mei: do not overwrite state on hw start
[linux-2.6-microblaze.git] / fs / btrfs / transaction.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2007 Oracle.  All rights reserved.
4  */
5
6 #include <linux/fs.h>
7 #include <linux/slab.h>
8 #include <linux/sched.h>
9 #include <linux/writeback.h>
10 #include <linux/pagemap.h>
11 #include <linux/blkdev.h>
12 #include <linux/uuid.h>
13 #include "misc.h"
14 #include "ctree.h"
15 #include "disk-io.h"
16 #include "transaction.h"
17 #include "locking.h"
18 #include "tree-log.h"
19 #include "volumes.h"
20 #include "dev-replace.h"
21 #include "qgroup.h"
22 #include "block-group.h"
23 #include "space-info.h"
24 #include "zoned.h"
25
26 #define BTRFS_ROOT_TRANS_TAG 0
27
28 /*
29  * Transaction states and transitions
30  *
31  * No running transaction (fs tree blocks are not modified)
32  * |
33  * | To next stage:
34  * |  Call start_transaction() variants. Except btrfs_join_transaction_nostart().
35  * V
36  * Transaction N [[TRANS_STATE_RUNNING]]
37  * |
38  * | New trans handles can be attached to transaction N by calling all
39  * | start_transaction() variants.
40  * |
41  * | To next stage:
42  * |  Call btrfs_commit_transaction() on any trans handle attached to
43  * |  transaction N
44  * V
45  * Transaction N [[TRANS_STATE_COMMIT_START]]
46  * |
47  * | Will wait for previous running transaction to completely finish if there
48  * | is one
49  * |
50  * | Then one of the following happes:
51  * | - Wait for all other trans handle holders to release.
52  * |   The btrfs_commit_transaction() caller will do the commit work.
53  * | - Wait for current transaction to be committed by others.
54  * |   Other btrfs_commit_transaction() caller will do the commit work.
55  * |
56  * | At this stage, only btrfs_join_transaction*() variants can attach
57  * | to this running transaction.
58  * | All other variants will wait for current one to finish and attach to
59  * | transaction N+1.
60  * |
61  * | To next stage:
62  * |  Caller is chosen to commit transaction N, and all other trans handle
63  * |  haven been released.
64  * V
65  * Transaction N [[TRANS_STATE_COMMIT_DOING]]
66  * |
67  * | The heavy lifting transaction work is started.
68  * | From running delayed refs (modifying extent tree) to creating pending
69  * | snapshots, running qgroups.
70  * | In short, modify supporting trees to reflect modifications of subvolume
71  * | trees.
72  * |
73  * | At this stage, all start_transaction() calls will wait for this
74  * | transaction to finish and attach to transaction N+1.
75  * |
76  * | To next stage:
77  * |  Until all supporting trees are updated.
78  * V
79  * Transaction N [[TRANS_STATE_UNBLOCKED]]
80  * |                                                Transaction N+1
81  * | All needed trees are modified, thus we only    [[TRANS_STATE_RUNNING]]
82  * | need to write them back to disk and update     |
83  * | super blocks.                                  |
84  * |                                                |
85  * | At this stage, new transaction is allowed to   |
86  * | start.                                         |
87  * | All new start_transaction() calls will be      |
88  * | attached to transid N+1.                       |
89  * |                                                |
90  * | To next stage:                                 |
91  * |  Until all tree blocks are super blocks are    |
92  * |  written to block devices                      |
93  * V                                                |
94  * Transaction N [[TRANS_STATE_COMPLETED]]          V
95  *   All tree blocks and super blocks are written.  Transaction N+1
96  *   This transaction is finished and all its       [[TRANS_STATE_COMMIT_START]]
97  *   data structures will be cleaned up.            | Life goes on
98  */
99 static const unsigned int btrfs_blocked_trans_types[TRANS_STATE_MAX] = {
100         [TRANS_STATE_RUNNING]           = 0U,
101         [TRANS_STATE_COMMIT_START]      = (__TRANS_START | __TRANS_ATTACH),
102         [TRANS_STATE_COMMIT_DOING]      = (__TRANS_START |
103                                            __TRANS_ATTACH |
104                                            __TRANS_JOIN |
105                                            __TRANS_JOIN_NOSTART),
106         [TRANS_STATE_UNBLOCKED]         = (__TRANS_START |
107                                            __TRANS_ATTACH |
108                                            __TRANS_JOIN |
109                                            __TRANS_JOIN_NOLOCK |
110                                            __TRANS_JOIN_NOSTART),
111         [TRANS_STATE_SUPER_COMMITTED]   = (__TRANS_START |
112                                            __TRANS_ATTACH |
113                                            __TRANS_JOIN |
114                                            __TRANS_JOIN_NOLOCK |
115                                            __TRANS_JOIN_NOSTART),
116         [TRANS_STATE_COMPLETED]         = (__TRANS_START |
117                                            __TRANS_ATTACH |
118                                            __TRANS_JOIN |
119                                            __TRANS_JOIN_NOLOCK |
120                                            __TRANS_JOIN_NOSTART),
121 };
122
123 void btrfs_put_transaction(struct btrfs_transaction *transaction)
124 {
125         WARN_ON(refcount_read(&transaction->use_count) == 0);
126         if (refcount_dec_and_test(&transaction->use_count)) {
127                 BUG_ON(!list_empty(&transaction->list));
128                 WARN_ON(!RB_EMPTY_ROOT(
129                                 &transaction->delayed_refs.href_root.rb_root));
130                 WARN_ON(!RB_EMPTY_ROOT(
131                                 &transaction->delayed_refs.dirty_extent_root));
132                 if (transaction->delayed_refs.pending_csums)
133                         btrfs_err(transaction->fs_info,
134                                   "pending csums is %llu",
135                                   transaction->delayed_refs.pending_csums);
136                 /*
137                  * If any block groups are found in ->deleted_bgs then it's
138                  * because the transaction was aborted and a commit did not
139                  * happen (things failed before writing the new superblock
140                  * and calling btrfs_finish_extent_commit()), so we can not
141                  * discard the physical locations of the block groups.
142                  */
143                 while (!list_empty(&transaction->deleted_bgs)) {
144                         struct btrfs_block_group *cache;
145
146                         cache = list_first_entry(&transaction->deleted_bgs,
147                                                  struct btrfs_block_group,
148                                                  bg_list);
149                         list_del_init(&cache->bg_list);
150                         btrfs_unfreeze_block_group(cache);
151                         btrfs_put_block_group(cache);
152                 }
153                 WARN_ON(!list_empty(&transaction->dev_update_list));
154                 kfree(transaction);
155         }
156 }
157
158 static noinline void switch_commit_roots(struct btrfs_trans_handle *trans)
159 {
160         struct btrfs_transaction *cur_trans = trans->transaction;
161         struct btrfs_fs_info *fs_info = trans->fs_info;
162         struct btrfs_root *root, *tmp;
163         struct btrfs_caching_control *caching_ctl, *next;
164
165         /*
166          * At this point no one can be using this transaction to modify any tree
167          * and no one can start another transaction to modify any tree either.
168          */
169         ASSERT(cur_trans->state == TRANS_STATE_COMMIT_DOING);
170
171         down_write(&fs_info->commit_root_sem);
172
173         if (test_bit(BTRFS_FS_RELOC_RUNNING, &fs_info->flags))
174                 fs_info->last_reloc_trans = trans->transid;
175
176         list_for_each_entry_safe(root, tmp, &cur_trans->switch_commits,
177                                  dirty_list) {
178                 list_del_init(&root->dirty_list);
179                 free_extent_buffer(root->commit_root);
180                 root->commit_root = btrfs_root_node(root);
181                 extent_io_tree_release(&root->dirty_log_pages);
182                 btrfs_qgroup_clean_swapped_blocks(root);
183         }
184
185         /* We can free old roots now. */
186         spin_lock(&cur_trans->dropped_roots_lock);
187         while (!list_empty(&cur_trans->dropped_roots)) {
188                 root = list_first_entry(&cur_trans->dropped_roots,
189                                         struct btrfs_root, root_list);
190                 list_del_init(&root->root_list);
191                 spin_unlock(&cur_trans->dropped_roots_lock);
192                 btrfs_free_log(trans, root);
193                 btrfs_drop_and_free_fs_root(fs_info, root);
194                 spin_lock(&cur_trans->dropped_roots_lock);
195         }
196         spin_unlock(&cur_trans->dropped_roots_lock);
197
198         /*
199          * We have to update the last_byte_to_unpin under the commit_root_sem,
200          * at the same time we swap out the commit roots.
201          *
202          * This is because we must have a real view of the last spot the caching
203          * kthreads were while caching.  Consider the following views of the
204          * extent tree for a block group
205          *
206          * commit root
207          * +----+----+----+----+----+----+----+
208          * |\\\\|    |\\\\|\\\\|    |\\\\|\\\\|
209          * +----+----+----+----+----+----+----+
210          * 0    1    2    3    4    5    6    7
211          *
212          * new commit root
213          * +----+----+----+----+----+----+----+
214          * |    |    |    |\\\\|    |    |\\\\|
215          * +----+----+----+----+----+----+----+
216          * 0    1    2    3    4    5    6    7
217          *
218          * If the cache_ctl->progress was at 3, then we are only allowed to
219          * unpin [0,1) and [2,3], because the caching thread has already
220          * processed those extents.  We are not allowed to unpin [5,6), because
221          * the caching thread will re-start it's search from 3, and thus find
222          * the hole from [4,6) to add to the free space cache.
223          */
224         spin_lock(&fs_info->block_group_cache_lock);
225         list_for_each_entry_safe(caching_ctl, next,
226                                  &fs_info->caching_block_groups, list) {
227                 struct btrfs_block_group *cache = caching_ctl->block_group;
228
229                 if (btrfs_block_group_done(cache)) {
230                         cache->last_byte_to_unpin = (u64)-1;
231                         list_del_init(&caching_ctl->list);
232                         btrfs_put_caching_control(caching_ctl);
233                 } else {
234                         cache->last_byte_to_unpin = caching_ctl->progress;
235                 }
236         }
237         spin_unlock(&fs_info->block_group_cache_lock);
238         up_write(&fs_info->commit_root_sem);
239 }
240
241 static inline void extwriter_counter_inc(struct btrfs_transaction *trans,
242                                          unsigned int type)
243 {
244         if (type & TRANS_EXTWRITERS)
245                 atomic_inc(&trans->num_extwriters);
246 }
247
248 static inline void extwriter_counter_dec(struct btrfs_transaction *trans,
249                                          unsigned int type)
250 {
251         if (type & TRANS_EXTWRITERS)
252                 atomic_dec(&trans->num_extwriters);
253 }
254
255 static inline void extwriter_counter_init(struct btrfs_transaction *trans,
256                                           unsigned int type)
257 {
258         atomic_set(&trans->num_extwriters, ((type & TRANS_EXTWRITERS) ? 1 : 0));
259 }
260
261 static inline int extwriter_counter_read(struct btrfs_transaction *trans)
262 {
263         return atomic_read(&trans->num_extwriters);
264 }
265
266 /*
267  * To be called after doing the chunk btree updates right after allocating a new
268  * chunk (after btrfs_chunk_alloc_add_chunk_item() is called), when removing a
269  * chunk after all chunk btree updates and after finishing the second phase of
270  * chunk allocation (btrfs_create_pending_block_groups()) in case some block
271  * group had its chunk item insertion delayed to the second phase.
