Merge tag 'for-linus-5.13b-rc8-tag' of git://git.kernel.org/pub/scm/linux/kernel...
[linux-2.6-microblaze.git] / fs / btrfs / volumes.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2007 Oracle.  All rights reserved.
4  */
5
6 #include <linux/sched.h>
7 #include <linux/sched/mm.h>
8 #include <linux/bio.h>
9 #include <linux/slab.h>
10 #include <linux/blkdev.h>
11 #include <linux/ratelimit.h>
12 #include <linux/kthread.h>
13 #include <linux/raid/pq.h>
14 #include <linux/semaphore.h>
15 #include <linux/uuid.h>
16 #include <linux/list_sort.h>
17 #include "misc.h"
18 #include "ctree.h"
19 #include "extent_map.h"
20 #include "disk-io.h"
21 #include "transaction.h"
22 #include "print-tree.h"
23 #include "volumes.h"
24 #include "raid56.h"
25 #include "async-thread.h"
26 #include "check-integrity.h"
27 #include "rcu-string.h"
28 #include "dev-replace.h"
29 #include "sysfs.h"
30 #include "tree-checker.h"
31 #include "space-info.h"
32 #include "block-group.h"
33 #include "discard.h"
34 #include "zoned.h"
35
36 const struct btrfs_raid_attr btrfs_raid_array[BTRFS_NR_RAID_TYPES] = {
37         [BTRFS_RAID_RAID10] = {
38                 .sub_stripes    = 2,
39                 .dev_stripes    = 1,
40                 .devs_max       = 0,    /* 0 == as many as possible */
41                 .devs_min       = 4,
42                 .tolerated_failures = 1,
43                 .devs_increment = 2,
44                 .ncopies        = 2,
45                 .nparity        = 0,
46                 .raid_name      = "raid10",
47                 .bg_flag        = BTRFS_BLOCK_GROUP_RAID10,
48                 .mindev_error   = BTRFS_ERROR_DEV_RAID10_MIN_NOT_MET,
49         },
50         [BTRFS_RAID_RAID1] = {
51                 .sub_stripes    = 1,
52                 .dev_stripes    = 1,
53                 .devs_max       = 2,
54                 .devs_min       = 2,
55                 .tolerated_failures = 1,
56                 .devs_increment = 2,
57                 .ncopies        = 2,
58                 .nparity        = 0,
59                 .raid_name      = "raid1",
60                 .bg_flag        = BTRFS_BLOCK_GROUP_RAID1,
61                 .mindev_error   = BTRFS_ERROR_DEV_RAID1_MIN_NOT_MET,
62         },
63         [BTRFS_RAID_RAID1C3] = {
64                 .sub_stripes    = 1,
65                 .dev_stripes    = 1,
66                 .devs_max       = 3,
67                 .devs_min       = 3,
68                 .tolerated_failures = 2,
69                 .devs_increment = 3,
70                 .ncopies        = 3,
71                 .nparity        = 0,
72                 .raid_name      = "raid1c3",
73                 .bg_flag        = BTRFS_BLOCK_GROUP_RAID1C3,
74                 .mindev_error   = BTRFS_ERROR_DEV_RAID1C3_MIN_NOT_MET,
75         },
76         [BTRFS_RAID_RAID1C4] = {
77                 .sub_stripes    = 1,
78                 .dev_stripes    = 1,
79                 .devs_max       = 4,
80                 .devs_min       = 4,
81                 .tolerated_failures = 3,
82                 .devs_increment = 4,
83                 .ncopies        = 4,
84                 .nparity        = 0,
85                 .raid_name      = "raid1c4",
86                 .bg_flag        = BTRFS_BLOCK_GROUP_RAID1C4,
87                 .mindev_error   = BTRFS_ERROR_DEV_RAID1C4_MIN_NOT_MET,
88         },
89         [BTRFS_RAID_DUP] = {
90                 .sub_stripes    = 1,
91                 .dev_stripes    = 2,
92                 .devs_max       = 1,
93                 .devs_min       = 1,
94                 .tolerated_failures = 0,
95                 .devs_increment = 1,
96                 .ncopies        = 2,
97                 .nparity        = 0,
98                 .raid_name      = "dup",
99                 .bg_flag        = BTRFS_BLOCK_GROUP_DUP,
100                 .mindev_error   = 0,
101         },
102         [BTRFS_RAID_RAID0] = {
103                 .sub_stripes    = 1,
104                 .dev_stripes    = 1,
105                 .devs_max       = 0,
106                 .devs_min       = 2,
107                 .tolerated_failures = 0,
108                 .devs_increment = 1,
109                 .ncopies        = 1,
110                 .nparity        = 0,
111                 .raid_name      = "raid0",
112                 .bg_flag        = BTRFS_BLOCK_GROUP_RAID0,
113                 .mindev_error   = 0,
114         },
115         [BTRFS_RAID_SINGLE] = {
116                 .sub_stripes    = 1,
117                 .dev_stripes    = 1,
118                 .devs_max       = 1,
119                 .devs_min       = 1,
120                 .tolerated_failures = 0,
121                 .devs_increment = 1,
122                 .ncopies        = 1,
123                 .nparity        = 0,
124                 .raid_name      = "single",
125                 .bg_flag        = 0,
126                 .mindev_error   = 0,
127         },
128         [BTRFS_RAID_RAID5] = {
129                 .sub_stripes    = 1,
130                 .dev_stripes    = 1,
131                 .devs_max       = 0,
132                 .devs_min       = 2,
133                 .tolerated_failures = 1,
134                 .devs_increment = 1,
135                 .ncopies        = 1,
136                 .nparity        = 1,
137                 .raid_name      = "raid5",
138                 .bg_flag        = BTRFS_BLOCK_GROUP_RAID5,
139                 .mindev_error   = BTRFS_ERROR_DEV_RAID5_MIN_NOT_MET,
140         },
141         [BTRFS_RAID_RAID6] = {
142                 .sub_stripes    = 1,
143                 .dev_stripes    = 1,
144                 .devs_max       = 0,
145                 .devs_min       = 3,
146                 .tolerated_failures = 2,
147                 .devs_increment = 1,
148                 .ncopies        = 1,
149                 .nparity        = 2,
150                 .raid_name      = "raid6",
151                 .bg_flag        = BTRFS_BLOCK_GROUP_RAID6,
152                 .mindev_error   = BTRFS_ERROR_DEV_RAID6_MIN_NOT_MET,
153         },
154 };
155
156 const char *btrfs_bg_type_to_raid_name(u64 flags)
157 {
158         const int index = btrfs_bg_flags_to_raid_index(flags);
159
160         if (index >= BTRFS_NR_RAID_TYPES)
161                 return NULL;
162
163         return btrfs_raid_array[index].raid_name;
164 }
165
166 /*
167  * Fill @buf with textual description of @bg_flags, no more than @size_buf
168  * bytes including terminating null byte.
169  */
170 void btrfs_describe_block_groups(u64 bg_flags, char *buf, u32 size_buf)
171 {
172         int i;
173         int ret;
174         char *bp = buf;
175         u64 flags = bg_flags;
176         u32 size_bp = size_buf;
177
178         if (!flags) {
179                 strcpy(bp, "NONE");
180                 return;
181         }
182
183 #define DESCRIBE_FLAG(flag, desc)                                               \
184         do {                                                            \
185                 if (flags & (flag)) {                                   \
186                         ret = snprintf(bp, size_bp, "%s|", (desc));     \
187                         if (ret < 0 || ret >= size_bp)                  \
188                                 goto out_overflow;                      \
189                         size_bp -= ret;                                 \
190                         bp += ret;                                      \
191                         flags &= ~(flag);                               \
192                 }                                                       \
193         } while (0)
194
195         DESCRIBE_FLAG(BTRFS_BLOCK_GROUP_DATA, "data");
196         DESCRIBE_FLAG(BTRFS_BLOCK_GROUP_SYSTEM, "system");
197         DESCRIBE_FLAG(BTRFS_BLOCK_GROUP_METADATA, "metadata");
198
199         DESCRIBE_FLAG(BTRFS_AVAIL_ALLOC_BIT_SINGLE, "single");
200         for (i = 0; i < BTRFS_NR_RAID_TYPES; i++)
201                 DESCRIBE_FLAG(btrfs_raid_array[i].bg_flag,
202                               btrfs_raid_array[i].raid_name);
203 #undef DESCRIBE_FLAG
204
205         if (flags) {
206                 ret = snprintf(bp, size_bp, "0x%llx|", flags);
207                 size_bp -= ret;
208         }
209
210         if (size_bp < size_buf)
211                 buf[size_buf - size_bp - 1] = '\0'; /* remove last | */
212
213         /*
214          * The text is trimmed, it's up to the caller to provide sufficiently
215          * large buffer
216          */
217 out_overflow:;
218 }
219
220 static int init_first_rw_device(struct btrfs_trans_handle *trans);
221 static int btrfs_relocate_sys_chunks(struct btrfs_fs_info *fs_info);
222 static void btrfs_dev_stat_print_on_error(struct btrfs_device *dev);
223 static void btrfs_dev_stat_print_on_load(struct btrfs_device *device);
224 static int __btrfs_map_block(struct btrfs_fs_info *fs_info,
225                              enum btrfs_map_op op,
226                              u64 logical, u64 *length,
227                              struct btrfs_bio **bbio_ret,
228                              int mirror_num, int need_raid_map);
229
230 /*
231  * Device locking
232  * ==============
233  *
234  * There are several mutexes that protect manipulation of devices and low-level
235  * structures like chunks but not block groups, extents or files
236  *
237  * uuid_mutex (global lock)
238  * ------------------------
239  * protects the fs_uuids list that tracks all per-fs fs_devices, resulting from
240  * the SCAN_DEV ioctl registration or from mount either implicitly (the first
241  * device) or requested by the device= mount option
242  *
243  * the mutex can be very coarse and can cover long-running operations
244  *
245  * protects: updates to fs_devices counters like missing devices, rw devices,
246  * seeding, structure cloning, opening/closing devices at mount/umount time
247  *
248  * global::fs_devs - add, remove, updates to the global list
249  *
250  * does not protect: manipulation of the fs_devices::devices list in general
251  * but in mount context it could be used to exclude list modifications by eg.
252  * scan ioctl
253  *
254  * btrfs_device::name - renames (write side), read is RCU
255  *
256  * fs_devices::device_list_mutex (per-fs, with RCU)
257  * ------------------------------------------------
258  * protects updates to fs_devices::devices, ie. adding and deleting
259  *
260  * simple list traversal with read-only actions can be done with RCU protection
261  *
262  * may be used to exclude some operations from running concurrently without any
263  * modifications to the list (see write_all_supers)
264  *
265  * Is not required at mount and close times, because our device list is
266  * protected by the uuid_mutex at that point.
267  *
268  * balance_mutex
269  * -------------
270  * protects balance structures (status, state) and context accessed from
271  * several places (internally, ioctl)
272  *
273  * chunk_mutex
274  * -----------
275  * protects chunks, adding or removing during allocation, trim or when a new
276  * device is added/removed. Additionally it also protects post_commit_list of
277  * individual devices, since they can be added to the transaction's
278  * post_commit_list only with chunk_mutex held.
279  *
280  * cleaner_mutex
281  * -------------
282  * a big lock that is held by the cleaner thread and prevents running subvolume
283  * cleaning together with relocation or delayed iputs
284  *
285  *
286  * Lock nesting
287  * ============
288  *
289  * uuid_mutex
290  *   device_list_mutex
291  *     chunk_mutex
292  *   balance_mutex
293  *
294  *
295  * Exclusive operations
296  * ====================
297  *
298  * Maintains the exclusivity of the following operations that apply to the
299  * whole filesystem and cannot run in parallel.
300  *
301  * - Balance (*)
302  * - Device add
303  * - Device remove
304  * - Device replace (*)
305  * - Resize
306  *
307  * The device operations (as above) can be in one of the following states:
308  *
309  * - Running state
310  * - Paused state
311  * - Completed state
312  *
313  * Only device operations marked with (*) can go into the Paused state for the
314  * following reasons:
315  *
316  * - ioctl (only Balance can be Paused through ioctl)
317  * - filesystem remounted as read-only
318  * - filesystem unmounted and mounted as read-only
319  * - system power-cycle and filesystem mounted as read-only
320  * - filesystem or device errors leading to forced read-only
321  *
322  * The status of exclusive operation is set and cleared atomically.
323  * During the course of Paused state, fs_info::exclusive_operation remains set.
324  * A device operation in Paused or Running state can be canceled or resumed
325  * either by ioctl (Balance only) or when remounted as read-write.
326  * The exclusive status is cleared when the device operation is canceled or
327  * completed.
328  */
329
330 DEFINE_MUTEX(uuid_mutex);
331 static LIST_HEAD(fs_uuids);
332 struct list_head * __attribute_const__ btrfs_get_fs_uuids(void)
333 {
334         return &fs_uuids;
335 }
336
337 /*
338  * alloc_fs_devices - allocate struct btrfs_fs_devices
339  * @fsid:               if not NULL, copy the UUID to fs_devices::fsid
340  * @metadata_fsid:      if not NULL, copy the UUID to fs_devices::metadata_fsid
341  *
342  * Return a pointer to a new struct btrfs_fs_devices on success, or ERR_PTR().
343  * The returned struct is not linked onto any lists and can be destroyed with
344  * kfree() right away.
345  */
346 static struct btrfs_fs_devices *alloc_fs_devices(const u8 *fsid,
347                                                  const u8 *metadata_fsid)
348 {
349         struct btrfs_fs_devices *fs_devs;
350
351         fs_devs = kzalloc(sizeof(*fs_devs), GFP_KERNEL);
352         if (!fs_devs)
353                 return ERR_PTR(-ENOMEM);
354
355         mutex_init(&fs_devs->device_list_mutex);
356
357         INIT_LIST_HEAD(&fs_devs->devices);
358         INIT_LIST_HEAD(&fs_devs->alloc_list);
359         INIT_LIST_HEAD(&fs_devs->fs_list);
360         INIT_LIST_HEAD(&fs_devs->seed_list);
361         if (fsid)
362                 memcpy(fs_devs->fsid, fsid, BTRFS_FSID_SIZE);
363
364         if (metadata_fsid)
365                 memcpy(fs_devs->metadata_uuid, metadata_fsid, BTRFS_FSID_SIZE);
366         else if (fsid)
367                 memcpy(fs_devs->metadata_uuid, fsid, BTRFS_FSID_SIZE);
368
369         return fs_devs;
370 }
371
372 void btrfs_free_device(struct btrfs_device *device)
373 {
374         WARN_ON(!list_empty(&device->post_commit_list));
375         rcu_string_free(device->name);
376         extent_io_tree_release(&device->alloc_state);
377         bio_put(device->flush_bio);
378         btrfs_destroy_dev_zone_info(device);
379         kfree(device);
380 }
381
382 static void free_fs_devices(struct btrfs_fs_devices *fs_devices)
383 {
384         struct btrfs_device *device;
385         WARN_ON(fs_devices->opened);
386         while (!list_empty(&fs_devices->devices)) {
387                 device = list_entry(fs_devices->devices.next,
388                                     struct btrfs_device, dev_list);
389                 list_del(&device->dev_list);
390                 btrfs_free_device(device);
391         }
392         kfree(fs_devices);
393 }
394
395 void __exit btrfs_cleanup_fs_uuids(void)
396 {
397         struct btrfs_fs_devices *fs_devices;
398
399         while (!list_empty(&fs_uuids)) {
400                 fs_devices = list_entry(fs_uuids.next,
401                                         struct btrfs_fs_devices, fs_list);
402                 list_del(&fs_devices->fs_list);
403                 free_fs_devices(fs_devices);
404         }
405 }
406
407 /*
408  * Returns a pointer to a new btrfs_device on success; ERR_PTR() on error.
409  * Returned struct is not linked onto any lists and must be destroyed using
410  * btrfs_free_device.
411  */
412 static struct btrfs_device *__alloc_device(struct btrfs_fs_info *fs_info)
413 {
414         struct btrfs_device *dev;
415
416         dev = kzalloc(sizeof(*dev), GFP_KERNEL);
417         if (!dev)
418                 return ERR_PTR(-ENOMEM);
419
420         /*
421          * Preallocate a bio that's always going to be used for flushing device
422          * barriers and matches the device lifespan
423          */
424         dev->flush_bio = bio_kmalloc(GFP_KERNEL, 0);
425         if (!dev->flush_bio) {
426                 kfree(dev);
427                 return ERR_PTR(-ENOMEM);
428         }
429
430         INIT_LIST_HEAD(&dev->dev_list);
431         INIT_LIST_HEAD(&dev->dev_alloc_list);
432         INIT_LIST_HEAD(&dev->post_commit_list);
433
434         atomic_set(&dev->reada_in_flight, 0);
435         atomic_set(&dev->dev_stats_ccnt, 0);
436         btrfs_device_data_ordered_init(dev);
437         INIT_RADIX_TREE(&dev->reada_zones, GFP_NOFS & ~__GFP_DIRECT_RECLAIM);
438         INIT_RADIX_TREE(&dev->reada_extents, GFP_NOFS & ~__GFP_DIRECT_RECLAIM);
439         extent_io_tree_init(fs_info, &dev->alloc_state,
440                             IO_TREE_DEVICE_ALLOC_STATE, NULL);
441
442         return dev;
443 }
444
445 static noinline struct btrfs_fs_devices *find_fsid(
446                 const u8 *fsid, const u8 *metadata_fsid)
447 {
448         struct btrfs_fs_devices *fs_devices;
449
450         ASSERT(fsid);
451
452         /* Handle non-split brain cases */
453         list_for_each_entry(fs_devices, &fs_uuids, fs_list) {
454                 if (metadata_fsid) {
455                         if (memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE) == 0
456                             && memcmp(metadata_fsid, fs_devices->metadata_uuid,
457                                       BTRFS_FSID_SIZE) == 0)
458                                 return fs_devices;
459                 } else {
460                         if (memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE) == 0)
461                                 return fs_devices;
462                 }
463         }
464         return NULL;
465 }
466
467 static struct btrfs_fs_devices *find_fsid_with_metadata_uuid(
468                                 struct btrfs_super_block *disk_super)
469 {
470
471         struct btrfs_fs_devices *fs_devices;
472
473         /*
474          * Handle scanned device having completed its fsid change but
475          * belonging to a fs_devices that was created by first scanning
476          * a device which didn't have its fsid/metadata_uuid changed
477          * at all and the CHANGING_FSID_V2 flag set.
478          */
479         list_for_each_entry(fs_devices, &fs_uuids, fs_list) {
480                 if (fs_devices->fsid_change &&
481                     memcmp(disk_super->metadata_uuid, fs_devices->fsid,
482                            BTRFS_FSID_SIZE) == 0 &&
483                     memcmp(fs_devices->fsid, fs_devices->metadata_uuid,
484                            BTRFS_FSID_SIZE) == 0) {
485                         return fs_devices;
486                 }
487         }
488         /*
489          * Handle scanned device having completed its fsid change but
490          * belonging to a fs_devices that was created by a device that
491          * has an outdated pair of fsid/metadata_uuid and
492          * CHANGING_FSID_V2 flag set.
493          */
494         list_for_each_entry(fs_devices, &fs_uuids, fs_list) {
495                 if (fs_devices->fsid_change &&
496                     memcmp(fs_devices->metadata_uuid,
497                            fs_devices->fsid, BTRFS_FSID_SIZE) != 0 &&
498                     memcmp(disk_super->metadata_uuid, fs_devices->metadata_uuid,
499                            BTRFS_FSID_SIZE) == 0) {
500                         return fs_devices;
501                 }
502         }
503
504         return find_fsid(disk_super->fsid, disk_super->metadata_uuid);
505 }
506
507
508 static int
509 btrfs_get_bdev_and_sb(const char *device_path, fmode_t flags, void *holder,
510                       int flush, struct block_device **bdev,
511                       struct btrfs_super_block **disk_super)
512 {
513         int ret;
514
515         *bdev = blkdev_get_by_path(device_path, flags, holder);
516
517         if (IS_ERR(*bdev)) {
518                 ret = PTR_ERR(*bdev);
519                 goto error;
520         }
521
522         if (flush)
523                 filemap_write_and_wait((*bdev)->bd_inode->i_mapping);
524         ret = set_blocksize(*bdev, BTRFS_BDEV_BLOCKSIZE);
525         if (ret) {
526                 blkdev_put(*bdev, flags);
527                 goto error;
528         }
529         invalidate_bdev(*bdev);
530         *disk_super = btrfs_read_dev_super(*bdev);
531         if (IS_ERR(*disk_super)) {
532                 ret = PTR_ERR(*disk_super);
533                 blkdev_put(*bdev, flags);
534                 goto error;
535         }
536
537         return 0;
538
539 error:
540         *bdev = NULL;
541         return ret;
542 }
543
544 static bool device_path_matched(const char *path, struct btrfs_device *device)
545 {
546         int found;
547
548         rcu_read_lock();
549         found = strcmp(rcu_str_deref(device->name), path);
550         rcu_read_unlock();
551
552         return found == 0;
553 }
554
555 /*
556  *  Search and remove all stale (devices which are not mounted) devices.
557  *  When both inputs are NULL, it will search and release all stale devices.
558  *  path:       Optional. When provided will it release all unmounted devices
559  *              matching this path only.
560  *  skip_dev:   Optional. Will skip this device when searching for the stale
561  *              devices.
562  *  Return:     0 for success or if @path is NULL.
563  *              -EBUSY if @path is a mounted device.
564  *              -ENOENT if @path does not match any device in the list.
565  */
566 static int btrfs_free_stale_devices(const char *path,
567                                      struct btrfs_device *skip_device)
568 {
569         struct btrfs_fs_devices *fs_devices, *tmp_fs_devices;
570         struct btrfs_device *device, *tmp_device;
571         int ret = 0;
572
573         if (path)
574                 ret = -ENOENT;
575
576         list_for_each_entry_safe(fs_devices, tmp_fs_devices, &fs_uuids, fs_list) {
577
578                 mutex_lock(&fs_devices->device_list_mutex);
579                 list_for_each_entry_safe(device, tmp_device,
580                                          &fs_devices->devices, dev_list) {
581                         if (skip_device && skip_device == device)
582                                 continue;
583                         if (path && !device->name)
584                                 continue;
585                         if (path && !device_path_matched(path, device))
586                                 continue;
587                         if (fs_devices->opened) {
588                                 /* for an already deleted device return 0 */
589                                 if (path && ret != 0)
590                                         ret = -EBUSY;
591                                 break;
592                         }
593
594                         /* delete the stale device */
595                         fs_devices->num_devices--;
596                         list_del(&device->dev_list);
597                         btrfs_free_device(device);
598
599                         ret = 0;
600                 }
601                 mutex_unlock(&fs_devices->device_list_mutex);
602
603                 if (fs_devices->num_devices == 0) {
604                         btrfs_sysfs_remove_fsid(fs_devices);
605                         list_del(&fs_devices->fs_list);
606                         free_fs_devices(fs_devices);
607                 }
608         }
609
610         return ret;
611 }
612
613 /*
614  * This is only used on mount, and we are protected from competing things
615  * messing with our fs_devices by the uuid_mutex, thus we do not need the
616  * fs_devices->device_list_mutex here.
617  */
618 static int btrfs_open_one_device(struct btrfs_fs_devices *fs_devices,
619                         struct btrfs_device *device, fmode_t flags,
620                         void *holder)
621 {
622         struct request_queue *q;
623         struct block_device *bdev;
624         struct btrfs_super_block *disk_super;
625         u64 devid;
626         int ret;
627
628         if (device->bdev)
629                 return -EINVAL;
630         if (!device->name)
631                 return -EINVAL;
632
633         ret = btrfs_get_bdev_and_sb(device->name->str, flags, holder, 1,
634                                     &bdev, &disk_super);
635         if (ret)
636                 return ret;
637
638         devid = btrfs_stack_device_id(&disk_super->dev_item);
639         if (devid != device->devid)
640                 goto error_free_page;
641
642         if (memcmp(device->uuid, disk_super->dev_item.uuid, BTRFS_UUID_SIZE))
643                 goto error_free_page;
644
645         device->generation = btrfs_super_generation(disk_super);
646
647         if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_SEEDING) {
648                 if (btrfs_super_incompat_flags(disk_super) &
649                     BTRFS_FEATURE_INCOMPAT_METADATA_UUID) {
650                         pr_err(
651                 "BTRFS: Invalid seeding and uuid-changed device detected\n");
652                         goto error_free_page;
653                 }
654
655                 clear_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
656                 fs_devices->seeding = true;
657         } else {
658                 if (bdev_read_only(bdev))
659                         clear_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
660                 else
661                         set_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
662         }
663
664         q = bdev_get_queue(bdev);
665         if (!blk_queue_nonrot(q))
666                 fs_devices->rotating = true;
667
668         device->bdev = bdev;
669         clear_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state);
670         device->mode = flags;
671
672         fs_devices->open_devices++;
673         if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) &&
674             device->devid != BTRFS_DEV_REPLACE_DEVID) {
675                 fs_devices->rw_devices++;
676                 list_add_tail(&device->dev_alloc_list, &fs_devices->alloc_list);
677         }
678         btrfs_release_disk_super(disk_super);
679
680         return 0;
681
682 error_free_page:
683         btrfs_release_disk_super(disk_super);
684         blkdev_put(bdev, flags);
685
686         return -EINVAL;
687 }
688
689 /*
690  * Handle scanned device having its CHANGING_FSID_V2 flag set and the fs_devices
691  * being created with a disk that has already completed its fsid change. Such
692  * disk can belong to an fs which has its FSID changed or to one which doesn't.
693  * Handle both cases here.
694  */
695 static struct btrfs_fs_devices *find_fsid_inprogress(
696                                         struct btrfs_super_block *disk_super)
697 {
698         struct btrfs_fs_devices *fs_devices;
699
700         list_for_each_entry(fs_devices, &fs_uuids, fs_list) {
701                 if (memcmp(fs_devices->metadata_uuid, fs_devices->fsid,
702                            BTRFS_FSID_SIZE) != 0 &&
703                     memcmp(fs_devices->metadata_uuid, disk_super->fsid,
704                            BTRFS_FSID_SIZE) == 0 && !fs_devices->fsid_change) {
705                         return fs_devices;
706                 }
707         }
708
709         return find_fsid(disk_super->fsid, NULL);
710 }
711
712
713 static struct btrfs_fs_devices *find_fsid_changed(
714                                         struct btrfs_super_block *disk_super)
715 {
716         struct btrfs_fs_devices *fs_devices;
717
718         /*
719          * Handles the case where scanned device is part of an fs that had
720          * multiple successful changes of FSID but curently device didn't
721          * observe it. Meaning our fsid will be different than theirs. We need
722          * to handle two subcases :
723          *  1 - The fs still continues to have different METADATA/FSID uuids.
724          *  2 - The fs is switched back to its original FSID (METADATA/FSID
725          *  are equal).
726          */
727         list_for_each_entry(fs_devices, &fs_uuids, fs_list) {
728                 /* Changed UUIDs */
729                 if (memcmp(fs_devices->metadata_uuid, fs_devices->fsid,
730                            BTRFS_FSID_SIZE) != 0 &&
731                     memcmp(fs_devices->metadata_uuid, disk_super->metadata_uuid,
732                            BTRFS_FSID_SIZE) == 0 &&
733                     memcmp(fs_devices->fsid, disk_super->fsid,
734                            BTRFS_FSID_SIZE) != 0)
735                         return fs_devices;
736
737                 /* Unchanged UUIDs */
738                 if (memcmp(fs_devices->metadata_uuid, fs_devices->fsid,
739                            BTRFS_FSID_SIZE) == 0 &&
740                     memcmp(fs_devices->fsid, disk_super->metadata_uuid,
741                            BTRFS_FSID_SIZE) == 0)
742                         return fs_devices;
743         }
744
745         return NULL;
746 }
747
748 static struct btrfs_fs_devices *find_fsid_reverted_metadata(
749                                 struct btrfs_super_block *disk_super)
750 {
751         struct btrfs_fs_devices *fs_devices;
752
753         /*
754          * Handle the case where the scanned device is part of an fs whose last
755          * metadata UUID change reverted it to the original FSID. At the same
756          * time * fs_devices was first created by another constitutent device
757          * which didn't fully observe the operation. This results in an
758          * btrfs_fs_devices created with metadata/fsid different AND
759          * btrfs_fs_devices::fsid_change set AND the metadata_uuid of the
760          * fs_devices equal to the FSID of the disk.
761          */
762         list_for_each_entry(fs_devices, &fs_uuids, fs_list) {
763                 if (memcmp(fs_devices->fsid, fs_devices->metadata_uuid,
764                            BTRFS_FSID_SIZE) != 0 &&
765                     memcmp(fs_devices->metadata_uuid, disk_super->fsid,
766                            BTRFS_FSID_SIZE) == 0 &&
767                     fs_devices->fsid_change)
768                         return fs_devices;
769         }
770
771         return NULL;
772 }
773 /*
774  * Add new device to list of registered devices
775  *
776  * Returns:
777  * device pointer which was just added or updated when successful
778  * error pointer when failed
779  */
780 static noinline struct btrfs_device *device_list_add(const char *path,
781                            struct btrfs_super_block *disk_super,
782                            bool *new_device_added)
783 {
784         struct btrfs_device *device;
785         struct btrfs_fs_devices *fs_devices = NULL;
786         struct rcu_string *name;
787         u64 found_transid = btrfs_super_generation(disk_super);
788         u64 devid = btrfs_stack_device_id(&disk_super->dev_item);
789         bool has_metadata_uuid = (btrfs_super_incompat_flags(disk_super) &
790                 BTRFS_FEATURE_INCOMPAT_METADATA_UUID);
791         bool fsid_change_in_progress = (btrfs_super_flags(disk_super) &
792                                         BTRFS_SUPER_FLAG_CHANGING_FSID_V2);
793
794         if (fsid_change_in_progress) {
795                 if (!has_metadata_uuid)
796                         fs_devices = find_fsid_inprogress(disk_super);
797                 else
798                         fs_devices = find_fsid_changed(disk_super);
799         } else if (has_metadata_uuid) {
800                 fs_devices = find_fsid_with_metadata_uuid(disk_super);
801         } else {
802                 fs_devices = find_fsid_reverted_metadata(disk_super);
803                 if (!fs_devices)
804                         fs_devices = find_fsid(disk_super->fsid, NULL);
805         }
806
807
808         if (!fs_devices) {
809                 if (has_metadata_uuid)
810                         fs_devices = alloc_fs_devices(disk_super->fsid,
811                                                       disk_super->metadata_uuid);
812                 else
813                         fs_devices = alloc_fs_devices(disk_super->fsid, NULL);
814
815                 if (IS_ERR(fs_devices))
816                         return ERR_CAST(fs_devices);
817
818                 fs_devices->fsid_change = fsid_change_in_progress;
819
820                 mutex_lock(&fs_devices->device_list_mutex);
821                 list_add(&fs_devices->fs_list, &fs_uuids);
822
823                 device = NULL;
824         } else {
825                 mutex_lock(&fs_devices->device_list_mutex);
826                 device = btrfs_find_device(fs_devices, devid,
827                                 disk_super->dev_item.uuid, NULL);
828
829                 /*
830                  * If this disk has been pulled into an fs devices created by
831                  * a device which had the CHANGING_FSID_V2 flag then replace the
832                  * metadata_uuid/fsid values of the fs_devices.
833                  */
834                 if (fs_devices->fsid_change &&
835                     found_transid > fs_devices->latest_generation) {
836                         memcpy(fs_devices->fsid, disk_super->fsid,
837                                         BTRFS_FSID_SIZE);
838
839                         if (has_metadata_uuid)
840                                 memcpy(fs_devices->metadata_uuid,
841                                        disk_super->metadata_uuid,
842                                        BTRFS_FSID_SIZE);
843                         else
844                                 memcpy(fs_devices->metadata_uuid,
845                                        disk_super->fsid, BTRFS_FSID_SIZE);
846
847                         fs_devices->fsid_change = false;
848                 }
849         }
850
851         if (!device) {
852                 if (fs_devices->opened) {
853                         mutex_unlock(&fs_devices->device_list_mutex);
854                         return ERR_PTR(-EBUSY);
855                 }
856
857                 device = btrfs_alloc_device(NULL, &devid,
858                                             disk_super->dev_item.uuid);
859                 if (IS_ERR(device)) {
860                         mutex_unlock(&fs_devices->device_list_mutex);
861                         /* we can safely leave the fs_devices entry around */
862                         return device;
863                 }
864
865                 name = rcu_string_strdup(path, GFP_NOFS);
866                 if (!name) {
867                         btrfs_free_device(device);
868                         mutex_unlock(&fs_devices->device_list_mutex);
869                         return ERR_PTR(-ENOMEM);
870                 }
871                 rcu_assign_pointer(device->name, name);
872
873                 list_add_rcu(&device->dev_list, &fs_devices->devices);
874                 fs_devices->num_devices++;
875
876                 device->fs_devices = fs_devices;
877                 *new_device_added = true;
878
879                 if (disk_super->label[0])
880                         pr_info(
881         "BTRFS: device label %s devid %llu transid %llu %s scanned by %s (%d)\n",
882                                 disk_super->label, devid, found_transid, path,
883                                 current->comm, task_pid_nr(current));
884                 else
885                         pr_info(
886         "BTRFS: device fsid %pU devid %llu transid %llu %s scanned by %s (%d)\n",
887                                 disk_super->fsid, devid, found_transid, path,
888                                 current->comm, task_pid_nr(current));
889
890         } else if (!device->name || strcmp(device->name->str, path)) {
891                 /*
892                  * When FS is already mounted.
893                  * 1. If you are here and if the device->name is NULL that
894                  *    means this device was missing at time of FS mount.
895                  * 2. If you are here and if the device->name is different
896                  *    from 'path' that means either
897                  *      a. The same device disappeared and reappeared with
898                  *         different name. or
899                  *      b. The missing-disk-which-was-replaced, has
900                  *         reappeared now.
901                  *
902                  * We must allow 1 and 2a above. But 2b would be a spurious
903                  * and unintentional.
904                  *
905                  * Further in case of 1 and 2a above, the disk at 'path'
906                  * would have missed some transaction when it was away and
907                  * in case of 2a the stale bdev has to be updated as well.
908                  * 2b must not be allowed at all time.
909                  */
910
911                 /*
912                  * For now, we do allow update to btrfs_fs_device through the
913                  * btrfs dev scan cli after FS has been mounted.  We're still
914                  * tracking a problem where systems fail mount by subvolume id
915                  * when we reject replacement on a mounted FS.
916                  */
917                 if (!fs_devices->opened && found_transid < device->generation) {
918                         /*
919                          * That is if the FS is _not_ mounted and if you
920                          * are here, that means there is more than one
921                          * disk with same uuid and devid.We keep the one
922                          * with larger generation number or the last-in if
923                          * generation are equal.
924                          */
925                         mutex_unlock(&fs_devices->device_list_mutex);
926                         return ERR_PTR(-EEXIST);
927                 }
928
929                 /*
930                  * We are going to replace the device path for a given devid,
931                  * make sure it's the same device if the device is mounted
932                  */
933                 if (device->bdev) {
934                         int error;
935                         dev_t path_dev;
936
937                         error = lookup_bdev(path, &path_dev);
938                         if (error) {
939                                 mutex_unlock(&fs_devices->device_list_mutex);
940                                 return ERR_PTR(error);
941                         }
942
943                         if (device->bdev->bd_dev != path_dev) {
944                                 mutex_unlock(&fs_devices->device_list_mutex);
945                                 /*
946                                  * device->fs_info may not be reliable here, so
947                                  * pass in a NULL instead. This avoids a
948                                  * possible use-after-free when the fs_info and
949                                  * fs_info->sb are already torn down.
950                                  */
951                                 btrfs_warn_in_rcu(NULL,
952         "duplicate device %s devid %llu generation %llu scanned by %s (%d)",
953                                                   path, devid, found_transid,
954                                                   current->comm,
955                                                   task_pid_nr(current));
956                                 return ERR_PTR(-EEXIST);
957                         }
958                         btrfs_info_in_rcu(device->fs_info,
959         "devid %llu device path %s changed to %s scanned by %s (%d)",
960                                           devid, rcu_str_deref(device->name),
961                                           path, current->comm,
962                                           task_pid_nr(current));
963                 }
964
965                 name = rcu_string_strdup(path, GFP_NOFS);
966                 if (!name) {
967                         mutex_unlock(&fs_devices->device_list_mutex);
968                         return ERR_PTR(-ENOMEM);
969                 }
970                 rcu_string_free(device->name);
971                 rcu_assign_pointer(device->name, name);
972                 if (test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state)) {
973                         fs_devices->missing_devices--;
974                         clear_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state);
975                 }
976         }
977
978         /*
979          * Unmount does not free the btrfs_device struct but would zero
980          * generation along with most of the other members. So just update
981          * it back. We need it to pick the disk with largest generation
982          * (as above).
983          */
984         if (!fs_devices->opened) {
985                 device->generation = found_transid;
986                 fs_devices->latest_generation = max_t(u64, found_transid,
987                                                 fs_devices->latest_generation);
988         }
989
990         fs_devices->total_devices = btrfs_super_num_devices(disk_super);
991
992         mutex_unlock(&fs_devices->device_list_mutex);
993         return device;
994 }
995
996 static struct btrfs_fs_devices *clone_fs_devices(struct btrfs_fs_devices *orig)
997 {
998         struct btrfs_fs_devices *fs_devices;
999         struct btrfs_device *device;
1000         struct btrfs_device *orig_dev;
1001         int ret = 0;
1002
1003         fs_devices = alloc_fs_devices(orig->fsid, NULL);
1004         if (IS_ERR(fs_devices))
1005                 return fs_devices;
1006
1007         mutex_lock(&orig->device_list_mutex);
1008         fs_devices->total_devices = orig->total_devices;
1009
1010         list_for_each_entry(orig_dev, &orig->devices, dev_list) {
1011                 struct rcu_string *name;
1012
1013                 device = btrfs_alloc_device(NULL, &orig_dev->devid,
1014                                             orig_dev->uuid);
1015                 if (IS_ERR(device)) {
1016                         ret = PTR_ERR(device);
1017                         goto error;
1018                 }
1019
1020                 /*
1021                  * This is ok to do without rcu read locked because we hold the
1022                  * uuid mutex so nothing we touch in here is going to disappear.
