1025                         name = rcu_string_strdup(orig_dev->name->str,
1026                                         GFP_KERNEL);
1027                         if (!name) {
1028                                 btrfs_free_device(device);
1029                                 ret = -ENOMEM;
1030                                 goto error;
1031                         }
1032                         rcu_assign_pointer(device->name, name);
1033                 }
1034
1035                 list_add(&device->dev_list, &fs_devices->devices);
1036                 device->fs_devices = fs_devices;
1037                 fs_devices->num_devices++;
1038         }
1039         mutex_unlock(&orig->device_list_mutex);
1040         return fs_devices;
1041 error:
1042         mutex_unlock(&orig->device_list_mutex);
1043         free_fs_devices(fs_devices);
1044         return ERR_PTR(ret);
1045 }
1046
1047 static void __btrfs_free_extra_devids(struct btrfs_fs_devices *fs_devices,
1048                                       struct btrfs_device **latest_dev)
1049 {
1050         struct btrfs_device *device, *next;
1051
1052         /* This is the initialized path, it is safe to release the devices. */
1053         list_for_each_entry_safe(device, next, &fs_devices->devices, dev_list) {
1054                 if (test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state)) {
1055                         if (!test_bit(BTRFS_DEV_STATE_REPLACE_TGT,
1056                                       &device->dev_state) &&
1057                             !test_bit(BTRFS_DEV_STATE_MISSING,
1058                                       &device->dev_state) &&
1059                             (!*latest_dev ||
1060                              device->generation > (*latest_dev)->generation)) {
1061                                 *latest_dev = device;
1062                         }
1063                         continue;
1064                 }
1065
1066                 /*
1067                  * We have already validated the presence of BTRFS_DEV_REPLACE_DEVID,
1068                  * in btrfs_init_dev_replace() so just continue.
1069                  */
1070                 if (device->devid == BTRFS_DEV_REPLACE_DEVID)
1071                         continue;
1072
1073                 if (device->bdev) {
1074                         blkdev_put(device->bdev, device->mode);
1075                         device->bdev = NULL;
1076                         fs_devices->open_devices--;
1077                 }
1078                 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
1079                         list_del_init(&device->dev_alloc_list);
1080                         clear_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
1081                         fs_devices->rw_devices--;
1082                 }
1083                 list_del_init(&device->dev_list);
1084                 fs_devices->num_devices--;
1085                 btrfs_free_device(device);
1086         }
1087
1088 }
1089
1090 /*
1091  * After we have read the system tree and know devids belonging to this
1092  * filesystem, remove the device which does not belong there.
1093  */
1094 void btrfs_free_extra_devids(struct btrfs_fs_devices *fs_devices)
1095 {
1096         struct btrfs_device *latest_dev = NULL;
1097         struct btrfs_fs_devices *seed_dev;
1098
1099         mutex_lock(&uuid_mutex);
1100         __btrfs_free_extra_devids(fs_devices, &latest_dev);
1101
1102         list_for_each_entry(seed_dev, &fs_devices->seed_list, seed_list)
1103                 __btrfs_free_extra_devids(seed_dev, &latest_dev);
1104
1105         fs_devices->latest_bdev = latest_dev->bdev;
1106
1107         mutex_unlock(&uuid_mutex);
1108 }
1109
1110 static void btrfs_close_bdev(struct btrfs_device *device)
1111 {
1112         if (!device->bdev)
1113                 return;
1114
1115         if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
1116                 sync_blockdev(device->bdev);
1117                 invalidate_bdev(device->bdev);
1118         }
1119
1120         blkdev_put(device->bdev, device->mode);
1121 }
1122
1123 static void btrfs_close_one_device(struct btrfs_device *device)
1124 {
1125         struct btrfs_fs_devices *fs_devices = device->fs_devices;
1126
1127         if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) &&
1128             device->devid != BTRFS_DEV_REPLACE_DEVID) {
1129                 list_del_init(&device->dev_alloc_list);
1130                 fs_devices->rw_devices--;
1131         }
1132
1133         if (test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state))
1134                 fs_devices->missing_devices--;
1135
1136         btrfs_close_bdev(device);
1137         if (device->bdev) {
1138                 fs_devices->open_devices--;
1139                 device->bdev = NULL;
1140         }
1141         clear_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
1142         btrfs_destroy_dev_zone_info(device);
1143
1144         device->fs_info = NULL;
1145         atomic_set(&device->dev_stats_ccnt, 0);
1146         extent_io_tree_release(&device->alloc_state);
1147
1148         /* Verify the device is back in a pristine state  */
1149         ASSERT(!test_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state));
1150         ASSERT(!test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state));
1151         ASSERT(list_empty(&device->dev_alloc_list));
1152         ASSERT(list_empty(&device->post_commit_list));
1153         ASSERT(atomic_read(&device->reada_in_flight) == 0);
1154 }
1155
1156 static void close_fs_devices(struct btrfs_fs_devices *fs_devices)
1157 {
1158         struct btrfs_device *device, *tmp;
1159
1160         lockdep_assert_held(&uuid_mutex);
1161
1162         if (--fs_devices->opened > 0)
1163                 return;
1164
1165         list_for_each_entry_safe(device, tmp, &fs_devices->devices, dev_list)
1166                 btrfs_close_one_device(device);
1167
1168         WARN_ON(fs_devices->open_devices);
1169         WARN_ON(fs_devices->rw_devices);
1170         fs_devices->opened = 0;
1171         fs_devices->seeding = false;
1172         fs_devices->fs_info = NULL;
1173 }
1174
1175 void btrfs_close_devices(struct btrfs_fs_devices *fs_devices)
1176 {
1177         LIST_HEAD(list);
1178         struct btrfs_fs_devices *tmp;
1179
1180         mutex_lock(&uuid_mutex);
1181         close_fs_devices(fs_devices);
1182         if (!fs_devices->opened)
1183                 list_splice_init(&fs_devices->seed_list, &list);
1184
1185         list_for_each_entry_safe(fs_devices, tmp, &list, seed_list) {
1186                 close_fs_devices(fs_devices);
1187                 list_del(&fs_devices->seed_list);
1188                 free_fs_devices(fs_devices);
1189         }
1190         mutex_unlock(&uuid_mutex);
1191 }
1192
1193 static int open_fs_devices(struct btrfs_fs_devices *fs_devices,
1194                                 fmode_t flags, void *holder)
1195 {
1196         struct btrfs_device *device;
1197         struct btrfs_device *latest_dev = NULL;
1198         struct btrfs_device *tmp_device;
1199
1200         flags |= FMODE_EXCL;
1201
1202         list_for_each_entry_safe(device, tmp_device, &fs_devices->devices,
1203                                  dev_list) {
1204                 int ret;
1205
1206                 ret = btrfs_open_one_device(fs_devices, device, flags, holder);
1207                 if (ret == 0 &&
1208                     (!latest_dev || device->generation > latest_dev->generation)) {
1209                         latest_dev = device;
1210                 } else if (ret == -ENODATA) {
1211                         fs_devices->num_devices--;
1212                         list_del(&device->dev_list);
1213                         btrfs_free_device(device);
1214                 }
1215         }
1216         if (fs_devices->open_devices == 0)
1217                 return -EINVAL;
1218
1219         fs_devices->opened = 1;
1220         fs_devices->latest_bdev = latest_dev->bdev;
1221         fs_devices->total_rw_bytes = 0;
1222         fs_devices->chunk_alloc_policy = BTRFS_CHUNK_ALLOC_REGULAR;
1223         fs_devices->read_policy = BTRFS_READ_POLICY_PID;
1224
1225         return 0;
1226 }
1227
1228 static int devid_cmp(void *priv, const struct list_head *a,
1229                      const struct list_head *b)
1230 {
1231         struct btrfs_device *dev1, *dev2;
1232
1233         dev1 = list_entry(a, struct btrfs_device, dev_list);
1234         dev2 = list_entry(b, struct btrfs_device, dev_list);
1235
1236         if (dev1->devid < dev2->devid)
1237                 return -1;
1238         else if (dev1->devid > dev2->devid)
1239                 return 1;
1240         return 0;
1241 }
1242
1243 int btrfs_open_devices(struct btrfs_fs_devices *fs_devices,
1244                        fmode_t flags, void *holder)
1245 {
1246         int ret;
1247
1248         lockdep_assert_held(&uuid_mutex);
1249         /*
1250          * The device_list_mutex cannot be taken here in case opening the
1251          * underlying device takes further locks like open_mutex.
1252          *
1253          * We also don't need the lock here as this is called during mount and
1254          * exclusion is provided by uuid_mutex
1255          */
1256
1257         if (fs_devices->opened) {
1258                 fs_devices->opened++;
1259                 ret = 0;
1260         } else {
1261                 list_sort(NULL, &fs_devices->devices, devid_cmp);
1262                 ret = open_fs_devices(fs_devices, flags, holder);
1263         }
1264
1265         return ret;
1266 }
1267
1268 void btrfs_release_disk_super(struct btrfs_super_block *super)
1269 {
1270         struct page *page = virt_to_page(super);
1271
1272         put_page(page);
1273 }
1274
1275 static struct btrfs_super_block *btrfs_read_disk_super(struct block_device *bdev,
1276                                                        u64 bytenr, u64 bytenr_orig)
1277 {
1278         struct btrfs_super_block *disk_super;
1279         struct page *page;
1280         void *p;
1281         pgoff_t index;
1282
1283         /* make sure our super fits in the device */
1284         if (bytenr + PAGE_SIZE >= i_size_read(bdev->bd_inode))
1285                 return ERR_PTR(-EINVAL);
1286
1287         /* make sure our super fits in the page */
1288         if (sizeof(*disk_super) > PAGE_SIZE)
1289                 return ERR_PTR(-EINVAL);
1290
1291         /* make sure our super doesn't straddle pages on disk */
1292         index = bytenr >> PAGE_SHIFT;
1293         if ((bytenr + sizeof(*disk_super) - 1) >> PAGE_SHIFT != index)
1294                 return ERR_PTR(-EINVAL);
1295
1296         /* pull in the page with our super */
1297         page = read_cache_page_gfp(bdev->bd_inode->i_mapping, index, GFP_KERNEL);
1298
1299         if (IS_ERR(page))
1300                 return ERR_CAST(page);
1301
1302         p = page_address(page);
1303
1304         /* align our pointer to the offset of the super block */
1305         disk_super = p + offset_in_page(bytenr);
1306
1307         if (btrfs_super_bytenr(disk_super) != bytenr_orig ||
1308             btrfs_super_magic(disk_super) != BTRFS_MAGIC) {
1309                 btrfs_release_disk_super(p);
1310                 return ERR_PTR(-EINVAL);
1311         }
1312
1313         if (disk_super->label[0] && disk_super->label[BTRFS_LABEL_SIZE - 1])
1314                 disk_super->label[BTRFS_LABEL_SIZE - 1] = 0;
1315
1316         return disk_super;
1317 }
1318
1319 int btrfs_forget_devices(const char *path)
1320 {
1321         int ret;
1322
1323         mutex_lock(&uuid_mutex);
1324         ret = btrfs_free_stale_devices(strlen(path) ? path : NULL, NULL);
1325         mutex_unlock(&uuid_mutex);
1326
1327         return ret;
1328 }
1329
1330 /*
1331  * Look for a btrfs signature on a device. This may be called out of the mount path
1332  * and we are not allowed to call set_blocksize during the scan. The superblock
1333  * is read via pagecache
1334  */
1335 struct btrfs_device *btrfs_scan_one_device(const char *path, fmode_t flags,
1336                                            void *holder)
1337 {
1338         struct btrfs_super_block *disk_super;
1339         bool new_device_added = false;
1340         struct btrfs_device *device = NULL;
1341         struct block_device *bdev;
1342         u64 bytenr, bytenr_orig;
1343         int ret;
1344
1345         lockdep_assert_held(&uuid_mutex);
1346
1347         /*
1348          * we would like to check all the supers, but that would make
1349          * a btrfs mount succeed after a mkfs from a different FS.
1350          * So, we need to add a special mount option to scan for
1351          * later supers, using BTRFS_SUPER_MIRROR_MAX instead
1352          */
1353         flags |= FMODE_EXCL;
1354
1355         bdev = blkdev_get_by_path(path, flags, holder);
1356         if (IS_ERR(bdev))
1357                 return ERR_CAST(bdev);
1358
1359         bytenr_orig = btrfs_sb_offset(0);
1360         ret = btrfs_sb_log_location_bdev(bdev, 0, READ, &bytenr);
1361         if (ret)
1362                 return ERR_PTR(ret);
1363
1364         disk_super = btrfs_read_disk_super(bdev, bytenr, bytenr_orig);
1365         if (IS_ERR(disk_super)) {
1366                 device = ERR_CAST(disk_super);
1367                 goto error_bdev_put;
1368         }
1369
1370         device = device_list_add(path, disk_super, &new_device_added);
1371         if (!IS_ERR(device)) {
1372                 if (new_device_added)
1373                         btrfs_free_stale_devices(path, device);
1374         }
1375
1376         btrfs_release_disk_super(disk_super);
1377
1378 error_bdev_put:
1379         blkdev_put(bdev, flags);
1380
1381         return device;
1382 }
1383
1384 /*
1385  * Try to find a chunk that intersects [start, start + len] range and when one
1386  * such is found, record the end of it in *start
1387  */
1388 static bool contains_pending_extent(struct btrfs_device *device, u64 *start,
1389                                     u64 len)
1390 {
1391         u64 physical_start, physical_end;
1392
1393         lockdep_assert_held(&device->fs_info->chunk_mutex);
1394
1395         if (!find_first_extent_bit(&device->alloc_state, *start,
1396                                    &physical_start, &physical_end,
1397                                    CHUNK_ALLOCATED, NULL)) {
1398
1399                 if (in_range(physical_start, *start, len) ||
1400                     in_range(*start, physical_start,
1401                              physical_end - physical_start)) {
1402                         *start = physical_end + 1;
1403                         return true;
1404                 }
1405         }
1406         return false;
1407 }
1408
1409 static u64 dev_extent_search_start(struct btrfs_device *device, u64 start)
1410 {
1411         switch (device->fs_devices->chunk_alloc_policy) {
1412         case BTRFS_CHUNK_ALLOC_REGULAR:
1413                 /*
1414                  * We don't want to overwrite the superblock on the drive nor
1415                  * any area used by the boot loader (grub for example), so we
1416                  * make sure to start at an offset of at least 1MB.
1417                  */
1418                 return max_t(u64, start, SZ_1M);
1419         case BTRFS_CHUNK_ALLOC_ZONED:
1420                 /*
1421                  * We don't care about the starting region like regular
1422                  * allocator, because we anyway use/reserve the first two zones
1423                  * for superblock logging.
1424                  */
1425                 return ALIGN(start, device->zone_info->zone_size);
1426         default:
1427                 BUG();
1428         }
1429 }
1430
1431 static bool dev_extent_hole_check_zoned(struct btrfs_device *device,
1432                                         u64 *hole_start, u64 *hole_size,
1433                                         u64 num_bytes)
1434 {
1435         u64 zone_size = device->zone_info->zone_size;
1436         u64 pos;
1437         int ret;
1438         bool changed = false;
1439
1440         ASSERT(IS_ALIGNED(*hole_start, zone_size));
1441
1442         while (*hole_size > 0) {
1443                 pos = btrfs_find_allocatable_zones(device, *hole_start,
1444                                                    *hole_start + *hole_size,
1445                                                    num_bytes);
1446                 if (pos != *hole_start) {
1447                         *hole_size = *hole_start + *hole_size - pos;
1448                         *hole_start = pos;
1449                         changed = true;
1450                         if (*hole_size < num_bytes)
1451                                 break;
1452                 }
1453
1454                 ret = btrfs_ensure_empty_zones(device, pos, num_bytes);
1455
1456                 /* Range is ensured to be empty */
1457                 if (!ret)
1458                         return changed;
1459
1460                 /* Given hole range was invalid (outside of device) */
1461                 if (ret == -ERANGE) {
1462                         *hole_start += *hole_size;
1463                         *hole_size = 0;
1464                         return true;
1465                 }
1466
1467                 *hole_start += zone_size;
1468                 *hole_size -= zone_size;
1469                 changed = true;
1470         }
1471
1472         return changed;
1473 }
1474
1475 /**
1476  * dev_extent_hole_check - check if specified hole is suitable for allocation
1477  * @device:     the device which we have the hole
1478  * @hole_start: starting position of the hole
1479  * @hole_size:  the size of the hole
1480  * @num_bytes:  the size of the free space that we need
1481  *
1482  * This function may modify @hole_start and @hole_size to reflect the suitable
1483  * position for allocation. Returns 1 if hole position is updated, 0 otherwise.
1484  */
1485 static bool dev_extent_hole_check(struct btrfs_device *device, u64 *hole_start,
1486                                   u64 *hole_size, u64 num_bytes)
1487 {
1488         bool changed = false;
1489         u64 hole_end = *hole_start + *hole_size;
1490
1491         for (;;) {
1492                 /*
1493                  * Check before we set max_hole_start, otherwise we could end up
1494                  * sending back this offset anyway.
1495                  */
1496                 if (contains_pending_extent(device, hole_start, *hole_size)) {
1497                         if (hole_end >= *hole_start)
1498                                 *hole_size = hole_end - *hole_start;
1499                         else
1500                                 *hole_size = 0;
1501                         changed = true;
1502                 }
1503
1504                 switch (device->fs_devices->chunk_alloc_policy) {
1505                 case BTRFS_CHUNK_ALLOC_REGULAR:
1506                         /* No extra check */
1507                         break;
1508                 case BTRFS_CHUNK_ALLOC_ZONED:
1509                         if (dev_extent_hole_check_zoned(device, hole_start,
1510                                                         hole_size, num_bytes)) {
1511                                 changed = true;
1512                                 /*
1513                                  * The changed hole can contain pending extent.
1514                                  * Loop again to check that.
1515                                  */
1516                                 continue;
1517                         }
1518                         break;
1519                 default:
1520                         BUG();
1521                 }
1522
1523                 break;
1524         }
1525
1526         return changed;
1527 }
1528
1529 /*
1530  * find_free_dev_extent_start - find free space in the specified device
1531  * @device:       the device which we search the free space in
1532  * @num_bytes:    the size of the free space that we need
1533  * @search_start: the position from which to begin the search
1534  * @start:        store the start of the free space.
1535  * @len:          the size of the free space. that we find, or the size
1536  *                of the max free space if we don't find suitable free space
1537  *
1538  * this uses a pretty simple search, the expectation is that it is
1539  * called very infrequently and that a given device has a small number
1540  * of extents
1541  *
1542  * @start is used to store the start of the free space if we find. But if we
1543  * don't find suitable free space, it will be used to store the start position
1544  * of the max free space.
1545  *
1546  * @len is used to store the size of the free space that we find.
1547  * But if we don't find suitable free space, it is used to store the size of
1548  * the max free space.
1549  *
1550  * NOTE: This function will search *commit* root of device tree, and does extra
1551  * check to ensure dev extents are not double allocated.
1552  * This makes the function safe to allocate dev extents but may not report
1553  * correct usable device space, as device extent freed in current transaction
1554  * is not reported as available.
1555  */
1556 static int find_free_dev_extent_start(struct btrfs_device *device,
1557                                 u64 num_bytes, u64 search_start, u64 *start,
1558                                 u64 *len)
1559 {
1560         struct btrfs_fs_info *fs_info = device->fs_info;
1561         struct btrfs_root *root = fs_info->dev_root;
1562         struct btrfs_key key;
1563         struct btrfs_dev_extent *dev_extent;
1564         struct btrfs_path *path;
1565         u64 hole_size;
1566         u64 max_hole_start;
1567         u64 max_hole_size;
1568         u64 extent_end;
1569         u64 search_end = device->total_bytes;
1570         int ret;
1571         int slot;
1572         struct extent_buffer *l;
1573
1574         search_start = dev_extent_search_start(device, search_start);
1575
1576         WARN_ON(device->zone_info &&
1577                 !IS_ALIGNED(num_bytes, device->zone_info->zone_size));
1578
1579         path = btrfs_alloc_path();
1580         if (!path)
1581                 return -ENOMEM;
1582
1583         max_hole_start = search_start;
1584         max_hole_size = 0;
1585
1586 again:
1587         if (search_start >= search_end ||
1588                 test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) {
1589                 ret = -ENOSPC;
1590                 goto out;
1591         }
1592
1593         path->reada = READA_FORWARD;
1594         path->search_commit_root = 1;
1595         path->skip_locking = 1;
1596
1597         key.objectid = device->devid;
1598         key.offset = search_start;
1599         key.type = BTRFS_DEV_EXTENT_KEY;
1600
1601         ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1602         if (ret < 0)
1603                 goto out;
1604         if (ret > 0) {
1605                 ret = btrfs_previous_item(root, path, key.objectid, key.type);
1606                 if (ret < 0)
1607                         goto out;
1608         }
1609
1610         while (1) {
1611                 l = path->nodes[0];
1612                 slot = path->slots[0];
1613                 if (slot >= btrfs_header_nritems(l)) {
1614                         ret = btrfs_next_leaf(root, path);
1615                         if (ret == 0)
1616                                 continue;
1617                         if (ret < 0)
1618                                 goto out;
1619
1620                         break;
1621                 }
1622                 btrfs_item_key_to_cpu(l, &key, slot);
1623
1624                 if (key.objectid < device->devid)
1625                         goto next;
1626
1627                 if (key.objectid > device->devid)
1628                         break;
1629
1630                 if (key.type != BTRFS_DEV_EXTENT_KEY)
1631                         goto next;
1632
1633                 if (key.offset > search_start) {
1634                         hole_size = key.offset - search_start;
1635                         dev_extent_hole_check(device, &search_start, &hole_size,
1636                                               num_bytes);
1637
1638                         if (hole_size > max_hole_size) {
1639                                 max_hole_start = search_start;
1640                                 max_hole_size = hole_size;
1641                         }
1642
1643                         /*
1644                          * If this free space is greater than which we need,
1645                          * it must be the max free space that we have found
1646                          * until now, so max_hole_start must point to the start
1647                          * of this free space and the length of this free space
1648                          * is stored in max_hole_size. Thus, we return
1649                          * max_hole_start and max_hole_size and go back to the
1650                          * caller.
1651                          */
1652                         if (hole_size >= num_bytes) {
1653                                 ret = 0;
1654                                 goto out;
1655                         }
1656                 }
1657
1658                 dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
1659                 extent_end = key.offset + btrfs_dev_extent_length(l,
1660                                                                   dev_extent);
1661                 if (extent_end > search_start)
1662                         search_start = extent_end;
1663 next:
1664                 path->slots[0]++;
1665                 cond_resched();
1666         }
1667
1668         /*
1669          * At this point, search_start should be the end of
1670          * allocated dev extents, and when shrinking the device,
1671          * search_end may be smaller than search_start.
1672          */
1673         if (search_end > search_start) {
1674                 hole_size = search_end - search_start;
1675                 if (dev_extent_hole_check(device, &search_start, &hole_size,
1676                                           num_bytes)) {
1677                         btrfs_release_path(path);
1678                         goto again;
1679                 }
1680
1681                 if (hole_size > max_hole_size) {
1682                         max_hole_start = search_start;
1683                         max_hole_size = hole_size;
1684                 }
1685         }
1686
1687         /* See above. */
1688         if (max_hole_size < num_bytes)
1689                 ret = -ENOSPC;
1690         else
1691                 ret = 0;
1692
1693 out:
1694         btrfs_free_path(path);
1695         *start = max_hole_start;
1696         if (len)
1697                 *len = max_hole_size;
1698         return ret;
1699 }
1700
1701 int find_free_dev_extent(struct btrfs_device *device, u64 num_bytes,
1702                          u64 *start, u64 *len)
1703 {
1704         /* FIXME use last free of some kind */
1705         return find_free_dev_extent_start(device, num_bytes, 0, start, len);
1706 }
1707
1708 static int btrfs_free_dev_extent(struct btrfs_trans_handle *trans,
1709                           struct btrfs_device *device,
1710                           u64 start, u64 *dev_extent_len)
1711 {
1712         struct btrfs_fs_info *fs_info = device->fs_info;
1713         struct btrfs_root *root = fs_info->dev_root;
1714         int ret;
1715         struct btrfs_path *path;
1716         struct btrfs_key key;
1717         struct btrfs_key found_key;
1718         struct extent_buffer *leaf = NULL;
1719         struct btrfs_dev_extent *extent = NULL;
1720
1721         path = btrfs_alloc_path();
1722         if (!path)
1723                 return -ENOMEM;
1724
1725         key.objectid = device->devid;
1726         key.offset = start;
1727         key.type = BTRFS_DEV_EXTENT_KEY;
1728 again:
1729         ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1730         if (ret > 0) {
1731                 ret = btrfs_previous_item(root, path, key.objectid,
1732                                           BTRFS_DEV_EXTENT_KEY);
1733                 if (ret)
1734                         goto out;
1735                 leaf = path->nodes[0];
1736                 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1737                 extent = btrfs_item_ptr(leaf, path->slots[0],
1738                                         struct btrfs_dev_extent);
1739                 BUG_ON(found_key.offset > start || found_key.offset +
1740                        btrfs_dev_extent_length(leaf, extent) < start);
1741                 key = found_key;
1742                 btrfs_release_path(path);
1743                 goto again;
1744         } else if (ret == 0) {
1745                 leaf = path->nodes[0];
1746                 extent = btrfs_item_ptr(leaf, path->slots[0],
1747                                         struct btrfs_dev_extent);
1748         } else {
1749                 goto out;
1750         }
1751
1752         *dev_extent_len = btrfs_dev_extent_length(leaf, extent);
1753
1754         ret = btrfs_del_item(trans, root, path);
1755         if (ret == 0)
1756                 set_bit(BTRFS_TRANS_HAVE_FREE_BGS, &trans->transaction->flags);
1757 out:
1758         btrfs_free_path(path);
1759         return ret;
1760 }
1761
1762 static int btrfs_alloc_dev_extent(struct btrfs_trans_handle *trans,
1763                                   struct btrfs_device *device,
1764                                   u64 chunk_offset, u64 start, u64 num_bytes)
1765 {
1766         int ret;
1767         struct btrfs_path *path;
1768         struct btrfs_fs_info *fs_info = device->fs_info;
1769         struct btrfs_root *root = fs_info->dev_root;
1770         struct btrfs_dev_extent *extent;
1771         struct extent_buffer *leaf;
1772         struct btrfs_key key;
1773
1774         WARN_ON(!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state));
1775         WARN_ON(test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state));
1776         path = btrfs_alloc_path();
1777         if (!path)
1778                 return -ENOMEM;
1779
1780         key.objectid = device->devid;
1781         key.offset = start;
1782         key.type = BTRFS_DEV_EXTENT_KEY;
1783         ret = btrfs_insert_empty_item(trans, root, path, &key,
1784                                       sizeof(*extent));
1785         if (ret)
1786                 goto out;
1787
1788         leaf = path->nodes[0];
1789         extent = btrfs_item_ptr(leaf, path->slots[0],
1790                                 struct btrfs_dev_extent);
1791         btrfs_set_dev_extent_chunk_tree(leaf, extent,
1792                                         BTRFS_CHUNK_TREE_OBJECTID);
1793         btrfs_set_dev_extent_chunk_objectid(leaf, extent,
1794                                             BTRFS_FIRST_CHUNK_TREE_OBJECTID);
1795         btrfs_set_dev_extent_chunk_offset(leaf, extent, chunk_offset);
1796
1797         btrfs_set_dev_extent_length(leaf, extent, num_bytes);
1798         btrfs_mark_buffer_dirty(leaf);
1799 out:
1800         btrfs_free_path(path);
1801         return ret;
1802 }
1803
1804 static u64 find_next_chunk(struct btrfs_fs_info *fs_info)
1805 {
1806         struct extent_map_tree *em_tree;
1807         struct extent_map *em;
1808         struct rb_node *n;
1809         u64 ret = 0;
1810
1811         em_tree = &fs_info->mapping_tree;
1812         read_lock(&em_tree->lock);
1813         n = rb_last(&em_tree->map.rb_root);
1814         if (n) {
1815                 em = rb_entry(n, struct extent_map, rb_node);
1816                 ret = em->start + em->len;
1817         }
1818         read_unlock(&em_tree->lock);
1819
1820         return ret;
1821 }
1822
1823 static noinline int find_next_devid(struct btrfs_fs_info *fs_info,
1824                                     u64 *devid_ret)
1825 {
1826         int ret;
1827         struct btrfs_key key;
1828         struct btrfs_key found_key;
1829         struct btrfs_path *path;
1830
1831         path = btrfs_alloc_path();
1832         if (!path)
1833                 return -ENOMEM;
1834
1835         key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1836         key.type = BTRFS_DEV_ITEM_KEY;
1837         key.offset = (u64)-1;
1838
1839         ret = btrfs_search_slot(NULL, fs_info->chunk_root, &key, path, 0, 0);
1840         if (ret < 0)
1841                 goto error;
1842
1843         if (ret == 0) {
1844                 /* Corruption */
1845                 btrfs_err(fs_info, "corrupted chunk tree devid -1 matched");
1846                 ret = -EUCLEAN;
1847                 goto error;
1848         }
1849
1850         ret = btrfs_previous_item(fs_info->chunk_root, path,
1851                                   BTRFS_DEV_ITEMS_OBJECTID,
1852                                   BTRFS_DEV_ITEM_KEY);
1853         if (ret) {
1854                 *devid_ret = 1;
1855         } else {
1856                 btrfs_item_key_to_cpu(path->nodes[0], &found_key,
1857                                       path->slots[0]);
1858                 *devid_ret = found_key.offset + 1;
1859         }
1860         ret = 0;
1861 error:
1862         btrfs_free_path(path);
1863         return ret;
1864 }
1865
1866 /*
1867  * the device information is stored in the chunk root
1868  * the btrfs_device struct should be fully filled in
1869  */
1870 static int btrfs_add_dev_item(struct btrfs_trans_handle *trans,
1871                             struct btrfs_device *device)
1872 {
1873         int ret;
1874         struct btrfs_path *path;
1875         struct btrfs_dev_item *dev_item;
1876         struct extent_buffer *leaf;
1877         struct btrfs_key key;
1878         unsigned long ptr;
1879
1880         path = btrfs_alloc_path();
1881         if (!path)
1882                 return -ENOMEM;
1883
1884         key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1885         key.type = BTRFS_DEV_ITEM_KEY;
1886         key.offset = device->devid;
1887
1888         ret = btrfs_insert_empty_item(trans, trans->fs_info->chunk_root, path,
1889                                       &key, sizeof(*dev_item));
1890         if (ret)
1891                 goto out;
1892
1893         leaf = path->nodes[0];
1894         dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item);
1895
1896         btrfs_set_device_id(leaf, dev_item, device->devid);
1897         btrfs_set_device_generation(leaf, dev_item, 0);
1898         btrfs_set_device_type(leaf, dev_item, device->type);
1899         btrfs_set_device_io_align(leaf, dev_item, device->io_align);
1900         btrfs_set_device_io_width(leaf, dev_item, device->io_width);
1901         btrfs_set_device_sector_size(leaf, dev_item, device->sector_size);
1902         btrfs_set_device_total_bytes(leaf, dev_item,
1903                                      btrfs_device_get_disk_total_bytes(device));
1904         btrfs_set_device_bytes_used(leaf, dev_item,
1905                                     btrfs_device_get_bytes_used(device));
1906         btrfs_set_device_group(leaf, dev_item, 0);
1907         btrfs_set_device_seek_speed(leaf, dev_item, 0);
1908         btrfs_set_device_bandwidth(leaf, dev_item, 0);
1909         btrfs_set_device_start_offset(leaf, dev_item, 0);
1910
1911         ptr = btrfs_device_uuid(dev_item);
1912         write_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE);
1913         ptr = btrfs_device_fsid(dev_item);
1914         write_extent_buffer(leaf, trans->fs_info->fs_devices->metadata_uuid,
1915                             ptr, BTRFS_FSID_SIZE);
1916         btrfs_mark_buffer_dirty(leaf);
1917
1918         ret = 0;
1919 out:
1920         btrfs_free_path(path);
1921         return ret;
1922 }
1923
1924 /*
1925  * Function to update ctime/mtime for a given device path.
1926  * Mainly used for ctime/mtime based probe like libblkid.
1927  */
1928 static void update_dev_time(const char *path_name)
1929 {
1930         struct file *filp;
1931
1932         filp = filp_open(path_name, O_RDWR, 0);
1933         if (IS_ERR(filp))
1934                 return;
1935         file_update_time(filp);
1936         filp_close(filp, NULL);
1937 }
1938
1939 static int btrfs_rm_dev_item(struct btrfs_device *device)
1940 {
1941         struct btrfs_root *root = device->fs_info->chunk_root;
1942         int ret;
1943         struct btrfs_path *path;
1944         struct btrfs_key key;
1945         struct btrfs_trans_handle *trans;
1946
1947         path = btrfs_alloc_path();
1948         if (!path)
1949                 return -ENOMEM;
1950
1951         trans = btrfs_start_transaction(root, 0);
1952         if (IS_ERR(trans)) {
1953                 btrfs_free_path(path);
1954                 return PTR_ERR(trans);
1955         }
1956         key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1957         key.type = BTRFS_DEV_ITEM_KEY;
1958         key.offset = device->devid;
1959
1960         ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1961         if (ret) {
1962                 if (ret > 0)
1963                         ret = -ENOENT;
1964                 btrfs_abort_transaction(trans, ret);
1965                 btrfs_end_transaction(trans);
1966                 goto out;
1967         }
1968
1969         ret = btrfs_del_item(trans, root, path);
1970         if (ret) {
1971                 btrfs_abort_transaction(trans, ret);
1972                 btrfs_end_transaction(trans);
1973         }
1974
1975 out:
1976         btrfs_free_path(path);
1977         if (!ret)
1978                 ret = btrfs_commit_transaction(trans);
1979         return ret;
1980 }
1981
1982 /*
1983  * Verify that @num_devices satisfies the RAID profile constraints in the whole
1984  * filesystem. It's up to the caller to adjust that number regarding eg. device
1985  * replace.