272  */
273 void btrfs_trans_release_chunk_metadata(struct btrfs_trans_handle *trans)
274 {
275         struct btrfs_fs_info *fs_info = trans->fs_info;
276
277         if (!trans->chunk_bytes_reserved)
278                 return;
279
280         btrfs_block_rsv_release(fs_info, &fs_info->chunk_block_rsv,
281                                 trans->chunk_bytes_reserved, NULL);
282         trans->chunk_bytes_reserved = 0;
283 }
284
285 /*
286  * either allocate a new transaction or hop into the existing one
287  */
288 static noinline int join_transaction(struct btrfs_fs_info *fs_info,
289                                      unsigned int type)
290 {
291         struct btrfs_transaction *cur_trans;
292
293         spin_lock(&fs_info->trans_lock);
294 loop:
295         /* The file system has been taken offline. No new transactions. */
296         if (BTRFS_FS_ERROR(fs_info)) {
297                 spin_unlock(&fs_info->trans_lock);
298                 return -EROFS;
299         }
300
301         cur_trans = fs_info->running_transaction;
302         if (cur_trans) {
303                 if (TRANS_ABORTED(cur_trans)) {
304                         spin_unlock(&fs_info->trans_lock);
305                         return cur_trans->aborted;
306                 }
307                 if (btrfs_blocked_trans_types[cur_trans->state] & type) {
308                         spin_unlock(&fs_info->trans_lock);
309                         return -EBUSY;
310                 }
311                 refcount_inc(&cur_trans->use_count);
312                 atomic_inc(&cur_trans->num_writers);
313                 extwriter_counter_inc(cur_trans, type);
314                 spin_unlock(&fs_info->trans_lock);
315                 return 0;
316         }
317         spin_unlock(&fs_info->trans_lock);
318
319         /*
320          * If we are ATTACH, we just want to catch the current transaction,
321          * and commit it. If there is no transaction, just return ENOENT.
322          */
323         if (type == TRANS_ATTACH)
324                 return -ENOENT;
325
326         /*
327          * JOIN_NOLOCK only happens during the transaction commit, so
328          * it is impossible that ->running_transaction is NULL
329          */
330         BUG_ON(type == TRANS_JOIN_NOLOCK);
331
332         cur_trans = kmalloc(sizeof(*cur_trans), GFP_NOFS);
333         if (!cur_trans)
334                 return -ENOMEM;
335
336         spin_lock(&fs_info->trans_lock);
337         if (fs_info->running_transaction) {
338                 /*
339                  * someone started a transaction after we unlocked.  Make sure
340                  * to redo the checks above
341                  */
342                 kfree(cur_trans);
343                 goto loop;
344         } else if (BTRFS_FS_ERROR(fs_info)) {
345                 spin_unlock(&fs_info->trans_lock);
346                 kfree(cur_trans);
347                 return -EROFS;
348         }
349
350         cur_trans->fs_info = fs_info;
351         atomic_set(&cur_trans->pending_ordered, 0);
352         init_waitqueue_head(&cur_trans->pending_wait);
353         atomic_set(&cur_trans->num_writers, 1);
354         extwriter_counter_init(cur_trans, type);
355         init_waitqueue_head(&cur_trans->writer_wait);
356         init_waitqueue_head(&cur_trans->commit_wait);
357         cur_trans->state = TRANS_STATE_RUNNING;
358         /*
359          * One for this trans handle, one so it will live on until we
360          * commit the transaction.
361          */
362         refcount_set(&cur_trans->use_count, 2);
363         cur_trans->flags = 0;
364         cur_trans->start_time = ktime_get_seconds();
365
366         memset(&cur_trans->delayed_refs, 0, sizeof(cur_trans->delayed_refs));
367
368         cur_trans->delayed_refs.href_root = RB_ROOT_CACHED;
369         cur_trans->delayed_refs.dirty_extent_root = RB_ROOT;
370         atomic_set(&cur_trans->delayed_refs.num_entries, 0);
371
372         /*
373          * although the tree mod log is per file system and not per transaction,
374          * the log must never go across transaction boundaries.
375          */
376         smp_mb();
377         if (!list_empty(&fs_info->tree_mod_seq_list))
378                 WARN(1, KERN_ERR "BTRFS: tree_mod_seq_list not empty when creating a fresh transaction\n");
379         if (!RB_EMPTY_ROOT(&fs_info->tree_mod_log))
380                 WARN(1, KERN_ERR "BTRFS: tree_mod_log rb tree not empty when creating a fresh transaction\n");
381         atomic64_set(&fs_info->tree_mod_seq, 0);
382
383         spin_lock_init(&cur_trans->delayed_refs.lock);
384
385         INIT_LIST_HEAD(&cur_trans->pending_snapshots);
386         INIT_LIST_HEAD(&cur_trans->dev_update_list);
387         INIT_LIST_HEAD(&cur_trans->switch_commits);
388         INIT_LIST_HEAD(&cur_trans->dirty_bgs);
389         INIT_LIST_HEAD(&cur_trans->io_bgs);
390         INIT_LIST_HEAD(&cur_trans->dropped_roots);
391         mutex_init(&cur_trans->cache_write_mutex);
392         spin_lock_init(&cur_trans->dirty_bgs_lock);
393         INIT_LIST_HEAD(&cur_trans->deleted_bgs);
394         spin_lock_init(&cur_trans->dropped_roots_lock);
395         INIT_LIST_HEAD(&cur_trans->releasing_ebs);
396         spin_lock_init(&cur_trans->releasing_ebs_lock);
397         list_add_tail(&cur_trans->list, &fs_info->trans_list);
398         extent_io_tree_init(fs_info, &cur_trans->dirty_pages,
399                         IO_TREE_TRANS_DIRTY_PAGES, fs_info->btree_inode);
400         extent_io_tree_init(fs_info, &cur_trans->pinned_extents,
401                         IO_TREE_FS_PINNED_EXTENTS, NULL);
402         fs_info->generation++;
403         cur_trans->transid = fs_info->generation;
404         fs_info->running_transaction = cur_trans;
405         cur_trans->aborted = 0;
406         spin_unlock(&fs_info->trans_lock);
407
408         return 0;
409 }
410
411 /*
412  * This does all the record keeping required to make sure that a shareable root
413  * is properly recorded in a given transaction.  This is required to make sure
414  * the old root from before we joined the transaction is deleted when the
415  * transaction commits.
416  */
417 static int record_root_in_trans(struct btrfs_trans_handle *trans,
418                                struct btrfs_root *root,
419                                int force)
420 {
421         struct btrfs_fs_info *fs_info = root->fs_info;
422         int ret = 0;
423
424         if ((test_bit(BTRFS_ROOT_SHAREABLE, &root->state) &&
425             root->last_trans < trans->transid) || force) {
426                 WARN_ON(!force && root->commit_root != root->node);
427
428                 /*
429                  * see below for IN_TRANS_SETUP usage rules
430                  * we have the reloc mutex held now, so there
431                  * is only one writer in this function
432                  */
433                 set_bit(BTRFS_ROOT_IN_TRANS_SETUP, &root->state);
434
435                 /* make sure readers find IN_TRANS_SETUP before
436                  * they find our root->last_trans update
437                  */
438                 smp_wmb();
439
440                 spin_lock(&fs_info->fs_roots_radix_lock);
441                 if (root->last_trans == trans->transid && !force) {
442                         spin_unlock(&fs_info->fs_roots_radix_lock);
443                         return 0;
444                 }
445                 radix_tree_tag_set(&fs_info->fs_roots_radix,
446                                    (unsigned long)root->root_key.objectid,
447                                    BTRFS_ROOT_TRANS_TAG);
448                 spin_unlock(&fs_info->fs_roots_radix_lock);
449                 root->last_trans = trans->transid;
450
451                 /* this is pretty tricky.  We don't want to
452                  * take the relocation lock in btrfs_record_root_in_trans
453                  * unless we're really doing the first setup for this root in
454                  * this transaction.
455                  *
456                  * Normally we'd use root->last_trans as a flag to decide
457                  * if we want to take the expensive mutex.
458                  *
459                  * But, we have to set root->last_trans before we
460                  * init the relocation root, otherwise, we trip over warnings
461                  * in ctree.c.  The solution used here is to flag ourselves
462                  * with root IN_TRANS_SETUP.  When this is 1, we're still
463                  * fixing up the reloc trees and everyone must wait.
464                  *
465                  * When this is zero, they can trust root->last_trans and fly
466                  * through btrfs_record_root_in_trans without having to take the
467                  * lock.  smp_wmb() makes sure that all the writes above are
468                  * done before we pop in the zero below
469                  */
470                 ret = btrfs_init_reloc_root(trans, root);
471                 smp_mb__before_atomic();
472                 clear_bit(BTRFS_ROOT_IN_TRANS_SETUP, &root->state);
473         }
474         return ret;
475 }
476
477
478 void btrfs_add_dropped_root(struct btrfs_trans_handle *trans,
479                             struct btrfs_root *root)
480 {
481         struct btrfs_fs_info *fs_info = root->fs_info;
482         struct btrfs_transaction *cur_trans = trans->transaction;
483
484         /* Add ourselves to the transaction dropped list */
485         spin_lock(&cur_trans->dropped_roots_lock);
486         list_add_tail(&root->root_list, &cur_trans->dropped_roots);
487         spin_unlock(&cur_trans->dropped_roots_lock);
488
489         /* Make sure we don't try to update the root at commit time */
490         spin_lock(&fs_info->fs_roots_radix_lock);
491         radix_tree_tag_clear(&fs_info->fs_roots_radix,
492                              (unsigned long)root->root_key.objectid,
493                              BTRFS_ROOT_TRANS_TAG);
494         spin_unlock(&fs_info->fs_roots_radix_lock);
495 }
496
497 int btrfs_record_root_in_trans(struct btrfs_trans_handle *trans,
498                                struct btrfs_root *root)
499 {
500         struct btrfs_fs_info *fs_info = root->fs_info;
501         int ret;
502
503         if (!test_bit(BTRFS_ROOT_SHAREABLE, &root->state))
504                 return 0;
505
506         /*
507          * see record_root_in_trans for comments about IN_TRANS_SETUP usage
508          * and barriers
509          */
510         smp_rmb();
511         if (root->last_trans == trans->transid &&
512             !test_bit(BTRFS_ROOT_IN_TRANS_SETUP, &root->state))
513                 return 0;
514
515         mutex_lock(&fs_info->reloc_mutex);
516         ret = record_root_in_trans(trans, root, 0);
517         mutex_unlock(&fs_info->reloc_mutex);
518
519         return ret;
520 }
521
522 static inline int is_transaction_blocked(struct btrfs_transaction *trans)
523 {
524         return (trans->state >= TRANS_STATE_COMMIT_START &&
525                 trans->state < TRANS_STATE_UNBLOCKED &&
526                 !TRANS_ABORTED(trans));
527 }
528
529 /* wait for commit against the current transaction to become unblocked
530  * when this is done, it is safe to start a new transaction, but the current
531  * transaction might not be fully on disk.
532  */
533 static void wait_current_trans(struct btrfs_fs_info *fs_info)
534 {
535         struct btrfs_transaction *cur_trans;
536
537         spin_lock(&fs_info->trans_lock);
538         cur_trans = fs_info->running_transaction;
539         if (cur_trans && is_transaction_blocked(cur_trans)) {
540                 refcount_inc(&cur_trans->use_count);
541                 spin_unlock(&fs_info->trans_lock);
542
543                 wait_event(fs_info->transaction_wait,
544                            cur_trans->state >= TRANS_STATE_UNBLOCKED ||
545                            TRANS_ABORTED(cur_trans));
546                 btrfs_put_transaction(cur_trans);
547         } else {
548                 spin_unlock(&fs_info->trans_lock);
549         }
550 }
551
552 static int may_wait_transaction(struct btrfs_fs_info *fs_info, int type)
553 {
554         if (test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags))
555                 return 0;
556
557         if (type == TRANS_START)
558                 return 1;
559
560         return 0;
561 }
562
563 static inline bool need_reserve_reloc_root(struct btrfs_root *root)
564 {
565         struct btrfs_fs_info *fs_info = root->fs_info;
566
567         if (!fs_info->reloc_ctl ||
568             !test_bit(BTRFS_ROOT_SHAREABLE, &root->state) ||
569             root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID ||
570             root->reloc_root)
571                 return false;
572
573         return true;
574 }
575
576 static struct btrfs_trans_handle *
577 start_transaction(struct btrfs_root *root, unsigned int num_items,
578                   unsigned int type, enum btrfs_reserve_flush_enum flush,
579                   bool enforce_qgroups)
580 {
581         struct btrfs_fs_info *fs_info = root->fs_info;
582         struct btrfs_block_rsv *delayed_refs_rsv = &fs_info->delayed_refs_rsv;
583         struct btrfs_trans_handle *h;
584         struct btrfs_transaction *cur_trans;
585         u64 num_bytes = 0;
586         u64 qgroup_reserved = 0;
587         bool reloc_reserved = false;
588         bool do_chunk_alloc = false;
589         int ret;
590
591         if (BTRFS_FS_ERROR(fs_info))
592                 return ERR_PTR(-EROFS);
593
594         if (current->journal_info) {
595                 WARN_ON(type & TRANS_EXTWRITERS);
596                 h = current->journal_info;
597                 refcount_inc(&h->use_count);
598                 WARN_ON(refcount_read(&h->use_count) > 2);
599                 h->orig_rsv = h->block_rsv;
600                 h->block_rsv = NULL;
601                 goto got_it;
602         }
603
604         /*
605          * Do the reservation before we join the transaction so we can do all
606          * the appropriate flushing if need be.