1023                  */
1024                 if (orig_dev->name) {
1025                         name = rcu_string_strdup(orig_dev->name->str,
1026                                         GFP_KERNEL);
1027                         if (!name) {
1028                                 btrfs_free_device(device);
1029                                 ret = -ENOMEM;
1030                                 goto error;
1031                         }
1032                         rcu_assign_pointer(device->name, name);
1033                 }
1034
1035                 list_add(&device->dev_list, &fs_devices->devices);
1036                 device->fs_devices = fs_devices;
1037                 fs_devices->num_devices++;
1038         }
1039         mutex_unlock(&orig->device_list_mutex);
1040         return fs_devices;
1041 error:
1042         mutex_unlock(&orig->device_list_mutex);
1043         free_fs_devices(fs_devices);
1044         return ERR_PTR(ret);
1045 }
1046
1047 static void __btrfs_free_extra_devids(struct btrfs_fs_devices *fs_devices,
1048                                       struct btrfs_device **latest_dev)
1049 {
1050         struct btrfs_device *device, *next;
1051
1052         /* This is the initialized path, it is safe to release the devices. */
1053         list_for_each_entry_safe(device, next, &fs_devices->devices, dev_list) {
1054                 if (test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state)) {
1055                         if (!test_bit(BTRFS_DEV_STATE_REPLACE_TGT,
1056                                       &device->dev_state) &&
1057                             !test_bit(BTRFS_DEV_STATE_MISSING,
1058                                       &device->dev_state) &&
1059                             (!*latest_dev ||
1060                              device->generation > (*latest_dev)->generation)) {
1061                                 *latest_dev = device;
1062                         }
1063                         continue;
1064                 }
1065
1066                 /*
1067                  * We have already validated the presence of BTRFS_DEV_REPLACE_DEVID,
1068                  * in btrfs_init_dev_replace() so just continue.
1069                  */
1070                 if (device->devid == BTRFS_DEV_REPLACE_DEVID)
1071                         continue;
1072
1073                 if (device->bdev) {
1074                         blkdev_put(device->bdev, device->mode);
1075                         device->bdev = NULL;
1076                         fs_devices->open_devices--;
1077                 }
1078                 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
1079                         list_del_init(&device->dev_alloc_list);
1080                         clear_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
1081                 }
1082                 list_del_init(&device->dev_list);
1083                 fs_devices->num_devices--;
1084                 btrfs_free_device(device);
1085         }
1086
1087 }
1088
1089 /*
1090  * After we have read the system tree and know devids belonging to this
1091  * filesystem, remove the device which does not belong there.
1092  */
1093 void btrfs_free_extra_devids(struct btrfs_fs_devices *fs_devices)
1094 {
1095         struct btrfs_device *latest_dev = NULL;
1096         struct btrfs_fs_devices *seed_dev;
1097
1098         mutex_lock(&uuid_mutex);
1099         __btrfs_free_extra_devids(fs_devices, &latest_dev);
1100
1101         list_for_each_entry(seed_dev, &fs_devices->seed_list, seed_list)
1102                 __btrfs_free_extra_devids(seed_dev, &latest_dev);
1103
1104         fs_devices->latest_bdev = latest_dev->bdev;
1105
1106         mutex_unlock(&uuid_mutex);
1107 }
1108
1109 static void btrfs_close_bdev(struct btrfs_device *device)
1110 {
1111         if (!device->bdev)
1112                 return;
1113
1114         if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
1115                 sync_blockdev(device->bdev);
1116                 invalidate_bdev(device->bdev);
1117         }
1118
1119         blkdev_put(device->bdev, device->mode);
1120 }
1121
1122 static void btrfs_close_one_device(struct btrfs_device *device)
1123 {
1124         struct btrfs_fs_devices *fs_devices = device->fs_devices;
1125
1126         if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) &&
1127             device->devid != BTRFS_DEV_REPLACE_DEVID) {
1128                 list_del_init(&device->dev_alloc_list);
1129                 fs_devices->rw_devices--;
1130         }
1131
1132         if (test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state))
1133                 fs_devices->missing_devices--;
1134
1135         btrfs_close_bdev(device);
1136         if (device->bdev) {
1137                 fs_devices->open_devices--;
1138                 device->bdev = NULL;
1139         }
1140         clear_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
1141         btrfs_destroy_dev_zone_info(device);
1142
1143         device->fs_info = NULL;
1144         atomic_set(&device->dev_stats_ccnt, 0);
1145         extent_io_tree_release(&device->alloc_state);
1146
1147         /* Verify the device is back in a pristine state  */
1148         ASSERT(!test_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state));
1149         ASSERT(!test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state));
1150         ASSERT(list_empty(&device->dev_alloc_list));
1151         ASSERT(list_empty(&device->post_commit_list));
1152         ASSERT(atomic_read(&device->reada_in_flight) == 0);
1153 }
1154
1155 static void close_fs_devices(struct btrfs_fs_devices *fs_devices)
1156 {
1157         struct btrfs_device *device, *tmp;
1158
1159         lockdep_assert_held(&uuid_mutex);
1160
1161         if (--fs_devices->opened > 0)
1162                 return;
1163
1164         list_for_each_entry_safe(device, tmp, &fs_devices->devices, dev_list)
1165                 btrfs_close_one_device(device);
1166
1167         WARN_ON(fs_devices->open_devices);
1168         WARN_ON(fs_devices->rw_devices);
1169         fs_devices->opened = 0;
1170         fs_devices->seeding = false;
1171         fs_devices->fs_info = NULL;
1172 }
1173
1174 void btrfs_close_devices(struct btrfs_fs_devices *fs_devices)
1175 {
1176         LIST_HEAD(list);
1177         struct btrfs_fs_devices *tmp;
1178
1179         mutex_lock(&uuid_mutex);
1180         close_fs_devices(fs_devices);
1181         if (!fs_devices->opened)
1182                 list_splice_init(&fs_devices->seed_list, &list);
1183
1184         list_for_each_entry_safe(fs_devices, tmp, &list, seed_list) {
1185                 close_fs_devices(fs_devices);
1186                 list_del(&fs_devices->seed_list);
1187                 free_fs_devices(fs_devices);
1188         }
1189         mutex_unlock(&uuid_mutex);
1190 }
1191
1192 static int open_fs_devices(struct btrfs_fs_devices *fs_devices,
1193                                 fmode_t flags, void *holder)
1194 {
1195         struct btrfs_device *device;
1196         struct btrfs_device *latest_dev = NULL;
1197         struct btrfs_device *tmp_device;
1198
1199         flags |= FMODE_EXCL;
1200
1201         list_for_each_entry_safe(device, tmp_device, &fs_devices->devices,
1202                                  dev_list) {
1203                 int ret;
1204
1205                 ret = btrfs_open_one_device(fs_devices, device, flags, holder);
1206                 if (ret == 0 &&
1207                     (!latest_dev || device->generation > latest_dev->generation)) {
1208                         latest_dev = device;
1209                 } else if (ret == -ENODATA) {
1210                         fs_devices->num_devices--;
1211                         list_del(&device->dev_list);
1212                         btrfs_free_device(device);
1213                 }
1214         }
1215         if (fs_devices->open_devices == 0)
1216                 return -EINVAL;
1217
1218         fs_devices->opened = 1;
1219         fs_devices->latest_bdev = latest_dev->bdev;
1220         fs_devices->total_rw_bytes = 0;
1221         fs_devices->chunk_alloc_policy = BTRFS_CHUNK_ALLOC_REGULAR;
1222         fs_devices->read_policy = BTRFS_READ_POLICY_PID;
1223
1224         return 0;
1225 }
1226
1227 static int devid_cmp(void *priv, const struct list_head *a,
1228                      const struct list_head *b)
1229 {
1230         struct btrfs_device *dev1, *dev2;
1231
1232         dev1 = list_entry(a, struct btrfs_device, dev_list);
1233         dev2 = list_entry(b, struct btrfs_device, dev_list);
1234
1235         if (dev1->devid < dev2->devid)
1236                 return -1;
1237         else if (dev1->devid > dev2->devid)
1238                 return 1;
1239         return 0;
1240 }
1241
1242 int btrfs_open_devices(struct btrfs_fs_devices *fs_devices,
1243                        fmode_t flags, void *holder)
1244 {
1245         int ret;
1246
1247         lockdep_assert_held(&uuid_mutex);
1248         /*
1249          * The device_list_mutex cannot be taken here in case opening the
1250          * underlying device takes further locks like bd_mutex.
1251          *
1252          * We also don't need the lock here as this is called during mount and
1253          * exclusion is provided by uuid_mutex
1254          */
1255
1256         if (fs_devices->opened) {
1257                 fs_devices->opened++;
1258                 ret = 0;
1259         } else {
1260                 list_sort(NULL, &fs_devices->devices, devid_cmp);
1261                 ret = open_fs_devices(fs_devices, flags, holder);
1262         }
1263
1264         return ret;
1265 }
1266
1267 void btrfs_release_disk_super(struct btrfs_super_block *super)
1268 {
1269         struct page *page = virt_to_page(super);
1270
1271         put_page(page);
1272 }
1273
1274 static struct btrfs_super_block *btrfs_read_disk_super(struct block_device *bdev,
1275                                                        u64 bytenr, u64 bytenr_orig)
1276 {
1277         struct btrfs_super_block *disk_super;
1278         struct page *page;
1279         void *p;
1280         pgoff_t index;
1281
1282         /* make sure our super fits in the device */
1283         if (bytenr + PAGE_SIZE >= i_size_read(bdev->bd_inode))
1284                 return ERR_PTR(-EINVAL);
1285
1286         /* make sure our super fits in the page */
1287         if (sizeof(*disk_super) > PAGE_SIZE)
1288                 return ERR_PTR(-EINVAL);
1289
1290         /* make sure our super doesn't straddle pages on disk */
1291         index = bytenr >> PAGE_SHIFT;
1292         if ((bytenr + sizeof(*disk_super) - 1) >> PAGE_SHIFT != index)
1293                 return ERR_PTR(-EINVAL);
1294
1295         /* pull in the page with our super */
1296         page = read_cache_page_gfp(bdev->bd_inode->i_mapping, index, GFP_KERNEL);
1297
1298         if (IS_ERR(page))
1299                 return ERR_CAST(page);
1300
1301         p = page_address(page);
1302
1303         /* align our pointer to the offset of the super block */
1304         disk_super = p + offset_in_page(bytenr);
1305
1306         if (btrfs_super_bytenr(disk_super) != bytenr_orig ||
1307             btrfs_super_magic(disk_super) != BTRFS_MAGIC) {
1308                 btrfs_release_disk_super(p);
1309                 return ERR_PTR(-EINVAL);
1310         }
1311
1312         if (disk_super->label[0] && disk_super->label[BTRFS_LABEL_SIZE - 1])
1313                 disk_super->label[BTRFS_LABEL_SIZE - 1] = 0;
1314
1315         return disk_super;
1316 }
1317
1318 int btrfs_forget_devices(const char *path)
1319 {
1320         int ret;
1321
1322         mutex_lock(&uuid_mutex);
1323         ret = btrfs_free_stale_devices(strlen(path) ? path : NULL, NULL);
1324         mutex_unlock(&uuid_mutex);
1325
1326         return ret;
1327 }
1328
1329 /*
1330  * Look for a btrfs signature on a device. This may be called out of the mount path
1331  * and we are not allowed to call set_blocksize during the scan. The superblock
1332  * is read via pagecache
1333  */
1334 struct btrfs_device *btrfs_scan_one_device(const char *path, fmode_t flags,
1335                                            void *holder)
1336 {
1337         struct btrfs_super_block *disk_super;
1338         bool new_device_added = false;
1339         struct btrfs_device *device = NULL;
1340         struct block_device *bdev;
1341         u64 bytenr, bytenr_orig;
1342         int ret;
1343
1344         lockdep_assert_held(&uuid_mutex);
1345
1346         /*
1347          * we would like to check all the supers, but that would make
1348          * a btrfs mount succeed after a mkfs from a different FS.
1349          * So, we need to add a special mount option to scan for
1350          * later supers, using BTRFS_SUPER_MIRROR_MAX instead
1351          */
1352         flags |= FMODE_EXCL;
1353
1354         bdev = blkdev_get_by_path(path, flags, holder);
1355         if (IS_ERR(bdev))
1356                 return ERR_CAST(bdev);
1357
1358         bytenr_orig = btrfs_sb_offset(0);
1359         ret = btrfs_sb_log_location_bdev(bdev, 0, READ, &bytenr);
1360         if (ret)
1361                 return ERR_PTR(ret);
1362
1363         disk_super = btrfs_read_disk_super(bdev, bytenr, bytenr_orig);
1364         if (IS_ERR(disk_super)) {
1365                 device = ERR_CAST(disk_super);
1366                 goto error_bdev_put;
1367         }
1368
1369         device = device_list_add(path, disk_super, &new_device_added);
1370         if (!IS_ERR(device)) {
1371                 if (new_device_added)
1372                         btrfs_free_stale_devices(path, device);
1373         }
1374
1375         btrfs_release_disk_super(disk_super);
1376
1377 error_bdev_put:
1378         blkdev_put(bdev, flags);
1379
1380         return device;
1381 }
1382
1383 /*
1384  * Try to find a chunk that intersects [start, start + len] range and when one
1385  * such is found, record the end of it in *start
1386  */
1387 static bool contains_pending_extent(struct btrfs_device *device, u64 *start,
1388                                     u64 len)
1389 {
1390         u64 physical_start, physical_end;
1391
1392         lockdep_assert_held(&device->fs_info->chunk_mutex);
1393
1394         if (!find_first_extent_bit(&device->alloc_state, *start,
1395                                    &physical_start, &physical_end,
1396                                    CHUNK_ALLOCATED, NULL)) {
1397
1398                 if (in_range(physical_start, *start, len) ||
1399                     in_range(*start, physical_start,
1400                              physical_end - physical_start)) {
1401                         *start = physical_end + 1;
1402                         return true;
1403                 }
1404         }
1405         return false;
1406 }
1407
1408 static u64 dev_extent_search_start(struct btrfs_device *device, u64 start)
1409 {
1410         switch (device->fs_devices->chunk_alloc_policy) {
1411         case BTRFS_CHUNK_ALLOC_REGULAR:
1412                 /*
1413                  * We don't want to overwrite the superblock on the drive nor
1414                  * any area used by the boot loader (grub for example), so we
1415                  * make sure to start at an offset of at least 1MB.
1416                  */
1417                 return max_t(u64, start, SZ_1M);
1418         case BTRFS_CHUNK_ALLOC_ZONED:
1419                 /*
1420                  * We don't care about the starting region like regular
1421                  * allocator, because we anyway use/reserve the first two zones
1422                  * for superblock logging.
1423                  */
1424                 return ALIGN(start, device->zone_info->zone_size);
1425         default:
1426                 BUG();
1427         }
1428 }
1429
1430 static bool dev_extent_hole_check_zoned(struct btrfs_device *device,
1431                                         u64 *hole_start, u64 *hole_size,
1432                                         u64 num_bytes)
1433 {
1434         u64 zone_size = device->zone_info->zone_size;
1435         u64 pos;
1436         int ret;
1437         bool changed = false;
1438
1439         ASSERT(IS_ALIGNED(*hole_start, zone_size));
1440
1441         while (*hole_size > 0) {
1442                 pos = btrfs_find_allocatable_zones(device, *hole_start,
1443                                                    *hole_start + *hole_size,
1444                                                    num_bytes);
1445                 if (pos != *hole_start) {
1446                         *hole_size = *hole_start + *hole_size - pos;
1447                         *hole_start = pos;
1448                         changed = true;
1449                         if (*hole_size < num_bytes)
1450                                 break;
1451                 }
1452
1453                 ret = btrfs_ensure_empty_zones(device, pos, num_bytes);
1454
1455                 /* Range is ensured to be empty */
1456                 if (!ret)
1457                         return changed;
1458
1459                 /* Given hole range was invalid (outside of device) */
1460                 if (ret == -ERANGE) {
1461                         *hole_start += *hole_size;
1462                         *hole_size = 0;
1463                         return true;
1464                 }
1465
1466                 *hole_start += zone_size;
1467                 *hole_size -= zone_size;
1468                 changed = true;
1469         }
1470
1471         return changed;
1472 }
1473
1474 /**
1475  * dev_extent_hole_check - check if specified hole is suitable for allocation
1476  * @device:     the device which we have the hole
1477  * @hole_start: starting position of the hole
1478  * @hole_size:  the size of the hole
1479  * @num_bytes:  the size of the free space that we need
1480  *
1481  * This function may modify @hole_start and @hole_size to reflect the suitable
1482  * position for allocation. Returns 1 if hole position is updated, 0 otherwise.
1483  */
1484 static bool dev_extent_hole_check(struct btrfs_device *device, u64 *hole_start,
1485                                   u64 *hole_size, u64 num_bytes)
1486 {
1487         bool changed = false;
1488         u64 hole_end = *hole_start + *hole_size;
1489
1490         for (;;) {
1491                 /*
1492                  * Check before we set max_hole_start, otherwise we could end up
1493                  * sending back this offset anyway.
1494                  */
1495                 if (contains_pending_extent(device, hole_start, *hole_size)) {
1496                         if (hole_end >= *hole_start)
1497                                 *hole_size = hole_end - *hole_start;
1498                         else
1499                                 *hole_size = 0;
1500                         changed = true;
1501                 }
1502
1503                 switch (device->fs_devices->chunk_alloc_policy) {
1504                 case BTRFS_CHUNK_ALLOC_REGULAR:
1505                         /* No extra check */
1506                         break;
1507                 case BTRFS_CHUNK_ALLOC_ZONED:
1508                         if (dev_extent_hole_check_zoned(device, hole_start,
1509                                                         hole_size, num_bytes)) {
1510                                 changed = true;
1511                                 /*
1512                                  * The changed hole can contain pending extent.
1513                                  * Loop again to check that.
1514                                  */
1515                                 continue;
1516                         }
1517                         break;
1518                 default:
1519                         BUG();
1520                 }
1521
1522                 break;
1523         }
1524
1525         return changed;
1526 }
1527
1528 /*
1529  * find_free_dev_extent_start - find free space in the specified device
1530  * @device:       the device which we search the free space in
1531  * @num_bytes:    the size of the free space that we need
1532  * @search_start: the position from which to begin the search
1533  * @start:        store the start of the free space.
1534  * @len:          the size of the free space. that we find, or the size
1535  *                of the max free space if we don't find suitable free space
1536  *
1537  * this uses a pretty simple search, the expectation is that it is
1538  * called very infrequently and that a given device has a small number
1539  * of extents
1540  *
1541  * @start is used to store the start of the free space if we find. But if we
1542  * don't find suitable free space, it will be used to store the start position
1543  * of the max free space.
1544  *
1545  * @len is used to store the size of the free space that we find.
1546  * But if we don't find suitable free space, it is used to store the size of
1547  * the max free space.
1548  *
1549  * NOTE: This function will search *commit* root of device tree, and does extra
1550  * check to ensure dev extents are not double allocated.
1551  * This makes the function safe to allocate dev extents but may not report
1552  * correct usable device space, as device extent freed in current transaction
1553  * is not reported as avaiable.
1554  */
1555 static int find_free_dev_extent_start(struct btrfs_device *device,
1556                                 u64 num_bytes, u64 search_start, u64 *start,
1557                                 u64 *len)
1558 {
1559         struct btrfs_fs_info *fs_info = device->fs_info;
1560         struct btrfs_root *root = fs_info->dev_root;
1561         struct btrfs_key key;
1562         struct btrfs_dev_extent *dev_extent;
1563         struct btrfs_path *path;
1564         u64 hole_size;
1565         u64 max_hole_start;
1566         u64 max_hole_size;
1567         u64 extent_end;
1568         u64 search_end = device->total_bytes;
1569         int ret;
1570         int slot;
1571         struct extent_buffer *l;
1572
1573         search_start = dev_extent_search_start(device, search_start);
1574
1575         WARN_ON(device->zone_info &&
1576                 !IS_ALIGNED(num_bytes, device->zone_info->zone_size));
1577
1578         path = btrfs_alloc_path();
1579         if (!path)
1580                 return -ENOMEM;
1581
1582         max_hole_start = search_start;
1583         max_hole_size = 0;
1584
1585 again:
1586         if (search_start >= search_end ||
1587                 test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) {
1588                 ret = -ENOSPC;
1589                 goto out;
1590         }
1591
1592         path->reada = READA_FORWARD;
1593         path->search_commit_root = 1;
1594         path->skip_locking = 1;
1595
1596         key.objectid = device->devid;
1597         key.offset = search_start;
1598         key.type = BTRFS_DEV_EXTENT_KEY;
1599
1600         ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1601         if (ret < 0)
1602                 goto out;
1603         if (ret > 0) {
1604                 ret = btrfs_previous_item(root, path, key.objectid, key.type);
1605                 if (ret < 0)
1606                         goto out;
1607         }
1608
1609         while (1) {
1610                 l = path->nodes[0];
1611                 slot = path->slots[0];
1612                 if (slot >= btrfs_header_nritems(l)) {
1613                         ret = btrfs_next_leaf(root, path);
1614                         if (ret == 0)
1615                                 continue;
1616                         if (ret < 0)
1617                                 goto out;
1618
1619                         break;
1620                 }
1621                 btrfs_item_key_to_cpu(l, &key, slot);
1622
1623                 if (key.objectid < device->devid)
1624                         goto next;
1625
1626                 if (key.objectid > device->devid)
1627                         break;
1628
1629                 if (key.type != BTRFS_DEV_EXTENT_KEY)
1630                         goto next;
1631
1632                 if (key.offset > search_start) {
1633                         hole_size = key.offset - search_start;
1634                         dev_extent_hole_check(device, &search_start, &hole_size,
1635                                               num_bytes);
1636
1637                         if (hole_size > max_hole_size) {
1638                                 max_hole_start = search_start;
1639                                 max_hole_size = hole_size;
1640                         }
1641
1642                         /*
1643                          * If this free space is greater than which we need,
1644                          * it must be the max free space that we have found
1645                          * until now, so max_hole_start must point to the start
1646                          * of this free space and the length of this free space
1647                          * is stored in max_hole_size. Thus, we return
1648                          * max_hole_start and max_hole_size and go back to the
1649                          * caller.
1650                          */
1651                         if (hole_size >= num_bytes) {
1652                                 ret = 0;
1653                                 goto out;
1654                         }
1655                 }
1656
1657                 dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
1658                 extent_end = key.offset + btrfs_dev_extent_length(l,
1659                                                                   dev_extent);
1660                 if (extent_end > search_start)
1661                         search_start = extent_end;
1662 next:
1663                 path->slots[0]++;
1664                 cond_resched();
1665         }
1666
1667         /*
1668          * At this point, search_start should be the end of
1669          * allocated dev extents, and when shrinking the device,
1670          * search_end may be smaller than search_start.
1671          */
1672         if (search_end > search_start) {
1673                 hole_size = search_end - search_start;
1674                 if (dev_extent_hole_check(device, &search_start, &hole_size,
1675                                           num_bytes)) {
1676                         btrfs_release_path(path);
1677                         goto again;
1678                 }
1679
1680                 if (hole_size > max_hole_size) {
1681                         max_hole_start = search_start;
1682                         max_hole_size = hole_size;
1683                 }
1684         }
1685
1686         /* See above. */
1687         if (max_hole_size < num_bytes)
1688                 ret = -ENOSPC;
1689         else
1690                 ret = 0;
1691
1692 out:
1693         btrfs_free_path(path);
1694         *start = max_hole_start;
1695         if (len)
1696                 *len = max_hole_size;
1697         return ret;
1698 }
1699
1700 int find_free_dev_extent(struct btrfs_device *device, u64 num_bytes,
1701                          u64 *start, u64 *len)
1702 {
1703         /* FIXME use last free of some kind */
1704         return find_free_dev_extent_start(device, num_bytes, 0, start, len);
1705 }
1706
1707 static int btrfs_free_dev_extent(struct btrfs_trans_handle *trans,
1708                           struct btrfs_device *device,
1709                           u64 start, u64 *dev_extent_len)
1710 {
1711         struct btrfs_fs_info *fs_info = device->fs_info;
1712         struct btrfs_root *root = fs_info->dev_root;
1713         int ret;
1714         struct btrfs_path *path;
1715         struct btrfs_key key;
1716         struct btrfs_key found_key;
1717         struct extent_buffer *leaf = NULL;
1718         struct btrfs_dev_extent *extent = NULL;
1719
1720         path = btrfs_alloc_path();
1721         if (!path)
1722                 return -ENOMEM;
1723
1724         key.objectid = device->devid;
1725         key.offset = start;
1726         key.type = BTRFS_DEV_EXTENT_KEY;
1727 again:
1728         ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1729         if (ret > 0) {
1730                 ret = btrfs_previous_item(root, path, key.objectid,
1731                                           BTRFS_DEV_EXTENT_KEY);
1732                 if (ret)
1733                         goto out;
1734                 leaf = path->nodes[0];
1735                 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1736                 extent = btrfs_item_ptr(leaf, path->slots[0],
1737                                         struct btrfs_dev_extent);
1738                 BUG_ON(found_key.offset > start || found_key.offset +
1739                        btrfs_dev_extent_length(leaf, extent) < start);
1740                 key = found_key;
1741                 btrfs_release_path(path);
1742                 goto again;
1743         } else if (ret == 0) {
1744                 leaf = path->nodes[0];
1745                 extent = btrfs_item_ptr(leaf, path->slots[0],
1746                                         struct btrfs_dev_extent);
1747         } else {
1748                 btrfs_handle_fs_error(fs_info, ret, "Slot search failed");
1749                 goto out;
1750         }
1751
1752         *dev_extent_len = btrfs_dev_extent_length(leaf, extent);
1753
1754         ret = btrfs_del_item(trans, root, path);
1755         if (ret) {
1756                 btrfs_handle_fs_error(fs_info, ret,
1757                                       "Failed to remove dev extent item");
1758         } else {
1759                 set_bit(BTRFS_TRANS_HAVE_FREE_BGS, &trans->transaction->flags);
1760         }
1761 out:
1762         btrfs_free_path(path);
1763         return ret;
1764 }
1765
1766 static int btrfs_alloc_dev_extent(struct btrfs_trans_handle *trans,
1767                                   struct btrfs_device *device,
1768                                   u64 chunk_offset, u64 start, u64 num_bytes)
1769 {
1770         int ret;
1771         struct btrfs_path *path;
1772         struct btrfs_fs_info *fs_info = device->fs_info;
1773         struct btrfs_root *root = fs_info->dev_root;
1774         struct btrfs_dev_extent *extent;
1775         struct extent_buffer *leaf;
1776         struct btrfs_key key;
1777
1778         WARN_ON(!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state));
1779         WARN_ON(test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state));
1780         path = btrfs_alloc_path();
1781         if (!path)
1782                 return -ENOMEM;
1783
1784         key.objectid = device->devid;
1785         key.offset = start;
1786         key.type = BTRFS_DEV_EXTENT_KEY;
1787         ret = btrfs_insert_empty_item(trans, root, path, &key,
1788                                       sizeof(*extent));
1789         if (ret)
1790                 goto out;
1791
1792         leaf = path->nodes[0];
1793         extent = btrfs_item_ptr(leaf, path->slots[0],
1794                                 struct btrfs_dev_extent);
1795         btrfs_set_dev_extent_chunk_tree(leaf, extent,
1796                                         BTRFS_CHUNK_TREE_OBJECTID);
1797         btrfs_set_dev_extent_chunk_objectid(leaf, extent,
1798                                             BTRFS_FIRST_CHUNK_TREE_OBJECTID);
1799         btrfs_set_dev_extent_chunk_offset(leaf, extent, chunk_offset);
1800
1801         btrfs_set_dev_extent_length(leaf, extent, num_bytes);
1802         btrfs_mark_buffer_dirty(leaf);
1803 out:
1804         btrfs_free_path(path);
1805         return ret;
1806 }
1807
1808 static u64 find_next_chunk(struct btrfs_fs_info *fs_info)
1809 {
1810         struct extent_map_tree *em_tree;
1811         struct extent_map *em;
1812         struct rb_node *n;
1813         u64 ret = 0;
1814
1815         em_tree = &fs_info->mapping_tree;
1816         read_lock(&em_tree->lock);
1817         n = rb_last(&em_tree->map.rb_root);
1818         if (n) {
1819                 em = rb_entry(n, struct extent_map, rb_node);
1820                 ret = em->start + em->len;
1821         }
1822         read_unlock(&em_tree->lock);
1823
1824         return ret;
1825 }
1826
1827 static noinline int find_next_devid(struct btrfs_fs_info *fs_info,
1828                                     u64 *devid_ret)
1829 {
1830         int ret;
1831         struct btrfs_key key;
1832         struct btrfs_key found_key;
1833         struct btrfs_path *path;
1834
1835         path = btrfs_alloc_path();
1836         if (!path)
1837                 return -ENOMEM;
1838
1839         key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1840         key.type = BTRFS_DEV_ITEM_KEY;
1841         key.offset = (u64)-1;
1842
1843         ret = btrfs_search_slot(NULL, fs_info->chunk_root, &key, path, 0, 0);
1844         if (ret < 0)
1845                 goto error;
1846
1847         if (ret == 0) {
1848                 /* Corruption */
1849                 btrfs_err(fs_info, "corrupted chunk tree devid -1 matched");
1850                 ret = -EUCLEAN;
1851                 goto error;
1852         }
1853
1854         ret = btrfs_previous_item(fs_info->chunk_root, path,
1855                                   BTRFS_DEV_ITEMS_OBJECTID,
1856                                   BTRFS_DEV_ITEM_KEY);
1857         if (ret) {
1858                 *devid_ret = 1;
1859         } else {
1860                 btrfs_item_key_to_cpu(path->nodes[0], &found_key,
1861                                       path->slots[0]);
1862                 *devid_ret = found_key.offset + 1;
1863         }
1864         ret = 0;
1865 error:
1866         btrfs_free_path(path);
1867         return ret;
1868 }
1869
1870 /*
1871  * the device information is stored in the chunk root
1872  * the btrfs_device struct should be fully filled in
1873  */
1874 static int btrfs_add_dev_item(struct btrfs_trans_handle *trans,
1875                             struct btrfs_device *device)
1876 {
1877         int ret;
1878         struct btrfs_path *path;
1879         struct btrfs_dev_item *dev_item;
1880         struct extent_buffer *leaf;
1881         struct btrfs_key key;
1882         unsigned long ptr;
1883
1884         path = btrfs_alloc_path();
1885         if (!path)
1886                 return -ENOMEM;
1887
1888         key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1889         key.type = BTRFS_DEV_ITEM_KEY;
1890         key.offset = device->devid;
1891
1892         ret = btrfs_insert_empty_item(trans, trans->fs_info->chunk_root, path,
1893                                       &key, sizeof(*dev_item));
1894         if (ret)
1895                 goto out;
1896
1897         leaf = path->nodes[0];
1898         dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item);
1899
1900         btrfs_set_device_id(leaf, dev_item, device->devid);
1901         btrfs_set_device_generation(leaf, dev_item, 0);
1902         btrfs_set_device_type(leaf, dev_item, device->type);
1903         btrfs_set_device_io_align(leaf, dev_item, device->io_align);
1904         btrfs_set_device_io_width(leaf, dev_item, device->io_width);
1905         btrfs_set_device_sector_size(leaf, dev_item, device->sector_size);
1906         btrfs_set_device_total_bytes(leaf, dev_item,
1907                                      btrfs_device_get_disk_total_bytes(device));
1908         btrfs_set_device_bytes_used(leaf, dev_item,
1909                                     btrfs_device_get_bytes_used(device));
1910         btrfs_set_device_group(leaf, dev_item, 0);
1911         btrfs_set_device_seek_speed(leaf, dev_item, 0);
1912         btrfs_set_device_bandwidth(leaf, dev_item, 0);
1913         btrfs_set_device_start_offset(leaf, dev_item, 0);
1914
1915         ptr = btrfs_device_uuid(dev_item);
1916         write_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE);
1917         ptr = btrfs_device_fsid(dev_item);
1918         write_extent_buffer(leaf, trans->fs_info->fs_devices->metadata_uuid,
1919                             ptr, BTRFS_FSID_SIZE);
1920         btrfs_mark_buffer_dirty(leaf);
1921
1922         ret = 0;
1923 out:
1924         btrfs_free_path(path);
1925         return ret;
1926 }
1927
1928 /*
1929  * Function to update ctime/mtime for a given device path.
1930  * Mainly used for ctime/mtime based probe like libblkid.
1931  */
1932 static void update_dev_time(const char *path_name)
1933 {
1934         struct file *filp;
1935
1936         filp = filp_open(path_name, O_RDWR, 0);
1937         if (IS_ERR(filp))
1938                 return;
1939         file_update_time(filp);
1940         filp_close(filp, NULL);
1941 }
1942
1943 static int btrfs_rm_dev_item(struct btrfs_device *device)
1944 {
1945         struct btrfs_root *root = device->fs_info->chunk_root;
1946         int ret;
1947         struct btrfs_path *path;
1948         struct btrfs_key key;
1949         struct btrfs_trans_handle *trans;
1950
1951         path = btrfs_alloc_path();
1952         if (!path)
1953                 return -ENOMEM;
1954
1955         trans = btrfs_start_transaction(root, 0);
1956         if (IS_ERR(trans)) {
1957                 btrfs_free_path(path);
1958                 return PTR_ERR(trans);
1959         }
1960         key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1961         key.type = BTRFS_DEV_ITEM_KEY;
1962         key.offset = device->devid;
1963
1964         ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1965         if (ret) {
1966                 if (ret > 0)
1967                         ret = -ENOENT;
1968                 btrfs_abort_transaction(trans, ret);
1969                 btrfs_end_transaction(trans);
1970                 goto out;
1971         }
1972
1973         ret = btrfs_del_item(trans, root, path);
1974         if (ret) {
1975                 btrfs_abort_transaction(trans, ret);
1976                 btrfs_end_transaction(trans);
1977         }
1978
1979 out:
1980         btrfs_free_path(path);
1981         if (!ret)
1982                 ret = btrfs_commit_transaction(trans);
1983         return ret;
1984 }
1985
1986 /*
1987  * Verify that @num_devices satisfies the RAID profile constraints in the whole
1988  * filesystem. It's up to the caller to adjust that number regarding eg. device
1989  * replace.
1990  */
1991 static int btrfs_check_raid_min_devices(struct btrfs_fs_info *fs_info,
1992                 u64 num_devices)
1993 {
1994         u64 all_avail;
1995         unsigned seq;
1996         int i;
1997
1998         do {
1999                 seq = read_seqbegin(&fs_info->profiles_lock);
2000
2001                 all_avail = fs_info->avail_data_alloc_bits |
2002                             fs_info->avail_system_alloc_bits |
2003                             fs_info->avail_metadata_alloc_bits;
2004         } while (read_seqretry(&fs_info->profiles_lock, seq));
2005
2006         for (i = 0; i < BTRFS_NR_RAID_TYPES; i++) {
2007                 if (!(all_avail & btrfs_raid_array[i].bg_flag))
2008                         continue;
2009
2010                 if (num_devices < btrfs_raid_array[i].devs_min) {
2011                         int ret = btrfs_raid_array[i].mindev_error;
2012
2013                         if (ret)
2014                                 return ret;
2015                 }
2016         }
2017
2018         return 0;
2019 }
2020
2021 static struct btrfs_device * btrfs_find_next_active_device(
2022                 struct btrfs_fs_devices *fs_devs, struct btrfs_device *device)
2023 {
2024         struct btrfs_device *next_device;
2025
2026         list_for_each_entry(next_device, &fs_devs->devices, dev_list) {
2027                 if (next_device != device &&
2028                     !test_bit(BTRFS_DEV_STATE_MISSING, &next_device->dev_state)
2029                     && next_device->bdev)
2030                         return next_device;
2031         }
2032
2033         return NULL;
2034 }
2035
2036 /*
2037  * Helper function to check if the given device is part of s_bdev / latest_bdev
2038  * and replace it with the provided or the next active device, in the context
2039  * where this function called, there should be always be another device (or
2040  * this_dev) which is active.
2041  */
2042 void __cold btrfs_assign_next_active_device(struct btrfs_device *device,
2043                                             struct btrfs_device *next_device)
2044 {
2045         struct btrfs_fs_info *fs_info = device->fs_info;
2046
2047         if (!next_device)
2048                 next_device = btrfs_find_next_active_device(fs_info->fs_devices,
2049                                                             device);
2050         ASSERT(next_device);
2051
2052         if (fs_info->sb->s_bdev &&
2053                         (fs_info->sb->s_bdev == device->bdev))
2054                 fs_info->sb->s_bdev = next_device->bdev;
2055
2056         if (fs_info->fs_devices->latest_bdev == device->bdev)
2057                 fs_info->fs_devices->latest_bdev = next_device->bdev;
2058 }
2059
2060 /*
2061  * Return btrfs_fs_devices::num_devices excluding the device that's being
2062  * currently replaced.