1986  */
1987 static int btrfs_check_raid_min_devices(struct btrfs_fs_info *fs_info,
1988                 u64 num_devices)
1989 {
1990         u64 all_avail;
1991         unsigned seq;
1992         int i;
1993
1994         do {
1995                 seq = read_seqbegin(&fs_info->profiles_lock);
1996
1997                 all_avail = fs_info->avail_data_alloc_bits |
1998                             fs_info->avail_system_alloc_bits |
1999                             fs_info->avail_metadata_alloc_bits;
2000         } while (read_seqretry(&fs_info->profiles_lock, seq));
2001
2002         for (i = 0; i < BTRFS_NR_RAID_TYPES; i++) {
2003                 if (!(all_avail & btrfs_raid_array[i].bg_flag))
2004                         continue;
2005
2006                 if (num_devices < btrfs_raid_array[i].devs_min) {
2007                         int ret = btrfs_raid_array[i].mindev_error;
2008
2009                         if (ret)
2010                                 return ret;
2011                 }
2012         }
2013
2014         return 0;
2015 }
2016
2017 static struct btrfs_device * btrfs_find_next_active_device(
2018                 struct btrfs_fs_devices *fs_devs, struct btrfs_device *device)
2019 {
2020         struct btrfs_device *next_device;
2021
2022         list_for_each_entry(next_device, &fs_devs->devices, dev_list) {
2023                 if (next_device != device &&
2024                     !test_bit(BTRFS_DEV_STATE_MISSING, &next_device->dev_state)
2025                     && next_device->bdev)
2026                         return next_device;
2027         }
2028
2029         return NULL;
2030 }
2031
2032 /*
2033  * Helper function to check if the given device is part of s_bdev / latest_bdev
2034  * and replace it with the provided or the next active device, in the context
2035  * where this function called, there should be always be another device (or
2036  * this_dev) which is active.
2037  */
2038 void __cold btrfs_assign_next_active_device(struct btrfs_device *device,
2039                                             struct btrfs_device *next_device)
2040 {
2041         struct btrfs_fs_info *fs_info = device->fs_info;
2042
2043         if (!next_device)
2044                 next_device = btrfs_find_next_active_device(fs_info->fs_devices,
2045                                                             device);
2046         ASSERT(next_device);
2047
2048         if (fs_info->sb->s_bdev &&
2049                         (fs_info->sb->s_bdev == device->bdev))
2050                 fs_info->sb->s_bdev = next_device->bdev;
2051
2052         if (fs_info->fs_devices->latest_bdev == device->bdev)
2053                 fs_info->fs_devices->latest_bdev = next_device->bdev;
2054 }
2055
2056 /*
2057  * Return btrfs_fs_devices::num_devices excluding the device that's being
2058  * currently replaced.
2059  */
2060 static u64 btrfs_num_devices(struct btrfs_fs_info *fs_info)
2061 {
2062         u64 num_devices = fs_info->fs_devices->num_devices;
2063
2064         down_read(&fs_info->dev_replace.rwsem);
2065         if (btrfs_dev_replace_is_ongoing(&fs_info->dev_replace)) {
2066                 ASSERT(num_devices > 1);
2067                 num_devices--;
2068         }
2069         up_read(&fs_info->dev_replace.rwsem);
2070
2071         return num_devices;
2072 }
2073
2074 void btrfs_scratch_superblocks(struct btrfs_fs_info *fs_info,
2075                                struct block_device *bdev,
2076                                const char *device_path)
2077 {
2078         struct btrfs_super_block *disk_super;
2079         int copy_num;
2080
2081         if (!bdev)
2082                 return;
2083
2084         for (copy_num = 0; copy_num < BTRFS_SUPER_MIRROR_MAX; copy_num++) {
2085                 struct page *page;
2086                 int ret;
2087
2088                 disk_super = btrfs_read_dev_one_super(bdev, copy_num);
2089                 if (IS_ERR(disk_super))
2090                         continue;
2091
2092                 if (bdev_is_zoned(bdev)) {
2093                         btrfs_reset_sb_log_zones(bdev, copy_num);
2094                         continue;
2095                 }
2096
2097                 memset(&disk_super->magic, 0, sizeof(disk_super->magic));
2098
2099                 page = virt_to_page(disk_super);
2100                 set_page_dirty(page);
2101                 lock_page(page);
2102                 /* write_on_page() unlocks the page */
2103                 ret = write_one_page(page);
2104                 if (ret)
2105                         btrfs_warn(fs_info,
2106                                 "error clearing superblock number %d (%d)",
2107                                 copy_num, ret);
2108                 btrfs_release_disk_super(disk_super);
2109
2110         }
2111
2112         /* Notify udev that device has changed */
2113         btrfs_kobject_uevent(bdev, KOBJ_CHANGE);
2114
2115         /* Update ctime/mtime for device path for libblkid */
2116         update_dev_time(device_path);
2117 }
2118
2119 int btrfs_rm_device(struct btrfs_fs_info *fs_info, const char *device_path,
2120                     u64 devid)
2121 {
2122         struct btrfs_device *device;
2123         struct btrfs_fs_devices *cur_devices;
2124         struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
2125         u64 num_devices;
2126         int ret = 0;
2127
2128         mutex_lock(&uuid_mutex);
2129
2130         num_devices = btrfs_num_devices(fs_info);
2131
2132         ret = btrfs_check_raid_min_devices(fs_info, num_devices - 1);
2133         if (ret)
2134                 goto out;
2135
2136         device = btrfs_find_device_by_devspec(fs_info, devid, device_path);
2137
2138         if (IS_ERR(device)) {
2139                 if (PTR_ERR(device) == -ENOENT &&
2140                     strcmp(device_path, "missing") == 0)
2141                         ret = BTRFS_ERROR_DEV_MISSING_NOT_FOUND;
2142                 else
2143                         ret = PTR_ERR(device);
2144                 goto out;
2145         }
2146
2147         if (btrfs_pinned_by_swapfile(fs_info, device)) {
2148                 btrfs_warn_in_rcu(fs_info,
2149                   "cannot remove device %s (devid %llu) due to active swapfile",
2150                                   rcu_str_deref(device->name), device->devid);
2151                 ret = -ETXTBSY;
2152                 goto out;
2153         }
2154
2155         if (test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) {
2156                 ret = BTRFS_ERROR_DEV_TGT_REPLACE;
2157                 goto out;
2158         }
2159
2160         if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) &&
2161             fs_info->fs_devices->rw_devices == 1) {
2162                 ret = BTRFS_ERROR_DEV_ONLY_WRITABLE;
2163                 goto out;
2164         }
2165
2166         if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
2167                 mutex_lock(&fs_info->chunk_mutex);
2168                 list_del_init(&device->dev_alloc_list);
2169                 device->fs_devices->rw_devices--;
2170                 mutex_unlock(&fs_info->chunk_mutex);
2171         }
2172
2173         mutex_unlock(&uuid_mutex);
2174         ret = btrfs_shrink_device(device, 0);
2175         if (!ret)
2176                 btrfs_reada_remove_dev(device);
2177         mutex_lock(&uuid_mutex);
2178         if (ret)
2179                 goto error_undo;
2180
2181         /*
2182          * TODO: the superblock still includes this device in its num_devices
2183          * counter although write_all_supers() is not locked out. This
2184          * could give a filesystem state which requires a degraded mount.
2185          */
2186         ret = btrfs_rm_dev_item(device);
2187         if (ret)
2188                 goto error_undo;
2189
2190         clear_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state);
2191         btrfs_scrub_cancel_dev(device);
2192
2193         /*
2194          * the device list mutex makes sure that we don't change
2195          * the device list while someone else is writing out all
2196          * the device supers. Whoever is writing all supers, should
2197          * lock the device list mutex before getting the number of
2198          * devices in the super block (super_copy). Conversely,
2199          * whoever updates the number of devices in the super block
2200          * (super_copy) should hold the device list mutex.
2201          */
2202
2203         /*
2204          * In normal cases the cur_devices == fs_devices. But in case
2205          * of deleting a seed device, the cur_devices should point to
2206          * its own fs_devices listed under the fs_devices->seed.
2207          */
2208         cur_devices = device->fs_devices;
2209         mutex_lock(&fs_devices->device_list_mutex);
2210         list_del_rcu(&device->dev_list);
2211
2212         cur_devices->num_devices--;
2213         cur_devices->total_devices--;
2214         /* Update total_devices of the parent fs_devices if it's seed */
2215         if (cur_devices != fs_devices)
2216                 fs_devices->total_devices--;
2217
2218         if (test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state))
2219                 cur_devices->missing_devices--;
2220
2221         btrfs_assign_next_active_device(device, NULL);
2222
2223         if (device->bdev) {
2224                 cur_devices->open_devices--;
2225                 /* remove sysfs entry */
2226                 btrfs_sysfs_remove_device(device);
2227         }
2228
2229         num_devices = btrfs_super_num_devices(fs_info->super_copy) - 1;
2230         btrfs_set_super_num_devices(fs_info->super_copy, num_devices);
2231         mutex_unlock(&fs_devices->device_list_mutex);
2232
2233         /*
2234          * at this point, the device is zero sized and detached from
2235          * the devices list.  All that's left is to zero out the old
2236          * supers and free the device.
2237          */
2238         if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state))
2239                 btrfs_scratch_superblocks(fs_info, device->bdev,
2240                                           device->name->str);
2241
2242         btrfs_close_bdev(device);
2243         synchronize_rcu();
2244         btrfs_free_device(device);
2245
2246         if (cur_devices->open_devices == 0) {
2247                 list_del_init(&cur_devices->seed_list);
2248                 close_fs_devices(cur_devices);
2249                 free_fs_devices(cur_devices);
2250         }
2251
2252 out:
2253         mutex_unlock(&uuid_mutex);
2254         return ret;
2255
2256 error_undo:
2257         btrfs_reada_undo_remove_dev(device);
2258         if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
2259                 mutex_lock(&fs_info->chunk_mutex);
2260                 list_add(&device->dev_alloc_list,
2261                          &fs_devices->alloc_list);
2262                 device->fs_devices->rw_devices++;
2263                 mutex_unlock(&fs_info->chunk_mutex);
2264         }
2265         goto out;
2266 }
2267
2268 void btrfs_rm_dev_replace_remove_srcdev(struct btrfs_device *srcdev)
2269 {
2270         struct btrfs_fs_devices *fs_devices;
2271
2272         lockdep_assert_held(&srcdev->fs_info->fs_devices->device_list_mutex);
2273
2274         /*
2275          * in case of fs with no seed, srcdev->fs_devices will point
2276          * to fs_devices of fs_info. However when the dev being replaced is
2277          * a seed dev it will point to the seed's local fs_devices. In short
2278          * srcdev will have its correct fs_devices in both the cases.
2279          */
2280         fs_devices = srcdev->fs_devices;
2281
2282         list_del_rcu(&srcdev->dev_list);
2283         list_del(&srcdev->dev_alloc_list);
2284         fs_devices->num_devices--;
2285         if (test_bit(BTRFS_DEV_STATE_MISSING, &srcdev->dev_state))
2286                 fs_devices->missing_devices--;
2287
2288         if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &srcdev->dev_state))
2289                 fs_devices->rw_devices--;
2290
2291         if (srcdev->bdev)
2292                 fs_devices->open_devices--;
2293 }
2294
2295 void btrfs_rm_dev_replace_free_srcdev(struct btrfs_device *srcdev)
2296 {
2297         struct btrfs_fs_devices *fs_devices = srcdev->fs_devices;
2298
2299         mutex_lock(&uuid_mutex);
2300
2301         btrfs_close_bdev(srcdev);
2302         synchronize_rcu();
2303         btrfs_free_device(srcdev);
2304
2305         /* if this is no devs we rather delete the fs_devices */
2306         if (!fs_devices->num_devices) {
2307                 /*
2308                  * On a mounted FS, num_devices can't be zero unless it's a
2309                  * seed. In case of a seed device being replaced, the replace
2310                  * target added to the sprout FS, so there will be no more
2311                  * device left under the seed FS.
2312                  */
2313                 ASSERT(fs_devices->seeding);
2314
2315                 list_del_init(&fs_devices->seed_list);
2316                 close_fs_devices(fs_devices);
2317                 free_fs_devices(fs_devices);
2318         }
2319         mutex_unlock(&uuid_mutex);
2320 }
2321
2322 void btrfs_destroy_dev_replace_tgtdev(struct btrfs_device *tgtdev)
2323 {
2324         struct btrfs_fs_devices *fs_devices = tgtdev->fs_info->fs_devices;
2325
2326         mutex_lock(&fs_devices->device_list_mutex);
2327
2328         btrfs_sysfs_remove_device(tgtdev);
2329
2330         if (tgtdev->bdev)
2331                 fs_devices->open_devices--;
2332
2333         fs_devices->num_devices--;
2334
2335         btrfs_assign_next_active_device(tgtdev, NULL);
2336
2337         list_del_rcu(&tgtdev->dev_list);
2338
2339         mutex_unlock(&fs_devices->device_list_mutex);
2340
2341         /*
2342          * The update_dev_time() with in btrfs_scratch_superblocks()
2343          * may lead to a call to btrfs_show_devname() which will try
2344          * to hold device_list_mutex. And here this device
2345          * is already out of device list, so we don't have to hold
2346          * the device_list_mutex lock.
2347          */
2348         btrfs_scratch_superblocks(tgtdev->fs_info, tgtdev->bdev,
2349                                   tgtdev->name->str);
2350
2351         btrfs_close_bdev(tgtdev);
2352         synchronize_rcu();
2353         btrfs_free_device(tgtdev);
2354 }
2355
2356 static struct btrfs_device *btrfs_find_device_by_path(
2357                 struct btrfs_fs_info *fs_info, const char *device_path)
2358 {
2359         int ret = 0;
2360         struct btrfs_super_block *disk_super;
2361         u64 devid;
2362         u8 *dev_uuid;
2363         struct block_device *bdev;
2364         struct btrfs_device *device;
2365
2366         ret = btrfs_get_bdev_and_sb(device_path, FMODE_READ,
2367                                     fs_info->bdev_holder, 0, &bdev, &disk_super);
2368         if (ret)
2369                 return ERR_PTR(ret);
2370
2371         devid = btrfs_stack_device_id(&disk_super->dev_item);
2372         dev_uuid = disk_super->dev_item.uuid;
2373         if (btrfs_fs_incompat(fs_info, METADATA_UUID))
2374                 device = btrfs_find_device(fs_info->fs_devices, devid, dev_uuid,
2375                                            disk_super->metadata_uuid);
2376         else
2377                 device = btrfs_find_device(fs_info->fs_devices, devid, dev_uuid,
2378                                            disk_super->fsid);
2379
2380         btrfs_release_disk_super(disk_super);
2381         if (!device)
2382                 device = ERR_PTR(-ENOENT);
2383         blkdev_put(bdev, FMODE_READ);
2384         return device;
2385 }
2386
2387 /*
2388  * Lookup a device given by device id, or the path if the id is 0.
2389  */
2390 struct btrfs_device *btrfs_find_device_by_devspec(
2391                 struct btrfs_fs_info *fs_info, u64 devid,
2392                 const char *device_path)
2393 {
2394         struct btrfs_device *device;
2395
2396         if (devid) {
2397                 device = btrfs_find_device(fs_info->fs_devices, devid, NULL,
2398                                            NULL);
2399                 if (!device)
2400                         return ERR_PTR(-ENOENT);
2401                 return device;
2402         }
2403
2404         if (!device_path || !device_path[0])
2405                 return ERR_PTR(-EINVAL);
2406
2407         if (strcmp(device_path, "missing") == 0) {
2408                 /* Find first missing device */
2409                 list_for_each_entry(device, &fs_info->fs_devices->devices,
2410                                     dev_list) {
2411                         if (test_bit(BTRFS_DEV_STATE_IN_FS_METADATA,
2412                                      &device->dev_state) && !device->bdev)
2413                                 return device;
2414                 }
2415                 return ERR_PTR(-ENOENT);
2416         }
2417
2418         return btrfs_find_device_by_path(fs_info, device_path);
2419 }
2420
2421 /*
2422  * does all the dirty work required for changing file system's UUID.
2423  */
2424 static int btrfs_prepare_sprout(struct btrfs_fs_info *fs_info)
2425 {
2426         struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
2427         struct btrfs_fs_devices *old_devices;
2428         struct btrfs_fs_devices *seed_devices;
2429         struct btrfs_super_block *disk_super = fs_info->super_copy;
2430         struct btrfs_device *device;
2431         u64 super_flags;
2432
2433         lockdep_assert_held(&uuid_mutex);
2434         if (!fs_devices->seeding)
2435                 return -EINVAL;
2436
2437         /*
2438          * Private copy of the seed devices, anchored at
2439          * fs_info->fs_devices->seed_list
2440          */
2441         seed_devices = alloc_fs_devices(NULL, NULL);
2442         if (IS_ERR(seed_devices))
2443                 return PTR_ERR(seed_devices);
2444
2445         /*
2446          * It's necessary to retain a copy of the original seed fs_devices in
2447          * fs_uuids so that filesystems which have been seeded can successfully
2448          * reference the seed device from open_seed_devices. This also supports
2449          * multiple fs seed.
2450          */
2451         old_devices = clone_fs_devices(fs_devices);
2452         if (IS_ERR(old_devices)) {
2453                 kfree(seed_devices);
2454                 return PTR_ERR(old_devices);
2455         }
2456
2457         list_add(&old_devices->fs_list, &fs_uuids);
2458
2459         memcpy(seed_devices, fs_devices, sizeof(*seed_devices));
2460         seed_devices->opened = 1;
2461         INIT_LIST_HEAD(&seed_devices->devices);
2462         INIT_LIST_HEAD(&seed_devices->alloc_list);
2463         mutex_init(&seed_devices->device_list_mutex);
2464
2465         mutex_lock(&fs_devices->device_list_mutex);
2466         list_splice_init_rcu(&fs_devices->devices, &seed_devices->devices,
2467                               synchronize_rcu);
2468         list_for_each_entry(device, &seed_devices->devices, dev_list)
2469                 device->fs_devices = seed_devices;
2470
2471         fs_devices->seeding = false;
2472         fs_devices->num_devices = 0;
2473         fs_devices->open_devices = 0;
2474         fs_devices->missing_devices = 0;
2475         fs_devices->rotating = false;
2476         list_add(&seed_devices->seed_list, &fs_devices->seed_list);
2477
2478         generate_random_uuid(fs_devices->fsid);
2479         memcpy(fs_devices->metadata_uuid, fs_devices->fsid, BTRFS_FSID_SIZE);
2480         memcpy(disk_super->fsid, fs_devices->fsid, BTRFS_FSID_SIZE);
2481         mutex_unlock(&fs_devices->device_list_mutex);
2482
2483         super_flags = btrfs_super_flags(disk_super) &
2484                       ~BTRFS_SUPER_FLAG_SEEDING;
2485         btrfs_set_super_flags(disk_super, super_flags);
2486
2487         return 0;
2488 }
2489
2490 /*
2491  * Store the expected generation for seed devices in device items.
2492  */
2493 static int btrfs_finish_sprout(struct btrfs_trans_handle *trans)
2494 {
2495         struct btrfs_fs_info *fs_info = trans->fs_info;
2496         struct btrfs_root *root = fs_info->chunk_root;
2497         struct btrfs_path *path;
2498         struct extent_buffer *leaf;
2499         struct btrfs_dev_item *dev_item;
2500         struct btrfs_device *device;
2501         struct btrfs_key key;
2502         u8 fs_uuid[BTRFS_FSID_SIZE];
2503         u8 dev_uuid[BTRFS_UUID_SIZE];
2504         u64 devid;
2505         int ret;
2506
2507         path = btrfs_alloc_path();
2508         if (!path)
2509                 return -ENOMEM;
2510
2511         key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
2512         key.offset = 0;
2513         key.type = BTRFS_DEV_ITEM_KEY;
2514
2515         while (1) {
2516                 ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
2517                 if (ret < 0)
2518                         goto error;
2519
2520                 leaf = path->nodes[0];
2521 next_slot:
2522                 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
2523                         ret = btrfs_next_leaf(root, path);
2524                         if (ret > 0)
2525                                 break;
2526                         if (ret < 0)
2527                                 goto error;
2528                         leaf = path->nodes[0];
2529                         btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2530                         btrfs_release_path(path);
2531                         continue;
2532                 }
2533
2534                 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2535                 if (key.objectid != BTRFS_DEV_ITEMS_OBJECTID ||
2536                     key.type != BTRFS_DEV_ITEM_KEY)
2537                         break;
2538
2539                 dev_item = btrfs_item_ptr(leaf, path->slots[0],
2540                                           struct btrfs_dev_item);
2541                 devid = btrfs_device_id(leaf, dev_item);
2542                 read_extent_buffer(leaf, dev_uuid, btrfs_device_uuid(dev_item),
2543                                    BTRFS_UUID_SIZE);
2544                 read_extent_buffer(leaf, fs_uuid, btrfs_device_fsid(dev_item),
2545                                    BTRFS_FSID_SIZE);
2546                 device = btrfs_find_device(fs_info->fs_devices, devid, dev_uuid,
2547                                            fs_uuid);
2548                 BUG_ON(!device); /* Logic error */
2549
2550                 if (device->fs_devices->seeding) {
2551                         btrfs_set_device_generation(leaf, dev_item,
2552                                                     device->generation);
2553                         btrfs_mark_buffer_dirty(leaf);
2554                 }
2555
2556                 path->slots[0]++;
2557                 goto next_slot;
2558         }
2559         ret = 0;
2560 error:
2561         btrfs_free_path(path);
2562         return ret;
2563 }
2564
2565 int btrfs_init_new_device(struct btrfs_fs_info *fs_info, const char *device_path)
2566 {
2567         struct btrfs_root *root = fs_info->dev_root;
2568         struct request_queue *q;
2569         struct btrfs_trans_handle *trans;
2570         struct btrfs_device *device;
2571         struct block_device *bdev;
2572         struct super_block *sb = fs_info->sb;
2573         struct rcu_string *name;
2574         struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
2575         u64 orig_super_total_bytes;
2576         u64 orig_super_num_devices;
2577         int seeding_dev = 0;
2578         int ret = 0;
2579         bool locked = false;
2580
2581         if (sb_rdonly(sb) && !fs_devices->seeding)
2582                 return -EROFS;
2583
2584         bdev = blkdev_get_by_path(device_path, FMODE_WRITE | FMODE_EXCL,
2585                                   fs_info->bdev_holder);
2586         if (IS_ERR(bdev))
2587                 return PTR_ERR(bdev);
2588
2589         if (!btrfs_check_device_zone_type(fs_info, bdev)) {
2590                 ret = -EINVAL;
2591                 goto error;
2592         }
2593
2594         if (fs_devices->seeding) {
2595                 seeding_dev = 1;
2596                 down_write(&sb->s_umount);
2597                 mutex_lock(&uuid_mutex);
2598                 locked = true;
2599         }
2600
2601         sync_blockdev(bdev);
2602
2603         rcu_read_lock();
2604         list_for_each_entry_rcu(device, &fs_devices->devices, dev_list) {
2605                 if (device->bdev == bdev) {
2606                         ret = -EEXIST;
2607                         rcu_read_unlock();
2608                         goto error;
2609                 }
2610         }
2611         rcu_read_unlock();
2612
2613         device = btrfs_alloc_device(fs_info, NULL, NULL);
2614         if (IS_ERR(device)) {
2615                 /* we can safely leave the fs_devices entry around */
2616                 ret = PTR_ERR(device);
2617                 goto error;
2618         }
2619
2620         name = rcu_string_strdup(device_path, GFP_KERNEL);
2621         if (!name) {
2622                 ret = -ENOMEM;
2623                 goto error_free_device;
2624         }
2625         rcu_assign_pointer(device->name, name);
2626
2627         device->fs_info = fs_info;
2628         device->bdev = bdev;
2629
2630         ret = btrfs_get_dev_zone_info(device);
2631         if (ret)
2632                 goto error_free_device;
2633
2634         trans = btrfs_start_transaction(root, 0);
2635         if (IS_ERR(trans)) {
2636                 ret = PTR_ERR(trans);
2637                 goto error_free_zone;
2638         }
2639
2640         q = bdev_get_queue(bdev);
2641         set_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
2642         device->generation = trans->transid;
2643         device->io_width = fs_info->sectorsize;
2644         device->io_align = fs_info->sectorsize;
2645         device->sector_size = fs_info->sectorsize;
2646         device->total_bytes = round_down(i_size_read(bdev->bd_inode),
2647                                          fs_info->sectorsize);
2648         device->disk_total_bytes = device->total_bytes;
2649         device->commit_total_bytes = device->total_bytes;
2650         set_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state);
2651         clear_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state);
2652         device->mode = FMODE_EXCL;
2653         device->dev_stats_valid = 1;
2654         set_blocksize(device->bdev, BTRFS_BDEV_BLOCKSIZE);
2655
2656         if (seeding_dev) {
2657                 btrfs_clear_sb_rdonly(sb);
2658                 ret = btrfs_prepare_sprout(fs_info);
2659                 if (ret) {
2660                         btrfs_abort_transaction(trans, ret);
2661                         goto error_trans;
2662                 }
2663         }
2664
2665         device->fs_devices = fs_devices;
2666
2667         mutex_lock(&fs_devices->device_list_mutex);
2668         mutex_lock(&fs_info->chunk_mutex);
2669         list_add_rcu(&device->dev_list, &fs_devices->devices);
2670         list_add(&device->dev_alloc_list, &fs_devices->alloc_list);
2671         fs_devices->num_devices++;
2672         fs_devices->open_devices++;
2673         fs_devices->rw_devices++;
2674         fs_devices->total_devices++;
2675         fs_devices->total_rw_bytes += device->total_bytes;
2676
2677         atomic64_add(device->total_bytes, &fs_info->free_chunk_space);
2678
2679         if (!blk_queue_nonrot(q))
2680                 fs_devices->rotating = true;
2681
2682         orig_super_total_bytes = btrfs_super_total_bytes(fs_info->super_copy);
2683         btrfs_set_super_total_bytes(fs_info->super_copy,
2684                 round_down(orig_super_total_bytes + device->total_bytes,
2685                            fs_info->sectorsize));
2686
2687         orig_super_num_devices = btrfs_super_num_devices(fs_info->super_copy);
2688         btrfs_set_super_num_devices(fs_info->super_copy,
2689                                     orig_super_num_devices + 1);
2690
2691         /*
2692          * we've got more storage, clear any full flags on the space
2693          * infos
2694          */
2695         btrfs_clear_space_info_full(fs_info);
2696
2697         mutex_unlock(&fs_info->chunk_mutex);
2698
2699         /* Add sysfs device entry */
2700         btrfs_sysfs_add_device(device);
2701
2702         mutex_unlock(&fs_devices->device_list_mutex);
2703
2704         if (seeding_dev) {
2705                 mutex_lock(&fs_info->chunk_mutex);
2706                 ret = init_first_rw_device(trans);
2707                 mutex_unlock(&fs_info->chunk_mutex);
2708                 if (ret) {
2709                         btrfs_abort_transaction(trans, ret);
2710                         goto error_sysfs;
2711                 }
2712         }
2713
2714         ret = btrfs_add_dev_item(trans, device);
2715         if (ret) {
2716                 btrfs_abort_transaction(trans, ret);
2717                 goto error_sysfs;
2718         }
2719
2720         if (seeding_dev) {
2721                 ret = btrfs_finish_sprout(trans);
2722                 if (ret) {
2723                         btrfs_abort_transaction(trans, ret);
2724                         goto error_sysfs;
2725                 }
2726
2727                 /*
2728                  * fs_devices now represents the newly sprouted filesystem and
2729                  * its fsid has been changed by btrfs_prepare_sprout
2730                  */
2731                 btrfs_sysfs_update_sprout_fsid(fs_devices);
2732         }
2733
2734         ret = btrfs_commit_transaction(trans);
2735
2736         if (seeding_dev) {
2737                 mutex_unlock(&uuid_mutex);
2738                 up_write(&sb->s_umount);
2739                 locked = false;
2740
2741                 if (ret) /* transaction commit */
2742                         return ret;
2743
2744                 ret = btrfs_relocate_sys_chunks(fs_info);
2745                 if (ret < 0)
2746                         btrfs_handle_fs_error(fs_info, ret,
2747                                     "Failed to relocate sys chunks after device initialization. This can be fixed using the \"btrfs balance\" command.");
2748                 trans = btrfs_attach_transaction(root);
2749                 if (IS_ERR(trans)) {
2750                         if (PTR_ERR(trans) == -ENOENT)
2751                                 return 0;
2752                         ret = PTR_ERR(trans);
2753                         trans = NULL;
2754                         goto error_sysfs;
2755                 }
2756                 ret = btrfs_commit_transaction(trans);
2757         }
2758
2759         /*
2760          * Now that we have written a new super block to this device, check all
2761          * other fs_devices list if device_path alienates any other scanned
2762          * device.
2763          * We can ignore the return value as it typically returns -EINVAL and
2764          * only succeeds if the device was an alien.
2765          */
2766         btrfs_forget_devices(device_path);
2767
2768         /* Update ctime/mtime for blkid or udev */
2769         update_dev_time(device_path);
2770
2771         return ret;
2772
2773 error_sysfs:
2774         btrfs_sysfs_remove_device(device);
2775         mutex_lock(&fs_info->fs_devices->device_list_mutex);
2776         mutex_lock(&fs_info->chunk_mutex);
2777         list_del_rcu(&device->dev_list);
2778         list_del(&device->dev_alloc_list);
2779         fs_info->fs_devices->num_devices--;
2780         fs_info->fs_devices->open_devices--;
2781         fs_info->fs_devices->rw_devices--;
2782         fs_info->fs_devices->total_devices--;
2783         fs_info->fs_devices->total_rw_bytes -= device->total_bytes;
2784         atomic64_sub(device->total_bytes, &fs_info->free_chunk_space);
2785         btrfs_set_super_total_bytes(fs_info->super_copy,
2786                                     orig_super_total_bytes);
2787         btrfs_set_super_num_devices(fs_info->super_copy,
2788                                     orig_super_num_devices);
2789         mutex_unlock(&fs_info->chunk_mutex);
2790         mutex_unlock(&fs_info->fs_devices->device_list_mutex);
2791 error_trans:
2792         if (seeding_dev)
2793                 btrfs_set_sb_rdonly(sb);
2794         if (trans)
2795                 btrfs_end_transaction(trans);
2796 error_free_zone:
2797         btrfs_destroy_dev_zone_info(device);
2798 error_free_device:
2799         btrfs_free_device(device);
2800 error:
2801         blkdev_put(bdev, FMODE_EXCL);
2802         if (locked) {
2803                 mutex_unlock(&uuid_mutex);
2804                 up_write(&sb->s_umount);
2805         }
2806         return ret;
2807 }
2808
2809 static noinline int btrfs_update_device(struct btrfs_trans_handle *trans,
2810                                         struct btrfs_device *device)
2811 {
2812         int ret;
2813         struct btrfs_path *path;
2814         struct btrfs_root *root = device->fs_info->chunk_root;
2815         struct btrfs_dev_item *dev_item;
2816         struct extent_buffer *leaf;
2817         struct btrfs_key key;
2818
2819         path = btrfs_alloc_path();
2820         if (!path)
2821                 return -ENOMEM;
2822
2823         key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
2824         key.type = BTRFS_DEV_ITEM_KEY;
2825         key.offset = device->devid;
2826
2827         ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
2828         if (ret < 0)
2829                 goto out;
2830
2831         if (ret > 0) {
2832                 ret = -ENOENT;
2833                 goto out;
2834         }
2835
2836         leaf = path->nodes[0];
2837         dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item);
2838
2839         btrfs_set_device_id(leaf, dev_item, device->devid);
2840         btrfs_set_device_type(leaf, dev_item, device->type);
2841         btrfs_set_device_io_align(leaf, dev_item, device->io_align);
2842         btrfs_set_device_io_width(leaf, dev_item, device->io_width);
2843         btrfs_set_device_sector_size(leaf, dev_item, device->sector_size);
2844         btrfs_set_device_total_bytes(leaf, dev_item,
2845                                      btrfs_device_get_disk_total_bytes(device));
2846         btrfs_set_device_bytes_used(leaf, dev_item,
2847                                     btrfs_device_get_bytes_used(device));
2848         btrfs_mark_buffer_dirty(leaf);
2849
2850 out:
2851         btrfs_free_path(path);
2852         return ret;
2853 }
2854
2855 int btrfs_grow_device(struct btrfs_trans_handle *trans,
2856                       struct btrfs_device *device, u64 new_size)
2857 {
2858         struct btrfs_fs_info *fs_info = device->fs_info;
2859         struct btrfs_super_block *super_copy = fs_info->super_copy;
2860         u64 old_total;
2861         u64 diff;
2862
2863         if (!test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state))
2864                 return -EACCES;
2865
2866         new_size = round_down(new_size, fs_info->sectorsize);
2867
2868         mutex_lock(&fs_info->chunk_mutex);
2869         old_total = btrfs_super_total_bytes(super_copy);
2870         diff = round_down(new_size - device->total_bytes, fs_info->sectorsize);
2871
2872         if (new_size <= device->total_bytes ||
2873             test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) {
2874                 mutex_unlock(&fs_info->chunk_mutex);
2875                 return -EINVAL;
2876         }
2877
2878         btrfs_set_super_total_bytes(super_copy,
2879                         round_down(old_total + diff, fs_info->sectorsize));
2880         device->fs_devices->total_rw_bytes += diff;
2881
2882         btrfs_device_set_total_bytes(device, new_size);
2883         btrfs_device_set_disk_total_bytes(device, new_size);
2884         btrfs_clear_space_info_full(device->fs_info);
2885         if (list_empty(&device->post_commit_list))
2886                 list_add_tail(&device->post_commit_list,
2887                               &trans->transaction->dev_update_list);
2888         mutex_unlock(&fs_info->chunk_mutex);
2889
2890         return btrfs_update_device(trans, device);
2891 }
2892
2893 static int btrfs_free_chunk(struct btrfs_trans_handle *trans, u64 chunk_offset)
2894 {
2895         struct btrfs_fs_info *fs_info = trans->fs_info;
2896         struct btrfs_root *root = fs_info->chunk_root;
2897         int ret;
2898         struct btrfs_path *path;
2899         struct btrfs_key key;
2900
2901         path = btrfs_alloc_path();
2902         if (!path)
2903                 return -ENOMEM;
2904
2905         key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
2906         key.offset = chunk_offset;
2907         key.type = BTRFS_CHUNK_ITEM_KEY;
2908
2909         ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
2910         if (ret < 0)
2911                 goto out;
2912         else if (ret > 0) { /* Logic error or corruption */
2913                 btrfs_handle_fs_error(fs_info, -ENOENT,
2914                                       "Failed lookup while freeing chunk.");
2915                 ret = -ENOENT;
2916                 goto out;
2917         }
2918
2919         ret = btrfs_del_item(trans, root, path);
2920         if (ret < 0)
2921                 btrfs_handle_fs_error(fs_info, ret,
2922                                       "Failed to delete chunk item.");
2923 out:
2924         btrfs_free_path(path);
2925         return ret;
2926 }
2927
2928 static int btrfs_del_sys_chunk(struct btrfs_fs_info *fs_info, u64 chunk_offset)
2929 {
2930         struct btrfs_super_block *super_copy = fs_info->super_copy;
2931         struct btrfs_disk_key *disk_key;
2932         struct btrfs_chunk *chunk;
2933         u8 *ptr;
2934         int ret = 0;
2935         u32 num_stripes;
2936         u32 array_size;
2937         u32 len = 0;
2938         u32 cur;
2939         struct btrfs_key key;
2940
2941         lockdep_assert_held(&fs_info->chunk_mutex);
2942         array_size = btrfs_super_sys_array_size(super_copy);
2943
2944         ptr = super_copy->sys_chunk_array;
2945         cur = 0;
2946
2947         while (cur < array_size) {
2948                 disk_key = (struct btrfs_disk_key *)ptr;
2949                 btrfs_disk_key_to_cpu(&key, disk_key);
2950
2951                 len = sizeof(*disk_key);
2952
2953                 if (key.type == BTRFS_CHUNK_ITEM_KEY) {
2954                         chunk = (struct btrfs_chunk *)(ptr + len);
2955                         num_stripes = btrfs_stack_chunk_num_stripes(chunk);
2956                         len += btrfs_chunk_item_size(num_stripes);
2957                 } else {
2958                         ret = -EIO;
2959                         break;
2960                 }
2961                 if (key.objectid == BTRFS_FIRST_CHUNK_TREE_OBJECTID &&
2962                     key.offset == chunk_offset) {
2963                         memmove(ptr, ptr + len, array_size - (cur + len));
2964                         array_size -= len;
2965                         btrfs_set_super_sys_array_size(super_copy, array_size);
2966                 } else {
2967                         ptr += len;
2968                         cur += len;
2969                 }
2970         }
2971         return ret;
2972 }
2973
2974 /*
2975  * btrfs_get_chunk_map() - Find the mapping containing the given logical extent.