607          */
608         if (num_items && root != fs_info->chunk_root) {
609                 struct btrfs_block_rsv *rsv = &fs_info->trans_block_rsv;
610                 u64 delayed_refs_bytes = 0;
611
612                 qgroup_reserved = num_items * fs_info->nodesize;
613                 ret = btrfs_qgroup_reserve_meta_pertrans(root, qgroup_reserved,
614                                 enforce_qgroups);
615                 if (ret)
616                         return ERR_PTR(ret);
617
618                 /*
619                  * We want to reserve all the bytes we may need all at once, so
620                  * we only do 1 enospc flushing cycle per transaction start.  We
621                  * accomplish this by simply assuming we'll do 2 x num_items
622                  * worth of delayed refs updates in this trans handle, and
623                  * refill that amount for whatever is missing in the reserve.
624                  */
625                 num_bytes = btrfs_calc_insert_metadata_size(fs_info, num_items);
626                 if (flush == BTRFS_RESERVE_FLUSH_ALL &&
627                     delayed_refs_rsv->full == 0) {
628                         delayed_refs_bytes = num_bytes;
629                         num_bytes <<= 1;
630                 }
631
632                 /*
633                  * Do the reservation for the relocation root creation
634                  */
635                 if (need_reserve_reloc_root(root)) {
636                         num_bytes += fs_info->nodesize;
637                         reloc_reserved = true;
638                 }
639
640                 ret = btrfs_block_rsv_add(fs_info, rsv, num_bytes, flush);
641                 if (ret)
642                         goto reserve_fail;
643                 if (delayed_refs_bytes) {
644                         btrfs_migrate_to_delayed_refs_rsv(fs_info, rsv,
645                                                           delayed_refs_bytes);
646                         num_bytes -= delayed_refs_bytes;
647                 }
648
649                 if (rsv->space_info->force_alloc)
650                         do_chunk_alloc = true;
651         } else if (num_items == 0 && flush == BTRFS_RESERVE_FLUSH_ALL &&
652                    !delayed_refs_rsv->full) {
653                 /*
654                  * Some people call with btrfs_start_transaction(root, 0)
655                  * because they can be throttled, but have some other mechanism
656                  * for reserving space.  We still want these guys to refill the
657                  * delayed block_rsv so just add 1 items worth of reservation
658                  * here.
659                  */
660                 ret = btrfs_delayed_refs_rsv_refill(fs_info, flush);
661                 if (ret)
662                         goto reserve_fail;
663         }
664 again:
665         h = kmem_cache_zalloc(btrfs_trans_handle_cachep, GFP_NOFS);
666         if (!h) {
667                 ret = -ENOMEM;
668                 goto alloc_fail;
669         }
670
671         /*
672          * If we are JOIN_NOLOCK we're already committing a transaction and
673          * waiting on this guy, so we don't need to do the sb_start_intwrite
674          * because we're already holding a ref.  We need this because we could
675          * have raced in and did an fsync() on a file which can kick a commit
676          * and then we deadlock with somebody doing a freeze.
677          *
678          * If we are ATTACH, it means we just want to catch the current
679          * transaction and commit it, so we needn't do sb_start_intwrite(). 
680          */
681         if (type & __TRANS_FREEZABLE)
682                 sb_start_intwrite(fs_info->sb);
683
684         if (may_wait_transaction(fs_info, type))
685                 wait_current_trans(fs_info);
686
687         do {
688                 ret = join_transaction(fs_info, type);
689                 if (ret == -EBUSY) {
690                         wait_current_trans(fs_info);
691                         if (unlikely(type == TRANS_ATTACH ||
692                                      type == TRANS_JOIN_NOSTART))
693                                 ret = -ENOENT;
694                 }
695         } while (ret == -EBUSY);
696
697         if (ret < 0)
698                 goto join_fail;
699
700         cur_trans = fs_info->running_transaction;
701
702         h->transid = cur_trans->transid;
703         h->transaction = cur_trans;
704         refcount_set(&h->use_count, 1);
705         h->fs_info = root->fs_info;
706
707         h->type = type;
708         INIT_LIST_HEAD(&h->new_bgs);
709
710         smp_mb();
711         if (cur_trans->state >= TRANS_STATE_COMMIT_START &&
712             may_wait_transaction(fs_info, type)) {
713                 current->journal_info = h;
714                 btrfs_commit_transaction(h);
715                 goto again;
716         }
717
718         if (num_bytes) {
719                 trace_btrfs_space_reservation(fs_info, "transaction",
720                                               h->transid, num_bytes, 1);
721                 h->block_rsv = &fs_info->trans_block_rsv;
722                 h->bytes_reserved = num_bytes;
723                 h->reloc_reserved = reloc_reserved;
724         }
725
726 got_it:
727         if (!current->journal_info)
728                 current->journal_info = h;
729
730         /*
731          * If the space_info is marked ALLOC_FORCE then we'll get upgraded to
732          * ALLOC_FORCE the first run through, and then we won't allocate for
733          * anybody else who races in later.  We don't care about the return
734          * value here.
735          */
736         if (do_chunk_alloc && num_bytes) {
737                 u64 flags = h->block_rsv->space_info->flags;
738
739                 btrfs_chunk_alloc(h, btrfs_get_alloc_profile(fs_info, flags),
740                                   CHUNK_ALLOC_NO_FORCE);
741         }
742
743         /*
744          * btrfs_record_root_in_trans() needs to alloc new extents, and may
745          * call btrfs_join_transaction() while we're also starting a
746          * transaction.
747          *
748          * Thus it need to be called after current->journal_info initialized,
749          * or we can deadlock.
750          */
751         ret = btrfs_record_root_in_trans(h, root);
752         if (ret) {
753                 /*
754                  * The transaction handle is fully initialized and linked with
755                  * other structures so it needs to be ended in case of errors,
756                  * not just freed.
757                  */
758                 btrfs_end_transaction(h);
759                 return ERR_PTR(ret);
760         }
761
762         return h;
763
764 join_fail:
765         if (type & __TRANS_FREEZABLE)
766                 sb_end_intwrite(fs_info->sb);
767         kmem_cache_free(btrfs_trans_handle_cachep, h);
768 alloc_fail:
769         if (num_bytes)
770                 btrfs_block_rsv_release(fs_info, &fs_info->trans_block_rsv,
771                                         num_bytes, NULL);
772 reserve_fail:
773         btrfs_qgroup_free_meta_pertrans(root, qgroup_reserved);
774         return ERR_PTR(ret);
775 }
776
777 struct btrfs_trans_handle *btrfs_start_transaction(struct btrfs_root *root,
778                                                    unsigned int num_items)
779 {
780         return start_transaction(root, num_items, TRANS_START,
781                                  BTRFS_RESERVE_FLUSH_ALL, true);
782 }
783
784 struct btrfs_trans_handle *btrfs_start_transaction_fallback_global_rsv(
785                                         struct btrfs_root *root,
786                                         unsigned int num_items)
787 {
788         return start_transaction(root, num_items, TRANS_START,
789                                  BTRFS_RESERVE_FLUSH_ALL_STEAL, false);
790 }
791
792 struct btrfs_trans_handle *btrfs_join_transaction(struct btrfs_root *root)
793 {
794         return start_transaction(root, 0, TRANS_JOIN, BTRFS_RESERVE_NO_FLUSH,
795                                  true);
796 }
797
798 struct btrfs_trans_handle *btrfs_join_transaction_spacecache(struct btrfs_root *root)
799 {
800         return start_transaction(root, 0, TRANS_JOIN_NOLOCK,
801                                  BTRFS_RESERVE_NO_FLUSH, true);
802 }
803
804 /*
805  * Similar to regular join but it never starts a transaction when none is
806  * running or after waiting for the current one to finish.
807  */
808 struct btrfs_trans_handle *btrfs_join_transaction_nostart(struct btrfs_root *root)
809 {
810         return start_transaction(root, 0, TRANS_JOIN_NOSTART,
811                                  BTRFS_RESERVE_NO_FLUSH, true);
812 }
813
814 /*
815  * btrfs_attach_transaction() - catch the running transaction
816  *
817  * It is used when we want to commit the current the transaction, but
818  * don't want to start a new one.
819  *
820  * Note: If this function return -ENOENT, it just means there is no
821  * running transaction. But it is possible that the inactive transaction
822  * is still in the memory, not fully on disk. If you hope there is no
823  * inactive transaction in the fs when -ENOENT is returned, you should
824  * invoke
825  *     btrfs_attach_transaction_barrier()
826  */
827 struct btrfs_trans_handle *btrfs_attach_transaction(struct btrfs_root *root)
828 {
829         return start_transaction(root, 0, TRANS_ATTACH,
830                                  BTRFS_RESERVE_NO_FLUSH, true);
831 }
832
833 /*
834  * btrfs_attach_transaction_barrier() - catch the running transaction
835  *
836  * It is similar to the above function, the difference is this one
837  * will wait for all the inactive transactions until they fully
838  * complete.