2063  */
2064 static u64 btrfs_num_devices(struct btrfs_fs_info *fs_info)
2065 {
2066         u64 num_devices = fs_info->fs_devices->num_devices;
2067
2068         down_read(&fs_info->dev_replace.rwsem);
2069         if (btrfs_dev_replace_is_ongoing(&fs_info->dev_replace)) {
2070                 ASSERT(num_devices > 1);
2071                 num_devices--;
2072         }
2073         up_read(&fs_info->dev_replace.rwsem);
2074
2075         return num_devices;
2076 }
2077
2078 void btrfs_scratch_superblocks(struct btrfs_fs_info *fs_info,
2079                                struct block_device *bdev,
2080                                const char *device_path)
2081 {
2082         struct btrfs_super_block *disk_super;
2083         int copy_num;
2084
2085         if (!bdev)
2086                 return;
2087
2088         for (copy_num = 0; copy_num < BTRFS_SUPER_MIRROR_MAX; copy_num++) {
2089                 struct page *page;
2090                 int ret;
2091
2092                 disk_super = btrfs_read_dev_one_super(bdev, copy_num);
2093                 if (IS_ERR(disk_super))
2094                         continue;
2095
2096                 if (bdev_is_zoned(bdev)) {
2097                         btrfs_reset_sb_log_zones(bdev, copy_num);
2098                         continue;
2099                 }
2100
2101                 memset(&disk_super->magic, 0, sizeof(disk_super->magic));
2102
2103                 page = virt_to_page(disk_super);
2104                 set_page_dirty(page);
2105                 lock_page(page);
2106                 /* write_on_page() unlocks the page */
2107                 ret = write_one_page(page);
2108                 if (ret)
2109                         btrfs_warn(fs_info,
2110                                 "error clearing superblock number %d (%d)",
2111                                 copy_num, ret);
2112                 btrfs_release_disk_super(disk_super);
2113
2114         }
2115
2116         /* Notify udev that device has changed */
2117         btrfs_kobject_uevent(bdev, KOBJ_CHANGE);
2118
2119         /* Update ctime/mtime for device path for libblkid */
2120         update_dev_time(device_path);
2121 }
2122
2123 int btrfs_rm_device(struct btrfs_fs_info *fs_info, const char *device_path,
2124                     u64 devid)
2125 {
2126         struct btrfs_device *device;
2127         struct btrfs_fs_devices *cur_devices;
2128         struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
2129         u64 num_devices;
2130         int ret = 0;
2131
2132         mutex_lock(&uuid_mutex);
2133
2134         num_devices = btrfs_num_devices(fs_info);
2135
2136         ret = btrfs_check_raid_min_devices(fs_info, num_devices - 1);
2137         if (ret)
2138                 goto out;
2139
2140         device = btrfs_find_device_by_devspec(fs_info, devid, device_path);
2141
2142         if (IS_ERR(device)) {
2143                 if (PTR_ERR(device) == -ENOENT &&
2144                     strcmp(device_path, "missing") == 0)
2145                         ret = BTRFS_ERROR_DEV_MISSING_NOT_FOUND;
2146                 else
2147                         ret = PTR_ERR(device);
2148                 goto out;
2149         }
2150
2151         if (btrfs_pinned_by_swapfile(fs_info, device)) {
2152                 btrfs_warn_in_rcu(fs_info,
2153                   "cannot remove device %s (devid %llu) due to active swapfile",
2154                                   rcu_str_deref(device->name), device->devid);
2155                 ret = -ETXTBSY;
2156                 goto out;
2157         }
2158
2159         if (test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) {
2160                 ret = BTRFS_ERROR_DEV_TGT_REPLACE;
2161                 goto out;
2162         }
2163
2164         if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) &&
2165             fs_info->fs_devices->rw_devices == 1) {
2166                 ret = BTRFS_ERROR_DEV_ONLY_WRITABLE;
2167                 goto out;
2168         }
2169
2170         if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
2171                 mutex_lock(&fs_info->chunk_mutex);
2172                 list_del_init(&device->dev_alloc_list);
2173                 device->fs_devices->rw_devices--;
2174                 mutex_unlock(&fs_info->chunk_mutex);
2175         }
2176
2177         mutex_unlock(&uuid_mutex);
2178         ret = btrfs_shrink_device(device, 0);
2179         if (!ret)
2180                 btrfs_reada_remove_dev(device);
2181         mutex_lock(&uuid_mutex);
2182         if (ret)
2183                 goto error_undo;
2184
2185         /*
2186          * TODO: the superblock still includes this device in its num_devices
2187          * counter although write_all_supers() is not locked out. This
2188          * could give a filesystem state which requires a degraded mount.
2189          */
2190         ret = btrfs_rm_dev_item(device);
2191         if (ret)
2192                 goto error_undo;
2193
2194         clear_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state);
2195         btrfs_scrub_cancel_dev(device);
2196
2197         /*
2198          * the device list mutex makes sure that we don't change
2199          * the device list while someone else is writing out all
2200          * the device supers. Whoever is writing all supers, should
2201          * lock the device list mutex before getting the number of
2202          * devices in the super block (super_copy). Conversely,
2203          * whoever updates the number of devices in the super block
2204          * (super_copy) should hold the device list mutex.
2205          */
2206
2207         /*
2208          * In normal cases the cur_devices == fs_devices. But in case
2209          * of deleting a seed device, the cur_devices should point to
2210          * its own fs_devices listed under the fs_devices->seed.
2211          */
2212         cur_devices = device->fs_devices;
2213         mutex_lock(&fs_devices->device_list_mutex);
2214         list_del_rcu(&device->dev_list);
2215
2216         cur_devices->num_devices--;
2217         cur_devices->total_devices--;
2218         /* Update total_devices of the parent fs_devices if it's seed */
2219         if (cur_devices != fs_devices)
2220                 fs_devices->total_devices--;
2221
2222         if (test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state))
2223                 cur_devices->missing_devices--;
2224
2225         btrfs_assign_next_active_device(device, NULL);
2226
2227         if (device->bdev) {
2228                 cur_devices->open_devices--;
2229                 /* remove sysfs entry */
2230                 btrfs_sysfs_remove_device(device);
2231         }
2232
2233         num_devices = btrfs_super_num_devices(fs_info->super_copy) - 1;
2234         btrfs_set_super_num_devices(fs_info->super_copy, num_devices);
2235         mutex_unlock(&fs_devices->device_list_mutex);
2236
2237         /*
2238          * at this point, the device is zero sized and detached from
2239          * the devices list.  All that's left is to zero out the old
2240          * supers and free the device.
2241          */
2242         if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state))
2243                 btrfs_scratch_superblocks(fs_info, device->bdev,
2244                                           device->name->str);
2245
2246         btrfs_close_bdev(device);
2247         synchronize_rcu();
2248         btrfs_free_device(device);
2249
2250         if (cur_devices->open_devices == 0) {
2251                 list_del_init(&cur_devices->seed_list);
2252                 close_fs_devices(cur_devices);
2253                 free_fs_devices(cur_devices);
2254         }
2255
2256 out:
2257         mutex_unlock(&uuid_mutex);
2258         return ret;
2259
2260 error_undo:
2261         btrfs_reada_undo_remove_dev(device);
2262         if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
2263                 mutex_lock(&fs_info->chunk_mutex);
2264                 list_add(&device->dev_alloc_list,
2265                          &fs_devices->alloc_list);
2266                 device->fs_devices->rw_devices++;
2267                 mutex_unlock(&fs_info->chunk_mutex);
2268         }
2269         goto out;
2270 }
2271
2272 void btrfs_rm_dev_replace_remove_srcdev(struct btrfs_device *srcdev)
2273 {
2274         struct btrfs_fs_devices *fs_devices;
2275
2276         lockdep_assert_held(&srcdev->fs_info->fs_devices->device_list_mutex);
2277
2278         /*
2279          * in case of fs with no seed, srcdev->fs_devices will point
2280          * to fs_devices of fs_info. However when the dev being replaced is
2281          * a seed dev it will point to the seed's local fs_devices. In short
2282          * srcdev will have its correct fs_devices in both the cases.
2283          */
2284         fs_devices = srcdev->fs_devices;
2285
2286         list_del_rcu(&srcdev->dev_list);
2287         list_del(&srcdev->dev_alloc_list);
2288         fs_devices->num_devices--;
2289         if (test_bit(BTRFS_DEV_STATE_MISSING, &srcdev->dev_state))
2290                 fs_devices->missing_devices--;
2291
2292         if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &srcdev->dev_state))
2293                 fs_devices->rw_devices--;
2294
2295         if (srcdev->bdev)
2296                 fs_devices->open_devices--;
2297 }
2298
2299 void btrfs_rm_dev_replace_free_srcdev(struct btrfs_device *srcdev)
2300 {
2301         struct btrfs_fs_devices *fs_devices = srcdev->fs_devices;
2302
2303         mutex_lock(&uuid_mutex);
2304
2305         btrfs_close_bdev(srcdev);
2306         synchronize_rcu();
2307         btrfs_free_device(srcdev);
2308
2309         /* if this is no devs we rather delete the fs_devices */
2310         if (!fs_devices->num_devices) {
2311                 /*
2312                  * On a mounted FS, num_devices can't be zero unless it's a
2313                  * seed. In case of a seed device being replaced, the replace
2314                  * target added to the sprout FS, so there will be no more
2315                  * device left under the seed FS.
2316                  */
2317                 ASSERT(fs_devices->seeding);
2318
2319                 list_del_init(&fs_devices->seed_list);
2320                 close_fs_devices(fs_devices);
2321                 free_fs_devices(fs_devices);
2322         }
2323         mutex_unlock(&uuid_mutex);
2324 }
2325
2326 void btrfs_destroy_dev_replace_tgtdev(struct btrfs_device *tgtdev)
2327 {
2328         struct btrfs_fs_devices *fs_devices = tgtdev->fs_info->fs_devices;
2329
2330         mutex_lock(&fs_devices->device_list_mutex);
2331
2332         btrfs_sysfs_remove_device(tgtdev);
2333
2334         if (tgtdev->bdev)
2335                 fs_devices->open_devices--;
2336
2337         fs_devices->num_devices--;
2338
2339         btrfs_assign_next_active_device(tgtdev, NULL);
2340
2341         list_del_rcu(&tgtdev->dev_list);
2342
2343         mutex_unlock(&fs_devices->device_list_mutex);
2344
2345         /*
2346          * The update_dev_time() with in btrfs_scratch_superblocks()
2347          * may lead to a call to btrfs_show_devname() which will try
2348          * to hold device_list_mutex. And here this device
2349          * is already out of device list, so we don't have to hold
2350          * the device_list_mutex lock.
2351          */
2352         btrfs_scratch_superblocks(tgtdev->fs_info, tgtdev->bdev,
2353                                   tgtdev->name->str);
2354
2355         btrfs_close_bdev(tgtdev);
2356         synchronize_rcu();
2357         btrfs_free_device(tgtdev);
2358 }
2359
2360 static struct btrfs_device *btrfs_find_device_by_path(
2361                 struct btrfs_fs_info *fs_info, const char *device_path)
2362 {
2363         int ret = 0;
2364         struct btrfs_super_block *disk_super;
2365         u64 devid;
2366         u8 *dev_uuid;
2367         struct block_device *bdev;
2368         struct btrfs_device *device;
2369
2370         ret = btrfs_get_bdev_and_sb(device_path, FMODE_READ,
2371                                     fs_info->bdev_holder, 0, &bdev, &disk_super);
2372         if (ret)
2373                 return ERR_PTR(ret);
2374
2375         devid = btrfs_stack_device_id(&disk_super->dev_item);
2376         dev_uuid = disk_super->dev_item.uuid;
2377         if (btrfs_fs_incompat(fs_info, METADATA_UUID))
2378                 device = btrfs_find_device(fs_info->fs_devices, devid, dev_uuid,
2379                                            disk_super->metadata_uuid);
2380         else
2381                 device = btrfs_find_device(fs_info->fs_devices, devid, dev_uuid,
2382                                            disk_super->fsid);
2383
2384         btrfs_release_disk_super(disk_super);
2385         if (!device)
2386                 device = ERR_PTR(-ENOENT);
2387         blkdev_put(bdev, FMODE_READ);
2388         return device;
2389 }
2390
2391 /*
2392  * Lookup a device given by device id, or the path if the id is 0.
2393  */
2394 struct btrfs_device *btrfs_find_device_by_devspec(
2395                 struct btrfs_fs_info *fs_info, u64 devid,
2396                 const char *device_path)
2397 {
2398         struct btrfs_device *device;
2399
2400         if (devid) {
2401                 device = btrfs_find_device(fs_info->fs_devices, devid, NULL,
2402                                            NULL);
2403                 if (!device)
2404                         return ERR_PTR(-ENOENT);
2405                 return device;
2406         }
2407
2408         if (!device_path || !device_path[0])
2409                 return ERR_PTR(-EINVAL);
2410
2411         if (strcmp(device_path, "missing") == 0) {
2412                 /* Find first missing device */
2413                 list_for_each_entry(device, &fs_info->fs_devices->devices,
2414                                     dev_list) {
2415                         if (test_bit(BTRFS_DEV_STATE_IN_FS_METADATA,
2416                                      &device->dev_state) && !device->bdev)
2417                                 return device;
2418                 }
2419                 return ERR_PTR(-ENOENT);
2420         }
2421
2422         return btrfs_find_device_by_path(fs_info, device_path);
2423 }
2424
2425 /*
2426  * does all the dirty work required for changing file system's UUID.
2427  */
2428 static int btrfs_prepare_sprout(struct btrfs_fs_info *fs_info)
2429 {
2430         struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
2431         struct btrfs_fs_devices *old_devices;
2432         struct btrfs_fs_devices *seed_devices;
2433         struct btrfs_super_block *disk_super = fs_info->super_copy;
2434         struct btrfs_device *device;
2435         u64 super_flags;
2436
2437         lockdep_assert_held(&uuid_mutex);
2438         if (!fs_devices->seeding)
2439                 return -EINVAL;
2440
2441         /*
2442          * Private copy of the seed devices, anchored at
2443          * fs_info->fs_devices->seed_list
2444          */
2445         seed_devices = alloc_fs_devices(NULL, NULL);
2446         if (IS_ERR(seed_devices))
2447                 return PTR_ERR(seed_devices);
2448
2449         /*
2450          * It's necessary to retain a copy of the original seed fs_devices in
2451          * fs_uuids so that filesystems which have been seeded can successfully
2452          * reference the seed device from open_seed_devices. This also supports
2453          * multiple fs seed.
2454          */
2455         old_devices = clone_fs_devices(fs_devices);
2456         if (IS_ERR(old_devices)) {
2457                 kfree(seed_devices);
2458                 return PTR_ERR(old_devices);
2459         }
2460
2461         list_add(&old_devices->fs_list, &fs_uuids);
2462
2463         memcpy(seed_devices, fs_devices, sizeof(*seed_devices));
2464         seed_devices->opened = 1;
2465         INIT_LIST_HEAD(&seed_devices->devices);
2466         INIT_LIST_HEAD(&seed_devices->alloc_list);
2467         mutex_init(&seed_devices->device_list_mutex);
2468
2469         mutex_lock(&fs_devices->device_list_mutex);
2470         list_splice_init_rcu(&fs_devices->devices, &seed_devices->devices,
2471                               synchronize_rcu);
2472         list_for_each_entry(device, &seed_devices->devices, dev_list)
2473                 device->fs_devices = seed_devices;
2474
2475         fs_devices->seeding = false;
2476         fs_devices->num_devices = 0;
2477         fs_devices->open_devices = 0;
2478         fs_devices->missing_devices = 0;
2479         fs_devices->rotating = false;
2480         list_add(&seed_devices->seed_list, &fs_devices->seed_list);
2481
2482         generate_random_uuid(fs_devices->fsid);
2483         memcpy(fs_devices->metadata_uuid, fs_devices->fsid, BTRFS_FSID_SIZE);
2484         memcpy(disk_super->fsid, fs_devices->fsid, BTRFS_FSID_SIZE);
2485         mutex_unlock(&fs_devices->device_list_mutex);
2486
2487         super_flags = btrfs_super_flags(disk_super) &
2488                       ~BTRFS_SUPER_FLAG_SEEDING;
2489         btrfs_set_super_flags(disk_super, super_flags);
2490
2491         return 0;
2492 }
2493
2494 /*
2495  * Store the expected generation for seed devices in device items.
2496  */
2497 static int btrfs_finish_sprout(struct btrfs_trans_handle *trans)
2498 {
2499         struct btrfs_fs_info *fs_info = trans->fs_info;
2500         struct btrfs_root *root = fs_info->chunk_root;
2501         struct btrfs_path *path;
2502         struct extent_buffer *leaf;
2503         struct btrfs_dev_item *dev_item;
2504         struct btrfs_device *device;
2505         struct btrfs_key key;
2506         u8 fs_uuid[BTRFS_FSID_SIZE];
2507         u8 dev_uuid[BTRFS_UUID_SIZE];
2508         u64 devid;
2509         int ret;
2510
2511         path = btrfs_alloc_path();
2512         if (!path)
2513                 return -ENOMEM;
2514
2515         key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
2516         key.offset = 0;
2517         key.type = BTRFS_DEV_ITEM_KEY;
2518
2519         while (1) {
2520                 ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
2521                 if (ret < 0)
2522                         goto error;
2523
2524                 leaf = path->nodes[0];
2525 next_slot:
2526                 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
2527                         ret = btrfs_next_leaf(root, path);
2528                         if (ret > 0)
2529                                 break;
2530                         if (ret < 0)
2531                                 goto error;
2532                         leaf = path->nodes[0];
2533                         btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2534                         btrfs_release_path(path);
2535                         continue;
2536                 }
2537
2538                 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2539                 if (key.objectid != BTRFS_DEV_ITEMS_OBJECTID ||
2540                     key.type != BTRFS_DEV_ITEM_KEY)
2541                         break;
2542
2543                 dev_item = btrfs_item_ptr(leaf, path->slots[0],
2544                                           struct btrfs_dev_item);
2545                 devid = btrfs_device_id(leaf, dev_item);
2546                 read_extent_buffer(leaf, dev_uuid, btrfs_device_uuid(dev_item),
2547                                    BTRFS_UUID_SIZE);
2548                 read_extent_buffer(leaf, fs_uuid, btrfs_device_fsid(dev_item),
2549                                    BTRFS_FSID_SIZE);
2550                 device = btrfs_find_device(fs_info->fs_devices, devid, dev_uuid,
2551                                            fs_uuid);
2552                 BUG_ON(!device); /* Logic error */
2553
2554                 if (device->fs_devices->seeding) {
2555                         btrfs_set_device_generation(leaf, dev_item,
2556                                                     device->generation);
2557                         btrfs_mark_buffer_dirty(leaf);
2558                 }
2559
2560                 path->slots[0]++;
2561                 goto next_slot;
2562         }
2563         ret = 0;
2564 error:
2565         btrfs_free_path(path);
2566         return ret;
2567 }
2568
2569 int btrfs_init_new_device(struct btrfs_fs_info *fs_info, const char *device_path)
2570 {
2571         struct btrfs_root *root = fs_info->dev_root;
2572         struct request_queue *q;
2573         struct btrfs_trans_handle *trans;
2574         struct btrfs_device *device;
2575         struct block_device *bdev;
2576         struct super_block *sb = fs_info->sb;
2577         struct rcu_string *name;
2578         struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
2579         u64 orig_super_total_bytes;
2580         u64 orig_super_num_devices;
2581         int seeding_dev = 0;
2582         int ret = 0;
2583         bool locked = false;
2584
2585         if (sb_rdonly(sb) && !fs_devices->seeding)
2586                 return -EROFS;
2587
2588         bdev = blkdev_get_by_path(device_path, FMODE_WRITE | FMODE_EXCL,
2589                                   fs_info->bdev_holder);
2590         if (IS_ERR(bdev))
2591                 return PTR_ERR(bdev);
2592
2593         if (!btrfs_check_device_zone_type(fs_info, bdev)) {
2594                 ret = -EINVAL;
2595                 goto error;
2596         }
2597
2598         if (fs_devices->seeding) {
2599                 seeding_dev = 1;
2600                 down_write(&sb->s_umount);
2601                 mutex_lock(&uuid_mutex);
2602                 locked = true;
2603         }
2604
2605         sync_blockdev(bdev);
2606
2607         rcu_read_lock();
2608         list_for_each_entry_rcu(device, &fs_devices->devices, dev_list) {
2609                 if (device->bdev == bdev) {
2610                         ret = -EEXIST;
2611                         rcu_read_unlock();
2612                         goto error;
2613                 }
2614         }
2615         rcu_read_unlock();
2616
2617         device = btrfs_alloc_device(fs_info, NULL, NULL);
2618         if (IS_ERR(device)) {
2619                 /* we can safely leave the fs_devices entry around */
2620                 ret = PTR_ERR(device);
2621                 goto error;
2622         }
2623
2624         name = rcu_string_strdup(device_path, GFP_KERNEL);
2625         if (!name) {
2626                 ret = -ENOMEM;
2627                 goto error_free_device;
2628         }
2629         rcu_assign_pointer(device->name, name);
2630
2631         device->fs_info = fs_info;
2632         device->bdev = bdev;
2633
2634         ret = btrfs_get_dev_zone_info(device);
2635         if (ret)
2636                 goto error_free_device;
2637
2638         trans = btrfs_start_transaction(root, 0);
2639         if (IS_ERR(trans)) {
2640                 ret = PTR_ERR(trans);
2641                 goto error_free_zone;
2642         }
2643
2644         q = bdev_get_queue(bdev);
2645         set_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
2646         device->generation = trans->transid;
2647         device->io_width = fs_info->sectorsize;
2648         device->io_align = fs_info->sectorsize;
2649         device->sector_size = fs_info->sectorsize;
2650         device->total_bytes = round_down(i_size_read(bdev->bd_inode),
2651                                          fs_info->sectorsize);
2652         device->disk_total_bytes = device->total_bytes;
2653         device->commit_total_bytes = device->total_bytes;
2654         set_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state);
2655         clear_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state);
2656         device->mode = FMODE_EXCL;
2657         device->dev_stats_valid = 1;
2658         set_blocksize(device->bdev, BTRFS_BDEV_BLOCKSIZE);
2659
2660         if (seeding_dev) {
2661                 btrfs_clear_sb_rdonly(sb);
2662                 ret = btrfs_prepare_sprout(fs_info);
2663                 if (ret) {
2664                         btrfs_abort_transaction(trans, ret);
2665                         goto error_trans;
2666                 }
2667         }
2668
2669         device->fs_devices = fs_devices;
2670
2671         mutex_lock(&fs_devices->device_list_mutex);
2672         mutex_lock(&fs_info->chunk_mutex);
2673         list_add_rcu(&device->dev_list, &fs_devices->devices);
2674         list_add(&device->dev_alloc_list, &fs_devices->alloc_list);
2675         fs_devices->num_devices++;
2676         fs_devices->open_devices++;
2677         fs_devices->rw_devices++;
2678         fs_devices->total_devices++;
2679         fs_devices->total_rw_bytes += device->total_bytes;
2680
2681         atomic64_add(device->total_bytes, &fs_info->free_chunk_space);
2682
2683         if (!blk_queue_nonrot(q))
2684                 fs_devices->rotating = true;
2685
2686         orig_super_total_bytes = btrfs_super_total_bytes(fs_info->super_copy);
2687         btrfs_set_super_total_bytes(fs_info->super_copy,
2688                 round_down(orig_super_total_bytes + device->total_bytes,
2689                            fs_info->sectorsize));
2690
2691         orig_super_num_devices = btrfs_super_num_devices(fs_info->super_copy);
2692         btrfs_set_super_num_devices(fs_info->super_copy,
2693                                     orig_super_num_devices + 1);
2694
2695         /*
2696          * we've got more storage, clear any full flags on the space
2697          * infos
2698          */
2699         btrfs_clear_space_info_full(fs_info);
2700
2701         mutex_unlock(&fs_info->chunk_mutex);
2702
2703         /* Add sysfs device entry */
2704         btrfs_sysfs_add_device(device);
2705
2706         mutex_unlock(&fs_devices->device_list_mutex);
2707
2708         if (seeding_dev) {
2709                 mutex_lock(&fs_info->chunk_mutex);
2710                 ret = init_first_rw_device(trans);
2711                 mutex_unlock(&fs_info->chunk_mutex);
2712                 if (ret) {
2713                         btrfs_abort_transaction(trans, ret);
2714                         goto error_sysfs;
2715                 }
2716         }
2717
2718         ret = btrfs_add_dev_item(trans, device);
2719         if (ret) {
2720                 btrfs_abort_transaction(trans, ret);
2721                 goto error_sysfs;
2722         }
2723
2724         if (seeding_dev) {
2725                 ret = btrfs_finish_sprout(trans);
2726                 if (ret) {
2727                         btrfs_abort_transaction(trans, ret);
2728                         goto error_sysfs;
2729                 }
2730
2731                 /*
2732                  * fs_devices now represents the newly sprouted filesystem and
2733                  * its fsid has been changed by btrfs_prepare_sprout
2734                  */
2735                 btrfs_sysfs_update_sprout_fsid(fs_devices);
2736         }
2737
2738         ret = btrfs_commit_transaction(trans);
2739
2740         if (seeding_dev) {
2741                 mutex_unlock(&uuid_mutex);
2742                 up_write(&sb->s_umount);
2743                 locked = false;
2744
2745                 if (ret) /* transaction commit */
2746                         return ret;
2747
2748                 ret = btrfs_relocate_sys_chunks(fs_info);
2749                 if (ret < 0)
2750                         btrfs_handle_fs_error(fs_info, ret,
2751                                     "Failed to relocate sys chunks after device initialization. This can be fixed using the \"btrfs balance\" command.");
2752                 trans = btrfs_attach_transaction(root);
2753                 if (IS_ERR(trans)) {
2754                         if (PTR_ERR(trans) == -ENOENT)
2755                                 return 0;
2756                         ret = PTR_ERR(trans);
2757                         trans = NULL;
2758                         goto error_sysfs;
2759                 }
2760                 ret = btrfs_commit_transaction(trans);
2761         }
2762
2763         /*
2764          * Now that we have written a new super block to this device, check all
2765          * other fs_devices list if device_path alienates any other scanned
2766          * device.
2767          * We can ignore the return value as it typically returns -EINVAL and
2768          * only succeeds if the device was an alien.
2769          */
2770         btrfs_forget_devices(device_path);
2771
2772         /* Update ctime/mtime for blkid or udev */
2773         update_dev_time(device_path);
2774
2775         return ret;
2776
2777 error_sysfs:
2778         btrfs_sysfs_remove_device(device);
2779         mutex_lock(&fs_info->fs_devices->device_list_mutex);
2780         mutex_lock(&fs_info->chunk_mutex);
2781         list_del_rcu(&device->dev_list);
2782         list_del(&device->dev_alloc_list);
2783         fs_info->fs_devices->num_devices--;
2784         fs_info->fs_devices->open_devices--;
2785         fs_info->fs_devices->rw_devices--;
2786         fs_info->fs_devices->total_devices--;
2787         fs_info->fs_devices->total_rw_bytes -= device->total_bytes;
2788         atomic64_sub(device->total_bytes, &fs_info->free_chunk_space);
2789         btrfs_set_super_total_bytes(fs_info->super_copy,
2790                                     orig_super_total_bytes);
2791         btrfs_set_super_num_devices(fs_info->super_copy,
2792                                     orig_super_num_devices);
2793         mutex_unlock(&fs_info->chunk_mutex);
2794         mutex_unlock(&fs_info->fs_devices->device_list_mutex);
2795 error_trans:
2796         if (seeding_dev)
2797                 btrfs_set_sb_rdonly(sb);
2798         if (trans)
2799                 btrfs_end_transaction(trans);
2800 error_free_zone:
2801         btrfs_destroy_dev_zone_info(device);
2802 error_free_device:
2803         btrfs_free_device(device);
2804 error:
2805         blkdev_put(bdev, FMODE_EXCL);
2806         if (locked) {
2807                 mutex_unlock(&uuid_mutex);
2808                 up_write(&sb->s_umount);
2809         }
2810         return ret;
2811 }
2812
2813 static noinline int btrfs_update_device(struct btrfs_trans_handle *trans,
2814                                         struct btrfs_device *device)
2815 {
2816         int ret;
2817         struct btrfs_path *path;
2818         struct btrfs_root *root = device->fs_info->chunk_root;
2819         struct btrfs_dev_item *dev_item;
2820         struct extent_buffer *leaf;
2821         struct btrfs_key key;
2822
2823         path = btrfs_alloc_path();
2824         if (!path)
2825                 return -ENOMEM;
2826
2827         key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
2828         key.type = BTRFS_DEV_ITEM_KEY;
2829         key.offset = device->devid;
2830
2831         ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
2832         if (ret < 0)
2833                 goto out;
2834
2835         if (ret > 0) {
2836                 ret = -ENOENT;
2837                 goto out;
2838         }
2839
2840         leaf = path->nodes[0];
2841         dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item);
2842
2843         btrfs_set_device_id(leaf, dev_item, device->devid);
2844         btrfs_set_device_type(leaf, dev_item, device->type);
2845         btrfs_set_device_io_align(leaf, dev_item, device->io_align);
2846         btrfs_set_device_io_width(leaf, dev_item, device->io_width);
2847         btrfs_set_device_sector_size(leaf, dev_item, device->sector_size);
2848         btrfs_set_device_total_bytes(leaf, dev_item,
2849                                      btrfs_device_get_disk_total_bytes(device));
2850         btrfs_set_device_bytes_used(leaf, dev_item,
2851                                     btrfs_device_get_bytes_used(device));
2852         btrfs_mark_buffer_dirty(leaf);
2853
2854 out:
2855         btrfs_free_path(path);
2856         return ret;
2857 }
2858
2859 int btrfs_grow_device(struct btrfs_trans_handle *trans,
2860                       struct btrfs_device *device, u64 new_size)
2861 {
2862         struct btrfs_fs_info *fs_info = device->fs_info;
2863         struct btrfs_super_block *super_copy = fs_info->super_copy;
2864         u64 old_total;
2865         u64 diff;
2866
2867         if (!test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state))
2868                 return -EACCES;
2869
2870         new_size = round_down(new_size, fs_info->sectorsize);
2871
2872         mutex_lock(&fs_info->chunk_mutex);
2873         old_total = btrfs_super_total_bytes(super_copy);
2874         diff = round_down(new_size - device->total_bytes, fs_info->sectorsize);
2875
2876         if (new_size <= device->total_bytes ||
2877             test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) {
2878                 mutex_unlock(&fs_info->chunk_mutex);
2879                 return -EINVAL;
2880         }
2881
2882         btrfs_set_super_total_bytes(super_copy,
2883                         round_down(old_total + diff, fs_info->sectorsize));
2884         device->fs_devices->total_rw_bytes += diff;
2885
2886         btrfs_device_set_total_bytes(device, new_size);
2887         btrfs_device_set_disk_total_bytes(device, new_size);
2888         btrfs_clear_space_info_full(device->fs_info);
2889         if (list_empty(&device->post_commit_list))
2890                 list_add_tail(&device->post_commit_list,
2891                               &trans->transaction->dev_update_list);
2892         mutex_unlock(&fs_info->chunk_mutex);
2893
2894         return btrfs_update_device(trans, device);
2895 }
2896
2897 static int btrfs_free_chunk(struct btrfs_trans_handle *trans, u64 chunk_offset)
2898 {
2899         struct btrfs_fs_info *fs_info = trans->fs_info;
2900         struct btrfs_root *root = fs_info->chunk_root;
2901         int ret;
2902         struct btrfs_path *path;
2903         struct btrfs_key key;
2904
2905         path = btrfs_alloc_path();
2906         if (!path)
2907                 return -ENOMEM;
2908
2909         key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
2910         key.offset = chunk_offset;
2911         key.type = BTRFS_CHUNK_ITEM_KEY;
2912
2913         ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
2914         if (ret < 0)
2915                 goto out;
2916         else if (ret > 0) { /* Logic error or corruption */
2917                 btrfs_handle_fs_error(fs_info, -ENOENT,
2918                                       "Failed lookup while freeing chunk.");
2919                 ret = -ENOENT;
2920                 goto out;
2921         }
2922
2923         ret = btrfs_del_item(trans, root, path);
2924         if (ret < 0)
2925                 btrfs_handle_fs_error(fs_info, ret,
2926                                       "Failed to delete chunk item.");
2927 out:
2928         btrfs_free_path(path);
2929         return ret;
2930 }
2931
2932 static int btrfs_del_sys_chunk(struct btrfs_fs_info *fs_info, u64 chunk_offset)
2933 {
2934         struct btrfs_super_block *super_copy = fs_info->super_copy;
2935         struct btrfs_disk_key *disk_key;
2936         struct btrfs_chunk *chunk;
2937         u8 *ptr;
2938         int ret = 0;
2939         u32 num_stripes;
2940         u32 array_size;
2941         u32 len = 0;
2942         u32 cur;
2943         struct btrfs_key key;
2944
2945         mutex_lock(&fs_info->chunk_mutex);
2946         array_size = btrfs_super_sys_array_size(super_copy);
2947
2948         ptr = super_copy->sys_chunk_array;
2949         cur = 0;
2950
2951         while (cur < array_size) {
2952                 disk_key = (struct btrfs_disk_key *)ptr;
2953                 btrfs_disk_key_to_cpu(&key, disk_key);
2954
2955                 len = sizeof(*disk_key);
2956
2957                 if (key.type == BTRFS_CHUNK_ITEM_KEY) {
2958                         chunk = (struct btrfs_chunk *)(ptr + len);
2959                         num_stripes = btrfs_stack_chunk_num_stripes(chunk);
2960                         len += btrfs_chunk_item_size(num_stripes);
2961                 } else {
2962                         ret = -EIO;
2963                         break;
2964                 }
2965                 if (key.objectid == BTRFS_FIRST_CHUNK_TREE_OBJECTID &&
2966                     key.offset == chunk_offset) {
2967                         memmove(ptr, ptr + len, array_size - (cur + len));
2968                         array_size -= len;
2969                         btrfs_set_super_sys_array_size(super_copy, array_size);
2970                 } else {
2971                         ptr += len;
2972                         cur += len;
2973                 }
2974         }
2975         mutex_unlock(&fs_info->chunk_mutex);
2976         return ret;
2977 }
2978
2979 /*
2980  * btrfs_get_chunk_map() - Find the mapping containing the given logical extent.
2981  * @logical: Logical block offset in bytes.
2982  * @length: Length of extent in bytes.
2983  *
2984  * Return: Chunk mapping or ERR_PTR.
2985  */
2986 struct extent_map *btrfs_get_chunk_map(struct btrfs_fs_info *fs_info,
2987                                        u64 logical, u64 length)
2988 {
2989         struct extent_map_tree *em_tree;
2990         struct extent_map *em;
2991
2992         em_tree = &fs_info->mapping_tree;
2993         read_lock(&em_tree->lock);
2994         em = lookup_extent_mapping(em_tree, logical, length);
2995         read_unlock(&em_tree->lock);
2996
2997         if (!em) {
2998                 btrfs_crit(fs_info, "unable to find logical %llu length %llu",
2999                            logical, length);
3000                 return ERR_PTR(-EINVAL);
3001         }
3002
3003         if (em->start > logical || em->start + em->len < logical) {
3004                 btrfs_crit(fs_info,
3005                            "found a bad mapping, wanted %llu-%llu, found %llu-%llu",
3006                            logical, length, em->start, em->start + em->len);
3007                 free_extent_map(em);
3008                 return ERR_PTR(-EINVAL);
3009         }
3010
3011         /* callers are responsible for dropping em's ref. */
3012         return em;
3013 }
3014
3015 int btrfs_remove_chunk(struct btrfs_trans_handle *trans, u64 chunk_offset)
3016 {
3017         struct btrfs_fs_info *fs_info = trans->fs_info;
3018         struct extent_map *em;
3019         struct map_lookup *map;
3020         u64 dev_extent_len = 0;
3021         int i, ret = 0;
3022         struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
3023
3024         em = btrfs_get_chunk_map(fs_info, chunk_offset, 1);
3025         if (IS_ERR(em)) {
3026                 /*
3027                  * This is a logic error, but we don't want to just rely on the
3028                  * user having built with ASSERT enabled, so if ASSERT doesn't
3029                  * do anything we still error out.
3030                  */
3031                 ASSERT(0);
3032                 return PTR_ERR(em);
3033         }
3034         map = em->map_lookup;
3035         mutex_lock(&fs_info->chunk_mutex);
3036         check_system_chunk(trans, map->type);
3037         mutex_unlock(&fs_info->chunk_mutex);
3038
3039         /*
3040          * Take the device list mutex to prevent races with the final phase of
3041          * a device replace operation that replaces the device object associated
3042          * with map stripes (dev-replace.c:btrfs_dev_replace_finishing()).
3043          */
3044         mutex_lock(&fs_devices->device_list_mutex);
3045         for (i = 0; i < map->num_stripes; i++) {
3046                 struct btrfs_device *device = map->stripes[i].dev;
3047                 ret = btrfs_free_dev_extent(trans, device,
3048                                             map->stripes[i].physical,
3049                                             &dev_extent_len);
3050                 if (ret) {
3051                         mutex_unlock(&fs_devices->device_list_mutex);
3052                         btrfs_abort_transaction(trans, ret);
3053                         goto out;
3054                 }
3055
3056                 if (device->bytes_used > 0) {
3057                         mutex_lock(&fs_info->chunk_mutex);
3058                         btrfs_device_set_bytes_used(device,
3059                                         device->bytes_used - dev_extent_len);
3060                         atomic64_add(dev_extent_len, &fs_info->free_chunk_space);
3061                         btrfs_clear_space_info_full(fs_info);
3062                         mutex_unlock(&fs_info->chunk_mutex);
3063                 }
3064
3065                 ret = btrfs_update_device(trans, device);
3066                 if (ret) {
3067                         mutex_unlock(&fs_devices->device_list_mutex);
3068                         btrfs_abort_transaction(trans, ret);
3069                         goto out;
3070                 }
3071         }
3072         mutex_unlock(&fs_devices->device_list_mutex);
3073
3074         ret = btrfs_free_chunk(trans, chunk_offset);
3075         if (ret) {
3076                 btrfs_abort_transaction(trans, ret);
3077                 goto out;
3078         }
3079
3080         trace_btrfs_chunk_free(fs_info, map, chunk_offset, em->len);
3081
3082         if (map->type & BTRFS_BLOCK_GROUP_SYSTEM) {
3083                 ret = btrfs_del_sys_chunk(fs_info, chunk_offset);
3084                 if (ret) {
3085                         btrfs_abort_transaction(trans, ret);
3086                         goto out;
3087                 }
3088         }
3089
3090         ret = btrfs_remove_block_group(trans, chunk_offset, em);
3091         if (ret) {
3092                 btrfs_abort_transaction(trans, ret);
3093                 goto out;
3094         }
3095
3096 out:
3097         /* once for us */
3098         free_extent_map(em);
3099         return ret;
3100 }
3101
3102 int btrfs_relocate_chunk(struct btrfs_fs_info *fs_info, u64 chunk_offset)
3103 {
3104         struct btrfs_root *root = fs_info->chunk_root;
3105         struct btrfs_trans_handle *trans;
3106         struct btrfs_block_group *block_group;
3107         u64 length;
3108         int ret;
3109
3110         /*
3111          * Prevent races with automatic removal of unused block groups.
3112          * After we relocate and before we remove the chunk with offset
3113          * chunk_offset, automatic removal of the block group can kick in,
3114          * resulting in a failure when calling btrfs_remove_chunk() below.
3115          *
3116          * Make sure to acquire this mutex before doing a tree search (dev
3117          * or chunk trees) to find chunks. Otherwise the cleaner kthread might
3118          * call btrfs_remove_chunk() (through btrfs_delete_unused_bgs()) after
3119          * we release the path used to search the chunk/dev tree and before
3120          * the current task acquires this mutex and calls us.
3121          */
3122         lockdep_assert_held(&fs_info->reclaim_bgs_lock);
3123
3124         /* step one, relocate all the extents inside this chunk */
3125         btrfs_scrub_pause(fs_info);
3126         ret = btrfs_relocate_block_group(fs_info, chunk_offset);
3127         btrfs_scrub_continue(fs_info);
3128         if (ret)
3129                 return ret;
3130
3131         block_group = btrfs_lookup_block_group(fs_info, chunk_offset);
3132         if (!block_group)
3133                 return -ENOENT;
3134         btrfs_discard_cancel_work(&fs_info->discard_ctl, block_group);
3135         length = block_group->length;
3136         btrfs_put_block_group(block_group);
3137
3138         /*
3139          * On a zoned file system, discard the whole block group, this will
3140          * trigger a REQ_OP_ZONE_RESET operation on the device zone. If
3141          * resetting the zone fails, don't treat it as a fatal problem from the
3142          * filesystem's point of view.