2976  * @logical: Logical block offset in bytes.
2977  * @length: Length of extent in bytes.
2978  *
2979  * Return: Chunk mapping or ERR_PTR.
2980  */
2981 struct extent_map *btrfs_get_chunk_map(struct btrfs_fs_info *fs_info,
2982                                        u64 logical, u64 length)
2983 {
2984         struct extent_map_tree *em_tree;
2985         struct extent_map *em;
2986
2987         em_tree = &fs_info->mapping_tree;
2988         read_lock(&em_tree->lock);
2989         em = lookup_extent_mapping(em_tree, logical, length);
2990         read_unlock(&em_tree->lock);
2991
2992         if (!em) {
2993                 btrfs_crit(fs_info, "unable to find logical %llu length %llu",
2994                            logical, length);
2995                 return ERR_PTR(-EINVAL);
2996         }
2997
2998         if (em->start > logical || em->start + em->len < logical) {
2999                 btrfs_crit(fs_info,
3000                            "found a bad mapping, wanted %llu-%llu, found %llu-%llu",
3001                            logical, length, em->start, em->start + em->len);
3002                 free_extent_map(em);
3003                 return ERR_PTR(-EINVAL);
3004         }
3005
3006         /* callers are responsible for dropping em's ref. */
3007         return em;
3008 }
3009
3010 static int remove_chunk_item(struct btrfs_trans_handle *trans,
3011                              struct map_lookup *map, u64 chunk_offset)
3012 {
3013         int i;
3014
3015         /*
3016          * Removing chunk items and updating the device items in the chunks btree
3017          * requires holding the chunk_mutex.
3018          * See the comment at btrfs_chunk_alloc() for the details.
3019          */
3020         lockdep_assert_held(&trans->fs_info->chunk_mutex);
3021
3022         for (i = 0; i < map->num_stripes; i++) {
3023                 int ret;
3024
3025                 ret = btrfs_update_device(trans, map->stripes[i].dev);
3026                 if (ret)
3027                         return ret;
3028         }
3029
3030         return btrfs_free_chunk(trans, chunk_offset);
3031 }
3032
3033 int btrfs_remove_chunk(struct btrfs_trans_handle *trans, u64 chunk_offset)
3034 {
3035         struct btrfs_fs_info *fs_info = trans->fs_info;
3036         struct extent_map *em;
3037         struct map_lookup *map;
3038         u64 dev_extent_len = 0;
3039         int i, ret = 0;
3040         struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
3041
3042         em = btrfs_get_chunk_map(fs_info, chunk_offset, 1);
3043         if (IS_ERR(em)) {
3044                 /*
3045                  * This is a logic error, but we don't want to just rely on the
3046                  * user having built with ASSERT enabled, so if ASSERT doesn't
3047                  * do anything we still error out.
3048                  */
3049                 ASSERT(0);
3050                 return PTR_ERR(em);
3051         }
3052         map = em->map_lookup;
3053
3054         /*
3055          * First delete the device extent items from the devices btree.
3056          * We take the device_list_mutex to avoid racing with the finishing phase
3057          * of a device replace operation. See the comment below before acquiring
3058          * fs_info->chunk_mutex. Note that here we do not acquire the chunk_mutex
3059          * because that can result in a deadlock when deleting the device extent
3060          * items from the devices btree - COWing an extent buffer from the btree
3061          * may result in allocating a new metadata chunk, which would attempt to
3062          * lock again fs_info->chunk_mutex.
3063          */
3064         mutex_lock(&fs_devices->device_list_mutex);
3065         for (i = 0; i < map->num_stripes; i++) {
3066                 struct btrfs_device *device = map->stripes[i].dev;
3067                 ret = btrfs_free_dev_extent(trans, device,
3068                                             map->stripes[i].physical,
3069                                             &dev_extent_len);
3070                 if (ret) {
3071                         mutex_unlock(&fs_devices->device_list_mutex);
3072                         btrfs_abort_transaction(trans, ret);
3073                         goto out;
3074                 }
3075
3076                 if (device->bytes_used > 0) {
3077                         mutex_lock(&fs_info->chunk_mutex);
3078                         btrfs_device_set_bytes_used(device,
3079                                         device->bytes_used - dev_extent_len);
3080                         atomic64_add(dev_extent_len, &fs_info->free_chunk_space);
3081                         btrfs_clear_space_info_full(fs_info);
3082                         mutex_unlock(&fs_info->chunk_mutex);
3083                 }
3084         }
3085         mutex_unlock(&fs_devices->device_list_mutex);
3086
3087         /*
3088          * We acquire fs_info->chunk_mutex for 2 reasons:
3089          *
3090          * 1) Just like with the first phase of the chunk allocation, we must
3091          *    reserve system space, do all chunk btree updates and deletions, and
3092          *    update the system chunk array in the superblock while holding this
3093          *    mutex. This is for similar reasons as explained on the comment at
3094          *    the top of btrfs_chunk_alloc();
3095          *
3096          * 2) Prevent races with the final phase of a device replace operation
3097          *    that replaces the device object associated with the map's stripes,
3098          *    because the device object's id can change at any time during that
3099          *    final phase of the device replace operation
3100          *    (dev-replace.c:btrfs_dev_replace_finishing()), so we could grab the
3101          *    replaced device and then see it with an ID of
3102          *    BTRFS_DEV_REPLACE_DEVID, which would cause a failure when updating
3103          *    the device item, which does not exists on the chunk btree.
3104          *    The finishing phase of device replace acquires both the
3105          *    device_list_mutex and the chunk_mutex, in that order, so we are
3106          *    safe by just acquiring the chunk_mutex.
3107          */
3108         trans->removing_chunk = true;
3109         mutex_lock(&fs_info->chunk_mutex);
3110
3111         check_system_chunk(trans, map->type);
3112
3113         ret = remove_chunk_item(trans, map, chunk_offset);
3114         /*
3115          * Normally we should not get -ENOSPC since we reserved space before
3116          * through the call to check_system_chunk().
3117          *
3118          * Despite our system space_info having enough free space, we may not
3119          * be able to allocate extents from its block groups, because all have
3120          * an incompatible profile, which will force us to allocate a new system
3121          * block group with the right profile, or right after we called
3122          * check_system_space() above, a scrub turned the only system block group
3123          * with enough free space into RO mode.
3124          * This is explained with more detail at do_chunk_alloc().
3125          *
3126          * So if we get -ENOSPC, allocate a new system chunk and retry once.
3127          */
3128         if (ret == -ENOSPC) {
3129                 const u64 sys_flags = btrfs_system_alloc_profile(fs_info);
3130                 struct btrfs_block_group *sys_bg;
3131
3132                 sys_bg = btrfs_alloc_chunk(trans, sys_flags);
3133                 if (IS_ERR(sys_bg)) {
3134                         ret = PTR_ERR(sys_bg);
3135                         btrfs_abort_transaction(trans, ret);
3136                         goto out;
3137                 }
3138
3139                 ret = btrfs_chunk_alloc_add_chunk_item(trans, sys_bg);
3140                 if (ret) {
3141                         btrfs_abort_transaction(trans, ret);
3142                         goto out;
3143                 }
3144
3145                 ret = remove_chunk_item(trans, map, chunk_offset);
3146                 if (ret) {
3147                         btrfs_abort_transaction(trans, ret);
3148                         goto out;
3149                 }
3150         } else if (ret) {
3151                 btrfs_abort_transaction(trans, ret);
3152                 goto out;
3153         }
3154
3155         trace_btrfs_chunk_free(fs_info, map, chunk_offset, em->len);
3156
3157         if (map->type & BTRFS_BLOCK_GROUP_SYSTEM) {
3158                 ret = btrfs_del_sys_chunk(fs_info, chunk_offset);
3159                 if (ret) {
3160                         btrfs_abort_transaction(trans, ret);
3161                         goto out;
3162                 }
3163         }
3164
3165         mutex_unlock(&fs_info->chunk_mutex);
3166         trans->removing_chunk = false;
3167
3168         /*
3169          * We are done with chunk btree updates and deletions, so release the
3170          * system space we previously reserved (with check_system_chunk()).
3171          */
3172         btrfs_trans_release_chunk_metadata(trans);
3173
3174         ret = btrfs_remove_block_group(trans, chunk_offset, em);
3175         if (ret) {
3176                 btrfs_abort_transaction(trans, ret);
3177                 goto out;
3178         }
3179
3180 out:
3181         if (trans->removing_chunk) {
3182                 mutex_unlock(&fs_info->chunk_mutex);
3183                 trans->removing_chunk = false;
3184         }
3185         /* once for us */
3186         free_extent_map(em);
3187         return ret;
3188 }
3189
3190 int btrfs_relocate_chunk(struct btrfs_fs_info *fs_info, u64 chunk_offset)
3191 {
3192         struct btrfs_root *root = fs_info->chunk_root;
3193         struct btrfs_trans_handle *trans;
3194         struct btrfs_block_group *block_group;
3195         u64 length;
3196         int ret;
3197
3198         /*
3199          * Prevent races with automatic removal of unused block groups.
3200          * After we relocate and before we remove the chunk with offset
3201          * chunk_offset, automatic removal of the block group can kick in,
3202          * resulting in a failure when calling btrfs_remove_chunk() below.
3203          *
3204          * Make sure to acquire this mutex before doing a tree search (dev
3205          * or chunk trees) to find chunks. Otherwise the cleaner kthread might
3206          * call btrfs_remove_chunk() (through btrfs_delete_unused_bgs()) after
3207          * we release the path used to search the chunk/dev tree and before
3208          * the current task acquires this mutex and calls us.
3209          */
3210         lockdep_assert_held(&fs_info->reclaim_bgs_lock);
3211
3212         /* step one, relocate all the extents inside this chunk */
3213         btrfs_scrub_pause(fs_info);
3214         ret = btrfs_relocate_block_group(fs_info, chunk_offset);
3215         btrfs_scrub_continue(fs_info);
3216         if (ret)
3217                 return ret;
3218
3219         block_group = btrfs_lookup_block_group(fs_info, chunk_offset);
3220         if (!block_group)
3221                 return -ENOENT;
3222         btrfs_discard_cancel_work(&fs_info->discard_ctl, block_group);
3223         length = block_group->length;
3224         btrfs_put_block_group(block_group);
3225
3226         /*
3227          * On a zoned file system, discard the whole block group, this will
3228          * trigger a REQ_OP_ZONE_RESET operation on the device zone. If
3229          * resetting the zone fails, don't treat it as a fatal problem from the
3230          * filesystem's point of view.
3231          */
3232         if (btrfs_is_zoned(fs_info)) {
3233                 ret = btrfs_discard_extent(fs_info, chunk_offset, length, NULL);
3234                 if (ret)
3235                         btrfs_info(fs_info,
3236                                 "failed to reset zone %llu after relocation",
3237                                 chunk_offset);
3238         }
3239
3240         trans = btrfs_start_trans_remove_block_group(root->fs_info,
3241                                                      chunk_offset);
3242         if (IS_ERR(trans)) {
3243                 ret = PTR_ERR(trans);
3244                 btrfs_handle_fs_error(root->fs_info, ret, NULL);
3245                 return ret;
3246         }
3247
3248         /*
3249          * step two, delete the device extents and the
3250          * chunk tree entries
3251          */
3252         ret = btrfs_remove_chunk(trans, chunk_offset);
3253         btrfs_end_transaction(trans);
3254         return ret;
3255 }
3256
3257 static int btrfs_relocate_sys_chunks(struct btrfs_fs_info *fs_info)
3258 {
3259         struct btrfs_root *chunk_root = fs_info->chunk_root;
3260         struct btrfs_path *path;
3261         struct extent_buffer *leaf;
3262         struct btrfs_chunk *chunk;
3263         struct btrfs_key key;
3264         struct btrfs_key found_key;
3265         u64 chunk_type;
3266         bool retried = false;
3267         int failed = 0;
3268         int ret;
3269
3270         path = btrfs_alloc_path();
3271         if (!path)
3272                 return -ENOMEM;
3273
3274 again:
3275         key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
3276         key.offset = (u64)-1;
3277         key.type = BTRFS_CHUNK_ITEM_KEY;
3278
3279         while (1) {
3280                 mutex_lock(&fs_info->reclaim_bgs_lock);
3281                 ret = btrfs_search_slot(NULL, chunk_root, &key, path, 0, 0);
3282                 if (ret < 0) {
3283                         mutex_unlock(&fs_info->reclaim_bgs_lock);
3284                         goto error;
3285                 }
3286                 BUG_ON(ret == 0); /* Corruption */
3287
3288                 ret = btrfs_previous_item(chunk_root, path, key.objectid,
3289                                           key.type);
3290                 if (ret)
3291                         mutex_unlock(&fs_info->reclaim_bgs_lock);
3292                 if (ret < 0)
3293                         goto error;
3294                 if (ret > 0)
3295                         break;
3296
3297                 leaf = path->nodes[0];
3298                 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
3299
3300                 chunk = btrfs_item_ptr(leaf, path->slots[0],
3301                                        struct btrfs_chunk);
3302                 chunk_type = btrfs_chunk_type(leaf, chunk);
3303                 btrfs_release_path(path);
3304
3305                 if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM) {
3306                         ret = btrfs_relocate_chunk(fs_info, found_key.offset);
3307                         if (ret == -ENOSPC)
3308                                 failed++;
3309                         else
3310                                 BUG_ON(ret);
3311                 }
3312                 mutex_unlock(&fs_info->reclaim_bgs_lock);
3313
3314                 if (found_key.offset == 0)
3315                         break;
3316                 key.offset = found_key.offset - 1;
3317         }
3318         ret = 0;
3319         if (failed && !retried) {
3320                 failed = 0;
3321                 retried = true;
3322                 goto again;
3323         } else if (WARN_ON(failed && retried)) {
3324                 ret = -ENOSPC;
3325         }
3326 error:
3327         btrfs_free_path(path);
3328         return ret;
3329 }
3330
3331 /*
3332  * return 1 : allocate a data chunk successfully,
3333  * return <0: errors during allocating a data chunk,
3334  * return 0 : no need to allocate a data chunk.
3335  */
3336 static int btrfs_may_alloc_data_chunk(struct btrfs_fs_info *fs_info,
3337                                       u64 chunk_offset)
3338 {
3339         struct btrfs_block_group *cache;
3340         u64 bytes_used;
3341         u64 chunk_type;
3342
3343         cache = btrfs_lookup_block_group(fs_info, chunk_offset);
3344         ASSERT(cache);
3345         chunk_type = cache->flags;
3346         btrfs_put_block_group(cache);
3347
3348         if (!(chunk_type & BTRFS_BLOCK_GROUP_DATA))
3349                 return 0;
3350
3351         spin_lock(&fs_info->data_sinfo->lock);
3352         bytes_used = fs_info->data_sinfo->bytes_used;
3353         spin_unlock(&fs_info->data_sinfo->lock);
3354
3355         if (!bytes_used) {
3356                 struct btrfs_trans_handle *trans;
3357                 int ret;
3358
3359                 trans = btrfs_join_transaction(fs_info->tree_root);
3360                 if (IS_ERR(trans))
3361                         return PTR_ERR(trans);
3362
3363                 ret = btrfs_force_chunk_alloc(trans, BTRFS_BLOCK_GROUP_DATA);
3364                 btrfs_end_transaction(trans);
3365                 if (ret < 0)
3366                         return ret;
3367                 return 1;
3368         }
3369
3370         return 0;
3371 }
3372
3373 static int insert_balance_item(struct btrfs_fs_info *fs_info,
3374                                struct btrfs_balance_control *bctl)
3375 {
3376         struct btrfs_root *root = fs_info->tree_root;
3377         struct btrfs_trans_handle *trans;
3378         struct btrfs_balance_item *item;
3379         struct btrfs_disk_balance_args disk_bargs;
3380         struct btrfs_path *path;
3381         struct extent_buffer *leaf;
3382         struct btrfs_key key;
3383         int ret, err;
3384
3385         path = btrfs_alloc_path();
3386         if (!path)
3387                 return -ENOMEM;
3388
3389         trans = btrfs_start_transaction(root, 0);
3390         if (IS_ERR(trans)) {
3391                 btrfs_free_path(path);
3392                 return PTR_ERR(trans);
3393         }
3394
3395         key.objectid = BTRFS_BALANCE_OBJECTID;
3396         key.type = BTRFS_TEMPORARY_ITEM_KEY;
3397         key.offset = 0;
3398
3399         ret = btrfs_insert_empty_item(trans, root, path, &key,
3400                                       sizeof(*item));
3401         if (ret)
3402                 goto out;
3403
3404         leaf = path->nodes[0];
3405         item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_balance_item);
3406
3407         memzero_extent_buffer(leaf, (unsigned long)item, sizeof(*item));
3408
3409         btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->data);
3410         btrfs_set_balance_data(leaf, item, &disk_bargs);
3411         btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->meta);
3412         btrfs_set_balance_meta(leaf, item, &disk_bargs);
3413         btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->sys);
3414         btrfs_set_balance_sys(leaf, item, &disk_bargs);
3415
3416         btrfs_set_balance_flags(leaf, item, bctl->flags);
3417
3418         btrfs_mark_buffer_dirty(leaf);
3419 out:
3420         btrfs_free_path(path);
3421         err = btrfs_commit_transaction(trans);
3422         if (err && !ret)
3423                 ret = err;
3424         return ret;
3425 }
3426
3427 static int del_balance_item(struct btrfs_fs_info *fs_info)
3428 {
3429         struct btrfs_root *root = fs_info->tree_root;
3430         struct btrfs_trans_handle *trans;
3431         struct btrfs_path *path;
3432         struct btrfs_key key;
3433         int ret, err;
3434
3435         path = btrfs_alloc_path();
3436         if (!path)
3437                 return -ENOMEM;
3438
3439         trans = btrfs_start_transaction_fallback_global_rsv(root, 0);
3440         if (IS_ERR(trans)) {
3441                 btrfs_free_path(path);
3442                 return PTR_ERR(trans);
3443         }
3444
3445         key.objectid = BTRFS_BALANCE_OBJECTID;
3446         key.type = BTRFS_TEMPORARY_ITEM_KEY;
3447         key.offset = 0;
3448
3449         ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
3450         if (ret < 0)
3451                 goto out;
3452         if (ret > 0) {
3453                 ret = -ENOENT;
3454                 goto out;
3455         }
3456
3457         ret = btrfs_del_item(trans, root, path);
3458 out:
3459         btrfs_free_path(path);
3460         err = btrfs_commit_transaction(trans);
3461         if (err && !ret)
3462                 ret = err;
3463         return ret;
3464 }
3465
3466 /*
3467  * This is a heuristic used to reduce the number of chunks balanced on
3468  * resume after balance was interrupted.
3469  */
3470 static void update_balance_args(struct btrfs_balance_control *bctl)
3471 {
3472         /*
3473          * Turn on soft mode for chunk types that were being converted.
3474          */
3475         if (bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT)
3476                 bctl->data.flags |= BTRFS_BALANCE_ARGS_SOFT;
3477         if (bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT)
3478                 bctl->sys.flags |= BTRFS_BALANCE_ARGS_SOFT;
3479         if (bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT)
3480                 bctl->meta.flags |= BTRFS_BALANCE_ARGS_SOFT;
3481
3482         /*
3483          * Turn on usage filter if is not already used.  The idea is
3484          * that chunks that we have already balanced should be
3485          * reasonably full.  Don't do it for chunks that are being
3486          * converted - that will keep us from relocating unconverted
3487          * (albeit full) chunks.
3488          */
3489         if (!(bctl->data.flags & BTRFS_BALANCE_ARGS_USAGE) &&
3490             !(bctl->data.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
3491             !(bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
3492                 bctl->data.flags |= BTRFS_BALANCE_ARGS_USAGE;
3493                 bctl->data.usage = 90;
3494         }
3495         if (!(bctl->sys.flags & BTRFS_BALANCE_ARGS_USAGE) &&
3496             !(bctl->sys.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
3497             !(bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
3498                 bctl->sys.flags |= BTRFS_BALANCE_ARGS_USAGE;
3499                 bctl->sys.usage = 90;
3500         }
3501         if (!(bctl->meta.flags & BTRFS_BALANCE_ARGS_USAGE) &&
3502             !(bctl->meta.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
3503             !(bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
3504                 bctl->meta.flags |= BTRFS_BALANCE_ARGS_USAGE;
3505                 bctl->meta.usage = 90;
3506         }
3507 }
3508
3509 /*
3510  * Clear the balance status in fs_info and delete the balance item from disk.
3511  */
3512 static void reset_balance_state(struct btrfs_fs_info *fs_info)
3513 {
3514         struct btrfs_balance_control *bctl = fs_info->balance_ctl;
3515         int ret;
3516
3517         BUG_ON(!fs_info->balance_ctl);
3518
3519         spin_lock(&fs_info->balance_lock);
3520         fs_info->balance_ctl = NULL;
3521         spin_unlock(&fs_info->balance_lock);
3522
3523         kfree(bctl);
3524         ret = del_balance_item(fs_info);
3525         if (ret)
3526                 btrfs_handle_fs_error(fs_info, ret, NULL);
3527 }
3528
3529 /*
3530  * Balance filters.  Return 1 if chunk should be filtered out
3531  * (should not be balanced).
3532  */
3533 static int chunk_profiles_filter(u64 chunk_type,
3534                                  struct btrfs_balance_args *bargs)
3535 {
3536         chunk_type = chunk_to_extended(chunk_type) &
3537                                 BTRFS_EXTENDED_PROFILE_MASK;
3538
3539         if (bargs->profiles & chunk_type)
3540                 return 0;
3541
3542         return 1;
3543 }
3544
3545 static int chunk_usage_range_filter(struct btrfs_fs_info *fs_info, u64 chunk_offset,
3546                               struct btrfs_balance_args *bargs)
3547 {
3548         struct btrfs_block_group *cache;
3549         u64 chunk_used;
3550         u64 user_thresh_min;
3551         u64 user_thresh_max;
3552         int ret = 1;
3553
3554         cache = btrfs_lookup_block_group(fs_info, chunk_offset);
3555         chunk_used = cache->used;
3556
3557         if (bargs->usage_min == 0)
3558                 user_thresh_min = 0;
3559         else
3560                 user_thresh_min = div_factor_fine(cache->length,
3561                                                   bargs->usage_min);
3562
3563         if (bargs->usage_max == 0)
3564                 user_thresh_max = 1;
3565         else if (bargs->usage_max > 100)
3566                 user_thresh_max = cache->length;
3567         else
3568                 user_thresh_max = div_factor_fine(cache->length,
3569                                                   bargs->usage_max);
3570
3571         if (user_thresh_min <= chunk_used && chunk_used < user_thresh_max)
3572                 ret = 0;
3573
3574         btrfs_put_block_group(cache);
3575         return ret;
3576 }
3577
3578 static int chunk_usage_filter(struct btrfs_fs_info *fs_info,
3579                 u64 chunk_offset, struct btrfs_balance_args *bargs)
3580 {
3581         struct btrfs_block_group *cache;
3582         u64 chunk_used, user_thresh;
3583         int ret = 1;
3584
3585         cache = btrfs_lookup_block_group(fs_info, chunk_offset);
3586         chunk_used = cache->used;
3587
3588         if (bargs->usage_min == 0)
3589                 user_thresh = 1;
3590         else if (bargs->usage > 100)
3591                 user_thresh = cache->length;
3592         else
3593                 user_thresh = div_factor_fine(cache->length, bargs->usage);
3594
3595         if (chunk_used < user_thresh)
3596                 ret = 0;
3597
3598         btrfs_put_block_group(cache);
3599         return ret;
3600 }
3601
3602 static int chunk_devid_filter(struct extent_buffer *leaf,
3603                               struct btrfs_chunk *chunk,
3604                               struct btrfs_balance_args *bargs)
3605 {
3606         struct btrfs_stripe *stripe;
3607         int num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
3608         int i;
3609
3610         for (i = 0; i < num_stripes; i++) {
3611                 stripe = btrfs_stripe_nr(chunk, i);
3612                 if (btrfs_stripe_devid(leaf, stripe) == bargs->devid)
3613                         return 0;
3614         }
3615
3616         return 1;
3617 }
3618
3619 static u64 calc_data_stripes(u64 type, int num_stripes)
3620 {
3621         const int index = btrfs_bg_flags_to_raid_index(type);
3622         const int ncopies = btrfs_raid_array[index].ncopies;
3623         const int nparity = btrfs_raid_array[index].nparity;
3624
3625         if (nparity)
3626                 return num_stripes - nparity;
3627         else
3628                 return num_stripes / ncopies;
3629 }
3630
3631 /* [pstart, pend) */
3632 static int chunk_drange_filter(struct extent_buffer *leaf,
3633                                struct btrfs_chunk *chunk,
3634                                struct btrfs_balance_args *bargs)
3635 {
3636         struct btrfs_stripe *stripe;
3637         int num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
3638         u64 stripe_offset;
3639         u64 stripe_length;
3640         u64 type;
3641         int factor;
3642         int i;
3643
3644         if (!(bargs->flags & BTRFS_BALANCE_ARGS_DEVID))
3645                 return 0;
3646
3647         type = btrfs_chunk_type(leaf, chunk);
3648         factor = calc_data_stripes(type, num_stripes);
3649
3650         for (i = 0; i < num_stripes; i++) {
3651                 stripe = btrfs_stripe_nr(chunk, i);
3652                 if (btrfs_stripe_devid(leaf, stripe) != bargs->devid)
3653                         continue;
3654
3655                 stripe_offset = btrfs_stripe_offset(leaf, stripe);
3656                 stripe_length = btrfs_chunk_length(leaf, chunk);
3657                 stripe_length = div_u64(stripe_length, factor);
3658
3659                 if (stripe_offset < bargs->pend &&
3660                     stripe_offset + stripe_length > bargs->pstart)
3661                         return 0;
3662         }
3663
3664         return 1;
3665 }
3666
3667 /* [vstart, vend) */
3668 static int chunk_vrange_filter(struct extent_buffer *leaf,
3669                                struct btrfs_chunk *chunk,
3670                                u64 chunk_offset,
3671                                struct btrfs_balance_args *bargs)
3672 {
3673         if (chunk_offset < bargs->vend &&
3674             chunk_offset + btrfs_chunk_length(leaf, chunk) > bargs->vstart)
3675                 /* at least part of the chunk is inside this vrange */
3676                 return 0;
3677
3678         return 1;
3679 }
3680
3681 static int chunk_stripes_range_filter(struct extent_buffer *leaf,
3682                                struct btrfs_chunk *chunk,
3683                                struct btrfs_balance_args *bargs)
3684 {
3685         int num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
3686
3687         if (bargs->stripes_min <= num_stripes
3688                         && num_stripes <= bargs->stripes_max)
3689                 return 0;
3690
3691         return 1;
3692 }
3693
3694 static int chunk_soft_convert_filter(u64 chunk_type,
3695                                      struct btrfs_balance_args *bargs)
3696 {
3697         if (!(bargs->flags & BTRFS_BALANCE_ARGS_CONVERT))
3698                 return 0;
3699
3700         chunk_type = chunk_to_extended(chunk_type) &
3701                                 BTRFS_EXTENDED_PROFILE_MASK;
3702
3703         if (bargs->target == chunk_type)
3704                 return 1;
3705
3706         return 0;
3707 }
3708
3709 static int should_balance_chunk(struct extent_buffer *leaf,
3710                                 struct btrfs_chunk *chunk, u64 chunk_offset)
3711 {
3712         struct btrfs_fs_info *fs_info = leaf->fs_info;
3713         struct btrfs_balance_control *bctl = fs_info->balance_ctl;
3714         struct btrfs_balance_args *bargs = NULL;
3715         u64 chunk_type = btrfs_chunk_type(leaf, chunk);
3716
3717         /* type filter */
3718         if (!((chunk_type & BTRFS_BLOCK_GROUP_TYPE_MASK) &
3719               (bctl->flags & BTRFS_BALANCE_TYPE_MASK))) {
3720                 return 0;
3721         }
3722
3723         if (chunk_type & BTRFS_BLOCK_GROUP_DATA)
3724                 bargs = &bctl->data;
3725         else if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM)
3726                 bargs = &bctl->sys;
3727         else if (chunk_type & BTRFS_BLOCK_GROUP_METADATA)
3728                 bargs = &bctl->meta;
3729
3730         /* profiles filter */
3731         if ((bargs->flags & BTRFS_BALANCE_ARGS_PROFILES) &&
3732             chunk_profiles_filter(chunk_type, bargs)) {
3733                 return 0;
3734         }
3735
3736         /* usage filter */
3737         if ((bargs->flags & BTRFS_BALANCE_ARGS_USAGE) &&
3738             chunk_usage_filter(fs_info, chunk_offset, bargs)) {
3739                 return 0;
3740         } else if ((bargs->flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
3741             chunk_usage_range_filter(fs_info, chunk_offset, bargs)) {
3742                 return 0;
3743         }
3744
3745         /* devid filter */
3746         if ((bargs->flags & BTRFS_BALANCE_ARGS_DEVID) &&
3747             chunk_devid_filter(leaf, chunk, bargs)) {
3748                 return 0;
3749         }
3750
3751         /* drange filter, makes sense only with devid filter */
3752         if ((bargs->flags & BTRFS_BALANCE_ARGS_DRANGE) &&
3753             chunk_drange_filter(leaf, chunk, bargs)) {
3754                 return 0;
3755         }
3756
3757         /* vrange filter */
3758         if ((bargs->flags & BTRFS_BALANCE_ARGS_VRANGE) &&
3759             chunk_vrange_filter(leaf, chunk, chunk_offset, bargs)) {
3760                 return 0;
3761         }
3762
3763         /* stripes filter */
3764         if ((bargs->flags & BTRFS_BALANCE_ARGS_STRIPES_RANGE) &&
3765             chunk_stripes_range_filter(leaf, chunk, bargs)) {
3766                 return 0;
3767         }
3768
3769         /* soft profile changing mode */
3770         if ((bargs->flags & BTRFS_BALANCE_ARGS_SOFT) &&
3771             chunk_soft_convert_filter(chunk_type, bargs)) {
3772                 return 0;
3773         }
3774
3775         /*
3776          * limited by count, must be the last filter
3777          */
3778         if ((bargs->flags & BTRFS_BALANCE_ARGS_LIMIT)) {
3779                 if (bargs->limit == 0)
3780                         return 0;
3781                 else
3782                         bargs->limit--;
3783         } else if ((bargs->flags & BTRFS_BALANCE_ARGS_LIMIT_RANGE)) {
3784                 /*
3785                  * Same logic as the 'limit' filter; the minimum cannot be
3786                  * determined here because we do not have the global information
3787                  * about the count of all chunks that satisfy the filters.
3788                  */
3789                 if (bargs->limit_max == 0)
3790                         return 0;
3791                 else
3792                         bargs->limit_max--;
3793         }
3794
3795         return 1;
3796 }
3797
3798 static int __btrfs_balance(struct btrfs_fs_info *fs_info)
3799 {
3800         struct btrfs_balance_control *bctl = fs_info->balance_ctl;
3801         struct btrfs_root *chunk_root = fs_info->chunk_root;
3802         u64 chunk_type;
3803         struct btrfs_chunk *chunk;
3804         struct btrfs_path *path = NULL;
3805         struct btrfs_key key;
3806         struct btrfs_key found_key;
3807         struct extent_buffer *leaf;
3808         int slot;
3809         int ret;
3810         int enospc_errors = 0;
3811         bool counting = true;
3812         /* The single value limit and min/max limits use the same bytes in the */
3813         u64 limit_data = bctl->data.limit;
3814         u64 limit_meta = bctl->meta.limit;
3815         u64 limit_sys = bctl->sys.limit;
3816         u32 count_data = 0;
3817         u32 count_meta = 0;
3818         u32 count_sys = 0;
3819         int chunk_reserved = 0;
3820
3821         path = btrfs_alloc_path();
3822         if (!path) {
3823                 ret = -ENOMEM;
3824                 goto error;
3825         }
3826
3827         /* zero out stat counters */
3828         spin_lock(&fs_info->balance_lock);
3829         memset(&bctl->stat, 0, sizeof(bctl->stat));
3830         spin_unlock(&fs_info->balance_lock);
3831 again:
3832         if (!counting) {
3833                 /*
3834                  * The single value limit and min/max limits use the same bytes
3835                  * in the
3836                  */
3837                 bctl->data.limit = limit_data;
3838                 bctl->meta.limit = limit_meta;
3839                 bctl->sys.limit = limit_sys;
3840         }
3841         key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
3842         key.offset = (u64)-1;
3843         key.type = BTRFS_CHUNK_ITEM_KEY;
3844
3845         while (1) {
3846                 if ((!counting && atomic_read(&fs_info->balance_pause_req)) ||
3847                     atomic_read(&fs_info->balance_cancel_req)) {
3848                         ret = -ECANCELED;
3849                         goto error;
3850                 }
3851
3852                 mutex_lock(&fs_info->reclaim_bgs_lock);
3853                 ret = btrfs_search_slot(NULL, chunk_root, &key, path, 0, 0);
3854                 if (ret < 0) {
3855                         mutex_unlock(&fs_info->reclaim_bgs_lock);
3856                         goto error;
3857                 }
3858
3859                 /*
3860                  * this shouldn't happen, it means the last relocate
3861                  * failed
3862                  */
3863                 if (ret == 0)
3864                         BUG(); /* FIXME break ? */
3865
3866                 ret = btrfs_previous_item(chunk_root, path, 0,
3867                                           BTRFS_CHUNK_ITEM_KEY);
3868                 if (ret) {
3869                         mutex_unlock(&fs_info->reclaim_bgs_lock);
3870                         ret = 0;
3871                         break;
3872                 }
3873
3874                 leaf = path->nodes[0];
3875                 slot = path->slots[0];
3876                 btrfs_item_key_to_cpu(leaf, &found_key, slot);
3877
3878                 if (found_key.objectid != key.objectid) {
3879                         mutex_unlock(&fs_info->reclaim_bgs_lock);
3880                         break;
3881                 }
3882
3883                 chunk = btrfs_item_ptr(leaf, slot, struct btrfs_chunk);
3884                 chunk_type = btrfs_chunk_type(leaf, chunk);
3885
3886                 if (!counting) {
3887                         spin_lock(&fs_info->balance_lock);
3888                         bctl->stat.considered++;
3889                         spin_unlock(&fs_info->balance_lock);
3890                 }
3891
3892                 ret = should_balance_chunk(leaf, chunk, found_key.offset);
3893
3894                 btrfs_release_path(path);
3895                 if (!ret) {
3896                         mutex_unlock(&fs_info->reclaim_bgs_lock);
3897                         goto loop;
3898                 }
3899
3900                 if (counting) {
3901                         mutex_unlock(&fs_info->reclaim_bgs_lock);
3902                         spin_lock(&fs_info->balance_lock);
3903                         bctl->stat.expected++;
3904                         spin_unlock(&fs_info->balance_lock);
3905
3906                         if (chunk_type & BTRFS_BLOCK_GROUP_DATA)
3907                                 count_data++;
3908                         else if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM)
3909                                 count_sys++;
3910                         else if (chunk_type & BTRFS_BLOCK_GROUP_METADATA)
3911                                 count_meta++;
3912
3913                         goto loop;
3914                 }
3915
3916                 /*
3917                  * Apply limit_min filter, no need to check if the LIMITS
3918                  * filter is used, limit_min is 0 by default
3919                  */
3920                 if (((chunk_type & BTRFS_BLOCK_GROUP_DATA) &&
3921                                         count_data < bctl->data.limit_min)
3922                                 || ((chunk_type & BTRFS_BLOCK_GROUP_METADATA) &&
3923                                         count_meta < bctl->meta.limit_min)
3924                                 || ((chunk_type & BTRFS_BLOCK_GROUP_SYSTEM) &&
3925                                         count_sys < bctl->sys.limit_min)) {
3926                         mutex_unlock(&fs_info->reclaim_bgs_lock);
3927                         goto loop;
3928                 }
3929
3930                 if (!chunk_reserved) {
3931                         /*
3932                          * We may be relocating the only data chunk we have,
3933                          * which could potentially end up with losing data's
3934                          * raid profile, so lets allocate an empty one in
3935                          * advance.