839  */
840 struct btrfs_trans_handle *
841 btrfs_attach_transaction_barrier(struct btrfs_root *root)
842 {
843         struct btrfs_trans_handle *trans;
844
845         trans = start_transaction(root, 0, TRANS_ATTACH,
846                                   BTRFS_RESERVE_NO_FLUSH, true);
847         if (trans == ERR_PTR(-ENOENT))
848                 btrfs_wait_for_commit(root->fs_info, 0);
849
850         return trans;
851 }
852
853 /* Wait for a transaction commit to reach at least the given state. */
854 static noinline void wait_for_commit(struct btrfs_transaction *commit,
855                                      const enum btrfs_trans_state min_state)
856 {
857         wait_event(commit->commit_wait, commit->state >= min_state);
858 }
859
860 int btrfs_wait_for_commit(struct btrfs_fs_info *fs_info, u64 transid)
861 {
862         struct btrfs_transaction *cur_trans = NULL, *t;
863         int ret = 0;
864
865         if (transid) {
866                 if (transid <= fs_info->last_trans_committed)
867                         goto out;
868
869                 /* find specified transaction */
870                 spin_lock(&fs_info->trans_lock);
871                 list_for_each_entry(t, &fs_info->trans_list, list) {
872                         if (t->transid == transid) {
873                                 cur_trans = t;
874                                 refcount_inc(&cur_trans->use_count);
875                                 ret = 0;
876                                 break;
877                         }
878                         if (t->transid > transid) {
879                                 ret = 0;
880                                 break;
881                         }
882                 }
883                 spin_unlock(&fs_info->trans_lock);
884
885                 /*
886                  * The specified transaction doesn't exist, or we
887                  * raced with btrfs_commit_transaction
888                  */
889                 if (!cur_trans) {
890                         if (transid > fs_info->last_trans_committed)
891                                 ret = -EINVAL;
892                         goto out;
893                 }
894         } else {
895                 /* find newest transaction that is committing | committed */
896                 spin_lock(&fs_info->trans_lock);
897                 list_for_each_entry_reverse(t, &fs_info->trans_list,
898                                             list) {
899                         if (t->state >= TRANS_STATE_COMMIT_START) {
900                                 if (t->state == TRANS_STATE_COMPLETED)
901                                         break;
902                                 cur_trans = t;
903                                 refcount_inc(&cur_trans->use_count);
904                                 break;
905                         }
906                 }
907                 spin_unlock(&fs_info->trans_lock);
908                 if (!cur_trans)
909                         goto out;  /* nothing committing|committed */
910         }
911
912         wait_for_commit(cur_trans, TRANS_STATE_COMPLETED);
913         btrfs_put_transaction(cur_trans);
914 out:
915         return ret;
916 }
917
918 void btrfs_throttle(struct btrfs_fs_info *fs_info)
919 {
920         wait_current_trans(fs_info);
921 }
922
923 static bool should_end_transaction(struct btrfs_trans_handle *trans)
924 {
925         struct btrfs_fs_info *fs_info = trans->fs_info;
926
927         if (btrfs_check_space_for_delayed_refs(fs_info))
928                 return true;
929
930         return !!btrfs_block_rsv_check(&fs_info->global_block_rsv, 5);
931 }
932
933 bool btrfs_should_end_transaction(struct btrfs_trans_handle *trans)
934 {
935         struct btrfs_transaction *cur_trans = trans->transaction;
936
937         if (cur_trans->state >= TRANS_STATE_COMMIT_START ||
938             test_bit(BTRFS_DELAYED_REFS_FLUSHING, &cur_trans->delayed_refs.flags))
939                 return true;
940
941         return should_end_transaction(trans);
942 }
943
944 static void btrfs_trans_release_metadata(struct btrfs_trans_handle *trans)
945
946 {
947         struct btrfs_fs_info *fs_info = trans->fs_info;
948
949         if (!trans->block_rsv) {
950                 ASSERT(!trans->bytes_reserved);
951                 return;
952         }
953
954         if (!trans->bytes_reserved)
955                 return;
956
957         ASSERT(trans->block_rsv == &fs_info->trans_block_rsv);
958         trace_btrfs_space_reservation(fs_info, "transaction",
959                                       trans->transid, trans->bytes_reserved, 0);
960         btrfs_block_rsv_release(fs_info, trans->block_rsv,
961                                 trans->bytes_reserved, NULL);
962         trans->bytes_reserved = 0;
963 }
964
965 static int __btrfs_end_transaction(struct btrfs_trans_handle *trans,
966                                    int throttle)
967 {
968         struct btrfs_fs_info *info = trans->fs_info;
969         struct btrfs_transaction *cur_trans = trans->transaction;
970         int err = 0;
971
972         if (refcount_read(&trans->use_count) > 1) {
973                 refcount_dec(&trans->use_count);
974                 trans->block_rsv = trans->orig_rsv;
975                 return 0;
976         }
977
978         btrfs_trans_release_metadata(trans);
979         trans->block_rsv = NULL;
980
981         btrfs_create_pending_block_groups(trans);
982
983         btrfs_trans_release_chunk_metadata(trans);
984
985         if (trans->type & __TRANS_FREEZABLE)
986                 sb_end_intwrite(info->sb);
987
988         WARN_ON(cur_trans != info->running_transaction);
989         WARN_ON(atomic_read(&cur_trans->num_writers) < 1);
990         atomic_dec(&cur_trans->num_writers);
991         extwriter_counter_dec(cur_trans, trans->type);
992
993         cond_wake_up(&cur_trans->writer_wait);
994         btrfs_put_transaction(cur_trans);
995
996         if (current->journal_info == trans)
997                 current->journal_info = NULL;
998
999         if (throttle)
1000                 btrfs_run_delayed_iputs(info);
1001
1002         if (TRANS_ABORTED(trans) || BTRFS_FS_ERROR(info)) {
1003                 wake_up_process(info->transaction_kthread);
1004                 if (TRANS_ABORTED(trans))
1005                         err = trans->aborted;
1006                 else
1007                         err = -EROFS;
1008         }
1009
1010         kmem_cache_free(btrfs_trans_handle_cachep, trans);
1011         return err;
1012 }
1013
1014 int btrfs_end_transaction(struct btrfs_trans_handle *trans)
1015 {
1016         return __btrfs_end_transaction(trans, 0);
1017 }
1018
1019 int btrfs_end_transaction_throttle(struct btrfs_trans_handle *trans)
1020 {
1021         return __btrfs_end_transaction(trans, 1);
1022 }
1023
1024 /*
1025  * when btree blocks are allocated, they have some corresponding bits set for
1026  * them in one of two extent_io trees.  This is used to make sure all of
1027  * those extents are sent to disk but does not wait on them
1028  */
1029 int btrfs_write_marked_extents(struct btrfs_fs_info *fs_info,
1030                                struct extent_io_tree *dirty_pages, int mark)
1031 {
1032         int err = 0;
1033         int werr = 0;
1034         struct address_space *mapping = fs_info->btree_inode->i_mapping;
1035         struct extent_state *cached_state = NULL;
1036         u64 start = 0;
1037         u64 end;
1038
1039         atomic_inc(&BTRFS_I(fs_info->btree_inode)->sync_writers);
1040         while (!find_first_extent_bit(dirty_pages, start, &start, &end,
1041                                       mark, &cached_state)) {
1042                 bool wait_writeback = false;
1043
1044                 err = convert_extent_bit(dirty_pages, start, end,
1045                                          EXTENT_NEED_WAIT,
1046                                          mark, &cached_state);
1047                 /*
1048                  * convert_extent_bit can return -ENOMEM, which is most of the
1049                  * time a temporary error. So when it happens, ignore the error
1050                  * and wait for writeback of this range to finish - because we
1051                  * failed to set the bit EXTENT_NEED_WAIT for the range, a call
1052                  * to __btrfs_wait_marked_extents() would not know that
1053                  * writeback for this range started and therefore wouldn't
1054                  * wait for it to finish - we don't want to commit a
1055                  * superblock that points to btree nodes/leafs for which
1056                  * writeback hasn't finished yet (and without errors).
1057                  * We cleanup any entries left in the io tree when committing
1058                  * the transaction (through extent_io_tree_release()).
1059                  */
1060                 if (err == -ENOMEM) {
1061                         err = 0;
1062                         wait_writeback = true;
1063                 }
1064                 if (!err)
1065                         err = filemap_fdatawrite_range(mapping, start, end);
1066                 if (err)
1067                         werr = err;
1068                 else if (wait_writeback)
1069                         werr = filemap_fdatawait_range(mapping, start, end);
1070                 free_extent_state(cached_state);
1071                 cached_state = NULL;
1072                 cond_resched();
1073                 start = end + 1;
1074         }
1075         atomic_dec(&BTRFS_I(fs_info->btree_inode)->sync_writers);
1076         return werr;
1077 }
1078
1079 /*
1080  * when btree blocks are allocated, they have some corresponding bits set for
1081  * them in one of two extent_io trees.  This is used to make sure all of
1082  * those extents are on disk for transaction or log commit.  We wait
1083  * on all the pages and clear them from the dirty pages state tree
1084  */
1085 static int __btrfs_wait_marked_extents(struct btrfs_fs_info *fs_info,
1086                                        struct extent_io_tree *dirty_pages)
1087 {
1088         int err = 0;
1089         int werr = 0;
1090         struct address_space *mapping = fs_info->btree_inode->i_mapping;
1091         struct extent_state *cached_state = NULL;
1092         u64 start = 0;
1093         u64 end;
1094
1095         while (!find_first_extent_bit(dirty_pages, start, &start, &end,
1096                                       EXTENT_NEED_WAIT, &cached_state)) {
1097                 /*
1098                  * Ignore -ENOMEM errors returned by clear_extent_bit().
1099                  * When committing the transaction, we'll remove any entries
1100                  * left in the io tree. For a log commit, we don't remove them
1101                  * after committing the log because the tree can be accessed
1102                  * concurrently - we do it only at transaction commit time when
1103                  * it's safe to do it (through extent_io_tree_release()).
1104                  */
1105                 err = clear_extent_bit(dirty_pages, start, end,
1106                                        EXTENT_NEED_WAIT, 0, 0, &cached_state);
1107                 if (err == -ENOMEM)
1108                         err = 0;
1109                 if (!err)
1110                         err = filemap_fdatawait_range(mapping, start, end);
1111                 if (err)
1112                         werr = err;
1113                 free_extent_state(cached_state);
1114                 cached_state = NULL;
1115                 cond_resched();
1116                 start = end + 1;
1117         }
1118         if (err)
1119                 werr = err;
1120         return werr;
1121 }
1122
1123 static int btrfs_wait_extents(struct btrfs_fs_info *fs_info,
1124                        struct extent_io_tree *dirty_pages)
1125 {
1126         bool errors = false;
1127         int err;
1128
1129         err = __btrfs_wait_marked_extents(fs_info, dirty_pages);
1130         if (test_and_clear_bit(BTRFS_FS_BTREE_ERR, &fs_info->flags))
1131                 errors = true;
1132
1133         if (errors && !err)
1134                 err = -EIO;
1135         return err;
1136 }
1137
1138 int btrfs_wait_tree_log_extents(struct btrfs_root *log_root, int mark)
1139 {
1140         struct btrfs_fs_info *fs_info = log_root->fs_info;
1141         struct extent_io_tree *dirty_pages = &log_root->dirty_log_pages;
1142         bool errors = false;
1143         int err;
1144
1145         ASSERT(log_root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID);
1146
1147         err = __btrfs_wait_marked_extents(fs_info, dirty_pages);
1148         if ((mark & EXTENT_DIRTY) &&
1149             test_and_clear_bit(BTRFS_FS_LOG1_ERR, &fs_info->flags))
1150                 errors = true;
1151
1152         if ((mark & EXTENT_NEW) &&
1153             test_and_clear_bit(BTRFS_FS_LOG2_ERR, &fs_info->flags))
1154                 errors = true;
1155
1156         if (errors && !err)
1157                 err = -EIO;
1158         return err;
1159 }
1160
1161 /*
1162  * When btree blocks are allocated the corresponding extents are marked dirty.
1163  * This function ensures such extents are persisted on disk for transaction or
1164  * log commit.
1165  *
1166  * @trans: transaction whose dirty pages we'd like to write
1167  */
1168 static int btrfs_write_and_wait_transaction(struct btrfs_trans_handle *trans)
1169 {
1170         int ret;
1171         int ret2;
1172         struct extent_io_tree *dirty_pages = &trans->transaction->dirty_pages;
1173         struct btrfs_fs_info *fs_info = trans->fs_info;
1174         struct blk_plug plug;
1175
1176         blk_start_plug(&plug);
1177         ret = btrfs_write_marked_extents(fs_info, dirty_pages, EXTENT_DIRTY);
1178         blk_finish_plug(&plug);
1179         ret2 = btrfs_wait_extents(fs_info, dirty_pages);
1180
1181         extent_io_tree_release(&trans->transaction->dirty_pages);
1182
1183         if (ret)
1184                 return ret;
1185         else if (ret2)
1186                 return ret2;
1187         else
1188                 return 0;
1189 }
1190
1191 /*
1192  * this is used to update the root pointer in the tree of tree roots.
1193  *
1194  * But, in the case of the extent allocation tree, updating the root
1195  * pointer may allocate blocks which may change the root of the extent
1196  * allocation tree.
1197  *
1198  * So, this loops and repeats and makes sure the cowonly root didn't
1199  * change while the root pointer was being updated in the metadata.
1200  */
1201 static int update_cowonly_root(struct btrfs_trans_handle *trans,
1202                                struct btrfs_root *root)
1203 {
1204         int ret;
1205         u64 old_root_bytenr;
1206         u64 old_root_used;
1207         struct btrfs_fs_info *fs_info = root->fs_info;
1208         struct btrfs_root *tree_root = fs_info->tree_root;
1209
1210         old_root_used = btrfs_root_used(&root->root_item);
1211
1212         while (1) {
1213                 old_root_bytenr = btrfs_root_bytenr(&root->root_item);
1214                 if (old_root_bytenr == root->node->start &&
1215                     old_root_used == btrfs_root_used(&root->root_item))
1216                         break;
1217
1218                 btrfs_set_root_node(&root->root_item, root->node);
1219                 ret = btrfs_update_root(trans, tree_root,
1220                                         &root->root_key,
1221                                         &root->root_item);
1222                 if (ret)
1223                         return ret;
1224
1225                 old_root_used = btrfs_root_used(&root->root_item);
1226         }
1227
1228         return 0;
1229 }
1230
1231 /*
1232  * update all the cowonly tree roots on disk
1233  *
1234  * The error handling in this function may not be obvious. Any of the
1235  * failures will cause the file system to go offline. We still need
1236  * to clean up the delayed refs.