3143          */
3144         if (btrfs_is_zoned(fs_info)) {
3145                 ret = btrfs_discard_extent(fs_info, chunk_offset, length, NULL);
3146                 if (ret)
3147                         btrfs_info(fs_info,
3148                                 "failed to reset zone %llu after relocation",
3149                                 chunk_offset);
3150         }
3151
3152         trans = btrfs_start_trans_remove_block_group(root->fs_info,
3153                                                      chunk_offset);
3154         if (IS_ERR(trans)) {
3155                 ret = PTR_ERR(trans);
3156                 btrfs_handle_fs_error(root->fs_info, ret, NULL);
3157                 return ret;
3158         }
3159
3160         /*
3161          * step two, delete the device extents and the
3162          * chunk tree entries
3163          */
3164         ret = btrfs_remove_chunk(trans, chunk_offset);
3165         btrfs_end_transaction(trans);
3166         return ret;
3167 }
3168
3169 static int btrfs_relocate_sys_chunks(struct btrfs_fs_info *fs_info)
3170 {
3171         struct btrfs_root *chunk_root = fs_info->chunk_root;
3172         struct btrfs_path *path;
3173         struct extent_buffer *leaf;
3174         struct btrfs_chunk *chunk;
3175         struct btrfs_key key;
3176         struct btrfs_key found_key;
3177         u64 chunk_type;
3178         bool retried = false;
3179         int failed = 0;
3180         int ret;
3181
3182         path = btrfs_alloc_path();
3183         if (!path)
3184                 return -ENOMEM;
3185
3186 again:
3187         key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
3188         key.offset = (u64)-1;
3189         key.type = BTRFS_CHUNK_ITEM_KEY;
3190
3191         while (1) {
3192                 mutex_lock(&fs_info->reclaim_bgs_lock);
3193                 ret = btrfs_search_slot(NULL, chunk_root, &key, path, 0, 0);
3194                 if (ret < 0) {
3195                         mutex_unlock(&fs_info->reclaim_bgs_lock);
3196                         goto error;
3197                 }
3198                 BUG_ON(ret == 0); /* Corruption */
3199
3200                 ret = btrfs_previous_item(chunk_root, path, key.objectid,
3201                                           key.type);
3202                 if (ret)
3203                         mutex_unlock(&fs_info->reclaim_bgs_lock);
3204                 if (ret < 0)
3205                         goto error;
3206                 if (ret > 0)
3207                         break;
3208
3209                 leaf = path->nodes[0];
3210                 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
3211
3212                 chunk = btrfs_item_ptr(leaf, path->slots[0],
3213                                        struct btrfs_chunk);
3214                 chunk_type = btrfs_chunk_type(leaf, chunk);
3215                 btrfs_release_path(path);
3216
3217                 if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM) {
3218                         ret = btrfs_relocate_chunk(fs_info, found_key.offset);
3219                         if (ret == -ENOSPC)
3220                                 failed++;
3221                         else
3222                                 BUG_ON(ret);
3223                 }
3224                 mutex_unlock(&fs_info->reclaim_bgs_lock);
3225
3226                 if (found_key.offset == 0)
3227                         break;
3228                 key.offset = found_key.offset - 1;
3229         }
3230         ret = 0;
3231         if (failed && !retried) {
3232                 failed = 0;
3233                 retried = true;
3234                 goto again;
3235         } else if (WARN_ON(failed && retried)) {
3236                 ret = -ENOSPC;
3237         }
3238 error:
3239         btrfs_free_path(path);
3240         return ret;
3241 }
3242
3243 /*
3244  * return 1 : allocate a data chunk successfully,
3245  * return <0: errors during allocating a data chunk,
3246  * return 0 : no need to allocate a data chunk.
3247  */
3248 static int btrfs_may_alloc_data_chunk(struct btrfs_fs_info *fs_info,
3249                                       u64 chunk_offset)
3250 {
3251         struct btrfs_block_group *cache;
3252         u64 bytes_used;
3253         u64 chunk_type;
3254
3255         cache = btrfs_lookup_block_group(fs_info, chunk_offset);
3256         ASSERT(cache);
3257         chunk_type = cache->flags;
3258         btrfs_put_block_group(cache);
3259
3260         if (!(chunk_type & BTRFS_BLOCK_GROUP_DATA))
3261                 return 0;
3262
3263         spin_lock(&fs_info->data_sinfo->lock);
3264         bytes_used = fs_info->data_sinfo->bytes_used;
3265         spin_unlock(&fs_info->data_sinfo->lock);
3266
3267         if (!bytes_used) {
3268                 struct btrfs_trans_handle *trans;
3269                 int ret;
3270
3271                 trans = btrfs_join_transaction(fs_info->tree_root);
3272                 if (IS_ERR(trans))
3273                         return PTR_ERR(trans);
3274
3275                 ret = btrfs_force_chunk_alloc(trans, BTRFS_BLOCK_GROUP_DATA);
3276                 btrfs_end_transaction(trans);
3277                 if (ret < 0)
3278                         return ret;
3279                 return 1;
3280         }
3281
3282         return 0;
3283 }
3284
3285 static int insert_balance_item(struct btrfs_fs_info *fs_info,
3286                                struct btrfs_balance_control *bctl)
3287 {
3288         struct btrfs_root *root = fs_info->tree_root;
3289         struct btrfs_trans_handle *trans;
3290         struct btrfs_balance_item *item;
3291         struct btrfs_disk_balance_args disk_bargs;
3292         struct btrfs_path *path;
3293         struct extent_buffer *leaf;
3294         struct btrfs_key key;
3295         int ret, err;
3296
3297         path = btrfs_alloc_path();
3298         if (!path)
3299                 return -ENOMEM;
3300
3301         trans = btrfs_start_transaction(root, 0);
3302         if (IS_ERR(trans)) {
3303                 btrfs_free_path(path);
3304                 return PTR_ERR(trans);
3305         }
3306
3307         key.objectid = BTRFS_BALANCE_OBJECTID;
3308         key.type = BTRFS_TEMPORARY_ITEM_KEY;
3309         key.offset = 0;
3310
3311         ret = btrfs_insert_empty_item(trans, root, path, &key,
3312                                       sizeof(*item));
3313         if (ret)
3314                 goto out;
3315
3316         leaf = path->nodes[0];
3317         item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_balance_item);
3318
3319         memzero_extent_buffer(leaf, (unsigned long)item, sizeof(*item));
3320
3321         btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->data);
3322         btrfs_set_balance_data(leaf, item, &disk_bargs);
3323         btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->meta);
3324         btrfs_set_balance_meta(leaf, item, &disk_bargs);
3325         btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->sys);
3326         btrfs_set_balance_sys(leaf, item, &disk_bargs);
3327
3328         btrfs_set_balance_flags(leaf, item, bctl->flags);
3329
3330         btrfs_mark_buffer_dirty(leaf);
3331 out:
3332         btrfs_free_path(path);
3333         err = btrfs_commit_transaction(trans);
3334         if (err && !ret)
3335                 ret = err;
3336         return ret;
3337 }
3338
3339 static int del_balance_item(struct btrfs_fs_info *fs_info)
3340 {
3341         struct btrfs_root *root = fs_info->tree_root;
3342         struct btrfs_trans_handle *trans;
3343         struct btrfs_path *path;
3344         struct btrfs_key key;
3345         int ret, err;
3346
3347         path = btrfs_alloc_path();
3348         if (!path)
3349                 return -ENOMEM;
3350
3351         trans = btrfs_start_transaction_fallback_global_rsv(root, 0);
3352         if (IS_ERR(trans)) {
3353                 btrfs_free_path(path);
3354                 return PTR_ERR(trans);
3355         }
3356
3357         key.objectid = BTRFS_BALANCE_OBJECTID;
3358         key.type = BTRFS_TEMPORARY_ITEM_KEY;
3359         key.offset = 0;
3360
3361         ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
3362         if (ret < 0)
3363                 goto out;
3364         if (ret > 0) {
3365                 ret = -ENOENT;
3366                 goto out;
3367         }
3368
3369         ret = btrfs_del_item(trans, root, path);
3370 out:
3371         btrfs_free_path(path);
3372         err = btrfs_commit_transaction(trans);
3373         if (err && !ret)
3374                 ret = err;
3375         return ret;
3376 }
3377
3378 /*
3379  * This is a heuristic used to reduce the number of chunks balanced on
3380  * resume after balance was interrupted.
3381  */
3382 static void update_balance_args(struct btrfs_balance_control *bctl)
3383 {
3384         /*
3385          * Turn on soft mode for chunk types that were being converted.
3386          */
3387         if (bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT)
3388                 bctl->data.flags |= BTRFS_BALANCE_ARGS_SOFT;
3389         if (bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT)
3390                 bctl->sys.flags |= BTRFS_BALANCE_ARGS_SOFT;
3391         if (bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT)
3392                 bctl->meta.flags |= BTRFS_BALANCE_ARGS_SOFT;
3393
3394         /*
3395          * Turn on usage filter if is not already used.  The idea is
3396          * that chunks that we have already balanced should be
3397          * reasonably full.  Don't do it for chunks that are being
3398          * converted - that will keep us from relocating unconverted
3399          * (albeit full) chunks.
3400          */
3401         if (!(bctl->data.flags & BTRFS_BALANCE_ARGS_USAGE) &&
3402             !(bctl->data.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
3403             !(bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
3404                 bctl->data.flags |= BTRFS_BALANCE_ARGS_USAGE;
3405                 bctl->data.usage = 90;
3406         }
3407         if (!(bctl->sys.flags & BTRFS_BALANCE_ARGS_USAGE) &&
3408             !(bctl->sys.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
3409             !(bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
3410                 bctl->sys.flags |= BTRFS_BALANCE_ARGS_USAGE;
3411                 bctl->sys.usage = 90;
3412         }
3413         if (!(bctl->meta.flags & BTRFS_BALANCE_ARGS_USAGE) &&
3414             !(bctl->meta.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
3415             !(bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
3416                 bctl->meta.flags |= BTRFS_BALANCE_ARGS_USAGE;
3417                 bctl->meta.usage = 90;
3418         }
3419 }
3420
3421 /*
3422  * Clear the balance status in fs_info and delete the balance item from disk.
3423  */
3424 static void reset_balance_state(struct btrfs_fs_info *fs_info)
3425 {
3426         struct btrfs_balance_control *bctl = fs_info->balance_ctl;
3427         int ret;
3428
3429         BUG_ON(!fs_info->balance_ctl);
3430
3431         spin_lock(&fs_info->balance_lock);
3432         fs_info->balance_ctl = NULL;
3433         spin_unlock(&fs_info->balance_lock);
3434
3435         kfree(bctl);
3436         ret = del_balance_item(fs_info);
3437         if (ret)
3438                 btrfs_handle_fs_error(fs_info, ret, NULL);
3439 }
3440
3441 /*
3442  * Balance filters.  Return 1 if chunk should be filtered out
3443  * (should not be balanced).
3444  */
3445 static int chunk_profiles_filter(u64 chunk_type,
3446                                  struct btrfs_balance_args *bargs)
3447 {
3448         chunk_type = chunk_to_extended(chunk_type) &
3449                                 BTRFS_EXTENDED_PROFILE_MASK;
3450
3451         if (bargs->profiles & chunk_type)
3452                 return 0;
3453
3454         return 1;
3455 }
3456
3457 static int chunk_usage_range_filter(struct btrfs_fs_info *fs_info, u64 chunk_offset,
3458                               struct btrfs_balance_args *bargs)
3459 {
3460         struct btrfs_block_group *cache;
3461         u64 chunk_used;
3462         u64 user_thresh_min;
3463         u64 user_thresh_max;
3464         int ret = 1;
3465
3466         cache = btrfs_lookup_block_group(fs_info, chunk_offset);
3467         chunk_used = cache->used;
3468
3469         if (bargs->usage_min == 0)
3470                 user_thresh_min = 0;
3471         else
3472                 user_thresh_min = div_factor_fine(cache->length,
3473                                                   bargs->usage_min);
3474
3475         if (bargs->usage_max == 0)
3476                 user_thresh_max = 1;
3477         else if (bargs->usage_max > 100)
3478                 user_thresh_max = cache->length;
3479         else
3480                 user_thresh_max = div_factor_fine(cache->length,
3481                                                   bargs->usage_max);
3482
3483         if (user_thresh_min <= chunk_used && chunk_used < user_thresh_max)
3484                 ret = 0;
3485
3486         btrfs_put_block_group(cache);
3487         return ret;
3488 }
3489
3490 static int chunk_usage_filter(struct btrfs_fs_info *fs_info,
3491                 u64 chunk_offset, struct btrfs_balance_args *bargs)
3492 {
3493         struct btrfs_block_group *cache;
3494         u64 chunk_used, user_thresh;
3495         int ret = 1;
3496
3497         cache = btrfs_lookup_block_group(fs_info, chunk_offset);
3498         chunk_used = cache->used;
3499
3500         if (bargs->usage_min == 0)
3501                 user_thresh = 1;
3502         else if (bargs->usage > 100)
3503                 user_thresh = cache->length;
3504         else
3505                 user_thresh = div_factor_fine(cache->length, bargs->usage);
3506
3507         if (chunk_used < user_thresh)
3508                 ret = 0;
3509
3510         btrfs_put_block_group(cache);
3511         return ret;
3512 }
3513
3514 static int chunk_devid_filter(struct extent_buffer *leaf,
3515                               struct btrfs_chunk *chunk,
3516                               struct btrfs_balance_args *bargs)
3517 {
3518         struct btrfs_stripe *stripe;
3519         int num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
3520         int i;
3521
3522         for (i = 0; i < num_stripes; i++) {
3523                 stripe = btrfs_stripe_nr(chunk, i);
3524                 if (btrfs_stripe_devid(leaf, stripe) == bargs->devid)
3525                         return 0;
3526         }
3527
3528         return 1;
3529 }
3530
3531 static u64 calc_data_stripes(u64 type, int num_stripes)
3532 {
3533         const int index = btrfs_bg_flags_to_raid_index(type);
3534         const int ncopies = btrfs_raid_array[index].ncopies;
3535         const int nparity = btrfs_raid_array[index].nparity;
3536
3537         if (nparity)
3538                 return num_stripes - nparity;
3539         else
3540                 return num_stripes / ncopies;
3541 }
3542
3543 /* [pstart, pend) */
3544 static int chunk_drange_filter(struct extent_buffer *leaf,
3545                                struct btrfs_chunk *chunk,
3546                                struct btrfs_balance_args *bargs)
3547 {
3548         struct btrfs_stripe *stripe;
3549         int num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
3550         u64 stripe_offset;
3551         u64 stripe_length;
3552         u64 type;
3553         int factor;
3554         int i;
3555
3556         if (!(bargs->flags & BTRFS_BALANCE_ARGS_DEVID))
3557                 return 0;
3558
3559         type = btrfs_chunk_type(leaf, chunk);
3560         factor = calc_data_stripes(type, num_stripes);
3561
3562         for (i = 0; i < num_stripes; i++) {
3563                 stripe = btrfs_stripe_nr(chunk, i);
3564                 if (btrfs_stripe_devid(leaf, stripe) != bargs->devid)
3565                         continue;
3566
3567                 stripe_offset = btrfs_stripe_offset(leaf, stripe);
3568                 stripe_length = btrfs_chunk_length(leaf, chunk);
3569                 stripe_length = div_u64(stripe_length, factor);
3570
3571                 if (stripe_offset < bargs->pend &&
3572                     stripe_offset + stripe_length > bargs->pstart)
3573                         return 0;
3574         }
3575
3576         return 1;
3577 }
3578
3579 /* [vstart, vend) */
3580 static int chunk_vrange_filter(struct extent_buffer *leaf,
3581                                struct btrfs_chunk *chunk,
3582                                u64 chunk_offset,
3583                                struct btrfs_balance_args *bargs)
3584 {
3585         if (chunk_offset < bargs->vend &&
3586             chunk_offset + btrfs_chunk_length(leaf, chunk) > bargs->vstart)
3587                 /* at least part of the chunk is inside this vrange */
3588                 return 0;
3589
3590         return 1;
3591 }
3592
3593 static int chunk_stripes_range_filter(struct extent_buffer *leaf,
3594                                struct btrfs_chunk *chunk,
3595                                struct btrfs_balance_args *bargs)
3596 {
3597         int num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
3598
3599         if (bargs->stripes_min <= num_stripes
3600                         && num_stripes <= bargs->stripes_max)
3601                 return 0;
3602
3603         return 1;
3604 }
3605
3606 static int chunk_soft_convert_filter(u64 chunk_type,
3607                                      struct btrfs_balance_args *bargs)
3608 {
3609         if (!(bargs->flags & BTRFS_BALANCE_ARGS_CONVERT))
3610                 return 0;
3611
3612         chunk_type = chunk_to_extended(chunk_type) &
3613                                 BTRFS_EXTENDED_PROFILE_MASK;
3614
3615         if (bargs->target == chunk_type)
3616                 return 1;
3617
3618         return 0;
3619 }
3620
3621 static int should_balance_chunk(struct extent_buffer *leaf,
3622                                 struct btrfs_chunk *chunk, u64 chunk_offset)
3623 {
3624         struct btrfs_fs_info *fs_info = leaf->fs_info;
3625         struct btrfs_balance_control *bctl = fs_info->balance_ctl;
3626         struct btrfs_balance_args *bargs = NULL;
3627         u64 chunk_type = btrfs_chunk_type(leaf, chunk);
3628
3629         /* type filter */
3630         if (!((chunk_type & BTRFS_BLOCK_GROUP_TYPE_MASK) &
3631               (bctl->flags & BTRFS_BALANCE_TYPE_MASK))) {
3632                 return 0;
3633         }
3634
3635         if (chunk_type & BTRFS_BLOCK_GROUP_DATA)
3636                 bargs = &bctl->data;
3637         else if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM)
3638                 bargs = &bctl->sys;
3639         else if (chunk_type & BTRFS_BLOCK_GROUP_METADATA)
3640                 bargs = &bctl->meta;
3641
3642         /* profiles filter */
3643         if ((bargs->flags & BTRFS_BALANCE_ARGS_PROFILES) &&
3644             chunk_profiles_filter(chunk_type, bargs)) {
3645                 return 0;
3646         }
3647
3648         /* usage filter */
3649         if ((bargs->flags & BTRFS_BALANCE_ARGS_USAGE) &&
3650             chunk_usage_filter(fs_info, chunk_offset, bargs)) {
3651                 return 0;
3652         } else if ((bargs->flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
3653             chunk_usage_range_filter(fs_info, chunk_offset, bargs)) {
3654                 return 0;
3655         }
3656
3657         /* devid filter */
3658         if ((bargs->flags & BTRFS_BALANCE_ARGS_DEVID) &&
3659             chunk_devid_filter(leaf, chunk, bargs)) {
3660                 return 0;
3661         }
3662
3663         /* drange filter, makes sense only with devid filter */
3664         if ((bargs->flags & BTRFS_BALANCE_ARGS_DRANGE) &&
3665             chunk_drange_filter(leaf, chunk, bargs)) {
3666                 return 0;
3667         }
3668
3669         /* vrange filter */
3670         if ((bargs->flags & BTRFS_BALANCE_ARGS_VRANGE) &&
3671             chunk_vrange_filter(leaf, chunk, chunk_offset, bargs)) {
3672                 return 0;
3673         }
3674
3675         /* stripes filter */
3676         if ((bargs->flags & BTRFS_BALANCE_ARGS_STRIPES_RANGE) &&
3677             chunk_stripes_range_filter(leaf, chunk, bargs)) {
3678                 return 0;
3679         }
3680
3681         /* soft profile changing mode */
3682         if ((bargs->flags & BTRFS_BALANCE_ARGS_SOFT) &&
3683             chunk_soft_convert_filter(chunk_type, bargs)) {
3684                 return 0;
3685         }
3686
3687         /*
3688          * limited by count, must be the last filter
3689          */
3690         if ((bargs->flags & BTRFS_BALANCE_ARGS_LIMIT)) {
3691                 if (bargs->limit == 0)
3692                         return 0;
3693                 else
3694                         bargs->limit--;
3695         } else if ((bargs->flags & BTRFS_BALANCE_ARGS_LIMIT_RANGE)) {
3696                 /*
3697                  * Same logic as the 'limit' filter; the minimum cannot be
3698                  * determined here because we do not have the global information
3699                  * about the count of all chunks that satisfy the filters.
3700                  */
3701                 if (bargs->limit_max == 0)
3702                         return 0;
3703                 else
3704                         bargs->limit_max--;
3705         }
3706
3707         return 1;
3708 }
3709
3710 static int __btrfs_balance(struct btrfs_fs_info *fs_info)
3711 {
3712         struct btrfs_balance_control *bctl = fs_info->balance_ctl;
3713         struct btrfs_root *chunk_root = fs_info->chunk_root;
3714         u64 chunk_type;
3715         struct btrfs_chunk *chunk;
3716         struct btrfs_path *path = NULL;
3717         struct btrfs_key key;
3718         struct btrfs_key found_key;
3719         struct extent_buffer *leaf;
3720         int slot;
3721         int ret;
3722         int enospc_errors = 0;
3723         bool counting = true;
3724         /* The single value limit and min/max limits use the same bytes in the */
3725         u64 limit_data = bctl->data.limit;
3726         u64 limit_meta = bctl->meta.limit;
3727         u64 limit_sys = bctl->sys.limit;
3728         u32 count_data = 0;
3729         u32 count_meta = 0;
3730         u32 count_sys = 0;
3731         int chunk_reserved = 0;
3732
3733         path = btrfs_alloc_path();
3734         if (!path) {
3735                 ret = -ENOMEM;
3736                 goto error;
3737         }
3738
3739         /* zero out stat counters */
3740         spin_lock(&fs_info->balance_lock);
3741         memset(&bctl->stat, 0, sizeof(bctl->stat));
3742         spin_unlock(&fs_info->balance_lock);
3743 again:
3744         if (!counting) {
3745                 /*
3746                  * The single value limit and min/max limits use the same bytes
3747                  * in the
3748                  */
3749                 bctl->data.limit = limit_data;
3750                 bctl->meta.limit = limit_meta;
3751                 bctl->sys.limit = limit_sys;
3752         }
3753         key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
3754         key.offset = (u64)-1;
3755         key.type = BTRFS_CHUNK_ITEM_KEY;
3756
3757         while (1) {
3758                 if ((!counting && atomic_read(&fs_info->balance_pause_req)) ||
3759                     atomic_read(&fs_info->balance_cancel_req)) {
3760                         ret = -ECANCELED;
3761                         goto error;
3762                 }
3763
3764                 mutex_lock(&fs_info->reclaim_bgs_lock);
3765                 ret = btrfs_search_slot(NULL, chunk_root, &key, path, 0, 0);
3766                 if (ret < 0) {
3767                         mutex_unlock(&fs_info->reclaim_bgs_lock);
3768                         goto error;
3769                 }
3770
3771                 /*
3772                  * this shouldn't happen, it means the last relocate
3773                  * failed
3774                  */
3775                 if (ret == 0)
3776                         BUG(); /* FIXME break ? */
3777
3778                 ret = btrfs_previous_item(chunk_root, path, 0,
3779                                           BTRFS_CHUNK_ITEM_KEY);
3780                 if (ret) {
3781                         mutex_unlock(&fs_info->reclaim_bgs_lock);
3782                         ret = 0;
3783                         break;
3784                 }
3785
3786                 leaf = path->nodes[0];
3787                 slot = path->slots[0];
3788                 btrfs_item_key_to_cpu(leaf, &found_key, slot);
3789
3790                 if (found_key.objectid != key.objectid) {
3791                         mutex_unlock(&fs_info->reclaim_bgs_lock);
3792                         break;
3793                 }
3794
3795                 chunk = btrfs_item_ptr(leaf, slot, struct btrfs_chunk);
3796                 chunk_type = btrfs_chunk_type(leaf, chunk);
3797
3798                 if (!counting) {
3799                         spin_lock(&fs_info->balance_lock);
3800                         bctl->stat.considered++;
3801                         spin_unlock(&fs_info->balance_lock);
3802                 }
3803
3804                 ret = should_balance_chunk(leaf, chunk, found_key.offset);
3805
3806                 btrfs_release_path(path);
3807                 if (!ret) {
3808                         mutex_unlock(&fs_info->reclaim_bgs_lock);
3809                         goto loop;
3810                 }
3811
3812                 if (counting) {
3813                         mutex_unlock(&fs_info->reclaim_bgs_lock);
3814                         spin_lock(&fs_info->balance_lock);
3815                         bctl->stat.expected++;
3816                         spin_unlock(&fs_info->balance_lock);
3817
3818                         if (chunk_type & BTRFS_BLOCK_GROUP_DATA)
3819                                 count_data++;
3820                         else if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM)
3821                                 count_sys++;
3822                         else if (chunk_type & BTRFS_BLOCK_GROUP_METADATA)
3823                                 count_meta++;
3824
3825                         goto loop;
3826                 }
3827
3828                 /*
3829                  * Apply limit_min filter, no need to check if the LIMITS
3830                  * filter is used, limit_min is 0 by default
3831                  */
3832                 if (((chunk_type & BTRFS_BLOCK_GROUP_DATA) &&
3833                                         count_data < bctl->data.limit_min)
3834                                 || ((chunk_type & BTRFS_BLOCK_GROUP_METADATA) &&
3835                                         count_meta < bctl->meta.limit_min)
3836                                 || ((chunk_type & BTRFS_BLOCK_GROUP_SYSTEM) &&
3837                                         count_sys < bctl->sys.limit_min)) {
3838                         mutex_unlock(&fs_info->reclaim_bgs_lock);
3839                         goto loop;
3840                 }
3841
3842                 if (!chunk_reserved) {
3843                         /*
3844                          * We may be relocating the only data chunk we have,
3845                          * which could potentially end up with losing data's
3846                          * raid profile, so lets allocate an empty one in
3847                          * advance.
3848                          */
3849                         ret = btrfs_may_alloc_data_chunk(fs_info,
3850                                                          found_key.offset);
3851                         if (ret < 0) {
3852                                 mutex_unlock(&fs_info->reclaim_bgs_lock);
3853                                 goto error;
3854                         } else if (ret == 1) {
3855                                 chunk_reserved = 1;
3856                         }
3857                 }
3858
3859                 ret = btrfs_relocate_chunk(fs_info, found_key.offset);
3860                 mutex_unlock(&fs_info->reclaim_bgs_lock);
3861                 if (ret == -ENOSPC) {
3862                         enospc_errors++;
3863                 } else if (ret == -ETXTBSY) {
3864                         btrfs_info(fs_info,
3865            "skipping relocation of block group %llu due to active swapfile",
3866                                    found_key.offset);
3867                         ret = 0;
3868                 } else if (ret) {
3869                         goto error;
3870                 } else {
3871                         spin_lock(&fs_info->balance_lock);
3872                         bctl->stat.completed++;
3873                         spin_unlock(&fs_info->balance_lock);
3874                 }
3875 loop:
3876                 if (found_key.offset == 0)
3877                         break;
3878                 key.offset = found_key.offset - 1;
3879         }
3880
3881         if (counting) {
3882                 btrfs_release_path(path);
3883                 counting = false;
3884                 goto again;
3885         }
3886 error:
3887         btrfs_free_path(path);
3888         if (enospc_errors) {
3889                 btrfs_info(fs_info, "%d enospc errors during balance",
3890                            enospc_errors);
3891                 if (!ret)
3892                         ret = -ENOSPC;
3893         }
3894
3895         return ret;
3896 }
3897
3898 /**
3899  * alloc_profile_is_valid - see if a given profile is valid and reduced
3900  * @flags: profile to validate
3901  * @extended: if true @flags is treated as an extended profile
3902  */
3903 static int alloc_profile_is_valid(u64 flags, int extended)
3904 {
3905         u64 mask = (extended ? BTRFS_EXTENDED_PROFILE_MASK :
3906                                BTRFS_BLOCK_GROUP_PROFILE_MASK);
3907
3908         flags &= ~BTRFS_BLOCK_GROUP_TYPE_MASK;
3909
3910         /* 1) check that all other bits are zeroed */
3911         if (flags & ~mask)
3912                 return 0;
3913
3914         /* 2) see if profile is reduced */
3915         if (flags == 0)
3916                 return !extended; /* "0" is valid for usual profiles */
3917
3918         return has_single_bit_set(flags);
3919 }
3920
3921 static inline int balance_need_close(struct btrfs_fs_info *fs_info)
3922 {
3923         /* cancel requested || normal exit path */
3924         return atomic_read(&fs_info->balance_cancel_req) ||
3925                 (atomic_read(&fs_info->balance_pause_req) == 0 &&
3926                  atomic_read(&fs_info->balance_cancel_req) == 0);
3927 }
3928
3929 /*
3930  * Validate target profile against allowed profiles and return true if it's OK.
3931  * Otherwise print the error message and return false.
3932  */
3933 static inline int validate_convert_profile(struct btrfs_fs_info *fs_info,
3934                 const struct btrfs_balance_args *bargs,
3935                 u64 allowed, const char *type)
3936 {
3937         if (!(bargs->flags & BTRFS_BALANCE_ARGS_CONVERT))
3938                 return true;
3939
3940         /* Profile is valid and does not have bits outside of the allowed set */
3941         if (alloc_profile_is_valid(bargs->target, 1) &&
3942             (bargs->target & ~allowed) == 0)
3943                 return true;
3944
3945         btrfs_err(fs_info, "balance: invalid convert %s profile %s",
3946                         type, btrfs_bg_type_to_raid_name(bargs->target));
3947         return false;
3948 }
3949
3950 /*
3951  * Fill @buf with textual description of balance filter flags @bargs, up to
3952  * @size_buf including the terminating null. The output may be trimmed if it
3953  * does not fit into the provided buffer.
3954  */
3955 static void describe_balance_args(struct btrfs_balance_args *bargs, char *buf,
3956                                  u32 size_buf)
3957 {
3958         int ret;
3959         u32 size_bp = size_buf;
3960         char *bp = buf;
3961         u64 flags = bargs->flags;
3962         char tmp_buf[128] = {'\0'};
3963
3964         if (!flags)
3965                 return;
3966
3967 #define CHECK_APPEND_NOARG(a)                                           \
3968         do {                                                            \
3969                 ret = snprintf(bp, size_bp, (a));                       \
3970                 if (ret < 0 || ret >= size_bp)                          \
3971                         goto out_overflow;                              \
3972                 size_bp -= ret;                                         \
3973                 bp += ret;                                              \
3974         } while (0)
3975
3976 #define CHECK_APPEND_1ARG(a, v1)                                        \
3977         do {                                                            \
3978                 ret = snprintf(bp, size_bp, (a), (v1));                 \
3979                 if (ret < 0 || ret >= size_bp)                          \
3980                         goto out_overflow;                              \
3981                 size_bp -= ret;                                         \
3982                 bp += ret;                                              \
3983         } while (0)
3984
3985 #define CHECK_APPEND_2ARG(a, v1, v2)                                    \
3986         do {                                                            \
3987                 ret = snprintf(bp, size_bp, (a), (v1), (v2));           \
3988                 if (ret < 0 || ret >= size_bp)                          \
3989                         goto out_overflow;                              \
3990                 size_bp -= ret;                                         \
3991                 bp += ret;                                              \
3992         } while (0)
3993
3994         if (flags & BTRFS_BALANCE_ARGS_CONVERT)
3995                 CHECK_APPEND_1ARG("convert=%s,",
3996                                   btrfs_bg_type_to_raid_name(bargs->target));
3997
3998         if (flags & BTRFS_BALANCE_ARGS_SOFT)
3999                 CHECK_APPEND_NOARG("soft,");
4000
4001         if (flags & BTRFS_BALANCE_ARGS_PROFILES) {
4002                 btrfs_describe_block_groups(bargs->profiles, tmp_buf,
4003                                             sizeof(tmp_buf));
4004                 CHECK_APPEND_1ARG("profiles=%s,", tmp_buf);
4005         }
4006
4007         if (flags & BTRFS_BALANCE_ARGS_USAGE)
4008                 CHECK_APPEND_1ARG("usage=%llu,", bargs->usage);
4009
4010         if (flags & BTRFS_BALANCE_ARGS_USAGE_RANGE)
4011                 CHECK_APPEND_2ARG("usage=%u..%u,",
4012                                   bargs->usage_min, bargs->usage_max);
4013
4014         if (flags & BTRFS_BALANCE_ARGS_DEVID)
4015                 CHECK_APPEND_1ARG("devid=%llu,", bargs->devid);
4016
4017         if (flags & BTRFS_BALANCE_ARGS_DRANGE)
4018                 CHECK_APPEND_2ARG("drange=%llu..%llu,",
4019                                   bargs->pstart, bargs->pend);
4020
4021         if (flags & BTRFS_BALANCE_ARGS_VRANGE)
4022                 CHECK_APPEND_2ARG("vrange=%llu..%llu,",
4023                                   bargs->vstart, bargs->vend);
4024
4025         if (flags & BTRFS_BALANCE_ARGS_LIMIT)
4026                 CHECK_APPEND_1ARG("limit=%llu,", bargs->limit);
4027
4028         if (flags & BTRFS_BALANCE_ARGS_LIMIT_RANGE)
4029                 CHECK_APPEND_2ARG("limit=%u..%u,",
4030                                 bargs->limit_min, bargs->limit_max);
4031
4032         if (flags & BTRFS_BALANCE_ARGS_STRIPES_RANGE)
4033                 CHECK_APPEND_2ARG("stripes=%u..%u,",
4034                                   bargs->stripes_min, bargs->stripes_max);
4035
4036 #undef CHECK_APPEND_2ARG
4037 #undef CHECK_APPEND_1ARG
4038 #undef CHECK_APPEND_NOARG
4039
4040 out_overflow:
4041
4042         if (size_bp < size_buf)
4043                 buf[size_buf - size_bp - 1] = '\0'; /* remove last , */
4044         else
4045                 buf[0] = '\0';
4046 }
4047
4048 static void describe_balance_start_or_resume(struct btrfs_fs_info *fs_info)
4049 {
4050         u32 size_buf = 1024;
4051         char tmp_buf[192] = {'\0'};
4052         char *buf;
4053         char *bp;
4054         u32 size_bp = size_buf;
4055         int ret;
4056         struct btrfs_balance_control *bctl = fs_info->balance_ctl;
4057
4058         buf = kzalloc(size_buf, GFP_KERNEL);
4059         if (!buf)
4060                 return;
4061
4062         bp = buf;
4063
4064 #define CHECK_APPEND_1ARG(a, v1)                                        \
4065         do {                                                            \
4066                 ret = snprintf(bp, size_bp, (a), (v1));                 \
4067                 if (ret < 0 || ret >= size_bp)                          \
4068                         goto out_overflow;                              \
4069                 size_bp -= ret;                                         \
4070                 bp += ret;                                              \
4071         } while (0)
4072
4073         if (bctl->flags & BTRFS_BALANCE_FORCE)
4074                 CHECK_APPEND_1ARG("%s", "-f ");
4075
4076         if (bctl->flags & BTRFS_BALANCE_DATA) {
4077                 describe_balance_args(&bctl->data, tmp_buf, sizeof(tmp_buf));
4078                 CHECK_APPEND_1ARG("-d%s ", tmp_buf);
4079         }
4080
4081         if (bctl->flags & BTRFS_BALANCE_METADATA) {
4082                 describe_balance_args(&bctl->meta, tmp_buf, sizeof(tmp_buf));
4083                 CHECK_APPEND_1ARG("-m%s ", tmp_buf);
4084         }
4085
4086         if (bctl->flags & BTRFS_BALANCE_SYSTEM) {
4087                 describe_balance_args(&bctl->sys, tmp_buf, sizeof(tmp_buf));
4088                 CHECK_APPEND_1ARG("-s%s ", tmp_buf);
4089         }
4090
4091 #undef CHECK_APPEND_1ARG
4092
4093 out_overflow:
4094
4095         if (size_bp < size_buf)
4096                 buf[size_buf - size_bp - 1] = '\0'; /* remove last " " */
4097         btrfs_info(fs_info, "balance: %s %s",
4098                    (bctl->flags & BTRFS_BALANCE_RESUME) ?
4099                    "resume" : "start", buf);
4100
4101         kfree(buf);
4102 }
4103
4104 /*
4105  * Should be called with balance mutexe held
4106  */
4107 int btrfs_balance(struct btrfs_fs_info *fs_info,
4108                   struct btrfs_balance_control *bctl,
4109                   struct btrfs_ioctl_balance_args *bargs)
4110 {
4111         u64 meta_target, data_target;
4112         u64 allowed;
4113         int mixed = 0;
4114         int ret;
4115         u64 num_devices;
4116         unsigned seq;
4117         bool reducing_redundancy;
4118         int i;
4119
4120         if (btrfs_fs_closing(fs_info) ||
4121             atomic_read(&fs_info->balance_pause_req) ||
4122             btrfs_should_cancel_balance(fs_info)) {
4123                 ret = -EINVAL;
4124                 goto out;
4125         }
4126
4127         allowed = btrfs_super_incompat_flags(fs_info->super_copy);
4128         if (allowed & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS)
4129                 mixed = 1;
4130
4131         /*
4132          * In case of mixed groups both data and meta should be picked,
4133          * and identical options should be given for both of them.
4134          */
4135         allowed = BTRFS_BALANCE_DATA | BTRFS_BALANCE_METADATA;
4136         if (mixed && (bctl->flags & allowed)) {
4137                 if (!(bctl->flags & BTRFS_BALANCE_DATA) ||
4138                     !(bctl->flags & BTRFS_BALANCE_METADATA) ||
4139                     memcmp(&bctl->data, &bctl->meta, sizeof(bctl->data))) {
4140                         btrfs_err(fs_info,
4141           "balance: mixed groups data and metadata options must be the same");
4142                         ret = -EINVAL;
4143                         goto out;
4144                 }
4145         }
4146
4147         /*
4148          * rw_devices will not change at the moment, device add/delete/replace
4149          * are exclusive
4150          */
4151         num_devices = fs_info->fs_devices->rw_devices;
4152
4153         /*
4154          * SINGLE profile on-disk has no profile bit, but in-memory we have a
4155          * special bit for it, to make it easier to distinguish.  Thus we need
4156          * to set it manually, or balance would refuse the profile.