3936                          */
3937                         ret = btrfs_may_alloc_data_chunk(fs_info,
3938                                                          found_key.offset);
3939                         if (ret < 0) {
3940                                 mutex_unlock(&fs_info->reclaim_bgs_lock);
3941                                 goto error;
3942                         } else if (ret == 1) {
3943                                 chunk_reserved = 1;
3944                         }
3945                 }
3946
3947                 ret = btrfs_relocate_chunk(fs_info, found_key.offset);
3948                 mutex_unlock(&fs_info->reclaim_bgs_lock);
3949                 if (ret == -ENOSPC) {
3950                         enospc_errors++;
3951                 } else if (ret == -ETXTBSY) {
3952                         btrfs_info(fs_info,
3953            "skipping relocation of block group %llu due to active swapfile",
3954                                    found_key.offset);
3955                         ret = 0;
3956                 } else if (ret) {
3957                         goto error;
3958                 } else {
3959                         spin_lock(&fs_info->balance_lock);
3960                         bctl->stat.completed++;
3961                         spin_unlock(&fs_info->balance_lock);
3962                 }
3963 loop:
3964                 if (found_key.offset == 0)
3965                         break;
3966                 key.offset = found_key.offset - 1;
3967         }
3968
3969         if (counting) {
3970                 btrfs_release_path(path);
3971                 counting = false;
3972                 goto again;
3973         }
3974 error:
3975         btrfs_free_path(path);
3976         if (enospc_errors) {
3977                 btrfs_info(fs_info, "%d enospc errors during balance",
3978                            enospc_errors);
3979                 if (!ret)
3980                         ret = -ENOSPC;
3981         }
3982
3983         return ret;
3984 }
3985
3986 /**
3987  * alloc_profile_is_valid - see if a given profile is valid and reduced
3988  * @flags: profile to validate
3989  * @extended: if true @flags is treated as an extended profile
3990  */
3991 static int alloc_profile_is_valid(u64 flags, int extended)
3992 {
3993         u64 mask = (extended ? BTRFS_EXTENDED_PROFILE_MASK :
3994                                BTRFS_BLOCK_GROUP_PROFILE_MASK);
3995
3996         flags &= ~BTRFS_BLOCK_GROUP_TYPE_MASK;
3997
3998         /* 1) check that all other bits are zeroed */
3999         if (flags & ~mask)
4000                 return 0;
4001
4002         /* 2) see if profile is reduced */
4003         if (flags == 0)
4004                 return !extended; /* "0" is valid for usual profiles */
4005
4006         return has_single_bit_set(flags);
4007 }
4008
4009 static inline int balance_need_close(struct btrfs_fs_info *fs_info)
4010 {
4011         /* cancel requested || normal exit path */
4012         return atomic_read(&fs_info->balance_cancel_req) ||
4013                 (atomic_read(&fs_info->balance_pause_req) == 0 &&
4014                  atomic_read(&fs_info->balance_cancel_req) == 0);
4015 }
4016
4017 /*
4018  * Validate target profile against allowed profiles and return true if it's OK.
4019  * Otherwise print the error message and return false.
4020  */
4021 static inline int validate_convert_profile(struct btrfs_fs_info *fs_info,
4022                 const struct btrfs_balance_args *bargs,
4023                 u64 allowed, const char *type)
4024 {
4025         if (!(bargs->flags & BTRFS_BALANCE_ARGS_CONVERT))
4026                 return true;
4027
4028         /* Profile is valid and does not have bits outside of the allowed set */
4029         if (alloc_profile_is_valid(bargs->target, 1) &&
4030             (bargs->target & ~allowed) == 0)
4031                 return true;
4032
4033         btrfs_err(fs_info, "balance: invalid convert %s profile %s",
4034                         type, btrfs_bg_type_to_raid_name(bargs->target));
4035         return false;
4036 }
4037
4038 /*
4039  * Fill @buf with textual description of balance filter flags @bargs, up to
4040  * @size_buf including the terminating null. The output may be trimmed if it
4041  * does not fit into the provided buffer.
4042  */
4043 static void describe_balance_args(struct btrfs_balance_args *bargs, char *buf,
4044                                  u32 size_buf)
4045 {
4046         int ret;
4047         u32 size_bp = size_buf;
4048         char *bp = buf;
4049         u64 flags = bargs->flags;
4050         char tmp_buf[128] = {'\0'};
4051
4052         if (!flags)
4053                 return;
4054
4055 #define CHECK_APPEND_NOARG(a)                                           \
4056         do {                                                            \
4057                 ret = snprintf(bp, size_bp, (a));                       \
4058                 if (ret < 0 || ret >= size_bp)                          \
4059                         goto out_overflow;                              \
4060                 size_bp -= ret;                                         \
4061                 bp += ret;                                              \
4062         } while (0)
4063
4064 #define CHECK_APPEND_1ARG(a, v1)                                        \
4065         do {                                                            \
4066                 ret = snprintf(bp, size_bp, (a), (v1));                 \
4067                 if (ret < 0 || ret >= size_bp)                          \
4068                         goto out_overflow;                              \
4069                 size_bp -= ret;                                         \
4070                 bp += ret;                                              \
4071         } while (0)
4072
4073 #define CHECK_APPEND_2ARG(a, v1, v2)                                    \
4074         do {                                                            \
4075                 ret = snprintf(bp, size_bp, (a), (v1), (v2));           \
4076                 if (ret < 0 || ret >= size_bp)                          \
4077                         goto out_overflow;                              \
4078                 size_bp -= ret;                                         \
4079                 bp += ret;                                              \
4080         } while (0)
4081
4082         if (flags & BTRFS_BALANCE_ARGS_CONVERT)
4083                 CHECK_APPEND_1ARG("convert=%s,",
4084                                   btrfs_bg_type_to_raid_name(bargs->target));
4085
4086         if (flags & BTRFS_BALANCE_ARGS_SOFT)
4087                 CHECK_APPEND_NOARG("soft,");
4088
4089         if (flags & BTRFS_BALANCE_ARGS_PROFILES) {
4090                 btrfs_describe_block_groups(bargs->profiles, tmp_buf,
4091                                             sizeof(tmp_buf));
4092                 CHECK_APPEND_1ARG("profiles=%s,", tmp_buf);
4093         }
4094
4095         if (flags & BTRFS_BALANCE_ARGS_USAGE)
4096                 CHECK_APPEND_1ARG("usage=%llu,", bargs->usage);
4097
4098         if (flags & BTRFS_BALANCE_ARGS_USAGE_RANGE)
4099                 CHECK_APPEND_2ARG("usage=%u..%u,",
4100                                   bargs->usage_min, bargs->usage_max);
4101
4102         if (flags & BTRFS_BALANCE_ARGS_DEVID)
4103                 CHECK_APPEND_1ARG("devid=%llu,", bargs->devid);
4104
4105         if (flags & BTRFS_BALANCE_ARGS_DRANGE)
4106                 CHECK_APPEND_2ARG("drange=%llu..%llu,",
4107                                   bargs->pstart, bargs->pend);
4108
4109         if (flags & BTRFS_BALANCE_ARGS_VRANGE)
4110                 CHECK_APPEND_2ARG("vrange=%llu..%llu,",
4111                                   bargs->vstart, bargs->vend);
4112
4113         if (flags & BTRFS_BALANCE_ARGS_LIMIT)
4114                 CHECK_APPEND_1ARG("limit=%llu,", bargs->limit);
4115
4116         if (flags & BTRFS_BALANCE_ARGS_LIMIT_RANGE)
4117                 CHECK_APPEND_2ARG("limit=%u..%u,",
4118                                 bargs->limit_min, bargs->limit_max);
4119
4120         if (flags & BTRFS_BALANCE_ARGS_STRIPES_RANGE)
4121                 CHECK_APPEND_2ARG("stripes=%u..%u,",
4122                                   bargs->stripes_min, bargs->stripes_max);
4123
4124 #undef CHECK_APPEND_2ARG
4125 #undef CHECK_APPEND_1ARG
4126 #undef CHECK_APPEND_NOARG
4127
4128 out_overflow:
4129
4130         if (size_bp < size_buf)
4131                 buf[size_buf - size_bp - 1] = '\0'; /* remove last , */
4132         else
4133                 buf[0] = '\0';
4134 }
4135
4136 static void describe_balance_start_or_resume(struct btrfs_fs_info *fs_info)
4137 {
4138         u32 size_buf = 1024;
4139         char tmp_buf[192] = {'\0'};
4140         char *buf;
4141         char *bp;
4142         u32 size_bp = size_buf;
4143         int ret;
4144         struct btrfs_balance_control *bctl = fs_info->balance_ctl;
4145
4146         buf = kzalloc(size_buf, GFP_KERNEL);
4147         if (!buf)
4148                 return;
4149
4150         bp = buf;
4151
4152 #define CHECK_APPEND_1ARG(a, v1)                                        \
4153         do {                                                            \
4154                 ret = snprintf(bp, size_bp, (a), (v1));                 \
4155                 if (ret < 0 || ret >= size_bp)                          \
4156                         goto out_overflow;                              \
4157                 size_bp -= ret;                                         \
4158                 bp += ret;                                              \
4159         } while (0)
4160
4161         if (bctl->flags & BTRFS_BALANCE_FORCE)
4162                 CHECK_APPEND_1ARG("%s", "-f ");
4163
4164         if (bctl->flags & BTRFS_BALANCE_DATA) {
4165                 describe_balance_args(&bctl->data, tmp_buf, sizeof(tmp_buf));
4166                 CHECK_APPEND_1ARG("-d%s ", tmp_buf);
4167         }
4168
4169         if (bctl->flags & BTRFS_BALANCE_METADATA) {
4170                 describe_balance_args(&bctl->meta, tmp_buf, sizeof(tmp_buf));
4171                 CHECK_APPEND_1ARG("-m%s ", tmp_buf);
4172         }
4173
4174         if (bctl->flags & BTRFS_BALANCE_SYSTEM) {
4175                 describe_balance_args(&bctl->sys, tmp_buf, sizeof(tmp_buf));
4176                 CHECK_APPEND_1ARG("-s%s ", tmp_buf);
4177         }
4178
4179 #undef CHECK_APPEND_1ARG
4180
4181 out_overflow:
4182
4183         if (size_bp < size_buf)
4184                 buf[size_buf - size_bp - 1] = '\0'; /* remove last " " */
4185         btrfs_info(fs_info, "balance: %s %s",
4186                    (bctl->flags & BTRFS_BALANCE_RESUME) ?
4187                    "resume" : "start", buf);
4188
4189         kfree(buf);
4190 }
4191
4192 /*
4193  * Should be called with balance mutexe held
4194  */
4195 int btrfs_balance(struct btrfs_fs_info *fs_info,
4196                   struct btrfs_balance_control *bctl,
4197                   struct btrfs_ioctl_balance_args *bargs)
4198 {
4199         u64 meta_target, data_target;
4200         u64 allowed;
4201         int mixed = 0;
4202         int ret;
4203         u64 num_devices;
4204         unsigned seq;
4205         bool reducing_redundancy;
4206         int i;
4207
4208         if (btrfs_fs_closing(fs_info) ||
4209             atomic_read(&fs_info->balance_pause_req) ||
4210             btrfs_should_cancel_balance(fs_info)) {
4211                 ret = -EINVAL;
4212                 goto out;
4213         }
4214
4215         allowed = btrfs_super_incompat_flags(fs_info->super_copy);
4216         if (allowed & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS)
4217                 mixed = 1;
4218
4219         /*
4220          * In case of mixed groups both data and meta should be picked,
4221          * and identical options should be given for both of them.
4222          */
4223         allowed = BTRFS_BALANCE_DATA | BTRFS_BALANCE_METADATA;
4224         if (mixed && (bctl->flags & allowed)) {
4225                 if (!(bctl->flags & BTRFS_BALANCE_DATA) ||
4226                     !(bctl->flags & BTRFS_BALANCE_METADATA) ||
4227                     memcmp(&bctl->data, &bctl->meta, sizeof(bctl->data))) {
4228                         btrfs_err(fs_info,
4229           "balance: mixed groups data and metadata options must be the same");
4230                         ret = -EINVAL;
4231                         goto out;
4232                 }
4233         }
4234
4235         /*
4236          * rw_devices will not change at the moment, device add/delete/replace
4237          * are exclusive
4238          */
4239         num_devices = fs_info->fs_devices->rw_devices;
4240
4241         /*
4242          * SINGLE profile on-disk has no profile bit, but in-memory we have a
4243          * special bit for it, to make it easier to distinguish.  Thus we need
4244          * to set it manually, or balance would refuse the profile.
4245          */
4246         allowed = BTRFS_AVAIL_ALLOC_BIT_SINGLE;
4247         for (i = 0; i < ARRAY_SIZE(btrfs_raid_array); i++)
4248                 if (num_devices >= btrfs_raid_array[i].devs_min)
4249                         allowed |= btrfs_raid_array[i].bg_flag;
4250
4251         if (!validate_convert_profile(fs_info, &bctl->data, allowed, "data") ||
4252             !validate_convert_profile(fs_info, &bctl->meta, allowed, "metadata") ||
4253             !validate_convert_profile(fs_info, &bctl->sys,  allowed, "system")) {
4254                 ret = -EINVAL;
4255                 goto out;
4256         }
4257
4258         /*
4259          * Allow to reduce metadata or system integrity only if force set for
4260          * profiles with redundancy (copies, parity)
4261          */
4262         allowed = 0;
4263         for (i = 0; i < ARRAY_SIZE(btrfs_raid_array); i++) {
4264                 if (btrfs_raid_array[i].ncopies >= 2 ||
4265                     btrfs_raid_array[i].tolerated_failures >= 1)
4266                         allowed |= btrfs_raid_array[i].bg_flag;
4267         }
4268         do {
4269                 seq = read_seqbegin(&fs_info->profiles_lock);
4270
4271                 if (((bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
4272                      (fs_info->avail_system_alloc_bits & allowed) &&
4273                      !(bctl->sys.target & allowed)) ||
4274                     ((bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
4275                      (fs_info->avail_metadata_alloc_bits & allowed) &&
4276                      !(bctl->meta.target & allowed)))
4277                         reducing_redundancy = true;
4278                 else
4279                         reducing_redundancy = false;
4280
4281                 /* if we're not converting, the target field is uninitialized */
4282                 meta_target = (bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) ?
4283                         bctl->meta.target : fs_info->avail_metadata_alloc_bits;
4284                 data_target = (bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) ?
4285                         bctl->data.target : fs_info->avail_data_alloc_bits;
4286         } while (read_seqretry(&fs_info->profiles_lock, seq));
4287
4288         if (reducing_redundancy) {
4289                 if (bctl->flags & BTRFS_BALANCE_FORCE) {
4290                         btrfs_info(fs_info,
4291                            "balance: force reducing metadata redundancy");
4292                 } else {
4293                         btrfs_err(fs_info,
4294         "balance: reduces metadata redundancy, use --force if you want this");
4295                         ret = -EINVAL;
4296                         goto out;
4297                 }
4298         }
4299
4300         if (btrfs_get_num_tolerated_disk_barrier_failures(meta_target) <
4301                 btrfs_get_num_tolerated_disk_barrier_failures(data_target)) {
4302                 btrfs_warn(fs_info,
4303         "balance: metadata profile %s has lower redundancy than data profile %s",
4304                                 btrfs_bg_type_to_raid_name(meta_target),
4305                                 btrfs_bg_type_to_raid_name(data_target));
4306         }
4307
4308         ret = insert_balance_item(fs_info, bctl);
4309         if (ret && ret != -EEXIST)
4310                 goto out;
4311
4312         if (!(bctl->flags & BTRFS_BALANCE_RESUME)) {
4313                 BUG_ON(ret == -EEXIST);
4314                 BUG_ON(fs_info->balance_ctl);
4315                 spin_lock(&fs_info->balance_lock);
4316                 fs_info->balance_ctl = bctl;
4317                 spin_unlock(&fs_info->balance_lock);
4318         } else {
4319                 BUG_ON(ret != -EEXIST);
4320                 spin_lock(&fs_info->balance_lock);
4321                 update_balance_args(bctl);
4322                 spin_unlock(&fs_info->balance_lock);
4323         }
4324
4325         ASSERT(!test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags));
4326         set_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags);
4327         describe_balance_start_or_resume(fs_info);
4328         mutex_unlock(&fs_info->balance_mutex);
4329
4330         ret = __btrfs_balance(fs_info);
4331
4332         mutex_lock(&fs_info->balance_mutex);
4333         if (ret == -ECANCELED && atomic_read(&fs_info->balance_pause_req))
4334                 btrfs_info(fs_info, "balance: paused");
4335         /*
4336          * Balance can be canceled by:
4337          *
4338          * - Regular cancel request
4339          *   Then ret == -ECANCELED and balance_cancel_req > 0
4340          *
4341          * - Fatal signal to "btrfs" process
4342          *   Either the signal caught by wait_reserve_ticket() and callers
4343          *   got -EINTR, or caught by btrfs_should_cancel_balance() and
4344          *   got -ECANCELED.
4345          *   Either way, in this case balance_cancel_req = 0, and
4346          *   ret == -EINTR or ret == -ECANCELED.
4347          *
4348          * So here we only check the return value to catch canceled balance.
4349          */
4350         else if (ret == -ECANCELED || ret == -EINTR)
4351                 btrfs_info(fs_info, "balance: canceled");
4352         else
4353                 btrfs_info(fs_info, "balance: ended with status: %d", ret);
4354
4355         clear_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags);
4356
4357         if (bargs) {
4358                 memset(bargs, 0, sizeof(*bargs));
4359                 btrfs_update_ioctl_balance_args(fs_info, bargs);
4360         }
4361
4362         if ((ret && ret != -ECANCELED && ret != -ENOSPC) ||
4363             balance_need_close(fs_info)) {
4364                 reset_balance_state(fs_info);
4365                 btrfs_exclop_finish(fs_info);
4366         }
4367
4368         wake_up(&fs_info->balance_wait_q);
4369
4370         return ret;
4371 out:
4372         if (bctl->flags & BTRFS_BALANCE_RESUME)
4373                 reset_balance_state(fs_info);
4374         else
4375                 kfree(bctl);
4376         btrfs_exclop_finish(fs_info);
4377
4378         return ret;
4379 }
4380
4381 static int balance_kthread(void *data)
4382 {
4383         struct btrfs_fs_info *fs_info = data;
4384         int ret = 0;
4385
4386         mutex_lock(&fs_info->balance_mutex);
4387         if (fs_info->balance_ctl)
4388                 ret = btrfs_balance(fs_info, fs_info->balance_ctl, NULL);
4389         mutex_unlock(&fs_info->balance_mutex);
4390
4391         return ret;
4392 }
4393
4394 int btrfs_resume_balance_async(struct btrfs_fs_info *fs_info)
4395 {
4396         struct task_struct *tsk;
4397
4398         mutex_lock(&fs_info->balance_mutex);
4399         if (!fs_info->balance_ctl) {
4400                 mutex_unlock(&fs_info->balance_mutex);
4401                 return 0;
4402         }
4403         mutex_unlock(&fs_info->balance_mutex);
4404
4405         if (btrfs_test_opt(fs_info, SKIP_BALANCE)) {
4406                 btrfs_info(fs_info, "balance: resume skipped");
4407                 return 0;
4408         }
4409
4410         /*
4411          * A ro->rw remount sequence should continue with the paused balance
4412          * regardless of who pauses it, system or the user as of now, so set
4413          * the resume flag.
4414          */
4415         spin_lock(&fs_info->balance_lock);
4416         fs_info->balance_ctl->flags |= BTRFS_BALANCE_RESUME;
4417         spin_unlock(&fs_info->balance_lock);
4418
4419         tsk = kthread_run(balance_kthread, fs_info, "btrfs-balance");
4420         return PTR_ERR_OR_ZERO(tsk);
4421 }
4422
4423 int btrfs_recover_balance(struct btrfs_fs_info *fs_info)
4424 {
4425         struct btrfs_balance_control *bctl;
4426         struct btrfs_balance_item *item;
4427         struct btrfs_disk_balance_args disk_bargs;
4428         struct btrfs_path *path;
4429         struct extent_buffer *leaf;
4430         struct btrfs_key key;
4431         int ret;
4432
4433         path = btrfs_alloc_path();
4434         if (!path)
4435                 return -ENOMEM;
4436
4437         key.objectid = BTRFS_BALANCE_OBJECTID;
4438         key.type = BTRFS_TEMPORARY_ITEM_KEY;
4439         key.offset = 0;
4440
4441         ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
4442         if (ret < 0)
4443                 goto out;
4444         if (ret > 0) { /* ret = -ENOENT; */
4445                 ret = 0;
4446                 goto out;
4447         }
4448
4449         bctl = kzalloc(sizeof(*bctl), GFP_NOFS);
4450         if (!bctl) {
4451                 ret = -ENOMEM;
4452                 goto out;
4453         }
4454
4455         leaf = path->nodes[0];
4456         item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_balance_item);
4457
4458         bctl->flags = btrfs_balance_flags(leaf, item);
4459         bctl->flags |= BTRFS_BALANCE_RESUME;
4460
4461         btrfs_balance_data(leaf, item, &disk_bargs);
4462         btrfs_disk_balance_args_to_cpu(&bctl->data, &disk_bargs);
4463         btrfs_balance_meta(leaf, item, &disk_bargs);
4464         btrfs_disk_balance_args_to_cpu(&bctl->meta, &disk_bargs);
4465         btrfs_balance_sys(leaf, item, &disk_bargs);
4466         btrfs_disk_balance_args_to_cpu(&bctl->sys, &disk_bargs);
4467
4468         /*
4469          * This should never happen, as the paused balance state is recovered
4470          * during mount without any chance of other exclusive ops to collide.
4471          *
4472          * This gives the exclusive op status to balance and keeps in paused
4473          * state until user intervention (cancel or umount). If the ownership
4474          * cannot be assigned, show a message but do not fail. The balance
4475          * is in a paused state and must have fs_info::balance_ctl properly
4476          * set up.
4477          */
4478         if (!btrfs_exclop_start(fs_info, BTRFS_EXCLOP_BALANCE))
4479                 btrfs_warn(fs_info,
4480         "balance: cannot set exclusive op status, resume manually");
4481
4482         btrfs_release_path(path);
4483
4484         mutex_lock(&fs_info->balance_mutex);
4485         BUG_ON(fs_info->balance_ctl);
4486         spin_lock(&fs_info->balance_lock);
4487         fs_info->balance_ctl = bctl;
4488         spin_unlock(&fs_info->balance_lock);
4489         mutex_unlock(&fs_info->balance_mutex);
4490 out:
4491         btrfs_free_path(path);
4492         return ret;
4493 }
4494
4495 int btrfs_pause_balance(struct btrfs_fs_info *fs_info)
4496 {
4497         int ret = 0;
4498
4499         mutex_lock(&fs_info->balance_mutex);
4500         if (!fs_info->balance_ctl) {
4501                 mutex_unlock(&fs_info->balance_mutex);
4502                 return -ENOTCONN;
4503         }
4504
4505         if (test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)) {
4506                 atomic_inc(&fs_info->balance_pause_req);
4507                 mutex_unlock(&fs_info->balance_mutex);
4508
4509                 wait_event(fs_info->balance_wait_q,
4510                            !test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags));
4511
4512                 mutex_lock(&fs_info->balance_mutex);
4513                 /* we are good with balance_ctl ripped off from under us */
4514                 BUG_ON(test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags));
4515                 atomic_dec(&fs_info->balance_pause_req);
4516         } else {
4517                 ret = -ENOTCONN;
4518         }
4519
4520         mutex_unlock(&fs_info->balance_mutex);
4521         return ret;
4522 }
4523
4524 int btrfs_cancel_balance(struct btrfs_fs_info *fs_info)
4525 {
4526         mutex_lock(&fs_info->balance_mutex);
4527         if (!fs_info->balance_ctl) {
4528                 mutex_unlock(&fs_info->balance_mutex);
4529                 return -ENOTCONN;
4530         }
4531
4532         /*
4533          * A paused balance with the item stored on disk can be resumed at
4534          * mount time if the mount is read-write. Otherwise it's still paused
4535          * and we must not allow cancelling as it deletes the item.
4536          */
4537         if (sb_rdonly(fs_info->sb)) {
4538                 mutex_unlock(&fs_info->balance_mutex);
4539                 return -EROFS;
4540         }
4541
4542         atomic_inc(&fs_info->balance_cancel_req);
4543         /*
4544          * if we are running just wait and return, balance item is
4545          * deleted in btrfs_balance in this case
4546          */
4547         if (test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)) {
4548                 mutex_unlock(&fs_info->balance_mutex);
4549                 wait_event(fs_info->balance_wait_q,
4550                            !test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags));
4551                 mutex_lock(&fs_info->balance_mutex);
4552         } else {
4553                 mutex_unlock(&fs_info->balance_mutex);
4554                 /*
4555                  * Lock released to allow other waiters to continue, we'll
4556                  * reexamine the status again.
4557                  */
4558                 mutex_lock(&fs_info->balance_mutex);
4559
4560                 if (fs_info->balance_ctl) {
4561                         reset_balance_state(fs_info);
4562                         btrfs_exclop_finish(fs_info);
4563                         btrfs_info(fs_info, "balance: canceled");
4564                 }
4565         }
4566
4567         BUG_ON(fs_info->balance_ctl ||
4568                 test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags));
4569         atomic_dec(&fs_info->balance_cancel_req);
4570         mutex_unlock(&fs_info->balance_mutex);
4571         return 0;
4572 }
4573
4574 int btrfs_uuid_scan_kthread(void *data)
4575 {
4576         struct btrfs_fs_info *fs_info = data;
4577         struct btrfs_root *root = fs_info->tree_root;
4578         struct btrfs_key key;
4579         struct btrfs_path *path = NULL;
4580         int ret = 0;
4581         struct extent_buffer *eb;
4582         int slot;
4583         struct btrfs_root_item root_item;
4584         u32 item_size;
4585         struct btrfs_trans_handle *trans = NULL;
4586         bool closing = false;
4587
4588         path = btrfs_alloc_path();
4589         if (!path) {
4590                 ret = -ENOMEM;
4591                 goto out;
4592         }
4593
4594         key.objectid = 0;
4595         key.type = BTRFS_ROOT_ITEM_KEY;
4596         key.offset = 0;
4597
4598         while (1) {
4599                 if (btrfs_fs_closing(fs_info)) {
4600                         closing = true;
4601                         break;
4602                 }
4603                 ret = btrfs_search_forward(root, &key, path,
4604                                 BTRFS_OLDEST_GENERATION);
4605                 if (ret) {
4606                         if (ret > 0)
4607                                 ret = 0;
4608                         break;
4609                 }
4610
4611                 if (key.type != BTRFS_ROOT_ITEM_KEY ||
4612                     (key.objectid < BTRFS_FIRST_FREE_OBJECTID &&
4613                      key.objectid != BTRFS_FS_TREE_OBJECTID) ||
4614                     key.objectid > BTRFS_LAST_FREE_OBJECTID)
4615                         goto skip;
4616
4617                 eb = path->nodes[0];
4618                 slot = path->slots[0];
4619                 item_size = btrfs_item_size_nr(eb, slot);
4620                 if (item_size < sizeof(root_item))
4621                         goto skip;
4622
4623                 read_extent_buffer(eb, &root_item,
4624                                    btrfs_item_ptr_offset(eb, slot),
4625                                    (int)sizeof(root_item));
4626                 if (btrfs_root_refs(&root_item) == 0)
4627                         goto skip;
4628
4629                 if (!btrfs_is_empty_uuid(root_item.uuid) ||
4630                     !btrfs_is_empty_uuid(root_item.received_uuid)) {
4631                         if (trans)
4632                                 goto update_tree;
4633
4634                         btrfs_release_path(path);
4635                         /*
4636                          * 1 - subvol uuid item
4637                          * 1 - received_subvol uuid item
4638                          */
4639                         trans = btrfs_start_transaction(fs_info->uuid_root, 2);
4640                         if (IS_ERR(trans)) {
4641                                 ret = PTR_ERR(trans);
4642                                 break;
4643                         }
4644                         continue;
4645                 } else {
4646                         goto skip;
4647                 }
4648 update_tree:
4649                 btrfs_release_path(path);
4650                 if (!btrfs_is_empty_uuid(root_item.uuid)) {
4651                         ret = btrfs_uuid_tree_add(trans, root_item.uuid,
4652                                                   BTRFS_UUID_KEY_SUBVOL,
4653                                                   key.objectid);
4654                         if (ret < 0) {
4655                                 btrfs_warn(fs_info, "uuid_tree_add failed %d",
4656                                         ret);
4657                                 break;
4658                         }
4659                 }
4660
4661                 if (!btrfs_is_empty_uuid(root_item.received_uuid)) {
4662                         ret = btrfs_uuid_tree_add(trans,
4663                                                   root_item.received_uuid,
4664                                                  BTRFS_UUID_KEY_RECEIVED_SUBVOL,
4665                                                   key.objectid);
4666                         if (ret < 0) {
4667                                 btrfs_warn(fs_info, "uuid_tree_add failed %d",
4668                                         ret);
4669                                 break;
4670                         }
4671                 }
4672
4673 skip:
4674                 btrfs_release_path(path);
4675                 if (trans) {
4676                         ret = btrfs_end_transaction(trans);
4677                         trans = NULL;
4678                         if (ret)
4679                                 break;
4680                 }
4681
4682                 if (key.offset < (u64)-1) {
4683                         key.offset++;
4684                 } else if (key.type < BTRFS_ROOT_ITEM_KEY) {
4685                         key.offset = 0;
4686                         key.type = BTRFS_ROOT_ITEM_KEY;
4687                 } else if (key.objectid < (u64)-1) {
4688                         key.offset = 0;
4689                         key.type = BTRFS_ROOT_ITEM_KEY;
4690                         key.objectid++;
4691                 } else {
4692                         break;
4693                 }
4694                 cond_resched();
4695         }
4696
4697 out:
4698         btrfs_free_path(path);
4699         if (trans && !IS_ERR(trans))
4700                 btrfs_end_transaction(trans);
4701         if (ret)
4702                 btrfs_warn(fs_info, "btrfs_uuid_scan_kthread failed %d", ret);
4703         else if (!closing)
4704                 set_bit(BTRFS_FS_UPDATE_UUID_TREE_GEN, &fs_info->flags);
4705         up(&fs_info->uuid_tree_rescan_sem);
4706         return 0;
4707 }
4708
4709 int btrfs_create_uuid_tree(struct btrfs_fs_info *fs_info)
4710 {
4711         struct btrfs_trans_handle *trans;
4712         struct btrfs_root *tree_root = fs_info->tree_root;
4713         struct btrfs_root *uuid_root;
4714         struct task_struct *task;
4715         int ret;
4716
4717         /*
4718          * 1 - root node
4719          * 1 - root item
4720          */
4721         trans = btrfs_start_transaction(tree_root, 2);
4722         if (IS_ERR(trans))
4723                 return PTR_ERR(trans);
4724
4725         uuid_root = btrfs_create_tree(trans, BTRFS_UUID_TREE_OBJECTID);
4726         if (IS_ERR(uuid_root)) {
4727                 ret = PTR_ERR(uuid_root);
4728                 btrfs_abort_transaction(trans, ret);
4729                 btrfs_end_transaction(trans);
4730                 return ret;
4731         }
4732
4733         fs_info->uuid_root = uuid_root;
4734
4735         ret = btrfs_commit_transaction(trans);
4736         if (ret)
4737                 return ret;
4738
4739         down(&fs_info->uuid_tree_rescan_sem);
4740         task = kthread_run(btrfs_uuid_scan_kthread, fs_info, "btrfs-uuid");
4741         if (IS_ERR(task)) {
4742                 /* fs_info->update_uuid_tree_gen remains 0 in all error case */
4743                 btrfs_warn(fs_info, "failed to start uuid_scan task");
4744                 up(&fs_info->uuid_tree_rescan_sem);
4745                 return PTR_ERR(task);
4746         }
4747
4748         return 0;
4749 }
4750
4751 /*
4752  * shrinking a device means finding all of the device extents past
4753  * the new size, and then following the back refs to the chunks.