1237  */
1238 static noinline int commit_cowonly_roots(struct btrfs_trans_handle *trans)
1239 {
1240         struct btrfs_fs_info *fs_info = trans->fs_info;
1241         struct list_head *dirty_bgs = &trans->transaction->dirty_bgs;
1242         struct list_head *io_bgs = &trans->transaction->io_bgs;
1243         struct list_head *next;
1244         struct extent_buffer *eb;
1245         int ret;
1246
1247         /*
1248          * At this point no one can be using this transaction to modify any tree
1249          * and no one can start another transaction to modify any tree either.
1250          */
1251         ASSERT(trans->transaction->state == TRANS_STATE_COMMIT_DOING);
1252
1253         eb = btrfs_lock_root_node(fs_info->tree_root);
1254         ret = btrfs_cow_block(trans, fs_info->tree_root, eb, NULL,
1255                               0, &eb, BTRFS_NESTING_COW);
1256         btrfs_tree_unlock(eb);
1257         free_extent_buffer(eb);
1258
1259         if (ret)
1260                 return ret;
1261
1262         ret = btrfs_run_dev_stats(trans);
1263         if (ret)
1264                 return ret;
1265         ret = btrfs_run_dev_replace(trans);
1266         if (ret)
1267                 return ret;
1268         ret = btrfs_run_qgroups(trans);
1269         if (ret)
1270                 return ret;
1271
1272         ret = btrfs_setup_space_cache(trans);
1273         if (ret)
1274                 return ret;
1275
1276 again:
1277         while (!list_empty(&fs_info->dirty_cowonly_roots)) {
1278                 struct btrfs_root *root;
1279                 next = fs_info->dirty_cowonly_roots.next;
1280                 list_del_init(next);
1281                 root = list_entry(next, struct btrfs_root, dirty_list);
1282                 clear_bit(BTRFS_ROOT_DIRTY, &root->state);
1283
1284                 list_add_tail(&root->dirty_list,
1285                               &trans->transaction->switch_commits);
1286                 ret = update_cowonly_root(trans, root);
1287                 if (ret)
1288                         return ret;
1289         }
1290
1291         /* Now flush any delayed refs generated by updating all of the roots */
1292         ret = btrfs_run_delayed_refs(trans, (unsigned long)-1);
1293         if (ret)
1294                 return ret;
1295
1296         while (!list_empty(dirty_bgs) || !list_empty(io_bgs)) {
1297                 ret = btrfs_write_dirty_block_groups(trans);
1298                 if (ret)
1299                         return ret;
1300
1301                 /*
1302                  * We're writing the dirty block groups, which could generate
1303                  * delayed refs, which could generate more dirty block groups,
1304                  * so we want to keep this flushing in this loop to make sure
1305                  * everything gets run.
1306                  */
1307                 ret = btrfs_run_delayed_refs(trans, (unsigned long)-1);
1308                 if (ret)
1309                         return ret;
1310         }
1311
1312         if (!list_empty(&fs_info->dirty_cowonly_roots))
1313                 goto again;
1314
1315         /* Update dev-replace pointer once everything is committed */
1316         fs_info->dev_replace.committed_cursor_left =
1317                 fs_info->dev_replace.cursor_left_last_write_of_item;
1318
1319         return 0;
1320 }
1321
1322 /*
1323  * dead roots are old snapshots that need to be deleted.  This allocates
1324  * a dirty root struct and adds it into the list of dead roots that need to
1325  * be deleted
1326  */
1327 void btrfs_add_dead_root(struct btrfs_root *root)
1328 {
1329         struct btrfs_fs_info *fs_info = root->fs_info;
1330
1331         spin_lock(&fs_info->trans_lock);
1332         if (list_empty(&root->root_list)) {
1333                 btrfs_grab_root(root);
1334                 list_add_tail(&root->root_list, &fs_info->dead_roots);
1335         }
1336         spin_unlock(&fs_info->trans_lock);
1337 }
1338
1339 /*
1340  * Update each subvolume root and its relocation root, if it exists, in the tree
1341  * of tree roots. Also free log roots if they exist.
1342  */
1343 static noinline int commit_fs_roots(struct btrfs_trans_handle *trans)
1344 {
1345         struct btrfs_fs_info *fs_info = trans->fs_info;
1346         struct btrfs_root *gang[8];
1347         int i;
1348         int ret;
1349
1350         /*
1351          * At this point no one can be using this transaction to modify any tree
1352          * and no one can start another transaction to modify any tree either.
1353          */
1354         ASSERT(trans->transaction->state == TRANS_STATE_COMMIT_DOING);
1355
1356         spin_lock(&fs_info->fs_roots_radix_lock);
1357         while (1) {
1358                 ret = radix_tree_gang_lookup_tag(&fs_info->fs_roots_radix,
1359                                                  (void **)gang, 0,
1360                                                  ARRAY_SIZE(gang),
1361                                                  BTRFS_ROOT_TRANS_TAG);
1362                 if (ret == 0)
1363                         break;
1364                 for (i = 0; i < ret; i++) {
1365                         struct btrfs_root *root = gang[i];
1366                         int ret2;
1367
1368                         /*
1369                          * At this point we can neither have tasks logging inodes
1370                          * from a root nor trying to commit a log tree.
1371                          */
1372                         ASSERT(atomic_read(&root->log_writers) == 0);
1373                         ASSERT(atomic_read(&root->log_commit[0]) == 0);
1374                         ASSERT(atomic_read(&root->log_commit[1]) == 0);
1375
1376                         radix_tree_tag_clear(&fs_info->fs_roots_radix,
1377                                         (unsigned long)root->root_key.objectid,
1378                                         BTRFS_ROOT_TRANS_TAG);
1379                         spin_unlock(&fs_info->fs_roots_radix_lock);
1380
1381                         btrfs_free_log(trans, root);
1382                         ret2 = btrfs_update_reloc_root(trans, root);
1383                         if (ret2)
1384                                 return ret2;
1385
1386                         /* see comments in should_cow_block() */
1387                         clear_bit(BTRFS_ROOT_FORCE_COW, &root->state);
1388                         smp_mb__after_atomic();
1389
1390                         if (root->commit_root != root->node) {
1391                                 list_add_tail(&root->dirty_list,
1392                                         &trans->transaction->switch_commits);
1393                                 btrfs_set_root_node(&root->root_item,
1394                                                     root->node);
1395                         }
1396
1397                         ret2 = btrfs_update_root(trans, fs_info->tree_root,
1398                                                 &root->root_key,
1399                                                 &root->root_item);
1400                         if (ret2)
1401                                 return ret2;
1402                         spin_lock(&fs_info->fs_roots_radix_lock);
1403                         btrfs_qgroup_free_meta_all_pertrans(root);
1404                 }
1405         }
1406         spin_unlock(&fs_info->fs_roots_radix_lock);
1407         return 0;
1408 }
1409
1410 /*
1411  * defrag a given btree.
1412  * Every leaf in the btree is read and defragged.
1413  */
1414 int btrfs_defrag_root(struct btrfs_root *root)
1415 {
1416         struct btrfs_fs_info *info = root->fs_info;
1417         struct btrfs_trans_handle *trans;
1418         int ret;
1419
1420         if (test_and_set_bit(BTRFS_ROOT_DEFRAG_RUNNING, &root->state))
1421                 return 0;
1422
1423         while (1) {
1424                 trans = btrfs_start_transaction(root, 0);
1425                 if (IS_ERR(trans)) {
1426                         ret = PTR_ERR(trans);
1427                         break;
1428                 }
1429
1430                 ret = btrfs_defrag_leaves(trans, root);
1431
1432                 btrfs_end_transaction(trans);
1433                 btrfs_btree_balance_dirty(info);
1434                 cond_resched();
1435
1436                 if (btrfs_fs_closing(info) || ret != -EAGAIN)
1437                         break;
1438
1439                 if (btrfs_defrag_cancelled(info)) {
1440                         btrfs_debug(info, "defrag_root cancelled");
1441                         ret = -EAGAIN;
1442                         break;
1443                 }
1444         }
1445         clear_bit(BTRFS_ROOT_DEFRAG_RUNNING, &root->state);
1446         return ret;
1447 }
1448
1449 /*
1450  * Do all special snapshot related qgroup dirty hack.
1451  *
1452  * Will do all needed qgroup inherit and dirty hack like switch commit
1453  * roots inside one transaction and write all btree into disk, to make
1454  * qgroup works.
1455  */
1456 static int qgroup_account_snapshot(struct btrfs_trans_handle *trans,
1457                                    struct btrfs_root *src,
1458                                    struct btrfs_root *parent,
1459                                    struct btrfs_qgroup_inherit *inherit,
1460                                    u64 dst_objectid)
1461 {
1462         struct btrfs_fs_info *fs_info = src->fs_info;
1463         int ret;
1464
1465         /*
1466          * Save some performance in the case that qgroups are not
1467          * enabled. If this check races with the ioctl, rescan will
1468          * kick in anyway.
1469          */
1470         if (!test_bit(BTRFS_FS_QUOTA_ENABLED, &fs_info->flags))
1471                 return 0;
1472
1473         /*
1474          * Ensure dirty @src will be committed.  Or, after coming
1475          * commit_fs_roots() and switch_commit_roots(), any dirty but not
1476          * recorded root will never be updated again, causing an outdated root
1477          * item.
1478          */
1479         ret = record_root_in_trans(trans, src, 1);
1480         if (ret)
1481                 return ret;
1482
1483         /*
1484          * btrfs_qgroup_inherit relies on a consistent view of the usage for the
1485          * src root, so we must run the delayed refs here.
1486          *
1487          * However this isn't particularly fool proof, because there's no
1488          * synchronization keeping us from changing the tree after this point
1489          * before we do the qgroup_inherit, or even from making changes while
1490          * we're doing the qgroup_inherit.  But that's a problem for the future,
1491          * for now flush the delayed refs to narrow the race window where the
1492          * qgroup counters could end up wrong.
1493          */
1494         ret = btrfs_run_delayed_refs(trans, (unsigned long)-1);
1495         if (ret) {
1496                 btrfs_abort_transaction(trans, ret);
1497                 return ret;
1498         }
1499
1500         ret = commit_fs_roots(trans);
1501         if (ret)
1502                 goto out;
1503         ret = btrfs_qgroup_account_extents(trans);
1504         if (ret < 0)
1505                 goto out;
1506
1507         /* Now qgroup are all updated, we can inherit it to new qgroups */
1508         ret = btrfs_qgroup_inherit(trans, src->root_key.objectid, dst_objectid,
1509                                    inherit);
1510         if (ret < 0)
1511                 goto out;
1512
1513         /*
1514          * Now we do a simplified commit transaction, which will:
1515          * 1) commit all subvolume and extent tree
1516          *    To ensure all subvolume and extent tree have a valid
1517          *    commit_root to accounting later insert_dir_item()
1518          * 2) write all btree blocks onto disk
1519          *    This is to make sure later btree modification will be cowed
1520          *    Or commit_root can be populated and cause wrong qgroup numbers
1521          * In this simplified commit, we don't really care about other trees
1522          * like chunk and root tree, as they won't affect qgroup.
1523          * And we don't write super to avoid half committed status.
1524          */
1525         ret = commit_cowonly_roots(trans);
1526         if (ret)
1527                 goto out;
1528         switch_commit_roots(trans);
1529         ret = btrfs_write_and_wait_transaction(trans);
1530         if (ret)
1531                 btrfs_handle_fs_error(fs_info, ret,
1532                         "Error while writing out transaction for qgroup");
1533
1534 out:
1535         /*
1536          * Force parent root to be updated, as we recorded it before so its
1537          * last_trans == cur_transid.
1538          * Or it won't be committed again onto disk after later
1539          * insert_dir_item()
1540          */
1541         if (!ret)
1542                 ret = record_root_in_trans(trans, parent, 1);
1543         return ret;
1544 }
1545
1546 /*
1547  * new snapshots need to be created at a very specific time in the
1548  * transaction commit.  This does the actual creation.
1549  *
1550  * Note:
1551  * If the error which may affect the commitment of the current transaction
1552  * happens, we should return the error number. If the error which just affect
1553  * the creation of the pending snapshots, just return 0.