4157          */
4158         allowed = BTRFS_AVAIL_ALLOC_BIT_SINGLE;
4159         for (i = 0; i < ARRAY_SIZE(btrfs_raid_array); i++)
4160                 if (num_devices >= btrfs_raid_array[i].devs_min)
4161                         allowed |= btrfs_raid_array[i].bg_flag;
4162
4163         if (!validate_convert_profile(fs_info, &bctl->data, allowed, "data") ||
4164             !validate_convert_profile(fs_info, &bctl->meta, allowed, "metadata") ||
4165             !validate_convert_profile(fs_info, &bctl->sys,  allowed, "system")) {
4166                 ret = -EINVAL;
4167                 goto out;
4168         }
4169
4170         /*
4171          * Allow to reduce metadata or system integrity only if force set for
4172          * profiles with redundancy (copies, parity)
4173          */
4174         allowed = 0;
4175         for (i = 0; i < ARRAY_SIZE(btrfs_raid_array); i++) {
4176                 if (btrfs_raid_array[i].ncopies >= 2 ||
4177                     btrfs_raid_array[i].tolerated_failures >= 1)
4178                         allowed |= btrfs_raid_array[i].bg_flag;
4179         }
4180         do {
4181                 seq = read_seqbegin(&fs_info->profiles_lock);
4182
4183                 if (((bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
4184                      (fs_info->avail_system_alloc_bits & allowed) &&
4185                      !(bctl->sys.target & allowed)) ||
4186                     ((bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
4187                      (fs_info->avail_metadata_alloc_bits & allowed) &&
4188                      !(bctl->meta.target & allowed)))
4189                         reducing_redundancy = true;
4190                 else
4191                         reducing_redundancy = false;
4192
4193                 /* if we're not converting, the target field is uninitialized */
4194                 meta_target = (bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) ?
4195                         bctl->meta.target : fs_info->avail_metadata_alloc_bits;
4196                 data_target = (bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) ?
4197                         bctl->data.target : fs_info->avail_data_alloc_bits;
4198         } while (read_seqretry(&fs_info->profiles_lock, seq));
4199
4200         if (reducing_redundancy) {
4201                 if (bctl->flags & BTRFS_BALANCE_FORCE) {
4202                         btrfs_info(fs_info,
4203                            "balance: force reducing metadata redundancy");
4204                 } else {
4205                         btrfs_err(fs_info,
4206         "balance: reduces metadata redundancy, use --force if you want this");
4207                         ret = -EINVAL;
4208                         goto out;
4209                 }
4210         }
4211
4212         if (btrfs_get_num_tolerated_disk_barrier_failures(meta_target) <
4213                 btrfs_get_num_tolerated_disk_barrier_failures(data_target)) {
4214                 btrfs_warn(fs_info,
4215         "balance: metadata profile %s has lower redundancy than data profile %s",
4216                                 btrfs_bg_type_to_raid_name(meta_target),
4217                                 btrfs_bg_type_to_raid_name(data_target));
4218         }
4219
4220         if (fs_info->send_in_progress) {
4221                 btrfs_warn_rl(fs_info,
4222 "cannot run balance while send operations are in progress (%d in progress)",
4223                               fs_info->send_in_progress);
4224                 ret = -EAGAIN;
4225                 goto out;
4226         }
4227
4228         ret = insert_balance_item(fs_info, bctl);
4229         if (ret && ret != -EEXIST)
4230                 goto out;
4231
4232         if (!(bctl->flags & BTRFS_BALANCE_RESUME)) {
4233                 BUG_ON(ret == -EEXIST);
4234                 BUG_ON(fs_info->balance_ctl);
4235                 spin_lock(&fs_info->balance_lock);
4236                 fs_info->balance_ctl = bctl;
4237                 spin_unlock(&fs_info->balance_lock);
4238         } else {
4239                 BUG_ON(ret != -EEXIST);
4240                 spin_lock(&fs_info->balance_lock);
4241                 update_balance_args(bctl);
4242                 spin_unlock(&fs_info->balance_lock);
4243         }
4244
4245         ASSERT(!test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags));
4246         set_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags);
4247         describe_balance_start_or_resume(fs_info);
4248         mutex_unlock(&fs_info->balance_mutex);
4249
4250         ret = __btrfs_balance(fs_info);
4251
4252         mutex_lock(&fs_info->balance_mutex);
4253         if (ret == -ECANCELED && atomic_read(&fs_info->balance_pause_req))
4254                 btrfs_info(fs_info, "balance: paused");
4255         /*
4256          * Balance can be canceled by:
4257          *
4258          * - Regular cancel request
4259          *   Then ret == -ECANCELED and balance_cancel_req > 0
4260          *
4261          * - Fatal signal to "btrfs" process
4262          *   Either the signal caught by wait_reserve_ticket() and callers
4263          *   got -EINTR, or caught by btrfs_should_cancel_balance() and
4264          *   got -ECANCELED.
4265          *   Either way, in this case balance_cancel_req = 0, and
4266          *   ret == -EINTR or ret == -ECANCELED.
4267          *
4268          * So here we only check the return value to catch canceled balance.
4269          */
4270         else if (ret == -ECANCELED || ret == -EINTR)
4271                 btrfs_info(fs_info, "balance: canceled");
4272         else
4273                 btrfs_info(fs_info, "balance: ended with status: %d", ret);
4274
4275         clear_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags);
4276
4277         if (bargs) {
4278                 memset(bargs, 0, sizeof(*bargs));
4279                 btrfs_update_ioctl_balance_args(fs_info, bargs);
4280         }
4281
4282         if ((ret && ret != -ECANCELED && ret != -ENOSPC) ||
4283             balance_need_close(fs_info)) {
4284                 reset_balance_state(fs_info);
4285                 btrfs_exclop_finish(fs_info);
4286         }
4287
4288         wake_up(&fs_info->balance_wait_q);
4289
4290         return ret;
4291 out:
4292         if (bctl->flags & BTRFS_BALANCE_RESUME)
4293                 reset_balance_state(fs_info);
4294         else
4295                 kfree(bctl);
4296         btrfs_exclop_finish(fs_info);
4297
4298         return ret;
4299 }
4300
4301 static int balance_kthread(void *data)
4302 {
4303         struct btrfs_fs_info *fs_info = data;
4304         int ret = 0;
4305
4306         mutex_lock(&fs_info->balance_mutex);
4307         if (fs_info->balance_ctl)
4308                 ret = btrfs_balance(fs_info, fs_info->balance_ctl, NULL);
4309         mutex_unlock(&fs_info->balance_mutex);
4310
4311         return ret;
4312 }
4313
4314 int btrfs_resume_balance_async(struct btrfs_fs_info *fs_info)
4315 {
4316         struct task_struct *tsk;
4317
4318         mutex_lock(&fs_info->balance_mutex);
4319         if (!fs_info->balance_ctl) {
4320                 mutex_unlock(&fs_info->balance_mutex);
4321                 return 0;
4322         }
4323         mutex_unlock(&fs_info->balance_mutex);
4324
4325         if (btrfs_test_opt(fs_info, SKIP_BALANCE)) {
4326                 btrfs_info(fs_info, "balance: resume skipped");
4327                 return 0;
4328         }
4329
4330         /*
4331          * A ro->rw remount sequence should continue with the paused balance
4332          * regardless of who pauses it, system or the user as of now, so set
4333          * the resume flag.
4334          */
4335         spin_lock(&fs_info->balance_lock);
4336         fs_info->balance_ctl->flags |= BTRFS_BALANCE_RESUME;
4337         spin_unlock(&fs_info->balance_lock);
4338
4339         tsk = kthread_run(balance_kthread, fs_info, "btrfs-balance");
4340         return PTR_ERR_OR_ZERO(tsk);
4341 }
4342
4343 int btrfs_recover_balance(struct btrfs_fs_info *fs_info)
4344 {
4345         struct btrfs_balance_control *bctl;
4346         struct btrfs_balance_item *item;
4347         struct btrfs_disk_balance_args disk_bargs;
4348         struct btrfs_path *path;
4349         struct extent_buffer *leaf;
4350         struct btrfs_key key;
4351         int ret;
4352
4353         path = btrfs_alloc_path();
4354         if (!path)
4355                 return -ENOMEM;
4356
4357         key.objectid = BTRFS_BALANCE_OBJECTID;
4358         key.type = BTRFS_TEMPORARY_ITEM_KEY;
4359         key.offset = 0;
4360
4361         ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
4362         if (ret < 0)
4363                 goto out;
4364         if (ret > 0) { /* ret = -ENOENT; */
4365                 ret = 0;
4366                 goto out;
4367         }
4368
4369         bctl = kzalloc(sizeof(*bctl), GFP_NOFS);
4370         if (!bctl) {
4371                 ret = -ENOMEM;
4372                 goto out;
4373         }
4374
4375         leaf = path->nodes[0];
4376         item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_balance_item);
4377
4378         bctl->flags = btrfs_balance_flags(leaf, item);
4379         bctl->flags |= BTRFS_BALANCE_RESUME;
4380
4381         btrfs_balance_data(leaf, item, &disk_bargs);
4382         btrfs_disk_balance_args_to_cpu(&bctl->data, &disk_bargs);
4383         btrfs_balance_meta(leaf, item, &disk_bargs);
4384         btrfs_disk_balance_args_to_cpu(&bctl->meta, &disk_bargs);
4385         btrfs_balance_sys(leaf, item, &disk_bargs);
4386         btrfs_disk_balance_args_to_cpu(&bctl->sys, &disk_bargs);
4387
4388         /*
4389          * This should never happen, as the paused balance state is recovered
4390          * during mount without any chance of other exclusive ops to collide.
4391          *
4392          * This gives the exclusive op status to balance and keeps in paused
4393          * state until user intervention (cancel or umount). If the ownership
4394          * cannot be assigned, show a message but do not fail. The balance
4395          * is in a paused state and must have fs_info::balance_ctl properly
4396          * set up.
4397          */
4398         if (!btrfs_exclop_start(fs_info, BTRFS_EXCLOP_BALANCE))
4399                 btrfs_warn(fs_info,
4400         "balance: cannot set exclusive op status, resume manually");
4401
4402         btrfs_release_path(path);
4403
4404         mutex_lock(&fs_info->balance_mutex);
4405         BUG_ON(fs_info->balance_ctl);
4406         spin_lock(&fs_info->balance_lock);
4407         fs_info->balance_ctl = bctl;
4408         spin_unlock(&fs_info->balance_lock);
4409         mutex_unlock(&fs_info->balance_mutex);
4410 out:
4411         btrfs_free_path(path);
4412         return ret;
4413 }
4414
4415 int btrfs_pause_balance(struct btrfs_fs_info *fs_info)
4416 {
4417         int ret = 0;
4418
4419         mutex_lock(&fs_info->balance_mutex);
4420         if (!fs_info->balance_ctl) {
4421                 mutex_unlock(&fs_info->balance_mutex);
4422                 return -ENOTCONN;
4423         }
4424
4425         if (test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)) {
4426                 atomic_inc(&fs_info->balance_pause_req);
4427                 mutex_unlock(&fs_info->balance_mutex);
4428
4429                 wait_event(fs_info->balance_wait_q,
4430                            !test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags));
4431
4432                 mutex_lock(&fs_info->balance_mutex);
4433                 /* we are good with balance_ctl ripped off from under us */
4434                 BUG_ON(test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags));
4435                 atomic_dec(&fs_info->balance_pause_req);
4436         } else {
4437                 ret = -ENOTCONN;
4438         }
4439
4440         mutex_unlock(&fs_info->balance_mutex);
4441         return ret;
4442 }
4443
4444 int btrfs_cancel_balance(struct btrfs_fs_info *fs_info)
4445 {
4446         mutex_lock(&fs_info->balance_mutex);
4447         if (!fs_info->balance_ctl) {
4448                 mutex_unlock(&fs_info->balance_mutex);
4449                 return -ENOTCONN;
4450         }
4451
4452         /*
4453          * A paused balance with the item stored on disk can be resumed at
4454          * mount time if the mount is read-write. Otherwise it's still paused
4455          * and we must not allow cancelling as it deletes the item.
4456          */
4457         if (sb_rdonly(fs_info->sb)) {
4458                 mutex_unlock(&fs_info->balance_mutex);
4459                 return -EROFS;
4460         }
4461
4462         atomic_inc(&fs_info->balance_cancel_req);
4463         /*
4464          * if we are running just wait and return, balance item is
4465          * deleted in btrfs_balance in this case
4466          */
4467         if (test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)) {
4468                 mutex_unlock(&fs_info->balance_mutex);
4469                 wait_event(fs_info->balance_wait_q,
4470                            !test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags));
4471                 mutex_lock(&fs_info->balance_mutex);
4472         } else {
4473                 mutex_unlock(&fs_info->balance_mutex);
4474                 /*
4475                  * Lock released to allow other waiters to continue, we'll
4476                  * reexamine the status again.
4477                  */
4478                 mutex_lock(&fs_info->balance_mutex);
4479
4480                 if (fs_info->balance_ctl) {
4481                         reset_balance_state(fs_info);
4482                         btrfs_exclop_finish(fs_info);
4483                         btrfs_info(fs_info, "balance: canceled");
4484                 }
4485         }
4486
4487         BUG_ON(fs_info->balance_ctl ||
4488                 test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags));
4489         atomic_dec(&fs_info->balance_cancel_req);
4490         mutex_unlock(&fs_info->balance_mutex);
4491         return 0;
4492 }
4493
4494 int btrfs_uuid_scan_kthread(void *data)
4495 {
4496         struct btrfs_fs_info *fs_info = data;
4497         struct btrfs_root *root = fs_info->tree_root;
4498         struct btrfs_key key;
4499         struct btrfs_path *path = NULL;
4500         int ret = 0;
4501         struct extent_buffer *eb;
4502         int slot;
4503         struct btrfs_root_item root_item;
4504         u32 item_size;
4505         struct btrfs_trans_handle *trans = NULL;
4506         bool closing = false;
4507
4508         path = btrfs_alloc_path();
4509         if (!path) {
4510                 ret = -ENOMEM;
4511                 goto out;
4512         }
4513
4514         key.objectid = 0;
4515         key.type = BTRFS_ROOT_ITEM_KEY;
4516         key.offset = 0;
4517
4518         while (1) {
4519                 if (btrfs_fs_closing(fs_info)) {
4520                         closing = true;
4521                         break;
4522                 }
4523                 ret = btrfs_search_forward(root, &key, path,
4524                                 BTRFS_OLDEST_GENERATION);
4525                 if (ret) {
4526                         if (ret > 0)
4527                                 ret = 0;
4528                         break;
4529                 }
4530
4531                 if (key.type != BTRFS_ROOT_ITEM_KEY ||
4532                     (key.objectid < BTRFS_FIRST_FREE_OBJECTID &&
4533                      key.objectid != BTRFS_FS_TREE_OBJECTID) ||
4534                     key.objectid > BTRFS_LAST_FREE_OBJECTID)
4535                         goto skip;
4536
4537                 eb = path->nodes[0];
4538                 slot = path->slots[0];
4539                 item_size = btrfs_item_size_nr(eb, slot);
4540                 if (item_size < sizeof(root_item))
4541                         goto skip;
4542
4543                 read_extent_buffer(eb, &root_item,
4544                                    btrfs_item_ptr_offset(eb, slot),
4545                                    (int)sizeof(root_item));
4546                 if (btrfs_root_refs(&root_item) == 0)
4547                         goto skip;
4548
4549                 if (!btrfs_is_empty_uuid(root_item.uuid) ||
4550                     !btrfs_is_empty_uuid(root_item.received_uuid)) {
4551                         if (trans)
4552                                 goto update_tree;
4553
4554                         btrfs_release_path(path);
4555                         /*
4556                          * 1 - subvol uuid item
4557                          * 1 - received_subvol uuid item
4558                          */
4559                         trans = btrfs_start_transaction(fs_info->uuid_root, 2);
4560                         if (IS_ERR(trans)) {
4561                                 ret = PTR_ERR(trans);
4562                                 break;
4563                         }
4564                         continue;
4565                 } else {
4566                         goto skip;
4567                 }
4568 update_tree:
4569                 btrfs_release_path(path);
4570                 if (!btrfs_is_empty_uuid(root_item.uuid)) {
4571                         ret = btrfs_uuid_tree_add(trans, root_item.uuid,
4572                                                   BTRFS_UUID_KEY_SUBVOL,
4573                                                   key.objectid);
4574                         if (ret < 0) {
4575                                 btrfs_warn(fs_info, "uuid_tree_add failed %d",
4576                                         ret);
4577                                 break;
4578                         }
4579                 }
4580
4581                 if (!btrfs_is_empty_uuid(root_item.received_uuid)) {
4582                         ret = btrfs_uuid_tree_add(trans,
4583                                                   root_item.received_uuid,
4584                                                  BTRFS_UUID_KEY_RECEIVED_SUBVOL,
4585                                                   key.objectid);
4586                         if (ret < 0) {
4587                                 btrfs_warn(fs_info, "uuid_tree_add failed %d",
4588                                         ret);
4589                                 break;
4590                         }
4591                 }
4592
4593 skip:
4594                 btrfs_release_path(path);
4595                 if (trans) {
4596                         ret = btrfs_end_transaction(trans);
4597                         trans = NULL;
4598                         if (ret)
4599                                 break;
4600                 }
4601
4602                 if (key.offset < (u64)-1) {
4603                         key.offset++;
4604                 } else if (key.type < BTRFS_ROOT_ITEM_KEY) {
4605                         key.offset = 0;
4606                         key.type = BTRFS_ROOT_ITEM_KEY;
4607                 } else if (key.objectid < (u64)-1) {
4608                         key.offset = 0;
4609                         key.type = BTRFS_ROOT_ITEM_KEY;
4610                         key.objectid++;
4611                 } else {
4612                         break;
4613                 }
4614                 cond_resched();
4615         }
4616
4617 out:
4618         btrfs_free_path(path);
4619         if (trans && !IS_ERR(trans))
4620                 btrfs_end_transaction(trans);
4621         if (ret)
4622                 btrfs_warn(fs_info, "btrfs_uuid_scan_kthread failed %d", ret);
4623         else if (!closing)
4624                 set_bit(BTRFS_FS_UPDATE_UUID_TREE_GEN, &fs_info->flags);
4625         up(&fs_info->uuid_tree_rescan_sem);
4626         return 0;
4627 }
4628
4629 int btrfs_create_uuid_tree(struct btrfs_fs_info *fs_info)
4630 {
4631         struct btrfs_trans_handle *trans;
4632         struct btrfs_root *tree_root = fs_info->tree_root;
4633         struct btrfs_root *uuid_root;
4634         struct task_struct *task;
4635         int ret;
4636
4637         /*
4638          * 1 - root node
4639          * 1 - root item
4640          */
4641         trans = btrfs_start_transaction(tree_root, 2);
4642         if (IS_ERR(trans))
4643                 return PTR_ERR(trans);
4644
4645         uuid_root = btrfs_create_tree(trans, BTRFS_UUID_TREE_OBJECTID);
4646         if (IS_ERR(uuid_root)) {
4647                 ret = PTR_ERR(uuid_root);
4648                 btrfs_abort_transaction(trans, ret);
4649                 btrfs_end_transaction(trans);
4650                 return ret;
4651         }
4652
4653         fs_info->uuid_root = uuid_root;
4654
4655         ret = btrfs_commit_transaction(trans);
4656         if (ret)
4657                 return ret;
4658
4659         down(&fs_info->uuid_tree_rescan_sem);
4660         task = kthread_run(btrfs_uuid_scan_kthread, fs_info, "btrfs-uuid");
4661         if (IS_ERR(task)) {
4662                 /* fs_info->update_uuid_tree_gen remains 0 in all error case */
4663                 btrfs_warn(fs_info, "failed to start uuid_scan task");
4664                 up(&fs_info->uuid_tree_rescan_sem);
4665                 return PTR_ERR(task);
4666         }
4667
4668         return 0;
4669 }
4670
4671 /*
4672  * shrinking a device means finding all of the device extents past
4673  * the new size, and then following the back refs to the chunks.
4674  * The chunk relocation code actually frees the device extent
4675  */
4676 int btrfs_shrink_device(struct btrfs_device *device, u64 new_size)
4677 {
4678         struct btrfs_fs_info *fs_info = device->fs_info;
4679         struct btrfs_root *root = fs_info->dev_root;
4680         struct btrfs_trans_handle *trans;
4681         struct btrfs_dev_extent *dev_extent = NULL;
4682         struct btrfs_path *path;
4683         u64 length;
4684         u64 chunk_offset;
4685         int ret;
4686         int slot;
4687         int failed = 0;
4688         bool retried = false;
4689         struct extent_buffer *l;
4690         struct btrfs_key key;
4691         struct btrfs_super_block *super_copy = fs_info->super_copy;
4692         u64 old_total = btrfs_super_total_bytes(super_copy);
4693         u64 old_size = btrfs_device_get_total_bytes(device);
4694         u64 diff;
4695         u64 start;
4696
4697         new_size = round_down(new_size, fs_info->sectorsize);
4698         start = new_size;
4699         diff = round_down(old_size - new_size, fs_info->sectorsize);
4700
4701         if (test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state))
4702                 return -EINVAL;
4703
4704         path = btrfs_alloc_path();
4705         if (!path)
4706                 return -ENOMEM;
4707
4708         path->reada = READA_BACK;
4709
4710         trans = btrfs_start_transaction(root, 0);
4711         if (IS_ERR(trans)) {
4712                 btrfs_free_path(path);
4713                 return PTR_ERR(trans);
4714         }
4715
4716         mutex_lock(&fs_info->chunk_mutex);
4717
4718         btrfs_device_set_total_bytes(device, new_size);
4719         if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
4720                 device->fs_devices->total_rw_bytes -= diff;
4721                 atomic64_sub(diff, &fs_info->free_chunk_space);
4722         }
4723
4724         /*
4725          * Once the device's size has been set to the new size, ensure all
4726          * in-memory chunks are synced to disk so that the loop below sees them
4727          * and relocates them accordingly.
4728          */
4729         if (contains_pending_extent(device, &start, diff)) {
4730                 mutex_unlock(&fs_info->chunk_mutex);
4731                 ret = btrfs_commit_transaction(trans);
4732                 if (ret)
4733                         goto done;
4734         } else {
4735                 mutex_unlock(&fs_info->chunk_mutex);
4736                 btrfs_end_transaction(trans);
4737         }
4738
4739 again:
4740         key.objectid = device->devid;
4741         key.offset = (u64)-1;
4742         key.type = BTRFS_DEV_EXTENT_KEY;
4743
4744         do {
4745                 mutex_lock(&fs_info->reclaim_bgs_lock);
4746                 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4747                 if (ret < 0) {
4748                         mutex_unlock(&fs_info->reclaim_bgs_lock);
4749                         goto done;
4750                 }
4751
4752                 ret = btrfs_previous_item(root, path, 0, key.type);
4753                 if (ret) {
4754                         mutex_unlock(&fs_info->reclaim_bgs_lock);
4755                         if (ret < 0)
4756                                 goto done;
4757                         ret = 0;
4758                         btrfs_release_path(path);
4759                         break;
4760                 }
4761
4762                 l = path->nodes[0];
4763                 slot = path->slots[0];
4764                 btrfs_item_key_to_cpu(l, &key, path->slots[0]);
4765
4766                 if (key.objectid != device->devid) {
4767                         mutex_unlock(&fs_info->reclaim_bgs_lock);
4768                         btrfs_release_path(path);
4769                         break;
4770                 }
4771
4772                 dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
4773                 length = btrfs_dev_extent_length(l, dev_extent);
4774
4775                 if (key.offset + length <= new_size) {
4776                         mutex_unlock(&fs_info->reclaim_bgs_lock);
4777                         btrfs_release_path(path);
4778                         break;
4779                 }
4780
4781                 chunk_offset = btrfs_dev_extent_chunk_offset(l, dev_extent);
4782                 btrfs_release_path(path);
4783
4784                 /*
4785                  * We may be relocating the only data chunk we have,
4786                  * which could potentially end up with losing data's
4787                  * raid profile, so lets allocate an empty one in
4788                  * advance.
4789                  */
4790                 ret = btrfs_may_alloc_data_chunk(fs_info, chunk_offset);
4791                 if (ret < 0) {
4792                         mutex_unlock(&fs_info->reclaim_bgs_lock);
4793                         goto done;
4794                 }
4795
4796                 ret = btrfs_relocate_chunk(fs_info, chunk_offset);
4797                 mutex_unlock(&fs_info->reclaim_bgs_lock);
4798                 if (ret == -ENOSPC) {
4799                         failed++;
4800                 } else if (ret) {
4801                         if (ret == -ETXTBSY) {
4802                                 btrfs_warn(fs_info,
4803                    "could not shrink block group %llu due to active swapfile",
4804                                            chunk_offset);
4805                         }
4806                         goto done;
4807                 }
4808         } while (key.offset-- > 0);
4809
4810         if (failed && !retried) {
4811                 failed = 0;
4812                 retried = true;
4813                 goto again;
4814         } else if (failed && retried) {
4815                 ret = -ENOSPC;
4816                 goto done;
4817         }
4818
4819         /* Shrinking succeeded, else we would be at "done". */
4820         trans = btrfs_start_transaction(root, 0);
4821         if (IS_ERR(trans)) {
4822                 ret = PTR_ERR(trans);
4823                 goto done;
4824         }
4825
4826         mutex_lock(&fs_info->chunk_mutex);
4827         /* Clear all state bits beyond the shrunk device size */
4828         clear_extent_bits(&device->alloc_state, new_size, (u64)-1,
4829                           CHUNK_STATE_MASK);
4830
4831         btrfs_device_set_disk_total_bytes(device, new_size);
4832         if (list_empty(&device->post_commit_list))
4833                 list_add_tail(&device->post_commit_list,
4834                               &trans->transaction->dev_update_list);
4835
4836         WARN_ON(diff > old_total);
4837         btrfs_set_super_total_bytes(super_copy,
4838                         round_down(old_total - diff, fs_info->sectorsize));
4839         mutex_unlock(&fs_info->chunk_mutex);
4840
4841         /* Now btrfs_update_device() will change the on-disk size. */
4842         ret = btrfs_update_device(trans, device);
4843         if (ret < 0) {
4844                 btrfs_abort_transaction(trans, ret);
4845                 btrfs_end_transaction(trans);
4846         } else {
4847                 ret = btrfs_commit_transaction(trans);
4848         }
4849 done:
4850         btrfs_free_path(path);
4851         if (ret) {
4852                 mutex_lock(&fs_info->chunk_mutex);
4853                 btrfs_device_set_total_bytes(device, old_size);
4854                 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state))
4855                         device->fs_devices->total_rw_bytes += diff;
4856                 atomic64_add(diff, &fs_info->free_chunk_space);
4857                 mutex_unlock(&fs_info->chunk_mutex);
4858         }
4859         return ret;
4860 }
4861
4862 static int btrfs_add_system_chunk(struct btrfs_fs_info *fs_info,
4863                            struct btrfs_key *key,
4864                            struct btrfs_chunk *chunk, int item_size)
4865 {
4866         struct btrfs_super_block *super_copy = fs_info->super_copy;
4867         struct btrfs_disk_key disk_key;
4868         u32 array_size;
4869         u8 *ptr;
4870
4871         mutex_lock(&fs_info->chunk_mutex);
4872         array_size = btrfs_super_sys_array_size(super_copy);
4873         if (array_size + item_size + sizeof(disk_key)
4874                         > BTRFS_SYSTEM_CHUNK_ARRAY_SIZE) {
4875                 mutex_unlock(&fs_info->chunk_mutex);
4876                 return -EFBIG;
4877         }
4878
4879         ptr = super_copy->sys_chunk_array + array_size;
4880         btrfs_cpu_key_to_disk(&disk_key, key);
4881         memcpy(ptr, &disk_key, sizeof(disk_key));
4882         ptr += sizeof(disk_key);
4883         memcpy(ptr, chunk, item_size);
4884         item_size += sizeof(disk_key);
4885         btrfs_set_super_sys_array_size(super_copy, array_size + item_size);
4886         mutex_unlock(&fs_info->chunk_mutex);
4887
4888         return 0;
4889 }
4890
4891 /*
4892  * sort the devices in descending order by max_avail, total_avail
4893  */
4894 static int btrfs_cmp_device_info(const void *a, const void *b)
4895 {
4896         const struct btrfs_device_info *di_a = a;
4897         const struct btrfs_device_info *di_b = b;
4898
4899         if (di_a->max_avail > di_b->max_avail)
4900                 return -1;
4901         if (di_a->max_avail < di_b->max_avail)
4902                 return 1;
4903         if (di_a->total_avail > di_b->total_avail)
4904                 return -1;
4905         if (di_a->total_avail < di_b->total_avail)
4906                 return 1;
4907         return 0;
4908 }
4909
4910 static void check_raid56_incompat_flag(struct btrfs_fs_info *info, u64 type)
4911 {
4912         if (!(type & BTRFS_BLOCK_GROUP_RAID56_MASK))
4913                 return;
4914
4915         btrfs_set_fs_incompat(info, RAID56);
4916 }
4917
4918 static void check_raid1c34_incompat_flag(struct btrfs_fs_info *info, u64 type)
4919 {
4920         if (!(type & (BTRFS_BLOCK_GROUP_RAID1C3 | BTRFS_BLOCK_GROUP_RAID1C4)))
4921                 return;
4922
4923         btrfs_set_fs_incompat(info, RAID1C34);
4924 }
4925
4926 /*
4927  * Structure used internally for __btrfs_alloc_chunk() function.
4928  * Wraps needed parameters.
4929  */
4930 struct alloc_chunk_ctl {
4931         u64 start;
4932         u64 type;
4933         /* Total number of stripes to allocate */
4934         int num_stripes;
4935         /* sub_stripes info for map */
4936         int sub_stripes;
4937         /* Stripes per device */
4938         int dev_stripes;
4939         /* Maximum number of devices to use */
4940         int devs_max;
4941         /* Minimum number of devices to use */
4942         int devs_min;
4943         /* ndevs has to be a multiple of this */
4944         int devs_increment;
4945         /* Number of copies */
4946         int ncopies;
4947         /* Number of stripes worth of bytes to store parity information */
4948         int nparity;
4949         u64 max_stripe_size;
4950         u64 max_chunk_size;
4951         u64 dev_extent_min;
4952         u64 stripe_size;
4953         u64 chunk_size;
4954         int ndevs;
4955 };
4956
4957 static void init_alloc_chunk_ctl_policy_regular(
4958                                 struct btrfs_fs_devices *fs_devices,
4959                                 struct alloc_chunk_ctl *ctl)
4960 {
4961         u64 type = ctl->type;
4962
4963         if (type & BTRFS_BLOCK_GROUP_DATA) {
4964                 ctl->max_stripe_size = SZ_1G;
4965                 ctl->max_chunk_size = BTRFS_MAX_DATA_CHUNK_SIZE;
4966         } else if (type & BTRFS_BLOCK_GROUP_METADATA) {
4967                 /* For larger filesystems, use larger metadata chunks */
4968                 if (fs_devices->total_rw_bytes > 50ULL * SZ_1G)
4969                         ctl->max_stripe_size = SZ_1G;
4970                 else
4971                         ctl->max_stripe_size = SZ_256M;
4972                 ctl->max_chunk_size = ctl->max_stripe_size;
4973         } else if (type & BTRFS_BLOCK_GROUP_SYSTEM) {
4974                 ctl->max_stripe_size = SZ_32M;
4975                 ctl->max_chunk_size = 2 * ctl->max_stripe_size;
4976                 ctl->devs_max = min_t(int, ctl->devs_max,
4977                                       BTRFS_MAX_DEVS_SYS_CHUNK);
4978         } else {
4979                 BUG();
4980         }
4981
4982         /* We don't want a chunk larger than 10% of writable space */
4983         ctl->max_chunk_size = min(div_factor(fs_devices->total_rw_bytes, 1),
4984                                   ctl->max_chunk_size);
4985         ctl->dev_extent_min = BTRFS_STRIPE_LEN * ctl->dev_stripes;
4986 }
4987
4988 static void init_alloc_chunk_ctl_policy_zoned(
4989                                       struct btrfs_fs_devices *fs_devices,
4990                                       struct alloc_chunk_ctl *ctl)
4991 {
4992         u64 zone_size = fs_devices->fs_info->zone_size;
4993         u64 limit;
4994         int min_num_stripes = ctl->devs_min * ctl->dev_stripes;
4995         int min_data_stripes = (min_num_stripes - ctl->nparity) / ctl->ncopies;
4996         u64 min_chunk_size = min_data_stripes * zone_size;
4997         u64 type = ctl->type;
4998
4999         ctl->max_stripe_size = zone_size;
5000         if (type & BTRFS_BLOCK_GROUP_DATA) {
5001                 ctl->max_chunk_size = round_down(BTRFS_MAX_DATA_CHUNK_SIZE,
5002                                                  zone_size);
5003         } else if (type & BTRFS_BLOCK_GROUP_METADATA) {
5004                 ctl->max_chunk_size = ctl->max_stripe_size;
5005         } else if (type & BTRFS_BLOCK_GROUP_SYSTEM) {
5006                 ctl->max_chunk_size = 2 * ctl->max_stripe_size;
5007                 ctl->devs_max = min_t(int, ctl->devs_max,
5008                                       BTRFS_MAX_DEVS_SYS_CHUNK);
5009         } else {
5010                 BUG();
5011         }
5012
5013         /* We don't want a chunk larger than 10% of writable space */
5014         limit = max(round_down(div_factor(fs_devices->total_rw_bytes, 1),
5015                                zone_size),
5016                     min_chunk_size);
5017         ctl->max_chunk_size = min(limit, ctl->max_chunk_size);
5018         ctl->dev_extent_min = zone_size * ctl->dev_stripes;
5019 }
5020
5021 static void init_alloc_chunk_ctl(struct btrfs_fs_devices *fs_devices,
5022                                  struct alloc_chunk_ctl *ctl)
5023 {
5024         int index = btrfs_bg_flags_to_raid_index(ctl->type);
5025
5026         ctl->sub_stripes = btrfs_raid_array[index].sub_stripes;
5027         ctl->dev_stripes = btrfs_raid_array[index].dev_stripes;
5028         ctl->devs_max = btrfs_raid_array[index].devs_max;
5029         if (!ctl->devs_max)
5030                 ctl->devs_max = BTRFS_MAX_DEVS(fs_devices->fs_info);
5031         ctl->devs_min = btrfs_raid_array[index].devs_min;
5032         ctl->devs_increment = btrfs_raid_array[index].devs_increment;
5033         ctl->ncopies = btrfs_raid_array[index].ncopies;
5034         ctl->nparity = btrfs_raid_array[index].nparity;
5035         ctl->ndevs = 0;
5036
5037         switch (fs_devices->chunk_alloc_policy) {
5038         case BTRFS_CHUNK_ALLOC_REGULAR:
5039                 init_alloc_chunk_ctl_policy_regular(fs_devices, ctl);
5040                 break;
5041         case BTRFS_CHUNK_ALLOC_ZONED:
5042                 init_alloc_chunk_ctl_policy_zoned(fs_devices, ctl);
5043                 break;
5044         default:
5045                 BUG();
5046         }
5047 }
5048
5049 static int gather_device_info(struct btrfs_fs_devices *fs_devices,
5050                               struct alloc_chunk_ctl *ctl,
5051                               struct btrfs_device_info *devices_info)
5052 {
5053         struct btrfs_fs_info *info = fs_devices->fs_info;
5054         struct btrfs_device *device;
5055         u64 total_avail;
5056         u64 dev_extent_want = ctl->max_stripe_size * ctl->dev_stripes;
5057         int ret;
5058         int ndevs = 0;
5059         u64 max_avail;
5060         u64 dev_offset;
5061
5062         /*
5063          * in the first pass through the devices list, we gather information
5064          * about the available holes on each device.
5065          */
5066         list_for_each_entry(device, &fs_devices->alloc_list, dev_alloc_list) {
5067                 if (!test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
5068                         WARN(1, KERN_ERR
5069                                "BTRFS: read-only device in alloc_list\n");
5070                         continue;
5071                 }
5072
5073                 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA,
5074                                         &device->dev_state) ||
5075                     test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state))
5076                         continue;
5077
5078                 if (device->total_bytes > device->bytes_used)
5079                         total_avail = device->total_bytes - device->bytes_used;
5080                 else
5081                         total_avail = 0;
5082
5083                 /* If there is no space on this device, skip it. */
5084                 if (total_avail < ctl->dev_extent_min)
5085                         continue;
5086
5087                 ret = find_free_dev_extent(device, dev_extent_want, &dev_offset,
5088                                            &max_avail);
5089                 if (ret && ret != -ENOSPC)
5090                         return ret;
5091
5092                 if (ret == 0)
5093                         max_avail = dev_extent_want;
5094
5095                 if (max_avail < ctl->dev_extent_min) {
5096                         if (btrfs_test_opt(info, ENOSPC_DEBUG))
5097                                 btrfs_debug(info,
5098                         "%s: devid %llu has no free space, have=%llu want=%llu",
5099                                             __func__, device->devid, max_avail,
5100                                             ctl->dev_extent_min);
5101                         continue;
5102                 }
5103
5104                 if (ndevs == fs_devices->rw_devices) {
5105                         WARN(1, "%s: found more than %llu devices\n",
5106                              __func__, fs_devices->rw_devices);
5107                         break;
5108                 }
5109                 devices_info[ndevs].dev_offset = dev_offset;
5110                 devices_info[ndevs].max_avail = max_avail;
5111                 devices_info[ndevs].total_avail = total_avail;
5112                 devices_info[ndevs].dev = device;
5113                 ++ndevs;
5114         }
5115         ctl->ndevs = ndevs;
5116
5117         /*
5118          * now sort the devices by hole size / available space
5119          */
5120         sort(devices_info, ndevs, sizeof(struct btrfs_device_info),
5121              btrfs_cmp_device_info, NULL);
5122
5123         return 0;
5124 }
5125
5126 static int decide_stripe_size_regular(struct alloc_chunk_ctl *ctl,
5127                                       struct btrfs_device_info *devices_info)
5128 {
5129         /* Number of stripes that count for block group size */
5130         int data_stripes;
5131
5132         /*
5133          * The primary goal is to maximize the number of stripes, so use as
5134          * many devices as possible, even if the stripes are not maximum sized.
5135          *
5136          * The DUP profile stores more than one stripe per device, the
5137          * max_avail is the total size so we have to adjust.
5138          */
5139         ctl->stripe_size = div_u64(devices_info[ctl->ndevs - 1].max_avail,
5140                                    ctl->dev_stripes);
5141         ctl->num_stripes = ctl->ndevs * ctl->dev_stripes;
5142
5143         /* This will have to be fixed for RAID1 and RAID10 over more drives */
5144         data_stripes = (ctl->num_stripes - ctl->nparity) / ctl->ncopies;
5145
5146         /*
5147          * Use the number of data stripes to figure out how big this chunk is
5148          * really going to be in terms of logical address space, and compare
5149          * that answer with the max chunk size. If it's higher, we try to
5150          * reduce stripe_size.
5151          */
5152         if (ctl->stripe_size * data_stripes > ctl->max_chunk_size) {
5153                 /*
5154                  * Reduce stripe_size, round it up to a 16MB boundary again and
5155                  * then use it, unless it ends up being even bigger than the
5156                  * previous value we had already.