4754  * The chunk relocation code actually frees the device extent
4755  */
4756 int btrfs_shrink_device(struct btrfs_device *device, u64 new_size)
4757 {
4758         struct btrfs_fs_info *fs_info = device->fs_info;
4759         struct btrfs_root *root = fs_info->dev_root;
4760         struct btrfs_trans_handle *trans;
4761         struct btrfs_dev_extent *dev_extent = NULL;
4762         struct btrfs_path *path;
4763         u64 length;
4764         u64 chunk_offset;
4765         int ret;
4766         int slot;
4767         int failed = 0;
4768         bool retried = false;
4769         struct extent_buffer *l;
4770         struct btrfs_key key;
4771         struct btrfs_super_block *super_copy = fs_info->super_copy;
4772         u64 old_total = btrfs_super_total_bytes(super_copy);
4773         u64 old_size = btrfs_device_get_total_bytes(device);
4774         u64 diff;
4775         u64 start;
4776
4777         new_size = round_down(new_size, fs_info->sectorsize);
4778         start = new_size;
4779         diff = round_down(old_size - new_size, fs_info->sectorsize);
4780
4781         if (test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state))
4782                 return -EINVAL;
4783
4784         path = btrfs_alloc_path();
4785         if (!path)
4786                 return -ENOMEM;
4787
4788         path->reada = READA_BACK;
4789
4790         trans = btrfs_start_transaction(root, 0);
4791         if (IS_ERR(trans)) {
4792                 btrfs_free_path(path);
4793                 return PTR_ERR(trans);
4794         }
4795
4796         mutex_lock(&fs_info->chunk_mutex);
4797
4798         btrfs_device_set_total_bytes(device, new_size);
4799         if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
4800                 device->fs_devices->total_rw_bytes -= diff;
4801                 atomic64_sub(diff, &fs_info->free_chunk_space);
4802         }
4803
4804         /*
4805          * Once the device's size has been set to the new size, ensure all
4806          * in-memory chunks are synced to disk so that the loop below sees them
4807          * and relocates them accordingly.
4808          */
4809         if (contains_pending_extent(device, &start, diff)) {
4810                 mutex_unlock(&fs_info->chunk_mutex);
4811                 ret = btrfs_commit_transaction(trans);
4812                 if (ret)
4813                         goto done;
4814         } else {
4815                 mutex_unlock(&fs_info->chunk_mutex);
4816                 btrfs_end_transaction(trans);
4817         }
4818
4819 again:
4820         key.objectid = device->devid;
4821         key.offset = (u64)-1;
4822         key.type = BTRFS_DEV_EXTENT_KEY;
4823
4824         do {
4825                 mutex_lock(&fs_info->reclaim_bgs_lock);
4826                 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4827                 if (ret < 0) {
4828                         mutex_unlock(&fs_info->reclaim_bgs_lock);
4829                         goto done;
4830                 }
4831
4832                 ret = btrfs_previous_item(root, path, 0, key.type);
4833                 if (ret) {
4834                         mutex_unlock(&fs_info->reclaim_bgs_lock);
4835                         if (ret < 0)
4836                                 goto done;
4837                         ret = 0;
4838                         btrfs_release_path(path);
4839                         break;
4840                 }
4841
4842                 l = path->nodes[0];
4843                 slot = path->slots[0];
4844                 btrfs_item_key_to_cpu(l, &key, path->slots[0]);
4845
4846                 if (key.objectid != device->devid) {
4847                         mutex_unlock(&fs_info->reclaim_bgs_lock);
4848                         btrfs_release_path(path);
4849                         break;
4850                 }
4851
4852                 dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
4853                 length = btrfs_dev_extent_length(l, dev_extent);
4854
4855                 if (key.offset + length <= new_size) {
4856                         mutex_unlock(&fs_info->reclaim_bgs_lock);
4857                         btrfs_release_path(path);
4858                         break;
4859                 }
4860
4861                 chunk_offset = btrfs_dev_extent_chunk_offset(l, dev_extent);
4862                 btrfs_release_path(path);
4863
4864                 /*
4865                  * We may be relocating the only data chunk we have,
4866                  * which could potentially end up with losing data's
4867                  * raid profile, so lets allocate an empty one in
4868                  * advance.
4869                  */
4870                 ret = btrfs_may_alloc_data_chunk(fs_info, chunk_offset);
4871                 if (ret < 0) {
4872                         mutex_unlock(&fs_info->reclaim_bgs_lock);
4873                         goto done;
4874                 }
4875
4876                 ret = btrfs_relocate_chunk(fs_info, chunk_offset);
4877                 mutex_unlock(&fs_info->reclaim_bgs_lock);
4878                 if (ret == -ENOSPC) {
4879                         failed++;
4880                 } else if (ret) {
4881                         if (ret == -ETXTBSY) {
4882                                 btrfs_warn(fs_info,
4883                    "could not shrink block group %llu due to active swapfile",
4884                                            chunk_offset);
4885                         }
4886                         goto done;
4887                 }
4888         } while (key.offset-- > 0);
4889
4890         if (failed && !retried) {
4891                 failed = 0;
4892                 retried = true;
4893                 goto again;
4894         } else if (failed && retried) {
4895                 ret = -ENOSPC;
4896                 goto done;
4897         }
4898
4899         /* Shrinking succeeded, else we would be at "done". */
4900         trans = btrfs_start_transaction(root, 0);
4901         if (IS_ERR(trans)) {
4902                 ret = PTR_ERR(trans);
4903                 goto done;
4904         }
4905
4906         mutex_lock(&fs_info->chunk_mutex);
4907         /* Clear all state bits beyond the shrunk device size */
4908         clear_extent_bits(&device->alloc_state, new_size, (u64)-1,
4909                           CHUNK_STATE_MASK);
4910
4911         btrfs_device_set_disk_total_bytes(device, new_size);
4912         if (list_empty(&device->post_commit_list))
4913                 list_add_tail(&device->post_commit_list,
4914                               &trans->transaction->dev_update_list);
4915
4916         WARN_ON(diff > old_total);
4917         btrfs_set_super_total_bytes(super_copy,
4918                         round_down(old_total - diff, fs_info->sectorsize));
4919         mutex_unlock(&fs_info->chunk_mutex);
4920
4921         /* Now btrfs_update_device() will change the on-disk size. */
4922         ret = btrfs_update_device(trans, device);
4923         if (ret < 0) {
4924                 btrfs_abort_transaction(trans, ret);
4925                 btrfs_end_transaction(trans);
4926         } else {
4927                 ret = btrfs_commit_transaction(trans);
4928         }
4929 done:
4930         btrfs_free_path(path);
4931         if (ret) {
4932                 mutex_lock(&fs_info->chunk_mutex);
4933                 btrfs_device_set_total_bytes(device, old_size);
4934                 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state))
4935                         device->fs_devices->total_rw_bytes += diff;
4936                 atomic64_add(diff, &fs_info->free_chunk_space);
4937                 mutex_unlock(&fs_info->chunk_mutex);
4938         }
4939         return ret;
4940 }
4941
4942 static int btrfs_add_system_chunk(struct btrfs_fs_info *fs_info,
4943                            struct btrfs_key *key,
4944                            struct btrfs_chunk *chunk, int item_size)
4945 {
4946         struct btrfs_super_block *super_copy = fs_info->super_copy;
4947         struct btrfs_disk_key disk_key;
4948         u32 array_size;
4949         u8 *ptr;
4950
4951         lockdep_assert_held(&fs_info->chunk_mutex);
4952
4953         array_size = btrfs_super_sys_array_size(super_copy);
4954         if (array_size + item_size + sizeof(disk_key)
4955                         > BTRFS_SYSTEM_CHUNK_ARRAY_SIZE)
4956                 return -EFBIG;
4957
4958         ptr = super_copy->sys_chunk_array + array_size;
4959         btrfs_cpu_key_to_disk(&disk_key, key);
4960         memcpy(ptr, &disk_key, sizeof(disk_key));
4961         ptr += sizeof(disk_key);
4962         memcpy(ptr, chunk, item_size);
4963         item_size += sizeof(disk_key);
4964         btrfs_set_super_sys_array_size(super_copy, array_size + item_size);
4965
4966         return 0;
4967 }
4968
4969 /*
4970  * sort the devices in descending order by max_avail, total_avail
4971  */
4972 static int btrfs_cmp_device_info(const void *a, const void *b)
4973 {
4974         const struct btrfs_device_info *di_a = a;
4975         const struct btrfs_device_info *di_b = b;
4976
4977         if (di_a->max_avail > di_b->max_avail)
4978                 return -1;
4979         if (di_a->max_avail < di_b->max_avail)
4980                 return 1;
4981         if (di_a->total_avail > di_b->total_avail)
4982                 return -1;
4983         if (di_a->total_avail < di_b->total_avail)
4984                 return 1;
4985         return 0;
4986 }
4987
4988 static void check_raid56_incompat_flag(struct btrfs_fs_info *info, u64 type)
4989 {
4990         if (!(type & BTRFS_BLOCK_GROUP_RAID56_MASK))
4991                 return;
4992
4993         btrfs_set_fs_incompat(info, RAID56);
4994 }
4995
4996 static void check_raid1c34_incompat_flag(struct btrfs_fs_info *info, u64 type)
4997 {
4998         if (!(type & (BTRFS_BLOCK_GROUP_RAID1C3 | BTRFS_BLOCK_GROUP_RAID1C4)))
4999                 return;
5000
5001         btrfs_set_fs_incompat(info, RAID1C34);
5002 }
5003
5004 /*
5005  * Structure used internally for __btrfs_alloc_chunk() function.
5006  * Wraps needed parameters.
5007  */
5008 struct alloc_chunk_ctl {
5009         u64 start;
5010         u64 type;
5011         /* Total number of stripes to allocate */
5012         int num_stripes;
5013         /* sub_stripes info for map */
5014         int sub_stripes;
5015         /* Stripes per device */
5016         int dev_stripes;
5017         /* Maximum number of devices to use */
5018         int devs_max;
5019         /* Minimum number of devices to use */
5020         int devs_min;
5021         /* ndevs has to be a multiple of this */
5022         int devs_increment;
5023         /* Number of copies */
5024         int ncopies;
5025         /* Number of stripes worth of bytes to store parity information */
5026         int nparity;
5027         u64 max_stripe_size;
5028         u64 max_chunk_size;
5029         u64 dev_extent_min;
5030         u64 stripe_size;
5031         u64 chunk_size;
5032         int ndevs;
5033 };
5034
5035 static void init_alloc_chunk_ctl_policy_regular(
5036                                 struct btrfs_fs_devices *fs_devices,
5037                                 struct alloc_chunk_ctl *ctl)
5038 {
5039         u64 type = ctl->type;
5040
5041         if (type & BTRFS_BLOCK_GROUP_DATA) {
5042                 ctl->max_stripe_size = SZ_1G;
5043                 ctl->max_chunk_size = BTRFS_MAX_DATA_CHUNK_SIZE;
5044         } else if (type & BTRFS_BLOCK_GROUP_METADATA) {
5045                 /* For larger filesystems, use larger metadata chunks */
5046                 if (fs_devices->total_rw_bytes > 50ULL * SZ_1G)
5047                         ctl->max_stripe_size = SZ_1G;
5048                 else
5049                         ctl->max_stripe_size = SZ_256M;
5050                 ctl->max_chunk_size = ctl->max_stripe_size;
5051         } else if (type & BTRFS_BLOCK_GROUP_SYSTEM) {
5052                 ctl->max_stripe_size = SZ_32M;
5053                 ctl->max_chunk_size = 2 * ctl->max_stripe_size;
5054                 ctl->devs_max = min_t(int, ctl->devs_max,
5055                                       BTRFS_MAX_DEVS_SYS_CHUNK);
5056         } else {
5057                 BUG();
5058         }
5059
5060         /* We don't want a chunk larger than 10% of writable space */
5061         ctl->max_chunk_size = min(div_factor(fs_devices->total_rw_bytes, 1),
5062                                   ctl->max_chunk_size);
5063         ctl->dev_extent_min = BTRFS_STRIPE_LEN * ctl->dev_stripes;
5064 }
5065
5066 static void init_alloc_chunk_ctl_policy_zoned(
5067                                       struct btrfs_fs_devices *fs_devices,
5068                                       struct alloc_chunk_ctl *ctl)
5069 {
5070         u64 zone_size = fs_devices->fs_info->zone_size;
5071         u64 limit;
5072         int min_num_stripes = ctl->devs_min * ctl->dev_stripes;
5073         int min_data_stripes = (min_num_stripes - ctl->nparity) / ctl->ncopies;
5074         u64 min_chunk_size = min_data_stripes * zone_size;
5075         u64 type = ctl->type;
5076
5077         ctl->max_stripe_size = zone_size;
5078         if (type & BTRFS_BLOCK_GROUP_DATA) {
5079                 ctl->max_chunk_size = round_down(BTRFS_MAX_DATA_CHUNK_SIZE,
5080                                                  zone_size);
5081         } else if (type & BTRFS_BLOCK_GROUP_METADATA) {
5082                 ctl->max_chunk_size = ctl->max_stripe_size;
5083         } else if (type & BTRFS_BLOCK_GROUP_SYSTEM) {
5084                 ctl->max_chunk_size = 2 * ctl->max_stripe_size;
5085                 ctl->devs_max = min_t(int, ctl->devs_max,
5086                                       BTRFS_MAX_DEVS_SYS_CHUNK);
5087         } else {
5088                 BUG();
5089         }
5090
5091         /* We don't want a chunk larger than 10% of writable space */
5092         limit = max(round_down(div_factor(fs_devices->total_rw_bytes, 1),
5093                                zone_size),
5094                     min_chunk_size);
5095         ctl->max_chunk_size = min(limit, ctl->max_chunk_size);
5096         ctl->dev_extent_min = zone_size * ctl->dev_stripes;
5097 }
5098
5099 static void init_alloc_chunk_ctl(struct btrfs_fs_devices *fs_devices,
5100                                  struct alloc_chunk_ctl *ctl)
5101 {
5102         int index = btrfs_bg_flags_to_raid_index(ctl->type);
5103
5104         ctl->sub_stripes = btrfs_raid_array[index].sub_stripes;
5105         ctl->dev_stripes = btrfs_raid_array[index].dev_stripes;
5106         ctl->devs_max = btrfs_raid_array[index].devs_max;
5107         if (!ctl->devs_max)
5108                 ctl->devs_max = BTRFS_MAX_DEVS(fs_devices->fs_info);
5109         ctl->devs_min = btrfs_raid_array[index].devs_min;
5110         ctl->devs_increment = btrfs_raid_array[index].devs_increment;
5111         ctl->ncopies = btrfs_raid_array[index].ncopies;
5112         ctl->nparity = btrfs_raid_array[index].nparity;
5113         ctl->ndevs = 0;
5114
5115         switch (fs_devices->chunk_alloc_policy) {
5116         case BTRFS_CHUNK_ALLOC_REGULAR:
5117                 init_alloc_chunk_ctl_policy_regular(fs_devices, ctl);
5118                 break;
5119         case BTRFS_CHUNK_ALLOC_ZONED:
5120                 init_alloc_chunk_ctl_policy_zoned(fs_devices, ctl);
5121                 break;
5122         default:
5123                 BUG();
5124         }
5125 }
5126
5127 static int gather_device_info(struct btrfs_fs_devices *fs_devices,
5128                               struct alloc_chunk_ctl *ctl,
5129                               struct btrfs_device_info *devices_info)
5130 {
5131         struct btrfs_fs_info *info = fs_devices->fs_info;
5132         struct btrfs_device *device;
5133         u64 total_avail;
5134         u64 dev_extent_want = ctl->max_stripe_size * ctl->dev_stripes;
5135         int ret;
5136         int ndevs = 0;
5137         u64 max_avail;
5138         u64 dev_offset;
5139
5140         /*
5141          * in the first pass through the devices list, we gather information
5142          * about the available holes on each device.
5143          */
5144         list_for_each_entry(device, &fs_devices->alloc_list, dev_alloc_list) {
5145                 if (!test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
5146                         WARN(1, KERN_ERR
5147                                "BTRFS: read-only device in alloc_list\n");
5148                         continue;
5149                 }
5150
5151                 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA,
5152                                         &device->dev_state) ||
5153                     test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state))
5154                         continue;
5155
5156                 if (device->total_bytes > device->bytes_used)
5157                         total_avail = device->total_bytes - device->bytes_used;
5158                 else
5159                         total_avail = 0;
5160
5161                 /* If there is no space on this device, skip it. */
5162                 if (total_avail < ctl->dev_extent_min)
5163                         continue;
5164
5165                 ret = find_free_dev_extent(device, dev_extent_want, &dev_offset,
5166                                            &max_avail);
5167                 if (ret && ret != -ENOSPC)
5168                         return ret;
5169
5170                 if (ret == 0)
5171                         max_avail = dev_extent_want;
5172
5173                 if (max_avail < ctl->dev_extent_min) {
5174                         if (btrfs_test_opt(info, ENOSPC_DEBUG))
5175                                 btrfs_debug(info,
5176                         "%s: devid %llu has no free space, have=%llu want=%llu",
5177                                             __func__, device->devid, max_avail,
5178                                             ctl->dev_extent_min);
5179                         continue;
5180                 }
5181
5182                 if (ndevs == fs_devices->rw_devices) {
5183                         WARN(1, "%s: found more than %llu devices\n",
5184                              __func__, fs_devices->rw_devices);
5185                         break;
5186                 }
5187                 devices_info[ndevs].dev_offset = dev_offset;
5188                 devices_info[ndevs].max_avail = max_avail;
5189                 devices_info[ndevs].total_avail = total_avail;
5190                 devices_info[ndevs].dev = device;
5191                 ++ndevs;
5192         }
5193         ctl->ndevs = ndevs;
5194
5195         /*
5196          * now sort the devices by hole size / available space
5197          */
5198         sort(devices_info, ndevs, sizeof(struct btrfs_device_info),
5199              btrfs_cmp_device_info, NULL);
5200
5201         return 0;
5202 }
5203
5204 static int decide_stripe_size_regular(struct alloc_chunk_ctl *ctl,
5205                                       struct btrfs_device_info *devices_info)
5206 {
5207         /* Number of stripes that count for block group size */
5208         int data_stripes;
5209
5210         /*
5211          * The primary goal is to maximize the number of stripes, so use as
5212          * many devices as possible, even if the stripes are not maximum sized.
5213          *
5214          * The DUP profile stores more than one stripe per device, the
5215          * max_avail is the total size so we have to adjust.
5216          */
5217         ctl->stripe_size = div_u64(devices_info[ctl->ndevs - 1].max_avail,
5218                                    ctl->dev_stripes);
5219         ctl->num_stripes = ctl->ndevs * ctl->dev_stripes;
5220
5221         /* This will have to be fixed for RAID1 and RAID10 over more drives */
5222         data_stripes = (ctl->num_stripes - ctl->nparity) / ctl->ncopies;
5223
5224         /*
5225          * Use the number of data stripes to figure out how big this chunk is
5226          * really going to be in terms of logical address space, and compare
5227          * that answer with the max chunk size. If it's higher, we try to
5228          * reduce stripe_size.
5229          */
5230         if (ctl->stripe_size * data_stripes > ctl->max_chunk_size) {
5231                 /*
5232                  * Reduce stripe_size, round it up to a 16MB boundary again and
5233                  * then use it, unless it ends up being even bigger than the
5234                  * previous value we had already.
5235                  */
5236                 ctl->stripe_size = min(round_up(div_u64(ctl->max_chunk_size,
5237                                                         data_stripes), SZ_16M),
5238                                        ctl->stripe_size);
5239         }
5240
5241         /* Align to BTRFS_STRIPE_LEN */
5242         ctl->stripe_size = round_down(ctl->stripe_size, BTRFS_STRIPE_LEN);
5243         ctl->chunk_size = ctl->stripe_size * data_stripes;
5244
5245         return 0;
5246 }
5247
5248 static int decide_stripe_size_zoned(struct alloc_chunk_ctl *ctl,
5249                                     struct btrfs_device_info *devices_info)
5250 {
5251         u64 zone_size = devices_info[0].dev->zone_info->zone_size;
5252         /* Number of stripes that count for block group size */
5253         int data_stripes;
5254
5255         /*
5256          * It should hold because:
5257          *    dev_extent_min == dev_extent_want == zone_size * dev_stripes
5258          */
5259         ASSERT(devices_info[ctl->ndevs - 1].max_avail == ctl->dev_extent_min);
5260
5261         ctl->stripe_size = zone_size;
5262         ctl->num_stripes = ctl->ndevs * ctl->dev_stripes;
5263         data_stripes = (ctl->num_stripes - ctl->nparity) / ctl->ncopies;
5264
5265         /* stripe_size is fixed in zoned filesysmte. Reduce ndevs instead. */
5266         if (ctl->stripe_size * data_stripes > ctl->max_chunk_size) {
5267                 ctl->ndevs = div_u64(div_u64(ctl->max_chunk_size * ctl->ncopies,
5268                                              ctl->stripe_size) + ctl->nparity,
5269                                      ctl->dev_stripes);
5270                 ctl->num_stripes = ctl->ndevs * ctl->dev_stripes;
5271                 data_stripes = (ctl->num_stripes - ctl->nparity) / ctl->ncopies;
5272                 ASSERT(ctl->stripe_size * data_stripes <= ctl->max_chunk_size);
5273         }
5274
5275         ctl->chunk_size = ctl->stripe_size * data_stripes;
5276
5277         return 0;
5278 }
5279
5280 static int decide_stripe_size(struct btrfs_fs_devices *fs_devices,
5281                               struct alloc_chunk_ctl *ctl,
5282                               struct btrfs_device_info *devices_info)
5283 {
5284         struct btrfs_fs_info *info = fs_devices->fs_info;
5285
5286         /*
5287          * Round down to number of usable stripes, devs_increment can be any
5288          * number so we can't use round_down() that requires power of 2, while
5289          * rounddown is safe.
5290          */
5291         ctl->ndevs = rounddown(ctl->ndevs, ctl->devs_increment);
5292
5293         if (ctl->ndevs < ctl->devs_min) {
5294                 if (btrfs_test_opt(info, ENOSPC_DEBUG)) {
5295                         btrfs_debug(info,
5296         "%s: not enough devices with free space: have=%d minimum required=%d",
5297                                     __func__, ctl->ndevs, ctl->devs_min);
5298                 }
5299                 return -ENOSPC;
5300         }
5301
5302         ctl->ndevs = min(ctl->ndevs, ctl->devs_max);
5303
5304         switch (fs_devices->chunk_alloc_policy) {
5305         case BTRFS_CHUNK_ALLOC_REGULAR:
5306                 return decide_stripe_size_regular(ctl, devices_info);
5307         case BTRFS_CHUNK_ALLOC_ZONED:
5308                 return decide_stripe_size_zoned(ctl, devices_info);
5309         default:
5310                 BUG();
5311         }
5312 }
5313
5314 static struct btrfs_block_group *create_chunk(struct btrfs_trans_handle *trans,
5315                         struct alloc_chunk_ctl *ctl,
5316                         struct btrfs_device_info *devices_info)
5317 {
5318         struct btrfs_fs_info *info = trans->fs_info;
5319         struct map_lookup *map = NULL;
5320         struct extent_map_tree *em_tree;
5321         struct btrfs_block_group *block_group;
5322         struct extent_map *em;
5323         u64 start = ctl->start;
5324         u64 type = ctl->type;
5325         int ret;
5326         int i;
5327         int j;
5328
5329         map = kmalloc(map_lookup_size(ctl->num_stripes), GFP_NOFS);
5330         if (!map)
5331                 return ERR_PTR(-ENOMEM);
5332         map->num_stripes = ctl->num_stripes;
5333
5334         for (i = 0; i < ctl->ndevs; ++i) {
5335                 for (j = 0; j < ctl->dev_stripes; ++j) {
5336                         int s = i * ctl->dev_stripes + j;
5337                         map->stripes[s].dev = devices_info[i].dev;
5338                         map->stripes[s].physical = devices_info[i].dev_offset +
5339                                                    j * ctl->stripe_size;
5340                 }
5341         }
5342         map->stripe_len = BTRFS_STRIPE_LEN;
5343         map->io_align = BTRFS_STRIPE_LEN;
5344         map->io_width = BTRFS_STRIPE_LEN;
5345         map->type = type;
5346         map->sub_stripes = ctl->sub_stripes;
5347
5348         trace_btrfs_chunk_alloc(info, map, start, ctl->chunk_size);
5349
5350         em = alloc_extent_map();
5351         if (!em) {
5352                 kfree(map);
5353                 return ERR_PTR(-ENOMEM);
5354         }
5355         set_bit(EXTENT_FLAG_FS_MAPPING, &em->flags);
5356         em->map_lookup = map;
5357         em->start = start;
5358         em->len = ctl->chunk_size;
5359         em->block_start = 0;
5360         em->block_len = em->len;
5361         em->orig_block_len = ctl->stripe_size;
5362
5363         em_tree = &info->mapping_tree;
5364         write_lock(&em_tree->lock);
5365         ret = add_extent_mapping(em_tree, em, 0);
5366         if (ret) {
5367                 write_unlock(&em_tree->lock);
5368                 free_extent_map(em);
5369                 return ERR_PTR(ret);
5370         }
5371         write_unlock(&em_tree->lock);
5372
5373         block_group = btrfs_make_block_group(trans, 0, type, start, ctl->chunk_size);
5374         if (IS_ERR(block_group))
5375                 goto error_del_extent;
5376
5377         for (i = 0; i < map->num_stripes; i++) {
5378                 struct btrfs_device *dev = map->stripes[i].dev;
5379
5380                 btrfs_device_set_bytes_used(dev,
5381                                             dev->bytes_used + ctl->stripe_size);
5382                 if (list_empty(&dev->post_commit_list))
5383                         list_add_tail(&dev->post_commit_list,
5384                                       &trans->transaction->dev_update_list);
5385         }
5386
5387         atomic64_sub(ctl->stripe_size * map->num_stripes,
5388                      &info->free_chunk_space);
5389
5390         free_extent_map(em);
5391         check_raid56_incompat_flag(info, type);
5392         check_raid1c34_incompat_flag(info, type);
5393
5394         return block_group;
5395
5396 error_del_extent:
5397         write_lock(&em_tree->lock);
5398         remove_extent_mapping(em_tree, em);
5399         write_unlock(&em_tree->lock);
5400
5401         /* One for our allocation */
5402         free_extent_map(em);
5403         /* One for the tree reference */
5404         free_extent_map(em);
5405
5406         return block_group;
5407 }
5408
5409 struct btrfs_block_group *btrfs_alloc_chunk(struct btrfs_trans_handle *trans,
5410                                             u64 type)
5411 {
5412         struct btrfs_fs_info *info = trans->fs_info;
5413         struct btrfs_fs_devices *fs_devices = info->fs_devices;
5414         struct btrfs_device_info *devices_info = NULL;
5415         struct alloc_chunk_ctl ctl;
5416         struct btrfs_block_group *block_group;
5417         int ret;
5418
5419         lockdep_assert_held(&info->chunk_mutex);
5420
5421         if (!alloc_profile_is_valid(type, 0)) {
5422                 ASSERT(0);
5423                 return ERR_PTR(-EINVAL);
5424         }
5425
5426         if (list_empty(&fs_devices->alloc_list)) {
5427                 if (btrfs_test_opt(info, ENOSPC_DEBUG))
5428                         btrfs_debug(info, "%s: no writable device", __func__);
5429                 return ERR_PTR(-ENOSPC);
5430         }
5431
5432         if (!(type & BTRFS_BLOCK_GROUP_TYPE_MASK)) {
5433                 btrfs_err(info, "invalid chunk type 0x%llx requested", type);
5434                 ASSERT(0);
5435                 return ERR_PTR(-EINVAL);
5436         }
5437
5438         ctl.start = find_next_chunk(info);
5439         ctl.type = type;
5440         init_alloc_chunk_ctl(fs_devices, &ctl);
5441
5442         devices_info = kcalloc(fs_devices->rw_devices, sizeof(*devices_info),
5443                                GFP_NOFS);
5444         if (!devices_info)
5445                 return ERR_PTR(-ENOMEM);
5446
5447         ret = gather_device_info(fs_devices, &ctl, devices_info);
5448         if (ret < 0) {
5449                 block_group = ERR_PTR(ret);
5450                 goto out;
5451         }
5452
5453         ret = decide_stripe_size(fs_devices, &ctl, devices_info);
5454         if (ret < 0) {
5455                 block_group = ERR_PTR(ret);
5456                 goto out;
5457         }
5458
5459         block_group = create_chunk(trans, &ctl, devices_info);
5460
5461 out:
5462         kfree(devices_info);
5463         return block_group;
5464 }
5465
5466 /*
5467  * This function, btrfs_finish_chunk_alloc(), belongs to phase 2.
5468  *
5469  * See the comment at btrfs_chunk_alloc() for details about the chunk allocation
5470  * phases.
5471  */
5472 int btrfs_finish_chunk_alloc(struct btrfs_trans_handle *trans,
5473                              u64 chunk_offset, u64 chunk_size)
5474 {
5475         struct btrfs_fs_info *fs_info = trans->fs_info;
5476         struct btrfs_device *device;
5477         struct extent_map *em;
5478         struct map_lookup *map;
5479         u64 dev_offset;
5480         u64 stripe_size;
5481         int i;
5482         int ret = 0;
5483
5484         em = btrfs_get_chunk_map(fs_info, chunk_offset, chunk_size);
5485         if (IS_ERR(em))
5486                 return PTR_ERR(em);
5487
5488         map = em->map_lookup;
5489         stripe_size = em->orig_block_len;
5490
5491         /*
5492          * Take the device list mutex to prevent races with the final phase of
5493          * a device replace operation that replaces the device object associated
5494          * with the map's stripes, because the device object's id can change
5495          * at any time during that final phase of the device replace operation
5496          * (dev-replace.c:btrfs_dev_replace_finishing()), so we could grab the
5497          * replaced device and then see it with an ID of BTRFS_DEV_REPLACE_DEVID,
5498          * resulting in persisting a device extent item with such ID.
5499          */
5500         mutex_lock(&fs_info->fs_devices->device_list_mutex);
5501         for (i = 0; i < map->num_stripes; i++) {
5502                 device = map->stripes[i].dev;
5503                 dev_offset = map->stripes[i].physical;
5504
5505                 ret = btrfs_alloc_dev_extent(trans, device, chunk_offset,
5506                                              dev_offset, stripe_size);
5507                 if (ret)
5508                         break;
5509         }
5510         mutex_unlock(&fs_info->fs_devices->device_list_mutex);
5511
5512         free_extent_map(em);
5513         return ret;
5514 }
5515
5516 /*
5517  * This function, btrfs_chunk_alloc_add_chunk_item(), typically belongs to the
5518  * phase 1 of chunk allocation. It belongs to phase 2 only when allocating system
5519  * chunks.
5520  *
5521  * See the comment at btrfs_chunk_alloc() for details about the chunk allocation
5522  * phases.
5523  */
5524 int btrfs_chunk_alloc_add_chunk_item(struct btrfs_trans_handle *trans,
5525                                      struct btrfs_block_group *bg)
5526 {
5527         struct btrfs_fs_info *fs_info = trans->fs_info;
5528         struct btrfs_root *extent_root = fs_info->extent_root;
5529         struct btrfs_root *chunk_root = fs_info->chunk_root;
5530         struct btrfs_key key;
5531         struct btrfs_chunk *chunk;
5532         struct btrfs_stripe *stripe;
5533         struct extent_map *em;
5534         struct map_lookup *map;
5535         size_t item_size;
5536         int i;
5537         int ret;
5538
5539         /*
5540          * We take the chunk_mutex for 2 reasons:
5541          *
5542          * 1) Updates and insertions in the chunk btree must be done while holding
5543          *    the chunk_mutex, as well as updating the system chunk array in the
5544          *    superblock. See the comment on top of btrfs_chunk_alloc() for the
5545          *    details;
5546          *
5547          * 2) To prevent races with the final phase of a device replace operation
5548          *    that replaces the device object associated with the map's stripes,
5549          *    because the device object's id can change at any time during that
5550          *    final phase of the device replace operation
5551          *    (dev-replace.c:btrfs_dev_replace_finishing()), so we could grab the
5552          *    replaced device and then see it with an ID of BTRFS_DEV_REPLACE_DEVID,
5553          *    which would cause a failure when updating the device item, which does
5554          *    not exists, or persisting a stripe of the chunk item with such ID.
5555          *    Here we can't use the device_list_mutex because our caller already
5556          *    has locked the chunk_mutex, and the final phase of device replace
5557          *    acquires both mutexes - first the device_list_mutex and then the
5558          *    chunk_mutex. Using any of those two mutexes protects us from a
5559          *    concurrent device replace.
5560          */
5561         lockdep_assert_held(&fs_info->chunk_mutex);
5562
5563         em = btrfs_get_chunk_map(fs_info, bg->start, bg->length);
5564         if (IS_ERR(em)) {
5565                 ret = PTR_ERR(em);
5566                 btrfs_abort_transaction(trans, ret);
5567                 return ret;
5568         }
5569
5570         map = em->map_lookup;
5571         item_size = btrfs_chunk_item_size(map->num_stripes);
5572
5573         chunk = kzalloc(item_size, GFP_NOFS);
5574         if (!chunk) {
5575                 ret = -ENOMEM;
5576                 btrfs_abort_transaction(trans, ret);
5577                 goto out;
5578         }
5579
5580         for (i = 0; i < map->num_stripes; i++) {
5581                 struct btrfs_device *device = map->stripes[i].dev;
5582
5583                 ret = btrfs_update_device(trans, device);
5584                 if (ret)
5585                         goto out;
5586         }
5587
5588         stripe = &chunk->stripe;
5589         for (i = 0; i < map->num_stripes; i++) {
5590                 struct btrfs_device *device = map->stripes[i].dev;
5591                 const u64 dev_offset = map->stripes[i].physical;
5592
5593                 btrfs_set_stack_stripe_devid(stripe, device->devid);
5594                 btrfs_set_stack_stripe_offset(stripe, dev_offset);
5595                 memcpy(stripe->dev_uuid, device->uuid, BTRFS_UUID_SIZE);
5596                 stripe++;
5597         }
5598
5599         btrfs_set_stack_chunk_length(chunk, bg->length);
5600         btrfs_set_stack_chunk_owner(chunk, extent_root->root_key.objectid);
5601         btrfs_set_stack_chunk_stripe_len(chunk, map->stripe_len);
5602         btrfs_set_stack_chunk_type(chunk, map->type);
5603         btrfs_set_stack_chunk_num_stripes(chunk, map->num_stripes);
5604         btrfs_set_stack_chunk_io_align(chunk, map->stripe_len);
5605         btrfs_set_stack_chunk_io_width(chunk, map->stripe_len);
5606         btrfs_set_stack_chunk_sector_size(chunk, fs_info->sectorsize);
5607         btrfs_set_stack_chunk_sub_stripes(chunk, map->sub_stripes);
5608
5609         key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
5610         key.type = BTRFS_CHUNK_ITEM_KEY;
5611         key.offset = bg->start;
5612
5613         ret = btrfs_insert_item(trans, chunk_root, &key, chunk, item_size);
5614         if (ret)
5615                 goto out;
5616
5617         bg->chunk_item_inserted = 1;
5618
5619         if (map->type & BTRFS_BLOCK_GROUP_SYSTEM) {
5620                 ret = btrfs_add_system_chunk(fs_info, &key, chunk, item_size);
5621                 if (ret)
5622                         goto out;
5623         }
5624
5625 out:
5626         kfree(chunk);
5627         free_extent_map(em);
5628         return ret;
5629 }
5630
5631 static noinline int init_first_rw_device(struct btrfs_trans_handle *trans)
5632 {
5633         struct btrfs_fs_info *fs_info = trans->fs_info;
5634         u64 alloc_profile;
5635         struct btrfs_block_group *meta_bg;
5636         struct btrfs_block_group *sys_bg;
5637
5638         /*
5639          * When adding a new device for sprouting, the seed device is read-only
5640          * so we must first allocate a metadata and a system chunk. But before
5641          * adding the block group items to the extent, device and chunk btrees,
5642          * we must first:
5643          *
5644          * 1) Create both chunks without doing any changes to the btrees, as
5645          *    otherwise we would get -ENOSPC since the block groups from the
5646          *    seed device are read-only;
5647          *
5648          * 2) Add the device item for the new sprout device - finishing the setup
5649          *    of a new block group requires updating the device item in the chunk
5650          *    btree, so it must exist when we attempt to do it. The previous step
5651          *    ensures this does not fail with -ENOSPC.