1554  */
1555 static noinline int create_pending_snapshot(struct btrfs_trans_handle *trans,
1556                                    struct btrfs_pending_snapshot *pending)
1557 {
1558
1559         struct btrfs_fs_info *fs_info = trans->fs_info;
1560         struct btrfs_key key;
1561         struct btrfs_root_item *new_root_item;
1562         struct btrfs_root *tree_root = fs_info->tree_root;
1563         struct btrfs_root *root = pending->root;
1564         struct btrfs_root *parent_root;
1565         struct btrfs_block_rsv *rsv;
1566         struct inode *parent_inode;
1567         struct btrfs_path *path;
1568         struct btrfs_dir_item *dir_item;
1569         struct dentry *dentry;
1570         struct extent_buffer *tmp;
1571         struct extent_buffer *old;
1572         struct timespec64 cur_time;
1573         int ret = 0;
1574         u64 to_reserve = 0;
1575         u64 index = 0;
1576         u64 objectid;
1577         u64 root_flags;
1578
1579         ASSERT(pending->path);
1580         path = pending->path;
1581
1582         ASSERT(pending->root_item);
1583         new_root_item = pending->root_item;
1584
1585         pending->error = btrfs_get_free_objectid(tree_root, &objectid);
1586         if (pending->error)
1587                 goto no_free_objectid;
1588
1589         /*
1590          * Make qgroup to skip current new snapshot's qgroupid, as it is
1591          * accounted by later btrfs_qgroup_inherit().
1592          */
1593         btrfs_set_skip_qgroup(trans, objectid);
1594
1595         btrfs_reloc_pre_snapshot(pending, &to_reserve);
1596
1597         if (to_reserve > 0) {
1598                 pending->error = btrfs_block_rsv_add(fs_info,
1599                                                      &pending->block_rsv,
1600                                                      to_reserve,
1601                                                      BTRFS_RESERVE_NO_FLUSH);
1602                 if (pending->error)
1603                         goto clear_skip_qgroup;
1604         }
1605
1606         key.objectid = objectid;
1607         key.offset = (u64)-1;
1608         key.type = BTRFS_ROOT_ITEM_KEY;
1609
1610         rsv = trans->block_rsv;
1611         trans->block_rsv = &pending->block_rsv;
1612         trans->bytes_reserved = trans->block_rsv->reserved;
1613         trace_btrfs_space_reservation(fs_info, "transaction",
1614                                       trans->transid,
1615                                       trans->bytes_reserved, 1);
1616         dentry = pending->dentry;
1617         parent_inode = pending->dir;
1618         parent_root = BTRFS_I(parent_inode)->root;
1619         ret = record_root_in_trans(trans, parent_root, 0);
1620         if (ret)
1621                 goto fail;
1622         cur_time = current_time(parent_inode);
1623
1624         /*
1625          * insert the directory item
1626          */
1627         ret = btrfs_set_inode_index(BTRFS_I(parent_inode), &index);
1628         BUG_ON(ret); /* -ENOMEM */
1629
1630         /* check if there is a file/dir which has the same name. */
1631         dir_item = btrfs_lookup_dir_item(NULL, parent_root, path,
1632                                          btrfs_ino(BTRFS_I(parent_inode)),
1633                                          dentry->d_name.name,
1634                                          dentry->d_name.len, 0);
1635         if (dir_item != NULL && !IS_ERR(dir_item)) {
1636                 pending->error = -EEXIST;
1637                 goto dir_item_existed;
1638         } else if (IS_ERR(dir_item)) {
1639                 ret = PTR_ERR(dir_item);
1640                 btrfs_abort_transaction(trans, ret);
1641                 goto fail;
1642         }
1643         btrfs_release_path(path);
1644
1645         /*
1646          * pull in the delayed directory update
1647          * and the delayed inode item
1648          * otherwise we corrupt the FS during
1649          * snapshot
1650          */
1651         ret = btrfs_run_delayed_items(trans);
1652         if (ret) {      /* Transaction aborted */
1653                 btrfs_abort_transaction(trans, ret);
1654                 goto fail;
1655         }
1656
1657         ret = record_root_in_trans(trans, root, 0);
1658         if (ret) {
1659                 btrfs_abort_transaction(trans, ret);
1660                 goto fail;
1661         }
1662         btrfs_set_root_last_snapshot(&root->root_item, trans->transid);
1663         memcpy(new_root_item, &root->root_item, sizeof(*new_root_item));
1664         btrfs_check_and_init_root_item(new_root_item);
1665
1666         root_flags = btrfs_root_flags(new_root_item);
1667         if (pending->readonly)
1668                 root_flags |= BTRFS_ROOT_SUBVOL_RDONLY;
1669         else
1670                 root_flags &= ~BTRFS_ROOT_SUBVOL_RDONLY;
1671         btrfs_set_root_flags(new_root_item, root_flags);
1672
1673         btrfs_set_root_generation_v2(new_root_item,
1674                         trans->transid);
1675         generate_random_guid(new_root_item->uuid);
1676         memcpy(new_root_item->parent_uuid, root->root_item.uuid,
1677                         BTRFS_UUID_SIZE);
1678         if (!(root_flags & BTRFS_ROOT_SUBVOL_RDONLY)) {
1679                 memset(new_root_item->received_uuid, 0,
1680                        sizeof(new_root_item->received_uuid));
1681                 memset(&new_root_item->stime, 0, sizeof(new_root_item->stime));
1682                 memset(&new_root_item->rtime, 0, sizeof(new_root_item->rtime));
1683                 btrfs_set_root_stransid(new_root_item, 0);
1684                 btrfs_set_root_rtransid(new_root_item, 0);
1685         }
1686         btrfs_set_stack_timespec_sec(&new_root_item->otime, cur_time.tv_sec);
1687         btrfs_set_stack_timespec_nsec(&new_root_item->otime, cur_time.tv_nsec);
1688         btrfs_set_root_otransid(new_root_item, trans->transid);
1689
1690         old = btrfs_lock_root_node(root);
1691         ret = btrfs_cow_block(trans, root, old, NULL, 0, &old,
1692                               BTRFS_NESTING_COW);
1693         if (ret) {
1694                 btrfs_tree_unlock(old);
1695                 free_extent_buffer(old);
1696                 btrfs_abort_transaction(trans, ret);
1697                 goto fail;
1698         }
1699
1700         ret = btrfs_copy_root(trans, root, old, &tmp, objectid);
1701         /* clean up in any case */
1702         btrfs_tree_unlock(old);
1703         free_extent_buffer(old);
1704         if (ret) {
1705                 btrfs_abort_transaction(trans, ret);
1706                 goto fail;
1707         }
1708         /* see comments in should_cow_block() */
1709         set_bit(BTRFS_ROOT_FORCE_COW, &root->state);
1710         smp_wmb();
1711
1712         btrfs_set_root_node(new_root_item, tmp);
1713         /* record when the snapshot was created in key.offset */
1714         key.offset = trans->transid;
1715         ret = btrfs_insert_root(trans, tree_root, &key, new_root_item);
1716         btrfs_tree_unlock(tmp);
1717         free_extent_buffer(tmp);
1718         if (ret) {
1719                 btrfs_abort_transaction(trans, ret);
1720                 goto fail;
1721         }
1722
1723         /*
1724          * insert root back/forward references
1725          */
1726         ret = btrfs_add_root_ref(trans, objectid,
1727                                  parent_root->root_key.objectid,
1728                                  btrfs_ino(BTRFS_I(parent_inode)), index,
1729                                  dentry->d_name.name, dentry->d_name.len);
1730         if (ret) {
1731                 btrfs_abort_transaction(trans, ret);
1732                 goto fail;
1733         }
1734
1735         key.offset = (u64)-1;
1736         pending->snap = btrfs_get_new_fs_root(fs_info, objectid, pending->anon_dev);
1737         if (IS_ERR(pending->snap)) {
1738                 ret = PTR_ERR(pending->snap);
1739                 pending->snap = NULL;
1740                 btrfs_abort_transaction(trans, ret);
1741                 goto fail;
1742         }
1743
1744         ret = btrfs_reloc_post_snapshot(trans, pending);
1745         if (ret) {
1746                 btrfs_abort_transaction(trans, ret);
1747                 goto fail;
1748         }
1749
1750         /*
1751          * Do special qgroup accounting for snapshot, as we do some qgroup
1752          * snapshot hack to do fast snapshot.
1753          * To co-operate with that hack, we do hack again.
1754          * Or snapshot will be greatly slowed down by a subtree qgroup rescan
1755          */
1756         ret = qgroup_account_snapshot(trans, root, parent_root,
1757                                       pending->inherit, objectid);
1758         if (ret < 0)
1759                 goto fail;
1760
1761         ret = btrfs_insert_dir_item(trans, dentry->d_name.name,
1762                                     dentry->d_name.len, BTRFS_I(parent_inode),
1763                                     &key, BTRFS_FT_DIR, index);
1764         /* We have check then name at the beginning, so it is impossible. */
1765         BUG_ON(ret == -EEXIST || ret == -EOVERFLOW);
1766         if (ret) {
1767                 btrfs_abort_transaction(trans, ret);
1768                 goto fail;
1769         }
1770
1771         btrfs_i_size_write(BTRFS_I(parent_inode), parent_inode->i_size +
1772                                          dentry->d_name.len * 2);
1773         parent_inode->i_mtime = parent_inode->i_ctime =
1774                 current_time(parent_inode);
1775         ret = btrfs_update_inode_fallback(trans, parent_root, BTRFS_I(parent_inode));
1776         if (ret) {
1777                 btrfs_abort_transaction(trans, ret);
1778                 goto fail;
1779         }
1780         ret = btrfs_uuid_tree_add(trans, new_root_item->uuid,
1781                                   BTRFS_UUID_KEY_SUBVOL,
1782                                   objectid);
1783         if (ret) {
1784                 btrfs_abort_transaction(trans, ret);
1785                 goto fail;
1786         }
1787         if (!btrfs_is_empty_uuid(new_root_item->received_uuid)) {
1788                 ret = btrfs_uuid_tree_add(trans, new_root_item->received_uuid,
1789                                           BTRFS_UUID_KEY_RECEIVED_SUBVOL,
1790                                           objectid);
1791                 if (ret && ret != -EEXIST) {
1792                         btrfs_abort_transaction(trans, ret);
1793                         goto fail;
1794                 }
1795         }
1796
1797 fail:
1798         pending->error = ret;
1799 dir_item_existed:
1800         trans->block_rsv = rsv;
1801         trans->bytes_reserved = 0;
1802 clear_skip_qgroup:
1803         btrfs_clear_skip_qgroup(trans);
1804 no_free_objectid:
1805         kfree(new_root_item);
1806         pending->root_item = NULL;
1807         btrfs_free_path(path);
1808         pending->path = NULL;
1809
1810         return ret;
1811 }
1812
1813 /*
1814  * create all the snapshots we've scheduled for creation
1815  */
1816 static noinline int create_pending_snapshots(struct btrfs_trans_handle *trans)
1817 {
1818         struct btrfs_pending_snapshot *pending, *next;
1819         struct list_head *head = &trans->transaction->pending_snapshots;
1820         int ret = 0;
1821
1822         list_for_each_entry_safe(pending, next, head, list) {
1823                 list_del(&pending->list);
1824                 ret = create_pending_snapshot(trans, pending);
1825                 if (ret)
1826                         break;
1827         }
1828         return ret;
1829 }
1830
1831 static void update_super_roots(struct btrfs_fs_info *fs_info)
1832 {
1833         struct btrfs_root_item *root_item;
1834         struct btrfs_super_block *super;
1835
1836         super = fs_info->super_copy;
1837
1838         root_item = &fs_info->chunk_root->root_item;
1839         super->chunk_root = root_item->bytenr;
1840         super->chunk_root_generation = root_item->generation;
1841         super->chunk_root_level = root_item->level;
1842
1843         root_item = &fs_info->tree_root->root_item;
1844         super->root = root_item->bytenr;
1845         super->generation = root_item->generation;
1846         super->root_level = root_item->level;
1847         if (btrfs_test_opt(fs_info, SPACE_CACHE))
1848                 super->cache_generation = root_item->generation;
1849         else if (test_bit(BTRFS_FS_CLEANUP_SPACE_CACHE_V1, &fs_info->flags))
1850                 super->cache_generation = 0;
1851         if (test_bit(BTRFS_FS_UPDATE_UUID_TREE_GEN, &fs_info->flags))
1852                 super->uuid_tree_generation = root_item->generation;
1853 }
1854
1855 int btrfs_transaction_in_commit(struct btrfs_fs_info *info)
1856 {
1857         struct btrfs_transaction *trans;
1858         int ret = 0;
1859
1860         spin_lock(&info->trans_lock);
1861         trans = info->running_transaction;
1862         if (trans)
1863                 ret = (trans->state >= TRANS_STATE_COMMIT_START);
1864         spin_unlock(&info->trans_lock);
1865         return ret;
1866 }
1867
1868 int btrfs_transaction_blocked(struct btrfs_fs_info *info)
1869 {
1870         struct btrfs_transaction *trans;
1871         int ret = 0;
1872
1873         spin_lock(&info->trans_lock);
1874         trans = info->running_transaction;
1875         if (trans)
1876                 ret = is_transaction_blocked(trans);
1877         spin_unlock(&info->trans_lock);
1878         return ret;
1879 }
1880
1881 void btrfs_commit_transaction_async(struct btrfs_trans_handle *trans)
1882 {
1883         struct btrfs_fs_info *fs_info = trans->fs_info;
1884         struct btrfs_transaction *cur_trans;
1885
1886         /* Kick the transaction kthread. */
1887         set_bit(BTRFS_FS_COMMIT_TRANS, &fs_info->flags);
1888         wake_up_process(fs_info->transaction_kthread);
1889
1890         /* take transaction reference */
1891         cur_trans = trans->transaction;
1892         refcount_inc(&cur_trans->use_count);
1893
1894         btrfs_end_transaction(trans);
1895
1896         /*
1897          * Wait for the current transaction commit to start and block
1898          * subsequent transaction joins
1899          */
1900         wait_event(fs_info->transaction_blocked_wait,
1901                    cur_trans->state >= TRANS_STATE_COMMIT_START ||
1902                    TRANS_ABORTED(cur_trans));
1903         btrfs_put_transaction(cur_trans);
1904 }
1905
1906 static void cleanup_transaction(struct btrfs_trans_handle *trans, int err)
1907 {
1908         struct btrfs_fs_info *fs_info = trans->fs_info;
1909         struct btrfs_transaction *cur_trans = trans->transaction;
1910
1911         WARN_ON(refcount_read(&trans->use_count) > 1);
1912
1913         btrfs_abort_transaction(trans, err);
1914
1915         spin_lock(&fs_info->trans_lock);
1916
1917         /*
1918          * If the transaction is removed from the list, it means this
1919          * transaction has been committed successfully, so it is impossible
1920          * to call the cleanup function.