5157                  */
5158                 ctl->stripe_size = min(round_up(div_u64(ctl->max_chunk_size,
5159                                                         data_stripes), SZ_16M),
5160                                        ctl->stripe_size);
5161         }
5162
5163         /* Align to BTRFS_STRIPE_LEN */
5164         ctl->stripe_size = round_down(ctl->stripe_size, BTRFS_STRIPE_LEN);
5165         ctl->chunk_size = ctl->stripe_size * data_stripes;
5166
5167         return 0;
5168 }
5169
5170 static int decide_stripe_size_zoned(struct alloc_chunk_ctl *ctl,
5171                                     struct btrfs_device_info *devices_info)
5172 {
5173         u64 zone_size = devices_info[0].dev->zone_info->zone_size;
5174         /* Number of stripes that count for block group size */
5175         int data_stripes;
5176
5177         /*
5178          * It should hold because:
5179          *    dev_extent_min == dev_extent_want == zone_size * dev_stripes
5180          */
5181         ASSERT(devices_info[ctl->ndevs - 1].max_avail == ctl->dev_extent_min);
5182
5183         ctl->stripe_size = zone_size;
5184         ctl->num_stripes = ctl->ndevs * ctl->dev_stripes;
5185         data_stripes = (ctl->num_stripes - ctl->nparity) / ctl->ncopies;
5186
5187         /* stripe_size is fixed in zoned filesysmte. Reduce ndevs instead. */
5188         if (ctl->stripe_size * data_stripes > ctl->max_chunk_size) {
5189                 ctl->ndevs = div_u64(div_u64(ctl->max_chunk_size * ctl->ncopies,
5190                                              ctl->stripe_size) + ctl->nparity,
5191                                      ctl->dev_stripes);
5192                 ctl->num_stripes = ctl->ndevs * ctl->dev_stripes;
5193                 data_stripes = (ctl->num_stripes - ctl->nparity) / ctl->ncopies;
5194                 ASSERT(ctl->stripe_size * data_stripes <= ctl->max_chunk_size);
5195         }
5196
5197         ctl->chunk_size = ctl->stripe_size * data_stripes;
5198
5199         return 0;
5200 }
5201
5202 static int decide_stripe_size(struct btrfs_fs_devices *fs_devices,
5203                               struct alloc_chunk_ctl *ctl,
5204                               struct btrfs_device_info *devices_info)
5205 {
5206         struct btrfs_fs_info *info = fs_devices->fs_info;
5207
5208         /*
5209          * Round down to number of usable stripes, devs_increment can be any
5210          * number so we can't use round_down() that requires power of 2, while
5211          * rounddown is safe.
5212          */
5213         ctl->ndevs = rounddown(ctl->ndevs, ctl->devs_increment);
5214
5215         if (ctl->ndevs < ctl->devs_min) {
5216                 if (btrfs_test_opt(info, ENOSPC_DEBUG)) {
5217                         btrfs_debug(info,
5218         "%s: not enough devices with free space: have=%d minimum required=%d",
5219                                     __func__, ctl->ndevs, ctl->devs_min);
5220                 }
5221                 return -ENOSPC;
5222         }
5223
5224         ctl->ndevs = min(ctl->ndevs, ctl->devs_max);
5225
5226         switch (fs_devices->chunk_alloc_policy) {
5227         case BTRFS_CHUNK_ALLOC_REGULAR:
5228                 return decide_stripe_size_regular(ctl, devices_info);
5229         case BTRFS_CHUNK_ALLOC_ZONED:
5230                 return decide_stripe_size_zoned(ctl, devices_info);
5231         default:
5232                 BUG();
5233         }
5234 }
5235
5236 static int create_chunk(struct btrfs_trans_handle *trans,
5237                         struct alloc_chunk_ctl *ctl,
5238                         struct btrfs_device_info *devices_info)
5239 {
5240         struct btrfs_fs_info *info = trans->fs_info;
5241         struct map_lookup *map = NULL;
5242         struct extent_map_tree *em_tree;
5243         struct extent_map *em;
5244         u64 start = ctl->start;
5245         u64 type = ctl->type;
5246         int ret;
5247         int i;
5248         int j;
5249
5250         map = kmalloc(map_lookup_size(ctl->num_stripes), GFP_NOFS);
5251         if (!map)
5252                 return -ENOMEM;
5253         map->num_stripes = ctl->num_stripes;
5254
5255         for (i = 0; i < ctl->ndevs; ++i) {
5256                 for (j = 0; j < ctl->dev_stripes; ++j) {
5257                         int s = i * ctl->dev_stripes + j;
5258                         map->stripes[s].dev = devices_info[i].dev;
5259                         map->stripes[s].physical = devices_info[i].dev_offset +
5260                                                    j * ctl->stripe_size;
5261                 }
5262         }
5263         map->stripe_len = BTRFS_STRIPE_LEN;
5264         map->io_align = BTRFS_STRIPE_LEN;
5265         map->io_width = BTRFS_STRIPE_LEN;
5266         map->type = type;
5267         map->sub_stripes = ctl->sub_stripes;
5268
5269         trace_btrfs_chunk_alloc(info, map, start, ctl->chunk_size);
5270
5271         em = alloc_extent_map();
5272         if (!em) {
5273                 kfree(map);
5274                 return -ENOMEM;
5275         }
5276         set_bit(EXTENT_FLAG_FS_MAPPING, &em->flags);
5277         em->map_lookup = map;
5278         em->start = start;
5279         em->len = ctl->chunk_size;
5280         em->block_start = 0;
5281         em->block_len = em->len;
5282         em->orig_block_len = ctl->stripe_size;
5283
5284         em_tree = &info->mapping_tree;
5285         write_lock(&em_tree->lock);
5286         ret = add_extent_mapping(em_tree, em, 0);
5287         if (ret) {
5288                 write_unlock(&em_tree->lock);
5289                 free_extent_map(em);
5290                 return ret;
5291         }
5292         write_unlock(&em_tree->lock);
5293
5294         ret = btrfs_make_block_group(trans, 0, type, start, ctl->chunk_size);
5295         if (ret)
5296                 goto error_del_extent;
5297
5298         for (i = 0; i < map->num_stripes; i++) {
5299                 struct btrfs_device *dev = map->stripes[i].dev;
5300
5301                 btrfs_device_set_bytes_used(dev,
5302                                             dev->bytes_used + ctl->stripe_size);
5303                 if (list_empty(&dev->post_commit_list))
5304                         list_add_tail(&dev->post_commit_list,
5305                                       &trans->transaction->dev_update_list);
5306         }
5307
5308         atomic64_sub(ctl->stripe_size * map->num_stripes,
5309                      &info->free_chunk_space);
5310
5311         free_extent_map(em);
5312         check_raid56_incompat_flag(info, type);
5313         check_raid1c34_incompat_flag(info, type);
5314
5315         return 0;
5316
5317 error_del_extent:
5318         write_lock(&em_tree->lock);
5319         remove_extent_mapping(em_tree, em);
5320         write_unlock(&em_tree->lock);
5321
5322         /* One for our allocation */
5323         free_extent_map(em);
5324         /* One for the tree reference */
5325         free_extent_map(em);
5326
5327         return ret;
5328 }
5329
5330 int btrfs_alloc_chunk(struct btrfs_trans_handle *trans, u64 type)
5331 {
5332         struct btrfs_fs_info *info = trans->fs_info;
5333         struct btrfs_fs_devices *fs_devices = info->fs_devices;
5334         struct btrfs_device_info *devices_info = NULL;
5335         struct alloc_chunk_ctl ctl;
5336         int ret;
5337
5338         lockdep_assert_held(&info->chunk_mutex);
5339
5340         if (!alloc_profile_is_valid(type, 0)) {
5341                 ASSERT(0);
5342                 return -EINVAL;
5343         }
5344
5345         if (list_empty(&fs_devices->alloc_list)) {
5346                 if (btrfs_test_opt(info, ENOSPC_DEBUG))
5347                         btrfs_debug(info, "%s: no writable device", __func__);
5348                 return -ENOSPC;
5349         }
5350
5351         if (!(type & BTRFS_BLOCK_GROUP_TYPE_MASK)) {
5352                 btrfs_err(info, "invalid chunk type 0x%llx requested", type);
5353                 ASSERT(0);
5354                 return -EINVAL;
5355         }
5356
5357         ctl.start = find_next_chunk(info);
5358         ctl.type = type;
5359         init_alloc_chunk_ctl(fs_devices, &ctl);
5360
5361         devices_info = kcalloc(fs_devices->rw_devices, sizeof(*devices_info),
5362                                GFP_NOFS);
5363         if (!devices_info)
5364                 return -ENOMEM;
5365
5366         ret = gather_device_info(fs_devices, &ctl, devices_info);
5367         if (ret < 0)
5368                 goto out;
5369
5370         ret = decide_stripe_size(fs_devices, &ctl, devices_info);
5371         if (ret < 0)
5372                 goto out;
5373
5374         ret = create_chunk(trans, &ctl, devices_info);
5375
5376 out:
5377         kfree(devices_info);
5378         return ret;
5379 }
5380
5381 /*
5382  * Chunk allocation falls into two parts. The first part does work
5383  * that makes the new allocated chunk usable, but does not do any operation
5384  * that modifies the chunk tree. The second part does the work that
5385  * requires modifying the chunk tree. This division is important for the
5386  * bootstrap process of adding storage to a seed btrfs.
5387  */
5388 int btrfs_finish_chunk_alloc(struct btrfs_trans_handle *trans,
5389                              u64 chunk_offset, u64 chunk_size)
5390 {
5391         struct btrfs_fs_info *fs_info = trans->fs_info;
5392         struct btrfs_root *extent_root = fs_info->extent_root;
5393         struct btrfs_root *chunk_root = fs_info->chunk_root;
5394         struct btrfs_key key;
5395         struct btrfs_device *device;
5396         struct btrfs_chunk *chunk;
5397         struct btrfs_stripe *stripe;
5398         struct extent_map *em;
5399         struct map_lookup *map;
5400         size_t item_size;
5401         u64 dev_offset;
5402         u64 stripe_size;
5403         int i = 0;
5404         int ret = 0;
5405
5406         em = btrfs_get_chunk_map(fs_info, chunk_offset, chunk_size);
5407         if (IS_ERR(em))
5408                 return PTR_ERR(em);
5409
5410         map = em->map_lookup;
5411         item_size = btrfs_chunk_item_size(map->num_stripes);
5412         stripe_size = em->orig_block_len;
5413
5414         chunk = kzalloc(item_size, GFP_NOFS);
5415         if (!chunk) {
5416                 ret = -ENOMEM;
5417                 goto out;
5418         }
5419
5420         /*
5421          * Take the device list mutex to prevent races with the final phase of
5422          * a device replace operation that replaces the device object associated
5423          * with the map's stripes, because the device object's id can change
5424          * at any time during that final phase of the device replace operation
5425          * (dev-replace.c:btrfs_dev_replace_finishing()).
5426          */
5427         mutex_lock(&fs_info->fs_devices->device_list_mutex);
5428         for (i = 0; i < map->num_stripes; i++) {
5429                 device = map->stripes[i].dev;
5430                 dev_offset = map->stripes[i].physical;
5431
5432                 ret = btrfs_update_device(trans, device);
5433                 if (ret)
5434                         break;
5435                 ret = btrfs_alloc_dev_extent(trans, device, chunk_offset,
5436                                              dev_offset, stripe_size);
5437                 if (ret)
5438                         break;
5439         }
5440         if (ret) {
5441                 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
5442                 goto out;
5443         }
5444
5445         stripe = &chunk->stripe;
5446         for (i = 0; i < map->num_stripes; i++) {
5447                 device = map->stripes[i].dev;
5448                 dev_offset = map->stripes[i].physical;
5449
5450                 btrfs_set_stack_stripe_devid(stripe, device->devid);
5451                 btrfs_set_stack_stripe_offset(stripe, dev_offset);
5452                 memcpy(stripe->dev_uuid, device->uuid, BTRFS_UUID_SIZE);
5453                 stripe++;
5454         }
5455         mutex_unlock(&fs_info->fs_devices->device_list_mutex);
5456
5457         btrfs_set_stack_chunk_length(chunk, chunk_size);
5458         btrfs_set_stack_chunk_owner(chunk, extent_root->root_key.objectid);
5459         btrfs_set_stack_chunk_stripe_len(chunk, map->stripe_len);
5460         btrfs_set_stack_chunk_type(chunk, map->type);
5461         btrfs_set_stack_chunk_num_stripes(chunk, map->num_stripes);
5462         btrfs_set_stack_chunk_io_align(chunk, map->stripe_len);
5463         btrfs_set_stack_chunk_io_width(chunk, map->stripe_len);
5464         btrfs_set_stack_chunk_sector_size(chunk, fs_info->sectorsize);
5465         btrfs_set_stack_chunk_sub_stripes(chunk, map->sub_stripes);
5466
5467         key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
5468         key.type = BTRFS_CHUNK_ITEM_KEY;
5469         key.offset = chunk_offset;
5470
5471         ret = btrfs_insert_item(trans, chunk_root, &key, chunk, item_size);
5472         if (ret == 0 && map->type & BTRFS_BLOCK_GROUP_SYSTEM) {
5473                 /*
5474                  * TODO: Cleanup of inserted chunk root in case of
5475                  * failure.
5476                  */
5477                 ret = btrfs_add_system_chunk(fs_info, &key, chunk, item_size);
5478         }
5479
5480 out:
5481         kfree(chunk);
5482         free_extent_map(em);
5483         return ret;
5484 }
5485
5486 static noinline int init_first_rw_device(struct btrfs_trans_handle *trans)
5487 {
5488         struct btrfs_fs_info *fs_info = trans->fs_info;
5489         u64 alloc_profile;
5490         int ret;
5491
5492         alloc_profile = btrfs_metadata_alloc_profile(fs_info);
5493         ret = btrfs_alloc_chunk(trans, alloc_profile);
5494         if (ret)
5495                 return ret;
5496
5497         alloc_profile = btrfs_system_alloc_profile(fs_info);
5498         ret = btrfs_alloc_chunk(trans, alloc_profile);
5499         return ret;
5500 }
5501
5502 static inline int btrfs_chunk_max_errors(struct map_lookup *map)
5503 {
5504         const int index = btrfs_bg_flags_to_raid_index(map->type);
5505
5506         return btrfs_raid_array[index].tolerated_failures;
5507 }
5508
5509 int btrfs_chunk_readonly(struct btrfs_fs_info *fs_info, u64 chunk_offset)
5510 {
5511         struct extent_map *em;
5512         struct map_lookup *map;
5513         int readonly = 0;
5514         int miss_ndevs = 0;
5515         int i;
5516
5517         em = btrfs_get_chunk_map(fs_info, chunk_offset, 1);
5518         if (IS_ERR(em))
5519                 return 1;
5520
5521         map = em->map_lookup;
5522         for (i = 0; i < map->num_stripes; i++) {
5523                 if (test_bit(BTRFS_DEV_STATE_MISSING,
5524                                         &map->stripes[i].dev->dev_state)) {
5525                         miss_ndevs++;
5526                         continue;
5527                 }
5528                 if (!test_bit(BTRFS_DEV_STATE_WRITEABLE,
5529                                         &map->stripes[i].dev->dev_state)) {
5530                         readonly = 1;
5531                         goto end;
5532                 }
5533         }
5534
5535         /*
5536          * If the number of missing devices is larger than max errors,
5537          * we can not write the data into that chunk successfully, so
5538          * set it readonly.
5539          */
5540         if (miss_ndevs > btrfs_chunk_max_errors(map))
5541                 readonly = 1;
5542 end:
5543         free_extent_map(em);
5544         return readonly;
5545 }
5546
5547 void btrfs_mapping_tree_free(struct extent_map_tree *tree)
5548 {
5549         struct extent_map *em;
5550
5551         while (1) {
5552                 write_lock(&tree->lock);
5553                 em = lookup_extent_mapping(tree, 0, (u64)-1);
5554                 if (em)
5555                         remove_extent_mapping(tree, em);
5556                 write_unlock(&tree->lock);
5557                 if (!em)
5558                         break;
5559                 /* once for us */
5560                 free_extent_map(em);
5561                 /* once for the tree */
5562                 free_extent_map(em);
5563         }
5564 }
5565
5566 int btrfs_num_copies(struct btrfs_fs_info *fs_info, u64 logical, u64 len)
5567 {
5568         struct extent_map *em;
5569         struct map_lookup *map;
5570         int ret;
5571
5572         em = btrfs_get_chunk_map(fs_info, logical, len);
5573         if (IS_ERR(em))
5574                 /*
5575                  * We could return errors for these cases, but that could get
5576                  * ugly and we'd probably do the same thing which is just not do
5577                  * anything else and exit, so return 1 so the callers don't try
5578                  * to use other copies.
5579                  */
5580                 return 1;
5581
5582         map = em->map_lookup;
5583         if (map->type & (BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID1_MASK))
5584                 ret = map->num_stripes;
5585         else if (map->type & BTRFS_BLOCK_GROUP_RAID10)
5586                 ret = map->sub_stripes;
5587         else if (map->type & BTRFS_BLOCK_GROUP_RAID5)
5588                 ret = 2;
5589         else if (map->type & BTRFS_BLOCK_GROUP_RAID6)
5590                 /*
5591                  * There could be two corrupted data stripes, we need
5592                  * to loop retry in order to rebuild the correct data.
5593                  *
5594                  * Fail a stripe at a time on every retry except the
5595                  * stripe under reconstruction.
5596                  */
5597                 ret = map->num_stripes;
5598         else
5599                 ret = 1;
5600         free_extent_map(em);
5601
5602         down_read(&fs_info->dev_replace.rwsem);
5603         if (btrfs_dev_replace_is_ongoing(&fs_info->dev_replace) &&
5604             fs_info->dev_replace.tgtdev)
5605                 ret++;
5606         up_read(&fs_info->dev_replace.rwsem);
5607
5608         return ret;
5609 }
5610
5611 unsigned long btrfs_full_stripe_len(struct btrfs_fs_info *fs_info,
5612                                     u64 logical)
5613 {
5614         struct extent_map *em;
5615         struct map_lookup *map;
5616         unsigned long len = fs_info->sectorsize;
5617
5618         em = btrfs_get_chunk_map(fs_info, logical, len);
5619
5620         if (!WARN_ON(IS_ERR(em))) {
5621                 map = em->map_lookup;
5622                 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK)
5623                         len = map->stripe_len * nr_data_stripes(map);
5624                 free_extent_map(em);
5625         }
5626         return len;
5627 }
5628
5629 int btrfs_is_parity_mirror(struct btrfs_fs_info *fs_info, u64 logical, u64 len)
5630 {
5631         struct extent_map *em;
5632         struct map_lookup *map;
5633         int ret = 0;
5634
5635         em = btrfs_get_chunk_map(fs_info, logical, len);
5636
5637         if(!WARN_ON(IS_ERR(em))) {
5638                 map = em->map_lookup;
5639                 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK)
5640                         ret = 1;
5641                 free_extent_map(em);
5642         }
5643         return ret;
5644 }
5645
5646 static int find_live_mirror(struct btrfs_fs_info *fs_info,
5647                             struct map_lookup *map, int first,
5648                             int dev_replace_is_ongoing)
5649 {
5650         int i;
5651         int num_stripes;
5652         int preferred_mirror;
5653         int tolerance;
5654         struct btrfs_device *srcdev;
5655
5656         ASSERT((map->type &
5657                  (BTRFS_BLOCK_GROUP_RAID1_MASK | BTRFS_BLOCK_GROUP_RAID10)));
5658
5659         if (map->type & BTRFS_BLOCK_GROUP_RAID10)
5660                 num_stripes = map->sub_stripes;
5661         else
5662                 num_stripes = map->num_stripes;
5663
5664         switch (fs_info->fs_devices->read_policy) {
5665         default:
5666                 /* Shouldn't happen, just warn and use pid instead of failing */
5667                 btrfs_warn_rl(fs_info,
5668                               "unknown read_policy type %u, reset to pid",
5669                               fs_info->fs_devices->read_policy);
5670                 fs_info->fs_devices->read_policy = BTRFS_READ_POLICY_PID;
5671                 fallthrough;
5672         case BTRFS_READ_POLICY_PID:
5673                 preferred_mirror = first + (current->pid % num_stripes);
5674                 break;
5675         }
5676
5677         if (dev_replace_is_ongoing &&
5678             fs_info->dev_replace.cont_reading_from_srcdev_mode ==
5679              BTRFS_DEV_REPLACE_ITEM_CONT_READING_FROM_SRCDEV_MODE_AVOID)
5680                 srcdev = fs_info->dev_replace.srcdev;
5681         else
5682                 srcdev = NULL;
5683
5684         /*
5685          * try to avoid the drive that is the source drive for a
5686          * dev-replace procedure, only choose it if no other non-missing
5687          * mirror is available
5688          */
5689         for (tolerance = 0; tolerance < 2; tolerance++) {
5690                 if (map->stripes[preferred_mirror].dev->bdev &&
5691                     (tolerance || map->stripes[preferred_mirror].dev != srcdev))
5692                         return preferred_mirror;
5693                 for (i = first; i < first + num_stripes; i++) {
5694                         if (map->stripes[i].dev->bdev &&
5695                             (tolerance || map->stripes[i].dev != srcdev))
5696                                 return i;
5697                 }
5698         }
5699
5700         /* we couldn't find one that doesn't fail.  Just return something
5701          * and the io error handling code will clean up eventually
5702          */
5703         return preferred_mirror;
5704 }
5705
5706 /* Bubble-sort the stripe set to put the parity/syndrome stripes last */
5707 static void sort_parity_stripes(struct btrfs_bio *bbio, int num_stripes)
5708 {
5709         int i;
5710         int again = 1;
5711
5712         while (again) {
5713                 again = 0;
5714                 for (i = 0; i < num_stripes - 1; i++) {
5715                         /* Swap if parity is on a smaller index */
5716                         if (bbio->raid_map[i] > bbio->raid_map[i + 1]) {
5717                                 swap(bbio->stripes[i], bbio->stripes[i + 1]);
5718                                 swap(bbio->raid_map[i], bbio->raid_map[i + 1]);
5719                                 again = 1;
5720                         }
5721                 }
5722         }
5723 }
5724
5725 static struct btrfs_bio *alloc_btrfs_bio(int total_stripes, int real_stripes)
5726 {
5727         struct btrfs_bio *bbio = kzalloc(
5728                  /* the size of the btrfs_bio */
5729                 sizeof(struct btrfs_bio) +
5730                 /* plus the variable array for the stripes */
5731                 sizeof(struct btrfs_bio_stripe) * (total_stripes) +
5732                 /* plus the variable array for the tgt dev */
5733                 sizeof(int) * (real_stripes) +
5734                 /*
5735                  * plus the raid_map, which includes both the tgt dev
5736                  * and the stripes
5737                  */
5738                 sizeof(u64) * (total_stripes),
5739                 GFP_NOFS|__GFP_NOFAIL);
5740
5741         atomic_set(&bbio->error, 0);
5742         refcount_set(&bbio->refs, 1);
5743
5744         bbio->tgtdev_map = (int *)(bbio->stripes + total_stripes);
5745         bbio->raid_map = (u64 *)(bbio->tgtdev_map + real_stripes);
5746
5747         return bbio;
5748 }
5749
5750 void btrfs_get_bbio(struct btrfs_bio *bbio)
5751 {
5752         WARN_ON(!refcount_read(&bbio->refs));
5753         refcount_inc(&bbio->refs);
5754 }
5755
5756 void btrfs_put_bbio(struct btrfs_bio *bbio)
5757 {
5758         if (!bbio)
5759                 return;
5760         if (refcount_dec_and_test(&bbio->refs))
5761                 kfree(bbio);
5762 }
5763
5764 /* can REQ_OP_DISCARD be sent with other REQ like REQ_OP_WRITE? */
5765 /*
5766  * Please note that, discard won't be sent to target device of device
5767  * replace.
5768  */
5769 static int __btrfs_map_block_for_discard(struct btrfs_fs_info *fs_info,
5770                                          u64 logical, u64 *length_ret,
5771                                          struct btrfs_bio **bbio_ret)
5772 {
5773         struct extent_map *em;
5774         struct map_lookup *map;
5775         struct btrfs_bio *bbio;
5776         u64 length = *length_ret;
5777         u64 offset;
5778         u64 stripe_nr;
5779         u64 stripe_nr_end;
5780         u64 stripe_end_offset;
5781         u64 stripe_cnt;
5782         u64 stripe_len;
5783         u64 stripe_offset;
5784         u64 num_stripes;
5785         u32 stripe_index;
5786         u32 factor = 0;
5787         u32 sub_stripes = 0;
5788         u64 stripes_per_dev = 0;
5789         u32 remaining_stripes = 0;
5790         u32 last_stripe = 0;
5791         int ret = 0;
5792         int i;
5793
5794         /* discard always return a bbio */
5795         ASSERT(bbio_ret);
5796
5797         em = btrfs_get_chunk_map(fs_info, logical, length);
5798         if (IS_ERR(em))
5799                 return PTR_ERR(em);
5800
5801         map = em->map_lookup;
5802         /* we don't discard raid56 yet */
5803         if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
5804                 ret = -EOPNOTSUPP;
5805                 goto out;
5806         }
5807
5808         offset = logical - em->start;
5809         length = min_t(u64, em->start + em->len - logical, length);
5810         *length_ret = length;
5811
5812         stripe_len = map->stripe_len;
5813         /*
5814          * stripe_nr counts the total number of stripes we have to stride
5815          * to get to this block
5816          */
5817         stripe_nr = div64_u64(offset, stripe_len);
5818
5819         /* stripe_offset is the offset of this block in its stripe */
5820         stripe_offset = offset - stripe_nr * stripe_len;
5821
5822         stripe_nr_end = round_up(offset + length, map->stripe_len);
5823         stripe_nr_end = div64_u64(stripe_nr_end, map->stripe_len);
5824         stripe_cnt = stripe_nr_end - stripe_nr;
5825         stripe_end_offset = stripe_nr_end * map->stripe_len -
5826                             (offset + length);
5827         /*
5828          * after this, stripe_nr is the number of stripes on this
5829          * device we have to walk to find the data, and stripe_index is
5830          * the number of our device in the stripe array
5831          */
5832         num_stripes = 1;
5833         stripe_index = 0;
5834         if (map->type & (BTRFS_BLOCK_GROUP_RAID0 |
5835                          BTRFS_BLOCK_GROUP_RAID10)) {
5836                 if (map->type & BTRFS_BLOCK_GROUP_RAID0)
5837                         sub_stripes = 1;
5838                 else
5839                         sub_stripes = map->sub_stripes;
5840
5841                 factor = map->num_stripes / sub_stripes;
5842                 num_stripes = min_t(u64, map->num_stripes,
5843                                     sub_stripes * stripe_cnt);
5844                 stripe_nr = div_u64_rem(stripe_nr, factor, &stripe_index);
5845                 stripe_index *= sub_stripes;
5846                 stripes_per_dev = div_u64_rem(stripe_cnt, factor,
5847                                               &remaining_stripes);
5848                 div_u64_rem(stripe_nr_end - 1, factor, &last_stripe);
5849                 last_stripe *= sub_stripes;
5850         } else if (map->type & (BTRFS_BLOCK_GROUP_RAID1_MASK |
5851                                 BTRFS_BLOCK_GROUP_DUP)) {
5852                 num_stripes = map->num_stripes;
5853         } else {
5854                 stripe_nr = div_u64_rem(stripe_nr, map->num_stripes,
5855                                         &stripe_index);
5856         }
5857
5858         bbio = alloc_btrfs_bio(num_stripes, 0);
5859         if (!bbio) {
5860                 ret = -ENOMEM;
5861                 goto out;
5862         }
5863
5864         for (i = 0; i < num_stripes; i++) {
5865                 bbio->stripes[i].physical =
5866                         map->stripes[stripe_index].physical +
5867                         stripe_offset + stripe_nr * map->stripe_len;
5868                 bbio->stripes[i].dev = map->stripes[stripe_index].dev;
5869
5870                 if (map->type & (BTRFS_BLOCK_GROUP_RAID0 |
5871                                  BTRFS_BLOCK_GROUP_RAID10)) {
5872                         bbio->stripes[i].length = stripes_per_dev *
5873                                 map->stripe_len;
5874
5875                         if (i / sub_stripes < remaining_stripes)
5876                                 bbio->stripes[i].length +=
5877                                         map->stripe_len;
5878
5879                         /*
5880                          * Special for the first stripe and
5881                          * the last stripe:
5882                          *
5883                          * |-------|...|-------|
5884                          *     |----------|
5885                          *    off     end_off
5886                          */
5887                         if (i < sub_stripes)
5888                                 bbio->stripes[i].length -=
5889                                         stripe_offset;
5890
5891                         if (stripe_index >= last_stripe &&
5892                             stripe_index <= (last_stripe +
5893                                              sub_stripes - 1))
5894                                 bbio->stripes[i].length -=
5895                                         stripe_end_offset;
5896
5897                         if (i == sub_stripes - 1)
5898                                 stripe_offset = 0;
5899                 } else {
5900                         bbio->stripes[i].length = length;
5901                 }
5902
5903                 stripe_index++;
5904                 if (stripe_index == map->num_stripes) {
5905                         stripe_index = 0;
5906                         stripe_nr++;
5907                 }
5908         }
5909
5910         *bbio_ret = bbio;
5911         bbio->map_type = map->type;
5912         bbio->num_stripes = num_stripes;
5913 out:
5914         free_extent_map(em);
5915         return ret;
5916 }
5917
5918 /*
5919  * In dev-replace case, for repair case (that's the only case where the mirror
5920  * is selected explicitly when calling btrfs_map_block), blocks left of the
5921  * left cursor can also be read from the target drive.
5922  *
5923  * For REQ_GET_READ_MIRRORS, the target drive is added as the last one to the
5924  * array of stripes.
5925  * For READ, it also needs to be supported using the same mirror number.
5926  *
5927  * If the requested block is not left of the left cursor, EIO is returned. This
5928  * can happen because btrfs_num_copies() returns one more in the dev-replace
5929  * case.
5930  */
5931 static int get_extra_mirror_from_replace(struct btrfs_fs_info *fs_info,
5932                                          u64 logical, u64 length,
5933                                          u64 srcdev_devid, int *mirror_num,
5934                                          u64 *physical)
5935 {
5936         struct btrfs_bio *bbio = NULL;
5937         int num_stripes;
5938         int index_srcdev = 0;
5939         int found = 0;
5940         u64 physical_of_found = 0;
5941         int i;
5942         int ret = 0;
5943
5944         ret = __btrfs_map_block(fs_info, BTRFS_MAP_GET_READ_MIRRORS,
5945                                 logical, &length, &bbio, 0, 0);
5946         if (ret) {
5947                 ASSERT(bbio == NULL);
5948                 return ret;
5949         }
5950
5951         num_stripes = bbio->num_stripes;
5952         if (*mirror_num > num_stripes) {
5953                 /*
5954                  * BTRFS_MAP_GET_READ_MIRRORS does not contain this mirror,
5955                  * that means that the requested area is not left of the left
5956                  * cursor
5957                  */
5958                 btrfs_put_bbio(bbio);
5959                 return -EIO;
5960         }
5961
5962         /*
5963          * process the rest of the function using the mirror_num of the source
5964          * drive. Therefore look it up first.  At the end, patch the device
5965          * pointer to the one of the target drive.
5966          */
5967         for (i = 0; i < num_stripes; i++) {
5968                 if (bbio->stripes[i].dev->devid != srcdev_devid)
5969                         continue;
5970
5971                 /*
5972                  * In case of DUP, in order to keep it simple, only add the
5973                  * mirror with the lowest physical address
5974                  */
5975                 if (found &&
5976                     physical_of_found <= bbio->stripes[i].physical)
5977                         continue;
5978
5979                 index_srcdev = i;
5980                 found = 1;
5981                 physical_of_found = bbio->stripes[i].physical;
5982         }
5983
5984         btrfs_put_bbio(bbio);
5985
5986         ASSERT(found);
5987         if (!found)
5988                 return -EIO;
5989
5990         *mirror_num = index_srcdev + 1;
5991         *physical = physical_of_found;
5992         return ret;
5993 }
5994
5995 static bool is_block_group_to_copy(struct btrfs_fs_info *fs_info, u64 logical)
5996 {
5997         struct btrfs_block_group *cache;
5998         bool ret;
5999
6000         /* Non zoned filesystem does not use "to_copy" flag */
6001         if (!btrfs_is_zoned(fs_info))
6002                 return false;
6003
6004         cache = btrfs_lookup_block_group(fs_info, logical);
6005
6006         spin_lock(&cache->lock);
6007         ret = cache->to_copy;
6008         spin_unlock(&cache->lock);
6009
6010         btrfs_put_block_group(cache);
6011         return ret;
6012 }
6013
6014 static void handle_ops_on_dev_replace(enum btrfs_map_op op,
6015                                       struct btrfs_bio **bbio_ret,
6016                                       struct btrfs_dev_replace *dev_replace,
6017                                       u64 logical,
6018                                       int *num_stripes_ret, int *max_errors_ret)
6019 {
6020         struct btrfs_bio *bbio = *bbio_ret;
6021         u64 srcdev_devid = dev_replace->srcdev->devid;
6022         int tgtdev_indexes = 0;
6023         int num_stripes = *num_stripes_ret;
6024         int max_errors = *max_errors_ret;
6025         int i;
6026
6027         if (op == BTRFS_MAP_WRITE) {
6028                 int index_where_to_add;
6029
6030                 /*
6031                  * A block group which have "to_copy" set will eventually
6032                  * copied by dev-replace process. We can avoid cloning IO here.
6033                  */
6034                 if (is_block_group_to_copy(dev_replace->srcdev->fs_info, logical))
6035                         return;
6036
6037                 /*
6038                  * duplicate the write operations while the dev replace
6039                  * procedure is running. Since the copying of the old disk to
6040                  * the new disk takes place at run time while the filesystem is
6041                  * mounted writable, the regular write operations to the old
6042                  * disk have to be duplicated to go to the new disk as well.
6043                  *
6044                  * Note that device->missing is handled by the caller, and that
6045                  * the write to the old disk is already set up in the stripes
6046                  * array.
6047                  */
6048                 index_where_to_add = num_stripes;
6049                 for (i = 0; i < num_stripes; i++) {
6050                         if (bbio->stripes[i].dev->devid == srcdev_devid) {
6051                                 /* write to new disk, too */
6052                                 struct btrfs_bio_stripe *new =
6053                                         bbio->stripes + index_where_to_add;
6054                                 struct btrfs_bio_stripe *old =
6055                                         bbio->stripes + i;
6056
6057                                 new->physical = old->physical;
6058                                 new->length = old->length;
6059                                 new->dev = dev_replace->tgtdev;
6060                                 bbio->tgtdev_map[i] = index_where_to_add;
6061                                 index_where_to_add++;
6062                                 max_errors++;
6063                                 tgtdev_indexes++;
6064                         }
6065                 }
6066                 num_stripes = index_where_to_add;
6067         } else if (op == BTRFS_MAP_GET_READ_MIRRORS) {
6068                 int index_srcdev = 0;
6069                 int found = 0;
6070                 u64 physical_of_found = 0;
6071
6072                 /*
6073                  * During the dev-replace procedure, the target drive can also
6074                  * be used to read data in case it is needed to repair a corrupt
6075                  * block elsewhere. This is possible if the requested area is
6076                  * left of the left cursor. In this area, the target drive is a
6077                  * full copy of the source drive.
6078                  */
6079                 for (i = 0; i < num_stripes; i++) {
6080                         if (bbio->stripes[i].dev->devid == srcdev_devid) {
6081                                 /*
6082                                  * In case of DUP, in order to keep it simple,
6083                                  * only add the mirror with the lowest physical
6084                                  * address
6085                                  */
6086                                 if (found &&
6087                                     physical_of_found <=
6088                                      bbio->stripes[i].physical)
6089                                         continue;
6090                                 index_srcdev = i;
6091                                 found = 1;
6092                                 physical_of_found = bbio->stripes[i].physical;
6093                         }
6094                 }
6095                 if (found) {
6096                         struct btrfs_bio_stripe *tgtdev_stripe =
6097                                 bbio->stripes + num_stripes;
6098
6099                         tgtdev_stripe->physical = physical_of_found;
6100                         tgtdev_stripe->length =
6101                                 bbio->stripes[index_srcdev].length;
6102                         tgtdev_stripe->dev = dev_replace->tgtdev;
6103                         bbio->tgtdev_map[index_srcdev] = num_stripes;
6104
6105                         tgtdev_indexes++;
6106                         num_stripes++;
6107                 }
6108         }
6109
6110         *num_stripes_ret = num_stripes;
6111         *max_errors_ret = max_errors;
6112         bbio->num_tgtdevs = tgtdev_indexes;
6113         *bbio_ret = bbio;
6114 }
6115
6116 static bool need_full_stripe(enum btrfs_map_op op)
6117 {
6118         return (op == BTRFS_MAP_WRITE || op == BTRFS_MAP_GET_READ_MIRRORS);
6119 }
6120
6121 /*
6122  * Calculate the geometry of a particular (address, len) tuple. This
6123  * information is used to calculate how big a particular bio can get before it
6124  * straddles a stripe.
6125  *
6126  * @fs_info: the filesystem
6127  * @em:      mapping containing the logical extent
6128  * @op:      type of operation - write or read
6129  * @logical: address that we want to figure out the geometry of
6130  * @len:     the length of IO we are going to perform, starting at @logical
6131  * @io_geom: pointer used to return values
6132  *
6133  * Returns < 0 in case a chunk for the given logical address cannot be found,
6134  * usually shouldn't happen unless @logical is corrupted, 0 otherwise.