5652          *
5653          * After that we can add the block group items to their btrees:
5654          * update existing device item in the chunk btree, add a new block group
5655          * item to the extent btree, add a new chunk item to the chunk btree and
5656          * finally add the new device extent items to the devices btree.
5657          */
5658
5659         alloc_profile = btrfs_metadata_alloc_profile(fs_info);
5660         meta_bg = btrfs_alloc_chunk(trans, alloc_profile);
5661         if (IS_ERR(meta_bg))
5662                 return PTR_ERR(meta_bg);
5663
5664         alloc_profile = btrfs_system_alloc_profile(fs_info);
5665         sys_bg = btrfs_alloc_chunk(trans, alloc_profile);
5666         if (IS_ERR(sys_bg))
5667                 return PTR_ERR(sys_bg);
5668
5669         return 0;
5670 }
5671
5672 static inline int btrfs_chunk_max_errors(struct map_lookup *map)
5673 {
5674         const int index = btrfs_bg_flags_to_raid_index(map->type);
5675
5676         return btrfs_raid_array[index].tolerated_failures;
5677 }
5678
5679 int btrfs_chunk_readonly(struct btrfs_fs_info *fs_info, u64 chunk_offset)
5680 {
5681         struct extent_map *em;
5682         struct map_lookup *map;
5683         int readonly = 0;
5684         int miss_ndevs = 0;
5685         int i;
5686
5687         em = btrfs_get_chunk_map(fs_info, chunk_offset, 1);
5688         if (IS_ERR(em))
5689                 return 1;
5690
5691         map = em->map_lookup;
5692         for (i = 0; i < map->num_stripes; i++) {
5693                 if (test_bit(BTRFS_DEV_STATE_MISSING,
5694                                         &map->stripes[i].dev->dev_state)) {
5695                         miss_ndevs++;
5696                         continue;
5697                 }
5698                 if (!test_bit(BTRFS_DEV_STATE_WRITEABLE,
5699                                         &map->stripes[i].dev->dev_state)) {
5700                         readonly = 1;
5701                         goto end;
5702                 }
5703         }
5704
5705         /*
5706          * If the number of missing devices is larger than max errors,
5707          * we can not write the data into that chunk successfully, so
5708          * set it readonly.
5709          */
5710         if (miss_ndevs > btrfs_chunk_max_errors(map))
5711                 readonly = 1;
5712 end:
5713         free_extent_map(em);
5714         return readonly;
5715 }
5716
5717 void btrfs_mapping_tree_free(struct extent_map_tree *tree)
5718 {
5719         struct extent_map *em;
5720
5721         while (1) {
5722                 write_lock(&tree->lock);
5723                 em = lookup_extent_mapping(tree, 0, (u64)-1);
5724                 if (em)
5725                         remove_extent_mapping(tree, em);
5726                 write_unlock(&tree->lock);
5727                 if (!em)
5728                         break;
5729                 /* once for us */
5730                 free_extent_map(em);
5731                 /* once for the tree */
5732                 free_extent_map(em);
5733         }
5734 }
5735
5736 int btrfs_num_copies(struct btrfs_fs_info *fs_info, u64 logical, u64 len)
5737 {
5738         struct extent_map *em;
5739         struct map_lookup *map;
5740         int ret;
5741
5742         em = btrfs_get_chunk_map(fs_info, logical, len);
5743         if (IS_ERR(em))
5744                 /*
5745                  * We could return errors for these cases, but that could get
5746                  * ugly and we'd probably do the same thing which is just not do
5747                  * anything else and exit, so return 1 so the callers don't try
5748                  * to use other copies.
5749                  */
5750                 return 1;
5751
5752         map = em->map_lookup;
5753         if (map->type & (BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID1_MASK))
5754                 ret = map->num_stripes;
5755         else if (map->type & BTRFS_BLOCK_GROUP_RAID10)
5756                 ret = map->sub_stripes;
5757         else if (map->type & BTRFS_BLOCK_GROUP_RAID5)
5758                 ret = 2;
5759         else if (map->type & BTRFS_BLOCK_GROUP_RAID6)
5760                 /*
5761                  * There could be two corrupted data stripes, we need
5762                  * to loop retry in order to rebuild the correct data.
5763                  *
5764                  * Fail a stripe at a time on every retry except the
5765                  * stripe under reconstruction.
5766                  */
5767                 ret = map->num_stripes;
5768         else
5769                 ret = 1;
5770         free_extent_map(em);
5771
5772         down_read(&fs_info->dev_replace.rwsem);
5773         if (btrfs_dev_replace_is_ongoing(&fs_info->dev_replace) &&
5774             fs_info->dev_replace.tgtdev)
5775                 ret++;
5776         up_read(&fs_info->dev_replace.rwsem);
5777
5778         return ret;
5779 }
5780
5781 unsigned long btrfs_full_stripe_len(struct btrfs_fs_info *fs_info,
5782                                     u64 logical)
5783 {
5784         struct extent_map *em;
5785         struct map_lookup *map;
5786         unsigned long len = fs_info->sectorsize;
5787
5788         em = btrfs_get_chunk_map(fs_info, logical, len);
5789
5790         if (!WARN_ON(IS_ERR(em))) {
5791                 map = em->map_lookup;
5792                 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK)
5793                         len = map->stripe_len * nr_data_stripes(map);
5794                 free_extent_map(em);
5795         }
5796         return len;
5797 }
5798
5799 int btrfs_is_parity_mirror(struct btrfs_fs_info *fs_info, u64 logical, u64 len)
5800 {
5801         struct extent_map *em;
5802         struct map_lookup *map;
5803         int ret = 0;
5804
5805         em = btrfs_get_chunk_map(fs_info, logical, len);
5806
5807         if(!WARN_ON(IS_ERR(em))) {
5808                 map = em->map_lookup;
5809                 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK)
5810                         ret = 1;
5811                 free_extent_map(em);
5812         }
5813         return ret;
5814 }
5815
5816 static int find_live_mirror(struct btrfs_fs_info *fs_info,
5817                             struct map_lookup *map, int first,
5818                             int dev_replace_is_ongoing)
5819 {
5820         int i;
5821         int num_stripes;
5822         int preferred_mirror;
5823         int tolerance;
5824         struct btrfs_device *srcdev;
5825
5826         ASSERT((map->type &
5827                  (BTRFS_BLOCK_GROUP_RAID1_MASK | BTRFS_BLOCK_GROUP_RAID10)));
5828
5829         if (map->type & BTRFS_BLOCK_GROUP_RAID10)
5830                 num_stripes = map->sub_stripes;
5831         else
5832                 num_stripes = map->num_stripes;
5833
5834         switch (fs_info->fs_devices->read_policy) {
5835         default:
5836                 /* Shouldn't happen, just warn and use pid instead of failing */
5837                 btrfs_warn_rl(fs_info,
5838                               "unknown read_policy type %u, reset to pid",
5839                               fs_info->fs_devices->read_policy);
5840                 fs_info->fs_devices->read_policy = BTRFS_READ_POLICY_PID;
5841                 fallthrough;
5842         case BTRFS_READ_POLICY_PID:
5843                 preferred_mirror = first + (current->pid % num_stripes);
5844                 break;
5845         }
5846
5847         if (dev_replace_is_ongoing &&
5848             fs_info->dev_replace.cont_reading_from_srcdev_mode ==
5849              BTRFS_DEV_REPLACE_ITEM_CONT_READING_FROM_SRCDEV_MODE_AVOID)
5850                 srcdev = fs_info->dev_replace.srcdev;
5851         else
5852                 srcdev = NULL;
5853
5854         /*
5855          * try to avoid the drive that is the source drive for a
5856          * dev-replace procedure, only choose it if no other non-missing
5857          * mirror is available
5858          */
5859         for (tolerance = 0; tolerance < 2; tolerance++) {
5860                 if (map->stripes[preferred_mirror].dev->bdev &&
5861                     (tolerance || map->stripes[preferred_mirror].dev != srcdev))
5862                         return preferred_mirror;
5863                 for (i = first; i < first + num_stripes; i++) {
5864                         if (map->stripes[i].dev->bdev &&
5865                             (tolerance || map->stripes[i].dev != srcdev))
5866                                 return i;
5867                 }
5868         }
5869
5870         /* we couldn't find one that doesn't fail.  Just return something
5871          * and the io error handling code will clean up eventually
5872          */
5873         return preferred_mirror;
5874 }
5875
5876 /* Bubble-sort the stripe set to put the parity/syndrome stripes last */
5877 static void sort_parity_stripes(struct btrfs_bio *bbio, int num_stripes)
5878 {
5879         int i;
5880         int again = 1;
5881
5882         while (again) {
5883                 again = 0;
5884                 for (i = 0; i < num_stripes - 1; i++) {
5885                         /* Swap if parity is on a smaller index */
5886                         if (bbio->raid_map[i] > bbio->raid_map[i + 1]) {
5887                                 swap(bbio->stripes[i], bbio->stripes[i + 1]);
5888                                 swap(bbio->raid_map[i], bbio->raid_map[i + 1]);
5889                                 again = 1;
5890                         }
5891                 }
5892         }
5893 }
5894
5895 static struct btrfs_bio *alloc_btrfs_bio(int total_stripes, int real_stripes)
5896 {
5897         struct btrfs_bio *bbio = kzalloc(
5898                  /* the size of the btrfs_bio */
5899                 sizeof(struct btrfs_bio) +
5900                 /* plus the variable array for the stripes */
5901                 sizeof(struct btrfs_bio_stripe) * (total_stripes) +
5902                 /* plus the variable array for the tgt dev */
5903                 sizeof(int) * (real_stripes) +
5904                 /*
5905                  * plus the raid_map, which includes both the tgt dev
5906                  * and the stripes
5907                  */
5908                 sizeof(u64) * (total_stripes),
5909                 GFP_NOFS|__GFP_NOFAIL);
5910
5911         atomic_set(&bbio->error, 0);
5912         refcount_set(&bbio->refs, 1);
5913
5914         bbio->tgtdev_map = (int *)(bbio->stripes + total_stripes);
5915         bbio->raid_map = (u64 *)(bbio->tgtdev_map + real_stripes);
5916
5917         return bbio;
5918 }
5919
5920 void btrfs_get_bbio(struct btrfs_bio *bbio)
5921 {
5922         WARN_ON(!refcount_read(&bbio->refs));
5923         refcount_inc(&bbio->refs);
5924 }
5925
5926 void btrfs_put_bbio(struct btrfs_bio *bbio)
5927 {
5928         if (!bbio)
5929                 return;
5930         if (refcount_dec_and_test(&bbio->refs))
5931                 kfree(bbio);
5932 }
5933
5934 /* can REQ_OP_DISCARD be sent with other REQ like REQ_OP_WRITE? */
5935 /*
5936  * Please note that, discard won't be sent to target device of device
5937  * replace.
5938  */
5939 static int __btrfs_map_block_for_discard(struct btrfs_fs_info *fs_info,
5940                                          u64 logical, u64 *length_ret,
5941                                          struct btrfs_bio **bbio_ret)
5942 {
5943         struct extent_map *em;
5944         struct map_lookup *map;
5945         struct btrfs_bio *bbio;
5946         u64 length = *length_ret;
5947         u64 offset;
5948         u64 stripe_nr;
5949         u64 stripe_nr_end;
5950         u64 stripe_end_offset;
5951         u64 stripe_cnt;
5952         u64 stripe_len;
5953         u64 stripe_offset;
5954         u64 num_stripes;
5955         u32 stripe_index;
5956         u32 factor = 0;
5957         u32 sub_stripes = 0;
5958         u64 stripes_per_dev = 0;
5959         u32 remaining_stripes = 0;
5960         u32 last_stripe = 0;
5961         int ret = 0;
5962         int i;
5963
5964         /* discard always return a bbio */
5965         ASSERT(bbio_ret);
5966
5967         em = btrfs_get_chunk_map(fs_info, logical, length);
5968         if (IS_ERR(em))
5969                 return PTR_ERR(em);
5970
5971         map = em->map_lookup;
5972         /* we don't discard raid56 yet */
5973         if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
5974                 ret = -EOPNOTSUPP;
5975                 goto out;
5976         }
5977
5978         offset = logical - em->start;
5979         length = min_t(u64, em->start + em->len - logical, length);
5980         *length_ret = length;
5981
5982         stripe_len = map->stripe_len;
5983         /*
5984          * stripe_nr counts the total number of stripes we have to stride
5985          * to get to this block
5986          */
5987         stripe_nr = div64_u64(offset, stripe_len);
5988
5989         /* stripe_offset is the offset of this block in its stripe */
5990         stripe_offset = offset - stripe_nr * stripe_len;
5991
5992         stripe_nr_end = round_up(offset + length, map->stripe_len);
5993         stripe_nr_end = div64_u64(stripe_nr_end, map->stripe_len);
5994         stripe_cnt = stripe_nr_end - stripe_nr;
5995         stripe_end_offset = stripe_nr_end * map->stripe_len -
5996                             (offset + length);
5997         /*
5998          * after this, stripe_nr is the number of stripes on this
5999          * device we have to walk to find the data, and stripe_index is
6000          * the number of our device in the stripe array
6001          */
6002         num_stripes = 1;
6003         stripe_index = 0;
6004         if (map->type & (BTRFS_BLOCK_GROUP_RAID0 |
6005                          BTRFS_BLOCK_GROUP_RAID10)) {
6006                 if (map->type & BTRFS_BLOCK_GROUP_RAID0)
6007                         sub_stripes = 1;
6008                 else
6009                         sub_stripes = map->sub_stripes;
6010
6011                 factor = map->num_stripes / sub_stripes;
6012                 num_stripes = min_t(u64, map->num_stripes,
6013                                     sub_stripes * stripe_cnt);
6014                 stripe_nr = div_u64_rem(stripe_nr, factor, &stripe_index);
6015                 stripe_index *= sub_stripes;
6016                 stripes_per_dev = div_u64_rem(stripe_cnt, factor,
6017                                               &remaining_stripes);
6018                 div_u64_rem(stripe_nr_end - 1, factor, &last_stripe);
6019                 last_stripe *= sub_stripes;
6020         } else if (map->type & (BTRFS_BLOCK_GROUP_RAID1_MASK |
6021                                 BTRFS_BLOCK_GROUP_DUP)) {
6022                 num_stripes = map->num_stripes;
6023         } else {
6024                 stripe_nr = div_u64_rem(stripe_nr, map->num_stripes,
6025                                         &stripe_index);
6026         }
6027
6028         bbio = alloc_btrfs_bio(num_stripes, 0);
6029         if (!bbio) {
6030                 ret = -ENOMEM;
6031                 goto out;
6032         }
6033
6034         for (i = 0; i < num_stripes; i++) {
6035                 bbio->stripes[i].physical =
6036                         map->stripes[stripe_index].physical +
6037                         stripe_offset + stripe_nr * map->stripe_len;
6038                 bbio->stripes[i].dev = map->stripes[stripe_index].dev;
6039
6040                 if (map->type & (BTRFS_BLOCK_GROUP_RAID0 |
6041                                  BTRFS_BLOCK_GROUP_RAID10)) {
6042                         bbio->stripes[i].length = stripes_per_dev *
6043                                 map->stripe_len;
6044
6045                         if (i / sub_stripes < remaining_stripes)
6046                                 bbio->stripes[i].length +=
6047                                         map->stripe_len;
6048
6049                         /*
6050                          * Special for the first stripe and
6051                          * the last stripe:
6052                          *
6053                          * |-------|...|-------|
6054                          *     |----------|
6055                          *    off     end_off
6056                          */
6057                         if (i < sub_stripes)
6058                                 bbio->stripes[i].length -=
6059                                         stripe_offset;
6060
6061                         if (stripe_index >= last_stripe &&
6062                             stripe_index <= (last_stripe +
6063                                              sub_stripes - 1))
6064                                 bbio->stripes[i].length -=
6065                                         stripe_end_offset;
6066
6067                         if (i == sub_stripes - 1)
6068                                 stripe_offset = 0;
6069                 } else {
6070                         bbio->stripes[i].length = length;
6071                 }
6072
6073                 stripe_index++;
6074                 if (stripe_index == map->num_stripes) {
6075                         stripe_index = 0;
6076                         stripe_nr++;
6077                 }
6078         }
6079
6080         *bbio_ret = bbio;
6081         bbio->map_type = map->type;
6082         bbio->num_stripes = num_stripes;
6083 out:
6084         free_extent_map(em);
6085         return ret;
6086 }
6087
6088 /*
6089  * In dev-replace case, for repair case (that's the only case where the mirror
6090  * is selected explicitly when calling btrfs_map_block), blocks left of the
6091  * left cursor can also be read from the target drive.
6092  *
6093  * For REQ_GET_READ_MIRRORS, the target drive is added as the last one to the
6094  * array of stripes.
6095  * For READ, it also needs to be supported using the same mirror number.
6096  *
6097  * If the requested block is not left of the left cursor, EIO is returned. This
6098  * can happen because btrfs_num_copies() returns one more in the dev-replace
6099  * case.
6100  */
6101 static int get_extra_mirror_from_replace(struct btrfs_fs_info *fs_info,
6102                                          u64 logical, u64 length,
6103                                          u64 srcdev_devid, int *mirror_num,
6104                                          u64 *physical)
6105 {
6106         struct btrfs_bio *bbio = NULL;
6107         int num_stripes;
6108         int index_srcdev = 0;
6109         int found = 0;
6110         u64 physical_of_found = 0;
6111         int i;
6112         int ret = 0;
6113
6114         ret = __btrfs_map_block(fs_info, BTRFS_MAP_GET_READ_MIRRORS,
6115                                 logical, &length, &bbio, 0, 0);
6116         if (ret) {
6117                 ASSERT(bbio == NULL);
6118                 return ret;
6119         }
6120
6121         num_stripes = bbio->num_stripes;
6122         if (*mirror_num > num_stripes) {
6123                 /*
6124                  * BTRFS_MAP_GET_READ_MIRRORS does not contain this mirror,
6125                  * that means that the requested area is not left of the left
6126                  * cursor
6127                  */
6128                 btrfs_put_bbio(bbio);
6129                 return -EIO;
6130         }
6131
6132         /*
6133          * process the rest of the function using the mirror_num of the source
6134          * drive. Therefore look it up first.  At the end, patch the device
6135          * pointer to the one of the target drive.
6136          */
6137         for (i = 0; i < num_stripes; i++) {
6138                 if (bbio->stripes[i].dev->devid != srcdev_devid)
6139                         continue;
6140
6141                 /*
6142                  * In case of DUP, in order to keep it simple, only add the
6143                  * mirror with the lowest physical address
6144                  */
6145                 if (found &&
6146                     physical_of_found <= bbio->stripes[i].physical)
6147                         continue;
6148
6149                 index_srcdev = i;
6150                 found = 1;
6151                 physical_of_found = bbio->stripes[i].physical;
6152         }
6153
6154         btrfs_put_bbio(bbio);
6155
6156         ASSERT(found);
6157         if (!found)
6158                 return -EIO;
6159
6160         *mirror_num = index_srcdev + 1;
6161         *physical = physical_of_found;
6162         return ret;
6163 }
6164
6165 static bool is_block_group_to_copy(struct btrfs_fs_info *fs_info, u64 logical)
6166 {
6167         struct btrfs_block_group *cache;
6168         bool ret;
6169
6170         /* Non zoned filesystem does not use "to_copy" flag */
6171         if (!btrfs_is_zoned(fs_info))
6172                 return false;
6173
6174         cache = btrfs_lookup_block_group(fs_info, logical);
6175
6176         spin_lock(&cache->lock);
6177         ret = cache->to_copy;
6178         spin_unlock(&cache->lock);
6179
6180         btrfs_put_block_group(cache);
6181         return ret;
6182 }
6183
6184 static void handle_ops_on_dev_replace(enum btrfs_map_op op,
6185                                       struct btrfs_bio **bbio_ret,
6186                                       struct btrfs_dev_replace *dev_replace,
6187                                       u64 logical,
6188                                       int *num_stripes_ret, int *max_errors_ret)
6189 {
6190         struct btrfs_bio *bbio = *bbio_ret;
6191         u64 srcdev_devid = dev_replace->srcdev->devid;
6192         int tgtdev_indexes = 0;
6193         int num_stripes = *num_stripes_ret;
6194         int max_errors = *max_errors_ret;
6195         int i;
6196
6197         if (op == BTRFS_MAP_WRITE) {
6198                 int index_where_to_add;
6199
6200                 /*
6201                  * A block group which have "to_copy" set will eventually
6202                  * copied by dev-replace process. We can avoid cloning IO here.
6203                  */
6204                 if (is_block_group_to_copy(dev_replace->srcdev->fs_info, logical))
6205                         return;
6206
6207                 /*
6208                  * duplicate the write operations while the dev replace
6209                  * procedure is running. Since the copying of the old disk to
6210                  * the new disk takes place at run time while the filesystem is
6211                  * mounted writable, the regular write operations to the old
6212                  * disk have to be duplicated to go to the new disk as well.
6213                  *
6214                  * Note that device->missing is handled by the caller, and that
6215                  * the write to the old disk is already set up in the stripes
6216                  * array.
6217                  */
6218                 index_where_to_add = num_stripes;
6219                 for (i = 0; i < num_stripes; i++) {
6220                         if (bbio->stripes[i].dev->devid == srcdev_devid) {
6221                                 /* write to new disk, too */
6222                                 struct btrfs_bio_stripe *new =
6223                                         bbio->stripes + index_where_to_add;
6224                                 struct btrfs_bio_stripe *old =
6225                                         bbio->stripes + i;
6226
6227                                 new->physical = old->physical;
6228                                 new->length = old->length;
6229                                 new->dev = dev_replace->tgtdev;
6230                                 bbio->tgtdev_map[i] = index_where_to_add;
6231                                 index_where_to_add++;
6232                                 max_errors++;
6233                                 tgtdev_indexes++;
6234                         }
6235                 }
6236                 num_stripes = index_where_to_add;
6237         } else if (op == BTRFS_MAP_GET_READ_MIRRORS) {
6238                 int index_srcdev = 0;
6239                 int found = 0;
6240                 u64 physical_of_found = 0;
6241
6242                 /*
6243                  * During the dev-replace procedure, the target drive can also
6244                  * be used to read data in case it is needed to repair a corrupt
6245                  * block elsewhere. This is possible if the requested area is
6246                  * left of the left cursor. In this area, the target drive is a
6247                  * full copy of the source drive.
6248                  */
6249                 for (i = 0; i < num_stripes; i++) {
6250                         if (bbio->stripes[i].dev->devid == srcdev_devid) {
6251                                 /*
6252                                  * In case of DUP, in order to keep it simple,
6253                                  * only add the mirror with the lowest physical
6254                                  * address
6255                                  */
6256                                 if (found &&
6257                                     physical_of_found <=
6258                                      bbio->stripes[i].physical)
6259                                         continue;
6260                                 index_srcdev = i;
6261                                 found = 1;
6262                                 physical_of_found = bbio->stripes[i].physical;
6263                         }
6264                 }
6265                 if (found) {
6266                         struct btrfs_bio_stripe *tgtdev_stripe =
6267                                 bbio->stripes + num_stripes;
6268
6269                         tgtdev_stripe->physical = physical_of_found;
6270                         tgtdev_stripe->length =
6271                                 bbio->stripes[index_srcdev].length;
6272                         tgtdev_stripe->dev = dev_replace->tgtdev;
6273                         bbio->tgtdev_map[index_srcdev] = num_stripes;
6274
6275                         tgtdev_indexes++;
6276                         num_stripes++;
6277                 }
6278         }
6279
6280         *num_stripes_ret = num_stripes;
6281         *max_errors_ret = max_errors;
6282         bbio->num_tgtdevs = tgtdev_indexes;
6283         *bbio_ret = bbio;
6284 }
6285
6286 static bool need_full_stripe(enum btrfs_map_op op)
6287 {
6288         return (op == BTRFS_MAP_WRITE || op == BTRFS_MAP_GET_READ_MIRRORS);
6289 }
6290
6291 /*
6292  * Calculate the geometry of a particular (address, len) tuple. This
6293  * information is used to calculate how big a particular bio can get before it
6294  * straddles a stripe.
6295  *
6296  * @fs_info: the filesystem
6297  * @em:      mapping containing the logical extent
6298  * @op:      type of operation - write or read
6299  * @logical: address that we want to figure out the geometry of
6300  * @io_geom: pointer used to return values
6301  *
6302  * Returns < 0 in case a chunk for the given logical address cannot be found,
6303  * usually shouldn't happen unless @logical is corrupted, 0 otherwise.
6304  */
6305 int btrfs_get_io_geometry(struct btrfs_fs_info *fs_info, struct extent_map *em,
6306                           enum btrfs_map_op op, u64 logical,
6307                           struct btrfs_io_geometry *io_geom)
6308 {
6309         struct map_lookup *map;
6310         u64 len;
6311         u64 offset;
6312         u64 stripe_offset;
6313         u64 stripe_nr;
6314         u64 stripe_len;
6315         u64 raid56_full_stripe_start = (u64)-1;
6316         int data_stripes;
6317
6318         ASSERT(op != BTRFS_MAP_DISCARD);
6319
6320         map = em->map_lookup;
6321         /* Offset of this logical address in the chunk */
6322         offset = logical - em->start;
6323         /* Len of a stripe in a chunk */
6324         stripe_len = map->stripe_len;
6325         /* Stripe where this block falls in */
6326         stripe_nr = div64_u64(offset, stripe_len);
6327         /* Offset of stripe in the chunk */
6328         stripe_offset = stripe_nr * stripe_len;
6329         if (offset < stripe_offset) {
6330                 btrfs_crit(fs_info,
6331 "stripe math has gone wrong, stripe_offset=%llu offset=%llu start=%llu logical=%llu stripe_len=%llu",
6332                         stripe_offset, offset, em->start, logical, stripe_len);
6333                 return -EINVAL;
6334         }
6335
6336         /* stripe_offset is the offset of this block in its stripe */
6337         stripe_offset = offset - stripe_offset;
6338         data_stripes = nr_data_stripes(map);
6339
6340         if (map->type & BTRFS_BLOCK_GROUP_PROFILE_MASK) {
6341                 u64 max_len = stripe_len - stripe_offset;
6342
6343                 /*
6344                  * In case of raid56, we need to know the stripe aligned start
6345                  */
6346                 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
6347                         unsigned long full_stripe_len = stripe_len * data_stripes;
6348                         raid56_full_stripe_start = offset;
6349
6350                         /*
6351                          * Allow a write of a full stripe, but make sure we
6352                          * don't allow straddling of stripes
6353                          */
6354                         raid56_full_stripe_start = div64_u64(raid56_full_stripe_start,
6355                                         full_stripe_len);
6356                         raid56_full_stripe_start *= full_stripe_len;
6357
6358                         /*
6359                          * For writes to RAID[56], allow a full stripeset across
6360                          * all disks. For other RAID types and for RAID[56]
6361                          * reads, just allow a single stripe (on a single disk).
6362                          */
6363                         if (op == BTRFS_MAP_WRITE) {
6364                                 max_len = stripe_len * data_stripes -
6365                                           (offset - raid56_full_stripe_start);
6366                         }
6367                 }
6368                 len = min_t(u64, em->len - offset, max_len);
6369         } else {
6370                 len = em->len - offset;
6371         }
6372
6373         io_geom->len = len;
6374         io_geom->offset = offset;
6375         io_geom->stripe_len = stripe_len;
6376         io_geom->stripe_nr = stripe_nr;
6377         io_geom->stripe_offset = stripe_offset;
6378         io_geom->raid56_stripe_offset = raid56_full_stripe_start;
6379
6380         return 0;
6381 }
6382
6383 static int __btrfs_map_block(struct btrfs_fs_info *fs_info,
6384                              enum btrfs_map_op op,
6385                              u64 logical, u64 *length,
6386                              struct btrfs_bio **bbio_ret,
6387                              int mirror_num, int need_raid_map)
6388 {
6389         struct extent_map *em;
6390         struct map_lookup *map;
6391         u64 stripe_offset;
6392         u64 stripe_nr;
6393         u64 stripe_len;
6394         u32 stripe_index;
6395         int data_stripes;
6396         int i;
6397         int ret = 0;
6398         int num_stripes;
6399         int max_errors = 0;
6400         int tgtdev_indexes = 0;
6401         struct btrfs_bio *bbio = NULL;
6402         struct btrfs_dev_replace *dev_replace = &fs_info->dev_replace;
6403         int dev_replace_is_ongoing = 0;
6404         int num_alloc_stripes;
6405         int patch_the_first_stripe_for_dev_replace = 0;
6406         u64 physical_to_patch_in_first_stripe = 0;
6407         u64 raid56_full_stripe_start = (u64)-1;
6408         struct btrfs_io_geometry geom;
6409
6410         ASSERT(bbio_ret);
6411         ASSERT(op != BTRFS_MAP_DISCARD);
6412
6413         em = btrfs_get_chunk_map(fs_info, logical, *length);
6414         ASSERT(!IS_ERR(em));
6415
6416         ret = btrfs_get_io_geometry(fs_info, em, op, logical, &geom);
6417         if (ret < 0)
6418                 return ret;
6419
6420         map = em->map_lookup;
6421
6422         *length = geom.len;
6423         stripe_len = geom.stripe_len;
6424         stripe_nr = geom.stripe_nr;
6425         stripe_offset = geom.stripe_offset;
6426         raid56_full_stripe_start = geom.raid56_stripe_offset;
6427         data_stripes = nr_data_stripes(map);
6428
6429         down_read(&dev_replace->rwsem);
6430         dev_replace_is_ongoing = btrfs_dev_replace_is_ongoing(dev_replace);
6431         /*
6432          * Hold the semaphore for read during the whole operation, write is
6433          * requested at commit time but must wait.
6434          */
6435         if (!dev_replace_is_ongoing)
6436                 up_read(&dev_replace->rwsem);
6437
6438         if (dev_replace_is_ongoing && mirror_num == map->num_stripes + 1 &&
6439             !need_full_stripe(op) && dev_replace->tgtdev != NULL) {
6440                 ret = get_extra_mirror_from_replace(fs_info, logical, *length,
6441                                                     dev_replace->srcdev->devid,
6442                                                     &mirror_num,
6443                                             &physical_to_patch_in_first_stripe);
6444                 if (ret)
6445                         goto out;
6446                 else
6447                         patch_the_first_stripe_for_dev_replace = 1;
6448         } else if (mirror_num > map->num_stripes) {
6449                 mirror_num = 0;
6450         }
6451
6452         num_stripes = 1;
6453         stripe_index = 0;
6454         if (map->type & BTRFS_BLOCK_GROUP_RAID0) {
6455                 stripe_nr = div_u64_rem(stripe_nr, map->num_stripes,
6456                                 &stripe_index);
6457                 if (!need_full_stripe(op))
6458                         mirror_num = 1;
6459         } else if (map->type & BTRFS_BLOCK_GROUP_RAID1_MASK) {
6460                 if (need_full_stripe(op))
6461                         num_stripes = map->num_stripes;
6462                 else if (mirror_num)
6463                         stripe_index = mirror_num - 1;
6464                 else {
6465                         stripe_index = find_live_mirror(fs_info, map, 0,
6466                                             dev_replace_is_ongoing);
6467                         mirror_num = stripe_index + 1;
6468                 }
6469
6470         } else if (map->type & BTRFS_BLOCK_GROUP_DUP) {
6471                 if (need_full_stripe(op)) {
6472                         num_stripes = map->num_stripes;
6473                 } else if (mirror_num) {
6474                         stripe_index = mirror_num - 1;
6475                 } else {
6476                         mirror_num = 1;
6477                 }
6478
6479         } else if (map->type & BTRFS_BLOCK_GROUP_RAID10) {
6480                 u32 factor = map->num_stripes / map->sub_stripes;
6481
6482                 stripe_nr = div_u64_rem(stripe_nr, factor, &stripe_index);
6483                 stripe_index *= map->sub_stripes;
6484
6485                 if (need_full_stripe(op))
6486                         num_stripes = map->sub_stripes;
6487                 else if (mirror_num)
6488                         stripe_index += mirror_num - 1;
6489                 else {
6490                         int old_stripe_index = stripe_index;
6491                         stripe_index = find_live_mirror(fs_info, map,
6492                                               stripe_index,
6493                                               dev_replace_is_ongoing);
6494                         mirror_num = stripe_index - old_stripe_index + 1;
6495                 }
6496
6497         } else if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
6498                 if (need_raid_map && (need_full_stripe(op) || mirror_num > 1)) {
6499                         /* push stripe_nr back to the start of the full stripe */
6500                         stripe_nr = div64_u64(raid56_full_stripe_start,
6501                                         stripe_len * data_stripes);
6502
6503                         /* RAID[56] write or recovery. Return all stripes */
6504                         num_stripes = map->num_stripes;
6505                         max_errors = nr_parity_stripes(map);
6506
6507                         *length = map->stripe_len;
6508                         stripe_index = 0;
6509                         stripe_offset = 0;
6510                 } else {
6511                         /*
6512                          * Mirror #0 or #1 means the original data block.
6513                          * Mirror #2 is RAID5 parity block.
6514                          * Mirror #3 is RAID6 Q block.