1921          */
1922         BUG_ON(list_empty(&cur_trans->list));
1923
1924         if (cur_trans == fs_info->running_transaction) {
1925                 cur_trans->state = TRANS_STATE_COMMIT_DOING;
1926                 spin_unlock(&fs_info->trans_lock);
1927                 wait_event(cur_trans->writer_wait,
1928                            atomic_read(&cur_trans->num_writers) == 1);
1929
1930                 spin_lock(&fs_info->trans_lock);
1931         }
1932
1933         /*
1934          * Now that we know no one else is still using the transaction we can
1935          * remove the transaction from the list of transactions. This avoids
1936          * the transaction kthread from cleaning up the transaction while some
1937          * other task is still using it, which could result in a use-after-free
1938          * on things like log trees, as it forces the transaction kthread to
1939          * wait for this transaction to be cleaned up by us.
1940          */
1941         list_del_init(&cur_trans->list);
1942
1943         spin_unlock(&fs_info->trans_lock);
1944
1945         btrfs_cleanup_one_transaction(trans->transaction, fs_info);
1946
1947         spin_lock(&fs_info->trans_lock);
1948         if (cur_trans == fs_info->running_transaction)
1949                 fs_info->running_transaction = NULL;
1950         spin_unlock(&fs_info->trans_lock);
1951
1952         if (trans->type & __TRANS_FREEZABLE)
1953                 sb_end_intwrite(fs_info->sb);
1954         btrfs_put_transaction(cur_trans);
1955         btrfs_put_transaction(cur_trans);
1956
1957         trace_btrfs_transaction_commit(fs_info);
1958
1959         if (current->journal_info == trans)
1960                 current->journal_info = NULL;
1961         btrfs_scrub_cancel(fs_info);
1962
1963         kmem_cache_free(btrfs_trans_handle_cachep, trans);
1964 }
1965
1966 /*
1967  * Release reserved delayed ref space of all pending block groups of the
1968  * transaction and remove them from the list
1969  */
1970 static void btrfs_cleanup_pending_block_groups(struct btrfs_trans_handle *trans)
1971 {
1972        struct btrfs_fs_info *fs_info = trans->fs_info;
1973        struct btrfs_block_group *block_group, *tmp;
1974
1975        list_for_each_entry_safe(block_group, tmp, &trans->new_bgs, bg_list) {
1976                btrfs_delayed_refs_rsv_release(fs_info, 1);
1977                list_del_init(&block_group->bg_list);
1978        }
1979 }
1980
1981 static inline int btrfs_start_delalloc_flush(struct btrfs_fs_info *fs_info)
1982 {
1983         /*
1984          * We use writeback_inodes_sb here because if we used
1985          * btrfs_start_delalloc_roots we would deadlock with fs freeze.
1986          * Currently are holding the fs freeze lock, if we do an async flush
1987          * we'll do btrfs_join_transaction() and deadlock because we need to
1988          * wait for the fs freeze lock.  Using the direct flushing we benefit
1989          * from already being in a transaction and our join_transaction doesn't
1990          * have to re-take the fs freeze lock.
1991          */
1992         if (btrfs_test_opt(fs_info, FLUSHONCOMMIT))
1993                 writeback_inodes_sb(fs_info->sb, WB_REASON_SYNC);
1994         return 0;
1995 }
1996
1997 static inline void btrfs_wait_delalloc_flush(struct btrfs_fs_info *fs_info)
1998 {
1999         if (btrfs_test_opt(fs_info, FLUSHONCOMMIT))
2000                 btrfs_wait_ordered_roots(fs_info, U64_MAX, 0, (u64)-1);
2001 }
2002
2003 /*
2004  * Add a pending snapshot associated with the given transaction handle to the
2005  * respective handle. This must be called after the transaction commit started
2006  * and while holding fs_info->trans_lock.
2007  * This serves to guarantee a caller of btrfs_commit_transaction() that it can
2008  * safely free the pending snapshot pointer in case btrfs_commit_transaction()
2009  * returns an error.
2010  */
2011 static void add_pending_snapshot(struct btrfs_trans_handle *trans)
2012 {
2013         struct btrfs_transaction *cur_trans = trans->transaction;
2014
2015         if (!trans->pending_snapshot)
2016                 return;
2017
2018         lockdep_assert_held(&trans->fs_info->trans_lock);
2019         ASSERT(cur_trans->state >= TRANS_STATE_COMMIT_START);
2020
2021         list_add(&trans->pending_snapshot->list, &cur_trans->pending_snapshots);
2022 }
2023
2024 int btrfs_commit_transaction(struct btrfs_trans_handle *trans)
2025 {
2026         struct btrfs_fs_info *fs_info = trans->fs_info;
2027         struct btrfs_transaction *cur_trans = trans->transaction;
2028         struct btrfs_transaction *prev_trans = NULL;
2029         int ret;
2030
2031         ASSERT(refcount_read(&trans->use_count) == 1);
2032
2033         /* Stop the commit early if ->aborted is set */
2034         if (TRANS_ABORTED(cur_trans)) {
2035                 ret = cur_trans->aborted;
2036                 btrfs_end_transaction(trans);
2037                 return ret;
2038         }
2039
2040         btrfs_trans_release_metadata(trans);
2041         trans->block_rsv = NULL;
2042
2043         /*
2044          * We only want one transaction commit doing the flushing so we do not
2045          * waste a bunch of time on lock contention on the extent root node.
2046          */
2047         if (!test_and_set_bit(BTRFS_DELAYED_REFS_FLUSHING,
2048                               &cur_trans->delayed_refs.flags)) {
2049                 /*
2050                  * Make a pass through all the delayed refs we have so far.
2051                  * Any running threads may add more while we are here.
2052                  */
2053                 ret = btrfs_run_delayed_refs(trans, 0);
2054                 if (ret) {
2055                         btrfs_end_transaction(trans);
2056                         return ret;
2057                 }
2058         }
2059
2060         btrfs_create_pending_block_groups(trans);
2061
2062         if (!test_bit(BTRFS_TRANS_DIRTY_BG_RUN, &cur_trans->flags)) {
2063                 int run_it = 0;
2064
2065                 /* this mutex is also taken before trying to set
2066                  * block groups readonly.  We need to make sure
2067                  * that nobody has set a block group readonly
2068                  * after a extents from that block group have been
2069                  * allocated for cache files.  btrfs_set_block_group_ro
2070                  * will wait for the transaction to commit if it
2071                  * finds BTRFS_TRANS_DIRTY_BG_RUN set.
2072                  *
2073                  * The BTRFS_TRANS_DIRTY_BG_RUN flag is also used to make sure
2074                  * only one process starts all the block group IO.  It wouldn't
2075                  * hurt to have more than one go through, but there's no
2076                  * real advantage to it either.
2077                  */
2078                 mutex_lock(&fs_info->ro_block_group_mutex);
2079                 if (!test_and_set_bit(BTRFS_TRANS_DIRTY_BG_RUN,
2080                                       &cur_trans->flags))
2081                         run_it = 1;
2082                 mutex_unlock(&fs_info->ro_block_group_mutex);
2083
2084                 if (run_it) {
2085                         ret = btrfs_start_dirty_block_groups(trans);
2086                         if (ret) {
2087                                 btrfs_end_transaction(trans);
2088                                 return ret;
2089                         }
2090                 }
2091         }
2092
2093         spin_lock(&fs_info->trans_lock);
2094         if (cur_trans->state >= TRANS_STATE_COMMIT_START) {
2095                 enum btrfs_trans_state want_state = TRANS_STATE_COMPLETED;
2096
2097                 add_pending_snapshot(trans);
2098
2099                 spin_unlock(&fs_info->trans_lock);
2100                 refcount_inc(&cur_trans->use_count);
2101
2102                 if (trans->in_fsync)
2103                         want_state = TRANS_STATE_SUPER_COMMITTED;
2104                 ret = btrfs_end_transaction(trans);
2105                 wait_for_commit(cur_trans, want_state);
2106
2107                 if (TRANS_ABORTED(cur_trans))
2108                         ret = cur_trans->aborted;
2109
2110                 btrfs_put_transaction(cur_trans);
2111
2112                 return ret;
2113         }
2114
2115         cur_trans->state = TRANS_STATE_COMMIT_START;
2116         wake_up(&fs_info->transaction_blocked_wait);
2117
2118         if (cur_trans->list.prev != &fs_info->trans_list) {
2119                 enum btrfs_trans_state want_state = TRANS_STATE_COMPLETED;
2120
2121                 if (trans->in_fsync)
2122                         want_state = TRANS_STATE_SUPER_COMMITTED;
2123
2124                 prev_trans = list_entry(cur_trans->list.prev,
2125                                         struct btrfs_transaction, list);
2126                 if (prev_trans->state < want_state) {
2127                         refcount_inc(&prev_trans->use_count);
2128                         spin_unlock(&fs_info->trans_lock);
2129
2130                         wait_for_commit(prev_trans, want_state);
2131
2132                         ret = READ_ONCE(prev_trans->aborted);
2133
2134                         btrfs_put_transaction(prev_trans);
2135                         if (ret)
2136                                 goto cleanup_transaction;
2137                 } else {
2138                         spin_unlock(&fs_info->trans_lock);
2139                 }
2140         } else {
2141                 spin_unlock(&fs_info->trans_lock);
2142                 /*
2143                  * The previous transaction was aborted and was already removed
2144                  * from the list of transactions at fs_info->trans_list. So we
2145                  * abort to prevent writing a new superblock that reflects a
2146                  * corrupt state (pointing to trees with unwritten nodes/leafs).