6135  */
6136 int btrfs_get_io_geometry(struct btrfs_fs_info *fs_info, struct extent_map *em,
6137                           enum btrfs_map_op op, u64 logical, u64 len,
6138                           struct btrfs_io_geometry *io_geom)
6139 {
6140         struct map_lookup *map;
6141         u64 offset;
6142         u64 stripe_offset;
6143         u64 stripe_nr;
6144         u64 stripe_len;
6145         u64 raid56_full_stripe_start = (u64)-1;
6146         int data_stripes;
6147
6148         ASSERT(op != BTRFS_MAP_DISCARD);
6149
6150         map = em->map_lookup;
6151         /* Offset of this logical address in the chunk */
6152         offset = logical - em->start;
6153         /* Len of a stripe in a chunk */
6154         stripe_len = map->stripe_len;
6155         /* Stripe wher this block falls in */
6156         stripe_nr = div64_u64(offset, stripe_len);
6157         /* Offset of stripe in the chunk */
6158         stripe_offset = stripe_nr * stripe_len;
6159         if (offset < stripe_offset) {
6160                 btrfs_crit(fs_info,
6161 "stripe math has gone wrong, stripe_offset=%llu offset=%llu start=%llu logical=%llu stripe_len=%llu",
6162                         stripe_offset, offset, em->start, logical, stripe_len);
6163                 return -EINVAL;
6164         }
6165
6166         /* stripe_offset is the offset of this block in its stripe */
6167         stripe_offset = offset - stripe_offset;
6168         data_stripes = nr_data_stripes(map);
6169
6170         if (map->type & BTRFS_BLOCK_GROUP_PROFILE_MASK) {
6171                 u64 max_len = stripe_len - stripe_offset;
6172
6173                 /*
6174                  * In case of raid56, we need to know the stripe aligned start
6175                  */
6176                 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
6177                         unsigned long full_stripe_len = stripe_len * data_stripes;
6178                         raid56_full_stripe_start = offset;
6179
6180                         /*
6181                          * Allow a write of a full stripe, but make sure we
6182                          * don't allow straddling of stripes
6183                          */
6184                         raid56_full_stripe_start = div64_u64(raid56_full_stripe_start,
6185                                         full_stripe_len);
6186                         raid56_full_stripe_start *= full_stripe_len;
6187
6188                         /*
6189                          * For writes to RAID[56], allow a full stripeset across
6190                          * all disks. For other RAID types and for RAID[56]
6191                          * reads, just allow a single stripe (on a single disk).
6192                          */
6193                         if (op == BTRFS_MAP_WRITE) {
6194                                 max_len = stripe_len * data_stripes -
6195                                           (offset - raid56_full_stripe_start);
6196                         }
6197                 }
6198                 len = min_t(u64, em->len - offset, max_len);
6199         } else {
6200                 len = em->len - offset;
6201         }
6202
6203         io_geom->len = len;
6204         io_geom->offset = offset;
6205         io_geom->stripe_len = stripe_len;
6206         io_geom->stripe_nr = stripe_nr;
6207         io_geom->stripe_offset = stripe_offset;
6208         io_geom->raid56_stripe_offset = raid56_full_stripe_start;
6209
6210         return 0;
6211 }
6212
6213 static int __btrfs_map_block(struct btrfs_fs_info *fs_info,
6214                              enum btrfs_map_op op,
6215                              u64 logical, u64 *length,
6216                              struct btrfs_bio **bbio_ret,
6217                              int mirror_num, int need_raid_map)
6218 {
6219         struct extent_map *em;
6220         struct map_lookup *map;
6221         u64 stripe_offset;
6222         u64 stripe_nr;
6223         u64 stripe_len;
6224         u32 stripe_index;
6225         int data_stripes;
6226         int i;
6227         int ret = 0;
6228         int num_stripes;
6229         int max_errors = 0;
6230         int tgtdev_indexes = 0;
6231         struct btrfs_bio *bbio = NULL;
6232         struct btrfs_dev_replace *dev_replace = &fs_info->dev_replace;
6233         int dev_replace_is_ongoing = 0;
6234         int num_alloc_stripes;
6235         int patch_the_first_stripe_for_dev_replace = 0;
6236         u64 physical_to_patch_in_first_stripe = 0;
6237         u64 raid56_full_stripe_start = (u64)-1;
6238         struct btrfs_io_geometry geom;
6239
6240         ASSERT(bbio_ret);
6241         ASSERT(op != BTRFS_MAP_DISCARD);
6242
6243         em = btrfs_get_chunk_map(fs_info, logical, *length);
6244         ASSERT(!IS_ERR(em));
6245
6246         ret = btrfs_get_io_geometry(fs_info, em, op, logical, *length, &geom);
6247         if (ret < 0)
6248                 return ret;
6249
6250         map = em->map_lookup;
6251
6252         *length = geom.len;
6253         stripe_len = geom.stripe_len;
6254         stripe_nr = geom.stripe_nr;
6255         stripe_offset = geom.stripe_offset;
6256         raid56_full_stripe_start = geom.raid56_stripe_offset;
6257         data_stripes = nr_data_stripes(map);
6258
6259         down_read(&dev_replace->rwsem);
6260         dev_replace_is_ongoing = btrfs_dev_replace_is_ongoing(dev_replace);
6261         /*
6262          * Hold the semaphore for read during the whole operation, write is
6263          * requested at commit time but must wait.
6264          */
6265         if (!dev_replace_is_ongoing)
6266                 up_read(&dev_replace->rwsem);
6267
6268         if (dev_replace_is_ongoing && mirror_num == map->num_stripes + 1 &&
6269             !need_full_stripe(op) && dev_replace->tgtdev != NULL) {
6270                 ret = get_extra_mirror_from_replace(fs_info, logical, *length,
6271                                                     dev_replace->srcdev->devid,
6272                                                     &mirror_num,
6273                                             &physical_to_patch_in_first_stripe);
6274                 if (ret)
6275                         goto out;
6276                 else
6277                         patch_the_first_stripe_for_dev_replace = 1;
6278         } else if (mirror_num > map->num_stripes) {
6279                 mirror_num = 0;
6280         }
6281
6282         num_stripes = 1;
6283         stripe_index = 0;
6284         if (map->type & BTRFS_BLOCK_GROUP_RAID0) {
6285                 stripe_nr = div_u64_rem(stripe_nr, map->num_stripes,
6286                                 &stripe_index);
6287                 if (!need_full_stripe(op))
6288                         mirror_num = 1;
6289         } else if (map->type & BTRFS_BLOCK_GROUP_RAID1_MASK) {
6290                 if (need_full_stripe(op))
6291                         num_stripes = map->num_stripes;
6292                 else if (mirror_num)
6293                         stripe_index = mirror_num - 1;
6294                 else {
6295                         stripe_index = find_live_mirror(fs_info, map, 0,
6296                                             dev_replace_is_ongoing);
6297                         mirror_num = stripe_index + 1;
6298                 }
6299
6300         } else if (map->type & BTRFS_BLOCK_GROUP_DUP) {
6301                 if (need_full_stripe(op)) {
6302                         num_stripes = map->num_stripes;
6303                 } else if (mirror_num) {
6304                         stripe_index = mirror_num - 1;
6305                 } else {
6306                         mirror_num = 1;
6307                 }
6308
6309         } else if (map->type & BTRFS_BLOCK_GROUP_RAID10) {
6310                 u32 factor = map->num_stripes / map->sub_stripes;
6311
6312                 stripe_nr = div_u64_rem(stripe_nr, factor, &stripe_index);
6313                 stripe_index *= map->sub_stripes;
6314
6315                 if (need_full_stripe(op))
6316                         num_stripes = map->sub_stripes;
6317                 else if (mirror_num)
6318                         stripe_index += mirror_num - 1;
6319                 else {
6320                         int old_stripe_index = stripe_index;
6321                         stripe_index = find_live_mirror(fs_info, map,
6322                                               stripe_index,
6323                                               dev_replace_is_ongoing);
6324                         mirror_num = stripe_index - old_stripe_index + 1;
6325                 }
6326
6327         } else if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
6328                 if (need_raid_map && (need_full_stripe(op) || mirror_num > 1)) {
6329                         /* push stripe_nr back to the start of the full stripe */
6330                         stripe_nr = div64_u64(raid56_full_stripe_start,
6331                                         stripe_len * data_stripes);
6332
6333                         /* RAID[56] write or recovery. Return all stripes */
6334                         num_stripes = map->num_stripes;
6335                         max_errors = nr_parity_stripes(map);
6336
6337                         *length = map->stripe_len;
6338                         stripe_index = 0;
6339                         stripe_offset = 0;
6340                 } else {
6341                         /*
6342                          * Mirror #0 or #1 means the original data block.
6343                          * Mirror #2 is RAID5 parity block.
6344                          * Mirror #3 is RAID6 Q block.
6345                          */
6346                         stripe_nr = div_u64_rem(stripe_nr,
6347                                         data_stripes, &stripe_index);
6348                         if (mirror_num > 1)
6349                                 stripe_index = data_stripes + mirror_num - 2;
6350
6351                         /* We distribute the parity blocks across stripes */
6352                         div_u64_rem(stripe_nr + stripe_index, map->num_stripes,
6353                                         &stripe_index);
6354                         if (!need_full_stripe(op) && mirror_num <= 1)
6355                                 mirror_num = 1;
6356                 }
6357         } else {
6358                 /*
6359                  * after this, stripe_nr is the number of stripes on this
6360                  * device we have to walk to find the data, and stripe_index is
6361                  * the number of our device in the stripe array
6362                  */
6363                 stripe_nr = div_u64_rem(stripe_nr, map->num_stripes,
6364                                 &stripe_index);
6365                 mirror_num = stripe_index + 1;
6366         }
6367         if (stripe_index >= map->num_stripes) {
6368                 btrfs_crit(fs_info,
6369                            "stripe index math went horribly wrong, got stripe_index=%u, num_stripes=%u",
6370                            stripe_index, map->num_stripes);
6371                 ret = -EINVAL;
6372                 goto out;
6373         }
6374
6375         num_alloc_stripes = num_stripes;
6376         if (dev_replace_is_ongoing && dev_replace->tgtdev != NULL) {
6377                 if (op == BTRFS_MAP_WRITE)
6378                         num_alloc_stripes <<= 1;
6379                 if (op == BTRFS_MAP_GET_READ_MIRRORS)
6380                         num_alloc_stripes++;
6381                 tgtdev_indexes = num_stripes;
6382         }
6383
6384         bbio = alloc_btrfs_bio(num_alloc_stripes, tgtdev_indexes);
6385         if (!bbio) {
6386                 ret = -ENOMEM;
6387                 goto out;
6388         }
6389
6390         for (i = 0; i < num_stripes; i++) {
6391                 bbio->stripes[i].physical = map->stripes[stripe_index].physical +
6392                         stripe_offset + stripe_nr * map->stripe_len;
6393                 bbio->stripes[i].dev = map->stripes[stripe_index].dev;
6394                 stripe_index++;
6395         }
6396
6397         /* build raid_map */
6398         if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK && need_raid_map &&
6399             (need_full_stripe(op) || mirror_num > 1)) {
6400                 u64 tmp;
6401                 unsigned rot;
6402
6403                 /* Work out the disk rotation on this stripe-set */
6404                 div_u64_rem(stripe_nr, num_stripes, &rot);
6405
6406                 /* Fill in the logical address of each stripe */
6407                 tmp = stripe_nr * data_stripes;
6408                 for (i = 0; i < data_stripes; i++)
6409                         bbio->raid_map[(i+rot) % num_stripes] =
6410                                 em->start + (tmp + i) * map->stripe_len;
6411
6412                 bbio->raid_map[(i+rot) % map->num_stripes] = RAID5_P_STRIPE;
6413                 if (map->type & BTRFS_BLOCK_GROUP_RAID6)
6414                         bbio->raid_map[(i+rot+1) % num_stripes] =
6415                                 RAID6_Q_STRIPE;
6416
6417                 sort_parity_stripes(bbio, num_stripes);
6418         }
6419
6420         if (need_full_stripe(op))
6421                 max_errors = btrfs_chunk_max_errors(map);
6422
6423         if (dev_replace_is_ongoing && dev_replace->tgtdev != NULL &&
6424             need_full_stripe(op)) {
6425                 handle_ops_on_dev_replace(op, &bbio, dev_replace, logical,
6426                                           &num_stripes, &max_errors);
6427         }
6428
6429         *bbio_ret = bbio;
6430         bbio->map_type = map->type;
6431         bbio->num_stripes = num_stripes;
6432         bbio->max_errors = max_errors;
6433         bbio->mirror_num = mirror_num;
6434
6435         /*
6436          * this is the case that REQ_READ && dev_replace_is_ongoing &&
6437          * mirror_num == num_stripes + 1 && dev_replace target drive is
6438          * available as a mirror
6439          */
6440         if (patch_the_first_stripe_for_dev_replace && num_stripes > 0) {
6441                 WARN_ON(num_stripes > 1);
6442                 bbio->stripes[0].dev = dev_replace->tgtdev;
6443                 bbio->stripes[0].physical = physical_to_patch_in_first_stripe;
6444                 bbio->mirror_num = map->num_stripes + 1;
6445         }
6446 out:
6447         if (dev_replace_is_ongoing) {
6448                 lockdep_assert_held(&dev_replace->rwsem);
6449                 /* Unlock and let waiting writers proceed */
6450                 up_read(&dev_replace->rwsem);
6451         }
6452         free_extent_map(em);
6453         return ret;
6454 }
6455
6456 int btrfs_map_block(struct btrfs_fs_info *fs_info, enum btrfs_map_op op,
6457                       u64 logical, u64 *length,
6458                       struct btrfs_bio **bbio_ret, int mirror_num)
6459 {
6460         if (op == BTRFS_MAP_DISCARD)
6461                 return __btrfs_map_block_for_discard(fs_info, logical,
6462                                                      length, bbio_ret);
6463
6464         return __btrfs_map_block(fs_info, op, logical, length, bbio_ret,
6465                                  mirror_num, 0);
6466 }
6467
6468 /* For Scrub/replace */
6469 int btrfs_map_sblock(struct btrfs_fs_info *fs_info, enum btrfs_map_op op,
6470                      u64 logical, u64 *length,
6471                      struct btrfs_bio **bbio_ret)
6472 {
6473         return __btrfs_map_block(fs_info, op, logical, length, bbio_ret, 0, 1);
6474 }
6475
6476 static inline void btrfs_end_bbio(struct btrfs_bio *bbio, struct bio *bio)
6477 {
6478         bio->bi_private = bbio->private;
6479         bio->bi_end_io = bbio->end_io;
6480         bio_endio(bio);
6481
6482         btrfs_put_bbio(bbio);
6483 }
6484
6485 static void btrfs_end_bio(struct bio *bio)
6486 {
6487         struct btrfs_bio *bbio = bio->bi_private;
6488         int is_orig_bio = 0;
6489
6490         if (bio->bi_status) {
6491                 atomic_inc(&bbio->error);
6492                 if (bio->bi_status == BLK_STS_IOERR ||
6493                     bio->bi_status == BLK_STS_TARGET) {
6494                         struct btrfs_device *dev = btrfs_io_bio(bio)->device;
6495
6496                         ASSERT(dev->bdev);
6497                         if (btrfs_op(bio) == BTRFS_MAP_WRITE)
6498                                 btrfs_dev_stat_inc_and_print(dev,
6499                                                 BTRFS_DEV_STAT_WRITE_ERRS);
6500                         else if (!(bio->bi_opf & REQ_RAHEAD))
6501                                 btrfs_dev_stat_inc_and_print(dev,
6502                                                 BTRFS_DEV_STAT_READ_ERRS);
6503                         if (bio->bi_opf & REQ_PREFLUSH)
6504                                 btrfs_dev_stat_inc_and_print(dev,
6505                                                 BTRFS_DEV_STAT_FLUSH_ERRS);
6506                 }
6507         }
6508
6509         if (bio == bbio->orig_bio)
6510                 is_orig_bio = 1;
6511
6512         btrfs_bio_counter_dec(bbio->fs_info);
6513
6514         if (atomic_dec_and_test(&bbio->stripes_pending)) {
6515                 if (!is_orig_bio) {
6516                         bio_put(bio);
6517                         bio = bbio->orig_bio;
6518                 }
6519
6520                 btrfs_io_bio(bio)->mirror_num = bbio->mirror_num;
6521                 /* only send an error to the higher layers if it is
6522                  * beyond the tolerance of the btrfs bio
6523                  */
6524                 if (atomic_read(&bbio->error) > bbio->max_errors) {
6525                         bio->bi_status = BLK_STS_IOERR;
6526                 } else {
6527                         /*
6528                          * this bio is actually up to date, we didn't
6529                          * go over the max number of errors
6530                          */
6531                         bio->bi_status = BLK_STS_OK;
6532                 }
6533
6534                 btrfs_end_bbio(bbio, bio);
6535         } else if (!is_orig_bio) {
6536                 bio_put(bio);
6537         }
6538 }
6539
6540 static void submit_stripe_bio(struct btrfs_bio *bbio, struct bio *bio,
6541                               u64 physical, struct btrfs_device *dev)
6542 {
6543         struct btrfs_fs_info *fs_info = bbio->fs_info;
6544
6545         bio->bi_private = bbio;
6546         btrfs_io_bio(bio)->device = dev;
6547         bio->bi_end_io = btrfs_end_bio;
6548         bio->bi_iter.bi_sector = physical >> 9;
6549         /*
6550          * For zone append writing, bi_sector must point the beginning of the
6551          * zone
6552          */
6553         if (bio_op(bio) == REQ_OP_ZONE_APPEND) {
6554                 if (btrfs_dev_is_sequential(dev, physical)) {
6555                         u64 zone_start = round_down(physical, fs_info->zone_size);
6556
6557                         bio->bi_iter.bi_sector = zone_start >> SECTOR_SHIFT;
6558                 } else {
6559                         bio->bi_opf &= ~REQ_OP_ZONE_APPEND;
6560                         bio->bi_opf |= REQ_OP_WRITE;
6561                 }
6562         }
6563         btrfs_debug_in_rcu(fs_info,
6564         "btrfs_map_bio: rw %d 0x%x, sector=%llu, dev=%lu (%s id %llu), size=%u",
6565                 bio_op(bio), bio->bi_opf, bio->bi_iter.bi_sector,
6566                 (unsigned long)dev->bdev->bd_dev, rcu_str_deref(dev->name),
6567                 dev->devid, bio->bi_iter.bi_size);
6568         bio_set_dev(bio, dev->bdev);
6569
6570         btrfs_bio_counter_inc_noblocked(fs_info);
6571
6572         btrfsic_submit_bio(bio);
6573 }
6574
6575 static void bbio_error(struct btrfs_bio *bbio, struct bio *bio, u64 logical)
6576 {
6577         atomic_inc(&bbio->error);
6578         if (atomic_dec_and_test(&bbio->stripes_pending)) {
6579                 /* Should be the original bio. */
6580                 WARN_ON(bio != bbio->orig_bio);
6581
6582                 btrfs_io_bio(bio)->mirror_num = bbio->mirror_num;
6583                 bio->bi_iter.bi_sector = logical >> 9;
6584                 if (atomic_read(&bbio->error) > bbio->max_errors)
6585                         bio->bi_status = BLK_STS_IOERR;
6586                 else
6587                         bio->bi_status = BLK_STS_OK;
6588                 btrfs_end_bbio(bbio, bio);
6589         }
6590 }
6591
6592 blk_status_t btrfs_map_bio(struct btrfs_fs_info *fs_info, struct bio *bio,
6593                            int mirror_num)
6594 {
6595         struct btrfs_device *dev;
6596         struct bio *first_bio = bio;
6597         u64 logical = bio->bi_iter.bi_sector << 9;
6598         u64 length = 0;
6599         u64 map_length;
6600         int ret;
6601         int dev_nr;
6602         int total_devs;
6603         struct btrfs_bio *bbio = NULL;
6604
6605         length = bio->bi_iter.bi_size;
6606         map_length = length;
6607
6608         btrfs_bio_counter_inc_blocked(fs_info);
6609         ret = __btrfs_map_block(fs_info, btrfs_op(bio), logical,
6610                                 &map_length, &bbio, mirror_num, 1);
6611         if (ret) {
6612                 btrfs_bio_counter_dec(fs_info);
6613                 return errno_to_blk_status(ret);
6614         }
6615
6616         total_devs = bbio->num_stripes;
6617         bbio->orig_bio = first_bio;
6618         bbio->private = first_bio->bi_private;
6619         bbio->end_io = first_bio->bi_end_io;
6620         bbio->fs_info = fs_info;
6621         atomic_set(&bbio->stripes_pending, bbio->num_stripes);
6622
6623         if ((bbio->map_type & BTRFS_BLOCK_GROUP_RAID56_MASK) &&
6624             ((btrfs_op(bio) == BTRFS_MAP_WRITE) || (mirror_num > 1))) {
6625                 /* In this case, map_length has been set to the length of
6626                    a single stripe; not the whole write */
6627                 if (btrfs_op(bio) == BTRFS_MAP_WRITE) {
6628                         ret = raid56_parity_write(fs_info, bio, bbio,
6629                                                   map_length);
6630                 } else {
6631                         ret = raid56_parity_recover(fs_info, bio, bbio,
6632                                                     map_length, mirror_num, 1);
6633                 }
6634
6635                 btrfs_bio_counter_dec(fs_info);
6636                 return errno_to_blk_status(ret);
6637         }
6638
6639         if (map_length < length) {
6640                 btrfs_crit(fs_info,
6641                            "mapping failed logical %llu bio len %llu len %llu",
6642                            logical, length, map_length);
6643                 BUG();
6644         }
6645
6646         for (dev_nr = 0; dev_nr < total_devs; dev_nr++) {
6647                 dev = bbio->stripes[dev_nr].dev;
6648                 if (!dev || !dev->bdev || test_bit(BTRFS_DEV_STATE_MISSING,
6649                                                    &dev->dev_state) ||
6650                     (btrfs_op(first_bio) == BTRFS_MAP_WRITE &&
6651                     !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))) {
6652                         bbio_error(bbio, first_bio, logical);
6653                         continue;
6654                 }
6655
6656                 if (dev_nr < total_devs - 1)
6657                         bio = btrfs_bio_clone(first_bio);
6658                 else
6659                         bio = first_bio;
6660
6661                 submit_stripe_bio(bbio, bio, bbio->stripes[dev_nr].physical, dev);
6662         }
6663         btrfs_bio_counter_dec(fs_info);
6664         return BLK_STS_OK;
6665 }
6666
6667 /*
6668  * Find a device specified by @devid or @uuid in the list of @fs_devices, or
6669  * return NULL.
6670  *
6671  * If devid and uuid are both specified, the match must be exact, otherwise
6672  * only devid is used.
6673  *
6674  * If @seed is true, traverse through the seed devices.
6675  */
6676 struct btrfs_device *btrfs_find_device(struct btrfs_fs_devices *fs_devices,
6677                                        u64 devid, u8 *uuid, u8 *fsid)
6678 {
6679         struct btrfs_device *device;
6680         struct btrfs_fs_devices *seed_devs;
6681
6682         if (!fsid || !memcmp(fs_devices->metadata_uuid, fsid, BTRFS_FSID_SIZE)) {
6683                 list_for_each_entry(device, &fs_devices->devices, dev_list) {
6684                         if (device->devid == devid &&
6685                             (!uuid || memcmp(device->uuid, uuid,
6686                                              BTRFS_UUID_SIZE) == 0))
6687                                 return device;
6688                 }
6689         }
6690
6691         list_for_each_entry(seed_devs, &fs_devices->seed_list, seed_list) {
6692                 if (!fsid ||
6693                     !memcmp(seed_devs->metadata_uuid, fsid, BTRFS_FSID_SIZE)) {
6694                         list_for_each_entry(device, &seed_devs->devices,
6695                                             dev_list) {
6696                                 if (device->devid == devid &&
6697                                     (!uuid || memcmp(device->uuid, uuid,
6698                                                      BTRFS_UUID_SIZE) == 0))
6699                                         return device;
6700                         }
6701                 }
6702         }
6703
6704         return NULL;
6705 }
6706
6707 static struct btrfs_device *add_missing_dev(struct btrfs_fs_devices *fs_devices,
6708                                             u64 devid, u8 *dev_uuid)
6709 {
6710         struct btrfs_device *device;
6711         unsigned int nofs_flag;
6712
6713         /*
6714          * We call this under the chunk_mutex, so we want to use NOFS for this
6715          * allocation, however we don't want to change btrfs_alloc_device() to
6716          * always do NOFS because we use it in a lot of other GFP_KERNEL safe
6717          * places.
6718          */
6719         nofs_flag = memalloc_nofs_save();
6720         device = btrfs_alloc_device(NULL, &devid, dev_uuid);
6721         memalloc_nofs_restore(nofs_flag);
6722         if (IS_ERR(device))
6723                 return device;
6724
6725         list_add(&device->dev_list, &fs_devices->devices);
6726         device->fs_devices = fs_devices;
6727         fs_devices->num_devices++;
6728
6729         set_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state);
6730         fs_devices->missing_devices++;
6731
6732         return device;
6733 }
6734
6735 /**
6736  * btrfs_alloc_device - allocate struct btrfs_device
6737  * @fs_info:    used only for generating a new devid, can be NULL if
6738  *              devid is provided (i.e. @devid != NULL).
6739  * @devid:      a pointer to devid for this device.  If NULL a new devid
6740  *              is generated.
6741  * @uuid:       a pointer to UUID for this device.  If NULL a new UUID
6742  *              is generated.
6743  *
6744  * Return: a pointer to a new &struct btrfs_device on success; ERR_PTR()
6745  * on error.  Returned struct is not linked onto any lists and must be
6746  * destroyed with btrfs_free_device.
6747  */
6748 struct btrfs_device *btrfs_alloc_device(struct btrfs_fs_info *fs_info,
6749                                         const u64 *devid,
6750                                         const u8 *uuid)
6751 {
6752         struct btrfs_device *dev;
6753         u64 tmp;
6754
6755         if (WARN_ON(!devid && !fs_info))
6756                 return ERR_PTR(-EINVAL);
6757
6758         dev = __alloc_device(fs_info);
6759         if (IS_ERR(dev))
6760                 return dev;
6761
6762         if (devid)
6763                 tmp = *devid;
6764         else {
6765                 int ret;
6766
6767                 ret = find_next_devid(fs_info, &tmp);
6768                 if (ret) {
6769                         btrfs_free_device(dev);
6770                         return ERR_PTR(ret);
6771                 }
6772         }
6773         dev->devid = tmp;
6774
6775         if (uuid)
6776                 memcpy(dev->uuid, uuid, BTRFS_UUID_SIZE);
6777         else
6778                 generate_random_uuid(dev->uuid);
6779
6780         return dev;
6781 }
6782
6783 static void btrfs_report_missing_device(struct btrfs_fs_info *fs_info,
6784                                         u64 devid, u8 *uuid, bool error)
6785 {
6786         if (error)
6787                 btrfs_err_rl(fs_info, "devid %llu uuid %pU is missing",
6788                               devid, uuid);
6789         else
6790                 btrfs_warn_rl(fs_info, "devid %llu uuid %pU is missing",
6791                               devid, uuid);
6792 }
6793
6794 static u64 calc_stripe_length(u64 type, u64 chunk_len, int num_stripes)
6795 {
6796         int index = btrfs_bg_flags_to_raid_index(type);
6797         int ncopies = btrfs_raid_array[index].ncopies;
6798         const int nparity = btrfs_raid_array[index].nparity;
6799         int data_stripes;
6800
6801         if (nparity)
6802                 data_stripes = num_stripes - nparity;
6803         else
6804                 data_stripes = num_stripes / ncopies;
6805
6806         return div_u64(chunk_len, data_stripes);
6807 }
6808
6809 #if BITS_PER_LONG == 32
6810 /*
6811  * Due to page cache limit, metadata beyond BTRFS_32BIT_MAX_FILE_SIZE
6812  * can't be accessed on 32bit systems.
6813  *
6814  * This function do mount time check to reject the fs if it already has
6815  * metadata chunk beyond that limit.
6816  */
6817 static int check_32bit_meta_chunk(struct btrfs_fs_info *fs_info,
6818                                   u64 logical, u64 length, u64 type)
6819 {
6820         if (!(type & BTRFS_BLOCK_GROUP_METADATA))
6821                 return 0;
6822
6823         if (logical + length < MAX_LFS_FILESIZE)
6824                 return 0;
6825
6826         btrfs_err_32bit_limit(fs_info);
6827         return -EOVERFLOW;
6828 }
6829
6830 /*
6831  * This is to give early warning for any metadata chunk reaching
6832  * BTRFS_32BIT_EARLY_WARN_THRESHOLD.
6833  * Although we can still access the metadata, it's not going to be possible
6834  * once the limit is reached.
6835  */
6836 static void warn_32bit_meta_chunk(struct btrfs_fs_info *fs_info,
6837                                   u64 logical, u64 length, u64 type)
6838 {
6839         if (!(type & BTRFS_BLOCK_GROUP_METADATA))
6840                 return;
6841
6842         if (logical + length < BTRFS_32BIT_EARLY_WARN_THRESHOLD)
6843                 return;
6844
6845         btrfs_warn_32bit_limit(fs_info);
6846 }
6847 #endif
6848
6849 static int read_one_chunk(struct btrfs_key *key, struct extent_buffer *leaf,
6850                           struct btrfs_chunk *chunk)
6851 {
6852         struct btrfs_fs_info *fs_info = leaf->fs_info;
6853         struct extent_map_tree *map_tree = &fs_info->mapping_tree;
6854         struct map_lookup *map;
6855         struct extent_map *em;
6856         u64 logical;
6857         u64 length;
6858         u64 devid;
6859         u64 type;
6860         u8 uuid[BTRFS_UUID_SIZE];
6861         int num_stripes;
6862         int ret;
6863         int i;
6864
6865         logical = key->offset;
6866         length = btrfs_chunk_length(leaf, chunk);
6867         type = btrfs_chunk_type(leaf, chunk);
6868         num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
6869
6870 #if BITS_PER_LONG == 32
6871         ret = check_32bit_meta_chunk(fs_info, logical, length, type);
6872         if (ret < 0)
6873                 return ret;
6874         warn_32bit_meta_chunk(fs_info, logical, length, type);
6875 #endif
6876
6877         /*
6878          * Only need to verify chunk item if we're reading from sys chunk array,
6879          * as chunk item in tree block is already verified by tree-checker.
6880          */
6881         if (leaf->start == BTRFS_SUPER_INFO_OFFSET) {
6882                 ret = btrfs_check_chunk_valid(leaf, chunk, logical);
6883                 if (ret)
6884                         return ret;
6885         }
6886
6887         read_lock(&map_tree->lock);
6888         em = lookup_extent_mapping(map_tree, logical, 1);
6889         read_unlock(&map_tree->lock);
6890
6891         /* already mapped? */
6892         if (em && em->start <= logical && em->start + em->len > logical) {
6893                 free_extent_map(em);
6894                 return 0;
6895         } else if (em) {
6896                 free_extent_map(em);
6897         }
6898
6899         em = alloc_extent_map();
6900         if (!em)
6901                 return -ENOMEM;
6902         map = kmalloc(map_lookup_size(num_stripes), GFP_NOFS);
6903         if (!map) {
6904                 free_extent_map(em);
6905                 return -ENOMEM;
6906         }
6907
6908         set_bit(EXTENT_FLAG_FS_MAPPING, &em->flags);
6909         em->map_lookup = map;
6910         em->start = logical;
6911         em->len = length;
6912         em->orig_start = 0;
6913         em->block_start = 0;
6914         em->block_len = em->len;
6915
6916         map->num_stripes = num_stripes;
6917         map->io_width = btrfs_chunk_io_width(leaf, chunk);
6918         map->io_align = btrfs_chunk_io_align(leaf, chunk);
6919         map->stripe_len = btrfs_chunk_stripe_len(leaf, chunk);
6920         map->type = type;
6921         map->sub_stripes = btrfs_chunk_sub_stripes(leaf, chunk);
6922         map->verified_stripes = 0;
6923         em->orig_block_len = calc_stripe_length(type, em->len,
6924                                                 map->num_stripes);
6925         for (i = 0; i < num_stripes; i++) {
6926                 map->stripes[i].physical =
6927                         btrfs_stripe_offset_nr(leaf, chunk, i);
6928                 devid = btrfs_stripe_devid_nr(leaf, chunk, i);
6929                 read_extent_buffer(leaf, uuid, (unsigned long)
6930                                    btrfs_stripe_dev_uuid_nr(chunk, i),
6931                                    BTRFS_UUID_SIZE);
6932                 map->stripes[i].dev = btrfs_find_device(fs_info->fs_devices,
6933                                                         devid, uuid, NULL);
6934                 if (!map->stripes[i].dev &&
6935                     !btrfs_test_opt(fs_info, DEGRADED)) {
6936                         free_extent_map(em);
6937                         btrfs_report_missing_device(fs_info, devid, uuid, true);
6938                         return -ENOENT;
6939                 }
6940                 if (!map->stripes[i].dev) {
6941                         map->stripes[i].dev =
6942                                 add_missing_dev(fs_info->fs_devices, devid,
6943                                                 uuid);
6944                         if (IS_ERR(map->stripes[i].dev)) {
6945                                 free_extent_map(em);
6946                                 btrfs_err(fs_info,
6947                                         "failed to init missing dev %llu: %ld",
6948                                         devid, PTR_ERR(map->stripes[i].dev));
6949                                 return PTR_ERR(map->stripes[i].dev);
6950                         }
6951                         btrfs_report_missing_device(fs_info, devid, uuid, false);
6952                 }
6953                 set_bit(BTRFS_DEV_STATE_IN_FS_METADATA,
6954                                 &(map->stripes[i].dev->dev_state));
6955
6956         }
6957
6958         write_lock(&map_tree->lock);
6959         ret = add_extent_mapping(map_tree, em, 0);
6960         write_unlock(&map_tree->lock);
6961         if (ret < 0) {
6962                 btrfs_err(fs_info,
6963                           "failed to add chunk map, start=%llu len=%llu: %d",
6964                           em->start, em->len, ret);
6965         }
6966         free_extent_map(em);
6967
6968         return ret;
6969 }
6970
6971 static void fill_device_from_item(struct extent_buffer *leaf,
6972                                  struct btrfs_dev_item *dev_item,
6973                                  struct btrfs_device *device)
6974 {
6975         unsigned long ptr;
6976
6977         device->devid = btrfs_device_id(leaf, dev_item);
6978         device->disk_total_bytes = btrfs_device_total_bytes(leaf, dev_item);
6979         device->total_bytes = device->disk_total_bytes;
6980         device->commit_total_bytes = device->disk_total_bytes;
6981         device->bytes_used = btrfs_device_bytes_used(leaf, dev_item);
6982         device->commit_bytes_used = device->bytes_used;
6983         device->type = btrfs_device_type(leaf, dev_item);
6984         device->io_align = btrfs_device_io_align(leaf, dev_item);
6985         device->io_width = btrfs_device_io_width(leaf, dev_item);
6986         device->sector_size = btrfs_device_sector_size(leaf, dev_item);
6987         WARN_ON(device->devid == BTRFS_DEV_REPLACE_DEVID);
6988         clear_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state);
6989
6990         ptr = btrfs_device_uuid(dev_item);
6991         read_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE);
6992 }
6993
6994 static struct btrfs_fs_devices *open_seed_devices(struct btrfs_fs_info *fs_info,
6995                                                   u8 *fsid)
6996 {
6997         struct btrfs_fs_devices *fs_devices;
6998         int ret;
6999
7000         lockdep_assert_held(&uuid_mutex);
7001         ASSERT(fsid);
7002
7003         /* This will match only for multi-device seed fs */
7004         list_for_each_entry(fs_devices, &fs_info->fs_devices->seed_list, seed_list)
7005                 if (!memcmp(fs_devices->fsid, fsid, BTRFS_FSID_SIZE))
7006                         return fs_devices;
7007
7008
7009         fs_devices = find_fsid(fsid, NULL);
7010         if (!fs_devices) {
7011                 if (!btrfs_test_opt(fs_info, DEGRADED))
7012                         return ERR_PTR(-ENOENT);
7013
7014                 fs_devices = alloc_fs_devices(fsid, NULL);
7015                 if (IS_ERR(fs_devices))
7016                         return fs_devices;
7017
7018                 fs_devices->seeding = true;
7019                 fs_devices->opened = 1;
7020                 return fs_devices;
7021         }
7022
7023         /*
7024          * Upon first call for a seed fs fsid, just create a private copy of the
7025          * respective fs_devices and anchor it at fs_info->fs_devices->seed_list
7026          */
7027         fs_devices = clone_fs_devices(fs_devices);
7028         if (IS_ERR(fs_devices))
7029                 return fs_devices;
7030
7031         ret = open_fs_devices(fs_devices, FMODE_READ, fs_info->bdev_holder);
7032         if (ret) {
7033                 free_fs_devices(fs_devices);
7034                 return ERR_PTR(ret);
7035         }
7036
7037         if (!fs_devices->seeding) {
7038                 close_fs_devices(fs_devices);
7039                 free_fs_devices(fs_devices);
7040                 return ERR_PTR(-EINVAL);
7041         }
7042
7043         list_add(&fs_devices->seed_list, &fs_info->fs_devices->seed_list);
7044
7045         return fs_devices;
7046 }
7047
7048 static int read_one_dev(struct extent_buffer *leaf,
7049                         struct btrfs_dev_item *dev_item)
7050 {
7051         struct btrfs_fs_info *fs_info = leaf->fs_info;
7052         struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
7053         struct btrfs_device *device;
7054         u64 devid;
7055         int ret;
7056         u8 fs_uuid[BTRFS_FSID_SIZE];
7057         u8 dev_uuid[BTRFS_UUID_SIZE];
7058
7059         devid = btrfs_device_id(leaf, dev_item);
7060         read_extent_buffer(leaf, dev_uuid, btrfs_device_uuid(dev_item),
7061                            BTRFS_UUID_SIZE);
7062         read_extent_buffer(leaf, fs_uuid, btrfs_device_fsid(dev_item),
7063                            BTRFS_FSID_SIZE);
7064
7065         if (memcmp(fs_uuid, fs_devices->metadata_uuid, BTRFS_FSID_SIZE)) {
7066                 fs_devices = open_seed_devices(fs_info, fs_uuid);
7067                 if (IS_ERR(fs_devices))
7068                         return PTR_ERR(fs_devices);
7069         }
7070
7071         device = btrfs_find_device(fs_info->fs_devices, devid, dev_uuid,
7072                                    fs_uuid);
7073         if (!device) {
7074                 if (!btrfs_test_opt(fs_info, DEGRADED)) {
7075                         btrfs_report_missing_device(fs_info, devid,
7076                                                         dev_uuid, true);
7077                         return -ENOENT;
7078                 }
7079
7080                 device = add_missing_dev(fs_devices, devid, dev_uuid);
7081                 if (IS_ERR(device)) {
7082                         btrfs_err(fs_info,
7083                                 "failed to add missing dev %llu: %ld",
7084                                 devid, PTR_ERR(device));
7085                         return PTR_ERR(device);
7086                 }
7087                 btrfs_report_missing_device(fs_info, devid, dev_uuid, false);
7088         } else {
7089                 if (!device->bdev) {
7090                         if (!btrfs_test_opt(fs_info, DEGRADED)) {
7091                                 btrfs_report_missing_device(fs_info,
7092                                                 devid, dev_uuid, true);
7093                                 return -ENOENT;
7094                         }
7095                         btrfs_report_missing_device(fs_info, devid,
7096                                                         dev_uuid, false);
7097                 }
7098
7099                 if (!device->bdev &&
7100                     !test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state)) {
7101                         /*
7102                          * this happens when a device that was properly setup
7103                          * in the device info lists suddenly goes bad.