6515                          */
6516                         stripe_nr = div_u64_rem(stripe_nr,
6517                                         data_stripes, &stripe_index);
6518                         if (mirror_num > 1)
6519                                 stripe_index = data_stripes + mirror_num - 2;
6520
6521                         /* We distribute the parity blocks across stripes */
6522                         div_u64_rem(stripe_nr + stripe_index, map->num_stripes,
6523                                         &stripe_index);
6524                         if (!need_full_stripe(op) && mirror_num <= 1)
6525                                 mirror_num = 1;
6526                 }
6527         } else {
6528                 /*
6529                  * after this, stripe_nr is the number of stripes on this
6530                  * device we have to walk to find the data, and stripe_index is
6531                  * the number of our device in the stripe array
6532                  */
6533                 stripe_nr = div_u64_rem(stripe_nr, map->num_stripes,
6534                                 &stripe_index);
6535                 mirror_num = stripe_index + 1;
6536         }
6537         if (stripe_index >= map->num_stripes) {
6538                 btrfs_crit(fs_info,
6539                            "stripe index math went horribly wrong, got stripe_index=%u, num_stripes=%u",
6540                            stripe_index, map->num_stripes);
6541                 ret = -EINVAL;
6542                 goto out;
6543         }
6544
6545         num_alloc_stripes = num_stripes;
6546         if (dev_replace_is_ongoing && dev_replace->tgtdev != NULL) {
6547                 if (op == BTRFS_MAP_WRITE)
6548                         num_alloc_stripes <<= 1;
6549                 if (op == BTRFS_MAP_GET_READ_MIRRORS)
6550                         num_alloc_stripes++;
6551                 tgtdev_indexes = num_stripes;
6552         }
6553
6554         bbio = alloc_btrfs_bio(num_alloc_stripes, tgtdev_indexes);
6555         if (!bbio) {
6556                 ret = -ENOMEM;
6557                 goto out;
6558         }
6559
6560         for (i = 0; i < num_stripes; i++) {
6561                 bbio->stripes[i].physical = map->stripes[stripe_index].physical +
6562                         stripe_offset + stripe_nr * map->stripe_len;
6563                 bbio->stripes[i].dev = map->stripes[stripe_index].dev;
6564                 stripe_index++;
6565         }
6566
6567         /* build raid_map */
6568         if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK && need_raid_map &&
6569             (need_full_stripe(op) || mirror_num > 1)) {
6570                 u64 tmp;
6571                 unsigned rot;
6572
6573                 /* Work out the disk rotation on this stripe-set */
6574                 div_u64_rem(stripe_nr, num_stripes, &rot);
6575
6576                 /* Fill in the logical address of each stripe */
6577                 tmp = stripe_nr * data_stripes;
6578                 for (i = 0; i < data_stripes; i++)
6579                         bbio->raid_map[(i+rot) % num_stripes] =
6580                                 em->start + (tmp + i) * map->stripe_len;
6581
6582                 bbio->raid_map[(i+rot) % map->num_stripes] = RAID5_P_STRIPE;
6583                 if (map->type & BTRFS_BLOCK_GROUP_RAID6)
6584                         bbio->raid_map[(i+rot+1) % num_stripes] =
6585                                 RAID6_Q_STRIPE;
6586
6587                 sort_parity_stripes(bbio, num_stripes);
6588         }
6589
6590         if (need_full_stripe(op))
6591                 max_errors = btrfs_chunk_max_errors(map);
6592
6593         if (dev_replace_is_ongoing && dev_replace->tgtdev != NULL &&
6594             need_full_stripe(op)) {
6595                 handle_ops_on_dev_replace(op, &bbio, dev_replace, logical,
6596                                           &num_stripes, &max_errors);
6597         }
6598
6599         *bbio_ret = bbio;
6600         bbio->map_type = map->type;
6601         bbio->num_stripes = num_stripes;
6602         bbio->max_errors = max_errors;
6603         bbio->mirror_num = mirror_num;
6604
6605         /*
6606          * this is the case that REQ_READ && dev_replace_is_ongoing &&
6607          * mirror_num == num_stripes + 1 && dev_replace target drive is
6608          * available as a mirror
6609          */
6610         if (patch_the_first_stripe_for_dev_replace && num_stripes > 0) {
6611                 WARN_ON(num_stripes > 1);
6612                 bbio->stripes[0].dev = dev_replace->tgtdev;
6613                 bbio->stripes[0].physical = physical_to_patch_in_first_stripe;
6614                 bbio->mirror_num = map->num_stripes + 1;
6615         }
6616 out:
6617         if (dev_replace_is_ongoing) {
6618                 lockdep_assert_held(&dev_replace->rwsem);
6619                 /* Unlock and let waiting writers proceed */
6620                 up_read(&dev_replace->rwsem);
6621         }
6622         free_extent_map(em);
6623         return ret;
6624 }
6625
6626 int btrfs_map_block(struct btrfs_fs_info *fs_info, enum btrfs_map_op op,
6627                       u64 logical, u64 *length,
6628                       struct btrfs_bio **bbio_ret, int mirror_num)
6629 {
6630         if (op == BTRFS_MAP_DISCARD)
6631                 return __btrfs_map_block_for_discard(fs_info, logical,
6632                                                      length, bbio_ret);
6633
6634         return __btrfs_map_block(fs_info, op, logical, length, bbio_ret,
6635                                  mirror_num, 0);
6636 }
6637
6638 /* For Scrub/replace */
6639 int btrfs_map_sblock(struct btrfs_fs_info *fs_info, enum btrfs_map_op op,
6640                      u64 logical, u64 *length,
6641                      struct btrfs_bio **bbio_ret)
6642 {
6643         return __btrfs_map_block(fs_info, op, logical, length, bbio_ret, 0, 1);
6644 }
6645
6646 static inline void btrfs_end_bbio(struct btrfs_bio *bbio, struct bio *bio)
6647 {
6648         bio->bi_private = bbio->private;
6649         bio->bi_end_io = bbio->end_io;
6650         bio_endio(bio);
6651
6652         btrfs_put_bbio(bbio);
6653 }
6654
6655 static void btrfs_end_bio(struct bio *bio)
6656 {
6657         struct btrfs_bio *bbio = bio->bi_private;
6658         int is_orig_bio = 0;
6659
6660         if (bio->bi_status) {
6661                 atomic_inc(&bbio->error);
6662                 if (bio->bi_status == BLK_STS_IOERR ||
6663                     bio->bi_status == BLK_STS_TARGET) {
6664                         struct btrfs_device *dev = btrfs_io_bio(bio)->device;
6665
6666                         ASSERT(dev->bdev);
6667                         if (btrfs_op(bio) == BTRFS_MAP_WRITE)
6668                                 btrfs_dev_stat_inc_and_print(dev,
6669                                                 BTRFS_DEV_STAT_WRITE_ERRS);
6670                         else if (!(bio->bi_opf & REQ_RAHEAD))
6671                                 btrfs_dev_stat_inc_and_print(dev,
6672                                                 BTRFS_DEV_STAT_READ_ERRS);
6673                         if (bio->bi_opf & REQ_PREFLUSH)
6674                                 btrfs_dev_stat_inc_and_print(dev,
6675                                                 BTRFS_DEV_STAT_FLUSH_ERRS);
6676                 }
6677         }
6678
6679         if (bio == bbio->orig_bio)
6680                 is_orig_bio = 1;
6681
6682         btrfs_bio_counter_dec(bbio->fs_info);
6683
6684         if (atomic_dec_and_test(&bbio->stripes_pending)) {
6685                 if (!is_orig_bio) {
6686                         bio_put(bio);
6687                         bio = bbio->orig_bio;
6688                 }
6689
6690                 btrfs_io_bio(bio)->mirror_num = bbio->mirror_num;
6691                 /* only send an error to the higher layers if it is
6692                  * beyond the tolerance of the btrfs bio
6693                  */
6694                 if (atomic_read(&bbio->error) > bbio->max_errors) {
6695                         bio->bi_status = BLK_STS_IOERR;
6696                 } else {
6697                         /*
6698                          * this bio is actually up to date, we didn't
6699                          * go over the max number of errors
6700                          */
6701                         bio->bi_status = BLK_STS_OK;
6702                 }
6703
6704                 btrfs_end_bbio(bbio, bio);
6705         } else if (!is_orig_bio) {
6706                 bio_put(bio);
6707         }
6708 }
6709
6710 static void submit_stripe_bio(struct btrfs_bio *bbio, struct bio *bio,
6711                               u64 physical, struct btrfs_device *dev)
6712 {
6713         struct btrfs_fs_info *fs_info = bbio->fs_info;
6714
6715         bio->bi_private = bbio;
6716         btrfs_io_bio(bio)->device = dev;
6717         bio->bi_end_io = btrfs_end_bio;
6718         bio->bi_iter.bi_sector = physical >> 9;
6719         /*
6720          * For zone append writing, bi_sector must point the beginning of the
6721          * zone
6722          */
6723         if (bio_op(bio) == REQ_OP_ZONE_APPEND) {
6724                 if (btrfs_dev_is_sequential(dev, physical)) {
6725                         u64 zone_start = round_down(physical, fs_info->zone_size);
6726
6727                         bio->bi_iter.bi_sector = zone_start >> SECTOR_SHIFT;
6728                 } else {
6729                         bio->bi_opf &= ~REQ_OP_ZONE_APPEND;
6730                         bio->bi_opf |= REQ_OP_WRITE;
6731                 }
6732         }
6733         btrfs_debug_in_rcu(fs_info,
6734         "btrfs_map_bio: rw %d 0x%x, sector=%llu, dev=%lu (%s id %llu), size=%u",
6735                 bio_op(bio), bio->bi_opf, bio->bi_iter.bi_sector,
6736                 (unsigned long)dev->bdev->bd_dev, rcu_str_deref(dev->name),
6737                 dev->devid, bio->bi_iter.bi_size);
6738         bio_set_dev(bio, dev->bdev);
6739
6740         btrfs_bio_counter_inc_noblocked(fs_info);
6741
6742         btrfsic_submit_bio(bio);
6743 }
6744
6745 static void bbio_error(struct btrfs_bio *bbio, struct bio *bio, u64 logical)
6746 {
6747         atomic_inc(&bbio->error);
6748         if (atomic_dec_and_test(&bbio->stripes_pending)) {
6749                 /* Should be the original bio. */
6750                 WARN_ON(bio != bbio->orig_bio);
6751
6752                 btrfs_io_bio(bio)->mirror_num = bbio->mirror_num;
6753                 bio->bi_iter.bi_sector = logical >> 9;
6754                 if (atomic_read(&bbio->error) > bbio->max_errors)
6755                         bio->bi_status = BLK_STS_IOERR;
6756                 else
6757                         bio->bi_status = BLK_STS_OK;
6758                 btrfs_end_bbio(bbio, bio);
6759         }
6760 }
6761
6762 blk_status_t btrfs_map_bio(struct btrfs_fs_info *fs_info, struct bio *bio,
6763                            int mirror_num)
6764 {
6765         struct btrfs_device *dev;
6766         struct bio *first_bio = bio;
6767         u64 logical = bio->bi_iter.bi_sector << 9;
6768         u64 length = 0;
6769         u64 map_length;
6770         int ret;
6771         int dev_nr;
6772         int total_devs;
6773         struct btrfs_bio *bbio = NULL;
6774
6775         length = bio->bi_iter.bi_size;
6776         map_length = length;
6777
6778         btrfs_bio_counter_inc_blocked(fs_info);
6779         ret = __btrfs_map_block(fs_info, btrfs_op(bio), logical,
6780                                 &map_length, &bbio, mirror_num, 1);
6781         if (ret) {
6782                 btrfs_bio_counter_dec(fs_info);
6783                 return errno_to_blk_status(ret);
6784         }
6785
6786         total_devs = bbio->num_stripes;
6787         bbio->orig_bio = first_bio;
6788         bbio->private = first_bio->bi_private;
6789         bbio->end_io = first_bio->bi_end_io;
6790         bbio->fs_info = fs_info;
6791         atomic_set(&bbio->stripes_pending, bbio->num_stripes);
6792
6793         if ((bbio->map_type & BTRFS_BLOCK_GROUP_RAID56_MASK) &&
6794             ((btrfs_op(bio) == BTRFS_MAP_WRITE) || (mirror_num > 1))) {
6795                 /* In this case, map_length has been set to the length of
6796                    a single stripe; not the whole write */
6797                 if (btrfs_op(bio) == BTRFS_MAP_WRITE) {
6798                         ret = raid56_parity_write(fs_info, bio, bbio,
6799                                                   map_length);
6800                 } else {
6801                         ret = raid56_parity_recover(fs_info, bio, bbio,
6802                                                     map_length, mirror_num, 1);
6803                 }
6804
6805                 btrfs_bio_counter_dec(fs_info);
6806                 return errno_to_blk_status(ret);
6807         }
6808
6809         if (map_length < length) {
6810                 btrfs_crit(fs_info,
6811                            "mapping failed logical %llu bio len %llu len %llu",
6812                            logical, length, map_length);
6813                 BUG();
6814         }
6815
6816         for (dev_nr = 0; dev_nr < total_devs; dev_nr++) {
6817                 dev = bbio->stripes[dev_nr].dev;
6818                 if (!dev || !dev->bdev || test_bit(BTRFS_DEV_STATE_MISSING,
6819                                                    &dev->dev_state) ||
6820                     (btrfs_op(first_bio) == BTRFS_MAP_WRITE &&
6821                     !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))) {
6822                         bbio_error(bbio, first_bio, logical);
6823                         continue;
6824                 }
6825
6826                 if (dev_nr < total_devs - 1)
6827                         bio = btrfs_bio_clone(first_bio);
6828                 else
6829                         bio = first_bio;
6830
6831                 submit_stripe_bio(bbio, bio, bbio->stripes[dev_nr].physical, dev);
6832         }
6833         btrfs_bio_counter_dec(fs_info);
6834         return BLK_STS_OK;
6835 }
6836
6837 /*
6838  * Find a device specified by @devid or @uuid in the list of @fs_devices, or
6839  * return NULL.
6840  *
6841  * If devid and uuid are both specified, the match must be exact, otherwise
6842  * only devid is used.
6843  */
6844 struct btrfs_device *btrfs_find_device(struct btrfs_fs_devices *fs_devices,
6845                                        u64 devid, u8 *uuid, u8 *fsid)
6846 {
6847         struct btrfs_device *device;
6848         struct btrfs_fs_devices *seed_devs;
6849
6850         if (!fsid || !memcmp(fs_devices->metadata_uuid, fsid, BTRFS_FSID_SIZE)) {
6851                 list_for_each_entry(device, &fs_devices->devices, dev_list) {
6852                         if (device->devid == devid &&
6853                             (!uuid || memcmp(device->uuid, uuid,
6854                                              BTRFS_UUID_SIZE) == 0))
6855                                 return device;
6856                 }
6857         }
6858
6859         list_for_each_entry(seed_devs, &fs_devices->seed_list, seed_list) {
6860                 if (!fsid ||
6861                     !memcmp(seed_devs->metadata_uuid, fsid, BTRFS_FSID_SIZE)) {
6862                         list_for_each_entry(device, &seed_devs->devices,
6863                                             dev_list) {
6864                                 if (device->devid == devid &&
6865                                     (!uuid || memcmp(device->uuid, uuid,
6866                                                      BTRFS_UUID_SIZE) == 0))
6867                                         return device;
6868                         }
6869                 }
6870         }
6871
6872         return NULL;
6873 }
6874
6875 static struct btrfs_device *add_missing_dev(struct btrfs_fs_devices *fs_devices,
6876                                             u64 devid, u8 *dev_uuid)
6877 {
6878         struct btrfs_device *device;
6879         unsigned int nofs_flag;
6880
6881         /*
6882          * We call this under the chunk_mutex, so we want to use NOFS for this
6883          * allocation, however we don't want to change btrfs_alloc_device() to
6884          * always do NOFS because we use it in a lot of other GFP_KERNEL safe
6885          * places.
6886          */
6887         nofs_flag = memalloc_nofs_save();
6888         device = btrfs_alloc_device(NULL, &devid, dev_uuid);
6889         memalloc_nofs_restore(nofs_flag);
6890         if (IS_ERR(device))
6891                 return device;
6892
6893         list_add(&device->dev_list, &fs_devices->devices);
6894         device->fs_devices = fs_devices;
6895         fs_devices->num_devices++;
6896
6897         set_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state);
6898         fs_devices->missing_devices++;
6899
6900         return device;
6901 }
6902
6903 /**
6904  * btrfs_alloc_device - allocate struct btrfs_device
6905  * @fs_info:    used only for generating a new devid, can be NULL if
6906  *              devid is provided (i.e. @devid != NULL).
6907  * @devid:      a pointer to devid for this device.  If NULL a new devid
6908  *              is generated.
6909  * @uuid:       a pointer to UUID for this device.  If NULL a new UUID
6910  *              is generated.
6911  *
6912  * Return: a pointer to a new &struct btrfs_device on success; ERR_PTR()
6913  * on error.  Returned struct is not linked onto any lists and must be
6914  * destroyed with btrfs_free_device.
6915  */
6916 struct btrfs_device *btrfs_alloc_device(struct btrfs_fs_info *fs_info,
6917                                         const u64 *devid,
6918                                         const u8 *uuid)
6919 {
6920         struct btrfs_device *dev;
6921         u64 tmp;
6922
6923         if (WARN_ON(!devid && !fs_info))
6924                 return ERR_PTR(-EINVAL);
6925
6926         dev = __alloc_device(fs_info);
6927         if (IS_ERR(dev))
6928                 return dev;
6929
6930         if (devid)
6931                 tmp = *devid;
6932         else {
6933                 int ret;
6934
6935                 ret = find_next_devid(fs_info, &tmp);
6936                 if (ret) {
6937                         btrfs_free_device(dev);
6938                         return ERR_PTR(ret);
6939                 }
6940         }
6941         dev->devid = tmp;
6942
6943         if (uuid)
6944                 memcpy(dev->uuid, uuid, BTRFS_UUID_SIZE);
6945         else
6946                 generate_random_uuid(dev->uuid);
6947
6948         return dev;
6949 }
6950
6951 static void btrfs_report_missing_device(struct btrfs_fs_info *fs_info,
6952                                         u64 devid, u8 *uuid, bool error)
6953 {
6954         if (error)
6955                 btrfs_err_rl(fs_info, "devid %llu uuid %pU is missing",
6956                               devid, uuid);
6957         else
6958                 btrfs_warn_rl(fs_info, "devid %llu uuid %pU is missing",
6959                               devid, uuid);
6960 }
6961
6962 static u64 calc_stripe_length(u64 type, u64 chunk_len, int num_stripes)
6963 {
6964         int index = btrfs_bg_flags_to_raid_index(type);
6965         int ncopies = btrfs_raid_array[index].ncopies;
6966         const int nparity = btrfs_raid_array[index].nparity;
6967         int data_stripes;
6968
6969         if (nparity)
6970                 data_stripes = num_stripes - nparity;
6971         else
6972                 data_stripes = num_stripes / ncopies;
6973
6974         return div_u64(chunk_len, data_stripes);
6975 }
6976
6977 #if BITS_PER_LONG == 32
6978 /*
6979  * Due to page cache limit, metadata beyond BTRFS_32BIT_MAX_FILE_SIZE
6980  * can't be accessed on 32bit systems.
6981  *
6982  * This function do mount time check to reject the fs if it already has
6983  * metadata chunk beyond that limit.
6984  */
6985 static int check_32bit_meta_chunk(struct btrfs_fs_info *fs_info,
6986                                   u64 logical, u64 length, u64 type)
6987 {
6988         if (!(type & BTRFS_BLOCK_GROUP_METADATA))
6989                 return 0;
6990
6991         if (logical + length < MAX_LFS_FILESIZE)
6992                 return 0;
6993
6994         btrfs_err_32bit_limit(fs_info);
6995         return -EOVERFLOW;
6996 }
6997
6998 /*
6999  * This is to give early warning for any metadata chunk reaching
7000  * BTRFS_32BIT_EARLY_WARN_THRESHOLD.
7001  * Although we can still access the metadata, it's not going to be possible
7002  * once the limit is reached.
7003  */
7004 static void warn_32bit_meta_chunk(struct btrfs_fs_info *fs_info,
7005                                   u64 logical, u64 length, u64 type)
7006 {
7007         if (!(type & BTRFS_BLOCK_GROUP_METADATA))
7008                 return;
7009
7010         if (logical + length < BTRFS_32BIT_EARLY_WARN_THRESHOLD)
7011                 return;
7012
7013         btrfs_warn_32bit_limit(fs_info);
7014 }
7015 #endif
7016
7017 static int read_one_chunk(struct btrfs_key *key, struct extent_buffer *leaf,
7018                           struct btrfs_chunk *chunk)
7019 {
7020         struct btrfs_fs_info *fs_info = leaf->fs_info;
7021         struct extent_map_tree *map_tree = &fs_info->mapping_tree;
7022         struct map_lookup *map;
7023         struct extent_map *em;
7024         u64 logical;
7025         u64 length;
7026         u64 devid;
7027         u64 type;
7028         u8 uuid[BTRFS_UUID_SIZE];
7029         int num_stripes;
7030         int ret;
7031         int i;
7032
7033         logical = key->offset;
7034         length = btrfs_chunk_length(leaf, chunk);
7035         type = btrfs_chunk_type(leaf, chunk);
7036         num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
7037
7038 #if BITS_PER_LONG == 32
7039         ret = check_32bit_meta_chunk(fs_info, logical, length, type);
7040         if (ret < 0)
7041                 return ret;
7042         warn_32bit_meta_chunk(fs_info, logical, length, type);
7043 #endif
7044
7045         /*
7046          * Only need to verify chunk item if we're reading from sys chunk array,
7047          * as chunk item in tree block is already verified by tree-checker.
7048          */
7049         if (leaf->start == BTRFS_SUPER_INFO_OFFSET) {
7050                 ret = btrfs_check_chunk_valid(leaf, chunk, logical);
7051                 if (ret)
7052                         return ret;
7053         }
7054
7055         read_lock(&map_tree->lock);
7056         em = lookup_extent_mapping(map_tree, logical, 1);
7057         read_unlock(&map_tree->lock);
7058
7059         /* already mapped? */
7060         if (em && em->start <= logical && em->start + em->len > logical) {
7061                 free_extent_map(em);
7062                 return 0;
7063         } else if (em) {
7064                 free_extent_map(em);
7065         }
7066
7067         em = alloc_extent_map();
7068         if (!em)
7069                 return -ENOMEM;
7070         map = kmalloc(map_lookup_size(num_stripes), GFP_NOFS);
7071         if (!map) {
7072                 free_extent_map(em);
7073                 return -ENOMEM;
7074         }
7075
7076         set_bit(EXTENT_FLAG_FS_MAPPING, &em->flags);
7077         em->map_lookup = map;
7078         em->start = logical;
7079         em->len = length;
7080         em->orig_start = 0;
7081         em->block_start = 0;
7082         em->block_len = em->len;
7083
7084         map->num_stripes = num_stripes;
7085         map->io_width = btrfs_chunk_io_width(leaf, chunk);
7086         map->io_align = btrfs_chunk_io_align(leaf, chunk);
7087         map->stripe_len = btrfs_chunk_stripe_len(leaf, chunk);
7088         map->type = type;
7089         map->sub_stripes = btrfs_chunk_sub_stripes(leaf, chunk);
7090         map->verified_stripes = 0;
7091         em->orig_block_len = calc_stripe_length(type, em->len,
7092                                                 map->num_stripes);
7093         for (i = 0; i < num_stripes; i++) {
7094                 map->stripes[i].physical =
7095                         btrfs_stripe_offset_nr(leaf, chunk, i);
7096                 devid = btrfs_stripe_devid_nr(leaf, chunk, i);
7097                 read_extent_buffer(leaf, uuid, (unsigned long)
7098                                    btrfs_stripe_dev_uuid_nr(chunk, i),
7099                                    BTRFS_UUID_SIZE);
7100                 map->stripes[i].dev = btrfs_find_device(fs_info->fs_devices,
7101                                                         devid, uuid, NULL);
7102                 if (!map->stripes[i].dev &&
7103                     !btrfs_test_opt(fs_info, DEGRADED)) {
7104                         free_extent_map(em);
7105                         btrfs_report_missing_device(fs_info, devid, uuid, true);
7106                         return -ENOENT;
7107                 }
7108                 if (!map->stripes[i].dev) {
7109                         map->stripes[i].dev =
7110                                 add_missing_dev(fs_info->fs_devices, devid,
7111                                                 uuid);
7112                         if (IS_ERR(map->stripes[i].dev)) {
7113                                 free_extent_map(em);
7114                                 btrfs_err(fs_info,
7115                                         "failed to init missing dev %llu: %ld",
7116                                         devid, PTR_ERR(map->stripes[i].dev));
7117                                 return PTR_ERR(map->stripes[i].dev);
7118                         }
7119                         btrfs_report_missing_device(fs_info, devid, uuid, false);
7120                 }
7121                 set_bit(BTRFS_DEV_STATE_IN_FS_METADATA,
7122                                 &(map->stripes[i].dev->dev_state));
7123
7124         }
7125
7126         write_lock(&map_tree->lock);
7127         ret = add_extent_mapping(map_tree, em, 0);
7128         write_unlock(&map_tree->lock);
7129         if (ret < 0) {
7130                 btrfs_err(fs_info,
7131                           "failed to add chunk map, start=%llu len=%llu: %d",
7132                           em->start, em->len, ret);
7133         }
7134         free_extent_map(em);
7135
7136         return ret;
7137 }
7138
7139 static void fill_device_from_item(struct extent_buffer *leaf,
7140                                  struct btrfs_dev_item *dev_item,
7141                                  struct btrfs_device *device)
7142 {
7143         unsigned long ptr;
7144
7145         device->devid = btrfs_device_id(leaf, dev_item);
7146         device->disk_total_bytes = btrfs_device_total_bytes(leaf, dev_item);
7147         device->total_bytes = device->disk_total_bytes;
7148         device->commit_total_bytes = device->disk_total_bytes;
7149         device->bytes_used = btrfs_device_bytes_used(leaf, dev_item);
7150         device->commit_bytes_used = device->bytes_used;
7151         device->type = btrfs_device_type(leaf, dev_item);
7152         device->io_align = btrfs_device_io_align(leaf, dev_item);
7153         device->io_width = btrfs_device_io_width(leaf, dev_item);
7154         device->sector_size = btrfs_device_sector_size(leaf, dev_item);
7155         WARN_ON(device->devid == BTRFS_DEV_REPLACE_DEVID);
7156         clear_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state);
7157
7158         ptr = btrfs_device_uuid(dev_item);
7159         read_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE);
7160 }
7161
7162 static struct btrfs_fs_devices *open_seed_devices(struct btrfs_fs_info *fs_info,
7163                                                   u8 *fsid)
7164 {
7165         struct btrfs_fs_devices *fs_devices;
7166         int ret;
7167
7168         lockdep_assert_held(&uuid_mutex);
7169         ASSERT(fsid);
7170
7171         /* This will match only for multi-device seed fs */
7172         list_for_each_entry(fs_devices, &fs_info->fs_devices->seed_list, seed_list)
7173                 if (!memcmp(fs_devices->fsid, fsid, BTRFS_FSID_SIZE))
7174                         return fs_devices;
7175
7176
7177         fs_devices = find_fsid(fsid, NULL);
7178         if (!fs_devices) {
7179                 if (!btrfs_test_opt(fs_info, DEGRADED))
7180                         return ERR_PTR(-ENOENT);
7181
7182                 fs_devices = alloc_fs_devices(fsid, NULL);
7183                 if (IS_ERR(fs_devices))
7184                         return fs_devices;
7185
7186                 fs_devices->seeding = true;
7187                 fs_devices->opened = 1;
7188                 return fs_devices;
7189         }
7190
7191         /*
7192          * Upon first call for a seed fs fsid, just create a private copy of the
7193          * respective fs_devices and anchor it at fs_info->fs_devices->seed_list
7194          */
7195         fs_devices = clone_fs_devices(fs_devices);
7196         if (IS_ERR(fs_devices))
7197                 return fs_devices;
7198
7199         ret = open_fs_devices(fs_devices, FMODE_READ, fs_info->bdev_holder);
7200         if (ret) {
7201                 free_fs_devices(fs_devices);
7202                 return ERR_PTR(ret);
7203         }
7204
7205         if (!fs_devices->seeding) {
7206                 close_fs_devices(fs_devices);
7207                 free_fs_devices(fs_devices);
7208                 return ERR_PTR(-EINVAL);
7209         }
7210
7211         list_add(&fs_devices->seed_list, &fs_info->fs_devices->seed_list);
7212
7213         return fs_devices;
7214 }
7215
7216 static int read_one_dev(struct extent_buffer *leaf,
7217                         struct btrfs_dev_item *dev_item)
7218 {
7219         struct btrfs_fs_info *fs_info = leaf->fs_info;
7220         struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
7221         struct btrfs_device *device;
7222         u64 devid;
7223         int ret;
7224         u8 fs_uuid[BTRFS_FSID_SIZE];
7225         u8 dev_uuid[BTRFS_UUID_SIZE];
7226
7227         devid = btrfs_device_id(leaf, dev_item);
7228         read_extent_buffer(leaf, dev_uuid, btrfs_device_uuid(dev_item),
7229                            BTRFS_UUID_SIZE);
7230         read_extent_buffer(leaf, fs_uuid, btrfs_device_fsid(dev_item),
7231                            BTRFS_FSID_SIZE);
7232
7233         if (memcmp(fs_uuid, fs_devices->metadata_uuid, BTRFS_FSID_SIZE)) {
7234                 fs_devices = open_seed_devices(fs_info, fs_uuid);
7235                 if (IS_ERR(fs_devices))
7236                         return PTR_ERR(fs_devices);
7237         }
7238
7239         device = btrfs_find_device(fs_info->fs_devices, devid, dev_uuid,
7240                                    fs_uuid);
7241         if (!device) {
7242                 if (!btrfs_test_opt(fs_info, DEGRADED)) {
7243                         btrfs_report_missing_device(fs_info, devid,
7244                                                         dev_uuid, true);
7245                         return -ENOENT;
7246                 }
7247
7248                 device = add_missing_dev(fs_devices, devid, dev_uuid);
7249                 if (IS_ERR(device)) {
7250                         btrfs_err(fs_info,
7251                                 "failed to add missing dev %llu: %ld",
7252                                 devid, PTR_ERR(device));
7253                         return PTR_ERR(device);
7254                 }
7255                 btrfs_report_missing_device(fs_info, devid, dev_uuid, false);
7256         } else {
7257                 if (!device->bdev) {
7258                         if (!btrfs_test_opt(fs_info, DEGRADED)) {
7259                                 btrfs_report_missing_device(fs_info,
7260                                                 devid, dev_uuid, true);
7261                                 return -ENOENT;
7262                         }
7263                         btrfs_report_missing_device(fs_info, devid,
7264                                                         dev_uuid, false);
7265                 }
7266
7267                 if (!device->bdev &&
7268                     !test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state)) {
7269                         /*
7270                          * this happens when a device that was properly setup
7271                          * in the device info lists suddenly goes bad.
7272                          * device->bdev is NULL, and so we have to set
7273                          * device->missing to one here
7274                          */
7275                         device->fs_devices->missing_devices++;
7276                         set_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state);
7277                 }
7278
7279                 /* Move the device to its own fs_devices */
7280                 if (device->fs_devices != fs_devices) {
7281                         ASSERT(test_bit(BTRFS_DEV_STATE_MISSING,
7282                                                         &device->dev_state));
7283
7284                         list_move(&device->dev_list, &fs_devices->devices);
7285                         device->fs_devices->num_devices--;
7286                         fs_devices->num_devices++;
7287
7288                         device->fs_devices->missing_devices--;
7289                         fs_devices->missing_devices++;
7290
7291                         device->fs_devices = fs_devices;
7292                 }
7293         }
7294
7295         if (device->fs_devices != fs_info->fs_devices) {
7296                 BUG_ON(test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state));
7297                 if (device->generation !=
7298                     btrfs_device_generation(leaf, dev_item))
7299                         return -EINVAL;
7300         }
7301
7302         fill_device_from_item(leaf, dev_item, device);
7303         if (device->bdev) {
7304                 u64 max_total_bytes = i_size_read(device->bdev->bd_inode);
7305
7306                 if (device->total_bytes > max_total_bytes) {
7307                         btrfs_err(fs_info,
7308                         "device total_bytes should be at most %llu but found %llu",
7309                                   max_total_bytes, device->total_bytes);
7310                         return -EINVAL;
7311                 }
7312         }
7313         set_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state);
7314         if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) &&
7315            !test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) {
7316                 device->fs_devices->total_rw_bytes += device->total_bytes;
7317                 atomic64_add(device->total_bytes - device->bytes_used,
7318                                 &fs_info->free_chunk_space);
7319         }
7320         ret = 0;
7321         return ret;
7322 }
7323
7324 int btrfs_read_sys_array(struct btrfs_fs_info *fs_info)
7325 {
7326         struct btrfs_root *root = fs_info->tree_root;
7327         struct btrfs_super_block *super_copy = fs_info->super_copy;
7328         struct extent_buffer *sb;
7329         struct btrfs_disk_key *disk_key;
7330         struct btrfs_chunk *chunk;
7331         u8 *array_ptr;
7332         unsigned long sb_array_offset;
7333         int ret = 0;
7334         u32 num_stripes;
7335         u32 array_size;
7336         u32 len = 0;
7337         u32 cur_offset;
7338         u64 type;
7339         struct btrfs_key key;
7340
7341         ASSERT(BTRFS_SUPER_INFO_SIZE <= fs_info->nodesize);
7342         /*
7343          * This will create extent buffer of nodesize, superblock size is
7344          * fixed to BTRFS_SUPER_INFO_SIZE. If nodesize > sb size, this will
7345          * overallocate but we can keep it as-is, only the first page is used.
7346          */
7347         sb = btrfs_find_create_tree_block(fs_info, BTRFS_SUPER_INFO_OFFSET,
7348                                           root->root_key.objectid, 0);
7349         if (IS_ERR(sb))
7350                 return PTR_ERR(sb);
7351         set_extent_buffer_uptodate(sb);
7352         /*
7353          * The sb extent buffer is artificial and just used to read the system array.
7354          * set_extent_buffer_uptodate() call does not properly mark all it's
7355          * pages up-to-date when the page is larger: extent does not cover the
7356          * whole page and consequently check_page_uptodate does not find all
7357          * the page's extents up-to-date (the hole beyond sb),
7358          * write_extent_buffer then triggers a WARN_ON.
7359          *
7360          * Regular short extents go through mark_extent_buffer_dirty/writeback cycle,
7361          * but sb spans only this function. Add an explicit SetPageUptodate call
7362          * to silence the warning eg. on PowerPC 64.