2147                  */
2148                 if (BTRFS_FS_ERROR(fs_info)) {
2149                         ret = -EROFS;
2150                         goto cleanup_transaction;
2151                 }
2152         }
2153
2154         extwriter_counter_dec(cur_trans, trans->type);
2155
2156         ret = btrfs_start_delalloc_flush(fs_info);
2157         if (ret)
2158                 goto cleanup_transaction;
2159
2160         ret = btrfs_run_delayed_items(trans);
2161         if (ret)
2162                 goto cleanup_transaction;
2163
2164         wait_event(cur_trans->writer_wait,
2165                    extwriter_counter_read(cur_trans) == 0);
2166
2167         /* some pending stuffs might be added after the previous flush. */
2168         ret = btrfs_run_delayed_items(trans);
2169         if (ret)
2170                 goto cleanup_transaction;
2171
2172         btrfs_wait_delalloc_flush(fs_info);
2173
2174         /*
2175          * Wait for all ordered extents started by a fast fsync that joined this
2176          * transaction. Otherwise if this transaction commits before the ordered
2177          * extents complete we lose logged data after a power failure.
2178          */
2179         wait_event(cur_trans->pending_wait,
2180                    atomic_read(&cur_trans->pending_ordered) == 0);
2181
2182         btrfs_scrub_pause(fs_info);
2183         /*
2184          * Ok now we need to make sure to block out any other joins while we
2185          * commit the transaction.  We could have started a join before setting
2186          * COMMIT_DOING so make sure to wait for num_writers to == 1 again.
2187          */
2188         spin_lock(&fs_info->trans_lock);
2189         add_pending_snapshot(trans);
2190         cur_trans->state = TRANS_STATE_COMMIT_DOING;
2191         spin_unlock(&fs_info->trans_lock);
2192         wait_event(cur_trans->writer_wait,
2193                    atomic_read(&cur_trans->num_writers) == 1);
2194
2195         /*
2196          * We've started the commit, clear the flag in case we were triggered to
2197          * do an async commit but somebody else started before the transaction
2198          * kthread could do the work.
2199          */
2200         clear_bit(BTRFS_FS_COMMIT_TRANS, &fs_info->flags);
2201
2202         if (TRANS_ABORTED(cur_trans)) {
2203                 ret = cur_trans->aborted;
2204                 goto scrub_continue;
2205         }
2206         /*
2207          * the reloc mutex makes sure that we stop
2208          * the balancing code from coming in and moving
2209          * extents around in the middle of the commit
2210          */
2211         mutex_lock(&fs_info->reloc_mutex);
2212
2213         /*
2214          * We needn't worry about the delayed items because we will
2215          * deal with them in create_pending_snapshot(), which is the
2216          * core function of the snapshot creation.
2217          */
2218         ret = create_pending_snapshots(trans);
2219         if (ret)
2220                 goto unlock_reloc;
2221
2222         /*
2223          * We insert the dir indexes of the snapshots and update the inode
2224          * of the snapshots' parents after the snapshot creation, so there
2225          * are some delayed items which are not dealt with. Now deal with
2226          * them.
2227          *
2228          * We needn't worry that this operation will corrupt the snapshots,
2229          * because all the tree which are snapshoted will be forced to COW
2230          * the nodes and leaves.
2231          */
2232         ret = btrfs_run_delayed_items(trans);
2233         if (ret)
2234                 goto unlock_reloc;
2235
2236         ret = btrfs_run_delayed_refs(trans, (unsigned long)-1);
2237         if (ret)
2238                 goto unlock_reloc;
2239
2240         /*
2241          * make sure none of the code above managed to slip in a
2242          * delayed item
2243          */
2244         btrfs_assert_delayed_root_empty(fs_info);
2245
2246         WARN_ON(cur_trans != trans->transaction);
2247
2248         ret = commit_fs_roots(trans);
2249         if (ret)
2250                 goto unlock_reloc;
2251
2252         /*
2253          * Since the transaction is done, we can apply the pending changes
2254          * before the next transaction.
2255          */
2256         btrfs_apply_pending_changes(fs_info);
2257
2258         /* commit_fs_roots gets rid of all the tree log roots, it is now
2259          * safe to free the root of tree log roots
2260          */
2261         btrfs_free_log_root_tree(trans, fs_info);
2262
2263         /*
2264          * Since fs roots are all committed, we can get a quite accurate
2265          * new_roots. So let's do quota accounting.
2266          */
2267         ret = btrfs_qgroup_account_extents(trans);
2268         if (ret < 0)
2269                 goto unlock_reloc;
2270
2271         ret = commit_cowonly_roots(trans);
2272         if (ret)
2273                 goto unlock_reloc;
2274
2275         /*
2276          * The tasks which save the space cache and inode cache may also
2277          * update ->aborted, check it.
2278          */
2279         if (TRANS_ABORTED(cur_trans)) {
2280                 ret = cur_trans->aborted;
2281                 goto unlock_reloc;
2282         }
2283
2284         cur_trans = fs_info->running_transaction;
2285
2286         btrfs_set_root_node(&fs_info->tree_root->root_item,
2287                             fs_info->tree_root->node);
2288         list_add_tail(&fs_info->tree_root->dirty_list,
2289                       &cur_trans->switch_commits);
2290
2291         btrfs_set_root_node(&fs_info->chunk_root->root_item,
2292                             fs_info->chunk_root->node);
2293         list_add_tail(&fs_info->chunk_root->dirty_list,
2294                       &cur_trans->switch_commits);
2295
2296         switch_commit_roots(trans);
2297
2298         ASSERT(list_empty(&cur_trans->dirty_bgs));
2299         ASSERT(list_empty(&cur_trans->io_bgs));
2300         update_super_roots(fs_info);
2301
2302         btrfs_set_super_log_root(fs_info->super_copy, 0);
2303         btrfs_set_super_log_root_level(fs_info->super_copy, 0);
2304         memcpy(fs_info->super_for_commit, fs_info->super_copy,
2305                sizeof(*fs_info->super_copy));
2306
2307         btrfs_commit_device_sizes(cur_trans);
2308
2309         clear_bit(BTRFS_FS_LOG1_ERR, &fs_info->flags);
2310         clear_bit(BTRFS_FS_LOG2_ERR, &fs_info->flags);
2311
2312         btrfs_trans_release_chunk_metadata(trans);
2313
2314         /*
2315          * Before changing the transaction state to TRANS_STATE_UNBLOCKED and
2316          * setting fs_info->running_transaction to NULL, lock tree_log_mutex to
2317          * make sure that before we commit our superblock, no other task can
2318          * start a new transaction and commit a log tree before we commit our
2319          * superblock. Anyone trying to commit a log tree locks this mutex before
2320          * writing its superblock.
2321          */
2322         mutex_lock(&fs_info->tree_log_mutex);
2323
2324         spin_lock(&fs_info->trans_lock);
2325         cur_trans->state = TRANS_STATE_UNBLOCKED;
2326         fs_info->running_transaction = NULL;
2327         spin_unlock(&fs_info->trans_lock);
2328         mutex_unlock(&fs_info->reloc_mutex);
2329
2330         wake_up(&fs_info->transaction_wait);
2331
2332         ret = btrfs_write_and_wait_transaction(trans);
2333         if (ret) {
2334                 btrfs_handle_fs_error(fs_info, ret,
2335                                       "Error while writing out transaction");
2336                 mutex_unlock(&fs_info->tree_log_mutex);
2337                 goto scrub_continue;
2338         }
2339
2340         /*
2341          * At this point, we should have written all the tree blocks allocated
2342          * in this transaction. So it's now safe to free the redirtyied extent
2343          * buffers.
2344          */
2345         btrfs_free_redirty_list(cur_trans);
2346
2347         ret = write_all_supers(fs_info, 0);
2348         /*
2349          * the super is written, we can safely allow the tree-loggers
2350          * to go about their business
2351          */
2352         mutex_unlock(&fs_info->tree_log_mutex);
2353         if (ret)
2354                 goto scrub_continue;
2355
2356         /*
2357          * We needn't acquire the lock here because there is no other task
2358          * which can change it.
2359          */
2360         cur_trans->state = TRANS_STATE_SUPER_COMMITTED;
2361         wake_up(&cur_trans->commit_wait);
2362
2363         btrfs_finish_extent_commit(trans);
2364
2365         if (test_bit(BTRFS_TRANS_HAVE_FREE_BGS, &cur_trans->flags))
2366                 btrfs_clear_space_info_full(fs_info);
2367
2368         fs_info->last_trans_committed = cur_trans->transid;
2369         /*
2370          * We needn't acquire the lock here because there is no other task
2371          * which can change it.
2372          */
2373         cur_trans->state = TRANS_STATE_COMPLETED;
2374         wake_up(&cur_trans->commit_wait);
2375
2376         spin_lock(&fs_info->trans_lock);
2377         list_del_init(&cur_trans->list);
2378         spin_unlock(&fs_info->trans_lock);
2379
2380         btrfs_put_transaction(cur_trans);
2381         btrfs_put_transaction(cur_trans);
2382
2383         if (trans->type & __TRANS_FREEZABLE)
2384                 sb_end_intwrite(fs_info->sb);
2385
2386         trace_btrfs_transaction_commit(fs_info);
2387
2388         btrfs_scrub_continue(fs_info);
2389
2390         if (current->journal_info == trans)
2391                 current->journal_info = NULL;
2392
2393         kmem_cache_free(btrfs_trans_handle_cachep, trans);
2394
2395         return ret;
2396
2397 unlock_reloc:
2398         mutex_unlock(&fs_info->reloc_mutex);
2399 scrub_continue:
2400         btrfs_scrub_continue(fs_info);
2401 cleanup_transaction:
2402         btrfs_trans_release_metadata(trans);
2403         btrfs_cleanup_pending_block_groups(trans);
2404         btrfs_trans_release_chunk_metadata(trans);
2405         trans->block_rsv = NULL;
2406         btrfs_warn(fs_info, "Skipping commit of aborted transaction.");
2407         if (current->journal_info == trans)
2408                 current->journal_info = NULL;
2409         cleanup_transaction(trans, ret);
2410
2411         return ret;
2412 }
2413
2414 /*
2415  * return < 0 if error
2416  * 0 if there are no more dead_roots at the time of call
2417  * 1 there are more to be processed, call me again
2418  *
2419  * The return value indicates there are certainly more snapshots to delete, but
2420  * if there comes a new one during processing, it may return 0. We don't mind,
2421  * because btrfs_commit_super will poke cleaner thread and it will process it a
2422  * few seconds later.
2423  */
2424 int btrfs_clean_one_deleted_snapshot(struct btrfs_root *root)
2425 {
2426         int ret;
2427         struct btrfs_fs_info *fs_info = root->fs_info;
2428
2429         spin_lock(&fs_info->trans_lock);
2430         if (list_empty(&fs_info->dead_roots)) {
2431                 spin_unlock(&fs_info->trans_lock);
2432                 return 0;
2433         }
2434         root = list_first_entry(&fs_info->dead_roots,
2435                         struct btrfs_root, root_list);
2436         list_del_init(&root->root_list);
2437         spin_unlock(&fs_info->trans_lock);
2438
2439         btrfs_debug(fs_info, "cleaner removing %llu", root->root_key.objectid);
2440
2441         btrfs_kill_all_delayed_nodes(root);
2442
2443         if (btrfs_header_backref_rev(root->node) <
2444                         BTRFS_MIXED_BACKREF_REV)
2445                 ret = btrfs_drop_snapshot(root, 0, 0);
2446         else
2447                 ret = btrfs_drop_snapshot(root, 1, 0);
2448
2449         btrfs_put_root(root);
2450         return (ret < 0) ? 0 : 1;
2451 }
2452
2453 void btrfs_apply_pending_changes(struct btrfs_fs_info *fs_info)
2454 {
2455         unsigned long prev;
2456         unsigned long bit;
2457
2458         prev = xchg(&fs_info->pending_changes, 0);
2459         if (!prev)
2460                 return;
2461
2462         bit = 1 << BTRFS_PENDING_COMMIT;
2463         if (prev & bit)
2464                 btrfs_debug(fs_info, "pending commit done");
2465         prev &= ~bit;
2466
2467         if (prev)
2468                 btrfs_warn(fs_info,
2469                         "unknown pending changes left 0x%lx, ignoring", prev);
2470 }