7104                          * device->bdev is NULL, and so we have to set
7105                          * device->missing to one here
7106                          */
7107                         device->fs_devices->missing_devices++;
7108                         set_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state);
7109                 }
7110
7111                 /* Move the device to its own fs_devices */
7112                 if (device->fs_devices != fs_devices) {
7113                         ASSERT(test_bit(BTRFS_DEV_STATE_MISSING,
7114                                                         &device->dev_state));
7115
7116                         list_move(&device->dev_list, &fs_devices->devices);
7117                         device->fs_devices->num_devices--;
7118                         fs_devices->num_devices++;
7119
7120                         device->fs_devices->missing_devices--;
7121                         fs_devices->missing_devices++;
7122
7123                         device->fs_devices = fs_devices;
7124                 }
7125         }
7126
7127         if (device->fs_devices != fs_info->fs_devices) {
7128                 BUG_ON(test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state));
7129                 if (device->generation !=
7130                     btrfs_device_generation(leaf, dev_item))
7131                         return -EINVAL;
7132         }
7133
7134         fill_device_from_item(leaf, dev_item, device);
7135         if (device->bdev) {
7136                 u64 max_total_bytes = i_size_read(device->bdev->bd_inode);
7137
7138                 if (device->total_bytes > max_total_bytes) {
7139                         btrfs_err(fs_info,
7140                         "device total_bytes should be at most %llu but found %llu",
7141                                   max_total_bytes, device->total_bytes);
7142                         return -EINVAL;
7143                 }
7144         }
7145         set_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state);
7146         if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) &&
7147            !test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) {
7148                 device->fs_devices->total_rw_bytes += device->total_bytes;
7149                 atomic64_add(device->total_bytes - device->bytes_used,
7150                                 &fs_info->free_chunk_space);
7151         }
7152         ret = 0;
7153         return ret;
7154 }
7155
7156 int btrfs_read_sys_array(struct btrfs_fs_info *fs_info)
7157 {
7158         struct btrfs_root *root = fs_info->tree_root;
7159         struct btrfs_super_block *super_copy = fs_info->super_copy;
7160         struct extent_buffer *sb;
7161         struct btrfs_disk_key *disk_key;
7162         struct btrfs_chunk *chunk;
7163         u8 *array_ptr;
7164         unsigned long sb_array_offset;
7165         int ret = 0;
7166         u32 num_stripes;
7167         u32 array_size;
7168         u32 len = 0;
7169         u32 cur_offset;
7170         u64 type;
7171         struct btrfs_key key;
7172
7173         ASSERT(BTRFS_SUPER_INFO_SIZE <= fs_info->nodesize);
7174         /*
7175          * This will create extent buffer of nodesize, superblock size is
7176          * fixed to BTRFS_SUPER_INFO_SIZE. If nodesize > sb size, this will
7177          * overallocate but we can keep it as-is, only the first page is used.
7178          */
7179         sb = btrfs_find_create_tree_block(fs_info, BTRFS_SUPER_INFO_OFFSET,
7180                                           root->root_key.objectid, 0);
7181         if (IS_ERR(sb))
7182                 return PTR_ERR(sb);
7183         set_extent_buffer_uptodate(sb);
7184         /*
7185          * The sb extent buffer is artificial and just used to read the system array.
7186          * set_extent_buffer_uptodate() call does not properly mark all it's
7187          * pages up-to-date when the page is larger: extent does not cover the
7188          * whole page and consequently check_page_uptodate does not find all
7189          * the page's extents up-to-date (the hole beyond sb),
7190          * write_extent_buffer then triggers a WARN_ON.
7191          *
7192          * Regular short extents go through mark_extent_buffer_dirty/writeback cycle,
7193          * but sb spans only this function. Add an explicit SetPageUptodate call
7194          * to silence the warning eg. on PowerPC 64.
7195          */
7196         if (PAGE_SIZE > BTRFS_SUPER_INFO_SIZE)
7197                 SetPageUptodate(sb->pages[0]);
7198
7199         write_extent_buffer(sb, super_copy, 0, BTRFS_SUPER_INFO_SIZE);
7200         array_size = btrfs_super_sys_array_size(super_copy);
7201
7202         array_ptr = super_copy->sys_chunk_array;
7203         sb_array_offset = offsetof(struct btrfs_super_block, sys_chunk_array);
7204         cur_offset = 0;
7205
7206         while (cur_offset < array_size) {
7207                 disk_key = (struct btrfs_disk_key *)array_ptr;
7208                 len = sizeof(*disk_key);
7209                 if (cur_offset + len > array_size)
7210                         goto out_short_read;
7211
7212                 btrfs_disk_key_to_cpu(&key, disk_key);
7213
7214                 array_ptr += len;
7215                 sb_array_offset += len;
7216                 cur_offset += len;
7217
7218                 if (key.type != BTRFS_CHUNK_ITEM_KEY) {
7219                         btrfs_err(fs_info,
7220                             "unexpected item type %u in sys_array at offset %u",
7221                                   (u32)key.type, cur_offset);
7222                         ret = -EIO;
7223                         break;
7224                 }
7225
7226                 chunk = (struct btrfs_chunk *)sb_array_offset;
7227                 /*
7228                  * At least one btrfs_chunk with one stripe must be present,
7229                  * exact stripe count check comes afterwards
7230                  */
7231                 len = btrfs_chunk_item_size(1);
7232                 if (cur_offset + len > array_size)
7233                         goto out_short_read;
7234
7235                 num_stripes = btrfs_chunk_num_stripes(sb, chunk);
7236                 if (!num_stripes) {
7237                         btrfs_err(fs_info,
7238                         "invalid number of stripes %u in sys_array at offset %u",
7239                                   num_stripes, cur_offset);
7240                         ret = -EIO;
7241                         break;
7242                 }
7243
7244                 type = btrfs_chunk_type(sb, chunk);
7245                 if ((type & BTRFS_BLOCK_GROUP_SYSTEM) == 0) {
7246                         btrfs_err(fs_info,
7247                         "invalid chunk type %llu in sys_array at offset %u",
7248                                   type, cur_offset);
7249                         ret = -EIO;
7250                         break;
7251                 }
7252
7253                 len = btrfs_chunk_item_size(num_stripes);
7254                 if (cur_offset + len > array_size)
7255                         goto out_short_read;
7256
7257                 ret = read_one_chunk(&key, sb, chunk);
7258                 if (ret)
7259                         break;
7260
7261                 array_ptr += len;
7262                 sb_array_offset += len;
7263                 cur_offset += len;
7264         }
7265         clear_extent_buffer_uptodate(sb);
7266         free_extent_buffer_stale(sb);
7267         return ret;
7268
7269 out_short_read:
7270         btrfs_err(fs_info, "sys_array too short to read %u bytes at offset %u",
7271                         len, cur_offset);
7272         clear_extent_buffer_uptodate(sb);
7273         free_extent_buffer_stale(sb);
7274         return -EIO;
7275 }
7276
7277 /*
7278  * Check if all chunks in the fs are OK for read-write degraded mount
7279  *
7280  * If the @failing_dev is specified, it's accounted as missing.
7281  *
7282  * Return true if all chunks meet the minimal RW mount requirements.
7283  * Return false if any chunk doesn't meet the minimal RW mount requirements.
7284  */
7285 bool btrfs_check_rw_degradable(struct btrfs_fs_info *fs_info,
7286                                         struct btrfs_device *failing_dev)
7287 {
7288         struct extent_map_tree *map_tree = &fs_info->mapping_tree;
7289         struct extent_map *em;
7290         u64 next_start = 0;
7291         bool ret = true;
7292
7293         read_lock(&map_tree->lock);
7294         em = lookup_extent_mapping(map_tree, 0, (u64)-1);
7295         read_unlock(&map_tree->lock);
7296         /* No chunk at all? Return false anyway */
7297         if (!em) {
7298                 ret = false;
7299                 goto out;
7300         }
7301         while (em) {
7302                 struct map_lookup *map;
7303                 int missing = 0;
7304                 int max_tolerated;
7305                 int i;
7306
7307                 map = em->map_lookup;
7308                 max_tolerated =
7309                         btrfs_get_num_tolerated_disk_barrier_failures(
7310                                         map->type);
7311                 for (i = 0; i < map->num_stripes; i++) {
7312                         struct btrfs_device *dev = map->stripes[i].dev;
7313
7314                         if (!dev || !dev->bdev ||
7315                             test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state) ||
7316                             dev->last_flush_error)
7317                                 missing++;
7318                         else if (failing_dev && failing_dev == dev)
7319                                 missing++;
7320                 }
7321                 if (missing > max_tolerated) {
7322                         if (!failing_dev)
7323                                 btrfs_warn(fs_info,
7324         "chunk %llu missing %d devices, max tolerance is %d for writable mount",
7325                                    em->start, missing, max_tolerated);
7326                         free_extent_map(em);
7327                         ret = false;
7328                         goto out;
7329                 }
7330                 next_start = extent_map_end(em);
7331                 free_extent_map(em);
7332
7333                 read_lock(&map_tree->lock);
7334                 em = lookup_extent_mapping(map_tree, next_start,
7335                                            (u64)(-1) - next_start);
7336                 read_unlock(&map_tree->lock);
7337         }
7338 out:
7339         return ret;
7340 }
7341
7342 static void readahead_tree_node_children(struct extent_buffer *node)
7343 {
7344         int i;
7345         const int nr_items = btrfs_header_nritems(node);
7346
7347         for (i = 0; i < nr_items; i++)
7348                 btrfs_readahead_node_child(node, i);
7349 }
7350
7351 int btrfs_read_chunk_tree(struct btrfs_fs_info *fs_info)
7352 {
7353         struct btrfs_root *root = fs_info->chunk_root;
7354         struct btrfs_path *path;
7355         struct extent_buffer *leaf;
7356         struct btrfs_key key;
7357         struct btrfs_key found_key;
7358         int ret;
7359         int slot;
7360         u64 total_dev = 0;
7361         u64 last_ra_node = 0;
7362
7363         path = btrfs_alloc_path();
7364         if (!path)
7365                 return -ENOMEM;
7366
7367         /*
7368          * uuid_mutex is needed only if we are mounting a sprout FS
7369          * otherwise we don't need it.
7370          */
7371         mutex_lock(&uuid_mutex);
7372
7373         /*
7374          * It is possible for mount and umount to race in such a way that
7375          * we execute this code path, but open_fs_devices failed to clear
7376          * total_rw_bytes. We certainly want it cleared before reading the
7377          * device items, so clear it here.
7378          */
7379         fs_info->fs_devices->total_rw_bytes = 0;
7380
7381         /*
7382          * Read all device items, and then all the chunk items. All
7383          * device items are found before any chunk item (their object id
7384          * is smaller than the lowest possible object id for a chunk
7385          * item - BTRFS_FIRST_CHUNK_TREE_OBJECTID).
7386          */
7387         key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
7388         key.offset = 0;
7389         key.type = 0;
7390         ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
7391         if (ret < 0)
7392                 goto error;
7393         while (1) {
7394                 struct extent_buffer *node;
7395
7396                 leaf = path->nodes[0];
7397                 slot = path->slots[0];
7398                 if (slot >= btrfs_header_nritems(leaf)) {
7399                         ret = btrfs_next_leaf(root, path);
7400                         if (ret == 0)
7401                                 continue;
7402                         if (ret < 0)
7403                                 goto error;
7404                         break;
7405                 }
7406                 /*
7407                  * The nodes on level 1 are not locked but we don't need to do
7408                  * that during mount time as nothing else can access the tree
7409                  */
7410                 node = path->nodes[1];
7411                 if (node) {
7412                         if (last_ra_node != node->start) {
7413                                 readahead_tree_node_children(node);
7414                                 last_ra_node = node->start;
7415                         }
7416                 }
7417                 btrfs_item_key_to_cpu(leaf, &found_key, slot);
7418                 if (found_key.type == BTRFS_DEV_ITEM_KEY) {
7419                         struct btrfs_dev_item *dev_item;
7420                         dev_item = btrfs_item_ptr(leaf, slot,
7421                                                   struct btrfs_dev_item);
7422                         ret = read_one_dev(leaf, dev_item);
7423                         if (ret)
7424                                 goto error;
7425                         total_dev++;
7426                 } else if (found_key.type == BTRFS_CHUNK_ITEM_KEY) {
7427                         struct btrfs_chunk *chunk;
7428                         chunk = btrfs_item_ptr(leaf, slot, struct btrfs_chunk);
7429                         mutex_lock(&fs_info->chunk_mutex);
7430                         ret = read_one_chunk(&found_key, leaf, chunk);
7431                         mutex_unlock(&fs_info->chunk_mutex);
7432                         if (ret)
7433                                 goto error;
7434                 }
7435                 path->slots[0]++;
7436         }
7437
7438         /*
7439          * After loading chunk tree, we've got all device information,
7440          * do another round of validation checks.
7441          */
7442         if (total_dev != fs_info->fs_devices->total_devices) {
7443                 btrfs_err(fs_info,
7444            "super_num_devices %llu mismatch with num_devices %llu found here",
7445                           btrfs_super_num_devices(fs_info->super_copy),
7446                           total_dev);
7447                 ret = -EINVAL;
7448                 goto error;
7449         }
7450         if (btrfs_super_total_bytes(fs_info->super_copy) <
7451             fs_info->fs_devices->total_rw_bytes) {
7452                 btrfs_err(fs_info,
7453         "super_total_bytes %llu mismatch with fs_devices total_rw_bytes %llu",
7454                           btrfs_super_total_bytes(fs_info->super_copy),
7455                           fs_info->fs_devices->total_rw_bytes);
7456                 ret = -EINVAL;
7457                 goto error;
7458         }
7459         ret = 0;
7460 error:
7461         mutex_unlock(&uuid_mutex);
7462
7463         btrfs_free_path(path);
7464         return ret;
7465 }
7466
7467 void btrfs_init_devices_late(struct btrfs_fs_info *fs_info)
7468 {
7469         struct btrfs_fs_devices *fs_devices = fs_info->fs_devices, *seed_devs;
7470         struct btrfs_device *device;
7471
7472         fs_devices->fs_info = fs_info;
7473
7474         mutex_lock(&fs_devices->device_list_mutex);
7475         list_for_each_entry(device, &fs_devices->devices, dev_list)
7476                 device->fs_info = fs_info;
7477
7478         list_for_each_entry(seed_devs, &fs_devices->seed_list, seed_list) {
7479                 list_for_each_entry(device, &seed_devs->devices, dev_list)
7480                         device->fs_info = fs_info;
7481
7482                 seed_devs->fs_info = fs_info;
7483         }
7484         mutex_unlock(&fs_devices->device_list_mutex);
7485 }
7486
7487 static u64 btrfs_dev_stats_value(const struct extent_buffer *eb,
7488                                  const struct btrfs_dev_stats_item *ptr,
7489                                  int index)
7490 {
7491         u64 val;
7492
7493         read_extent_buffer(eb, &val,
7494                            offsetof(struct btrfs_dev_stats_item, values) +
7495                             ((unsigned long)ptr) + (index * sizeof(u64)),
7496                            sizeof(val));
7497         return val;
7498 }
7499
7500 static void btrfs_set_dev_stats_value(struct extent_buffer *eb,
7501                                       struct btrfs_dev_stats_item *ptr,
7502                                       int index, u64 val)
7503 {
7504         write_extent_buffer(eb, &val,
7505                             offsetof(struct btrfs_dev_stats_item, values) +
7506                              ((unsigned long)ptr) + (index * sizeof(u64)),
7507                             sizeof(val));
7508 }
7509
7510 static int btrfs_device_init_dev_stats(struct btrfs_device *device,
7511                                        struct btrfs_path *path)
7512 {
7513         struct btrfs_dev_stats_item *ptr;
7514         struct extent_buffer *eb;
7515         struct btrfs_key key;
7516         int item_size;
7517         int i, ret, slot;
7518
7519         if (!device->fs_info->dev_root)
7520                 return 0;
7521
7522         key.objectid = BTRFS_DEV_STATS_OBJECTID;
7523         key.type = BTRFS_PERSISTENT_ITEM_KEY;
7524         key.offset = device->devid;
7525         ret = btrfs_search_slot(NULL, device->fs_info->dev_root, &key, path, 0, 0);
7526         if (ret) {
7527                 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
7528                         btrfs_dev_stat_set(device, i, 0);
7529                 device->dev_stats_valid = 1;
7530                 btrfs_release_path(path);
7531                 return ret < 0 ? ret : 0;
7532         }
7533         slot = path->slots[0];
7534         eb = path->nodes[0];
7535         item_size = btrfs_item_size_nr(eb, slot);
7536
7537         ptr = btrfs_item_ptr(eb, slot, struct btrfs_dev_stats_item);
7538
7539         for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) {
7540                 if (item_size >= (1 + i) * sizeof(__le64))
7541                         btrfs_dev_stat_set(device, i,
7542                                            btrfs_dev_stats_value(eb, ptr, i));
7543                 else
7544                         btrfs_dev_stat_set(device, i, 0);
7545         }
7546
7547         device->dev_stats_valid = 1;
7548         btrfs_dev_stat_print_on_load(device);
7549         btrfs_release_path(path);
7550
7551         return 0;
7552 }
7553
7554 int btrfs_init_dev_stats(struct btrfs_fs_info *fs_info)
7555 {
7556         struct btrfs_fs_devices *fs_devices = fs_info->fs_devices, *seed_devs;
7557         struct btrfs_device *device;
7558         struct btrfs_path *path = NULL;
7559         int ret = 0;
7560
7561         path = btrfs_alloc_path();
7562         if (!path)
7563                 return -ENOMEM;
7564
7565         mutex_lock(&fs_devices->device_list_mutex);
7566         list_for_each_entry(device, &fs_devices->devices, dev_list) {
7567                 ret = btrfs_device_init_dev_stats(device, path);
7568                 if (ret)
7569                         goto out;
7570         }
7571         list_for_each_entry(seed_devs, &fs_devices->seed_list, seed_list) {
7572                 list_for_each_entry(device, &seed_devs->devices, dev_list) {
7573                         ret = btrfs_device_init_dev_stats(device, path);
7574                         if (ret)
7575                                 goto out;
7576                 }
7577         }
7578 out:
7579         mutex_unlock(&fs_devices->device_list_mutex);
7580
7581         btrfs_free_path(path);
7582         return ret;
7583 }
7584
7585 static int update_dev_stat_item(struct btrfs_trans_handle *trans,
7586                                 struct btrfs_device *device)
7587 {
7588         struct btrfs_fs_info *fs_info = trans->fs_info;
7589         struct btrfs_root *dev_root = fs_info->dev_root;
7590         struct btrfs_path *path;
7591         struct btrfs_key key;
7592         struct extent_buffer *eb;
7593         struct btrfs_dev_stats_item *ptr;
7594         int ret;
7595         int i;
7596
7597         key.objectid = BTRFS_DEV_STATS_OBJECTID;
7598         key.type = BTRFS_PERSISTENT_ITEM_KEY;
7599         key.offset = device->devid;
7600
7601         path = btrfs_alloc_path();
7602         if (!path)
7603                 return -ENOMEM;
7604         ret = btrfs_search_slot(trans, dev_root, &key, path, -1, 1);
7605         if (ret < 0) {
7606                 btrfs_warn_in_rcu(fs_info,
7607                         "error %d while searching for dev_stats item for device %s",
7608                               ret, rcu_str_deref(device->name));
7609                 goto out;
7610         }
7611
7612         if (ret == 0 &&
7613             btrfs_item_size_nr(path->nodes[0], path->slots[0]) < sizeof(*ptr)) {
7614                 /* need to delete old one and insert a new one */
7615                 ret = btrfs_del_item(trans, dev_root, path);
7616                 if (ret != 0) {
7617                         btrfs_warn_in_rcu(fs_info,
7618                                 "delete too small dev_stats item for device %s failed %d",
7619                                       rcu_str_deref(device->name), ret);
7620                         goto out;
7621                 }
7622                 ret = 1;
7623         }
7624
7625         if (ret == 1) {
7626                 /* need to insert a new item */
7627                 btrfs_release_path(path);
7628                 ret = btrfs_insert_empty_item(trans, dev_root, path,
7629                                               &key, sizeof(*ptr));
7630                 if (ret < 0) {
7631                         btrfs_warn_in_rcu(fs_info,
7632                                 "insert dev_stats item for device %s failed %d",
7633                                 rcu_str_deref(device->name), ret);
7634                         goto out;
7635                 }
7636         }
7637
7638         eb = path->nodes[0];
7639         ptr = btrfs_item_ptr(eb, path->slots[0], struct btrfs_dev_stats_item);
7640         for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
7641                 btrfs_set_dev_stats_value(eb, ptr, i,
7642                                           btrfs_dev_stat_read(device, i));
7643         btrfs_mark_buffer_dirty(eb);
7644
7645 out:
7646         btrfs_free_path(path);
7647         return ret;
7648 }
7649
7650 /*
7651  * called from commit_transaction. Writes all changed device stats to disk.
7652  */
7653 int btrfs_run_dev_stats(struct btrfs_trans_handle *trans)
7654 {
7655         struct btrfs_fs_info *fs_info = trans->fs_info;
7656         struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
7657         struct btrfs_device *device;
7658         int stats_cnt;
7659         int ret = 0;
7660
7661         mutex_lock(&fs_devices->device_list_mutex);
7662         list_for_each_entry(device, &fs_devices->devices, dev_list) {
7663                 stats_cnt = atomic_read(&device->dev_stats_ccnt);
7664                 if (!device->dev_stats_valid || stats_cnt == 0)
7665                         continue;
7666
7667
7668                 /*
7669                  * There is a LOAD-LOAD control dependency between the value of
7670                  * dev_stats_ccnt and updating the on-disk values which requires
7671                  * reading the in-memory counters. Such control dependencies
7672                  * require explicit read memory barriers.
7673                  *
7674                  * This memory barriers pairs with smp_mb__before_atomic in
7675                  * btrfs_dev_stat_inc/btrfs_dev_stat_set and with the full
7676                  * barrier implied by atomic_xchg in
7677                  * btrfs_dev_stats_read_and_reset
7678                  */
7679                 smp_rmb();
7680
7681                 ret = update_dev_stat_item(trans, device);
7682                 if (!ret)
7683                         atomic_sub(stats_cnt, &device->dev_stats_ccnt);
7684         }
7685         mutex_unlock(&fs_devices->device_list_mutex);
7686
7687         return ret;
7688 }
7689
7690 void btrfs_dev_stat_inc_and_print(struct btrfs_device *dev, int index)
7691 {
7692         btrfs_dev_stat_inc(dev, index);
7693         btrfs_dev_stat_print_on_error(dev);
7694 }
7695
7696 static void btrfs_dev_stat_print_on_error(struct btrfs_device *dev)
7697 {
7698         if (!dev->dev_stats_valid)
7699                 return;
7700         btrfs_err_rl_in_rcu(dev->fs_info,
7701                 "bdev %s errs: wr %u, rd %u, flush %u, corrupt %u, gen %u",
7702                            rcu_str_deref(dev->name),
7703                            btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_WRITE_ERRS),
7704                            btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_READ_ERRS),
7705                            btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_FLUSH_ERRS),
7706                            btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_CORRUPTION_ERRS),
7707                            btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_GENERATION_ERRS));
7708 }
7709
7710 static void btrfs_dev_stat_print_on_load(struct btrfs_device *dev)
7711 {
7712         int i;
7713
7714         for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
7715                 if (btrfs_dev_stat_read(dev, i) != 0)
7716                         break;
7717         if (i == BTRFS_DEV_STAT_VALUES_MAX)
7718                 return; /* all values == 0, suppress message */
7719
7720         btrfs_info_in_rcu(dev->fs_info,
7721                 "bdev %s errs: wr %u, rd %u, flush %u, corrupt %u, gen %u",
7722                rcu_str_deref(dev->name),
7723                btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_WRITE_ERRS),
7724                btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_READ_ERRS),
7725                btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_FLUSH_ERRS),
7726                btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_CORRUPTION_ERRS),
7727                btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_GENERATION_ERRS));
7728 }
7729
7730 int btrfs_get_dev_stats(struct btrfs_fs_info *fs_info,
7731                         struct btrfs_ioctl_get_dev_stats *stats)
7732 {
7733         struct btrfs_device *dev;
7734         struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
7735         int i;
7736
7737         mutex_lock(&fs_devices->device_list_mutex);
7738         dev = btrfs_find_device(fs_info->fs_devices, stats->devid, NULL, NULL);
7739         mutex_unlock(&fs_devices->device_list_mutex);
7740
7741         if (!dev) {
7742                 btrfs_warn(fs_info, "get dev_stats failed, device not found");
7743                 return -ENODEV;
7744         } else if (!dev->dev_stats_valid) {
7745                 btrfs_warn(fs_info, "get dev_stats failed, not yet valid");
7746                 return -ENODEV;
7747         } else if (stats->flags & BTRFS_DEV_STATS_RESET) {
7748                 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) {
7749                         if (stats->nr_items > i)
7750                                 stats->values[i] =
7751                                         btrfs_dev_stat_read_and_reset(dev, i);
7752                         else
7753                                 btrfs_dev_stat_set(dev, i, 0);
7754                 }
7755                 btrfs_info(fs_info, "device stats zeroed by %s (%d)",
7756                            current->comm, task_pid_nr(current));
7757         } else {
7758                 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
7759                         if (stats->nr_items > i)
7760                                 stats->values[i] = btrfs_dev_stat_read(dev, i);
7761         }
7762         if (stats->nr_items > BTRFS_DEV_STAT_VALUES_MAX)
7763                 stats->nr_items = BTRFS_DEV_STAT_VALUES_MAX;
7764         return 0;
7765 }
7766
7767 /*
7768  * Update the size and bytes used for each device where it changed.  This is
7769  * delayed since we would otherwise get errors while writing out the
7770  * superblocks.
7771  *
7772  * Must be invoked during transaction commit.
7773  */
7774 void btrfs_commit_device_sizes(struct btrfs_transaction *trans)
7775 {
7776         struct btrfs_device *curr, *next;
7777
7778         ASSERT(trans->state == TRANS_STATE_COMMIT_DOING);
7779
7780         if (list_empty(&trans->dev_update_list))
7781                 return;
7782
7783         /*
7784          * We don't need the device_list_mutex here.  This list is owned by the
7785          * transaction and the transaction must complete before the device is
7786          * released.
7787          */
7788         mutex_lock(&trans->fs_info->chunk_mutex);
7789         list_for_each_entry_safe(curr, next, &trans->dev_update_list,
7790                                  post_commit_list) {
7791                 list_del_init(&curr->post_commit_list);
7792                 curr->commit_total_bytes = curr->disk_total_bytes;
7793                 curr->commit_bytes_used = curr->bytes_used;
7794         }
7795         mutex_unlock(&trans->fs_info->chunk_mutex);
7796 }
7797
7798 /*
7799  * Multiplicity factor for simple profiles: DUP, RAID1-like and RAID10.
7800  */
7801 int btrfs_bg_type_to_factor(u64 flags)
7802 {
7803         const int index = btrfs_bg_flags_to_raid_index(flags);
7804
7805         return btrfs_raid_array[index].ncopies;
7806 }
7807
7808
7809
7810 static int verify_one_dev_extent(struct btrfs_fs_info *fs_info,
7811                                  u64 chunk_offset, u64 devid,
7812                                  u64 physical_offset, u64 physical_len)
7813 {
7814         struct extent_map_tree *em_tree = &fs_info->mapping_tree;
7815         struct extent_map *em;
7816         struct map_lookup *map;
7817         struct btrfs_device *dev;
7818         u64 stripe_len;
7819         bool found = false;
7820         int ret = 0;
7821         int i;
7822
7823         read_lock(&em_tree->lock);
7824         em = lookup_extent_mapping(em_tree, chunk_offset, 1);
7825         read_unlock(&em_tree->lock);
7826
7827         if (!em) {
7828                 btrfs_err(fs_info,
7829 "dev extent physical offset %llu on devid %llu doesn't have corresponding chunk",
7830                           physical_offset, devid);
7831                 ret = -EUCLEAN;
7832                 goto out;
7833         }
7834
7835         map = em->map_lookup;
7836         stripe_len = calc_stripe_length(map->type, em->len, map->num_stripes);
7837         if (physical_len != stripe_len) {
7838                 btrfs_err(fs_info,
7839 "dev extent physical offset %llu on devid %llu length doesn't match chunk %llu, have %llu expect %llu",
7840                           physical_offset, devid, em->start, physical_len,
7841                           stripe_len);
7842                 ret = -EUCLEAN;
7843                 goto out;
7844         }
7845
7846         for (i = 0; i < map->num_stripes; i++) {
7847                 if (map->stripes[i].dev->devid == devid &&
7848                     map->stripes[i].physical == physical_offset) {
7849                         found = true;
7850                         if (map->verified_stripes >= map->num_stripes) {
7851                                 btrfs_err(fs_info,
7852                                 "too many dev extents for chunk %llu found",
7853                                           em->start);
7854                                 ret = -EUCLEAN;
7855                                 goto out;
7856                         }
7857                         map->verified_stripes++;
7858                         break;
7859                 }
7860         }
7861         if (!found) {
7862                 btrfs_err(fs_info,
7863         "dev extent physical offset %llu devid %llu has no corresponding chunk",
7864                         physical_offset, devid);
7865                 ret = -EUCLEAN;
7866         }
7867
7868         /* Make sure no dev extent is beyond device bondary */
7869         dev = btrfs_find_device(fs_info->fs_devices, devid, NULL, NULL);
7870         if (!dev) {
7871                 btrfs_err(fs_info, "failed to find devid %llu", devid);
7872                 ret = -EUCLEAN;
7873                 goto out;
7874         }
7875
7876         if (physical_offset + physical_len > dev->disk_total_bytes) {
7877                 btrfs_err(fs_info,
7878 "dev extent devid %llu physical offset %llu len %llu is beyond device boundary %llu",
7879                           devid, physical_offset, physical_len,
7880                           dev->disk_total_bytes);
7881                 ret = -EUCLEAN;
7882                 goto out;
7883         }
7884
7885         if (dev->zone_info) {
7886                 u64 zone_size = dev->zone_info->zone_size;
7887
7888                 if (!IS_ALIGNED(physical_offset, zone_size) ||
7889                     !IS_ALIGNED(physical_len, zone_size)) {
7890                         btrfs_err(fs_info,
7891 "zoned: dev extent devid %llu physical offset %llu len %llu is not aligned to device zone",
7892                                   devid, physical_offset, physical_len);
7893                         ret = -EUCLEAN;
7894                         goto out;
7895                 }
7896         }
7897
7898 out:
7899         free_extent_map(em);
7900         return ret;
7901 }
7902
7903 static int verify_chunk_dev_extent_mapping(struct btrfs_fs_info *fs_info)
7904 {
7905         struct extent_map_tree *em_tree = &fs_info->mapping_tree;
7906         struct extent_map *em;
7907         struct rb_node *node;
7908         int ret = 0;
7909
7910         read_lock(&em_tree->lock);
7911         for (node = rb_first_cached(&em_tree->map); node; node = rb_next(node)) {
7912                 em = rb_entry(node, struct extent_map, rb_node);
7913                 if (em->map_lookup->num_stripes !=
7914                     em->map_lookup->verified_stripes) {
7915                         btrfs_err(fs_info,
7916                         "chunk %llu has missing dev extent, have %d expect %d",
7917                                   em->start, em->map_lookup->verified_stripes,
7918                                   em->map_lookup->num_stripes);
7919                         ret = -EUCLEAN;
7920                         goto out;
7921                 }
7922         }
7923 out:
7924         read_unlock(&em_tree->lock);
7925         return ret;
7926 }
7927
7928 /*
7929  * Ensure that all dev extents are mapped to correct chunk, otherwise
7930  * later chunk allocation/free would cause unexpected behavior.
7931  *
7932  * NOTE: This will iterate through the whole device tree, which should be of
7933  * the same size level as the chunk tree.  This slightly increases mount time.
7934  */
7935 int btrfs_verify_dev_extents(struct btrfs_fs_info *fs_info)
7936 {
7937         struct btrfs_path *path;
7938         struct btrfs_root *root = fs_info->dev_root;
7939         struct btrfs_key key;
7940         u64 prev_devid = 0;
7941         u64 prev_dev_ext_end = 0;
7942         int ret = 0;
7943
7944         /*
7945          * We don't have a dev_root because we mounted with ignorebadroots and
7946          * failed to load the root, so we want to skip the verification in this
7947          * case for sure.
7948          *
7949          * However if the dev root is fine, but the tree itself is corrupted
7950          * we'd still fail to mount.  This verification is only to make sure
7951          * writes can happen safely, so instead just bypass this check
7952          * completely in the case of IGNOREBADROOTS.
7953          */
7954         if (btrfs_test_opt(fs_info, IGNOREBADROOTS))
7955                 return 0;
7956
7957         key.objectid = 1;
7958         key.type = BTRFS_DEV_EXTENT_KEY;
7959         key.offset = 0;
7960
7961         path = btrfs_alloc_path();
7962         if (!path)
7963                 return -ENOMEM;
7964
7965         path->reada = READA_FORWARD;
7966         ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
7967         if (ret < 0)
7968                 goto out;
7969
7970         if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) {
7971                 ret = btrfs_next_item(root, path);
7972                 if (ret < 0)
7973                         goto out;
7974                 /* No dev extents at all? Not good */
7975                 if (ret > 0) {
7976                         ret = -EUCLEAN;
7977                         goto out;
7978                 }
7979         }
7980         while (1) {
7981                 struct extent_buffer *leaf = path->nodes[0];
7982                 struct btrfs_dev_extent *dext;
7983                 int slot = path->slots[0];
7984                 u64 chunk_offset;
7985                 u64 physical_offset;
7986                 u64 physical_len;
7987                 u64 devid;
7988
7989                 btrfs_item_key_to_cpu(leaf, &key, slot);
7990                 if (key.type != BTRFS_DEV_EXTENT_KEY)
7991                         break;
7992                 devid = key.objectid;
7993                 physical_offset = key.offset;
7994
7995                 dext = btrfs_item_ptr(leaf, slot, struct btrfs_dev_extent);
7996                 chunk_offset = btrfs_dev_extent_chunk_offset(leaf, dext);
7997                 physical_len = btrfs_dev_extent_length(leaf, dext);
7998
7999                 /* Check if this dev extent overlaps with the previous one */
8000                 if (devid == prev_devid && physical_offset < prev_dev_ext_end) {
8001                         btrfs_err(fs_info,
8002 "dev extent devid %llu physical offset %llu overlap with previous dev extent end %llu",
8003                                   devid, physical_offset, prev_dev_ext_end);
8004                         ret = -EUCLEAN;
8005                         goto out;
8006                 }
8007
8008                 ret = verify_one_dev_extent(fs_info, chunk_offset, devid,
8009                                             physical_offset, physical_len);
8010                 if (ret < 0)
8011                         goto out;
8012                 prev_devid = devid;
8013                 prev_dev_ext_end = physical_offset + physical_len;
8014
8015                 ret = btrfs_next_item(root, path);
8016                 if (ret < 0)
8017                         goto out;
8018                 if (ret > 0) {
8019                         ret = 0;
8020                         break;
8021                 }
8022         }
8023
8024         /* Ensure all chunks have corresponding dev extents */
8025         ret = verify_chunk_dev_extent_mapping(fs_info);
8026 out:
8027         btrfs_free_path(path);
8028         return ret;
8029 }
8030
8031 /*
8032  * Check whether the given block group or device is pinned by any inode being
8033  * used as a swapfile.
8034  */
8035 bool btrfs_pinned_by_swapfile(struct btrfs_fs_info *fs_info, void *ptr)
8036 {
8037         struct btrfs_swapfile_pin *sp;
8038         struct rb_node *node;
8039
8040         spin_lock(&fs_info->swapfile_pins_lock);
8041         node = fs_info->swapfile_pins.rb_node;
8042         while (node) {
8043                 sp = rb_entry(node, struct btrfs_swapfile_pin, node);
8044                 if (ptr < sp->ptr)
8045                         node = node->rb_left;
8046                 else if (ptr > sp->ptr)
8047                         node = node->rb_right;
8048                 else
8049                         break;
8050         }
8051         spin_unlock(&fs_info->swapfile_pins_lock);
8052         return node != NULL;
8053 }
8054
8055 static int relocating_repair_kthread(void *data)
8056 {
8057         struct btrfs_block_group *cache = (struct btrfs_block_group *)data;
8058         struct btrfs_fs_info *fs_info = cache->fs_info;
8059         u64 target;
8060         int ret = 0;
8061
8062         target = cache->start;
8063         btrfs_put_block_group(cache);
8064
8065         if (!btrfs_exclop_start(fs_info, BTRFS_EXCLOP_BALANCE)) {
8066                 btrfs_info(fs_info,
8067                            "zoned: skip relocating block group %llu to repair: EBUSY",
8068                            target);
8069                 return -EBUSY;
8070         }
8071
8072         mutex_lock(&fs_info->reclaim_bgs_lock);
8073
8074         /* Ensure block group still exists */
8075         cache = btrfs_lookup_block_group(fs_info, target);
8076         if (!cache)
8077                 goto out;
8078
8079         if (!cache->relocating_repair)
8080                 goto out;
8081
8082         ret = btrfs_may_alloc_data_chunk(fs_info, target);
8083         if (ret < 0)
8084                 goto out;
8085
8086         btrfs_info(fs_info,
8087                    "zoned: relocating block group %llu to repair IO failure",
8088                    target);
8089         ret = btrfs_relocate_chunk(fs_info, target);
8090
8091 out:
8092         if (cache)
8093                 btrfs_put_block_group(cache);
8094         mutex_unlock(&fs_info->reclaim_bgs_lock);
8095         btrfs_exclop_finish(fs_info);
8096
8097         return ret;
8098 }
8099
8100 int btrfs_repair_one_zone(struct btrfs_fs_info *fs_info, u64 logical)
8101 {
8102         struct btrfs_block_group *cache;
8103
8104         /* Do not attempt to repair in degraded state */
8105         if (btrfs_test_opt(fs_info, DEGRADED))
8106                 return 0;
8107
8108         cache = btrfs_lookup_block_group(fs_info, logical);
8109         if (!cache)
8110                 return 0;
8111
8112         spin_lock(&cache->lock);
8113         if (cache->relocating_repair) {
8114                 spin_unlock(&cache->lock);
8115                 btrfs_put_block_group(cache);
8116                 return 0;
8117         }
8118         cache->relocating_repair = 1;
8119         spin_unlock(&cache->lock);
8120
8121         kthread_run(relocating_repair_kthread, cache,
8122                     "btrfs-relocating-repair");
8123
8124         return 0;
8125 }