7363          */
7364         if (PAGE_SIZE > BTRFS_SUPER_INFO_SIZE)
7365                 SetPageUptodate(sb->pages[0]);
7366
7367         write_extent_buffer(sb, super_copy, 0, BTRFS_SUPER_INFO_SIZE);
7368         array_size = btrfs_super_sys_array_size(super_copy);
7369
7370         array_ptr = super_copy->sys_chunk_array;
7371         sb_array_offset = offsetof(struct btrfs_super_block, sys_chunk_array);
7372         cur_offset = 0;
7373
7374         while (cur_offset < array_size) {
7375                 disk_key = (struct btrfs_disk_key *)array_ptr;
7376                 len = sizeof(*disk_key);
7377                 if (cur_offset + len > array_size)
7378                         goto out_short_read;
7379
7380                 btrfs_disk_key_to_cpu(&key, disk_key);
7381
7382                 array_ptr += len;
7383                 sb_array_offset += len;
7384                 cur_offset += len;
7385
7386                 if (key.type != BTRFS_CHUNK_ITEM_KEY) {
7387                         btrfs_err(fs_info,
7388                             "unexpected item type %u in sys_array at offset %u",
7389                                   (u32)key.type, cur_offset);
7390                         ret = -EIO;
7391                         break;
7392                 }
7393
7394                 chunk = (struct btrfs_chunk *)sb_array_offset;
7395                 /*
7396                  * At least one btrfs_chunk with one stripe must be present,
7397                  * exact stripe count check comes afterwards
7398                  */
7399                 len = btrfs_chunk_item_size(1);
7400                 if (cur_offset + len > array_size)
7401                         goto out_short_read;
7402
7403                 num_stripes = btrfs_chunk_num_stripes(sb, chunk);
7404                 if (!num_stripes) {
7405                         btrfs_err(fs_info,
7406                         "invalid number of stripes %u in sys_array at offset %u",
7407                                   num_stripes, cur_offset);
7408                         ret = -EIO;
7409                         break;
7410                 }
7411
7412                 type = btrfs_chunk_type(sb, chunk);
7413                 if ((type & BTRFS_BLOCK_GROUP_SYSTEM) == 0) {
7414                         btrfs_err(fs_info,
7415                         "invalid chunk type %llu in sys_array at offset %u",
7416                                   type, cur_offset);
7417                         ret = -EIO;
7418                         break;
7419                 }
7420
7421                 len = btrfs_chunk_item_size(num_stripes);
7422                 if (cur_offset + len > array_size)
7423                         goto out_short_read;
7424
7425                 ret = read_one_chunk(&key, sb, chunk);
7426                 if (ret)
7427                         break;
7428
7429                 array_ptr += len;
7430                 sb_array_offset += len;
7431                 cur_offset += len;
7432         }
7433         clear_extent_buffer_uptodate(sb);
7434         free_extent_buffer_stale(sb);
7435         return ret;
7436
7437 out_short_read:
7438         btrfs_err(fs_info, "sys_array too short to read %u bytes at offset %u",
7439                         len, cur_offset);
7440         clear_extent_buffer_uptodate(sb);
7441         free_extent_buffer_stale(sb);
7442         return -EIO;
7443 }
7444
7445 /*
7446  * Check if all chunks in the fs are OK for read-write degraded mount
7447  *
7448  * If the @failing_dev is specified, it's accounted as missing.
7449  *
7450  * Return true if all chunks meet the minimal RW mount requirements.
7451  * Return false if any chunk doesn't meet the minimal RW mount requirements.
7452  */
7453 bool btrfs_check_rw_degradable(struct btrfs_fs_info *fs_info,
7454                                         struct btrfs_device *failing_dev)
7455 {
7456         struct extent_map_tree *map_tree = &fs_info->mapping_tree;
7457         struct extent_map *em;
7458         u64 next_start = 0;
7459         bool ret = true;
7460
7461         read_lock(&map_tree->lock);
7462         em = lookup_extent_mapping(map_tree, 0, (u64)-1);
7463         read_unlock(&map_tree->lock);
7464         /* No chunk at all? Return false anyway */
7465         if (!em) {
7466                 ret = false;
7467                 goto out;
7468         }
7469         while (em) {
7470                 struct map_lookup *map;
7471                 int missing = 0;
7472                 int max_tolerated;
7473                 int i;
7474
7475                 map = em->map_lookup;
7476                 max_tolerated =
7477                         btrfs_get_num_tolerated_disk_barrier_failures(
7478                                         map->type);
7479                 for (i = 0; i < map->num_stripes; i++) {
7480                         struct btrfs_device *dev = map->stripes[i].dev;
7481
7482                         if (!dev || !dev->bdev ||
7483                             test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state) ||
7484                             dev->last_flush_error)
7485                                 missing++;
7486                         else if (failing_dev && failing_dev == dev)
7487                                 missing++;
7488                 }
7489                 if (missing > max_tolerated) {
7490                         if (!failing_dev)
7491                                 btrfs_warn(fs_info,
7492         "chunk %llu missing %d devices, max tolerance is %d for writable mount",
7493                                    em->start, missing, max_tolerated);
7494                         free_extent_map(em);
7495                         ret = false;
7496                         goto out;
7497                 }
7498                 next_start = extent_map_end(em);
7499                 free_extent_map(em);
7500
7501                 read_lock(&map_tree->lock);
7502                 em = lookup_extent_mapping(map_tree, next_start,
7503                                            (u64)(-1) - next_start);
7504                 read_unlock(&map_tree->lock);
7505         }
7506 out:
7507         return ret;
7508 }
7509
7510 static void readahead_tree_node_children(struct extent_buffer *node)
7511 {
7512         int i;
7513         const int nr_items = btrfs_header_nritems(node);
7514
7515         for (i = 0; i < nr_items; i++)
7516                 btrfs_readahead_node_child(node, i);
7517 }
7518
7519 int btrfs_read_chunk_tree(struct btrfs_fs_info *fs_info)
7520 {
7521         struct btrfs_root *root = fs_info->chunk_root;
7522         struct btrfs_path *path;
7523         struct extent_buffer *leaf;
7524         struct btrfs_key key;
7525         struct btrfs_key found_key;
7526         int ret;
7527         int slot;
7528         u64 total_dev = 0;
7529         u64 last_ra_node = 0;
7530
7531         path = btrfs_alloc_path();
7532         if (!path)
7533                 return -ENOMEM;
7534
7535         /*
7536          * uuid_mutex is needed only if we are mounting a sprout FS
7537          * otherwise we don't need it.
7538          */
7539         mutex_lock(&uuid_mutex);
7540
7541         /*
7542          * It is possible for mount and umount to race in such a way that
7543          * we execute this code path, but open_fs_devices failed to clear
7544          * total_rw_bytes. We certainly want it cleared before reading the
7545          * device items, so clear it here.
7546          */
7547         fs_info->fs_devices->total_rw_bytes = 0;
7548
7549         /*
7550          * Read all device items, and then all the chunk items. All
7551          * device items are found before any chunk item (their object id
7552          * is smaller than the lowest possible object id for a chunk
7553          * item - BTRFS_FIRST_CHUNK_TREE_OBJECTID).
7554          */
7555         key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
7556         key.offset = 0;
7557         key.type = 0;
7558         ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
7559         if (ret < 0)
7560                 goto error;
7561         while (1) {
7562                 struct extent_buffer *node;
7563
7564                 leaf = path->nodes[0];
7565                 slot = path->slots[0];
7566                 if (slot >= btrfs_header_nritems(leaf)) {
7567                         ret = btrfs_next_leaf(root, path);
7568                         if (ret == 0)
7569                                 continue;
7570                         if (ret < 0)
7571                                 goto error;
7572                         break;
7573                 }
7574                 /*
7575                  * The nodes on level 1 are not locked but we don't need to do
7576                  * that during mount time as nothing else can access the tree
7577                  */
7578                 node = path->nodes[1];
7579                 if (node) {
7580                         if (last_ra_node != node->start) {
7581                                 readahead_tree_node_children(node);
7582                                 last_ra_node = node->start;
7583                         }
7584                 }
7585                 btrfs_item_key_to_cpu(leaf, &found_key, slot);
7586                 if (found_key.type == BTRFS_DEV_ITEM_KEY) {
7587                         struct btrfs_dev_item *dev_item;
7588                         dev_item = btrfs_item_ptr(leaf, slot,
7589                                                   struct btrfs_dev_item);
7590                         ret = read_one_dev(leaf, dev_item);
7591                         if (ret)
7592                                 goto error;
7593                         total_dev++;
7594                 } else if (found_key.type == BTRFS_CHUNK_ITEM_KEY) {
7595                         struct btrfs_chunk *chunk;
7596
7597                         /*
7598                          * We are only called at mount time, so no need to take
7599                          * fs_info->chunk_mutex. Plus, to avoid lockdep warnings,
7600                          * we always lock first fs_info->chunk_mutex before
7601                          * acquiring any locks on the chunk tree. This is a
7602                          * requirement for chunk allocation, see the comment on
7603                          * top of btrfs_chunk_alloc() for details.
7604                          */
7605                         ASSERT(!test_bit(BTRFS_FS_OPEN, &fs_info->flags));
7606                         chunk = btrfs_item_ptr(leaf, slot, struct btrfs_chunk);
7607                         ret = read_one_chunk(&found_key, leaf, chunk);
7608                         if (ret)
7609                                 goto error;
7610                 }
7611                 path->slots[0]++;
7612         }
7613
7614         /*
7615          * After loading chunk tree, we've got all device information,
7616          * do another round of validation checks.
7617          */
7618         if (total_dev != fs_info->fs_devices->total_devices) {
7619                 btrfs_err(fs_info,
7620            "super_num_devices %llu mismatch with num_devices %llu found here",
7621                           btrfs_super_num_devices(fs_info->super_copy),
7622                           total_dev);
7623                 ret = -EINVAL;
7624                 goto error;
7625         }
7626         if (btrfs_super_total_bytes(fs_info->super_copy) <
7627             fs_info->fs_devices->total_rw_bytes) {
7628                 btrfs_err(fs_info,
7629         "super_total_bytes %llu mismatch with fs_devices total_rw_bytes %llu",
7630                           btrfs_super_total_bytes(fs_info->super_copy),
7631                           fs_info->fs_devices->total_rw_bytes);
7632                 ret = -EINVAL;
7633                 goto error;
7634         }
7635         ret = 0;
7636 error:
7637         mutex_unlock(&uuid_mutex);
7638
7639         btrfs_free_path(path);
7640         return ret;
7641 }
7642
7643 void btrfs_init_devices_late(struct btrfs_fs_info *fs_info)
7644 {
7645         struct btrfs_fs_devices *fs_devices = fs_info->fs_devices, *seed_devs;
7646         struct btrfs_device *device;
7647
7648         fs_devices->fs_info = fs_info;
7649
7650         mutex_lock(&fs_devices->device_list_mutex);
7651         list_for_each_entry(device, &fs_devices->devices, dev_list)
7652                 device->fs_info = fs_info;
7653
7654         list_for_each_entry(seed_devs, &fs_devices->seed_list, seed_list) {
7655                 list_for_each_entry(device, &seed_devs->devices, dev_list)
7656                         device->fs_info = fs_info;
7657
7658                 seed_devs->fs_info = fs_info;
7659         }
7660         mutex_unlock(&fs_devices->device_list_mutex);
7661 }
7662
7663 static u64 btrfs_dev_stats_value(const struct extent_buffer *eb,
7664                                  const struct btrfs_dev_stats_item *ptr,
7665                                  int index)
7666 {
7667         u64 val;
7668
7669         read_extent_buffer(eb, &val,
7670                            offsetof(struct btrfs_dev_stats_item, values) +
7671                             ((unsigned long)ptr) + (index * sizeof(u64)),
7672                            sizeof(val));
7673         return val;
7674 }
7675
7676 static void btrfs_set_dev_stats_value(struct extent_buffer *eb,
7677                                       struct btrfs_dev_stats_item *ptr,
7678                                       int index, u64 val)
7679 {
7680         write_extent_buffer(eb, &val,
7681                             offsetof(struct btrfs_dev_stats_item, values) +
7682                              ((unsigned long)ptr) + (index * sizeof(u64)),
7683                             sizeof(val));
7684 }
7685
7686 static int btrfs_device_init_dev_stats(struct btrfs_device *device,
7687                                        struct btrfs_path *path)
7688 {
7689         struct btrfs_dev_stats_item *ptr;
7690         struct extent_buffer *eb;
7691         struct btrfs_key key;
7692         int item_size;
7693         int i, ret, slot;
7694
7695         if (!device->fs_info->dev_root)
7696                 return 0;
7697
7698         key.objectid = BTRFS_DEV_STATS_OBJECTID;
7699         key.type = BTRFS_PERSISTENT_ITEM_KEY;
7700         key.offset = device->devid;
7701         ret = btrfs_search_slot(NULL, device->fs_info->dev_root, &key, path, 0, 0);
7702         if (ret) {
7703                 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
7704                         btrfs_dev_stat_set(device, i, 0);
7705                 device->dev_stats_valid = 1;
7706                 btrfs_release_path(path);
7707                 return ret < 0 ? ret : 0;
7708         }
7709         slot = path->slots[0];
7710         eb = path->nodes[0];
7711         item_size = btrfs_item_size_nr(eb, slot);
7712
7713         ptr = btrfs_item_ptr(eb, slot, struct btrfs_dev_stats_item);
7714
7715         for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) {
7716                 if (item_size >= (1 + i) * sizeof(__le64))
7717                         btrfs_dev_stat_set(device, i,
7718                                            btrfs_dev_stats_value(eb, ptr, i));
7719                 else
7720                         btrfs_dev_stat_set(device, i, 0);
7721         }
7722
7723         device->dev_stats_valid = 1;
7724         btrfs_dev_stat_print_on_load(device);
7725         btrfs_release_path(path);
7726
7727         return 0;
7728 }
7729
7730 int btrfs_init_dev_stats(struct btrfs_fs_info *fs_info)
7731 {
7732         struct btrfs_fs_devices *fs_devices = fs_info->fs_devices, *seed_devs;
7733         struct btrfs_device *device;
7734         struct btrfs_path *path = NULL;
7735         int ret = 0;
7736
7737         path = btrfs_alloc_path();
7738         if (!path)
7739                 return -ENOMEM;
7740
7741         mutex_lock(&fs_devices->device_list_mutex);
7742         list_for_each_entry(device, &fs_devices->devices, dev_list) {
7743                 ret = btrfs_device_init_dev_stats(device, path);
7744                 if (ret)
7745                         goto out;
7746         }
7747         list_for_each_entry(seed_devs, &fs_devices->seed_list, seed_list) {
7748                 list_for_each_entry(device, &seed_devs->devices, dev_list) {
7749                         ret = btrfs_device_init_dev_stats(device, path);
7750                         if (ret)
7751                                 goto out;
7752                 }
7753         }
7754 out:
7755         mutex_unlock(&fs_devices->device_list_mutex);
7756
7757         btrfs_free_path(path);
7758         return ret;
7759 }
7760
7761 static int update_dev_stat_item(struct btrfs_trans_handle *trans,
7762                                 struct btrfs_device *device)
7763 {
7764         struct btrfs_fs_info *fs_info = trans->fs_info;
7765         struct btrfs_root *dev_root = fs_info->dev_root;
7766         struct btrfs_path *path;
7767         struct btrfs_key key;
7768         struct extent_buffer *eb;
7769         struct btrfs_dev_stats_item *ptr;
7770         int ret;
7771         int i;
7772
7773         key.objectid = BTRFS_DEV_STATS_OBJECTID;
7774         key.type = BTRFS_PERSISTENT_ITEM_KEY;
7775         key.offset = device->devid;
7776
7777         path = btrfs_alloc_path();
7778         if (!path)
7779                 return -ENOMEM;
7780         ret = btrfs_search_slot(trans, dev_root, &key, path, -1, 1);
7781         if (ret < 0) {
7782                 btrfs_warn_in_rcu(fs_info,
7783                         "error %d while searching for dev_stats item for device %s",
7784                               ret, rcu_str_deref(device->name));
7785                 goto out;
7786         }
7787
7788         if (ret == 0 &&
7789             btrfs_item_size_nr(path->nodes[0], path->slots[0]) < sizeof(*ptr)) {
7790                 /* need to delete old one and insert a new one */
7791                 ret = btrfs_del_item(trans, dev_root, path);
7792                 if (ret != 0) {
7793                         btrfs_warn_in_rcu(fs_info,
7794                                 "delete too small dev_stats item for device %s failed %d",
7795                                       rcu_str_deref(device->name), ret);
7796                         goto out;
7797                 }
7798                 ret = 1;
7799         }
7800
7801         if (ret == 1) {
7802                 /* need to insert a new item */
7803                 btrfs_release_path(path);
7804                 ret = btrfs_insert_empty_item(trans, dev_root, path,
7805                                               &key, sizeof(*ptr));
7806                 if (ret < 0) {
7807                         btrfs_warn_in_rcu(fs_info,
7808                                 "insert dev_stats item for device %s failed %d",
7809                                 rcu_str_deref(device->name), ret);
7810                         goto out;
7811                 }
7812         }
7813
7814         eb = path->nodes[0];
7815         ptr = btrfs_item_ptr(eb, path->slots[0], struct btrfs_dev_stats_item);
7816         for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
7817                 btrfs_set_dev_stats_value(eb, ptr, i,
7818                                           btrfs_dev_stat_read(device, i));
7819         btrfs_mark_buffer_dirty(eb);
7820
7821 out:
7822         btrfs_free_path(path);
7823         return ret;
7824 }
7825
7826 /*
7827  * called from commit_transaction. Writes all changed device stats to disk.
7828  */
7829 int btrfs_run_dev_stats(struct btrfs_trans_handle *trans)
7830 {
7831         struct btrfs_fs_info *fs_info = trans->fs_info;
7832         struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
7833         struct btrfs_device *device;
7834         int stats_cnt;
7835         int ret = 0;
7836
7837         mutex_lock(&fs_devices->device_list_mutex);
7838         list_for_each_entry(device, &fs_devices->devices, dev_list) {
7839                 stats_cnt = atomic_read(&device->dev_stats_ccnt);
7840                 if (!device->dev_stats_valid || stats_cnt == 0)
7841                         continue;
7842
7843
7844                 /*
7845                  * There is a LOAD-LOAD control dependency between the value of
7846                  * dev_stats_ccnt and updating the on-disk values which requires
7847                  * reading the in-memory counters. Such control dependencies
7848                  * require explicit read memory barriers.
7849                  *
7850                  * This memory barriers pairs with smp_mb__before_atomic in
7851                  * btrfs_dev_stat_inc/btrfs_dev_stat_set and with the full
7852                  * barrier implied by atomic_xchg in
7853                  * btrfs_dev_stats_read_and_reset
7854                  */
7855                 smp_rmb();
7856
7857                 ret = update_dev_stat_item(trans, device);
7858                 if (!ret)
7859                         atomic_sub(stats_cnt, &device->dev_stats_ccnt);
7860         }
7861         mutex_unlock(&fs_devices->device_list_mutex);
7862
7863         return ret;
7864 }
7865
7866 void btrfs_dev_stat_inc_and_print(struct btrfs_device *dev, int index)
7867 {
7868         btrfs_dev_stat_inc(dev, index);
7869         btrfs_dev_stat_print_on_error(dev);
7870 }
7871
7872 static void btrfs_dev_stat_print_on_error(struct btrfs_device *dev)
7873 {
7874         if (!dev->dev_stats_valid)
7875                 return;
7876         btrfs_err_rl_in_rcu(dev->fs_info,
7877                 "bdev %s errs: wr %u, rd %u, flush %u, corrupt %u, gen %u",
7878                            rcu_str_deref(dev->name),
7879                            btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_WRITE_ERRS),
7880                            btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_READ_ERRS),
7881                            btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_FLUSH_ERRS),
7882                            btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_CORRUPTION_ERRS),
7883                            btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_GENERATION_ERRS));
7884 }
7885
7886 static void btrfs_dev_stat_print_on_load(struct btrfs_device *dev)
7887 {
7888         int i;
7889
7890         for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
7891                 if (btrfs_dev_stat_read(dev, i) != 0)
7892                         break;
7893         if (i == BTRFS_DEV_STAT_VALUES_MAX)
7894                 return; /* all values == 0, suppress message */
7895
7896         btrfs_info_in_rcu(dev->fs_info,
7897                 "bdev %s errs: wr %u, rd %u, flush %u, corrupt %u, gen %u",
7898                rcu_str_deref(dev->name),
7899                btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_WRITE_ERRS),
7900                btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_READ_ERRS),
7901                btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_FLUSH_ERRS),
7902                btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_CORRUPTION_ERRS),
7903                btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_GENERATION_ERRS));
7904 }
7905
7906 int btrfs_get_dev_stats(struct btrfs_fs_info *fs_info,
7907                         struct btrfs_ioctl_get_dev_stats *stats)
7908 {
7909         struct btrfs_device *dev;
7910         struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
7911         int i;
7912
7913         mutex_lock(&fs_devices->device_list_mutex);
7914         dev = btrfs_find_device(fs_info->fs_devices, stats->devid, NULL, NULL);
7915         mutex_unlock(&fs_devices->device_list_mutex);
7916
7917         if (!dev) {
7918                 btrfs_warn(fs_info, "get dev_stats failed, device not found");
7919                 return -ENODEV;
7920         } else if (!dev->dev_stats_valid) {
7921                 btrfs_warn(fs_info, "get dev_stats failed, not yet valid");
7922                 return -ENODEV;
7923         } else if (stats->flags & BTRFS_DEV_STATS_RESET) {
7924                 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) {
7925                         if (stats->nr_items > i)
7926                                 stats->values[i] =
7927                                         btrfs_dev_stat_read_and_reset(dev, i);
7928                         else
7929                                 btrfs_dev_stat_set(dev, i, 0);
7930                 }
7931                 btrfs_info(fs_info, "device stats zeroed by %s (%d)",
7932                            current->comm, task_pid_nr(current));
7933         } else {
7934                 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
7935                         if (stats->nr_items > i)
7936                                 stats->values[i] = btrfs_dev_stat_read(dev, i);
7937         }
7938         if (stats->nr_items > BTRFS_DEV_STAT_VALUES_MAX)
7939                 stats->nr_items = BTRFS_DEV_STAT_VALUES_MAX;
7940         return 0;
7941 }
7942
7943 /*
7944  * Update the size and bytes used for each device where it changed.  This is
7945  * delayed since we would otherwise get errors while writing out the
7946  * superblocks.
7947  *
7948  * Must be invoked during transaction commit.
7949  */
7950 void btrfs_commit_device_sizes(struct btrfs_transaction *trans)
7951 {
7952         struct btrfs_device *curr, *next;
7953
7954         ASSERT(trans->state == TRANS_STATE_COMMIT_DOING);
7955
7956         if (list_empty(&trans->dev_update_list))
7957                 return;
7958
7959         /*
7960          * We don't need the device_list_mutex here.  This list is owned by the
7961          * transaction and the transaction must complete before the device is
7962          * released.
7963          */
7964         mutex_lock(&trans->fs_info->chunk_mutex);
7965         list_for_each_entry_safe(curr, next, &trans->dev_update_list,
7966                                  post_commit_list) {
7967                 list_del_init(&curr->post_commit_list);
7968                 curr->commit_total_bytes = curr->disk_total_bytes;
7969                 curr->commit_bytes_used = curr->bytes_used;
7970         }
7971         mutex_unlock(&trans->fs_info->chunk_mutex);
7972 }
7973
7974 /*
7975  * Multiplicity factor for simple profiles: DUP, RAID1-like and RAID10.
7976  */
7977 int btrfs_bg_type_to_factor(u64 flags)
7978 {
7979         const int index = btrfs_bg_flags_to_raid_index(flags);
7980
7981         return btrfs_raid_array[index].ncopies;
7982 }
7983
7984
7985
7986 static int verify_one_dev_extent(struct btrfs_fs_info *fs_info,
7987                                  u64 chunk_offset, u64 devid,
7988                                  u64 physical_offset, u64 physical_len)
7989 {
7990         struct extent_map_tree *em_tree = &fs_info->mapping_tree;
7991         struct extent_map *em;
7992         struct map_lookup *map;
7993         struct btrfs_device *dev;
7994         u64 stripe_len;
7995         bool found = false;
7996         int ret = 0;
7997         int i;
7998
7999         read_lock(&em_tree->lock);
8000         em = lookup_extent_mapping(em_tree, chunk_offset, 1);
8001         read_unlock(&em_tree->lock);
8002
8003         if (!em) {
8004                 btrfs_err(fs_info,
8005 "dev extent physical offset %llu on devid %llu doesn't have corresponding chunk",
8006                           physical_offset, devid);
8007                 ret = -EUCLEAN;
8008                 goto out;
8009         }
8010
8011         map = em->map_lookup;
8012         stripe_len = calc_stripe_length(map->type, em->len, map->num_stripes);
8013         if (physical_len != stripe_len) {
8014                 btrfs_err(fs_info,
8015 "dev extent physical offset %llu on devid %llu length doesn't match chunk %llu, have %llu expect %llu",
8016                           physical_offset, devid, em->start, physical_len,
8017                           stripe_len);
8018                 ret = -EUCLEAN;
8019                 goto out;
8020         }
8021
8022         for (i = 0; i < map->num_stripes; i++) {
8023                 if (map->stripes[i].dev->devid == devid &&
8024                     map->stripes[i].physical == physical_offset) {
8025                         found = true;
8026                         if (map->verified_stripes >= map->num_stripes) {
8027                                 btrfs_err(fs_info,
8028                                 "too many dev extents for chunk %llu found",
8029                                           em->start);
8030                                 ret = -EUCLEAN;
8031                                 goto out;
8032                         }
8033                         map->verified_stripes++;
8034                         break;
8035                 }
8036         }
8037         if (!found) {
8038                 btrfs_err(fs_info,
8039         "dev extent physical offset %llu devid %llu has no corresponding chunk",
8040                         physical_offset, devid);
8041                 ret = -EUCLEAN;
8042         }
8043
8044         /* Make sure no dev extent is beyond device boundary */
8045         dev = btrfs_find_device(fs_info->fs_devices, devid, NULL, NULL);
8046         if (!dev) {
8047                 btrfs_err(fs_info, "failed to find devid %llu", devid);
8048                 ret = -EUCLEAN;
8049                 goto out;
8050         }
8051
8052         if (physical_offset + physical_len > dev->disk_total_bytes) {
8053                 btrfs_err(fs_info,
8054 "dev extent devid %llu physical offset %llu len %llu is beyond device boundary %llu",
8055                           devid, physical_offset, physical_len,
8056                           dev->disk_total_bytes);
8057                 ret = -EUCLEAN;
8058                 goto out;
8059         }
8060
8061         if (dev->zone_info) {
8062                 u64 zone_size = dev->zone_info->zone_size;
8063
8064                 if (!IS_ALIGNED(physical_offset, zone_size) ||
8065                     !IS_ALIGNED(physical_len, zone_size)) {
8066                         btrfs_err(fs_info,
8067 "zoned: dev extent devid %llu physical offset %llu len %llu is not aligned to device zone",
8068                                   devid, physical_offset, physical_len);
8069                         ret = -EUCLEAN;
8070                         goto out;
8071                 }
8072         }
8073
8074 out:
8075         free_extent_map(em);
8076         return ret;
8077 }
8078
8079 static int verify_chunk_dev_extent_mapping(struct btrfs_fs_info *fs_info)
8080 {
8081         struct extent_map_tree *em_tree = &fs_info->mapping_tree;
8082         struct extent_map *em;
8083         struct rb_node *node;
8084         int ret = 0;
8085
8086         read_lock(&em_tree->lock);
8087         for (node = rb_first_cached(&em_tree->map); node; node = rb_next(node)) {
8088                 em = rb_entry(node, struct extent_map, rb_node);
8089                 if (em->map_lookup->num_stripes !=
8090                     em->map_lookup->verified_stripes) {
8091                         btrfs_err(fs_info,
8092                         "chunk %llu has missing dev extent, have %d expect %d",
8093                                   em->start, em->map_lookup->verified_stripes,
8094                                   em->map_lookup->num_stripes);
8095                         ret = -EUCLEAN;
8096                         goto out;
8097                 }
8098         }
8099 out:
8100         read_unlock(&em_tree->lock);
8101         return ret;
8102 }
8103
8104 /*
8105  * Ensure that all dev extents are mapped to correct chunk, otherwise
8106  * later chunk allocation/free would cause unexpected behavior.
8107  *
8108  * NOTE: This will iterate through the whole device tree, which should be of
8109  * the same size level as the chunk tree.  This slightly increases mount time.
8110  */
8111 int btrfs_verify_dev_extents(struct btrfs_fs_info *fs_info)
8112 {
8113         struct btrfs_path *path;
8114         struct btrfs_root *root = fs_info->dev_root;
8115         struct btrfs_key key;
8116         u64 prev_devid = 0;
8117         u64 prev_dev_ext_end = 0;
8118         int ret = 0;
8119
8120         /*
8121          * We don't have a dev_root because we mounted with ignorebadroots and
8122          * failed to load the root, so we want to skip the verification in this
8123          * case for sure.
8124          *
8125          * However if the dev root is fine, but the tree itself is corrupted
8126          * we'd still fail to mount.  This verification is only to make sure
8127          * writes can happen safely, so instead just bypass this check
8128          * completely in the case of IGNOREBADROOTS.
8129          */
8130         if (btrfs_test_opt(fs_info, IGNOREBADROOTS))
8131                 return 0;
8132
8133         key.objectid = 1;
8134         key.type = BTRFS_DEV_EXTENT_KEY;
8135         key.offset = 0;
8136
8137         path = btrfs_alloc_path();
8138         if (!path)
8139                 return -ENOMEM;
8140
8141         path->reada = READA_FORWARD;
8142         ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
8143         if (ret < 0)
8144                 goto out;
8145
8146         if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) {
8147                 ret = btrfs_next_item(root, path);
8148                 if (ret < 0)
8149                         goto out;
8150                 /* No dev extents at all? Not good */
8151                 if (ret > 0) {
8152                         ret = -EUCLEAN;
8153                         goto out;
8154                 }
8155         }
8156         while (1) {
8157                 struct extent_buffer *leaf = path->nodes[0];
8158                 struct btrfs_dev_extent *dext;
8159                 int slot = path->slots[0];
8160                 u64 chunk_offset;
8161                 u64 physical_offset;
8162                 u64 physical_len;
8163                 u64 devid;
8164
8165                 btrfs_item_key_to_cpu(leaf, &key, slot);
8166                 if (key.type != BTRFS_DEV_EXTENT_KEY)
8167                         break;
8168                 devid = key.objectid;
8169                 physical_offset = key.offset;
8170
8171                 dext = btrfs_item_ptr(leaf, slot, struct btrfs_dev_extent);
8172                 chunk_offset = btrfs_dev_extent_chunk_offset(leaf, dext);
8173                 physical_len = btrfs_dev_extent_length(leaf, dext);
8174
8175                 /* Check if this dev extent overlaps with the previous one */
8176                 if (devid == prev_devid && physical_offset < prev_dev_ext_end) {
8177                         btrfs_err(fs_info,
8178 "dev extent devid %llu physical offset %llu overlap with previous dev extent end %llu",
8179                                   devid, physical_offset, prev_dev_ext_end);
8180                         ret = -EUCLEAN;
8181                         goto out;
8182                 }
8183
8184                 ret = verify_one_dev_extent(fs_info, chunk_offset, devid,
8185                                             physical_offset, physical_len);
8186                 if (ret < 0)
8187                         goto out;
8188                 prev_devid = devid;
8189                 prev_dev_ext_end = physical_offset + physical_len;
8190
8191                 ret = btrfs_next_item(root, path);
8192                 if (ret < 0)
8193                         goto out;
8194                 if (ret > 0) {
8195                         ret = 0;
8196                         break;
8197                 }
8198         }
8199
8200         /* Ensure all chunks have corresponding dev extents */
8201         ret = verify_chunk_dev_extent_mapping(fs_info);
8202 out:
8203         btrfs_free_path(path);
8204         return ret;
8205 }
8206
8207 /*
8208  * Check whether the given block group or device is pinned by any inode being
8209  * used as a swapfile.
8210  */
8211 bool btrfs_pinned_by_swapfile(struct btrfs_fs_info *fs_info, void *ptr)
8212 {
8213         struct btrfs_swapfile_pin *sp;
8214         struct rb_node *node;
8215
8216         spin_lock(&fs_info->swapfile_pins_lock);
8217         node = fs_info->swapfile_pins.rb_node;
8218         while (node) {
8219                 sp = rb_entry(node, struct btrfs_swapfile_pin, node);
8220                 if (ptr < sp->ptr)
8221                         node = node->rb_left;
8222                 else if (ptr > sp->ptr)
8223                         node = node->rb_right;
8224                 else
8225                         break;
8226         }
8227         spin_unlock(&fs_info->swapfile_pins_lock);
8228         return node != NULL;
8229 }
8230
8231 static int relocating_repair_kthread(void *data)
8232 {
8233         struct btrfs_block_group *cache = (struct btrfs_block_group *)data;
8234         struct btrfs_fs_info *fs_info = cache->fs_info;
8235         u64 target;
8236         int ret = 0;
8237
8238         target = cache->start;
8239         btrfs_put_block_group(cache);
8240
8241         if (!btrfs_exclop_start(fs_info, BTRFS_EXCLOP_BALANCE)) {
8242                 btrfs_info(fs_info,
8243                            "zoned: skip relocating block group %llu to repair: EBUSY",
8244                            target);
8245                 return -EBUSY;
8246         }
8247
8248         mutex_lock(&fs_info->reclaim_bgs_lock);
8249
8250         /* Ensure block group still exists */
8251         cache = btrfs_lookup_block_group(fs_info, target);
8252         if (!cache)
8253                 goto out;
8254
8255         if (!cache->relocating_repair)
8256                 goto out;
8257
8258         ret = btrfs_may_alloc_data_chunk(fs_info, target);
8259         if (ret < 0)
8260                 goto out;
8261
8262         btrfs_info(fs_info,
8263                    "zoned: relocating block group %llu to repair IO failure",
8264                    target);
8265         ret = btrfs_relocate_chunk(fs_info, target);
8266
8267 out:
8268         if (cache)
8269                 btrfs_put_block_group(cache);
8270         mutex_unlock(&fs_info->reclaim_bgs_lock);
8271         btrfs_exclop_finish(fs_info);
8272
8273         return ret;
8274 }
8275
8276 int btrfs_repair_one_zone(struct btrfs_fs_info *fs_info, u64 logical)
8277 {
8278         struct btrfs_block_group *cache;
8279
8280         /* Do not attempt to repair in degraded state */
8281         if (btrfs_test_opt(fs_info, DEGRADED))
8282                 return 0;
8283
8284         cache = btrfs_lookup_block_group(fs_info, logical);
8285         if (!cache)
8286                 return 0;
8287
8288         spin_lock(&cache->lock);
8289         if (cache->relocating_repair) {
8290                 spin_unlock(&cache->lock);
8291                 btrfs_put_block_group(cache);
8292                 return 0;
8293         }
8294         cache->relocating_repair = 1;
8295         spin_unlock(&cache->lock);
8296
8297         kthread_run(relocating_repair_kthread, cache,
8298                     "btrfs-relocating-repair");
8299
8300         return 0;
8301 }